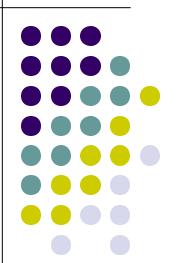
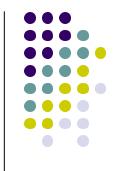
X9.82 Part 3 Number Theoretic DRBGs

Don B. Johnson NIST RNG Workshop July 20, 2004



WHY?

- Asymmetric key operations are about <u>100</u> <u>times slower</u> than symmetric key or hash operations
- Why have 2 DRBGs based on hard problems in number theory?
- Certainly <u>not</u> expected to be chosen for performance reasons!



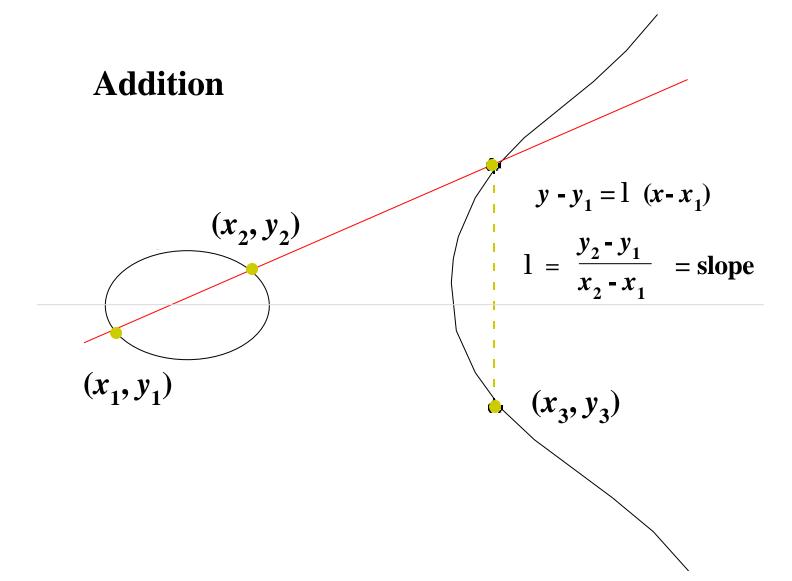
- Do not need lots of random bits, but want the potentially <u>increased assurance</u>
- Already using an asymmetric key algorithm and want to limit the number of algorithms that IF broken will break my system
- Have an asymmetric algorithm accelerator in the design already

Performance Versus Assurance

- As performance is not likely THE reason an NT DRBG is included in a product
- Make the problem needing to be broken as hard as possible, within reason
- This increases the assurance that the DRBG will not be broken in the future, up to its security level

- An elliptic curve is a cubic equation in 2 variables X and Y which are elements of a field. If the field is finite, then the elliptic curve is finite
- Point addition is defined to form a group
- ECDLP Hard problem: given P = nG, find n where G is generator of EC group and G has order of 160 bits or more

Elliptic Curve $y^2 = x^3 + ax + b$



- The field Z₂₃ has <u>23 elements</u> from 0 to 22
- The "+" operation is addition modulo 23
- The "*" operation is multiplication mod 23
- As 23 is a prime this is a field (acts like rational numbers except it is finite)

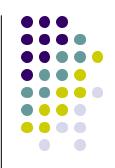
The Group Z^{*}₂₃

• Z_{23}^* consists of the <u>22 elements</u> of Z_{23} excluding 0

$5^0 = 1$	$5^8 = 16$	$5^{16} = 3$
$5^{1} = 5$	5 ⁹ = 11	$5^{17} = 15$
5 ² = 2	$5^{10} = 9$	$5^{18} = 6$
$5^3 = 10$	$5^{11} = 22$	$5^{19} = 7$
$5^4 = 4$	$5^{12} = 18$	$5^{20} = 12$
$5^{5} = 20$	$5^{13} = 21$	$5^{21} = 14$
$5^6 = 8$	$5^{14} = 13$	And return
5 ⁷ = 17	$5^{15} = 19$	$5^{22} = 1$

- The element 5 is called a generator
- The "group operation" is modular multiplication

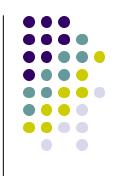
Solutions to $y^2 = x^3 + x + 1$ Over Z_{23}

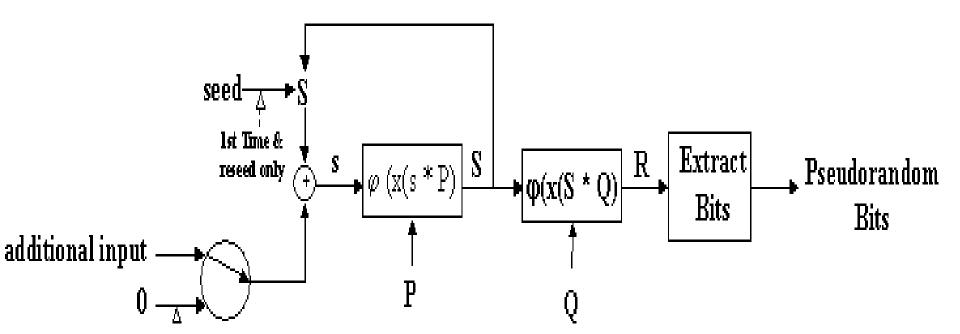


(0, 1)	(6, 4)	(12, 19)
(0, 22)	(6, 19)	(13, 7)
(1, 7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9, 7)	(17, 20)
(3, 13)	(9, 16)	(18, 3)
(4, 0)	(11, 3)	(18, 20)
(5, 4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)
Æ		

There are 28 points on this toy elliptic curve

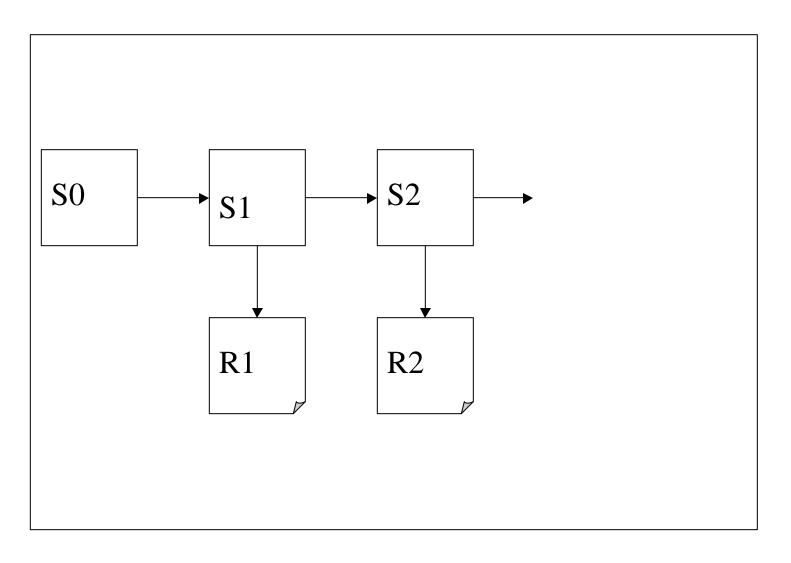
ECC DRBG Flowchart

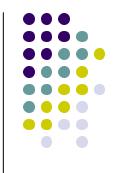




If additional input = Null

Unlooped Flowchart





- 1. Randomness implies next bit unpredictability
- 2. The number of points on a curve is approximately the number of field elements
- 3. All points (X, Y) have a inverse (X, -Y) and at most 3 points are of form (X, 0)
- Q: Can I use the X-coordinate of a **random** point as **random** bits?

No, I cannot use a raw X-coordinate!

As most X-coordinates are associated with 2 different Y-coordinates, about half the X values have **NO** point on the curve,

Such X gaps can be considered randomly distributed on X-axis

Look at toy example to see what is going on

Possible X coordinate values: 0 to 22

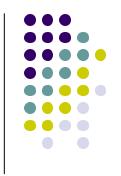
X values appearing once: 4

Twice: 0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 17, 18, 19

None: 2, 8, 10, 14, 15, 16, 20, 21, 22

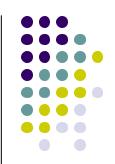
An X coordinate in bits from 00000 to 10110

If I get first 4 bits of X value of 0100a, I know a must be a 1, as 9 exists but 8 does not



- If output 4 bits as a random number, the next bit is completely predictable!
- This property also holds for 2-bit gaps, 3-bit gaps, etc. with decreasing frequency.
- Bad luck is not an excuse for an RBG to be predictable!
- The solution: Truncate the X-coordinate. Do not give all that info out. How much?

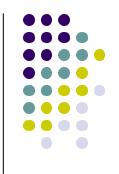
X Coordinate Truncation Table



Prime field	Truncate at least 13 leftmost bits of x coordinate
Binary Field, cofactor = 2	Truncate at least 14 leftmost bits of x coordinate
Binary Field, cofactor = 4	Truncate at least 15 leftmost bits of x coordinate

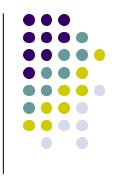
Truncation

- This truncation will ensure no bias greater than 2**-44
- Reseed every 10,000 iterations so bias effect is negligible
- To work with bytes, round up so remainder of X-coordinate is a multiple of 8 bits, this truncates from 16 to 19 bits

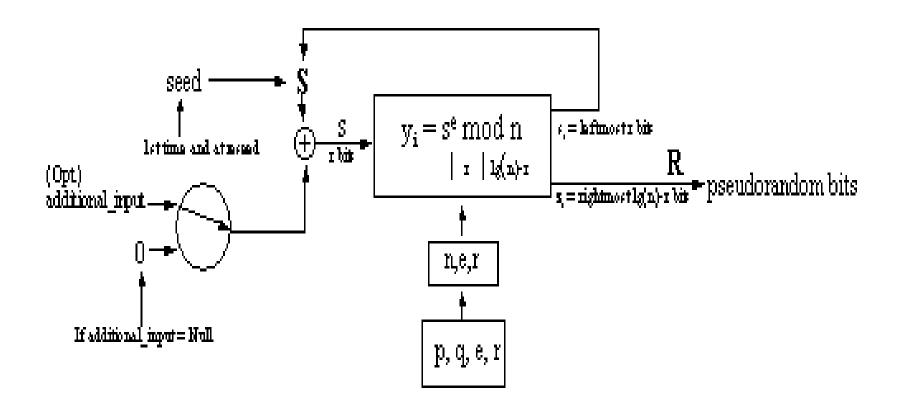


- Choose odd public exponent e and primes p and q such that e has no common factor with p or q, set n = pq
- Find d such ed = 1 mod (p-1)(q-1)
- Public key is (e, n), private key is (d, n)
- Hard to find d from (e, n) if n >= 1024 bits
- (Me mod n) is hard to invert for most M

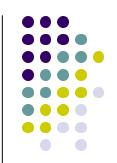
Micali-Schnorr DRBG



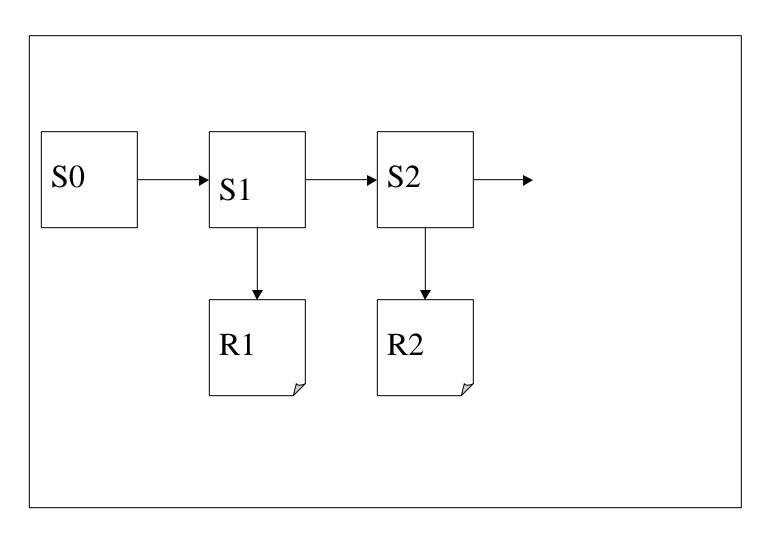
19



Unlooped Flowchart

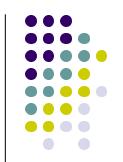


20



- For MS truncation, we only use the RSA <u>hard</u> core bits as random bits
- This has high assurance that the number theory problem to be solved is as hard as possible!
- Reseed after 50,000 iterations

NIST/ANSI X9 Security Levels Table



Security Levels (in bits)	ECC (order of G in bits)	MS (RSA) (modulus in bits)
80	160	1024, 10 hardcore bits
112	224	2048, 11 hardcore bits
128	256	3072, 11 hardcore bits
192	384	Not specified

July 20, 2004 (dbj)

Number Theory DRBGs Summary

- 2 Number Theory DRBGs are specified based on <u>ECC and RSA</u>
- Use one for <u>increased assurance</u>, but do not expect it to be the fastest one possible
- No one has yet asked for an FFC DRBG, straightforward to design from ECC DRBG, but specifying algorithm and validation method has a cost