
Appendices from FIPS 186-3: B.3, C.3, C.6, C.9, C.10 and F 

B.3 IFC Key Pair Generation 

B.3.1 Criteria for IFC Key Pairs 
Key pairs for IFC consist of a public key (n, e), and a private key (n, d), where n is the 
modulus and is the product of two prime numbers p and q. The security of IFC depends 
on the quality and secrecy of these primes and the private prime factor d. The primes p 
and q shall be generated using one of the following methods: 

A. Both p and q are randomly generated prime numbers (Random Primes), where p 
and q shall both be either : 

1. Provable primes (see Appendix B.3.2), or 

2.  Probable primes (see Appendix B.3.3).  

B. Both p and q are randomly generated prime numbers that satisfy the following 
additional conditions (Primes with Conditions): 

•  (p-1) has a prime factor p1 

• (p+1) has a prime factor p2 

• (q-1) has a prime factor q1 

• (q+1) has a prime factor q2 

where p1, p2, q1 and q2 are called auxiliary primes of p and q.  

Using this method, one of the following cases shall apply: 

1. The primes p1, p2, q1, q2, p and q shall all be provable primes (see 
Appendix B.3.4),  

2. The primes p1, p2, q1 and q2 shall be provable primes, and the primes p 
and q shall be probable primes (see Appendix B.3.5), or 

3 The primes p1, p2, q1, q2, p and q shall all be probable primes (see 
Appendix B.3.6). 

The minimum lengths for each of the auxiliary primes p1, p2, q1 and q2 are 
dependent on nlen, where nlen is the length of the modulus n in bits (see Table 
B.1). Note that nlen is also called the key size. The maximum length is 
determined by nlen, the sum of the length of each auxiliary prime pair and 
whether the primes are probable primes or provable primes (e.g., for the auxiliary 
prime pair p1 and p2, len(p1) + len(p2) shall be less than a value determined by 
nlen and whether p1 and p2 are generated to be probable or provable primes)1.  

                                                 
1 For probable primes: len(p1) + len(p2) < len(p) – log2(len(p)) – 6; similarly for len(q1) + len(q2). For 
provable primes: len(p1) + len(p2) < len(p)/2 – log2(len(p)) – 7; similarly for len(q1) + len(q2). 

 



Table B.1. Minimum and maximum lengths of p1, p2, q1 and q2 

Max. length of len(p1) + len(p2) and  
len(q1) + len(q2) 

nlen Min. length of p1, 
p2, q1 and q2 

Probable primes Provable primes 

1024 > 100 bits < 496 bits < 239 bits 

2048 > 140 bits < 1007 bits < 494 bits 

3072 > 170 bits < 1518 bits < 750 bits 

 

For different values of nlen  (i.e., key sizes), the methods allowed for the generation of p 
and q are specified in Table B.2. 

Table B.2. Allowable Prime Generation Methods 

nlen Random Primes Primes with Conditions 

1024 No Yes 

2048 Yes Yes 

3072 Yes Yes 

 

In addition, all IFC keys shall meet the following criteria in order to conform to FIPS 
186-3: 

1. The public exponent e shall be selected with the following constraints: 

(a) The public verification exponent e shall be selected prior to generating the 
primes p and q, and the private signature exponent d.  

(b) The exponent e shall be an odd positive integer such that: 

 216 <  e < 2256. 

Note that the value of e may be any value that meets constraint 1(b), i.e., e 
may be either a fixed value or a random value. 

 2. The primes p and q shall be selected with the following constraints: 

(a) (p-1) and (q-1) shall be relatively prime to the public exponent e. 

(b) The private prime factor p shall be selected randomly from the primes that 
satisfy ( 2 )(2(nlen / 2) - 1)  ≤  p ≤  (2nlen / 2- 1), where nlen is the appropriate 
length for the desired security_strength.  

(c) The private prime factor q shall be selected randomly from the primes that 
satisfy ( 2 )(2(nlen / 2) - 1)  ≤  q  ≤  (2nlen / 2- 1), where nlen is the appropriate 
length for the desired security_strength.  

(d) |p – q| > 2(nlen / 2) – 100. 

3. The private signature exponent d shall be selected with the following constraints 



after the generation of p and q: 

(a) The exponent d shall be a positive integer value such that d > 2nlen/ 2, and 

(b) d = e-1 mod (LCM((p-1), (q-1))). 

That is, the inequality in (a) holds, and 1 ≡ ed (LCM((p-1), (q-1))). 

In the extremely rare event that d ≤ 2nlen / 2, then new values for p, q and d shall be 
determined. A different value of e may be used, although this is not required. 

B.3.2 Generation of Random Primes that are Provably Prime 
An Approved method that satisfies the constraints of Appendix B.3.1 shall be used for 
the generation of IFC random primes p and q that are provably prime (see case A.1). One 
such method is provided in Appendix B.3.2.1 and B.3.2.2. For this method, a random 
seed is initially required (see Appendix B.3.2.1); the length of the seed is equal to twice 
the security strength associated with the modulus n. After the seed is obtained, the primes 
can be generated (see Appendix B.3.2.2).  

B.3.2.1 Get the Seed 
The following process or its equivalent shall be used to generate the seed for this method. 

Input: 
nlen The intended bit length of the modulus n. 

Output: 
status The status to be returned, where status is either SUCCESS or FAILURE. 

seed The seed. If status = FAILURE, a value of zero is returned as the seed. 

Process: 
1. If nlen is not valid (see Section 5.1), then Return (FAILURE, 0). 

2. Let security_strength be the security strength associated with nlen, as specified in 
SP 800-57, Part 1. 

2. Obtain a string seed of (2 × security_strength) bits from an RBG that supports the 
security_strength. 

3. Return (SUCCESS, seed). 

B.3.2.2 Construction of the Provable Primes p and q 
The following process or its equivalent shall be used to construct the random primes p 
and q (to be used as factors of the RSA modulus n) that are provably prime: 

Input: 
nlen The intended bit length of the modulus n. 

e The public verification exponent. 

seed The seed. 

Output: 



status The status of the generation process, where status is either SUCCESS or 
FAILURE. When FAILURE is returned, zero values shall be returned as 
the other parameters. 

p and q The private prime factors of n. 

Process: 
1. If nlen is neither 2048 nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as 
specified in SP 800-57, Part 1.  

4. If (len(seed) ≠ 2 × security_strength), then return (FAILURE, 0, 0). 

5. working_seed = seed. 

6. Generate p: 

6.1 Using L = nlen/2 , N1 = 1, N2 = 1, first_seed = working_seed and e, use the 
provable prime construction method in Appendix C.10 to obtain p and 
pseed. If FAILURE is returned, then return (FAILURE, 0, 0). 

6.2 working_seed = pseed. 

7. Generate q: 

7.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the 
provable prime construction method in Appendix C.10 to obtain q and 
qseed. If FAILURE is returned, then return (FAILURE, 0, 0). 

7.2 working_seed = qseed. 

8. If ( |p - q|  ≤ 2nlen/2 – 100), then go to step 7. 

9. Zeroize the internally generated seeds: 

9.1 pseed = 0;  

9.2 qseed = 0;  

9.3 working_seed = 0. 

10. Return (SUCCESS, p, q). 

B.3.3 Generation of Random Primes that are Probably Prime 
An Approved method that satisfies the constraints of Appendix B.3.1 shall be used for 
the generation of IFC random primes p and q that are probably prime (see case A.2).  

The following process or its equivalent shall be used to construct the random probable 
primes p and q (to be used as factors of the RSA modulus n): 

Input: 
nlen The intended bit length of the modulus n. 

e The public verification exponent. 



Output: 
status The status of the generation process, where status is either SUCCESS or 

FAILURE.  

p and q The private prime factors of n. When FAILURE is returned, zero values 
shall be returned as p and q. 

Process: 
1. If nlen is neither 2048 nor 3072, return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as 
specified in SP 800-57, Part 1.  

4. Generate p: 

4.1 Obtain a string p of (nlen/2) bits from an RBG that supports the 
security_strength.  

4.2 If (p is not odd), then p = p + 1. 

4.3 If ((p < ( 2 )(2(nlen / 2) - 1)) OR ((p-1) is not relatively prime to e)), then go to 
step 4.1. 

4.4 Test p for primality as specified in Appendix C.3 using an appropriate value 
from Table C-2 or C-3 in Appendix C.3 as the number of iterations. If p is 
COMPOSITE, go to step 4.1. 

5. Generate q: 

5.1 Obtain a string q of (nlen/2) bits from an RBG that supports the 
security_strength  

5.2 If (q is not odd), then q = q + 1. 

5.3 If (|p – q| ≤ 2nlen/2 – 100), then go to step 5.1. 

5.4 If ((q < ( 2 )(2(nlen / 2) - 1)) OR ((q-1) is not relatively prime to e)), then go to 
step 5.1. 

5.5 Test q for primality as specified in Appendix C.3 using an appropriate value 
from Table C.2 or C.3 as the number of iterations. If q is COMPOSITE, go 
to step 5.1. 

6. Return (SUCCESS, p, q). 

B.3.4 Generation of Provable Primes with Conditions Based on Auxiliary 
Provable Primes 

This section specifies an Approved method for the generation of the IFC primes p and q 
with the additional conditions specified in Appendix B.3.1, case B.1, where p, p1, p2, q, q1 
and q2 are all provable primes. For this method, a random seed is initially required (see 
Appendix B.3.2.1); the length of the seed is equal to twice the security strength 
associated with the modulus n. After the first seed is obtained, the primes can be 



generated. 

Let bitlen1, bitlen2, bitlen3, and bitlen4  be the bit lengths for p1, p2, q1 and q2, 
respectively, in accordance with Table B.1.  The following process or its equivalent shall 
be used to generate the provable primes: 

Input: 
nlen The intended bit length of the modulus n. 

e The public verification exponent. 

seed The seed. 

Output: 
status The status of the generation process, where status is either SUCCESS or 

FAILURE. If Failure is returned then zeros shall be returned as the 
values for p and q. 

p and q The private prime factors of n. 

Process: 
1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as 
specified in SP 800-57, Part 1.  

4. If (len(seed) ≠ 2 × security_strength), then return (FAILURE, 0, 0). 

5. working_seed = seed. 

6. Generate p:  

6.1 Using L = nlen/2, N1 = bitlen1, N2 = bitlen2, firstseed = working_seed and e, 
use the provable prime construction method in Appendix C.10 to obtain p, 
p1, p2 and pseed. If FAILURE is returned, return (FAILURE, 0, 0). 

6.2 working_seed = pseed. 

7. Generate q:  

7.1 Using L = nlen/2 L, N1 = bitlen3, N2 = bitlen4 and firstseed = working_seed 
and e, use the provable prime construction method in Appendix C.10 to 
obtain q, q1, q2 and qseed. If FAILURE is returned, return (FAILURE, 0, 
0). 

7.2 working_seed = qseed. 

8. If ( |p - q|  ≤ 2nlen/2 – 100), then go to step 7. 

9. Zeroize the internally generated seeds: 

9.1 pseed = 0.  

9.2 q_seed = 0.  



9.3 working_seed = 0. 

10. Return (SUCCESS, p, q). 

B.3.5 Generation of Probable Primes with Conditions Based on Auxiliary 
Provable Primes  

This section specifies an Approved method for the generation of the IFC primes p and q 
with the additional conditions specified in Appendix B.3.1, case B.2, where p1, p2, q1 and 
q2 are provably prime, and p and q are probably prime. For this method, a random seed is 
initially required (see Appendix B.3.2.1); the length of the seed is equal to twice the 
security strength associated with the modulus n. After the first seed is obtained, the 
primes can be generated. 

 Let bitlen1, bitlen2, bitlen3, and bitlen4  be the bit lengths for p1, p2, q1 and q2, 
respectively in accordance with Table B.1. The following process or its equivalent shall 
be used to construct p and q. 

Input: 
nlen The intended bit length of the modulus n. 

e The public verification exponent. 

seed The seed. 

Output: 
status The status of the generation process, where status is either SUCCESS 

or FAILURE. If Failure is returned then zeros shall be returned as 
the values for p and q. 

p and q  The private prime factors of n. 

Process: 
1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as 
specified in SP 800-57, Part 1.  

4. If (len(seed) ≠ 2 × security_strength), then return (FAILURE, 0, 0). 

Comment: Generate four primes p1, p2, q1 
and q2 that are provably prime. 

5. Generate p: 

5.1 Using bitlen1 as the length, and seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain p1 and prime_seed.  
If FAILURE is returned, the return (FAILURE, 0, 0). 

5.2 Using bitlen2 as the length, and prime_seed as the input_seed, use the 
random prime generation routine in Appendix C.6 to obtain p2 and a new 
value for prime_seed.  If FAILURE is returned, the return (FAILURE, 



0, 0). 

5.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1, 
p2, nlen, e and security_strength, also obtaining Xp. If FAILURE is 
returned, return (FAILURE, 0, 0). 

6. Generate q: 

6.1. Using bitlen3 as the length, and prime_seed as the input_seed, use the 
random prime generation routine in Appendix C.6 to obtain q1 and a new 
value for prime_seed.  If FAILURE is returned, the return (FAILURE, 
0, 0). 

6.2 Using bitlen4 as the length, and prime_seed as the input_seed, use the 
random prime generation routine in Appendix C.6 to obtain q2 and a new 
value for prime_seed.  If FAILURE is returned, the return (FAILURE, 
0, 0). 

6.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1, 
q2, nlen, e and security_strength, also obtaining Xq.. If FAILURE is 
returned, return (FAILURE, 0, 0). 

7. If ((|p - q|  ≤ 2nlen/2 –100) OR (|Xp – Xq| ≤ 2nlen/2 – 100)), then go to step 6. 

8. Zeroize the random values used to generate p and q: 

8.1 Xp = 0. 

8.2 Xq = 0. 

8.3 prime_seed = 0. 

9. Return (SUCCESS, p, q). 

B.3.6 Generation of Probable Primes with Conditions Based on Auxiliary 
Probable Primes  

An Approved method that satisfies the constraints of Appendix B.3.1 shall be used for 
the generation of IFC primes p and q that are probably prime and meet the additional 
constraints (see case B.3). For this case, the prime factors p1, p2, q1 and q2 are also 
probably prime. 

Four random numbers Xp1, Xp2, Xq1 and Xq2 are generated, from which the prime factors 
p1, p2, q1 and q2 are determined. p1 and p2, and an additional random number Xp are then 
used to determine p, and q1 and q2 and a random number Xq are used to obtain q. Let 
bitlen1, bitlen2, bitlen3, and bitlen4  be the bit lengths for p1, p2, q1 and q2, respectively in 
accordance with Table B.1. 

The following process or its equivalent shall be used to generate p and q: 

Input: 
nlen The intended bit length of the modulus n. 

e The public verification exponent. 

Output: 



status The status of the generation process, where status is either 
SUCCESS or FAILURE. If Failure is returned then zeros shall 
be returned as the values for p and q. 

p and q The private prime factors of n. 

Process: 
1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256)), then return (FAILURE, 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as 
specified in SP 800-57, Part 1.  

4. Generate p: 

4.1 Generate an odd integer Xp1 of length bitlen1 bits, and a second odd 
integer Xp2 of length bitlen2 bits, using an Approved random number 
generator that supports the security_strength. 

4.2 Sequentially search successive odd integers, starting at Xp1 until the first 
probable prime p1 is found. Candidate integers shall be tested for 
primality as specified in Appendix C.3. Repeat the process to find p2, 
starting at Xp2. The probable primes p1 and p2 shall be the first integers 
that pass the primality test. 

4.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1, 
p2, nlen, e and security_ strength, also obtaining Xp. If FAILURE is 
returned, return (FAILURE, 0, 0). 

5. Generate q: 

5.1 Generate an odd integer Xq1 of length bitlen3 bits, and a second odd 
integer Xq2 of length bitlen4 bits, using an Approved random number 
generator that supports the security_strength. 

5.2 Sequentially search successive odd integers, starting at Xq1 until the first 
probable prime q1 is found. Candidate integers shall be tested for 
primality as specified in Appendix C.3. Repeat the process to find q2, 
starting at Xq2. The probable primes q1 and q2 shall be the first integers 
that pass the primality test. 

5.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1, 
q2, nlen, e and security_ strength, also obtaining Xq. If FAILURE is 
returned, return (FAILURE, 0, 0). 

6. If ((|Xp – Xq| ≤ 2nlen/2 –100) OR (|p - q|  ≤ 2nlen/2 – 100))), then go to step 5. 

7. Zeroize the random values used to generate p and q: 

7.1 Xp = 0. 

7.2 Xq = 0. 

8. Return (SUCCESS, p, q). 



C.3 Probabilistic Primality Tests 
A probabilistic primality test may be required during the generation and validation of 
prime numbers. An Approved robust probabilistic primality test shall be selected and 
used.  

There are several probabilistic algorithms available.  The Miller-Rabin probabilistic 
primality tests described in Appendices C.3.1 and C.3.2 are versions of a procedure due 
to M.O. Rabin, based in part on ideas of Gary L. Miller.  For more information, see 
Knuth, The Art of Computer Programming, Vol. 2, 3rd Ed., Addison-Wesley, 1998, 
Algorithm P, page 395. For these tests, let RBG be an Approved random bit generator 
(see SP 800-90). 

There are several Lucas probabilistic primality tests available; the version provided in 
Appendix C.3.3 was described in the Mathematics of Computation, V. 35 (1980), pages 
1391 – 1417 by Baillie and Wagstaff. 

This Standard allows two alternatives for testing primality: either using several iterations 
of only the Miller-Rabin test, or using the iterated Miller-Rabin test, followed by a single 
Lucas test. The value of iterations (as used in Appendices C.3.1 and C.3.2) depends on 
the algorithm being used, the security strength, the error probability used, the length (in 
bits) of the candidate prime and the type of tests to be performed. Tables C.1, C.2 and C.3 
list the minimum number of iterations of the Miller-Rabin tests that shall be performed. 

As stated in Appendix F.3, if the definition of the error probability that led to the values 
of the number of Miller-Rabin tests for p and q in Tables C.1, C.2 and C.3 is not 
conservative enough, the prescribed number of Miller-Rabin tests can be followed by a 
single Lucas test. The Lucas test is not necessary when testing the p1, p2, q1 and q2 values 
for primality when generating RSA primes. Since there are no known non-prime values 
that pass the two test combination (i.e., the indicated number of rounds of the Miller-
Rabin test with randomly selected bases, followed by one round of the Lucas test), the 
two test combination may provide additional assurance of primality over the use of only 
the Miller-Rabin test. For DSA, the two-test combination may provide better 
performance. See Appendix F for further information. 

Table C.1. Minimum number of Miller-Rabin iterations for DSA 

Parameters M-R Tests Only  
 

M-R Tests when followed 
by One Lucas test 

      p: 1024 bits 
      q: 160 bits 
Error probability = 802−  

 
For p and q: 40 

 

For p: 3 

 For q: 19 

     p: 2048 bits 
     q: 224 bits 

Error probability = 1122−  

 
For p and q: 56 For p: 3 

 For q: 24 



     p: 2048 bits 
     q: 256 bits 

Error probability = 1122−  

 
For p and q: 56 For p: 3 

 For q: 27 

     p: 3072 bits 
     q: 256 bits 

     Error probability = 1282−  

 
For p and q: 64 For p: 2 

 For q: 27 

 

Table C.2.  Minimum number of rounds of M-R testing when generating primes for 
use in RSA Digital Signatures 

Parameters M-R Tests Only 

1p , 2p , 1q  and 2q  > 100 bits 

p and q: 512 bits 

Error probability = 802−  

For 1p , 2p , 1q  and 2q : 28  

 For p and q: 5 

 

1p , 2p , 1q  and 2q  > 140 bits 

p and q: 1024 bits 

Error probability = 1122−  

For 1p , 2p , 1q  and 2q : 38 

For p and q: 5  

 

1p , 2p , 1q  and 2q  > 170 bits 

p and q: 1536 bits 

Error probability = 2 -128 

For 1p , 2p , 1q  and, 2q : 41 

For p and q: 4 

 

 
Table C.3.  Minimum number of rounds of M-R testing when generating primes for 
use in RSA Digital Signatures using an error probability of 2-100 

Parameters M-R Tests Only 

1p , 2p , 1q  and 2q  > 100 bits 

p and q: 512 

For 1p , 2p , 1q  and 2q : 38 

For p and q: 7 

1p , 2p , 1q  and 2q  > 140 bits 

p and q: 1024 bits 

For 1p , 2p , 1q  and 2q : 32 

For p and q: 4  

1p , 2p , 1q and 2q  > 170 bits 

p and q: 1536 bits 

For 1p , 2p , 1q  and 2q : 27 

For p and q: 3 

 
 



C.3.1 Miller-Rabin Probabilistic Primality Test 
The following process or its equivalent shall be used as the Miller-Rabin test. Let RBG 
be an Approved random bit generator (see SP 800-90). 

Input:  
1. w The odd integer to be tested for primality. This will be 

either p or q, or one of the auxiliary primes p1, p2, q1 or q2. 

2. iterations The number of iterations of the test to be performed; the 
value shall be consistent with Table C.1, C.2 or C.3.  

Output:  
1. status The status returned from the validation procedure, where 

status is either PROBABLY PRIME or COMPOSITE. 

Process: 

1. Let a be the largest integer such that 2a divides w−1.   

2. m = (w−1) / 2a.  

3. wlen = len (w). 

4. For i = 1 to iterations do 

4.1 Obtain a string b of wlen bits from an RBG.  

Comment: Ensure that 1 < b < w−1. 

4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1. 

4.3 z = bm mod w. 

4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7. 

4.5 For j = 1 to a − 1 do. 

4.5.1 z = z2 mod w. 

4.5.2 If (z = w−1), then go to step 4.7. 

4.5.3 If (z = 1), then go to step 4.6. 

4.6 Return COMPOSITE. 

4.7 Continue. Comment: Increment i for the do-
loop in step 4. 

5. Return PROBABLY PRIME. 

C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test 
The following process or its equivalent shall be used as the Enhanced Miller-Rabin test. 
This method provides additional information when an error is encountered that may be 
useful when generating or validating RSA moduli. Let RBG be an Approved random bit 
generator (see SP 800-90). 

Input:  



1. w The odd integer to be tested for primality. This will be 
either p or q , or one of the auxiliary primes p1, p2, q1 or q2.. 

2. iterations The number of iterations of the test to be performed; the 
value shall be consistent with Table C.1, C.2 or C.3. 

Output:  
1. status The status returned from the validation procedure, where 

status is either PROBABLY PRIME, PROVABLY 
COMPOSITE WITH FACTOR (returned with the 
factor), and PROVABLY COMPOSITE AND NOT A 
POWER OF A PRIME. 

Process: 
1. Let a be the largest integer such that 2a divides w-1.   

2. m = (w-1) / 2a.  

3. wlen = len (w). 

4. For i = 1 to iterations do 

4.1 Obtain a string b of wlen bits from an RBG. 

Comment: Ensure that 1 < b <  w-1. 

4.2 If ((b ≤ 1) or (b ≥ w-1)), then go to step 4.1. 

4.3 g = GCD (b, w). 

4.4 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR 
and the value of g. 

4.5 z = bm mod w. 

4.6 If ((z = 1) or (z = w - 1)), then go to step 4.15. 

4.7 For j = 1 to a - 1 do. 

4.7.1 x = z. Comment: x ≠ 1 and x ≠ w-1.  

4.7.2 z = x2 mod w. 

4.7.3 If (z = w-1), then go to step 4.15. 

4.7.4 If (z = 1), then go to step 4.12. 

4.8 x = z. Comment: x = b(w-1)/2 mod w and x ≠ w-1. 

4.9 z = x2 mod w. 

4.10 If (z = 1), then go to step 4.12. 

4.11 x = z. Comment: x = b(w-1) mod w and x ≠ 1. 

 4.12 g = GCD (x-1, w). 

4.13 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR 
and the value of g. 



4.14 Return PROVABLY COMPOSITE AND NOT A POWER OF A 
PRIME. 

4.15  Continue. Comment: Increment i for the do-
loop in step 4. 

5. Return PROBABLY PRIME. 

C.3.3 (General) Lucas Probabilistic Primality Test 
The following process or its equivalent shall be used as the Lucas test.  

Input:  
C The candidate odd integer to be tested for primality. 

Output:  
status Where status is either PROBABLY PRIME or COMPOSITE. 

Process: 
1. Test whether C is a perfect square (see Appendix C.4). If so, return 

(COMPOSITE). 

2. Find the first D in the sequence {5, –7, 9, –11, 13, –15, 17, …} for which the 
Jacobi symbol ( )

C
D  = –1. See Appendix C.5 for an Approved method to compute 

the Jacobi Symbol. If ( )
C
D  = 0 for any D in the sequence, return (COMPOSITE). 

3. K = C+1. 

4. Let Kr Kr – 1 … K0 be the binary expansion of K, with Kr  = 1. 

5. Set Ur = 1 and Vr = 1. 

6. For i = r-1 to 0, do 

6.1 Utemp  = Ui+1 Vi+1 mod C. 

6.2 Vtemp  = .mod
2

2
1

2
1 C

DUV ii ++ +  

6.3 If (Ki = 1), then Comment: If Ki = 1, then do steps 6.3.1 and 
6.3.2; otherwise, do steps 6.3.3 and 6.3.4. 

6.3.1 Ui = 
2

temptemp VU +
 mod C. 

6.3.2 Vi = 
2

temptemp DUV +
mod C. 

Else 

6.3.3 Ui = Utemp. 

6.3.4 Vi = Vtemp. 



7. If (U0 = 0), then return (PROBABLY PRIME). Otherwise, return 
(COMPOSITE). 

Steps 6.2, 6.3.1 and 6.3.2 contain expressions of the form A/2 mod C, where A is an 
integer, and C is an odd integer. If A/2 is not an integer (i.e., A is odd), then A/2 mod C 
may be calculated as (A+C)/2 mod C.  Alternatively, A/2 mod C = A·(C+1)/2 mod C, for 
any integer A, without regard to A being odd or even. 

C.6 Shawe-Taylor Random_Prime Routine 
This routine is recursive and may be used to construct a provable prime number using a 
hash function. 

Let Hash ( ) be the selected hash function for the (L, N) pair, and let outlen be the bit 
length of the hash function output block. The following process or its equivalent shall be 
used to generate a prime number for this constructive method. 

ST_Random_Prime ( ): 

Input:  

1. length The length of the prime to be generated. 

2. input_seed The seed to be used for the generation of the 
requested prime. 

Output:  

1. status The status returned from the generation routine, 
where status is either SUCCESS or FAILURE. If 
Failure is returned, then zeros are returned as the 
other output values. 

2. prime The requested prime. 

3 prime_seed A seed determined during generation. 

4. prime_gen_counter (Optional) A counter determined during the 
generation of the prime. 

Process: 
1. If (length < 2), then return (FAILURE, 0, 0 {, 0}). 

2. If (length ≥ 33), then go to step 14. 

3. prime_seed = input_seed. 

4. prime_gen_counter = 0. 

Comment: Generate a pseudorandom 
integer c of length bits. 

5. c = Hash (prime_seed) ⊕ Hash (prime_seed + 1). 

6. c = 2length - 1 + (c mod 2length - 1). 



7. c = (2 ∗ ⎣c / 2⎦ ) + 1. Comment: Set prime to the 
least odd integer greater than 
or equal to c. 

8. prime_gen_counter = prime_gen_counter + 1. 

9. prime_seed = prime_seed + 2. 

10. Perform a deterministic primality test on c. For example, since c is small, its 
primality can be tested by trial division. See Appendix C.7. 

11. If (c is a prime number), then  

11.1 prime = c. 

11.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}). 

12. If (prime_gen_counter > (4 ∗ length)), then return FAILURE 

13. Go to step 5. 

14. (status, c0, prime_seed, prime_gen_counter) =  (ST_Random_Prime (( 
⎡length / 2⎤ + 1), input_seed). 

15. If FAILURE is returned, return (FAILURE, 0, 0 {, 0}). 

16. iterations = ⎡length / outlen⎤ - 1. 

17. old_counter = prime_gen_counter. 

Comment: Generate a pseudorandom 
integer x in the interval [2length - 1, 
2length]. 

18. x = 0. 

19. For i = 0 to iterations do 

x = x + (Hash (prime_seed + i) ∗ 2i × outlen).  

20. prime_seed = prime_seed + iterations + 1. 

21. x = 2length - 1 + (x mod 2length - 1). 

Comment: Generate a candidate 
prime c in the interval [2length - 1, 
2length]. 

22. t = ⎡x / (2c0)⎤. 

23. If (2tc0 + 1 > 2length), then t = ⎡2length - 1 / (2c0)⎤. 

24. c = 2tc0 + 1. 

25. prime_gen_counter = prime_gen_counter + 1. 

Comment: Test the candidate prime 
c for primality; first pick an integer a 
between 2 and c - 2. 



26. a = 0. 

27. For i = 0 to iterations do 

a = a + (Hash (prime_seed + i) ∗ 2 i × outlen). 

28. prime_seed = prime_seed + iterations + 1. 

29. a = 2 + (a mod (c - 3)). 

30. z = a2t mod c. 

31. If ((1 = GCD (z - 1, c)) and (1 = 0cz  mod c)), then  

31.1 prime = c. 

31.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}). 

32. If (prime_gen_counter ≥ ((4 ∗ length) + old_counter)), then return 
(FAILURE, 0, 0 {, 0}). 

33. t = t + 1. 

34. Go to step 23. 

C.9 Compute a Probable Prime Factor Based on Auxiliary Primes 
This routine constructs a probable prime (a candidate for p or q) using two auxiliary 
prime numbers and the Chinese Remainder Theorem (CRT).  

Input: 
r1 and r2 Two odd prime numbers satisfying  

log2(r1r2) ≤ (nlen/2) – log2(nlen/2) - 6. 

nlen The desired length of n, the RSA modulus. 

e The public verification exponent. 

security_strength The minimum security strength required for random 
number generation. 

Output: 
status The status returned from the generation procedure, where 

status is either SUCCESS or FAILURE. If FAILURE is 
returned, then zeros are returned as the other output values. 

private_prime_factor The prime factor of n. 

X The random number used during the generation of the 
private_prime_factor. 

Process: 

1. R = ((r2
-1 mod 2r1) × r2) – (((2r1)-1 mod r2) × 2r1). 

Comment: Apply the CRT, so that R ≡ 1 
mod 2r1 and R ≡ -1 mod r2. 



2. Generate a random number X using an Approved random number generator 
that supports the security_ strength, such that 
( )( ) ( )1222 212 −≤≤− /nlen/nlen X . 

3. Y = X + ((R – X) mod 2r1r2). Comment: Y is the first integer ≥ X, such 
that r1 is a large prime factor of Y-1, and r2 
is a large prime factor of Y+1. 

Comment: Determine the requested prime 
number by constructing candidates from a 
sequence and performing primality tests. 

4. i = 0. 

5. If (Y ≥ 2nlen/2), then go to step 2. 

6. If (GCD (Y-1, e) = 1), then 

6.1 Check the primality of Y as specified in Appendix C.3. If COMPOSITE 
is returned, go to step 7. 

6.2 private_prime_factor = Y. 

6.3 Return (SUCCESS, private_prime_factor, X). 

7. i = i + 1. 

8. If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0). 

9. Y = Y + (2r1r2). 

10. Go to step 5. 

C.10 Construct a Provable Prime (possibly with Conditions), Based on 
Contemporaneously Constructed Auxiliary Provable Primes 

The following process (or its equivalent) shall be used to generate an L-bit provable 
prime p (a candidate for one of the prime factors of an RSA modulus). Note that the use 
of p in this specification is used generically; both RSA prime factors p and q may be 
generated using this method. 
If a so-called “strong prime” is required, this process can generate primes p1 and p2 (of 
specified bit-lengths N1 and N2) dividing p−1 and p+1, respectively. The resulting prime 
p will satisfy the conditions traditionally required of a strong prime, provided that the 
requested bit-lengths for p1 and p2 have appropriate sizes.  
Regardless of the bit-lengths selected for p1 and p2, the quantity p−1 will have a prime 
divisor p0 whose bit-length is slightly more than half that of p. In addition, the quantity  
p0 −1 will have a prime divisor whose bit-length is slightly more than half that of p0.  

This algorithm requires that N1 + N2 ≤ L – ⎡L/2⎤ – 4. Values for N1 and N2 should be 
chosen such that N1 + N2 ≤ (L/2) – log2(L) - 7, to ensure that the algorithm can generate as 
many as 5L distinct candidates for p. 

Let Hash be the selected hash function to be used, and let outlen be the bit length of the 
hash function output block. 



Provable_Prime_Construction(): 

Input: 
1. L A positive integer equal to the requested bit-length for p. 

Note that acceptable values for L= nlen/2 are computed as 
specified in Appendix B.3.1, criteria 2(b) and (c), with nlen 
assuming a value specified in Table B.1.  

2. N1 A positive integer equal to the requested bit-length for p1. If 
N1 ≥ 2, then p1 is an odd prime of N1 bits; otherwise, p1 = 1. 
Acceptable values for N1 ≥ 2 are provided in Table B.1 

3. N2 A positive integer equal to the requested bit-length for p2. If 
N2 ≥ 2, then p2 is an odd prime of N2 bits; otherwise, p2 = 1. 
Acceptable values for N2 ≥ 2 are provided in Table B.1 

 

4. firstseed A bit string equal to the first seed to be used. 

5. e The public verification exponent. 

Output:  
1. status The status returned from the generation procedure, where 

status is either SUCCESS or FAILURE. If FAILURE is 
returned, then zeros are returned as the other output values. 

2. p, p1, p2 The required prime p, along with p1 and p2 having the 
property that p1 divides p−1 and  p2 divides p+1. 

3. pseed A seed determined during generation. 

Process: 
1. If L, N1, and N2 are not acceptable, then, return (FAILURE, 0, 0, 0, 0). 

Comment: Generate p1 and p2, as well as the 
prime p0. 

2. If N1 = 1, then  

2.1 p1 = 1. 

2.2  p2seed = firstseed.  

3. If N1 ≥ 2, then  

3.1 Using N1 as the length and firstseed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain p1 and p2seed.   

3.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0). 

4. If N2 = 1, then  

4.1 p2 = 1. 

4.2  p0seed = p2seed.  



5. If N2 ≥ 2, then 

5.1 Using N2 as the length and p2seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain p2 and p0seed.  

5.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0). 

6. Using ⎡L / 2⎤ + 1 as the length and p0seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain p0 and  pseed. If 
FAILURE is returned, then return (FAILURE, 0, 0, 0, 0). 

Comment: Generate a (strong) prime p in 
the interval [( 2 )(2L−1), 2L −1]. 

7. iterations = ⎡L / outlen⎤ −1. 

8. pgen_counter = 0. 

Comment: Generate pseudo-random x in the 
interval [( 2 )(2L−1)−1, 2L −1].  

9. x = 0. 

10. For i = 0 to iterations do 

 x = x + (Hash(pseed + i))∗ 2 i × outlen. 

11. pseed = pseed + iterations + 1.  

12. x = ⎣( 2 )(2L−1)⎦ +  ( x mod (2L − ⎣( 2 )(2L−1)⎦ ) ). 

Comment: Generate a candidate for the 
prime p. 

13. Compute y in the interval [1,  p2] such that 1 = ( y p0 p1) mod p2. 

14. t = ⎡((2 y p0 p1) + x)/(2 p0 p1 p2)⎤.  

15. If ((2(t p2 − y) p0 p1 + 1) > 2L), then   

  t = ⎡( (2 y p0 p1) + ⎣( 2 )(2L−1)⎦ ) / (2 p0 p1 p2)⎤.  

Comment: p satisfies 
0 = ( p–1) mod (2p0 p1) and   
0 = ( p+1) mod p2. 

16. p = 2(t p2 − y) p0 p1 + 1. 

17. pgen_counter = pgen_counter + 1.  

18. If (GCD(p-1, e) = 1), then 

Comment: Choose an integer a in the 
interval [2, p–2]. 

18.1 a = 0 

18.2 For i = 0 to iterations do  



a = a + (Hash(pseed + i))∗ 2 i × outlen. 

18.3 pseed = pseed + iterations + 1. 

18.4 a = 2 + (a mod (p-3)). 

Comment: Test p for primality: 

18.5  z = a2(t p2 − y) p1  mod p. 

18.6 If ((1 = GCD(z–1, p)) and (1 = (z 
p0  mod p)), then return (SUCCESS, p, 

p1, p2, pseed). 

19. If (pgen_counter ≥ 5L), then return (FAILURE, 0, 0, 0, 0). 

20. t = t + 1. 

21. Go to step 15. 



 

Appendix F: Calculating the Required Number of Rounds of 
Testing Using the Miller-Rabin Probabilistic Primality Test 

(Informative) 

F.1  The Required Number of Rounds of the Miller-Rabin Primality Tests  
The ideas of paper [1] were applied to estimate p k,t , the probability that an odd k-bit 
integer that passes t rounds of Miller-Rabin (M-R) testing is actually composite.  The 
probability tkp ,  is understood as the ratio of the number of odd composite numbers of a 
binary length k that pass t rounds of M-R testing (with randomly generated bases) to the 
total number of odd integers of binary length k. This is equivalent to assuming that 
candidates selected for testing will be chosen uniformly at random from the entire set of 
odd k-bit integers. From the perspective of a party charged with the responsibility of 
generating a k-bit prime, the objective is to determine a value of t such that tkp ,  is no 
greater than an acceptably small target value ettp arg . 

Using [1], it is possible to compute an upper bound for tkp ,  as a function of k and t.  
From this, an upper bound can be computed for t as a function of k and ettp arg , the 
maximum allowed probability of accidentally generating a composite number.  The 
following is an algorithm for computing t:   

For t = 1, 2 … (up to some stopping value needed to be able to stop when no number 
of rounds of M-R would suffice) 

For M = 3, 4 … ⎣ ⎦112 −−k  

Compute tkp ,  as in (2). 

If etttk pp arg, ≤   

Accept t.       (1) 

Stop. 

Endif 

Endfor 

Endfor  

In (1), k is the bit length of the candidate primes and (2) is as follows: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+⋅⋅⋅= ∑ ∑

= =
−+

−−−−−−
M

m

m

j j
kj

tmmkMtkk
tk kp

3 2
)1(

)1(2
2

2
,

2

122
3

)6(822)2ln(00743.2 π   . (2) 

Using this expression for t, the following methodologies are used for testing the DSA and 
the RSA candidate primes. 



F.2 Generating DSA Primes 
For DSA, the maximum possible care must be taken when generating the primes p and q 
that are used for the domain parameters.  The same primes p and q are used by many 
parties.  This means that any weakness that these numbers may possess would affect 
multiple users.  It also means that the primes are not generated very often; typically, an 
entire system uses the same set of domain parameters.  Therefore, in this case, some 
additional care is called for. 

With this in mind, it may be too optimistic to assume that conditions allow a simple 
computation of  t according to (1) and (2).  It may be necessary to be more cautious and 
either include some additional testing (beyond the M-R tests) or use a more conservative 
estimate of the error probabilities associated with the M-R tests.  This approach leads to 
the following strategies: either (A) use the number of M-R tests as calculated above and 
follow them with a single Lucas test (as recommended in ANS X9.31), or (B) base the 
choice of t on a different formulation of the probability of an error occurring in the M-R 
testing, leading to a more conservative course of action. 

One approach for strategy (B) would be to adopt the viewpoint of the majority of system 
users, who have no part in generating the (supposed) prime, but who must rely upon its 
primality for their security. Such parties may be concerned that the candidates for M-R 
testing have been selected in a fashion that deviates significantly from the uniform 
distribution – which was assumed when determining t according to (1) and (2). In cases 
where the selection process could be unusually biased in some way, it is important to 
minimize the probability that a composite number will survive testing.  It can be shown 
that for any k-bit odd composite number (regardless of how it was selected), the 
probability that it will pass t rounds of M-R testing with randomly chosen bases is less 
than t−4  (although this is not a particularly tight bound). Selecting t such that 4-t ≤ ptarget is 
equivalent to choosing t ≥ −log2(ptarget)/2. To ensure that a composite number has a 
probability no greater than ptarget of surviving the M-R tests, the number of rounds can be 
set at t = ⎡–log2(ptarget)/2⎤. Even if the method of selecting candidates were so biased that 
it offered nothing but composite numbers for testing, it is reasonable to expect that it 
would take at least 1/ ptarget attempts (which is greater than 4t ) before a composite 
number would slip through the t-round M-R testing process. 

WARNING: As the discussion above illustrates, care must be taken when using the 
phrase “error probability” in connection with the recommended number of rounds of M-R 
testing. The probability that a composite number survives t rounds of Miller-Rabin 
testing is not the same as p k,t , which is the probability that a number surviving t rounds 
of Miller-Rabin testing is composite. Ordinarily, the latter probability is the one that 
should be of most interest to a party responsible for generating primes, while the former 
may be more important to a party responsible for validating the primality of a number 
generated by someone else. However, for sufficiently large k (e.g., k ≥ 51), it can be 
shown that p k,t ≤ 4-t  under the same assumptions concerning the selection of candidates 
as those made to obtain formula (2).  (See [1].)  In such cases, t = ⎡–log2(ptarget)/2⎤ rounds 
of Miller-Rabin testing can be used both in generating and validating primes, with ptarget 
serving as an upper bound on both the probability that the generation process yields a 
composite number and the probability that a composite number would survive an attempt 



to validate its primality. 

Table C.1 in Appendix C.3 identifies the minimum values for t when generating the 
primes p and q forDSA using either strategy (A) or (B) above. To obtain the t values 
shown in the column titled “M-R Tests Only”, the conservative strategy (B) was 
followed; those t values are sufficient to validate the primality of p and q. The t values 
shown in the column titled “M-R Tests when followed by One Lucas Test” result from 
following strategy (A) using computations (1) and (2). 

F.3  Generating Primes for RSA Signatures  
When generating primes for the RSA signature algorithm, it is still very important to 
reduce the probability of errors in the M-R testing procedure. However, since the 
(probable) primes are used to generate a user’s key pair, if a composite number survives 
the testing process, the consequences of the error may be less dramatic than in the case of 
generating DSA domain parameters; only one user’s transactions are affected, rather than 
a domain of users. Furthermore, if the p or q value generated for some user is composite,  
the problem will not go undiscovered for long, since it is almost certain that signatures 
generated by that user will not be verifiable. 

Therefore, when generating the RSA primes p and q, it is sufficient to use the number of 
rounds derived from (1) and (2) as the minimum number of M-R tests to be performed.  
However, if the definition of pk, t is not considered to be sufficiently conservative when 
testing p and q, it is recommended that the t rounds of Miller-Rabin tests be followed by a 
single Lucas test. 

The lengths for p and q that are recommended for use in RSA signature algorithms are 
512, 1024 and 1536 bits; recall that n = pq, so the corresponding lengths for n are 1024, 
2048 and 3072 bits, respectively. As currently specified in SP 800-57, Part 1, these 
lengths correspond to security strengths of 80, 112 and 128 bits, respectively.  Hence, it 
makes sense to match the number of rounds of Miller-Rabin testing to the target error 
probability values of 2-80, 2-112, and 2-128.  A probability of 2-100 is included for all prime 
lengths, since this probability has often been used in the past and may be acceptable for 
many applications.  

When generating the RSA primes p and q with conditions, it is sufficient to use the value 
t derived from (1) and (2) as the minimum number of M-R tests to be performed when 
generating the auxiliary primes p1, p2, q1 and q2. It is not necessary to use an additional 
Lucas test on these numbers. In the extremely unlikely event that one of the numbers p1, 
p2, q1 or q2 is composite, there is still a high probability that the corresponding RSA 
prime (p or q) will satisfy the requisite conditions. 

The sizes of 1p , 2p , 1q , and 2q were chosen to ensure that, for an adversary with 
significant but not overwhelming resources, Lenstra’s elliptic curve factoring method [2] 
(against which there is no protection beyond choosing large p and q) is a more effective 
factoring algorithm than either  the Pollard P-1 [2] method, the Williams P+1 method [3]  
or various cycling methods [2]. For an adversary with overwhelming resources, the best 
all-purpose factoring algorithm is assumed to be the General Number Field Sieve [2]. 

Tables C.2 and C.3 in Appendix C.3 specify the minimum number of rounds of M-R 



testing when generating primes to be used in the construction of RSA signature key pairs.   

 

References 
[1] I. Damgard, P. Landrock, and C. Pomerance, C. “Average Case Error Estimates for 

the Strong Provable Prime Test,” Mathematics of Computation, v. 61, No, 203, pp. 
177-194, 1993. 

[2] A.J Menezes, P.C. Oorschot, and S.A. Vanstone. Handbook of Applied 
Cryptography. CRC Press, 1996. 

[3] H.C. Williams. “A p+1 Method of factoring”. Math. Comp. 39, 225-234, 1982. 

[4] D.E. Knuth, The Art of Computer Programming, Vol. 2, 3rd Ed., Addison-Wesley, 
1998, Algorithm P, page 395. 

[5] R. Baillie and S.S. Wagstaff Jr.,Mathematics of Computation, V. 35 (1980), pages 
1391 – 1417. 

 

Definitions to be included in FIPS 186-3: 

Probable prime An integer that is believed to be prime, based on a probabilistic 
primality test. There should be no more than a negligible 
probability that the so-called probable prime is actually composite.  

 

Provable prime  An integer that is either constructed to be prime or is calculated to 
be prime using a primality-proving algorithm. 

 

 


