Featured Research

from universities, journals, and other organizations

X-ray laser reveals how bacterial protein morphs in response to light

Date:
December 4, 2014
Source:
SLAC National Accelerator Laboratory
Summary:
Researchers have captured the highest-resolution snapshots ever taken with an X-ray laser that show changes in a protein’s structure over time, revealing how a key protein in a photosynthetic bacterium changes shape when hit by light. They achieved a resolution of 1.6 angstroms, equivalent to the radius of a single tin atom.

This illustration depicts an experiment at SLAC that revealed how a protein from photosynthetic bacteria changes shape in response to light. Samples of the crystallized protein (right), called photoactive yellow protein or PYP, were jetted into the path of SLAC's LCLS X-ray laser beam (fiery beam from bottom left). The crystallized proteins had been exposed to blue light (coming from left) to trigger shape changes. Diffraction patterns created when the X-ray laser hit the crystals allowed scientists to recreate the 3-D structure of the protein (center) and determine how light exposure changes its shape.
Credit: SLAC National Accelerator Laboratory

Human biology is a massive collection of chemical reactions, from the intricate signaling network that powers our brain activity to the body's immune response to viruses and the way our eyes adjust to sunlight. All involve proteins, known as the molecules of life; and scientists have been steadily moving toward their ultimate goal of following these life-essential reactions step by step in real time, at the scale of atoms and electrons.

Related Articles


Now, researchers have captured the highest-resolution snapshots ever taken with an X-ray laser that show changes in a protein's structure over time, revealing how a key protein in a photosynthetic bacterium changes shape when hit by light. They achieved a resolution of 1.6 angstroms, equivalent to the radius of a single tin atom.

"These results establish that we can use this same method with all kinds of biological molecules, including medically and pharmaceutically important proteins," said Marius Schmidt, a biophysicist at the University of Wisconsin-Milwaukee who led the experiment at the Department of Energy's SLAC National Accelerator Laboratory. There is particular interest in exploring the fastest steps of chemical reactions driven by enzymes -- proteins that act as the body's natural catalysts, he said: "We are on the verge of opening up a whole new unexplored territory in biology, where we can study small but important reactions at ultrafast timescales."

The results, detailed in a report published online Dec. 4 in Science, have exciting implications for research on some of the most pressing challenges in life sciences, which include understanding biology at its smallest scale and making movies that show biological molecules in motion.

A New Way to Study Shape-shifting Proteins

The experiment took place at SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility. LCLS's X-ray laser pulses, which are about a billion times brighter than X-rays from synchrotrons, allowed researchers to see atomic-scale details of how the bacterial protein changes within millionths of a second after it's exposed to light.

"This experiment marks the first time LCLS has been used to directly observe a protein's structural change as it happens. It opens the door to reaching even faster time scales," said Sébastien Boutet, a SLAC staff scientist who oversees the experimental station used in the study. LCLS's pulses, measured in quadrillionths of a second, work like a super-speed camera to record ultrafast changes, and snapshots taken at different points in time can be compiled into detailed movies.

The protein the researchers studied, found in purple bacteria and known as PYP for "photoactive yellow protein," functions much like a bacterial eye in sensing blue light. The mechanism is very similar to that of other receptors in biology, including receptors in the human eye. "Though the chemicals are different, it's the same kind of reaction," said Schmidt, who has studied PYP since 2001. Proving the technique works with a well-studied protein like PYP sets the stage to study more complex and biologically important molecules at LCLS, he said.

Chemistry on the Fly

In the LCLS experiment, researchers prepared crystallized samples of the protein, and exposed the crystals, each about 2 millionths of a meter long, to blue laser light before jetting them into the LCLS X-ray beam.

The X-rays produced patterns as they struck the crystals, which were used to reconstruct the 3-D structures of the proteins. Researchers compared the structures of the proteins that had been exposed to light to those that had not to identify light-induced structural changes.

"In the future we plan to study all sorts of enzymes and other proteins using this same technique," Schmidt said. "This study shows that the molecular details of life's chemistry can be followed using X-ray laser crystallography, which puts some of biology's most sought-after goals within reach."

Researchers from the University of Wisconsin-Milwaukee and SLAC were joined by researchers from Arizona State University; Lawrence Livermore National Laboratory; University of Hamburg and DESY in Hamburg, Germany; State University of New York, Buffalo; University of Chicago; and Imperial College in London. The work was supported by the National Science Foundation, National Institutes of Health and Lawrence Livermore National Laboratory.


Story Source:

The above story is based on materials provided by SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Tenboer, S. Basu, N. Zatsepin, K. Pande, D. Milathianaki, M. Frank, M. Hunter, S. Boutet, G. J. Williams, J. E. Koglin, D. Oberthuer, M. Heymann, C. Kupitz, C. Conrad, J. Coe, S. Roy-Chowdhury, U. Weierstall, D. James, D. Wang, T. Grant, A. Barty, O. Yefanov, J. Scales, C. Gati, C. Seuring, V. Srajer, R. Henning, P. Schwander, R. Fromme, A. Ourmazd, K. Moffat, J. J. Van Thor, J. C. H. Spence, P. Fromme, H. N. Chapman, M. Schmidt. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 2014; 346 (6214): 1242 DOI: 10.1126/science.1259357

Cite This Page:

SLAC National Accelerator Laboratory. "X-ray laser reveals how bacterial protein morphs in response to light." ScienceDaily. ScienceDaily, 4 December 2014. <www.sciencedaily.com/releases/2014/12/141204160327.htm>.
SLAC National Accelerator Laboratory. (2014, December 4). X-ray laser reveals how bacterial protein morphs in response to light. ScienceDaily. Retrieved December 6, 2014 from www.sciencedaily.com/releases/2014/12/141204160327.htm
SLAC National Accelerator Laboratory. "X-ray laser reveals how bacterial protein morphs in response to light." ScienceDaily. www.sciencedaily.com/releases/2014/12/141204160327.htm (accessed December 6, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 6, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Oil Spill from Major Pipeline Threatens Israel Nature Reserve

Oil Spill from Major Pipeline Threatens Israel Nature Reserve

AFP (Dec. 4, 2014) — A major pipeline leak has caused oil to gush into the Arava desert in southern Israel, threatening a protected nature reserve, officials said Thursday. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Honda: 'We'll Expand Air Bag Recall Nationwide'

Honda: 'We'll Expand Air Bag Recall Nationwide'

AP (Dec. 3, 2014) — Under pressure from federal regulators, Honda is expanding a recall of driver's side air bags to all 50 states. The air bags, made by Takata Corp., can explode with too much force, sending metal shrapnel into the vehicle interior. (Dec. 3) Video provided by AP
Powered by NewsLook.com
Recharge Your Phone in 30 Seconds?

Recharge Your Phone in 30 Seconds?

Reuters - Business Video Online (Dec. 3, 2014) — With consumers demanding more and more from their mobile devices, scientists in Israel and Singapore are developing super fast-charging batteries to power them. Amy Pollock reports Video provided by Reuters
Powered by NewsLook.com
Soaking Rains Cause Flooding, Sinkhole in California

Soaking Rains Cause Flooding, Sinkhole in California

Reuters - US Online Video (Dec. 3, 2014) — Drought-stricken California gets drenched with heavy rains causing flooding and a massive sinkhole. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins