
Testing Issues with OS-based Entropy
Sources

Peter Gutmann

University of Auckland

Generator Abstract Model

Need to analyse/verify
•Entropy source
•Black box RNG (correct implementation)
•Usability

Accumulator

PRNG

State
Black box

RNG

Entropy source

Cryptovariables

Verifying Implementation Correctness

Many published generators have contained implementation
flaws
•PGP 2.x xorbytes bug

–*dest++ = *src++; (should be ^=)
•GPG 8 years later had the same type of bug
–Both were present for years in published code
–Only discovered by coincidence, not as part of a conscious

code review
•BSAFE/RSAREF was vulnerable to being fed small data

blocks
•OpenSSL/SSLeay only fed a small amount of random pool

data (1-10 bytes) into the PRNG

Verifying Implementation Correctness (ctd)

Use CBC-MAC style verification

•State1 … n-1 should be > pool size
–Verifies correct pool update

•State n is verification value, e.g. 128 bits after 10 iterations
–Great way to find compiler bugs

00000000

BB-RNG

State 1

State 1

BB-RNG

State 2

State n-1

BB-RNG

State n

Entropy Estimation

Entropy of a set of symbols is given by

Example: English alphabet
H = -(p(A) * log(p(A)) + p(B) …

= ~4.05 bits/byte (using standard values for p(A) … p(Z))
•Standard entropy measure for data compression is bits/byte

(= bits/symbol)

Textbook formula for simple entropy estimation
•Not very good
•00 01 02 … FE FF 00 01 02 … = perfectly “random”
–All symbol frequencies are equal





n

i
ii SpSpH

1

))(log()(

Entropy Estimation (ctd)

Need to take inter-symbol influence into account
•Simple model is a memoryless source or zero-order Markov

model
•One that considers inter-symbol influence over symbol pairs is

a first-order Markov model
•Conditional probability p(x | y) = probability of seeing y once

x has been seen
•Conditional entropy of first-order source

•Conditional entropy of second-order source


i j

xypyxpH))|(log(),(


i j k

xyzpzyxpH))|(log(),,(

Entropy Estimation (ctd)

Example: English alphabet
•Zero-order, equiprobable symbols (order–1) = 4.75 bits/byte
•Zero-order, standard probabilities = 4.05 bits/byte
•First order = 3.32 bits/byte
•Second order = 3.10 bits/byte
•Actual figure is probably ~1 bit/byte
–Determined using an arbitrary-order Markov model via

humans who bet on symbol probabilities
–Even humans can’t get to 1 bit/byte

Example: Pathological “random” data 00 01 02 … FE FF
•Zero-order = 8 bits/byte
•First order = 0 bits/byte

Entropy Estimation (ctd)

Problems with high-order Markov models
•Consumes huge amounts of memory
–Order 3 = 4 billion nodes

•Requires large amounts of input to build model
–1MB is a good start for order 2-3

•Not exactly real-time performance

Doesn’t work well in embedded environments / crypto HW
•No memory, CPU cycles

Doesn’t work well in standard system using entropy
polling
•Not enough data to build model

Adapting Faster

Statistical compressors
•Allocate codewords to each source symbol to minimise average

code length

Dictionary compressors
•Replace a string of symbols with a reference to a previous

occurrence of the string

Dictionary compressors adapt to input changes more
quickly than statistical compressors
•Only require one repeat occurrence to adapt, not many

Dictionary Compressors

Two major families of dictionary compressors, LZ77 and
LZ78
•Both LZ77 and LZ78 were actually designed as entropy

estimators

LZ77 replaces strings with a pointer to a previous
occurrence of the string in a sliding window
•Best-known example: Zip

LZ78 enters strings into a dictionary
•Subsequent occurrences are replaced by the position in the

dictionary
•Best-known examples: LZW, compress, GIFs, V.42bis

Dictionary Compressors (ctd)

LZ77 adapts far more quickly than LZ78
•LZ78: What string/substring should be entered into the

dictionary?
•LZ77: All substrings are automatically in the sliding window

Dictionary compression acts as a variable-order Markov
model
•Sawtooth function, low-order at start, high-order at end
•Demonstration of equivalence of higher-order statistical

models and dictionary compressors
–Algorithm to convert greedy-parsing dictionary compressor

to equivalent predictive model

Dictionary Compressors (ctd)

Dictionary compressorsdon’t work well for high-entropy
data and/or short strings
•Use an enhanced statistical compressor to handle those cases

Practical higher-order Markov Models

Making high-order models workable
•Only keep statistics for contexts you’ve seen before
•Use escapes to fall back to shorter contexts

•Replace nodes on an LRU basis

0.20.6—0.20—
—0.330.330.33-1—

0.40.20.40.01c
0.30.6—0.12bc
0.2—0.8—3abc

ESC‘c’‘b’‘a’OrderContext

Hybrid compressors

Combine dictionary + statistical compressors
•Statistical = order 0…~2, dictionary = order 3…n
•Dictionary handles low-entropy data, fast adaptation
•Statistical handles higher-entropy data

Statistical compressor handles both output of dictionary
compressor and literal data that “fell through” the
dictionary
•LRU nature of LZ77 makes the output further compressible
•If multiple instances of a string are present in the window, the

most recent one (shortest displacement) is used preferentially

Convergence of Entropy Estimators

The word “universal” as used with entropy estimators
doesn’t convey the property you think it does
•A “universal” entropy estimator over-estimates by no more
than a constant…
… which can be arbitrarily large

All “universal” compressors only converge on an ergodic
source at infinity
•Markov model has infinite order
•Dictionary compression sawtooth has infinite period
•Very high-order models of English text fed with white noise

(almost) reproduce the original text
–Requires a word-based model because a symbol-based

model would take forever to build

Data Compression as Entropy Estimation

We don’t care about absolute compressibility, only
absolute entropy per sample
•Use a compressor to determine the change in entropy from one

sample to the next
•Compression estimates (non)randomness in data
•Compression over multiple samples detects amount of new

entropy flowing into the system

Lossless compression can be viewed as encoding the error
signal between the estimated (model) and actual data

Assumes a Markov source
•This is something that you can’t do with a genuine noise source
•(This constraint is both good and bad)

Data compression as Entropy Estimation (ctd)

Use previous samples to prime (train) the compressor
model

•In practice 3 samples are usually enough

Successive samples

C
om

pr
es

se
d

si
ze

Change in
entropy

Lossy Data Compression as Entropy Est.

Can perform estimation on a single sample using lossy
compression
•Compress sample with strong tracking of signal
–High-Q JPEG / high PSNR

•Compress sample with weak tracking of signal
–Low-Q JPEG / low PSNR

•The difference is noise…
… or loss of detail

Lossy Data Compression as Entropy Est (ctd)

Analogous to using a low-pass filter on a signal to remove
high-frequency sampling noise
•Quantifying “noise” in a non-analogue signal is difficult
•Even in the analogue realm, it only works on select sources

Assumes correlations between nearby samples
•Continuous-tone vs. bi-level / discrete-tone images

Not necessarily a useful estimator of entropy
•Image of sky vs. image of Floyd-Steinberg dithered image

Lossy Data Compression as Entropy Est (ctd)

Use wavelet transform to identify high-freq components

•Level 1 subbands = high-frequency / unimportant details
–Quantise heavily

•Level n subbands = low-frequency / important features
–Quantise minimally

Im
ag

e
co

ur
te

sy
V

ic
en

te
R

ui
z,

U
ni

ve
rs

id
ad

de
A

lm
er

ía

Entropy Sources

Anything that changes and is somewhat unpredictable
•Disk, memory, VM, thread, process, network statistics in

infinite variations
–Available programmatically or via system commands

•User input (mouse, keyboard, program use)
•Full enumeration of sources is about 10 A4 pages long

Value of data is relative, e.g. network packet stats
•pcap / pf access = nil
•Broadcast LAN access = low
•Switched LAN access = moderate
•WAN access = high

Entropy Sources (ctd)

System-specific sources
•procfs
•Solaris kstats / WinNT/2K/XP kernel stats
•Tandem heisencounters
•/dev/random / EGD / PRNGD
•MVS OS operation / system call latency
•MBM thermal / power management information
•CPU performance counters
•BeOS is_computer_on_fire() (MB temperature)
•VIA C5 hardware RNG
–Intel, AMD hardware RNGs are dead :-(

Many of the sources have undocumented components

Entropy Sources (ctd)

Some of the more obscure sources
•CPU cooling fan speed variations
•Vcore drift
•HDD read errors corrected via ECC
•HDD read errors corrected via retry
•Drive head settle time on speculative read

Some sources would require unworkably complex physical
models
•Interaction of air current flows, thermal flows, and supply

voltage inside PC case
•Change in supply voltage affects fan speed affects air flow
affects temperature affects PSU affects supply voltage …

Entropy Sources (ctd)

Address failure via fault-tolerant design
•Tolerant of faults, not necessarily a formal fault-tolerant design
•Many, many entropy sources
–Fault-tolerance of entropy sources via massive redundancy

•Redundant generator elements
–Fortezza RNG
–cryptlib RNG

Brooklyn Bridge was built seven times as strong as the best
available worst-case estimate because the designer knew
what he didn’t know

The PC as PRNG

In effect the computer is acting as a (massively complex)
PRNG
•PRNG seeding is provided by user input, physical sources, …
•Complete system is a CSPRNG

Defeating brute-force key-search via PRNG complexity
was first suggested in the early ’90s
•Key-crackers use custom hardware to perform many simple

operations very quickly
•Defeat by using large amounts of memory, ops that are hard to

do efficiently in hardware (32-bit multiply, divide)

The PC as PRNG (ctd)

Entropy seeding (user input, physical sources) is
continuously fed into the meta-PRNG
•Meta-PRNG has enormous state
–~100GB, counting all storage media

•Meta-PRNG has enormous complexity
–Sum of all hardware and software in the system
–Video, sound, network, disk, USB, system devices, etc etc,

not just the CPU

Assuming the meta-PRNG can (somehow) be accurately
modelled, attacking it requires a brute-force search of all
system states based on given entropy seeding
•Forcing an attacker to resort to brute force is just what we want

Win16 / Win95 / 98 / ME results

Entropy polling records absolute system state via
ToolHelp32
•99% compression of polled data
•Little change over time
•Minimally-configured machine produces half the entropy of

maximally-configured machine

Unexpected behaviour on reboot
•2½ times larger than static (no-reboot) samples
•4 times larger than other samples taken after reboot
–Drivers, devices, support modules, etc are loaded and run in

somewhat random order
•Use reboot to destroy state

WinNT / 2K / XP results

Polling records change in state over time via
NtQuerySystemInfo
•Registry performance counters aren’t safe to use
•Time-varying data is less compressible than absolute system

state data
–~80% compression rather than 99+% compression

•Same quantity of input from unloaded machine compressed to
1/10 size of loaded machine data
–With little running, there’s little spinning the kernel

counters

Network stats provide almost no entropy
•~200 bytes compress to only 9 bytes
–The entropy estimation is quite effective here

Unix results
Most sources record changes over time (e.g. *stat)

•Available on some systems via easier sources (procfs, kstats)
•Characteristics similar to NT / 2K / XP systems
•BSD-ish systems have more sources than SYSV ones
•Results depend on system load
•Reboot behaviour wasn’t tested due to self-preservation

considerations

Entropy Polling Example

Entropy estimation process
•Poll entropy data  40KB of results
•Reduce 10 : 1 (typical) via compression  4KB
•Assume another 10 : 1 for inability of the model to capture the

source characteristics
–Good safety margin, English language is 2 : 1

•Result: 400 bytes (3200 bits/woozles) of entropy
•Like PSNR, this is only an estimate of goodness, not an

absolute measure
•Engineer’s rather than mathematician’s approach

Only the more tractable OS sources were tested, not the
ones based on physical/thermal entropy

Use in the Field

Compression-based estimation is a lab test, not a field test
•“Please wait while your machine reboots several times…”

Use the lab results to guide field estimation
•Determine entropy for standard sources
•Assign weights to each source based on entropy
•Entropy is sufficient if total exceeds a set threshold

Example
•netstat –an produces n woozles of entropy per kB of

output
•Weight = m kB
–Source x provides y% of our requirements

•Entropy is sufficient if total from all sources 100

Availability

Available in an open-source implementation
•BSD license or GPL (your choice)
•http://www.cs.auckland.ac.nz/
~pgut001/cryptlib/, in the /random subdirectory
–Grab the one tagged “snapshot”

•Meets many/all of the requirements of the proposed standard

See chapter 6 of “Cryptographic Security Architecture
Design and Verification” for full design details

Usability Issues

Providing entropy for the RNG is hard to do right
•Developers can’t solve the problem, so they leave it as an

exercise for the user
•Netscape disabled BSAFE safety checks in order to allow the

generator to run without proper initialisation

Usability Issues (ctd)

A simple safety check was added to OpenSSL 0.9.5 to test
whether the generator had been properly initialised

An entry was added to the FAQ to explain this
•Later versions of the code were changed to display the URL for

the FAQ

User responses…
•Seed the generator with a constant text string
•Seed it with DSA public components (which look random)
•Seed it with output from rand()
•Seed it with the executable image
… more

Usability Issues (ctd)
… continued
•Seed it with /etc/passwd

•Seed it with /var/syslog

•Seed it with a hash of files in the current directory
•Seed it with a dummy “random” data file
•Seed it with the string “0123456789ABCDEF”
•Seed it with output from the (uninitialised) generator
•Seed it with “string to make the random number generator
think it has entropy”
•Downgrade to an older version of the generator that doesn’t

perform the check
… more

Usability Issues (ctd)
… continued
•Patch the code to disable the check
•Later versions of the code added /dev/random support
–Replace the /dev/random read with a read of a static disk file

Based on user comments, quite a number of third-party
applications had been using low-security cryptovariables
from the uninitialised generator

This is not specific to OpenSSL, it’s merely the best-
documented case
•Similar advice has been given on bypassing the JCE RNG
•truerand-style RNG that takes while to run

Usability Issues (ctd)

Crypto purists: If we have a way to evaluate entropy, the
device should refuse to work unless sufficient entropy is
available

Product developers: We can’t ship an otherwise fully
functional device that simply refuses to function in the
field
•0.01% of users (ones with COMSEC training) will have the

discipline to handle RNG failures
•99.99% of users will see an RNG failure as a defective product

Usability Issues (ctd)

If presented with a “defective” device, the user will
•Use someone else’s product
–Preferably one that doesn’t warn of entropy problems

•Send in the clear
•Complain / threaten legal action

If an RNG failure appears as a defective product, you’d
better make very sure that you never get an RNG failure
•“In insufficient entropy halt” 
“At random times, make product defective”
•Address via use of many entropy sources / fault-tolerant design

Usability Issues (ctd)

Perhaps make it a speed-bump warning
•Warn conscientious users, but don’t fail completely for “just

make it work dammit” users

Generate keys, but zero the top 32 bits as a warning to the
other side
•“I’m doing the best I can with what I’ve got”
•Less secure than generating a full key if an attacker can tell if

full entropy was available

ZKP of entropy state?

Open Questions

Continuous testing
•How continuous?
–Every n seconds?
–Before every generation of cryptovariables?
–Before generation of high-value cryptovariables?

•What if you need keys on a hard deadline?
•What if you’re on an embedded system?
–No background tasks for continuous tests
–Can’t afford to run background task for testing

Open Questions (ctd)

Entropy polling
•What if there’s nothing to poll?
•Persist state to disk / flash memory

–randseed.xyz approach already used by many apps
•How to protect the state?
–Attacker can read to determine past state
–Attacker can write to affect future state

Usability
•What to do if there’s insufficient entropy available?
•(Pies will be available in the cafeteria at lunchtime)

