
Comments Received on DRAFT ANS X9.82
Random Number Generation

From: "Steve Crocker" <steve@stevecrocker.com>
Subject: RFC 1750 re Random Number Workshop
Date: Sat, 26 Jun 2004 20:28:43 -0400

Your message about the upcoming workshop on generating random numbers just came to
my attention. This is an important subject and one that has not had enough attention.
Many of the people who build commercial security systems have too little understanding
of the entropy issues and have occasionally released software which has been broken with
surprising ease. For example, Netscape's browser used very poorly generated random
numbers in the mid-90s, which two Berkeley grad students discovered and broke, causing
Wells Fargo to immediately suspend their online banking operation.

The crux of the problem is the lack of official hardware entropy sources on standard
computers. There is no instruction in the standard instruction set that says "generate an
unreproducible result." In fact, the philosophy is exactly the opposite: running the same
code is supposed to generate the same result. Of course, as we know, modern computers
do have sources of non-determinism at the edges of their design -- mouse movement, disk
movement, network traffic, etc. The trick is how and when to use these sources. Code
written to get random bits from disk movement won't do very well on a diskless machine.
Code written to sample network traffic won't do very well on a stand-alone machine. Etc.

When I was IETF Security Area Director in the early 1990s, we initiated work to
document and educate software developers working in this area. The result was RFC 1750,
Randomness Recommendations for Security. It was issued in December 1994 as a Best
Current Practice and has remained an important source of guidance for developers.
Although I am a co-author on this, Donald Eastlake has done the bulk of the work with Jeff
Schiller pitching in on critical points.

This RFC is undergoing revision to bring it up to date. I'm attaching the Internet-Draft
that's been submitted for publication to replace RFC 1750.

From its abstract:

This document points out many pitfalls in using traditional pseudo-random number
generation techniques for choosing such quantities. It recommends the use of truly
random hardware techniques and shows that the existing hardware on many systems
can be used for this purpose. It provides suggestions to ameliorate the problem when a
hardware solution is not available. And it gives examples of how large such quantities
need to be for some applications.

The main emphasis of this document is in the last two sentences, viz how to extract
entropy when no official hardware source is available.

I note that neither the ANSI draft standard nor your announcement mentions RFC 1750.
So far as I know, RFC 1750 has been the best source of advice to developers who need

entropy sources and do not have hardware devices that have been designed to provide it
explicitly.

As with all RFCs, this document is freely available for reproduction and distribution If
NIST feels the need for a formal release, we'll be happy to sign one.

I hope you find this helpful, and I wish you great success with the workshop. This is a
pivotally important topic.

Cheers,

Steve

From: "J. Andrew Rogers" <andrew@ceruleansystems.com>
Subject: Comments on X9.82
Date: Sun, 27 Jun 2004 09:46:46 -0700

As a mathematician who has spent many years working in algorithmic information theory
and computational models that deal with the predictive limits of finite state machinery, I
was somewhat puzzled by some of the assumptions used in the specs I saw.

The practical distinction between DRBG, NRBG, and pseudo-random appears to be at
odds with some areas of theoretical mathematics that are relevant to the discussion. From
the standpoint of finite state machinery (FSM), there is no theoretical distinction between
"pseudo-random" and NRBG because both are defined in terms of the predictive limits of
the FSM. From a strict computational perspective, there is no justification to ever assume
one or the other because for any reasonably strong DRBG these two will be
indistinguishable on all hardware in our universe. And this should be quite provable in
many cases. In other words, every RBG should be presumed to be pseudo-random because
even apparently statistically perfect physical entropy sources will probably never be
provable as anything else. I'm probably not the first person to make this general point, but
the crux of my point revolves around randomness being generally defined in terms of the
predictive limit in current algorithmic information theory, which is a well-grounded
definition generally applicable here and which has some interesting consequences.

Which brings me to my other point.

While the general mathematical test of randomness, universal sequence prediction, is not
generally scalable above bit patterns greater than a few dozen bits, it would seem
reasonable to apply thorough analysis of RBG algorithms using this test. The problem
with this test is that even though it is exhaustive, it is limited to low-order information
theoretic patterns on real hardware. But far less known, and known to me primarily
because it is one of my core areas of research, is that there are a number of extremely good
approximations of Solomonoff induction (i.e. "universal predictors") that are capable of
discerning anisotropies in high order information from a streams of nominally "random"
bits with no readily apparent low-order anisotropies (and therefore apparently "random").
While I only skimmed through the standard, the verification process for both NRBG and
DRBG seems to be thin on good mathematical validation that implementations are what
they say they are, at least to the extent that we can test such things with mathematical
metrics.

I don' t have anything invested in this, since crypto and RBGs are not something I ever
normally deal with, but someone not associated with the current process forwarded the
X9.82 working papers to me for an opinion which I felt worth forwarding to the NIST. As
such, I may be chasing a tangent here for the purposes of this NIST standard, but there is a
chance that you may find my comments helpful. :-)

Cheers,
j. andrew rogers

From: "Walker, Jesse" <jesse.walker@intel.com>
To: "Elaine Barker" <elaine.barker@nist.gov>
OriginalArrivalTime: 28 Jun 2004 16:48:46.0530 (UTC)

We have a question concerning the documents posted for the workshop. X9-
82_Part3_workshop.pdf is one of these, and its Clause 10.2.1 on page 108 says that

A DRBG based on block ciphers uses a key in conjunction with each block cipher
algorithm used by the DRBG and an initial value. Section 10.3.2 specifies a DRBG that
....

The ellipsis & is included in the text, so the sentence is incomplete. It seems to be a
fragment pointing to Clause 10.3.2 as the location of an approved block-cipher-based
DRBG. However, looking at page 109 shows that Clause 10.3.2 defines an ECC-based
DRBG instead of a block-cipher-based DRBG. In reviewing the remainder of the
document we could not find a block-cipher-based DRBG. We expected to see one based on
AES. Is this omission intentional? Any insight would be appreciated.

-- Jesse Walker

From: “Martin Kretschmar” <mail@martin-kretschmar.de>
Subject: [IP] Standard Random
Date: Mon. 28 June 2004 16:52:26 +0200

I would like to point out at http://www.lavarnd.org/ and
http://www.math.keio.ac.jp/~matumoto/emt.html.

Regards,
 Martin Kretschmar

From: "Weis, Steve" <sweis@rsasecurity.com>

First off, I think the current version of part 2 of the draft is primarily oriented towards PCs
and or other large platforms. Although it may be outside the requirements of this standard's
intended audience, I think it is worth considering some of the issues associated with
implementing RNGs in low-cost devices like RFID, sensor networks, or basic smartcards.

In these settings, power and gate counts may be highly limited. Devices may not have an
internal power source, but rather will rely on harvesting energy via RF signals. It may not
always be possible to update local persistent state.

In the context of the X9.82 specification, these devices may only have an entropy source
and entropy conditioning logic - essentially the most basic NRNG defined in the
specification. It is unlikely that they will have self-testing capabilities or a fallback
deterministic RNG. Any RNG health diagnostics will need to be conducted by an external
device. Something like the simple ring oscillator design proposed yesterday by Doug
Whiting might be appropriate for an RFID device or a sensor network mote.

There is a growing need for low-cost RNG designs, particularly for RFID devices. These
designs would benefit greatly from a basic NRNG or entropy source specification, flexible
enough for low-power and low-gate count environments.

I hope these comments are useful. Thanks again for hosting the workshop.

Modern Methods and Applications of Random Number
Generation in Signal Processing

 Devin Cambridge
Cambridge and Smith, LLC
4735 Sepulveda Blvd. #123
Sherman Oaks, CA 91403

(650) 933-3386

Devin.Cambridge@cambridgeandsmit
h.com

ABSTRACT
In this paper, we examine the sources of random numbers used in
signal processing. We also hope to present some interesting
solutions to modern application problems using random numbers and
to provide methods in which to test the integrity of random number
sequences for use in a variety of applications.

 General Terms

Random Number Generator (RNG), Pseudo-Random Number
Generator (PRNG). FIPS 140-1.

Keywords
Random Number Sequence Flavors, Normal RNG, Attractive RNG,
Ideal RNG, Hybrid RNG, Multi-body Initialization, Simulation
Pavlovian Response.

1. INTRODUCTION
Randomness exists as a problem in the electrical engineering world.
Most of the time, electrical engineers try to minimize fluctuations,
discrepancies and the effects of the chaotic world. Designing
randomness into a systematic process on a machine adhering to
logic operations and designed to maintain a high level of order
seems counterintuitive. However in the modern age of high
transaction and high frequency computing, the desire to create a
more organic interaction with electronics as well as a heightened
awareness of the need for security has driven application designers
to take a second look at the nature of randomness.

2. Random Number Flavors
In the past, engineers and mathematicians looked at random number
sequences as if they were all the same. In fact, there are many
different flavors of random number sequences. The three we will
focus on are:

Normal or initialized random number sequences are those which
begin at zero but do not converge to any finite value at infinity, do
not exhibit linearity in N dimensional space, do not repeat at any

appreciable time increment, and any number along the sequence
cannot be calculated at time T= (T0 +∆T)

Attractive or synchronized random number sequences are those that
begin at zero, do not converge to any finite value at infinity, may
exhibit some linearity in N dimensional space, do not repeat at any
appreciable time increment, and any number along the sequence
might be calculated at time T= (T0 +∆T)

Ideal or true random number sequences exhibit all the
characteristics that most mathematicians would qualify as random.
They do not converge to any finite value at infinity or negative
infinity, they do not exhibit linearity in any N dimensional space, they
do not repeat at any appreciable time increment, and any number
along the sequence cannot be calculated at time T= (T0 ± ∆T)

3. Sources of Random Numbers
There are two classical sources for random numbers, physical
events and mathematical pseudo-random number generators. Both
possess advantages and disadvantages.

3.1 Physical Sources
Physical phenomena seem to provide a good place to start when
looking for a source. Many engineers choose to sample physical
events and have devised elaborate methods to do so. As mentioned
in [9], engineers have used everything from interrupt events on
computers to radioactive decay measurements as sources of
random numbers. The most common source comes from thermal
noise [4; 8].

However, sampling of physical events can be problematic. For one,
random bits must be distilled from the physical events. The
resultant operations to ensure a truly random sequence lengthen the
time of acquisition and add to the overhead of the operation. Thus,
while the raw physical source may provide adequate randomness
for an application, the time period may seriously impede application
performance. Secondly, every source must be sampled and errors
in sampling, such as aliasing and quantization noise can transform
the original waveform adding unwanted results. Thirdly, as time
goes on, the understanding of physics grows and the modeling of
physical systems becomes more precise. This gives physicists more
of an advantage towards the inherent biases in physical systems and
the ability to gauge the pertinent initial conditions used in a sample
system. Finally, the greatest weakness inherent in a physical
system remains the ability of all physical systems to be driven.
Figure 1 shows a Gaussian noise source simulating a sampled
thermal environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPC conference ’03, March 31-April 3, 2003, Dallas, Texas.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

0

0

200
.e-

200
.e-

400
.e-

400
.e-

600
.e-

600
.e-

800
.e-

800
.e-

-
40.

-
20.

0

20.
e-3

40.
e-3

Am
plit
ud

Time in
Second

Uniform
Noise

Figure 1. Sampled Gaussian (thermal) noise [Std. Dev 10e-3
V; Sampled at 10Khz] – Graphs generated with Elanix
SystemView

0

0

200
.e-

200
.e-

400
.e-

400
.e-

600
.e-

600
.e-

800
.e-

800
.e-

-
1

-
500

0

500
.e-

1

Am
plit

Time in
Second

Sawto
oth

Figure 2. Driving System (Sawtooth wave) [Amp 2v; 30HZ]

We can simulate what would be an attack on the randomness of the
system by superimposing a periodic wave onto our thermal sample.
Figure 3 show that if the driving system has enough power and
greater frequency than the thermal noise, we can drive the system
into a set periodicity. We should note that many times these attacks
happen not at the source of the physical data but at the sampling
device itself by inductance or other means.

0

0

200
.e-

200
.e-

400
.e-

400
.e-

600
.e-

600
.e-

800
.e-

800
.e-

-
1

-
500

0

500
.e-

1

Am
plit

Time in
Second

Noisy
Sawtoot

Figure 3. Sampled Gaussian Noise + Driving System

A recent example of this form of assault was the attack on an old
version of the UNIX /dev/random device. This Unix device file
provided random numbers by sampling system interrupts from
various input devices on the machine. However, when a machine
acts as a server with infrequent mouse, keyboard or input device
interrupts, the primary interrupt comes from the disk access. By
forcing the machine to swap heavily, the random pool became
corrupted.

3.2 Mathematical Pseudo-Random Number
Generators
Mathematicians and statisticians supply the electrical engineering
world with its most common tool for generating random numbers,
mathematical equations designed to provide a string of numbers that
exhibit normal or attractive properties. These numbers are ideal in
that they can provide random bit streams quickly and sometimes
near the frequency of the processor.

However, these systems also bear inherent problems. One such
problem comes from bad equations. Only recently have
researchers started to look at the quality of the equations used in
random number generation on high register bit, high frequency
processing. Also, designing systems with long-term random
integrity remains difficult and requires a fairly in-depth knowledge of
mathematics. Another problem comes from the need to initialize or
seed the system. Engineers used static seeding in the past by
choosing a random number to initialize the system. As the system
ran, the sequence played out. If the system reinitialized, a replay of
the sequence would start and compromise the non-predictability of
the system. A shortcut commonly used to seed a system by DSP
and electrical engineers remains tapping the swap file, registry or
memory values. However, these values are not truly random and
are easily corrupted by outside influences looking to again drive the
system. In addition, Knuth [5] discusses the need to reject certain
seeds as biased.

3.3 Hybrid RNG Systems
One of the best methods of overcoming the limitations of a pure
physical system and a mathematical pseudo random system is to
combine the two and use their combined strengths to overcome the
inherent weaknesses of each individual system.

3.3.1 Direct Physical Seeding of an PRNG
One classical hybrid method uses data from a physical source RNG
to seed a PRNG. This method serves best when using one PRNG
and seeding it with the physical RNG at initialization as
multiprocessing systems tend to have problems with this method.
While this system overcomes the initialization vulnerability inherent
in a PRNG, note that should the physical sampler be deactivated,
the application could hang or be statically seeded. To overcome
this, the use of an entropy pool made from physical samples (or a
list of manually entered seed values) can be used. However, it
should be reiterated that ideally random number strings should be
created in real-time and not stored in a place that could be
compromised. Moreover, this system still possesses the
vulnerability to physical driving, but only the seed value will be
affected providing a limited advantage over a pure physical system.

3.3.2 Using a Cryptographic Hash
Cryptographic hash functions produce output of a fixed length from
any size input. Also, hash functions possess the unique ability to
change the output signature dramatically based off of a small
change in input. Many current popular cryptographic algorithms
such as DES and AES incorporate hash functions as secondary
modes of operation. The hash function provides us with a quick
way of generating random numbers from a physical source without
the overhead necessary in distilling the physical source directly.

A better design would be to use a hash of a physical source to seed
a PRNG. U.S. Patent number 5,732,138 ``Seeding a pseudo-
random number generator with the cryptographic hash of a
digitization of a chaotic system” gives an excellent example of this.
This patent gives an example where a CCD digitizes a system of
lava lamps. The resultant image is then hashed and used to seed
the random number generator. DSG [1] provides a nice analysis to
the effectiveness of this design. While the patented system is bulky,
sleeker designs using the patent are possible. Figure4 shows a
general design for a hybrid device based on the previously
mentioned patent, using a small CCD susceptible to noise. An
initializing picture is taken, verified by the DSP, and stored in flash
RAM. All subsequent pictures are then superimposed with the
original in flash RAM. The superposition of the initializing image,
the secondary images, and thermal noise should provide enough
difference to create widely varying hash values by the DSP. If the
secondary image should become dark or be burned out, the image in
the flash ram combined with any latent noise should be able to
provide the DSP with enough interesting data to hash. When using
physical samples as hash input, the bit range should be at least 2x
the hash bit size. Thus, if the hash output size is 128 bits then at
least 256bits of data should be the input size to ensure that the range
of possible outputs will be met and that the likelihood of a collision
will be reduced.

N o i s y C C D

M e m o r yF l a s h R A M

D S P

Figure 4. Sample Hybrid RNG

4. Applications
RNG applications have advanced since the early days when
simulations merely replicated a card shuffle or a dice role. Jumping
to the 21st century, random sequencing demands have increased as
users interact with each other on massive scales. Moreover,
consumers today engage in more media rich content on their
computers than they did at the advent of home computing. High
end graphics card with 3D particle rendering, DVD players with
interframe compression, heuristic desktop interfaces that customize
themselves based off of past user selections and interactive
dictionaries that correct spelling in real time are all now part of the
common user experience. And RNGs are playing a larger role in
giving the end user a more organic computer experience. On the
high end are large simulations which expect computers to do a large
volume of computations in time frames unfathomable years ago.

Thus, with the advent of high speed, mobile computing, the
usefulness of RNGs entered the light. Intel in a 1999 Paper [3]
listed five categories for applications using RNGs: Entertainment,
Music and Graphics Composition, Simulation (including AI)
and Testing, Equation-Solving, and `Cryptography, Digital
Signatures, Protected Communications’. However, the
application of a RNG in these applications is not always as
straightforward as it seems.

4.1 Multi-body initialization
In advanced 3D graphics, RNGs provide the perturbations to
particle effects as well as initialization to large-scale particle
systems. Due to the work by Henry Poincaré in 1903 and later by
Edward Lorenz in 1984, we know that large body systems will
progress differently depending upon the initial conditions. By
utilizing a RNG, the initial parameters such as particle placement
can be can be quickly generated to give a more organic feel to fog
and particle effects. The dependency on initial conditions allows the
user a real world feel over the linearity produced by a computer. In
this case RNG’s have a function to speed up the initialization time.

4.1.1 Problems with Multi-body RNG initialization
One issue with using an RNG to initialize the state of a multi-body
problem comes from collisions in the RNG output. For this reason,
it is suggested that a hash function be used. Care must be taking in
choosing an RNG and hash function that will avoid placing two
objects at the same position. If the resources are available, a small
database can be used to eliminate collisions. However, this will
slow down the initialization process. A better method requires
starting with a linear matrix of particles and using the RNG as a
perturbation to the placement of the particles.

4.2 Simulation Artificial Intelligence
Simulations play a large role in both the commercial and the
industrial space. Perhaps the most interesting use of simulations
involves Artificial Intelligence (AI). RNGs greatly help in AI
decision making, allowing it to overcome simple loop functions and
providing different pathways for objects to move.

4.2.1 Simulation Pavlovian Response (SPR)
One of the issues with using Normal and Attractive RNGs comes
from the re-initialization effect. In game play, humans possess
strong pattern recognition ability. Any sequence that repeats itself
often registers subconsciously by the human participant. If the
RNG possesses a static seed, when the sequence reinitialized, it will
repeat the same pattern. If a human participant registers the
pattern, they interact with the simulation at a reflexive level. At this
stage, the human is trying to beat the simulation as opposed to
beating the AI opponent. In advanced simulation, this can be
devastating. For example, take a fighter simulation. In our
example, the eager pilot has scheduled to be the first person to use
the simulator each morning for week. On day one, in a one on one
engagement, the pilot performs a series of maneuvers and gets hit
on the twentieth maneuver. The next day, our pilot tests on the
same scenario. Again, they are hit on the twentieth maneuver. The
next day, our pilot is shot down on the fifty-second maneuver.
What happened? The pilot learned the AI pattern up to the
twentieth maneuver due to the fact that the simulator was shut
down each night and reinitialized with the same seed the next
morning. At this point, it should be questioned if the pilot is learning
to react to the opponent AI or if they are just memorizing a pattern.

It should be noted that SPR could be beneficial in a simulation. For
example, in commercial gaming applications for pure entertainment,
sometimes using two different RNGs, one that has a pattern and
one that doesn’t can provide a medium and high difficulty setting.
Also, sometimes simulations are specifically designed to impart
SPR. Such examples of this would include driving simulators
designed to control a skid or a flight simulator designed to teach how
to deal with a microburst. However, most of these situations are
better handled with a control loop and not RNG.

4.3 Cryptography
With the ascendancy of the Internet, cryptography leads all
applications in the use of RNGs with its applications in
authentication and secure communication. Because of its nature,
cryptographic use of RNGs attracts the most scrutiny. And, it
should. The future of licensing, privacy and e-commerce rest on
strong cryptography.

4.3.1 Problems in E-commerce – Credit Card
Numbers
Credit cards present a big problem to the financial model of e-
commerce. One of the main issues with credit cards comes from
the sequence used to generate the next replacement card. Past
problems have been compromises of the card sequence by reverse
engineering the RNG algorithm used to create the new card.

4.3.2 Channel Security
Network Communications use PRNGs in ways that are not always
obvious. TCP/IP uses PRNGs to generate the Initial Sequence
Number (ISN) for channel communications between clients and
hosts. According to Michal Zalewshki [10], a theoretical spoof
attack based on guessing the ISN sequence originally was proposed
in 1985. Zalewshki did further work in 2001 to analyze various OS
PRNGs to gage their susceptibility. The results are surprising as
some of the major operating systems exhibit strong attractive
properties in their RNG implementations.

5. Statistical Tests
So now that some of the problems with bad number sequences have
been identified how do we determine what constitutes a good RNG?

5.1 FIPS 140-1 Statistical Random Number
Generator Tests
The U.S. Department of Commerce set a series of standards for
cryptographic use. Part of this standard involves statistical tests for
RNGs. According to FIPS 140-1 RNGs are considered adequate if
they pass the following criteria:

“ A single bit stream of 20,000 consecutive bits of output from the
generator is subjected to each of the following tests. If any of the
tests fail, then the module shall enter an error state.

• The Monobit Test

1. Count the number of ones in the 20,000 bit
stream. Denote this quantity by X.

2. The test is passed if 9,654 < X < 10,346.

• The Poker Test

1. Divide the 20,000 bit stream into 5,000
contiguous 4 bit segments. Count and store the
number of occurrences of each of the 16
possible 4 bit values. Denote f(i) as the number
of each 4 bit value i where 0 <= i <= 15.

2. Evaluate the following:

3. The test is passed if 1.03 < X < 57.4.

• The Runs Test

1. A run is defined as a maximal sequence of
consecutive bits of either all ones or all zeros,
which is part of the 20,000 bit sample stream.
The incidences of runs (for both consecutive
zeros and consecutive ones) of all lengths (>=
1) in the sample stream should be counted and
stored.

2. The test is passed if the number of runs that
occur (of lengths 1 through 6) is each within the
corresponding interval specified below. This
must hold for both the zeros and ones; that is,
all 12 counts must lie in the specified interval.
For the purpose of this test, runs of greater than
6 are considered to be of length 6.

Length of Run Required
Interval

1 2,267-2733

2 1,079-1,421

3 502-748

4 223-402

5 90-223

6 + 90-223

• The Long Run Test

1. A long run is defined to be a run of length 34 or
more (of either zeros or ones).

2. On the sample of 20,000 bits, the test is passed
if there are NO long runs.”

5.2 The Trinity College Tests
In 2001 researchers at Trinity College [1] in Ireland chose from a
serious of theoretical and empirical tests for RNG’s to run against
some of the Internet RNGs. While [1] goes in depth into the runs,
the suite they chose were:

• A chi-square test

• A test of runs above and below the median

• A reverse arrangements test

• An overlapping sums test

• A binary rank test for 32x32 matrices

5.3 Diehard Code
Florida State University, under a grant from the U.S. National
Science Foundation, Gail Gasram wrote a serious of computer
functions for various operating systems to test random numbers.
At the present time, they can be found here:

ftp://stat.fsu.edu/pub/diehard/

6. REFERENCES
[1] Distributed Systems Group, CSD, Trinity College Dublin,

ANALYSIS OF AN ONLINE RANDOM NUMBER
GENERATOR. April 2001
http://www.random.org/report/Report.pdf

[2] FIPS 140-1, SECURITY REQUIREMENTS FOR
CRYPTOGRAPHICS MODULES, Federal Information
Processing Standards Publication 140-1, U.S. Department of
Commerce/NIST, National Technical Information Service,
Springfield Virginia, 1994

[3] INTEL CORPORATION, THE INTEL RANDOM
NUMBER GENERATOR.
ftp://download.intel.com/design/security/rng/techbrief.pdf.

[4] Johnson, John Bertrand. Electronic Noise: The first two
decades. IEEE Spectrum 1971, pp 42-46.

[5] D. Knuth, The Art of Computer Programming: Volume 2,
Seminumerical Algorithms, 2nd edition, Addision-Wesley, 1981

[6] Maurer, U. M . “ A Universal Statistical Test for Random Bit
Generators,” Advances in Cryptology- CRYPTO ’90
Proceedings, Springer-Verlag, 1991, pp 409-420

[7] Maurer, U.M. “ A Universal Statistical Test for Random Bit
Generators,” Journal of Cryptology, v. 5 n.2, 1992, pp. 89-106.

[8] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Prentice Hall Inc., Upper Saddle River, New
Jersey, 2001

[9] Schneier, Bruce. Applied Cryptography: Protocols,
Algorithms, and Source in C, John Wiley & Sons, Inc, 1996

[10] Zalewski, Michal. Strange Attractors and TCP/IP Sequence
Number Analysis, BindView Corporation, 2001.
http://razor.bindview.com/publish/papers/tcpseq/print.
html

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

CONTINUOUS RANDOM NUMBER GENERATION

LEONARD RARICK

SUN MICROSYSTEMS

hold state

output

function

pseudo random

function

number generator

output

next state

request
next
value

PESUDO RANDOM NUMBER GENERATOR

current state

hold state

output

function

continuous random

function

number generator

output

next state

clock

request
next
value

MINIMAL CONTINUOUS RANDOM NUMBER GENERATOR

current state

hold state

output

function

continuous random

function

number generator

output

next state

clock

request
next
value

hold state

output

function

pseudo random

function

number generator

next state

request
next
value

output

PRNG CRNG

current state current state

USING A SOURCE OF ENTROPY

hold state

output

function

continuous random

function

number generator

output

next state

clock

request
next
value

0 1

current state

cache
miss

alternate continuous

generator function

random number

hold state

output

function

continuous random

function

number generator

next state

clock

request
next
value

modify
state

current state

interrupt

USING SEVERAL SOURCES OF ENTROPY

branch repair

cache miss

output
true random
number generator
output

hold state

output

function

continuous random

function

number generator

next state

clock

request
next
value modify

state

current state

interrupt

branch repair

cache miss

output

true random
number generator
output

HEISENBERG RANDOM NUMBER GENERATOR

