How We Handle Mass Spectra

NIST Mass Spectrometry Data Center

NIST/EPA/NIH Mass Spectral Library

Numbers of Spectra

Libraries Distributed/Year

The Data

m/z

Connection Table

From Structure to Spectrum: A Mass "Fragmentogram"

Molecular Fingerprints

I will discuss

- Library Searching
 - Full and Partial Spectra
- Spectrum Purification
- Chemical Structure Representation
- Peptide Spectra Libraries

Instrument 'Noise Signature'

250 Hexachlorobenzene Spectra same instrument, calibration mix

Instrument Effects

Library Search

(M)Dibutyl 3-hydroxybutyl phosphate

Spectral Similarity

- M = f(Abundance) Peak in Measured Spectrum
- R = f(Abundance) Peak in Reference Spectrum
- Sum over all peaks
- *f*(Abundance)
 - Abundance
 - Abundance * m/z
 - Certainty

Algorithm Performance

12,592 Replicate Spectra against NIST Library

Model

Percent Correct

	Top Hit	Top 2 Hits	Top 3 Hits
Correlation – Weighted	74.9	86.9	91.7
Correlation	72.9	85.9	90.8
Euclidean Distance	71.9	83.9	88.9
Absolute Distance	67.9	80.3	85.5
PBM - Published	64.7	78.4	84.8
Hites/Hertz/Biemann	64.4	77.2	83.2

FP/FP Above Given Match Factor for NIST Library Spectra

FP Depends on Spectrum Uniqueness

Multiple Ion Monitoring

- What is is?
 - Use 2-5 Major Peaks in Spectrum of Target
 - 10 100 more sensitive
- What's the problem?
 - Can match major Target peaks with Minor Sample Peaks
- What we have done:
 - Examine risk using library as source of potential false positive IDs

False Positive Risk vs Number of Peaks Used

FP Observed and Computed (from individual peak probabilities)

Search Results Depend on Search Spectrum Quality

AMDIS: http://chemdata.nist.gov

Chromatogram with single ion

AMDIS Analysis of Data

Order of Analysis

- Noise Analysis find 'Noise Factor'
- Find and quantify maximizing ions
- Combine to create 'Model Peak'
- Use Model Peak shape (intensity vs time) to purify spectra
- Find best matching library spectrum

Noise =
$$K_{noise} \sqrt{Intensity}$$

Finding Possible Peaks for Each m/z

Find Possible Compounds: Do Ions Maximize at Same Time?

Separate the Components

A 'Model Peak' Provides Shape

The model shape is defined as the sum of all of the ion chromatograms that maximize within the range and have a sharpness value within 75% of the maximum.

AMDIS Testing – Closely Eluting Components

Representing Chemical Identity

- Visual: 2D Structure
- Text: IUPAC Name
- Digital: No Accepted, Open Method
- Solution:

The IUPAC/NIST Chemical Identifier

Connection Table

Chemical Identity Problems

Registry Number possible for each exact form, mixture, unknown, unspecified

Experts required

Expensive, ambiguous and error prone

Requirements

- Different compounds have different identifiers
 - Keep all distinguishing structural information

Requirements

• One compound has only one identifier – Omit unnecessary information

3 Steps to INChI

- Chemistry
 - 'Normalize' Input Structure
 - Implement chemical rules
- Math
 - 'Canonicalize' (label the atoms)
 - Equivalent atoms get the same label
- Format
 - 'Serialize' Labeled Structure
 - Output as character string ('name')

Chemical Substances

Nitrobenzene

Description	Layers
formula	C6H5NO2
connectivity	8-7(9)6-4-2-1-3-5-6
H-atoms	1-5H
charges	

MSG

C5H9NO4.Na/c6-3(5(9)10)1-2-4(7)8;/h1-2H2,3H,6H2,(H,7,8)(H,9,10);/q;+1/p-1/t3-;/m1./s1

Peptide Mass Spectra: Libraries for Organisms

- Proteins are linear sequences of amino acids
 - characteristic of Genome (organism)
- Peptides are 'digested' fragments of proteins
- MS 'sequences' peptides to reveal source Protein
- Peptides fragmentation spectra are not quite predictable
- Peptide fragmentation spectra for a 'genome' can be contained in one Library.

Spectrum Prediction Programs

Peptide Spectra Reference Library (multiple measurements each of 10,000 peptides)

