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From: "Steve Crocker" <steve@stevecrocker.com> 
Subject: RFC 1750 re Random Number Workshop 
Date: Sat, 26 Jun 2004 20:28:43 -0400 
 
Your message about the upcoming workshop on generating random numbers just came to 
my attention.  This is an important subject and one that has not had enough attention.  
Many of the people who build commercial security systems have too little understanding 
of the entropy issues and have occasionally released software which has been broken with 
surprising ease.  For example, Netscape's browser used very poorly generated random 
numbers in the mid-90s, which two Berkeley grad students discovered and broke, causing 
Wells Fargo to immediately suspend their online banking operation. 
 
The crux of the problem is the lack of official hardware entropy sources on standard 
computers.  There is no instruction in the standard instruction set that says "generate an 
unreproducible result."  In fact, the philosophy is exactly the opposite: running the same 
code is supposed to generate the same result.  Of course, as we know, modern computers 
do have sources of non-determinism at the edges of their design -- mouse movement, disk 
movement, network traffic, etc.  The trick is how and when to use these sources.  Code 
written to get random bits from disk movement won't do very well on a diskless machine.  
Code written to sample network traffic won't do very well on a stand-alone machine.  Etc. 
 
When I was IETF Security Area Director in the early 1990s, we initiated work to 
document and educate software developers working in this area. The result was RFC 1750, 
Randomness Recommendations for Security.  It was issued in December 1994 as a Best 
Current Practice and has remained an important source of guidance for developers.  
Although I am a co-author on this, Donald Eastlake has done the bulk of the work with Jeff 
Schiller pitching in on critical points. 
 
This RFC is undergoing revision to bring it up to date.  I'm attaching the Internet-Draft 
that's been submitted for publication to replace RFC 1750. 
 
From its abstract: 
 

This document points out many pitfalls in using traditional pseudo-random number 
generation techniques for choosing such quantities. It recommends the use of truly 
random hardware techniques and shows that the existing hardware on many systems 
can be used for this purpose. It provides suggestions to ameliorate the problem when a 
hardware solution is not available.  And it gives examples of how large such quantities 
need to be for some applications. 

 
The main emphasis of this document is in the last two sentences, viz how to extract 
entropy when no official hardware source is available. 
 
I note that neither the ANSI draft standard nor your announcement mentions RFC 1750.  
So far as I know, RFC 1750 has been the best source of advice to developers who need 



entropy sources and do not have hardware devices that have been designed to provide it 
explicitly. 
 
As with all RFCs, this document is freely available for reproduction and distribution  If 
NIST feels the need for a formal release, we'll be happy to sign one. 
 
I hope you find this helpful, and I wish you great success with the workshop.  This is a 
pivotally important topic. 
 
Cheers, 
 
Steve 



From: "J. Andrew Rogers" <andrew@ceruleansystems.com> 
Subject: Comments on X9.82 
Date: Sun, 27 Jun 2004 09:46:46 -0700 
 
As a mathematician who has spent many years working in algorithmic information theory 
and computational models that deal with the predictive limits of finite state machinery, I 
was somewhat puzzled by some of the assumptions used in the specs I saw. 
 
The practical distinction between DRBG, NRBG, and pseudo-random appears to be at 
odds with some areas of theoretical mathematics that are relevant to the discussion.  From 
the standpoint of finite state machinery (FSM), there is no theoretical distinction between 
"pseudo-random" and NRBG because both are defined in terms of the predictive limits of 
the FSM.  From a strict computational perspective, there is no justification to ever assume 
one or the other because for any reasonably strong DRBG these two will be 
indistinguishable on all hardware in our universe.  And this should be quite provable in 
many cases.  In other words, every RBG should be presumed to be pseudo-random because 
even apparently statistically perfect physical entropy sources will probably never be 
provable as anything else.  I'm probably not the first person to make this general point, but 
the crux of my point revolves around randomness being generally defined in terms of the 
predictive limit in current algorithmic information theory, which is a well-grounded 
definition generally applicable here and which has some interesting consequences. 
 
Which brings me to my other point. 
 
While the general mathematical test of randomness, universal sequence prediction, is not 
generally scalable above bit patterns greater than a few dozen bits, it would seem 
reasonable to apply thorough analysis of RBG algorithms using this test.  The problem 
with this test is that even though it is exhaustive, it is limited to low-order information 
theoretic patterns on real hardware.  But far less known, and known to me primarily 
because it is one of my core areas of research, is that there are a number of extremely good 
approximations of Solomonoff induction (i.e. "universal predictors") that are capable of 
discerning anisotropies in high order information from a streams of nominally "random" 
bits with no readily apparent low-order anisotropies (and therefore apparently "random").  
While I only skimmed through the standard, the verification process for both NRBG and 
DRBG seems to be thin on good mathematical validation that implementations are what 
they say they are, at least to the extent that we can test such things with mathematical 
metrics. 
 
I don' t have anything invested in this, since crypto and RBGs are not something I ever 
normally deal with, but someone not associated with the current process forwarded the 
X9.82 working papers to me for an opinion which I felt worth forwarding to the NIST.  As 
such, I may be chasing a tangent here for the purposes of this NIST standard, but there is a 
chance that you may find my comments helpful. :- ) 
 
Cheers, 
j. andrew rogers 



From: "Walker, Jesse" <jesse.walker@intel.com> 
To: "Elaine Barker" <elaine.barker@nist.gov> 
OriginalArrivalTime: 28 Jun 2004 16:48:46.0530 (UTC)  
 
We have a question concerning the documents posted for the workshop. X9-
82_Part3_workshop.pdf is one of these, and its Clause 10.2.1 on page 108 says that 
 

A DRBG based on block ciphers uses a key in conjunction with each block cipher 
algorithm used by the DRBG and an initial value. Section 10.3.2 specifies a DRBG that 
.... 

 
The ellipsis & is included in the text, so the sentence is incomplete. It seems to be a 
fragment pointing to Clause 10.3.2 as the location of an approved block-cipher-based 
DRBG. However, looking at page 109 shows that Clause 10.3.2 defines an ECC-based 
DRBG instead of a block-cipher-based DRBG. In reviewing the remainder of the 
document we could not find a block-cipher-based DRBG. We expected to see one based on 
AES. Is this omission intentional? Any insight would be appreciated. 
 
-- Jesse Walker 



From: “Martin Kretschmar” <mail@martin-kretschmar.de> 
Subject: [IP] Standard Random 
Date: Mon. 28 June 2004 16:52:26 +0200 
 
I would like to point out at http://www.lavarnd.org/ and 
http://www.math.keio.ac.jp/~matumoto/emt.html. 
 
Regards, 
 Martin Kretschmar 
 



 
From: "Weis, Steve" <sweis@rsasecurity.com> 
 
First off, I think the current version of part 2 of the draft is primarily oriented towards PCs 
and or other large platforms. Although it may be outside the requirements of this standard's 
intended audience, I think it is worth considering some of the issues associated with 
implementing RNGs in low-cost devices like RFID, sensor networks, or basic smartcards. 
 
In these settings, power and gate counts may be highly limited. Devices may not have an 
internal power source, but rather will rely on harvesting energy via RF signals. It may not 
always be possible to update local persistent state. 
 
In the context of the X9.82 specification, these devices may only have an entropy source 
and entropy conditioning logic - essentially the most basic NRNG defined in the 
specification. It is unlikely that they will have self-testing capabilities or a fallback 
deterministic RNG. Any RNG health diagnostics will need to be conducted by an external 
device. Something like the simple ring oscillator design proposed yesterday by Doug 
Whiting might be appropriate for an RFID device or a sensor network mote. 
 
There is a growing need for low-cost RNG designs, particularly for RFID devices. These 
designs would benefit greatly from a basic NRNG or entropy source specification, flexible 
enough for low-power and low-gate count environments. 
 
I hope these comments are useful. Thanks again for hosting the workshop. 
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ABSTRACT 
In this paper, we examine the sources of random numbers used in 
signal processing.  We also hope to present some interesting 
solutions to modern application problems using random numbers and 
to provide methods in which to test the integrity of random number 
sequences for use in a variety of applications. 

 General Terms  

Random Number Generator (RNG), Pseudo-Random Number 
Generator (PRNG). FIPS 140-1. 

Keywords 
Random Number Sequence Flavors, Normal RNG, Attractive RNG, 
Ideal RNG, Hybrid RNG, Multi-body Initialization, Simulation 
Pavlovian Response. 

1. INTRODUCTION 
Randomness exists as a problem in the electrical engineering world.  
Most of the time, electrical engineers try to minimize fluctuations, 
discrepancies and the effects of the chaotic world.  Designing 
randomness into a systematic process on a machine adhering to 
logic operations and designed to maintain a high level of order 
seems counterintuitive.  However in the modern age of high 
transaction and high frequency computing, the desire to create a 
more organic interaction with electronics as well as a heightened 
awareness of the need for security has driven application designers 
to take a second look at the nature of randomness. 

2. Random Number Flavors 
In the past, engineers and mathematicians looked at random number 
sequences as if they were all the same.  In fact, there are many 
different flavors of random number sequences.  The three we will 
focus on are:  

Normal or initialized random number sequences are those which 
begin at zero but do not converge to any finite value at infinity, do 
not exhibit linearity in N dimensional space, do not repeat at any 

appreciable time increment, and any number along the sequence 
cannot be calculated at time T= (T0 +∆T) 

Attractive or synchronized random number sequences are those that 
begin at zero, do not converge to any finite value at infinity, may 
exhibit some linearity in N dimensional space, do not repeat at any 
appreciable time increment, and any number along the sequence 
might be calculated at time T= (T0 +∆T)  

Ideal or true random number sequences exhibit all the 
characteristics that most mathematicians would qualify as random.  
They do not converge to any finite value at infinity or negative 
infinity, they do not exhibit linearity in any N dimensional space, they 
do not repeat at any appreciable time increment, and any number 
along the sequence cannot be calculated at time T= (T0 ± ∆T)  

3. Sources of Random Numbers 
There are two classical sources for random numbers, physical 
events and mathematical pseudo-random number generators.  Both 
possess advantages and disadvantages. 

3.1 Physical Sources 
Physical phenomena seem to provide a good place to start when 
looking for a source.  Many engineers choose to sample physical 
events and have devised elaborate methods to do so.  As mentioned 
in [9], engineers have used everything from interrupt events on 
computers to radioactive decay measurements as sources of 
random numbers.  The most common source comes from thermal 
noise [4; 8]. 

However, sampling of physical events can be problematic.  For one, 
random bits must be distilled from the physical events.  The 
resultant operations to ensure a truly random sequence lengthen the 
time of acquisition and add to the overhead of the operation.  Thus, 
while the raw physical source may provide adequate randomness 
for an application, the time period may seriously impede application 
performance.  Secondly, every source must be sampled and errors 
in sampling, such as aliasing and quantization noise can transform 
the original waveform adding unwanted results.  Thirdly, as time 
goes on, the understanding of physics grows and the modeling of 
physical systems becomes more precise.  This gives physicists more 
of an advantage towards the inherent biases in physical systems and 
the ability to gauge the pertinent initial conditions used in a sample 
system.  Finally, the greatest weakness inherent in a physical 
system remains the ability of all physical systems to be driven.  
Figure 1 shows a Gaussian noise source simulating a sampled 
thermal environment.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ISPC conference ’03, March 31-April 3, 2003, Dallas, Texas. 
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00. 
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Figure 1.  Sampled Gaussian (thermal) noise [Std. Dev 10e-3 
V; Sampled at 10Khz] – Graphs generated with Elanix 
SystemView 
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Figure 2.  Driving System (Sawtooth wave) [Amp 2v; 30HZ] 

 

We can simulate what would be an attack on the randomness of the 
system by superimposing a periodic wave onto our thermal sample.  
Figure 3 show that if the driving system has enough power and 
greater frequency than the thermal noise, we can drive the system 
into a set periodicity.  We should note that many times these attacks 
happen not at the source of the physical data but at the sampling 
device itself by inductance or other means. 
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Figure 3.  Sampled Gaussian Noise + Driving System 

A recent example of this form of assault was the attack on an old 
version of the UNIX /dev/random device.  This Unix device file 
provided random numbers by sampling system interrupts from 
various input devices on the machine.  However, when a machine 
acts as a server with infrequent mouse, keyboard or input device 
interrupts, the primary interrupt comes from the disk access.  By 
forcing the machine to swap heavily, the random pool became 
corrupted.  

3.2 Mathematical Pseudo-Random Number 
Generators 
Mathematicians and statisticians supply the electrical engineering 
world with its most common tool for generating random numbers, 
mathematical equations designed to provide a string of numbers that 
exhibit normal or attractive properties.  These numbers are ideal in 
that they can provide random bit streams quickly and sometimes 
near the frequency of the processor.   

However, these systems also bear inherent problems.  One such 
problem comes from bad equations.  Only recently have 
researchers started to look at the quality of the equations used in 
random number generation on high register bit, high frequency 
processing.  Also, designing systems with long-term random 
integrity remains difficult and requires a fairly in-depth knowledge of 
mathematics.  Another problem comes from the need to initialize or 
seed the system.  Engineers used static seeding in the past by 
choosing a random number to initialize the system.  As the system 
ran, the sequence played out.  If the system reinitialized, a replay of 
the sequence would start and compromise the non-predictability of 
the system.  A shortcut commonly used to seed a system by DSP 
and electrical engineers remains tapping the swap file, registry or 
memory values.  However, these values are not truly random and 
are easily corrupted by outside influences looking to again drive the 
system.  In addition, Knuth [5] discusses the need to reject certain 
seeds as biased. 



3.3 Hybrid RNG Systems 
One of the best methods of overcoming the limitations of a pure 
physical system and a mathematical pseudo random system is to 
combine the two and use their combined strengths to overcome the 
inherent weaknesses of each individual system.  

3.3.1 Direct Physical Seeding of an PRNG 
One classical hybrid method uses data from a physical source RNG 
to seed a PRNG.  This method serves best when using one PRNG 
and seeding it with the physical RNG at initialization as 
multiprocessing systems tend to have problems with this method.  
While this system overcomes the initialization vulnerability inherent 
in a PRNG, note that should the physical sampler be deactivated, 
the application could hang or be statically seeded.  To overcome 
this, the use of an entropy pool made from physical samples (or a 
list of manually entered seed values) can be used.  However, it 
should be reiterated that ideally random number strings should be 
created in real-time and not stored in a place that could be 
compromised.  Moreover, this system still possesses the 
vulnerability to physical driving, but only the seed value will be 
affected providing a limited advantage over a pure physical system.  

3.3.2 Using a Cryptographic Hash 
Cryptographic hash functions produce output of a fixed length from 
any size input.  Also, hash functions possess the unique ability to 
change the output signature dramatically based off of a small 
change in input.  Many current popular cryptographic algorithms 
such as DES and AES incorporate hash functions as secondary 
modes of operation.  The hash function provides us with a quick 
way of generating random numbers from a physical source without 
the overhead necessary in distilling the physical source directly.  

A better design would be to use a hash of a physical source to seed 
a PRNG.  U.S. Patent number 5,732,138 ``Seeding a pseudo-
random number generator with the cryptographic hash of a 
digitization of a chaotic system” gives an excellent example of this.  
This patent gives an example where a CCD digitizes a system of 
lava lamps.  The resultant image is then hashed and used to seed 
the random number generator. DSG [1] provides a nice analysis to 
the effectiveness of this design.  While the patented system is bulky, 
sleeker designs using the patent are possible.  Figure4 shows a 
general design for a hybrid device based on the previously 
mentioned patent, using a small CCD susceptible to noise.  An 
initializing picture is taken, verified by the DSP, and stored in flash 
RAM.  All subsequent pictures are then superimposed with the 
original in flash RAM.  The superposition of the initializing image, 
the secondary images, and thermal noise should provide enough 
difference to create widely varying hash values by the DSP.  If the 
secondary image should become dark or be burned out, the image in 
the flash ram combined with any latent noise should be able to 
provide the DSP with enough interesting data to hash.  When using 
physical samples as hash input, the bit range should be at least 2x 
the hash bit size.  Thus, if the hash output size is 128 bits then at 
least 256bits of data should be the input size to ensure that the range 
of possible outputs will be met and that the likelihood of a collision 
will be reduced. 
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Figure 4.  Sample Hybrid RNG 

 

4. Applications 
RNG applications have advanced since the early days when 
simulations merely replicated a card shuffle or a dice role.  Jumping 
to the 21st century, random sequencing demands have increased as 
users interact with each other on massive scales.  Moreover, 
consumers today engage in more media rich content on their 
computers than they did at the advent of home computing.  High 
end graphics card with 3D particle rendering, DVD players with 
interframe compression, heuristic desktop interfaces that customize 
themselves based off of past user selections and interactive 
dictionaries that correct spelling in real time are all now part of the 
common user experience.  And RNGs are playing a larger role in 
giving the end user a more organic computer experience.  On the 
high end are large simulations which expect computers to do a large 
volume of computations in time frames unfathomable years ago.   

Thus, with the advent of high speed, mobile computing, the 
usefulness of RNGs entered the light.  Intel in a 1999 Paper [3] 
listed five categories for applications using RNGs: Entertainment, 
Music and Graphics Composition, Simulation (including AI) 
and Testing, Equation-Solving, and `Cryptography, Digital 
Signatures, Protected Communications’.  However, the 
application of a RNG in these applications is not always as 
straightforward as it seems. 

4.1 Multi-body initialization 
In advanced 3D graphics, RNGs provide the perturbations to 
particle effects as well as initialization to large-scale particle 
systems.  Due to the work by Henry Poincaré in 1903 and later by 
Edward Lorenz in 1984, we know that large body systems will 
progress differently depending upon the initial conditions.  By 
utilizing a RNG, the initial parameters such as particle placement 
can be can be quickly generated to give a more organic feel to fog 
and particle effects.  The dependency on initial conditions allows the 
user a real world feel over the linearity produced by a computer.  In 
this case RNG’s have a function to speed up the initialization time.  



4.1.1 Problems with Multi-body RNG initialization 
One issue with using an RNG to initialize the state of a multi-body 
problem comes from collisions in the RNG output.  For this reason, 
it is suggested that a hash function be used.  Care must be taking in 
choosing an RNG and hash function that will avoid placing two 
objects at the same position.  If the resources are available, a small 
database can be used to eliminate collisions.  However, this will 
slow down the initialization process.  A better method requires 
starting with a linear matrix of particles and using the RNG as a 
perturbation to the placement of the particles. 

 

4.2 Simulation Artificial Intelligence 
Simulations play a large role in both the commercial and the 
industrial space.  Perhaps the most interesting use of simulations 
involves Artificial Intelligence (AI).  RNGs greatly help in AI 
decision making, allowing it to overcome simple loop functions and 
providing different pathways for objects to move.   

4.2.1 Simulation Pavlovian Response (SPR) 
One of the issues with using Normal and Attractive RNGs comes 
from the re-initialization effect.  In game play, humans possess 
strong pattern recognition ability.  Any sequence that repeats itself 
often registers subconsciously by the human participant.  If the 
RNG possesses a static seed, when the sequence reinitialized, it will 
repeat the same pattern.  If a human participant registers the 
pattern, they interact with the simulation at a reflexive level.  At this 
stage, the human is trying to beat the simulation as opposed to 
beating the AI opponent.  In advanced simulation, this can be 
devastating.  For example, take a fighter simulation.  In our 
example, the eager pilot has scheduled to be the first person to use 
the simulator each morning for week.  On day one, in a one on one 
engagement, the pilot performs a series of maneuvers and gets hit 
on the twentieth maneuver.  The next day, our pilot tests on the 
same scenario.  Again, they are hit on the twentieth maneuver.  The 
next day, our pilot is shot down on the fifty-second maneuver.  
What happened?  The pilot learned the AI pattern up to the 
twentieth maneuver due to the fact that the simulator was shut 
down each night and reinitialized with the same seed the next 
morning.  At this point, it should be questioned if the pilot is learning 
to react to the opponent AI or if they are just memorizing a pattern.  

It should be noted that SPR could be beneficial in a simulation.  For 
example, in commercial gaming applications for pure entertainment, 
sometimes using two different RNGs, one that has a pattern and 
one that doesn’t can provide a medium and high difficulty setting.  
Also, sometimes simulations are specifically designed to impart 
SPR. Such examples of this would include driving simulators 
designed to control a skid or a flight simulator designed to teach how 
to deal with a microburst.  However, most of these situations are 
better handled with a control loop and not RNG. 

4.3 Cryptography 
With the ascendancy of the Internet, cryptography leads all 
applications in the use of RNGs with its applications in 
authentication and secure communication.  Because of its nature, 
cryptographic use of RNGs attracts the most scrutiny.  And, it 
should.  The future of licensing, privacy and e-commerce rest on 
strong cryptography. 

4.3.1 Problems in E-commerce – Credit Card 
Numbers 
Credit cards present a big problem to the financial model of e-
commerce.  One of the main issues with credit cards comes from 
the sequence used to generate the next replacement card.  Past 
problems have been compromises of the card sequence by reverse 
engineering the RNG algorithm used to create the new card.   

4.3.2 Channel Security 
Network Communications use PRNGs in ways that are not always 
obvious.  TCP/IP uses PRNGs to generate the Initial Sequence 
Number (ISN) for channel communications between clients and 
hosts.  According to Michal Zalewshki  [10], a theoretical spoof 
attack based on guessing the ISN sequence originally was proposed 
in 1985.  Zalewshki did further work in 2001 to analyze various OS 
PRNGs to gage their susceptibility.  The results are surprising as 
some of the major operating systems exhibit strong attractive 
properties in their RNG implementations. 

5. Statistical Tests 
So now that some of the problems with bad number sequences have 
been identified how do we determine what constitutes a good RNG? 

 

5.1 FIPS 140-1 Statistical Random Number 
Generator Tests 
The U.S. Department of Commerce set a series of standards for 
cryptographic use.  Part of this standard involves statistical tests for 
RNGs.  According to FIPS 140-1 RNGs are considered adequate if 
they pass the following criteria: 

“ A single bit stream of 20,000 consecutive bits of output from the 
generator is subjected to each of the following tests.  If any of the 
tests fail, then the module shall enter an error state. 

• The Monobit Test  

1. Count the number of ones in the 20,000 bit 
stream. Denote this quantity by X. 

2. The test is passed if 9,654 < X < 10,346. 

• The Poker Test  

1. Divide the 20,000 bit stream into 5,000 
contiguous 4 bit segments. Count and store the 
number of occurrences of each of the 16 
possible 4 bit values. Denote f(i) as the number 
of each 4 bit value i where 0 <= i <= 15. 

2. Evaluate the following: 

 



3. The test is passed if 1.03 < X < 57.4. 

 

• The Runs Test  

1. A run is defined as a maximal sequence of 
consecutive bits of either all ones or all zeros, 
which is part of the 20,000 bit sample stream. 
The incidences of runs (for both consecutive 
zeros and consecutive ones) of all lengths ( >= 
1 ) in the sample stream should be counted and 
stored. 

2. The test is passed if the number of runs that 
occur (of lengths 1 through 6) is each within the 
corresponding interval specified below. This 
must hold for both the zeros and ones; that is, 
all 12 counts must lie in the specified interval. 
For the purpose of this test, runs of greater than 
6 are considered to be of length 6. 

Length of Run Required 
Interval 

1 2,267-2733 

2 1,079-1,421 

3 502-748 

4 223-402 

5 90-223 

6 + 90-223 

• The Long Run Test  

1. A long run is defined to be a run of length 34 or 
more (of either zeros or ones). 

2. On the sample of 20,000 bits, the test is passed 
if there are NO long runs.” 

 

 

5.2 The Trinity College Tests 
In 2001 researchers at Trinity College [1] in Ireland chose from a 
serious of theoretical and empirical tests for RNG’s to run against 
some of the Internet RNGs. While [1] goes in depth into the runs, 
the suite they chose were: 

•  A chi-square test 

• A test of runs above and below the median 

• A reverse arrangements test 

• An overlapping sums test 

• A binary rank test for 32x32 matrices 

 

5.3 Diehard Code 
Florida State University, under a grant from the U.S. National 
Science Foundation, Gail Gasram wrote a serious of computer 
functions for various operating systems to test random numbers.   
At the present time, they can be found here: 

ftp://stat.fsu.edu/pub/diehard/ 
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