
Appendices from FIPS 186-3: B.3, C.3, C.6, C.9, C.10 and F

B.3 IFC Key Pair Generation

B.3.1 Criteria for IFC Key Pairs
Key pairs for IFC consist of a public key (n, e), and a private key (n, d), where n is the
modulus and is the product of two prime numbers p and q. The security of IFC depends
on the quality and secrecy of these primes and the private prime factor d. The primes p
and q shall be generated using one of the following methods:

A. Both p and q are randomly generated prime numbers (Random Primes), where p
and q shall both be either :

1. Provable primes (see Appendix B.3.2), or

2. Probable primes (see Appendix B.3.3).

B. Both p and q are randomly generated prime numbers that satisfy the following
additional conditions (Primes with Conditions):

• (p-1) has a prime factor p1

• (p+1) has a prime factor p2

• (q-1) has a prime factor q1

• (q+1) has a prime factor q2

where p1, p2, q1 and q2 are called auxiliary primes of p and q.

Using this method, one of the following cases shall apply:

1. The primes p1, p2, q1, q2, p and q shall all be provable primes (see
Appendix B.3.4),

2. The primes p1, p2, q1 and q2 shall be provable primes, and the primes p
and q shall be probable primes (see Appendix B.3.5), or

3 The primes p1, p2, q1, q2, p and q shall all be probable primes (see
Appendix B.3.6).

The minimum lengths for each of the auxiliary primes p1, p2, q1 and q2 are
dependent on nlen, where nlen is the length of the modulus n in bits (see Table
B.1). Note that nlen is also called the key size. The maximum length is
determined by nlen, the sum of the length of each auxiliary prime pair and
whether the primes are probable primes or provable primes (e.g., for the auxiliary
prime pair p1 and p2, len(p1) + len(p2) shall be less than a value determined by
nlen and whether p1 and p2 are generated to be probable or provable primes)1.

1 For probable primes: len(p1) + len(p2) < len(p) – log2(len(p)) – 6; similarly for len(q1) + len(q2). For
provable primes: len(p1) + len(p2) < len(p)/2 – log2(len(p)) – 7; similarly for len(q1) + len(q2).

Table B.1. Minimum and maximum lengths of p1, p2, q1 and q2

Max. length of len(p1) + len(p2) and
len(q1) + len(q2)

nlen Min. length of p1,
p2, q1 and q2

Probable primes Provable primes

1024 > 100 bits < 496 bits < 239 bits

2048 > 140 bits < 1007 bits < 494 bits

3072 > 170 bits < 1518 bits < 750 bits

For different values of nlen (i.e., key sizes), the methods allowed for the generation of p
and q are specified in Table B.2.

Table B.2. Allowable Prime Generation Methods

nlen Random Primes Primes with Conditions

1024 No Yes

2048 Yes Yes

3072 Yes Yes

In addition, all IFC keys shall meet the following criteria in order to conform to FIPS
186-3:

1. The public exponent e shall be selected with the following constraints:

(a) The public verification exponent e shall be selected prior to generating the
primes p and q, and the private signature exponent d.

(b) The exponent e shall be an odd positive integer such that:

 216 < e < 2256.

Note that the value of e may be any value that meets constraint 1(b), i.e., e
may be either a fixed value or a random value.

 2. The primes p and q shall be selected with the following constraints:

(a) (p-1) and (q-1) shall be relatively prime to the public exponent e.

(b) The private prime factor p shall be selected randomly from the primes that
satisfy (2)(2(nlen / 2) - 1) ≤ p ≤ (2nlen / 2- 1), where nlen is the appropriate
length for the desired security_strength.

(c) The private prime factor q shall be selected randomly from the primes that
satisfy (2)(2(nlen / 2) - 1) ≤ q ≤ (2nlen / 2- 1), where nlen is the appropriate
length for the desired security_strength.

(d) |p – q| > 2(nlen / 2) – 100.

3. The private signature exponent d shall be selected with the following constraints

after the generation of p and q:

(a) The exponent d shall be a positive integer value such that d > 2nlen/ 2, and

(b) d = e-1 mod (LCM((p-1), (q-1))).

That is, the inequality in (a) holds, and 1 ≡ ed (LCM((p-1), (q-1))).

In the extremely rare event that d ≤ 2nlen / 2, then new values for p, q and d shall be
determined. A different value of e may be used, although this is not required.

B.3.2 Generation of Random Primes that are Provably Prime
An Approved method that satisfies the constraints of Appendix B.3.1 shall be used for
the generation of IFC random primes p and q that are provably prime (see case A.1). One
such method is provided in Appendix B.3.2.1 and B.3.2.2. For this method, a random
seed is initially required (see Appendix B.3.2.1); the length of the seed is equal to twice
the security strength associated with the modulus n. After the seed is obtained, the primes
can be generated (see Appendix B.3.2.2).

B.3.2.1 Get the Seed
The following process or its equivalent shall be used to generate the seed for this method.

Input:
nlen The intended bit length of the modulus n.

Output:
status The status to be returned, where status is either SUCCESS or FAILURE.

seed The seed. If status = FAILURE, a value of zero is returned as the seed.

Process:
1. If nlen is not valid (see Section 5.1), then Return (FAILURE, 0).

2. Let security_strength be the security strength associated with nlen, as specified in
SP 800-57, Part 1.

2. Obtain a string seed of (2 × security_strength) bits from an RBG that supports the
security_strength.

3. Return (SUCCESS, seed).

B.3.2.2 Construction of the Provable Primes p and q
The following process or its equivalent shall be used to construct the random primes p
and q (to be used as factors of the RSA modulus n) that are provably prime:

Input:
nlen The intended bit length of the modulus n.

e The public verification exponent.

seed The seed.

Output:

status The status of the generation process, where status is either SUCCESS or
FAILURE. When FAILURE is returned, zero values shall be returned as
the other parameters.

p and q The private prime factors of n.

Process:
1. If nlen is neither 2048 nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as
specified in SP 800-57, Part 1.

4. If (len(seed) ≠ 2 × security_strength), then return (FAILURE, 0, 0).

5. working_seed = seed.

6. Generate p:

6.1 Using L = nlen/2 , N1 = 1, N2 = 1, first_seed = working_seed and e, use the
provable prime construction method in Appendix C.10 to obtain p and
pseed. If FAILURE is returned, then return (FAILURE, 0, 0).

6.2 working_seed = pseed.

7. Generate q:

7.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the
provable prime construction method in Appendix C.10 to obtain q and
qseed. If FAILURE is returned, then return (FAILURE, 0, 0).

7.2 working_seed = qseed.

8. If (|p - q| ≤ 2nlen/2 – 100), then go to step 7.

9. Zeroize the internally generated seeds:

9.1 pseed = 0;

9.2 qseed = 0;

9.3 working_seed = 0.

10. Return (SUCCESS, p, q).

B.3.3 Generation of Random Primes that are Probably Prime
An Approved method that satisfies the constraints of Appendix B.3.1 shall be used for
the generation of IFC random primes p and q that are probably prime (see case A.2).

The following process or its equivalent shall be used to construct the random probable
primes p and q (to be used as factors of the RSA modulus n):

Input:
nlen The intended bit length of the modulus n.

e The public verification exponent.

Output:
status The status of the generation process, where status is either SUCCESS or

FAILURE.

p and q The private prime factors of n. When FAILURE is returned, zero values
shall be returned as p and q.

Process:
1. If nlen is neither 2048 nor 3072, return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as
specified in SP 800-57, Part 1.

4. Generate p:

4.1 Obtain a string p of (nlen/2) bits from an RBG that supports the
security_strength.

4.2 If (p is not odd), then p = p + 1.

4.3 If ((p < (2)(2(nlen / 2) - 1)) OR ((p-1) is not relatively prime to e)), then go to
step 4.1.

4.4 Test p for primality as specified in Appendix C.3 using an appropriate value
from Table C-2 or C-3 in Appendix C.3 as the number of iterations. If p is
COMPOSITE, go to step 4.1.

5. Generate q:

5.1 Obtain a string q of (nlen/2) bits from an RBG that supports the
security_strength

5.2 If (q is not odd), then q = q + 1.

5.3 If (|p – q| ≤ 2nlen/2 – 100), then go to step 5.1.

5.4 If ((q < (2)(2(nlen / 2) - 1)) OR ((q-1) is not relatively prime to e)), then go to
step 5.1.

5.5 Test q for primality as specified in Appendix C.3 using an appropriate value
from Table C.2 or C.3 as the number of iterations. If q is COMPOSITE, go
to step 5.1.

6. Return (SUCCESS, p, q).

B.3.4 Generation of Provable Primes with Conditions Based on Auxiliary
Provable Primes

This section specifies an Approved method for the generation of the IFC primes p and q
with the additional conditions specified in Appendix B.3.1, case B.1, where p, p1, p2, q, q1
and q2 are all provable primes. For this method, a random seed is initially required (see
Appendix B.3.2.1); the length of the seed is equal to twice the security strength
associated with the modulus n. After the first seed is obtained, the primes can be

generated.

Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1 and q2,
respectively, in accordance with Table B.1. The following process or its equivalent shall
be used to generate the provable primes:

Input:
nlen The intended bit length of the modulus n.

e The public verification exponent.

seed The seed.

Output:
status The status of the generation process, where status is either SUCCESS or

FAILURE. If Failure is returned then zeros shall be returned as the
values for p and q.

p and q The private prime factors of n.

Process:
1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as
specified in SP 800-57, Part 1.

4. If (len(seed) ≠ 2 × security_strength), then return (FAILURE, 0, 0).

5. working_seed = seed.

6. Generate p:

6.1 Using L = nlen/2, N1 = bitlen1, N2 = bitlen2, firstseed = working_seed and e,
use the provable prime construction method in Appendix C.10 to obtain p,
p1, p2 and pseed. If FAILURE is returned, return (FAILURE, 0, 0).

6.2 working_seed = pseed.

7. Generate q:

7.1 Using L = nlen/2 L, N1 = bitlen3, N2 = bitlen4 and firstseed = working_seed
and e, use the provable prime construction method in Appendix C.10 to
obtain q, q1, q2 and qseed. If FAILURE is returned, return (FAILURE, 0,
0).

7.2 working_seed = qseed.

8. If (|p - q| ≤ 2nlen/2 – 100), then go to step 7.

9. Zeroize the internally generated seeds:

9.1 pseed = 0.

9.2 q_seed = 0.

9.3 working_seed = 0.

10. Return (SUCCESS, p, q).

B.3.5 Generation of Probable Primes with Conditions Based on Auxiliary
Provable Primes

This section specifies an Approved method for the generation of the IFC primes p and q
with the additional conditions specified in Appendix B.3.1, case B.2, where p1, p2, q1 and
q2 are provably prime, and p and q are probably prime. For this method, a random seed is
initially required (see Appendix B.3.2.1); the length of the seed is equal to twice the
security strength associated with the modulus n. After the first seed is obtained, the
primes can be generated.

 Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1 and q2,
respectively in accordance with Table B.1. The following process or its equivalent shall
be used to construct p and q.

Input:
nlen The intended bit length of the modulus n.

e The public verification exponent.

seed The seed.

Output:
status The status of the generation process, where status is either SUCCESS

or FAILURE. If Failure is returned then zeros shall be returned as
the values for p and q.

p and q The private prime factors of n.

Process:
1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as
specified in SP 800-57, Part 1.

4. If (len(seed) ≠ 2 × security_strength), then return (FAILURE, 0, 0).

Comment: Generate four primes p1, p2, q1
and q2 that are provably prime.

5. Generate p:

5.1 Using bitlen1 as the length, and seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain p1 and prime_seed.
If FAILURE is returned, the return (FAILURE, 0, 0).

5.2 Using bitlen2 as the length, and prime_seed as the input_seed, use the
random prime generation routine in Appendix C.6 to obtain p2 and a new
value for prime_seed. If FAILURE is returned, the return (FAILURE,

0, 0).

5.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1,
p2, nlen, e and security_strength, also obtaining Xp. If FAILURE is
returned, return (FAILURE, 0, 0).

6. Generate q:

6.1. Using bitlen3 as the length, and prime_seed as the input_seed, use the
random prime generation routine in Appendix C.6 to obtain q1 and a new
value for prime_seed. If FAILURE is returned, the return (FAILURE,
0, 0).

6.2 Using bitlen4 as the length, and prime_seed as the input_seed, use the
random prime generation routine in Appendix C.6 to obtain q2 and a new
value for prime_seed. If FAILURE is returned, the return (FAILURE,
0, 0).

6.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1,
q2, nlen, e and security_strength, also obtaining Xq.. If FAILURE is
returned, return (FAILURE, 0, 0).

7. If ((|p - q| ≤ 2nlen/2 –100) OR (|Xp – Xq| ≤ 2nlen/2 – 100)), then go to step 6.

8. Zeroize the random values used to generate p and q:

8.1 Xp = 0.

8.2 Xq = 0.

8.3 prime_seed = 0.

9. Return (SUCCESS, p, q).

B.3.6 Generation of Probable Primes with Conditions Based on Auxiliary
Probable Primes

An Approved method that satisfies the constraints of Appendix B.3.1 shall be used for
the generation of IFC primes p and q that are probably prime and meet the additional
constraints (see case B.3). For this case, the prime factors p1, p2, q1 and q2 are also
probably prime.

Four random numbers Xp1, Xp2, Xq1 and Xq2 are generated, from which the prime factors
p1, p2, q1 and q2 are determined. p1 and p2, and an additional random number Xp are then
used to determine p, and q1 and q2 and a random number Xq are used to obtain q. Let
bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively in
accordance with Table B.1.

The following process or its equivalent shall be used to generate p and q:

Input:
nlen The intended bit length of the modulus n.

e The public verification exponent.

Output:

status The status of the generation process, where status is either
SUCCESS or FAILURE. If Failure is returned then zeros shall
be returned as the values for p and q.

p and q The private prime factors of n.

Process:
1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as
specified in SP 800-57, Part 1.

4. Generate p:

4.1 Generate an odd integer Xp1 of length bitlen1 bits, and a second odd
integer Xp2 of length bitlen2 bits, using an Approved random number
generator that supports the security_strength.

4.2 Sequentially search successive odd integers, starting at Xp1 until the first
probable prime p1 is found. Candidate integers shall be tested for
primality as specified in Appendix C.3. Repeat the process to find p2,
starting at Xp2. The probable primes p1 and p2 shall be the first integers
that pass the primality test.

4.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1,
p2, nlen, e and security_ strength, also obtaining Xp. If FAILURE is
returned, return (FAILURE, 0, 0).

5. Generate q:

5.1 Generate an odd integer Xq1 of length bitlen3 bits, and a second odd
integer Xq2 of length bitlen4 bits, using an Approved random number
generator that supports the security_strength.

5.2 Sequentially search successive odd integers, starting at Xq1 until the first
probable prime q1 is found. Candidate integers shall be tested for
primality as specified in Appendix C.3. Repeat the process to find q2,
starting at Xq2. The probable primes q1 and q2 shall be the first integers
that pass the primality test.

5.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1,
q2, nlen, e and security_ strength, also obtaining Xq. If FAILURE is
returned, return (FAILURE, 0, 0).

6. If ((|Xp – Xq| ≤ 2nlen/2 –100) OR (|p - q| ≤ 2nlen/2 – 100))), then go to step 5.

7. Zeroize the random values used to generate p and q:

7.1 Xp = 0.

7.2 Xq = 0.

8. Return (SUCCESS, p, q).

C.3 Probabilistic Primality Tests
A probabilistic primality test may be required during the generation and validation of
prime numbers. An Approved robust probabilistic primality test shall be selected and
used.

There are several probabilistic algorithms available. The Miller-Rabin probabilistic
primality tests described in Appendices C.3.1 and C.3.2 are versions of a procedure due
to M.O. Rabin, based in part on ideas of Gary L. Miller. For more information, see
Knuth, The Art of Computer Programming, Vol. 2, 3rd Ed., Addison-Wesley, 1998,
Algorithm P, page 395. For these tests, let RBG be an Approved random bit generator
(see SP 800-90).

There are several Lucas probabilistic primality tests available; the version provided in
Appendix C.3.3 was described in the Mathematics of Computation, V. 35 (1980), pages
1391 – 1417 by Baillie and Wagstaff.

This Standard allows two alternatives for testing primality: either using several iterations
of only the Miller-Rabin test, or using the iterated Miller-Rabin test, followed by a single
Lucas test. The value of iterations (as used in Appendices C.3.1 and C.3.2) depends on
the algorithm being used, the security strength, the error probability used, the length (in
bits) of the candidate prime and the type of tests to be performed. Tables C.1, C.2 and C.3
list the minimum number of iterations of the Miller-Rabin tests that shall be performed.

As stated in Appendix F.3, if the definition of the error probability that led to the values
of the number of Miller-Rabin tests for p and q in Tables C.1, C.2 and C.3 is not
conservative enough, the prescribed number of Miller-Rabin tests can be followed by a
single Lucas test. The Lucas test is not necessary when testing the p1, p2, q1 and q2 values
for primality when generating RSA primes. Since there are no known non-prime values
that pass the two test combination (i.e., the indicated number of rounds of the Miller-
Rabin test with randomly selected bases, followed by one round of the Lucas test), the
two test combination may provide additional assurance of primality over the use of only
the Miller-Rabin test. For DSA, the two-test combination may provide better
performance. See Appendix F for further information.

Table C.1. Minimum number of Miller-Rabin iterations for DSA

Parameters M-R Tests Only

M-R Tests when followed
by One Lucas test

 p: 1024 bits
 q: 160 bits
Error probability = 802−

For p and q: 40

For p: 3

 For q: 19

 p: 2048 bits
 q: 224 bits

Error probability = 1122−

For p and q: 56 For p: 3

 For q: 24

 p: 2048 bits
 q: 256 bits

Error probability = 1122−

For p and q: 56 For p: 3

 For q: 27

 p: 3072 bits
 q: 256 bits

 Error probability = 1282−

For p and q: 64 For p: 2

 For q: 27

Table C.2. Minimum number of rounds of M-R testing when generating primes for
use in RSA Digital Signatures

Parameters M-R Tests Only

1p , 2p , 1q and 2q > 100 bits

p and q: 512 bits

Error probability = 802−

For 1p , 2p , 1q and 2q : 28

 For p and q: 5

1p , 2p , 1q and 2q > 140 bits

p and q: 1024 bits

Error probability = 1122−

For 1p , 2p , 1q and 2q : 38

For p and q: 5

1p , 2p , 1q and 2q > 170 bits

p and q: 1536 bits

Error probability = 2 -128

For 1p , 2p , 1q and, 2q : 41

For p and q: 4

Table C.3. Minimum number of rounds of M-R testing when generating primes for
use in RSA Digital Signatures using an error probability of 2-100

Parameters M-R Tests Only

1p , 2p , 1q and 2q > 100 bits

p and q: 512

For 1p , 2p , 1q and 2q : 38

For p and q: 7

1p , 2p , 1q and 2q > 140 bits

p and q: 1024 bits

For 1p , 2p , 1q and 2q : 32

For p and q: 4

1p , 2p , 1q and 2q > 170 bits

p and q: 1536 bits

For 1p , 2p , 1q and 2q : 27

For p and q: 3

C.3.1 Miller-Rabin Probabilistic Primality Test
The following process or its equivalent shall be used as the Miller-Rabin test. Let RBG
be an Approved random bit generator (see SP 800-90).

Input:
1. w The odd integer to be tested for primality. This will be

either p or q, or one of the auxiliary primes p1, p2, q1 or q2.

2. iterations The number of iterations of the test to be performed; the
value shall be consistent with Table C.1, C.2 or C.3.

Output:
1. status The status returned from the validation procedure, where

status is either PROBABLY PRIME or COMPOSITE.

Process:

1. Let a be the largest integer such that 2a divides w−1.

2. m = (w−1) / 2a.

3. wlen = len (w).

4. For i = 1 to iterations do

4.1 Obtain a string b of wlen bits from an RBG.

Comment: Ensure that 1 < b < w−1.

4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1.

4.3 z = bm mod w.

4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7.

4.5 For j = 1 to a − 1 do.

4.5.1 z = z2 mod w.

4.5.2 If (z = w−1), then go to step 4.7.

4.5.3 If (z = 1), then go to step 4.6.

4.6 Return COMPOSITE.

4.7 Continue. Comment: Increment i for the do-
loop in step 4.

5. Return PROBABLY PRIME.

C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
The following process or its equivalent shall be used as the Enhanced Miller-Rabin test.
This method provides additional information when an error is encountered that may be
useful when generating or validating RSA moduli. Let RBG be an Approved random bit
generator (see SP 800-90).

Input:

1. w The odd integer to be tested for primality. This will be
either p or q , or one of the auxiliary primes p1, p2, q1 or q2..

2. iterations The number of iterations of the test to be performed; the
value shall be consistent with Table C.1, C.2 or C.3.

Output:
1. status The status returned from the validation procedure, where

status is either PROBABLY PRIME, PROVABLY
COMPOSITE WITH FACTOR (returned with the
factor), and PROVABLY COMPOSITE AND NOT A
POWER OF A PRIME.

Process:
1. Let a be the largest integer such that 2a divides w-1.

2. m = (w-1) / 2a.

3. wlen = len (w).

4. For i = 1 to iterations do

4.1 Obtain a string b of wlen bits from an RBG.

Comment: Ensure that 1 < b < w-1.

4.2 If ((b ≤ 1) or (b ≥ w-1)), then go to step 4.1.

4.3 g = GCD (b, w).

4.4 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR
and the value of g.

4.5 z = bm mod w.

4.6 If ((z = 1) or (z = w - 1)), then go to step 4.15.

4.7 For j = 1 to a - 1 do.

4.7.1 x = z. Comment: x ≠ 1 and x ≠ w-1.

4.7.2 z = x2 mod w.

4.7.3 If (z = w-1), then go to step 4.15.

4.7.4 If (z = 1), then go to step 4.12.

4.8 x = z. Comment: x = b(w-1)/2 mod w and x ≠ w-1.

4.9 z = x2 mod w.

4.10 If (z = 1), then go to step 4.12.

4.11 x = z. Comment: x = b(w-1) mod w and x ≠ 1.

 4.12 g = GCD (x-1, w).

4.13 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR
and the value of g.

4.14 Return PROVABLY COMPOSITE AND NOT A POWER OF A
PRIME.

4.15 Continue. Comment: Increment i for the do-
loop in step 4.

5. Return PROBABLY PRIME.

C.3.3 (General) Lucas Probabilistic Primality Test
The following process or its equivalent shall be used as the Lucas test.

Input:
C The candidate odd integer to be tested for primality.

Output:
status Where status is either PROBABLY PRIME or COMPOSITE.

Process:
1. Test whether C is a perfect square (see Appendix C.4). If so, return

(COMPOSITE).

2. Find the first D in the sequence {5, –7, 9, –11, 13, –15, 17, …} for which the
Jacobi symbol ()

C
D = –1. See Appendix C.5 for an Approved method to compute

the Jacobi Symbol. If ()
C
D = 0 for any D in the sequence, return (COMPOSITE).

3. K = C+1.

4. Let Kr Kr – 1 … K0 be the binary expansion of K, with Kr = 1.

5. Set Ur = 1 and Vr = 1.

6. For i = r-1 to 0, do

6.1 Utemp = Ui+1 Vi+1 mod C.

6.2 Vtemp = .mod
2

2
1

2
1 C

DUV ii ++ +

6.3 If (Ki = 1), then Comment: If Ki = 1, then do steps 6.3.1 and
6.3.2; otherwise, do steps 6.3.3 and 6.3.4.

6.3.1 Ui =
2

temptemp VU +
 mod C.

6.3.2 Vi =
2

temptemp DUV +
mod C.

Else

6.3.3 Ui = Utemp.

6.3.4 Vi = Vtemp.

7. If (U0 = 0), then return (PROBABLY PRIME). Otherwise, return
(COMPOSITE).

Steps 6.2, 6.3.1 and 6.3.2 contain expressions of the form A/2 mod C, where A is an
integer, and C is an odd integer. If A/2 is not an integer (i.e., A is odd), then A/2 mod C
may be calculated as (A+C)/2 mod C. Alternatively, A/2 mod C = A·(C+1)/2 mod C, for
any integer A, without regard to A being odd or even.

C.6 Shawe-Taylor Random_Prime Routine
This routine is recursive and may be used to construct a provable prime number using a
hash function.

Let Hash () be the selected hash function for the (L, N) pair, and let outlen be the bit
length of the hash function output block. The following process or its equivalent shall be
used to generate a prime number for this constructive method.

ST_Random_Prime ():

Input:

1. length The length of the prime to be generated.

2. input_seed The seed to be used for the generation of the
requested prime.

Output:

1. status The status returned from the generation routine,
where status is either SUCCESS or FAILURE. If
Failure is returned, then zeros are returned as the
other output values.

2. prime The requested prime.

3 prime_seed A seed determined during generation.

4. prime_gen_counter (Optional) A counter determined during the
generation of the prime.

Process:
1. If (length < 2), then return (FAILURE, 0, 0 {, 0}).

2. If (length ≥ 33), then go to step 14.

3. prime_seed = input_seed.

4. prime_gen_counter = 0.

Comment: Generate a pseudorandom
integer c of length bits.

5. c = Hash (prime_seed) ⊕ Hash (prime_seed + 1).

6. c = 2length - 1 + (c mod 2length - 1).

7. c = (2 ∗ ⎣c / 2⎦) + 1. Comment: Set prime to the
least odd integer greater than
or equal to c.

8. prime_gen_counter = prime_gen_counter + 1.

9. prime_seed = prime_seed + 2.

10. Perform a deterministic primality test on c. For example, since c is small, its
primality can be tested by trial division. See Appendix C.7.

11. If (c is a prime number), then

11.1 prime = c.

11.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}).

12. If (prime_gen_counter > (4 ∗ length)), then return FAILURE

13. Go to step 5.

14. (status, c0, prime_seed, prime_gen_counter) = (ST_Random_Prime ((
⎡length / 2⎤ + 1), input_seed).

15. If FAILURE is returned, return (FAILURE, 0, 0 {, 0}).

16. iterations = ⎡length / outlen⎤ - 1.

17. old_counter = prime_gen_counter.

Comment: Generate a pseudorandom
integer x in the interval [2length - 1,
2length].

18. x = 0.

19. For i = 0 to iterations do

x = x + (Hash (prime_seed + i) ∗ 2i × outlen).

20. prime_seed = prime_seed + iterations + 1.

21. x = 2length - 1 + (x mod 2length - 1).

Comment: Generate a candidate
prime c in the interval [2length - 1,
2length].

22. t = ⎡x / (2c0)⎤.

23. If (2tc0 + 1 > 2length), then t = ⎡2length - 1 / (2c0)⎤.

24. c = 2tc0 + 1.

25. prime_gen_counter = prime_gen_counter + 1.

Comment: Test the candidate prime
c for primality; first pick an integer a
between 2 and c - 2.

26. a = 0.

27. For i = 0 to iterations do

a = a + (Hash (prime_seed + i) ∗ 2 i × outlen).

28. prime_seed = prime_seed + iterations + 1.

29. a = 2 + (a mod (c - 3)).

30. z = a2t mod c.

31. If ((1 = GCD (z - 1, c)) and (1 = 0cz mod c)), then

31.1 prime = c.

31.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}).

32. If (prime_gen_counter ≥ ((4 ∗ length) + old_counter)), then return
(FAILURE, 0, 0 {, 0}).

33. t = t + 1.

34. Go to step 23.

C.9 Compute a Probable Prime Factor Based on Auxiliary Primes
This routine constructs a probable prime (a candidate for p or q) using two auxiliary
prime numbers and the Chinese Remainder Theorem (CRT).

Input:
r1 and r2 Two odd prime numbers satisfying

log2(r1r2) ≤ (nlen/2) – log2(nlen/2) - 6.

nlen The desired length of n, the RSA modulus.

e The public verification exponent.

security_strength The minimum security strength required for random
number generation.

Output:
status The status returned from the generation procedure, where

status is either SUCCESS or FAILURE. If FAILURE is
returned, then zeros are returned as the other output values.

private_prime_factor The prime factor of n.

X The random number used during the generation of the
private_prime_factor.

Process:

1. R = ((r2
-1 mod 2r1) × r2) – (((2r1)-1 mod r2) × 2r1).

Comment: Apply the CRT, so that R ≡ 1
mod 2r1 and R ≡ -1 mod r2.

2. Generate a random number X using an Approved random number generator
that supports the security_ strength, such that
()() ()1222 212 −≤≤− /nlen/nlen X .

3. Y = X + ((R – X) mod 2r1r2). Comment: Y is the first integer ≥ X, such
that r1 is a large prime factor of Y-1, and r2
is a large prime factor of Y+1.

Comment: Determine the requested prime
number by constructing candidates from a
sequence and performing primality tests.

4. i = 0.

5. If (Y ≥ 2nlen/2), then go to step 2.

6. If (GCD (Y-1, e) = 1), then

6.1 Check the primality of Y as specified in Appendix C.3. If COMPOSITE
is returned, go to step 7.

6.2 private_prime_factor = Y.

6.3 Return (SUCCESS, private_prime_factor, X).

7. i = i + 1.

8. If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0).

9. Y = Y + (2r1r2).

10. Go to step 5.

C.10 Construct a Provable Prime (possibly with Conditions), Based on
Contemporaneously Constructed Auxiliary Provable Primes

The following process (or its equivalent) shall be used to generate an L-bit provable
prime p (a candidate for one of the prime factors of an RSA modulus). Note that the use
of p in this specification is used generically; both RSA prime factors p and q may be
generated using this method.
If a so-called “strong prime” is required, this process can generate primes p1 and p2 (of
specified bit-lengths N1 and N2) dividing p−1 and p+1, respectively. The resulting prime
p will satisfy the conditions traditionally required of a strong prime, provided that the
requested bit-lengths for p1 and p2 have appropriate sizes.
Regardless of the bit-lengths selected for p1 and p2, the quantity p−1 will have a prime
divisor p0 whose bit-length is slightly more than half that of p. In addition, the quantity
p0 −1 will have a prime divisor whose bit-length is slightly more than half that of p0.

This algorithm requires that N1 + N2 ≤ L – ⎡L/2⎤ – 4. Values for N1 and N2 should be
chosen such that N1 + N2 ≤ (L/2) – log2(L) - 7, to ensure that the algorithm can generate as
many as 5L distinct candidates for p.

Let Hash be the selected hash function to be used, and let outlen be the bit length of the
hash function output block.

Provable_Prime_Construction():

Input:
1. L A positive integer equal to the requested bit-length for p.

Note that acceptable values for L= nlen/2 are computed as
specified in Appendix B.3.1, criteria 2(b) and (c), with nlen
assuming a value specified in Table B.1.

2. N1 A positive integer equal to the requested bit-length for p1. If
N1 ≥ 2, then p1 is an odd prime of N1 bits; otherwise, p1 = 1.
Acceptable values for N1 ≥ 2 are provided in Table B.1

3. N2 A positive integer equal to the requested bit-length for p2. If
N2 ≥ 2, then p2 is an odd prime of N2 bits; otherwise, p2 = 1.
Acceptable values for N2 ≥ 2 are provided in Table B.1

4. firstseed A bit string equal to the first seed to be used.

5. e The public verification exponent.

Output:
1. status The status returned from the generation procedure, where

status is either SUCCESS or FAILURE. If FAILURE is
returned, then zeros are returned as the other output values.

2. p, p1, p2 The required prime p, along with p1 and p2 having the
property that p1 divides p−1 and p2 divides p+1.

3. pseed A seed determined during generation.

Process:
1. If L, N1, and N2 are not acceptable, then, return (FAILURE, 0, 0, 0, 0).

Comment: Generate p1 and p2, as well as the
prime p0.

2. If N1 = 1, then

2.1 p1 = 1.

2.2 p2seed = firstseed.

3. If N1 ≥ 2, then

3.1 Using N1 as the length and firstseed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain p1 and p2seed.

3.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0).

4. If N2 = 1, then

4.1 p2 = 1.

4.2 p0seed = p2seed.

5. If N2 ≥ 2, then

5.1 Using N2 as the length and p2seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain p2 and p0seed.

5.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0).

6. Using ⎡L / 2⎤ + 1 as the length and p0seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain p0 and pseed. If
FAILURE is returned, then return (FAILURE, 0, 0, 0, 0).

Comment: Generate a (strong) prime p in
the interval [(2)(2L−1), 2L −1].

7. iterations = ⎡L / outlen⎤ −1.

8. pgen_counter = 0.

Comment: Generate pseudo-random x in the
interval [(2)(2L−1)−1, 2L −1].

9. x = 0.

10. For i = 0 to iterations do

 x = x + (Hash(pseed + i))∗ 2 i × outlen.

11. pseed = pseed + iterations + 1.

12. x = ⎣(2)(2L−1)⎦ + (x mod (2L − ⎣(2)(2L−1)⎦)).

Comment: Generate a candidate for the
prime p.

13. Compute y in the interval [1, p2] such that 1 = (y p0 p1) mod p2.

14. t = ⎡((2 y p0 p1) + x)/(2 p0 p1 p2)⎤.

15. If ((2(t p2 − y) p0 p1 + 1) > 2L), then

 t = ⎡((2 y p0 p1) + ⎣(2)(2L−1)⎦) / (2 p0 p1 p2)⎤.

Comment: p satisfies
0 = (p–1) mod (2p0 p1) and
0 = (p+1) mod p2.

16. p = 2(t p2 − y) p0 p1 + 1.

17. pgen_counter = pgen_counter + 1.

18. If (GCD(p-1, e) = 1), then

Comment: Choose an integer a in the
interval [2, p–2].

18.1 a = 0

18.2 For i = 0 to iterations do

a = a + (Hash(pseed + i))∗ 2 i × outlen.

18.3 pseed = pseed + iterations + 1.

18.4 a = 2 + (a mod (p-3)).

Comment: Test p for primality:

18.5 z = a2(t p2 − y) p1 mod p.

18.6 If ((1 = GCD(z–1, p)) and (1 = (z
p0 mod p)), then return (SUCCESS, p,

p1, p2, pseed).

19. If (pgen_counter ≥ 5L), then return (FAILURE, 0, 0, 0, 0).

20. t = t + 1.

21. Go to step 15.

Appendix F: Calculating the Required Number of Rounds of
Testing Using the Miller-Rabin Probabilistic Primality Test

(Informative)

F.1 The Required Number of Rounds of the Miller-Rabin Primality Tests
The ideas of paper [1] were applied to estimate p k,t , the probability that an odd k-bit
integer that passes t rounds of Miller-Rabin (M-R) testing is actually composite. The
probability tkp , is understood as the ratio of the number of odd composite numbers of a
binary length k that pass t rounds of M-R testing (with randomly generated bases) to the
total number of odd integers of binary length k. This is equivalent to assuming that
candidates selected for testing will be chosen uniformly at random from the entire set of
odd k-bit integers. From the perspective of a party charged with the responsibility of
generating a k-bit prime, the objective is to determine a value of t such that tkp , is no
greater than an acceptably small target value ettp arg .

Using [1], it is possible to compute an upper bound for tkp , as a function of k and t.
From this, an upper bound can be computed for t as a function of k and ettp arg , the
maximum allowed probability of accidentally generating a composite number. The
following is an algorithm for computing t:

For t = 1, 2 … (up to some stopping value needed to be able to stop when no number
of rounds of M-R would suffice)

For M = 3, 4 … ⎣ ⎦112 −−k

Compute tkp , as in (2).

If etttk pp arg, ≤

Accept t. (1)

Stop.

Endif

Endfor

Endfor

In (1), k is the bit length of the candidate primes and (2) is as follows:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+⋅⋅⋅= ∑ ∑

= =
−+

−−−−−−
M

m

m

j j
kj

tmmkMtkk
tk kp

3 2
)1(

)1(2
2

2
,

2

122
3

)6(822)2ln(00743.2 π . (2)

Using this expression for t, the following methodologies are used for testing the DSA and
the RSA candidate primes.

F.2 Generating DSA Primes
For DSA, the maximum possible care must be taken when generating the primes p and q
that are used for the domain parameters. The same primes p and q are used by many
parties. This means that any weakness that these numbers may possess would affect
multiple users. It also means that the primes are not generated very often; typically, an
entire system uses the same set of domain parameters. Therefore, in this case, some
additional care is called for.

With this in mind, it may be too optimistic to assume that conditions allow a simple
computation of t according to (1) and (2). It may be necessary to be more cautious and
either include some additional testing (beyond the M-R tests) or use a more conservative
estimate of the error probabilities associated with the M-R tests. This approach leads to
the following strategies: either (A) use the number of M-R tests as calculated above and
follow them with a single Lucas test (as recommended in ANS X9.31), or (B) base the
choice of t on a different formulation of the probability of an error occurring in the M-R
testing, leading to a more conservative course of action.

One approach for strategy (B) would be to adopt the viewpoint of the majority of system
users, who have no part in generating the (supposed) prime, but who must rely upon its
primality for their security. Such parties may be concerned that the candidates for M-R
testing have been selected in a fashion that deviates significantly from the uniform
distribution – which was assumed when determining t according to (1) and (2). In cases
where the selection process could be unusually biased in some way, it is important to
minimize the probability that a composite number will survive testing. It can be shown
that for any k-bit odd composite number (regardless of how it was selected), the
probability that it will pass t rounds of M-R testing with randomly chosen bases is less
than t−4 (although this is not a particularly tight bound). Selecting t such that 4-t ≤ ptarget is
equivalent to choosing t ≥ −log2(ptarget)/2. To ensure that a composite number has a
probability no greater than ptarget of surviving the M-R tests, the number of rounds can be
set at t = ⎡–log2(ptarget)/2⎤. Even if the method of selecting candidates were so biased that
it offered nothing but composite numbers for testing, it is reasonable to expect that it
would take at least 1/ ptarget attempts (which is greater than 4t) before a composite
number would slip through the t-round M-R testing process.

WARNING: As the discussion above illustrates, care must be taken when using the
phrase “error probability” in connection with the recommended number of rounds of M-R
testing. The probability that a composite number survives t rounds of Miller-Rabin
testing is not the same as p k,t , which is the probability that a number surviving t rounds
of Miller-Rabin testing is composite. Ordinarily, the latter probability is the one that
should be of most interest to a party responsible for generating primes, while the former
may be more important to a party responsible for validating the primality of a number
generated by someone else. However, for sufficiently large k (e.g., k ≥ 51), it can be
shown that p k,t ≤ 4-t under the same assumptions concerning the selection of candidates
as those made to obtain formula (2). (See [1].) In such cases, t = ⎡–log2(ptarget)/2⎤ rounds
of Miller-Rabin testing can be used both in generating and validating primes, with ptarget
serving as an upper bound on both the probability that the generation process yields a
composite number and the probability that a composite number would survive an attempt

to validate its primality.

Table C.1 in Appendix C.3 identifies the minimum values for t when generating the
primes p and q forDSA using either strategy (A) or (B) above. To obtain the t values
shown in the column titled “M-R Tests Only”, the conservative strategy (B) was
followed; those t values are sufficient to validate the primality of p and q. The t values
shown in the column titled “M-R Tests when followed by One Lucas Test” result from
following strategy (A) using computations (1) and (2).

F.3 Generating Primes for RSA Signatures
When generating primes for the RSA signature algorithm, it is still very important to
reduce the probability of errors in the M-R testing procedure. However, since the
(probable) primes are used to generate a user’s key pair, if a composite number survives
the testing process, the consequences of the error may be less dramatic than in the case of
generating DSA domain parameters; only one user’s transactions are affected, rather than
a domain of users. Furthermore, if the p or q value generated for some user is composite,
the problem will not go undiscovered for long, since it is almost certain that signatures
generated by that user will not be verifiable.

Therefore, when generating the RSA primes p and q, it is sufficient to use the number of
rounds derived from (1) and (2) as the minimum number of M-R tests to be performed.
However, if the definition of pk, t is not considered to be sufficiently conservative when
testing p and q, it is recommended that the t rounds of Miller-Rabin tests be followed by a
single Lucas test.

The lengths for p and q that are recommended for use in RSA signature algorithms are
512, 1024 and 1536 bits; recall that n = pq, so the corresponding lengths for n are 1024,
2048 and 3072 bits, respectively. As currently specified in SP 800-57, Part 1, these
lengths correspond to security strengths of 80, 112 and 128 bits, respectively. Hence, it
makes sense to match the number of rounds of Miller-Rabin testing to the target error
probability values of 2-80, 2-112, and 2-128. A probability of 2-100 is included for all prime
lengths, since this probability has often been used in the past and may be acceptable for
many applications.

When generating the RSA primes p and q with conditions, it is sufficient to use the value
t derived from (1) and (2) as the minimum number of M-R tests to be performed when
generating the auxiliary primes p1, p2, q1 and q2. It is not necessary to use an additional
Lucas test on these numbers. In the extremely unlikely event that one of the numbers p1,
p2, q1 or q2 is composite, there is still a high probability that the corresponding RSA
prime (p or q) will satisfy the requisite conditions.

The sizes of 1p , 2p , 1q , and 2q were chosen to ensure that, for an adversary with
significant but not overwhelming resources, Lenstra’s elliptic curve factoring method [2]
(against which there is no protection beyond choosing large p and q) is a more effective
factoring algorithm than either the Pollard P-1 [2] method, the Williams P+1 method [3]
or various cycling methods [2]. For an adversary with overwhelming resources, the best
all-purpose factoring algorithm is assumed to be the General Number Field Sieve [2].

Tables C.2 and C.3 in Appendix C.3 specify the minimum number of rounds of M-R

testing when generating primes to be used in the construction of RSA signature key pairs.

References
[1] I. Damgard, P. Landrock, and C. Pomerance, C. “Average Case Error Estimates for

the Strong Provable Prime Test,” Mathematics of Computation, v. 61, No, 203, pp.
177-194, 1993.

[2] A.J Menezes, P.C. Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[3] H.C. Williams. “A p+1 Method of factoring”. Math. Comp. 39, 225-234, 1982.

[4] D.E. Knuth, The Art of Computer Programming, Vol. 2, 3rd Ed., Addison-Wesley,
1998, Algorithm P, page 395.

[5] R. Baillie and S.S. Wagstaff Jr.,Mathematics of Computation, V. 35 (1980), pages
1391 – 1417.

Definitions to be included in FIPS 186-3:

Probable prime An integer that is believed to be prime, based on a probabilistic
primality test. There should be no more than a negligible
probability that the so-called probable prime is actually composite.

Provable prime An integer that is either constructed to be prime or is calculated to
be prime using a primality-proving algorithm.

