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• Measurement and control of machine tool errors has
led to delay differential equation models.
(Hanna, Tobias [4])

• Machine tool chatter has been established as a
Hopf bifurcation of limit cycles from stable machining.
(Gilsinn [1], Nayfeh, et al. [5])

• Chatter is self sustained limit cycles caused by the
cutting tool interacting with undulations from a
previous cut.

• Wish to approximate limit cycles with an analytic form
and develop a computable error bound.

INTRODUCTION



SOME BASIC FACTS

• An autonomous delay differential equation (DDE) with a fixed delay
will be written

with initial condition    from the space of continuous functions
on [-h,0] .

• If         satisfies a Lipschitz condition with respect to x , independent
of y , there exists a unique solution of (1) for   on [-h,0] .

• A linear DDE with fixed delay takes the form

with initial condition     on [-h,0] ,          a column vector. (Forward Int.)

• The formal adjoint equation to (2) takes the form

for    on             , some initial interval,          , a row vector. (Backward Int.)
• A solution          of the linear DDE (2) is called a fundamental solution

if

( )( ) ( ( ), ( )) 1x t X x t x t h= −�

φ

( , )X x y

φ

( )( ) ( ) ( ) ( ) ( ) 2x t A t x t B t x t h= + −�

φ nx R∈

( )( ) ( ) ( ) ( ) ( ) 3y t y t A t y t h B t h= − − + +�

ψ
0 0[ , ]t t h+ nRψ ∈

( , )Z t s
( , ) , ( , ) 0, .Z s s I Z t s t s= = <



OBJECTIVE

• Find periodic solution of autonomous delay differential
equation (DDE)

( )( ) ( ( ), ( )) 4x t X x t x t h= −�

with initial condition      from the space of continuous
functions on

• Period                 is also unknown.  
• Introduce        for t to get

• Look for periodic solutions of fixed period
• Desired Result: Given an approximate     -periodic

solution and frequency,            , of (2), wish to show that
if they satisfy a certain noncriticality condition then
there exists an exact frequency and       -periodic
solution,                , in a computable neighborhood of
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NOTATION
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• If           are an approximate frequency and      - periodic solution then

• The variational equation with respect to the approximate solution is

Let A(t) =             ,  B(t) = 

• is a characteristic multiplier of the linear system (2)
if there exists a non-trivial solution of (2) such that
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NONCRITCAL APPROXIMATE SOLUTION

• The pair               is noncritical with respect to                      if the
variational equation about the approximate solution (7) has a
characteristic multiplier       of multiplicity one with the remaining
multipliers unequal to one.   If                      is the periodic solution
of the adjoint corresponding to       then

where

(Hale [3], Stokes  [7])    
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IMPORTANT LEMMAS

LEMMA (Halanay [2]): If         is noncritical,          -periodic, such that

then there exists a unique      -periodic solution of

which satisfies                      for some           , independent of 

, 2f π( , )xω

2
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LEMMA (Halanay [2]): When the linear DDE coefficients A(t), B(t)
are periodic the linear and adjoint systems have the same finite
number of independent solutions. 

LEMMA (Hale [3], Halanay [2]): If        is a simple characteristic 
multiplier of the linear DDE (2), p(t) a nontrivial      -periodic solution
of the linear DDE (2), q(t) a nontrivial     - periodic solution of the
adjoint (3) and

then
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FUNDAMENTAL THEOREM
THEOREM (Stokes [7]): Let            satisfy

and let            . Suppose there exist         and         such that for

Assume            is noncritical (in the delay sense) and let       be the
appropriate solution of the adjoint to the variational equation,           .
Let

If M is the constant from the previous lemma, let

Finally, if there is a function C of computable parameters such that

then there exists an exact     -periodic solution        and an 
exact frequency        so that
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PROOF (OUTLINE)

Goal: Find                     -periodic so that

is and exact solution of

Substituting (21) into (22)

where

and             is a function of computable parameters 
and
Strategy: Wish to find a fixed point of a map               
such that the perturbation term on the right of (23) 
is orthogonal to the solution of the adjoint in the 
noncriticality definition. The Lemma can then be used
To solve for a 
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PROOF (CONTINUED)

Define the sets

Construct map    as a composition
Define:
Given                solve for unique          so that

solution of adjoint for              noncritical.
By Lemma there exists a unique            such that

Now define
Define:
Given

Define:
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PROOF (CONTINUED)

For         in the definition of N there exists a bounded function

Such that            , which implies                   is a contraction.
Therefore there exists a fixed point
The exact solution is then given by

Finally, we can show that

NOTE: This provides only O(r) estimates. These may not be optimal
bounds but they are computable.
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APPLICATION STEPS

• Compute the approximation pair

• Verify that the pair is noncritical

• Compute M and

( , )xω

α

A quote from Stokes [7]

“ The computational difficulties here are considerably
greater than in the case of ordinary differential
equations,…, but they are not insurmountable”

He never produced an example. This talk describes
the first application.



APPROXIMATE SOLUTION

• Develop solution as a trigonometric polynomial

• Set coefficient of one term to zero, say sin(t), in order
to estimate

• Can develop Galerkin projection equations using, e.g. MAPLE,
although the expansions are nontrivial (typical over 135 terms).
Not recommended in general.

• Summer student, Chris Copeland, and I have developed a
a fast projection procedure in MATLAB based on some
FFT ideas. Subject for another talk.
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VARIATION OF CONSTANTS FORMULAS

• From now on we revert to classic notation where we set

• and         are      -periodic. 
• The variation of constants formula for the linear system 

is 

(         solution of linear system with                      ) , 
• h has been normalized to 1.
• The variation of constants formula for the adjoint

is

• These formulas are developed in Halanay [2]. Significance of
the adjoint formula is that it only requires a forward integration.
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TESTING NONCRITICALITY CONDITION

• Test characteristic multiplier of multiplicity one and compute

• is a characteristic multiplier of the linear system if there is a 
solution      such that

• Halanay [2] shows that  the eigenvalues of the following operator
are the multipliers of the variational equation for the linear system

• Called the monodromy operator, defined formally by

where

• U is compact with at most a countable number of eigenvalues
with 0 the only possible limit point.

• In the present case          will be

α

ρ
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MONODROMY OPERATOR
MAP ON INITIAL SPACE

ω− 0 2π ω− 2π

Uφ

φ

[ , 0]C ω−

Translate back

Trajectory Plot Interpreted as a Mapping on Initial Space



DISCRETIZATION OF U

• The eigenvalues of              are approximated by the eigenvalues
of                where      is constructed as follows:

• Discretize with equal intervals

where
• Approximate the integral operator by the trapezoidal rule (other rules

could be used) by setting

where           satisfies the linear variational system about the
approximate periodic solution, 

Uφ ρφ=
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Block Matrix for NU

• The matrix for        becomes

• It is not necessary to compute                              for all
. For large N, say 1000 or more, this

would be somewhat impractical computationally.
• Note that                         and                           for
• For column j compute                      but save intermediate

integration points as is done in dde23 in Matlab.
• Interpolate the values of                            up the column for

• This also applies to
• This reduces the block integrations of Z to N+1 instead of (N+1)2.
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Computing the      parameter - 1α
• Need to solve adjoint equation for                         on [0,2 ],t π ψ∈ [2 ,2 ]π π ω+
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Computing the      parameter - 2α
• Halanay [2] showed that the eigenvalues of                 are all the same

and that the eigenvectors of           are related by
, ,U U V� �

,U V� �
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This is the discretized form of the variation of constants formula for
the adjoint equation



Estimating M such that                2
z M f≤

• Solution of nonhomogeneous system, 
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Van der Pol Equation with Unit Delay

2( ( 1) 1) ( 1) 0x x t x t xλ+ − − − + =�� �

• Introduce unknown frequency by substituting         for    to get 
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• In vector form with                                  , initial condition on

• The variational equation can be written as 

• For this example we take 
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Developing an Approximate Solution

• Selected a 7 harmonic expansion and           in the delay equation
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• The sin(t) term was dropped in order to estimate .ω
• 15 Galerkin projection equations developed using MAPLE.

• Solving the projection equations produced 
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• Using these and MAPLE to produce an expansion of the Van der
Pol equation and then taking the sup norm gave residual r = 
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Estimating the Bound      and Lipschitz constant K1K

• Use the fact that for matrix product        with                then
to show that
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Van der Pol Equation with Unit Delay

• Using the characteristic multiplier algorithm and integrating
Z(t,0), etc. using dde23 in MATLAB get

• M is estimated as 1.7411 

• is estimated as 8.0665

• Other estimates
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Calculation Data Flow
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Final Observations

• Galerkin projection symbolic calculations are very lengthy.

• Lack of general form for          required numerical integration by dde23.

• Spline interpolation reduced the number of times          
had to be computed.

• Integration rule possibly led to fine discretization of intervals.

• No reasonably computable Green’s Function required numerical 
estimation of M    .

• Numerical Procedures led to interesting algorithmic results as also
demonstrated by Urabe and Reiter [9].

• Further study of convergence questions needed.

• Recent studies show that collocation might be more efficient for
solving for characteristic multipliers.

( , )Z s t

( , )Z s t
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