SED navigation bar go to SED home page go to SED seminars page go to NIST home page SED Home Page SED Contacts SED Projects SED Products and Publications Search SED Pages
Regression Case Study: Abstract

Statistical Engineering Division
Case Studies Series

A Regression Case Study: The Non-Linear Modeling of a 2-Dimensional Family of Curves Involving p-type Semiconductor Electron Mobility

Mobility vs. Density

Herb Bennett
Semiconductor Electron Devices, EEEL
James J. Filliben
Statistical Engineering Division, ITL

This is the first in a series of talks which presents--in a tutorial style-- the details of a collaborative case study between members of ITL's Statistical Engineering Division and members of the NIST scientific/engineering staff. The purpose of this series is to present methodologies, techniques, principles, and strategies for data-analytic problem-solving which may be potentially applicable to other NIST problems beyond the specific case study at hand.

The Problem

This first case study focuses on the regression modeling of the electron mobility for p-type gallium aluminum arsenide (GaAlAs) in the "minority electron" case--that is, for the case where there are fewer electrons than holes. Quantum mechanical non-linear integral-differential equations give a self-consistent description of carrier transport and mobility in Ga_{1-y}Al_{y}As/GaAs heterostructures, where y is the mole fraction of AlAs. Many hours of NIST Cray CPU time were used to solve these complex equations. The results are usually given via numerical tables for describing quantitatively how the electron mobility varies with dopant density and aluminum arsenide mole fraction, but interpolatory use of such look-up tables in semiconductor device simulators on engineering workstations is computationally inefficient--particularly for industry. We are thus led to the desired output from the data analysis, namely, a closed-form 2-dimensional analytic function f such that

    mobility = f(dopant density, mole fraction)

Importance: Device Simulators

If such a function can be derived, then it will represent a significant increase in computational efficiency via the inclusion of more physically correct mobility models in commercial semiconductor device simulators. The combination of the existing NIST Cray-generated mobility data and the derived 2-dimensional analytic function will lead to computer simulators that are at once both more parsimonious (fewer unknown or variational parameters) and more accurate (improved predictability).

Example: Cell Phones

The talk itself will consist of the step-by-step sequencing through the analysis, with emphasis on the approach being used and pitfalls to be avoided. Sub-topics include transformations, admissible non-linear models, separable functions, and melding functions. The data set to be analyzed in this talk is found in BENNETT.DAT and BENNETT2.DAT of version 98.11 of Dataplot (use LIST and COPY to extract this file).

For your convenience, copies of these files are included here:

BENNETT.DAT

This is Dataplot data file    BENNETT.DAT
Electron mobility for p-type AlGaAs
Herb Bennett
October 1998
Reference--Figure 3 of Journal of Applied Physics 80
           page 3851, 1996
Response variable                  = electron mobility for p-type AlGaAs
Number of observations             = 21
Number of variables per line image = 8
Order of variables on a line image--
   1. Response variable 1 = mobility for AlAs mole fraction = .00
   2. Response variable 2 = mobility for AlAs mole fraction = .05
   3. Response variable 3 = mobility for AlAs mole fraction = .10
   4. Response variable 4 = mobility for AlAs mole fraction = .15
   5. Response variable 5 = mobility for AlAs mole fraction = .20
   6. Response variable 6 = mobility for AlAs mole fraction = .25
   7. Response variable 7 = mobility for AlAs mole fraction = .30
   8. Factor 1            = coded acceptor density (in cm**-3)
                            (true density = coded density x 10**13)
To read this file into Dataplot--
   SKIP 25
   READ BENNETT.DAT Y1 Y2 Y3 Y4 Y5 Y6 Y7 X

   Y1       Y2       Y3       Y4       Y5       Y6       Y7           X
------------------------------------------------------------------------
 5.7420   5.1360   4.5520   4.0030   3.5000   3.0510   2.6580         1
 5.1060   4.5840   4.0810   3.6060   3.1710   2.7790   2.4340         2
 4.7180   4.2440   3.7880   3.3570   2.9610   2.6040   2.2880         3
 4.2250   3.8100   3.4110   3.0340   2.6860   2.3710   2.0920         5
 3.9030   3.5240   3.1610   2.8180   2.5010   2.2140   1.9590         7
 3.5650   3.2240   2.8970   2.5880   2.3030   2.0450   1.8140        10
 2.9260   2.6540   2.3940   2.1480   1.9210   1.7150   1.5300        20
 2.5690   2.3340   2.1100   1.8990   1.7030   1.5250   1.3660        30
 2.1450   1.9530   1.7710   1.5990   1.4410   1.2960   1.1650        50
 1.8890   1.7210   1.5640   1.4160   1.2790   1.1540   1.0410        70
 1.6430   1.4990   1.3640   1.2390   1.1230   1.0160   0.9198       100
 1.2580   1.1500   1.0500   0.9575   0.8725   0.7948   0.7241       200
 1.1010   1.0060   0.9191   0.8397   0.7670   0.7007   0.6403       300
 0.9936   0.9046   0.8249   0.7530   0.6880   0.6292   0.5760       500
 0.9901   0.8971   0.8152   0.7420   0.6764   0.6175   0.5647       700
 1.0680   0.9601   0.8660   0.7832   0.7097   0.6449   0.5873      1000
 1.5390   1.3720   1.2270   1.0980   0.9863   0.8881   0.8013      2000
 1.9640   1.7460   1.5560   1.3900   1.2430   1.1150   1.0020      3000
 2.4890   2.2120   1.9680   1.7530   1.5630   1.3970   1.2500      5000
 2.6920   2.3920   2.1250   1.8920   1.6870   1.5060   1.3470      7000
 2.7200   2.4180   2.1520   1.9180   1.7110   1.5280   1.3680     10000

BENNETT2.DAT

This is Dataplot data file    BENNETT2.DAT
Electron mobility for p-type AlGaAs
Herb Bennett
October 1998
Reference--Figure 3 of Journal of Applied Physics 80
           page 3851, 1996
Response variable                  = electron mobility for p-type AlGaAs
Number of observations             = 154 (= 21 points/curve x 7 curves)
Number of variables per line image = 3
Order of variables on a line image--
   1. Response variable = mobility (in xm**2/v*s)
   2. Factor 1          = coded acceptor density (in cm**-3)
                          (true density = coded density x 10**13)
   3. Factor 2          = mole fraction of AlAs (7 levels--0, .05, .10, ..., .30)
To read this file into Dataplot--
   SKIP 25
   READ BENNETT.DAT Y X TAG




     Y           X          Tag
  Mobility    Density  Mole Fraction
                          of AlAs
------------------------------------
   5.742          1        .00
   5.106          2        .00
   4.718          3        .00
   4.225          5        .00
   3.903          7        .00
   3.565         10        .00
   2.926         20        .00
   2.569         30        .00
   2.145         50        .00
   1.889         70        .00
   1.643        100        .00
   1.258        200        .00
   1.101        300        .00
   0.9936       500        .00
   0.9901       700        .00
   1.068       1000        .00
   1.539       2000        .00
   1.964       3000        .00
   2.489       5000        .00
   2.692       7000        .00
   2.720      10000        .00
   5.136          1        .05
   4.584          2        .05
   4.244          3        .05
   3.810          5        .05
   3.524          7        .05
   3.224         10        .05
   2.654         20        .05
   2.334         30        .05
   1.953         50        .05
   1.721         70        .05
   1.499        100        .05
   1.150        200        .05
   1.006        300        .05
   0.9046       500        .05
   0.8971       700        .05
   0.960       1000        .05
   1.372       2000        .05
   1.746       3000        .05
   2.212       5000        .05
   2.392       7000        .05
   2.418      10000        .05
   4.552          1        .10
   4.081          2        .10
   3.788          3        .10
   3.411          5        .10
   3.161          7        .10
   2.897         10        .10
   2.394         20        .10
   2.110         30        .10
   1.771         50        .10
   1.564         70        .10
   1.364        100        .10
   1.050        200        .10
   0.9191       300        .10
   0.8249       500        .10
   0.8152       700        .10
   0.8660      1000        .10
   1.227       2000        .10
   1.556       3000        .10
   1.968       5000        .10
   2.125       7000        .10
   2.152      10000        .10
   4.003          1        .15
   3.606          2        .15
   3.357          3        .15
   3.034          5        .15
   2.818          7        .15
   2.588         10        .15
   2.148         20        .15
   1.899         30        .15
   1.599         50        .15
   1.416         70        .15
   1.239        100        .15
   0.9575       200        .15
   0.8397        300        .15
   0.7530       500        .15
   0.7420       700        .15
   0.7832      1000        .15
   1.098       2000        .15
   1.390       3000        .15
   1.753       5000        .15
   1.892       7000        .15
   1.918      10000        .15
   3.500          1        .20
   3.171          2        .20
   2.961          3        .20
   2.686          5        .20
   2.501          7        .20
   2.303         10        .20
   1.921         20        .20
   1.703         30        .20
   1.441         50        .20
   1.279         70        .20
   1.123        100        .20
   0.8725       200        .20
   0.7670       300        .20
   0.6880       500        .20
   0.6764       700        .20
   0.7097      1000        .20
   0.9863      2000        .20
   1.243       3000        .20
   1.563       5000        .20
   1.687       7000        .20
   1.711      10000        .20
   3.051          1        .25
   2.779          2        .25
   2.604          3        .25
   2.371          5        .25
   2.214          7        .25
   2.045         10        .25
   1.715         20        .25
   1.525         30        .25
   1.296         50        .25
   1.154         70        .25
   1.016        100        .25
   0.7948       200        .25
   0.7007       300        .25
   0.6292       500        .25
   0.6175       700        .25
   0.6449      1000        .25
   0.8881      2000        .25
   1.115       3000        .25
   1.397       5000        .25
   1.506       7000        .25
   1.528      10000        .25
   2.658          1        .30
   2.434          2        .30
   2.288          3        .30
   2.092          5        .30
   1.959          7        .30
   1.814         10        .30
   1.530         20        .30
   1.366         30        .30
   1.165         50        .30
   1.041         70        .30
   0.9198       100        .30
   0.7241       200        .30
   0.6403       300        .30
   0.5760       500        .30
   0.5647       700        .30
   0.5873      1000        .30
   0.8013      2000        .30
   1.002       3000        .30
   1.250       5000        .30
   1.347       7000        .30
   1.368      10000        .30

Date created: 6/5/2001
Last updated: 6/21/2001
Please email comments on this WWW page to sedwww@nist.gov.