Matrix Decompositions and

Quantum Circuit Design

Stephen S. Bullock
(joint with Vivek V.Shende,Igor L.Markov, U.M. EECS)

Mathematical and Computational Sciences Division Division Seminar
 National Institute of Standards and Technology

September 15, 2004

Motivation

Classical Technique: For AND-OR-NOT circuit for function φ on bit strings

- Build AND-NOT circuit firing on each bit-string with $\varphi=1$
- Connect each such with an or

Restatement:

- Produce a decomposition of the function φ
- Produce circuit blocks accordingly

Motivation, Cont.

Quotation, Feynman on Computation, §2.4:

However, the approach described here is so simple and general that it does not need an expert in logic to design it! Moreover, it is also a standard type of layout that can easily be laid out in silicon. (ibid.)

Remarks:

- Analog for quantum computers?
- Simple \& general?

Motivation, Cont.

- Quantum computation, n quantum bits: $2^{n} \times 2^{n}$ unitary matrix
- Matrix decomposition: Algorithm for factoring matrices
- Similar strategy: decomposition splits computation into parts
- Divide \& conquer: produce circuit design for each factor

Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)
III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology \& Lower Bounds

Quantum Computing

- replace bit with qubit: two state quantum system, states $|0\rangle,|1\rangle$
- Single qubit state space $\mathcal{H}_{1}=\mathbb{C}|0\rangle \oplus \mathbb{C}|1\rangle \cong \mathbb{C}^{2}$
- e.g. $|\psi\rangle=(1 / \sqrt{2})(|0\rangle+i|1\rangle)$ or $|\psi\rangle=\binom{1 / \sqrt{2}}{i / \sqrt{2}}$
- n-qubit state space $\mathcal{H}_{n}=\otimes_{1}^{n} \mathcal{H}_{1}=\oplus_{\bar{b}}$ an n bit string $\mathbb{C}|\bar{b}\rangle \cong \mathbb{C}^{2}$
- Kronecker (tensor) product \Longrightarrow entanglement

Nonlocality: Entangled States

- von Neumann measurement: $|\psi\rangle=\sum_{j=0}^{N} \alpha_{j}|j\rangle, \operatorname{Prob}(j$ meas $)=\left|\alpha_{j}\right|^{2} / \sum_{j=0}^{2^{n}-1}\left|\alpha_{j}\right|^{2}$
- Standard entangled state: $|\psi\rangle=(1 / \sqrt{2})(|00\rangle+|11\rangle)$
- $\operatorname{Prob}(00$ meas $)=\operatorname{Prob}(11$ meas $)=1 / 2$
- Also $|G H Z\rangle=(1 / \sqrt{2})(|00 \cdots 0\rangle+|11 \cdots 1\rangle)$,

$$
|W\rangle=(1 / \sqrt{n})(|100 \cdots 0\rangle+|010 \cdots 0\rangle+\cdots+|0 \cdots 01\rangle)
$$

- quantum computations: apply unitary matrix u, i.e. $|\psi\rangle \mapsto u|\psi\rangle$

Tensor (Kronecker) Products of Data, Computations

- $|\phi\rangle=|0\rangle+i|1\rangle,|\psi\rangle=|0\rangle-|1\rangle \in \mathcal{H}_{1}$
- interpret $|10\rangle=|1\rangle \otimes|0\rangle$ etc.
- composite state in $\mathcal{H}_{2}:|\phi\rangle \otimes|\psi\rangle=|00\rangle-|01\rangle+i|10\rangle-i|11\rangle$
- Most two-qubit states are not tensors of one-qubit states.
- If $A=\left(\begin{array}{cc}\alpha & -\beta \\ \bar{\beta} & \bar{\alpha}\end{array}\right)$ is one-qubit, B one-qubit, then the two-qubit tensor $A \otimes B$ is $(A \otimes B)=\left(\begin{array}{cc}\alpha B & -\beta B \\ \bar{\beta} B & \bar{\alpha} B\end{array}\right)$. Most 4×4 unitary u are not local.

Complexity of Unitary Evolutions

- Easy to do: $\otimes_{j=1}^{n} u_{j}$ for 2×2 factors, Slightly tricky: two-qubit operation $v \otimes I_{2^{n} / 4}$, some 4×4 unitary v
- Optimization problem: Use as few such factors as possible
- Visual representation: Quantum circuit diagram

Thm: ('93, Bernstein-Vazirani) The Deutsch-Jozsa algorithm proves quantum computers would violate the strong Church-Turing hypothesis.

Complexity of Unitary Evolutions Cont.

- Outlined box is Kronecker (tensor) product $u_{1} \otimes u_{2} \otimes u_{3}$
- Common practice: not arbitrary v_{1}, v_{2}, v_{3} but CNOT, $|10\rangle \longleftrightarrow|11\rangle$

Quantum Circuit Design

- For $\oplus=$ NOT $=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, sample quantum circuit:
$u=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ is implemented by $\oplus \quad \oplus \quad \oplus$
- good quantum circuit design: find tensor factors of computation u

Example: \mathcal{F} the Two-Qubit Fourier Transform in $\mathbb{Z} / 4 \mathbb{Z}$

- Relabelling $|00\rangle, \ldots|11\rangle$ as $|0\rangle, \ldots,|3\rangle$, the discrete Fourier transform \mathcal{F} :

$$
|j\rangle \xrightarrow{\mathcal{F}} \frac{1}{2} \sum_{k=0}^{3}(\sqrt{-1})^{j k}|k\rangle \quad \text { or } \quad \mathcal{F}=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
$$

- one-qubit unitaries: $H=(1 / \sqrt{2})\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right), S=(1 / \sqrt{2})\left(\begin{array}{rr}1 & 0 \\ 0 & i\end{array}\right)$

Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)
III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology \& Lower Bounds

The Magic Basis of Two-Qubit State Space

$$
\left\{\begin{aligned}
|\mathrm{m} 0\rangle & =(|00\rangle+|11\rangle) / \sqrt{2} \\
|\mathrm{~m} 1\rangle & =(|01\rangle-|10\rangle) / \sqrt{2} \\
|\mathrm{~m} 2\rangle & =(i|00\rangle-i|11\rangle) / \sqrt{2} \\
|\mathrm{~m} 3\rangle & =(i|01\rangle+i|10\rangle) / \sqrt{2}
\end{aligned}\right.
$$

Remark: Bell states up to global phase; global phases needed for theorem
Theorem (Lewenstein, Kraus, Horodecki, Cirac 2001)
Consider a 4×4 unitary u, global-phase chosen for $\operatorname{det}(u)=1$

- Compute matrix elements in the magic basis
- (All matrix elements are real) $\Longleftrightarrow(u=a \otimes b)$

Two-Qubit Canonical Decomposition

Two-Qubit Canonical Decomposition: Any u a four by four unitary admits a matrix decomposition of the following form:

$$
u=(d \otimes f) a(b \otimes c)
$$

for $b \otimes c, d \otimes f$ are tensors of one-qubit computations, $a=\sum_{j=0}^{3} \mathrm{e}^{i \theta_{j}}|\mathrm{mj}\rangle\langle\mathrm{mj}|$
Note that a applies relative phases to the magic or Bell basis.
Circuit diagram: For any u a two-qubit computation, we have:

Application: Three CNOT Universal Two-Qubit Circuit

- Many groups: 3 CNOT circuit for 4×4 unitary: (F.Vatan, C.P.Williams), (G.Vidal, C.Dawson), (V.Shende, I.Markov, B-)
- Implement a somehow, commute SWAP through circuit to cancel
- Earlier B-,Markov: 4 CNOT circuit w/o SWAP, CD \& naïve a

\cong

Two-Qubit CNOT-Optimal Circuits

Theorem:(Shende,B-,Markov) Suppose v is a 4×4 unitary normalized so $\operatorname{det}(v)=1$. Label $\gamma(v)=\left(-i \sigma^{y}\right)^{\otimes 2} v\left(-i \sigma^{y}\right)^{\otimes 2} v^{T}$. Then any v admits a circuit holding elements of $S U(2)^{\otimes 2}$ and 3 CNOT's, up to global phase. Moreover, for $p(\lambda)=\operatorname{det}\left[\lambda I_{4}-\gamma(v)\right]$ the characteristic poly of $\gamma(v)$:

- (v admits a circuit with 2 CNOT's $) \Longleftrightarrow(p(\lambda)$ has real coefficients $)$
- $(v$ admits a circuit with 1 CNOT $) \Longleftrightarrow\left(p(\lambda)=(\lambda+i)^{2}(\lambda-i)^{2}\right)$
- $(v \in S U(2) \otimes S U(2)) \Longleftrightarrow\left(\gamma(v)= \pm I_{4}\right)$

Optimal Structured Two-qubit Circuits

- Quantum circuit identities: All 1,2 CNOT diagrams reduce to these
- Computing parameters: useful to use operator $E, E|j\rangle=|\mathrm{mj}\rangle$

Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)
III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology \& Lower Bounds

Relative Phase Group

- Easiest concievable n-qubit circuit question: How to build circuits for

$$
A\left(2^{n}\right)=\left\{\sum_{j=0}^{2^{n}-1} \mathrm{e}^{i \theta_{j}}|j\rangle\langle j| ; \theta_{j} \in \mathbb{R}\right\} ?
$$

- $A\left(2^{n}\right)$ commutative \Longrightarrow vector group
- $\log : A\left(2^{n}\right) \rightarrow \mathfrak{a}\left(2^{n}\right)$ carries matrix multiplication to vector sum
- Strategy: build decompositions from vector space decompositions
- Subspaces encoded by characters, i.e. continuous group maps $\chi: A\left(2^{n}\right) \rightarrow\left\{\mathrm{e}^{i t}\right\}$

Characters Detecting Tensors

- $k e r \log \chi$ is a subspace of $\mathfrak{a}\left(2^{n}\right)$
- Subspaces \bigcap_{j} ker $\log \chi_{j}$ exponentiate to closed subgroups

Example: $a=\sum_{j=0}^{2^{n}-1} z_{j}|j\rangle\langle j| \in A\left(2^{n}\right)$ has $a=\tilde{a} \otimes R_{z}(\alpha)$ if and only if

$$
z_{0} / z_{1}=z_{2} / z_{3}=\cdots=z_{2^{n}-2} / z_{2^{n}-1}
$$

So a factors on the bottom line if and only if $a \in \bigcap_{j=0}^{2^{n-1}-1} \operatorname{ker} \chi_{j}$ for $\chi_{j}(a)=z_{2 j} z_{2 j+2} /\left(z_{2 j+1} z_{2 j+3}\right)$.

Circuits for $A\left(2^{n}\right)$

Outline of Synthesis for $A\left(2^{n}\right)$:

- Produce circuit blocks capable of setting all $\chi_{j}=1$
- After $a=\tilde{a} \otimes R_{z}$, induct to \tilde{a} on top $n-1$ lines

Remark: $2^{n-1}-1$ characters to zero $\Longrightarrow 2^{n-1}-1$ blocks, i.e. one for each nonempty subset of the top $n-1$ lines

Circuits for $A\left(2^{n}\right)$, Cont.

Tricks in Implementing Outline:

- If $\#\left[\left(S_{1} \cup S_{2}\right)-\left(S_{1} \cap S_{2}\right)\right]=1$, then all but one CNOT in center of $X O R_{S_{1}}\left(R_{z}\right) X O R_{S_{2}}\left(R_{z}\right)$ cancel.
- Subsets in Gray code: most CNOTs cancel
- Final count: $2^{n}-2$ CNOTs

Uniformly Controlled Rotations (M.Möttönen, J.Vartiainen)

Let \vec{v} be any axis on Block sphere. Uniformly-controlled rotation requires 2^{n-1} CNOTs:

$$
\bigwedge_{k}^{\text {uni }}\left[R_{\vec{v}}\right]=\left(\begin{array}{rrrr}
R_{\vec{v}}\left(\theta_{0}\right) & \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} \\
\mathbf{0}_{2} & R_{\vec{v}}\left(\theta_{1}\right) & \cdots & \mathbf{0}_{2} \\
\mathbf{0}_{2} & \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} \\
\mathbf{0}_{2} & \mathbf{0}_{2} & \cdots & R_{\vec{v}}\left(\theta_{2^{n-1}-1}\right)
\end{array}\right)
$$

Example: Outlined block is $\operatorname{diag}\left[R_{z}\left(\theta_{1}\right), R_{z}\left(\theta_{2}\right), \cdots, R_{z}\left(\theta_{2^{n-1}}\right)\right]=\Lambda_{n-1}^{\text {uni }}\left[R_{z}\right]$ up to SWAP of qubits $1, n$

Shende, q-ph/0406176: Short proof of 2^{n-1} CNOTs using induction: $\mathfrak{a}\left(2^{n}\right)=I_{2} \otimes \mathfrak{a}\left(2^{n-1}\right) \oplus \boldsymbol{\sigma}^{z} \otimes \mathfrak{a}\left(2^{n-1}\right)$

Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)
III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology \& Lower Bounds

Universal Circuits

Goal: Build a universal quantum circuit for u be $2^{n} \times 2^{n}$ unitary evolution

- Change rotation angles: any u up to phase
- Preview: At least $4^{n}-1$ rotation boxes $R_{\vec{v}}$, at least $\frac{1}{4}\left(4^{n}-3 n-1\right)$ CNOTs
- Prior art
- Barenco Bennett Cleve DiVincenzo Margolus Shor Sleator J.Smolin Weinfurter (1995) $\approx 50 n^{2} \times 4^{n}$ CNOTs
- Vartiainen, Möttönen, Bergholm, Salomaa, $\approx 8 \times 4^{n}$ (2003), $\approx 4^{n}$ (2004)

Cosine Sine Decomposition

Cosine Sine Decomposition: Any va $2^{n} \times 2^{n}$ unitary may be written

$$
v=\left(\begin{array}{rr}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right)\left(\begin{array}{rr}
c & -s \\
s & c
\end{array}\right)\left(\begin{array}{rr}
a_{2} & 0 \\
0 & b_{2}
\end{array}\right)=\left(a_{1} \oplus b_{1}\right) \gamma\left(a_{2} \oplus b_{2}\right)
$$

where a_{j}, b_{j} are $2^{n-1} \times 2^{n-1}$ unitary, $c=\sum_{j=0}^{2^{n-1}-1} \cos t_{j}|j\rangle\langle j|$ and $s=\sum_{j=0}^{2^{n-1}-1} \sin t_{j}|j\rangle\langle j|$

- Studied extensively in numerical matrix analysis literature
- Fast CSD algorithms exist; reasonable on laptop for $n=10$

Strategy for $\approx 4^{n} / 2$ CNOT Circuit

- Use CSD for $v=\left(a_{1} \oplus b_{1}\right) \gamma\left(c_{1} \oplus d_{1}\right)$
- Implement $\gamma=\left(\begin{array}{rr}c & -s \\ s & c\end{array}\right)$ as uniformly controlled rotations
- uniform control \Longrightarrow few CNOTs
- Implement $a_{j} \oplus b_{j}=\left(\begin{array}{rr}a_{j} & 0 \\ 0 & b_{j}\end{array}\right)$ as quantum multiplexor
- Also includes uniformly controlled rotations, also inductive
- Induction ends at specialty two-qubit circuit

Quantum Multiplexors

- Multiplexor: route computation as control bit 0,1
- $v=a \oplus b$: Do a or b as top qubit $|0\rangle,|1\rangle$
- Diagonalization trick: Solve following system, $d \in A\left(2^{n-1}\right)$, u, w each some $2^{n-1} \times 2^{n-1}$ unitary

$$
\left\{\begin{array}{l}
a=u d w \\
b=u d^{\dagger} w
\end{array}\right.
$$

- Result: $a \oplus b=(u \oplus u)\left(d \oplus d^{\dagger}\right)(w \oplus w)=\left(I_{2} \otimes u\right) \wedge_{n-1}^{\text {uni }}\left[R_{7}\right]\left(I_{2} \otimes w\right)$

Circuit for (1/2) CNOT per Entry

- Outlined sections are multiplexor implementations
- Cosine Sine matrix γ : uniformly controlled $\wedge_{n-1}^{\mathrm{uni}}\left[R_{y}\right]$
- Induction ends w/ 2-qubit specialty circuit

Circuit Errata

- Lower bound \Longrightarrow (can be improved by no more than factor of 2)
- 21 CNOTs in 3 qubits: currently best known
- $\approx 50 \%$ CNOTs on bottom two lines
- Adapts to spin-chain architecture with (4.5) $\times 4^{n}$ CNOTs
- Quantum charge couple device (QCCD) with 3 or 4 qubit chamber?

Outline

I. Introduction to Quantum Circuits
II. Two Qubit Circuits (CD)
III. Circuits for Diagonal Unitaries
IV. Half CNOT per Entry (CSD)
V. Differntial Topology \& Lower Bounds

Sard's Theorem

Def: A critical value of a smooth function of smooth manifolds $f: M \rightarrow N$ is any $n \in N$ such that there is some $p \in M$ with $f(p)=n$ with the linear map $(d f)_{p}: T_{p} M \rightarrow T_{n} N$ not onto.

Sard's theorem: The set of critical values of any smooth map has measure zero.

Corollary: If $\operatorname{dim} M<\operatorname{dim} N$, then image(f) is measure 0 .

- $U\left(2^{n}\right)=\left\{u \in \mathbb{C}^{2^{n} \times 2^{n}} ; u u^{\dagger}=I_{2^{n}}\right\}$: smooth manifold
- Circuit topology τ with k one parameter rotation boxes induces smooth evaluation map $f_{\tau}: U(1) \times \mathbb{R}^{k} \rightarrow U\left(2^{n}\right)$

Dimension-Based Bounds

- Consequence: Any universal circuit must contain $4^{n}-1$ one parameter rotation boxes
- No consolidation: Boxes separated by at least $\frac{1}{4}\left(4^{n}-3 n-1\right)$ CNOTs
- v Bloch sphere rotation: $v=R_{x} R_{z} R_{x}$ or $v=R_{z} R_{x} R_{z}$
- Diagrams below: consolidation if fewer CNOTs

On-going Work

- Subgroups H of unitary group $U\left(2^{n}\right)$
- More structure, smaller circuits?
- Symmetries encoded within subgroups H
- Native gate libraries?
- Special purpose circuits
- Backwards: quantum circuits for doing numerical linear algebra?
- Entanglement dynamics and circuit structure

http://www.arxiv.org Coordinates

- Two-qubits: q-ph/0308045
- Diagonal circuits: q-ph / 0303039
- Uniform control: q-ph/0404089
- (1/2) CNOT/entry: q-ph/0406176
- Circuit diagrams by Qcircuit.tex: q-ph/0406003

