SECTION 319 NONPOINT SOURCE POLLUTION CONTROL PROGRAM

INVESTIGATIONS AND ABATEMENT OF PRODUCED WATER IMPACTS AND SEEPS TO SURFACE WATER

Upstream of Spence Reservoir (Segment 1411) Howard and Mitchell Counties, Texas

FINAL REPORT September 2008

PREPARED BY THE: RAILROAD COMMISSION OF TEXAS

IN COOPERATION WITH: TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CONTRACT NO. 582-5-70825

SECTION 319 NONPOINT SOURCE POLLUTION CONTROL PROGRAM

INVESTIGATIONS AND ABATEMENT OF PRODUCED WATER IMPACTS AND SEEPS TO SURFACE WATER

Upstream of Spence Reservoir (Segment 1411) Howard and Mitchell Counties, Texas

FINAL REPORT

September 2008

PREPARED BY THE: RAILROAD COMMISSION OF TEXAS

IN COOPERATION WITH: TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CONTRACT NO. 582-5-70825

TABLE OF CONTENTS

1.0 Introduction
2.0 West O'Daniel Seep 4
2.1 Source Investigation Phase of the Project 4
2.2 BMP Selection, Implementation, and Effectiveness
3.0 Dugout Creek (and O'Ryan and Pharaoh Seeps)
3.1 Source Investigation Phase of the Project
3.2 BMP Selection, Implementation, and Effectiveness
4.0 Budget Summary 10
5.0 Ongoing Activities 11
5.1 West O'Daniel Seep 11
5.2 Dugout Creek (O'Ryan Seep and Pharaoh Seep)11
ATTACHMENTS 12
Table 1 Budget Summary
Figure 1 Installation of the Receptor Trench
Figure 2 Cross-sectional View of the Recovery Trench
Figure 3 The O'Ryan and Pharaoh Seeps and Dugout Creek

1.0 Introduction

The Environmental Protection Agency (EPA) and Texas Commission on Environmental Quality (TCEQ) awarded a nonpoint source grant to the Railroad Commission of Texas (RRC) for the investigation of the nature and extent of known salinity contamination thought to be contributing to water quality problems in E. V. Spence Reservoir, the development of remediation/abatement alternatives or Best Management Practices (BMPs), and the implementation of the BMPs. The TCEQ has placed Segment 1411 of the Upper Colorado River, E.V. Spence Reservoir, on the State's 303(d) list because it does not meet water quality standards. The project encompasses areas in both Howard and Mitchell Counties commonly referred to as the West O'Daniel Seep, O'Ryan Seep, Pharaoh Seep, and Dugout Creek Alluvium, which all flow into Beals Creek, into the Upper Colorado River, and then into Spence Reservoir (Segment 1411 of the Colorado River Basin). The Hydrologic Unit Code for this study area is 12080007.

Salinity in the Upper Colorado River Basin has been identified as a major water quality problem; and occurrences of poor-quality water in Segment 1411, due to elevated salinity levels, have been documented. Several saltwater seeps that discharge water into intermittent streams and drainage ways flowing into Beals Creek, a tributary of the Colorado River, are found along the unconformable contact of an Ogallala Aquifer Outlier of Tertiary age and the Triassic Dockum Group (Ogallala/Dockum Contact). Possible sources of the saltwater seeps include activity associated with oil and gas operations, such as inadequately completed oil and gas wells, abandoned, unplugged oil and gas wells, wells that are improperly or inadequately plugged with respect to current plugging regulations, saltwater injection and/or disposal wells that have mechanically failed or pressurized the oil reservoir so that salt water can migrate up via natural and anthropogenic conduits, failed gathering and transporting pipelines, historical evaporation pit locations, and abandoned surface facilities. The RRC has conducted several investigations of seeps along the Ogallala Outlier/Dockum contact within two major oil fields, the Snyder Oil Field and the Iatan, East Howard Oil Field. Investigations have been conducted on the O'Daniel Seep, the West O'Daniel Seep, the Click Seep and the Rankin Seep within the Snyder Oil Field and the Pharaoh and O'Ryan Seeps in the Iatan, East Howard Field. Based on the results of these investigations, analytical data provided by the Colorado River Municipal Water District (CRMWD), and data from an airborne geophysical survey performed by the Bureau of Economic Geology (BEG) for the TCEO, the RRC has determined that oil field operations have contaminated the Ogallala Aquifer in this area causing chloride and total dissolved solids (TDS) in groundwater to be elevated as compared to background levels.

A mutual objective of the RRC and the TCEQ is to locate and eliminate salinity sources and to reduce the high salinity that contributes to water quality degradation in the Colorado River Basin. The RRC has conducted various activities to achieve the goal of reduced nonpoint source pollutant loading into the Upper Colorado River including the implementation of abatement/remediation projects through the following means:

- 1) The installation of soil borings and monitoring wells up gradient of known saltwater seeps and in alluvial deposits along the drainage downstream of known seeps.
- 2) The sampling of existing monitoring wells installed during previous investigations, monitoring wells installed for the present investigations, domestic water wells, and surface water from the seep drainage, and Beals Creek.
- 3) The performance of a non-invasive geophysical survey on selected areas suspected of high salinity in groundwater.
- 4) The choice of BMPs based on the feasibility and cost of alternatives.
- 5) Implementation of the BMPs in order to reduce the TDS loading into the Colorado River.

The objective of the project was to identify and investigate the source(s), nature, and extent of elevated salinity in the Upper Basin Watershed of the Colorado River so that the most effective BMPs could be identified and evaluated, specifically in the project areas of the West O'Daniel Seep and the Dugout Creek Alluvium (including the O'Ryan Seep and Pharaoh Seep which flow into Dugout Creek). This process required an inventory of the current and former land uses within the study areas, ongoing sampling of the known seeps, the installation and sampling of soil borings, the installation and ongoing sampling of groundwater monitoring wells, and the ongoing sampling of surface water and alluvial water in the intermittent creeks within the drainage pattern. Initially samples were analyzed for chlorides, TDS, and sulfate. Subsequent analyzes included cations (sodium, calcium, magnesium, potassium, iron, and barium) and anions (chloride, sulfate, nitrate, and bromide), TDS, benzene, toluene, ethylbenzene, and xylene (BTEX) and total petroleum hydrocarbons (TPH). Because BTEX and TPH can also be found in produced water, periodic screening analyses for these chemicals were scheduled throughout the investigation and will be included in future analytical monitoring.

2.0 West O'Daniel Seep

2.1 Source Investigation Phase of the Project

The West O'Daniel Seep site is located west of FM 821, approximately five and a half miles southeast of Coahoma, in the Snyder Oil Field, Block 30 of the T & P RR Company Survey in Howard County, Texas, and is one of several saltwater seeps found along the contact of an Ogallala Outlier and the Dockum Group that discharge their water into intermittent streams and drainage ways flowing into Beals Creek, a tributary of the Colorado River. The confluence of Beals Creek and the Colorado River is located upstream of the E. V. Spence Reservoir.

The RRC contracted with TRC Companies, Inc. (TRC), to investigate the West O'Daniel Seep. A description of the investigation of the West O'Daniel Seep by TRC is included in Attachment A: *Final Comprehensive Report West O'Daniel Seep, Snyder Oil Field Upper Colorado River Segment 1411 Howard County, Texas.*

The TRC report describes the probable groundwater connection between the East O'Daniel Seep source and the West O'Daniel Seep. The report suggests that the declining levels of benzene in monitor wells, installed by the BEG and TRC, are the result of the plugging of some wells including the 2WIW, which was re-entered and re-plugged in August 2004. During re-entry, the well was found to be flowing saltwater suggesting that it had not been adequately plugged in the past. However, after three years the effectiveness of the 2WIW plugging remains unclear because the groundwater is still saline. Given the groundwater gradient and existing salt content in groundwater, it may take many years for the groundwater system to flush itself of saltwater and the groundwater will continue to contribute to the salt load in Beals Creek and the Colorado River from seepage along the Ogallala/Dockum contact.

TRC conducted a BMP alternative feasibility study based on information from the investigation. The choice and subsequent implementation of the BMP for the West O'Daniel Seep are described in section 2.2 of this report.

2.2 BMP Selection, Implementation, and Effectiveness

Based on the alternative feasibility study submitted by TRC, the RRC determined that a recovery trench system would be the most effective salt load diminishing BMP for the West O'Daniel Seep (Figure 1). A 300-foot recovery trench was constructed into and across the alluvium at the location of the seep according to specifications designed by TRC. During installation, the trench was dug to a depth that penetrates the Ogallala Aquifer and extends approximately one foot into the Dockum below the Ogallala/Dockum contact. Figure 2 denotes a cross-section view of the recovery trench. The trench was backfilled with highly permeable fill material into which groundwater flows preferentially and is captured by a pump. The capture zone of the recovery trench is approximately the cross sectional area of saturated sediment that it intersects. Discharged contaminated groundwater is stored in a tank battery consisting of two 500-barrel fiberglass storage tanks. Contaminated water is periodically taken to a nearby commercial saltwater disposal well and disposed by injection into a deep formation that is not productive of oil or gas.

The RRC estimates that a total annual load of 114,975 pounds of chloride (315 pounds per day) and of 223,563 pounds of TDS (434 pounds per day) will be recovered from groundwater by the recovery trench. This estimate is based on a groundwater recovery rate of 50 barrels per day, while the trench system is operating at maximum efficiency, and average chloride and TDS levels of 18,000 mg/L and 35,000 mg/L, respectively. The RRC continues to conduct regular monitoring and evaluation of the system's effectiveness. Based on these results, the interceptor trench will help achieve the total maximum daily load requirements for Segment 1411 of the Upper Colorado River.

Cost of design and construction of the recovery trench system totaled \$604,436. This amount is exclusive of subsequent costs for operations and maintenance, saltwater hauling, and monitoring for effectiveness.

A description of the recovery trench system location, construction, and operation (including volume and analytical data) at the West O'Daniel Seep by TRC is found in Attachment A: *Final Comprehensive Report West O'Daniel Seep, Snyder Oil Field Upper Colorado River Segment 1411 Howard County, Texas.* Laboratory reports for this project may be found on the RRC website.

(http://www.rrc.state.tx.us/divisions/og/site_rem/nps/)

Figure 1 Installation of the Receptor Trench

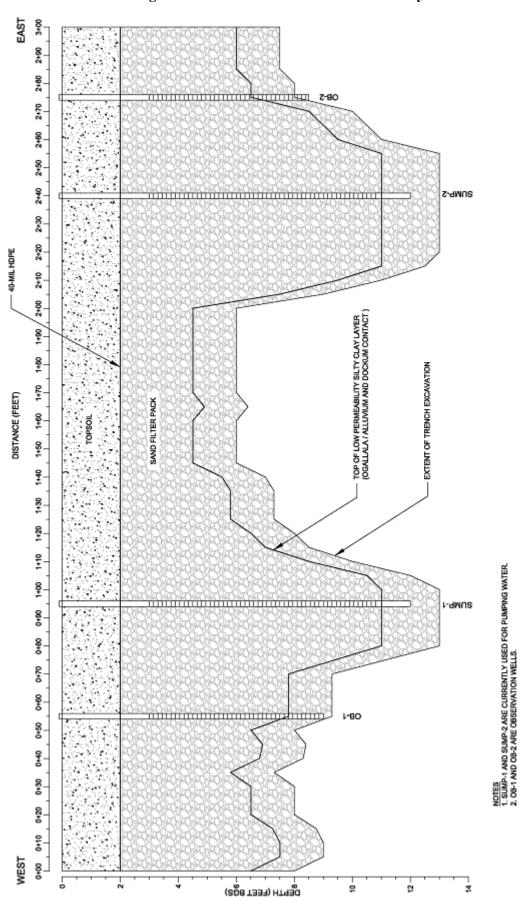


Figure 2 Cross-sectional View of the Recovery Trench

3.0 Dugout Creek (and O'Ryan and Pharaoh Seeps)

3.1 Source Investigation Phase of the Project

The O'Ryan Seep and Pharaoh Seep sites are located at the heads of unnamed tributaries of Dugout Creek approximately three and a half miles southeast of Coahoma, in the Iatan, East Howard Oil Field, Block 30 of the T & P RR Company Survey in Howard County, Texas, and are two of several saltwater seeps that discharge their water east into the intermittent Dugout Creek, which flows into Beals Creek as it crosses into Mitchell County (Figure 3). Beals Creek, in turn, flows into the Colorado River, and the confluence of the two is located upstream of the E. V. Spence Reservoir. The O'Ryan and Pharaoh seeps are also located along the contact of the Ogallala Outlier and the Dockum Group. Dugout Creek is fed from the west by surface drainage and seeps along the base of the Ogallala where it lies unconformably on the Dockum. The O'Ryan and Pharaoh seeps are included in this drainage from the west. Dugout Creek heads to the north of the Iatan, East Howard Field and flows through the field before joining Beals Creek. Drainage from the east of the creek also contributes to the flow of Dugout Creek.

The RRC contracted with Intera Incorporated (Intera) to investigate the O'Ryan and Pharaoh seeps and the Dugout Creek Alluvium. A description of the investigations of the O'Ryan and Pharaoh Seeps and Dugout Creek by Intera is included in Attachment B: *Comprehensive Summary Report for the Dugout Creek Area (Including O'Ryan Seep, Pharaoh Seep, and Dugout Creek), Howard and Mitchell Counties, Texas.* Laboratory reports for this project may be found on the RRC website. (http://www.rrc.state.tx.us/divisions/og/site_rem/nps/)

During the investigation phase of the project, Intera conducted a soil gas vapor survey in the Pharaoh Seep area to determine the possibility of pipeline or storage tank releases of hydrocarbons. The results revealed that hydrocarbons do not appear to be releasing into the soil.

Intera completed the field investigation of the O'Ryan and Pharaoh Seeps and Dugout Creek. A non-invasive geophysical survey was conducted initially to assist Intera in locating optimal locations for the installment of monitor wells. The geophysical survey was used primarily along the Dugout Creek alluvium and the drainage paths from the O'Ryan Seep and Pharaoh Seep, particularly at the confluences of the two drainage tributaries and Dugout Creek. Nine monitor wells were installed along the alluvial deposits of Dugout Creek, a distance of two or three miles along the creek, which drains into Beals Creek in Mitchell County. The investigation determined that O'Ryan Seep and Pharaoh Seep are both contributing high saline concentrations in the alluvial flow of the drainage from the two seeps to the confluences with Dugout Creek.

The final field activity for the investigation phase of the Dugout Creek, O'Ryan Seep, and Pharaoh Seep projects consisted of a synoptic site-wide groundwater and surface water sampling event as a guide to BMP evaluation and selection. The results of the investigation are described in a final report entitled *Site-wide Groundwater and Surface Water Monitoring Report for Dugout Creek (Including O'Ryan Seep, Pharaoh Seep, and Dugout Creek) Howard and Mitchell Counties, Texas.* The final site-wide sampling report may be found on the RRC website. (http://www.rrc.state.tx.us/divisions/og/site_rem/nps/)

3.2 BMP Selection, Implementation, and Effectiveness

During the completion of the investigation activities of the project, Intera submitted a BMP feasibility study with a later addendum. The study determined that the most effective BMPs for the reduction of salinity entering the Colorado River would be recovery trenches at the confluences of the O'Ryan and Pharaoh seeps with Dugout Creek and/or a sump collection system at the seeps. The BMPs will be implemented in future projects. The preferred choices for maximum capture of the saltwater from the Pharaoh and O'Ryan seeps and from other seepage along the Ogallala/Dockum Contact appear to be the recovery trenches at the confluences of the two seeps and Dugout Creek. The trenches at the confluences would capture runoff from salt-contaminated soil within the drainage pattern of the seeps. Trenches on Dugout Creek were not considered since such constructions would tend to disrupt flow of fresh water into the creek at various stages of the nine mile flow into Beals Creek.

Grant funding was not adequate to cover the expenses of two recovery trench systems in addition to the trench system at the West O'Daniel Seep. Nor was the funding adequate to install a sump at each of the seeps that feed into Dugout Creek. Therefore, the design and implementation of BMPs for the O'Ryan and Pharaoh seeps and the Dugout Creek will be undertaken as soon as the funds are available.

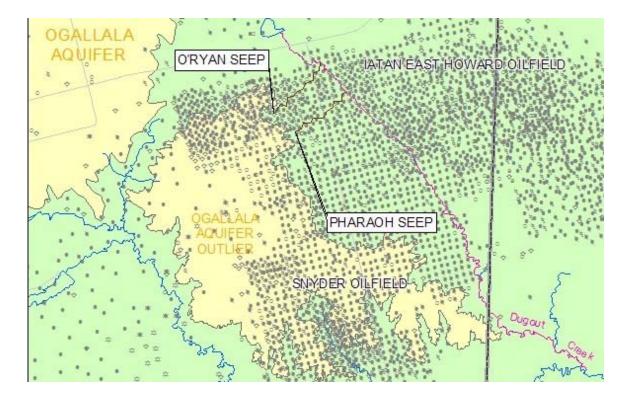


Figure 3 The O'Ryan and Pharaoh Seeps and Dugout Creek

4.0 Budget Summary

Grant Period	2/14/2005 to 8/31/2008
EPA Grant Award	\$949,803
EPA (60 %)	\$569,882
RRC (40%)	\$379,921
EPA Funds Spent	\$569,882
RRC Funds Spent	\$555,440
RRC Funds Spent Above 40% Match	\$175,519
BMP Costs	\$632,934
TOTAL GRANT COSTS	\$1,125,322
Budget Revisions	In August 2008, TCEQ transferred \$144,000 from the NPS Downstream of Spence Reservoir, Segment 1426, grant (contract number 582- 570826) to the Upstream of Spence Reservoir, Segment 1411, grant (contract number 582-5- 70825). The original EPA grant award of \$881,638 for the NPS Downstream of Spence Reservoir, Segment 1426, decreased to \$737,638 and the original EPA grant award for the NPS Upstream of Spence Reservoir, Segment 1411, increased from \$805,803 to \$949,803.

Table 1 Budget Summary

5.0 Ongoing Activities

5.1 West O'Daniel Seep

The recovery trench and tank battery system will continue operating and will be monitored for effectiveness during fiscal year 2009.

In continuing post-NPS grant developments, the RRC has embarked on a field-wide project to assist in determining and controlling reservoir pressures in the Snyder Field to minimize migration up unknown and possibly numerous conduits into the Ogallala Outlier Aquifer. The RRC plans to request the operators in the Snyder Field to search for the conduits, like old unplugged or inadequately plugged oil or gas wells, in order to remediate the problem of saline water migrating into the Ogallala Aquifer. If the sources cannot be found, it will be necessary to maintain the reservoir pressure so that the saline water cannot move through conduits upward above the Ogallala/Dockum Contact and into the freshwater aquifer. The trenches and sumps that are now operating within the field are abatement measures; and it will be necessary to maintain operations for, perhaps, several years even if the sources are found and corrected. The saline water within the Ogallala Aquifer will take several years to move through the aquifer and leave fresher water in place. With the trench at the West O'Daniel Seep and the sumps and trench at the East O'Daniel Seep, approximately 250,000 pounds of chloride are being removed each year.

5.2 Dugout Creek (O'Ryan Seep and Pharaoh Seep)

Future construction of the BMPs at Dugout Creek and Pharaoh and O'Ryan seeps will take place when funds are secured by the RRC. The BMPs will consist of recovery trenches near the confluences of the O'Ryan and Pharaoh seeps and Dugout Creek and/or collection of recovery sumps at the seeps. The RRC will continue to determine sources and steps for source eradication in fiscal year 2009. Based on the recovery of saline water from the West O'Daniel Seep, it is estimated that trenches at the confluences of the O'Ryan Seep and Pharaoh Seep with Dugout Creek would reduce the salt load into Beals Creek and the Colorado River by an estimated 200,000 pounds of chloride per year.

ATTACHMENTS

Attachment A

Final Comprehensive Report West O'Daniel Seep, Snyder Oil Field Upper Colorado River Segment 1411 Howard County, Texas

505 East Huntland Drive Suite 250 Austin, TX 78752

512.329.6080 PHONE 512.329.8750 FAX

www.TRCsolutions.com

August 29, 2008

Mr. Bill Renfro Railroad Commission of Texas 1701 North Congress Avenue Austin, Texas 78701

Re: Final Comprehensive Report, Upper Colorado River Segment 1411 Upstream of E. V. Spence Reservoir, West O'Daniel Seep, Snyder Oil Field, Howard County, Texas

Dear Mr. Renfro:

The attached Final Comprehensive Report presents a summary of the activities completed during the Section 319 Non-Point Source (NPS) grant for investigation and remediation/abatement of oil-field related saltwater impacts in the Upper Colorado River drainage basin upstream of the E. V. Spence Reservoir (Texas Surface Water Segment 1411).

Please do not hesitate to contact me at 512-684-3137 regarding questions or comments.

Sincerely,

Arsin M. Sahba, P.G. Senior Project Manager/Senior Geologist

cc: Heidi Bojes, RRC, Austin, Texas Dan O'Donnell, RRC, Austin, Texas Tim Prude, RRC District 8, Midland, Texas Doug Slauson, P.E., TRC, Austin, Texas Daniel Stine, E.I.T., TRC, Austin, Texas

Enclosure

Final Comprehensive Report

West O'Daniel Seep, Snyder Oil Field Upper Colorado River Segment 1411 Howard County, Texas

Prepared for:

Railroad Commission of Texas Oil and Gas Division Site Remediation and Special Response

William B. Miertschin, Assistant Director

Prepared by:

TRC 505 East Huntland Drive, Suite 250 Austin, Texas 78752

Mark A. Robbins, Project Manager

August 2008

Final Comprehensive Report

West O'Daniel Seep, Snyder Oil Field Upper Colorado River Segment 1411 Howard County, Texas

Prepared for:

Railroad Commission of Texas Oil and Gas Division, Site Remediation and Special Response 1701 North Congress Avenue Austin, Texas 78711 William B. Miertschin, Assistant Director

Prepared by:

505 East Huntland Drive, Suite 250 Austin, Texas 78752 Mark A. Robbins, Project Manager

TRC Project No. 161641 **Principal Lead Technical Lead**

August 2008

TABLE OF CONTENTS

Page

1.0	INTRODUCTION1-1		
2.0	SITE	INVESTIGATION	2-1
	2.1	Field Sampling	2-1
	2.2	Monitoring Well Installation	
	2.3	Groundwater and Surface Water Sampling	
	2.4	Site Investigation Conclusions and Recommendations	
3.0	PREI	LIMINARY FEASIBILITY STUDY / BMP SELECTION	
	3.1	Conceptual Site Model	
	3.2	Alternatives for Salinity/TDS Abatement	
	3.3	Design Alternatives	
	3.4	Preliminary Feasibility Study Recommendation	
4.0	ENG	INEERING design FIELD ACTIVITIES	4-1
	4.1	Soil Borings	4-1
	4.2	Temporary Monitoring Wells	4-1
	4.3	Aquifer Slug Tests	4-1
	4.4	Groundwater Sampling	4-1
5.0	BMP	DESIGN	5-1
	5.1	Final Groundwater Recovery System Design	
	5.2	Trench Specifications	
	5.3	Flow Rate	
	5.4	Estimated Loading	
	5.5	Pump Specifications	
	5.6	Tank Battery Specifications	
6.0	BMP IMPLEMENTATION		6-1
7.0	BMP	EVALUATION	7-1
8.0	CON	CLUSION	

Figures

Tables

Graphs

Appendix A	Laboratory Analytical Data Reports and Chain-of-Cu	stody Forms
------------	--	-------------

Appendix B Analytical Data Review/Validation Checklist

LIST OF FIGURES

Figure 1	Site Map
Figure 2	Chronological Chloride Concentration Map
Figure 3	Groundwater Elevation Map – June 2007
Figure 4	West O'Daniel Seep Drainage Basin
Figure 5	Groundwater Recovery System Layout

LIST OF TABLES

Table 1	Monitoring Well Information	
Table 2	Water Level Gauging Data	
Table 3	West O'Daniel Analytical Results	
Table 4	Groundwater Recovery System Operational Parameters	
Table 5	Chloride Loading Calculations	
Table 6	TDS Loading Calculations	

GRAPHS

- Graph 1 S-MW-02 Concentrations and Groundwater Elevations
- Graph 2 S-MW-04 Concentrations and Groundwater Elevations
- Graph 3 S-MW-05 Concentrations and Groundwater Elevations
- Graph 4 OB-1 Concentrations and Groundwater Elevations
- Graph 5 OB-2 Concentrations and Groundwater Elevations
- Graph 6 SUMP-1 Concentrations and Groundwater Elevations
- Graph 7 SUMP-2 Concentrations and Groundwater Elevations
- Graph 8 PUMP EFFLUENT Concentrations
- Graph 9 PUMP EFFLUENT Loading and Flow Rate

1.0 INTRODUCTION

This Final Comprehensive Report presents a summary of the activities completed during the Section 319 Non-Point Source (NPS) grant for investigation and remediation/abatement of oil-field related saltwater impacts in the Upper Colorado River drainage basin upstream of the E. V. Spence Reservoir (Texas Surface Water Segment 1411).

The Railroad Commission of Texas (RRC), Oil and Gas Division, has documented the occurrence of several saltwater seeps in the Snyder Oil Field, Block 30, of Howard County, Texas. The saltwater seeps in the Snyder Oil Field, including the West O'Daniel Seep, emanate from the base of an outlier of the Ogallala Formation, which overlies the Dockum Group (Ogallala/Dockum Contact). The West O'Daniel Seep is located approximately 5.5 miles southeast of Coahoma in the eastern part of Howard County, Texas. The Ogallala Aquifer in this area has been impacted by past oil field operations causing sodium/chloride and total dissolved solids (TDS) (hereafter referred to as salinity/TDS) in groundwater to be elevated as compared to background levels. The impacted groundwater associated with this seep discharges into tributaries of Beals Creek, which ultimately empties into the Colorado River.

The Total Maximum Daily Load (TMDL) Section of the Texas Commission on Environmental Quality (TCEQ) placed Segment 1411 of the Upper Colorado River, E. V. Spence Reservoir, on the State's 303(d) list because it did not meet water quality standards for TDS and chloride. The RRC was awarded a Section 319 NPS grant by the United States Environmental Protection Agency (US EPA) through the TCEQ to determine if oil and gas operations are contributing to the elevated salinity in the reservoir. The objective of the grant was to assess and determine the source(s) leading to the elevated TDS and chloride in the Upper Colorado River drainage basin upstream of the E. V. Spence Reservoir (Segment 1411), develop best management practices (BMPs) to reduce the TDS and chloride, and implement the BMPs.

The following sections discuss the site investigation, feasibility study/BMP selection, BMP design, BMP implementation, and an evaluation of BMP effectiveness.

2.0 SITE INVESTIGATION

Site investigation activities in the area of the O'Daniel Seep (referred to as the East O'Daniel Seep) were initiated prior to the RRC receiving a Section 319 NPS grant. The University of Texas, Bureau of Economic Geology (BEG), conducted groundwater investigation activities in the East O'Daniel Seep area beginning in 1998. The results of the BEG investigation were reported in the Investigation of the Snyder Field Site, Howard County, Texas dated 1999. Under the auspices of a Section 319 NPS grant, an assessment of the Click Seep, adjacent to the West O'Daniel Seep, was performed. During the Click Seep assessment in February 2001 and August 2001, TRC installed monitoring wells S-MW-01 and S-MW-02 in the West O'Daniel Seep area. Groundwater samples were collected for laboratory analysis from well S-MW-01 in February 2001 and from well S-MW-02 in June 2001. The chloride concentrations were 21,432.6 milligrams per liter (mg/L) and 22,000 mg/L at wells S-MW-01 and S-MW-02, respectively. The results of the investigation were presented in the Site Assessment Report, Click Seep, Howard County, Texas dated August 2001. Well S-MW-02 was also sampled in August 2002 and had a chloride concentration of 28,300 mg/L. These data indicated an additional area of impact near the West O'Daniel Seep.

After receiving the current Section 319 NPS grant, TRC, on behalf of the RRC, conducted further site assessment activities in the West O'Daniel Seep area during April 2006. The objective of the April 2006 site investigation was to identify sources and delineate the extent of the salinity that is impacting Beals Creek and potentially to the Colorado River. A site map of the investigation area is provided as Figure 1

The field investigation consisted of surface water and groundwater investigation activities. The field investigation tasks were completed in accordance with the *Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan (QAPP) approved by the US EPA in November 2005.*

2.1 Field Sampling

To determine appropriate locations for additional monitoring wells, water samples were collected and analyzed for chlorides using a field test kit on April 10, 2006. The chloride field test kit results from each location are presented in Figure 2. The samples and a description of their locations are summarized below.

• W-FS-S-1 was collected approximately 650 feet downstream of the original West O'Daniel Seep at the location of the first seep (S-S-1) observed downstream of the dry West O'Daniel Seep.

- W-FS-S-2 was collected approximately 1,100 feet downstream of seep S-S-1, where the surface flow terminated.
- W-FS-S-3 was collected from hand auger location (HA-2) where water was observed three feet below ground surface (bgs).
- W-FS-S-4 was collected from a minor tributary west of a stock tank located in the drainage basin.
- W-FS-ST-5 was collected from a stock tank located in the drainage basin.
- Two hand auger holes (HA-1 and HA-3) were completed further downstream but were dry.

2.2 Monitoring Well Installation

Five monitoring wells were installed in April 2006 to characterize lithology, collect groundwater samples, and measure depth to groundwater. The locations of the monitoring wells were selected based on the results of previous site investigations performed by the BEG and TRC, as well as the results from the field chloride sample locations discussed above. A summary of the monitoring well completion information (completion date, coordinates, ground elevation, top-of-casing elevation, screen interval, and total depth) is presented in Table 1. The locations of the monitoring wells installed during the April 2006 site investigation are summarized below.

- S-MW-03 was installed upgradient of the West O'Daniel Seep to evaluate potential source pathways along the western topographic drainage basin upstream of the West O'Daniel Seep.
- S-MW-04 was installed upgradient of the West O'Daniel Seep to evaluate potential source pathways along the eastern topographic drainage basin upstream of the West O'Daniel Seep.
- S-MW-05 was installed near the West O'Daniel Seep and former monitoring well S-MW-01.
- S-MW-06 was installed in the drainage basin downgradient of West O'Daniel Seep for delineation.
- S-MW-07 was installed in the drainage basin downgradient of West O'Daniel Seep and well S-MW-06 for delineation.

2.3 Groundwater and Surface Water Sampling

Groundwater level measurements were collected from monitoring wells and water wells using a water level meter on April 21, 2006. Table 2 presents the monitoring well information including ground elevation, top of well casing elevation, water level measurement (date of measurement, depth to water, and total depth), and calculated water elevation. These data were used to determine the groundwater flow direction and gradient. A groundwater potentiometric map for the June 2007 gauging event is presented as Figure 3. A comparison of the April 2006 and June 2007 groundwater potentiometric maps indicate that groundwater flow direction and gradient has remained consistent. The groundwater flow in June 2007 was to the south along the central axis of the West O'Daniel Seep drainage with a groundwater gradient of 0.019 feet per feet (ft/ft).

During April 2006, groundwater samples were collected for laboratory analysis from eight monitoring wells (S-MW-02 through S-MW-07, BEG-MW-06, BEG-MW-11), one water well (S-WW-53), and two sumps (E-S-55 and E-S-56). Wells BEG-MW-06 and BEG-MW-11 were installed by the BEG during investigation of the East O'Daniel Seep. Sumps E-S-55 and E-S-56 are part of the response action being implemented at the East O'Daniel Seep. The remaining sample locations are associated with the West O'Daniel Seep. Surface water samples (S-S-1 and S-S-2) were collected at two seep locations within the drainage basin downstream of the West O'Daniel Seep. The sample locations and analytical results for chloride are presented on Figure 2, and the analytical results are summarized in Table 3.

2.4 Site Investigation Conclusions and Recommendations

The April 2006 site investigation made progress towards identifying potential sources and delineating the extent of salinity impacts to Beals Creek and potentially to the Colorado River. A summary of the conclusions presented in the August 2006 *Site Investigation Report* are provided below.

- Groundwater occurs under unconfined conditions in the sand unit of the Ogallala Aquifer. Groundwater flows to the south along the drainage basin with a minor flow component to the east towards the East O'Daniel Seep.
- All of the sample locations had chloride concentrations above background conditions.
- Delineation of chloride concentrations to the background level was not achieved, but chloride concentrations were documented to decrease from

29,600 mg/L at well S-MW-04 to 7,540 mg/L at well S-MW-07, which is to the south (downgradient).

- The source area seems to be located near or upgradient of BEG-MW-06 based on these wells having the highest chloride concentrations and the presence of benzene. There was no benzene data available north (upgradient) of BEG-MW-06 to more precisely determine the potential source location.
- The decrease in benzene concentrations over time, especially at BEG-MW-06, may indicate that the source is no longer active. There has not been a corresponding decrease in the chloride concentration. This may be because chloride undergoes negligible, if any, attenuation and thus concentrations of chloride take a longer time to decrease even when the source area is eliminated.
- There seems to be a groundwater divide near BEG-MW-06, with groundwater flow from this location going east towards the East O'Daniel Seep and south towards the West O'Daniel Seep. The presence of benzene in the wells isolated to the drainage basin for the East O'Daniel Seep (e.g., sump E-S-55 and BEG-MW-15) and isolated to the drainage basin for the West O'Daniel Seep (e.g., S-MW-04) may indicate that the two seeps have a common source located generally to the north.

The results of the April 2006 investigation led to the recommendation to conduct a preliminary feasibility study of BMPs with consideration of the abatement measures already implemented for the East O'Daniel Seep.

3.0 PRELIMINARY FEASIBILITY STUDY / BMP SELECTION

The objective of the Preliminary Feasibility Study was to use the results of the previous site investigations to develop remedies (i.e., BMPs) to abate the high salinity/TDS water emanating from the West O'Daniel Seep, flowing into Beals Creek, and eventually into the Colorado River. The scope of the feasibility study was confined to the drainage basin associated with the West O'Daniel Seep. The drainage basin is shown in Figure 4.

The feasibility study considered alternatives for addressing the saline-impacted water including containment, recovery, in-situ treatment, ex-situ treatment, and disposal. The feasibility study evaluated the BMPs by determining the effectiveness, implementability, regulatory agency and stakeholder acceptance, and cost of these options to meet the objective. The feasibility study provided the following: (1) conceptual site model, (2) alternatives for salinity/TDS abatement, (3) design alternatives, and (4) recommended solution.

3.1 Conceptual Site Model

The conceptual site model was developed to define the physical setting in which the impacted water is present and migrates, and was critical to designing the most effective remedy. The model included a description of the geology/hydrogeology, chemicals of concern, potential sources of salinity/TDS, and pathways for migration of impacted water.

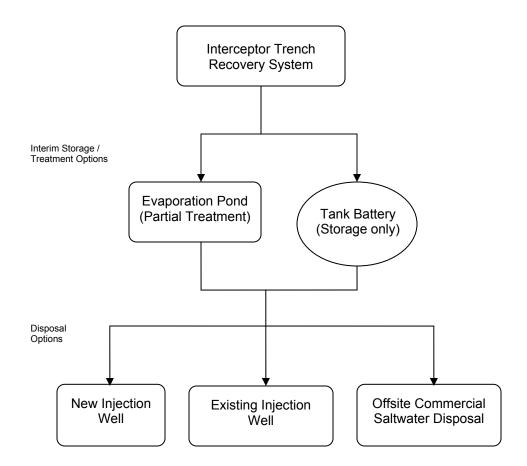
The groundwater flow pattern within the alluvial material located in the drainage channels associated with the West O'Daniel Seep generally follows topography and surface water flow. Specifically, drainage is to the south at a hydraulic gradient of 0.019 feet per foot. The alluvial material is thin and sits upon the Dockum Group, which is a clay aquitard.

The area of saline-impacted groundwater that appears to be impacting the West O'Daniel Seep, and therefore the subject of this study, lies within the West O'Daniel Drainage basin (Figure 4). Impacted water outside of this area is flowing either east to the East O'Daniel Seep area or west to the Click Seep area. The chloride-impacted groundwater flows through the Ogallala Aquifer outlier, discharges to the surface at seeps, re-infiltrates into the alluvial material, and then flows south towards Beals Creek.

Based on the information gathered from the 1999 BEG report, RRC records, TRC's field investigations, and several dye studies, it appears that the source of the salinity at the seeps is from pressurizing the reservoir such that the injected produced water is migrating upward via conduits.

3.2 Alternatives for Salinity/TDS Abatement

Technologies were reviewed for potential application to the West O'Daniel Seep. Many technologies were available for the ex-situ treatment of saline-impacted water. However, there were no industry standards for in-situ treatment of saline groundwater. Therefore, each treatment technology scenario reviewed involves collection and ex-situ disposal of the groundwater. The recovery and treatment/disposal options are listed in the following table:


	Recovery Wells	Moderate effectiveness but better suited for deeper groundwater applications
Recovery Options	Recovery Trench	Moderate to high effectiveness and best suited for shallow groundwater applications (i.e., West O'Daniel Seep)
	Halophytic Vegetation	Low effectiveness and difficult to implement (i.e., not appropriate for the West O'Daniel Seep)
	Evaporation Ponds	Construction, land owner agreement, and operation and maintenance (O&M) complications
Treatment and	Desalination	Very high cost
Disposal Options	Disposal Well	Variable cost depending on availability of commercial versus private wells
	Phytoremediation	Low effectiveness and difficult to implement

3.3 Design Alternatives

Based on the remedial objective, conceptual site model, and an evaluation of the technologies for groundwater recovery and management (storage, evaporation, and disposal) options, the basic recommended design is shown in the flow chart below.

The advantages of installing a tank battery are the simplicity of design and construction, and using a well-known, widely available, and non-intrusive technology. The disadvantage of this option is the entire volume of recovered water will need to be routed for disposal. Although an evaporation pond reduces the volume of water that needs to be disposed, the disadvantages include a large area of land necessary for effective evaporation, O&M, and sludge/sediment disposal.

Advantages for offsite commercial disposal are the simplicity of implementation, the low cost of saltwater disposal, lack of dependence on a local operator, and proximity to the commercial saltwater disposal facility. The disadvantage of constructing a new injection well is the high cost of capital expenditures. The disadvantage of using an existing injection well is that the operator can specify a maximum capacity that can be received, which would make the recovery system operation dependant on the operator's injection system.

3.4 Preliminary Feasibility Study Recommendation

The following recommendations are the result of the preliminary feasibility study, which evaluated BMPs to abate salinity/TDS impacts into Beals Creek originating from the West O'Daniel Seep drainage basin.

- Interceptor Trench Located in the area of highest chloride concentration.
- Interim Storage and Treatment Achieved by a tank battery, evaporation pond, or combination of both, however an evaporation pond is contingent upon land owner approval.
- Disposal Offsite commercial saltwater disposal facility provides the greatest flexibility and fewest complications.

After completion of the feasibility study, it was determined that additional information was required to determine groundwater remedy options (i.e., BMPs).

4.0 ENGINEERING DESIGN FIELD ACTIVITIES

Additional information was obtained from the West O'Daniel Seep area by completing soil borings, installing temporary monitoring wells, and performing aquifer tests. These activities were performed by TRC during June 2007. A summary of the engineering field design activities and results are presented below.

4.1 Soil Borings

Twelve soil borings (SB-01 to SB-12) were completed using a direct-push technology (DPT) drilling rig along the axis of the proposed trench location (i.e., BMP) to define the contact between the base of the Ogallala Aquifer or alluvium (i.e., groundwater-bearing unit) and the upper portion of the Dockum Group (i.e., aquitard), as well as to determine the lateral extent of saturation within the West O'Daniel drainage basin.

Four geotechnical samples were collected from soil borings SB-01, SB-02, SB-03, and SB-06. The samples were analyzed for grain size distribution, total porosity, and water-filled porosity. The results were used to aid in the engineering design (i.e., filter pack and screen slot size) of the proposed trench, chosen as the BMP for the West O'Daniel Seep from the completed feasibility study.

4.2 Temporary Monitoring Wells

Temporary monitoring wells were installed at each of the 12 soil borings to determine the saturated thickness of the alluvium and collect groundwater samples. Grab samples were collected from each well that produced water (SB-01 through SB-10) and were tested for chloride concentration using a field kit. The highest concentrations were located near the center of the drainage basin.

4.3 Aquifer Slug Tests

Slug tests were performed on temporary monitoring wells SB-01 and SB-02 and permanent monitoring wells S-MW-02, S-MW-04, and S-MW-06 during June 2007. Slug test data indicated an average hydraulic conductivity (*K*) of 9.53 x 10^{-4} centimeters per second (cm/s). Using the average hydraulic conductivity, the hydraulic gradient (*i*) calculated for June 2007 (0.019 ft/ft), and a default porosity (*n*) of 0.3, the groundwater flow rate (V) was calculated to be 62.4 feet per year (ft/year).

4.4 Groundwater Sampling

Eleven monitoring wells (S-MW-02 through S-MW-07, BEG-MW-05, BEG-MW-06, BEG-MW-07, BEG-MW-11, and BEG-MW-14), two water wells (W-WW-52 and W-WW-53), and two East O'Daniel Seep sumps (E-S-55 and E-S-56) were gauged

and/or sampled during June 2007. The groundwater analytical results are summarized in Table 3 and the chloride data are presented on Figure 2. The analytical results, including chloride concentrations, were consistent with historical data. Chloride concentration trends from April 2006 to June 2007 were as follows:

- Monitoring wells S-MW-02 and S-MW-07 increased slightly (approximately 3,000 mg/L and 1,000 mg/L, respectively).
- Monitoring wells S-MW-04, S-MW-05, and BEG-MW-06, water well S-WW-53, and seep S-S-1 had relatively stable concentrations.
- Monitoring wells S-MW-03 and BEG-MW-11 decreased slightly (approximately 1,000 mg/L and 4,000 mg/L, respectively).

The results of the June 2007 engineering design field work were used to aid the BMP design. BMP alternatives were to be evaluated on their ability to achieve the project goal (abatement of high salinity water), implementability, regulatory acceptance, and cost.

5.0 BMP DESIGN

The BMP design applied the recommendations of the feasibility study to conditions observed in the field. The BMP design was based on the April 2006 investigation data, June 2007 engineering field data, and NPS grant objectives.

5.1 Final Groundwater Recovery System Design

The design process began after completion of the engineering design field work. The engineering design of the West O'Daniel Seep recovery system was an iterative process that involved review and approval by the RRC. The design packages that included engineering cost estimates are listed below.

- 80-Percent Design and Specifications Document June 29, 2007
- 95-Percent Design and Specifications Document July 27, 2007
- 100-Percent Design and Specifications Document August 10, 2007

The final BMP design is summarized in the following sections, which include: (1) trench specifications, (2) estimated loading, (3) pump specifications, and (4) tank battery specifications. Figure 5 depicts the basic groundwater recovery system layout that was constructed from March 26 to May 19, 2008.

5.2 Trench Specifications

The recovery trench was designed to intercept saline-impacted shallow groundwater, thus reducing the loading to downstream water bodies (i.e., Beals Creek and Colorado River). The location of the trench was designed to achieve the maximum combination of flow and concentration (i.e., loading). The trench was not designed to achieve 100-percent interception of groundwater flow within the drainage basin. In addition, the trench will not act as an impermeable boundary to groundwater flow; rather the trench will serve as a preferential interception zone from which groundwater may be removed. Therefore, the trench was placed within the portion of the drainage basin that had the greatest saturated thickness and the highest chloride concentrations based on soil borings/groundwater samples collected along the proposed trench axis.

The trench was installed within the saturated, higher permeability silty/clayey sand unit. The bottom of the trench followed the contact between the sand unit (Ogallala Aquifer) and underlying lower permeability silty clay unit (Dockum Group). The base of the trench has two depressions separated by a plateau in the center. A 12-inch diameter recovery sump was installed in the center of each depression.

5.3 Flow Rate

The design discharge rate of the trench was 1.5 gallons per minute (gpm). The flow rate was calculated from the groundwater velocity and saturated cross-sectional area of the trench. Based on static conditions, the flow rate into the trench would be 1.2 gpm. The system was designed for 1.5 gpm as a 25-percent contingency due to anticipated increases in hydraulic gradient during pumping.

5.4 Estimated Loading

A loading rate was estimated from the previously referenced flow rate and an estimated TDS concentration of 30,000 mg/L from monitoring well sampling. The estimated loading rate was calculated to be 540 pounds per day.

5.5 Pump Specifications

An above-ground double diaphragm pump was selected, as opposed to a submersible pump, because the groundwater is corrosive (high salinity) and the formation has a large amount of fines. Elevated chloride levels along with suspended fine-grained sediment will shorten the operating life of a submersible pump. A double diaphragm pump was the most effective pump examined when considering flow rate, suction lift, discharge head, corrosivity, and the presence of suspended sediments. The Wilden P1 one-inch double diaphragm pump fitted with Buna-N rubber components has high resistance to damage at a low operating and repair cost. The pump was sized for the calculated flow rates. The operating pressure of the pump requires a three horsepower air compressor with a 60 gallon pressure vessel. The groundwater is being removed through a one-inch Schedule 40 polyvinyl chloride (PVC) suction pipe placed in each sump. The pump is operated by floats placed in Sump-1.

5.6 Tank Battery Specifications

The tank battery consists of two 500-barrel fiberglass storage tanks. A flow rate of 1.5 gpm will yield approximately 51 barrels per day (bbl/day). The tank battery was designed to hold a 2.5 week capacity of recovered water assuming constant pumping at the design flow rate and no water removed for disposal. This 2.5 week volume is approximately 1,000 barrels.

6.0 BMP IMPLEMENTATION

The designed recovery system was constructed from March 2008 to May 2008, and is depicted in Figure 5. The recovery trench was installed per the engineering specifications. Once the trench was installed, it was developed to ensure maximum recovery during operation. The tank yard, including the tank battery and equipment shed, was installed per the engineering specifications, All of the scope of work variances were recorded and approved by the RRC. A detailed account of construction activities may be found in the *Construction Completion Report* dated July 2008. The system operation was initiated in May 2008.

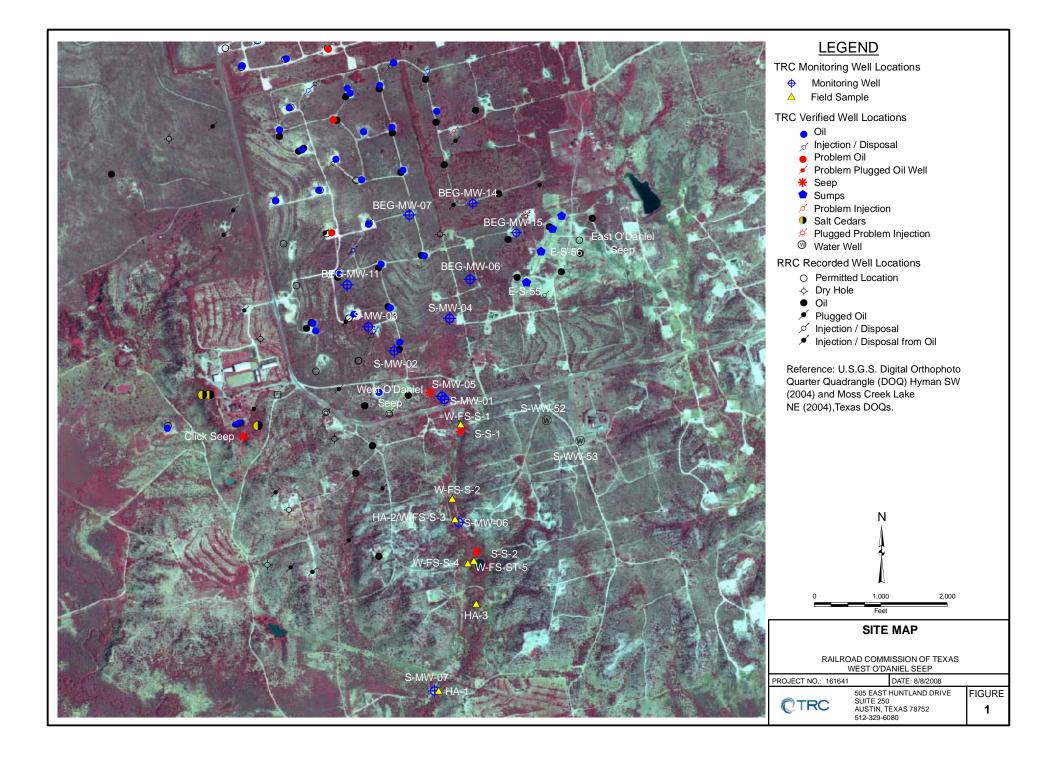
7.0 BMP EVALUATION

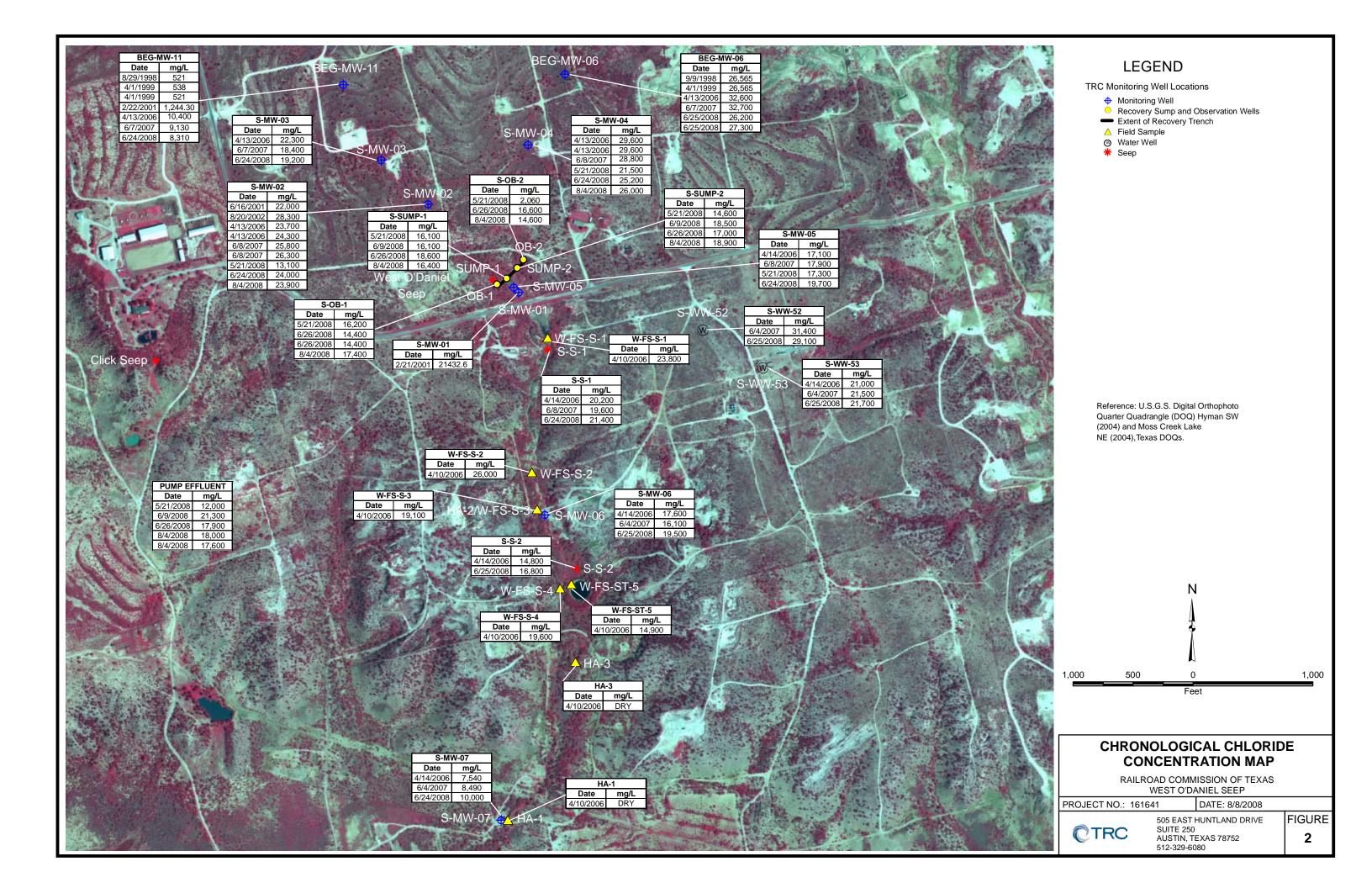
The recovery trench system was selected as the BMP to reduce the salinity/TDS loading into Beals Creek and potentially to the Colorado River from the West O'Daniel Seep area. In order to ensure efficient system operation, regular monitoring of system parameters is being performed. Table 4 provides the list of system operational parameters that have been recorded since system start-up on May 19, 2008. These parameters include water elevations in the trench, pump and air compressor settings, pump flow rates, and storage tank volumes.

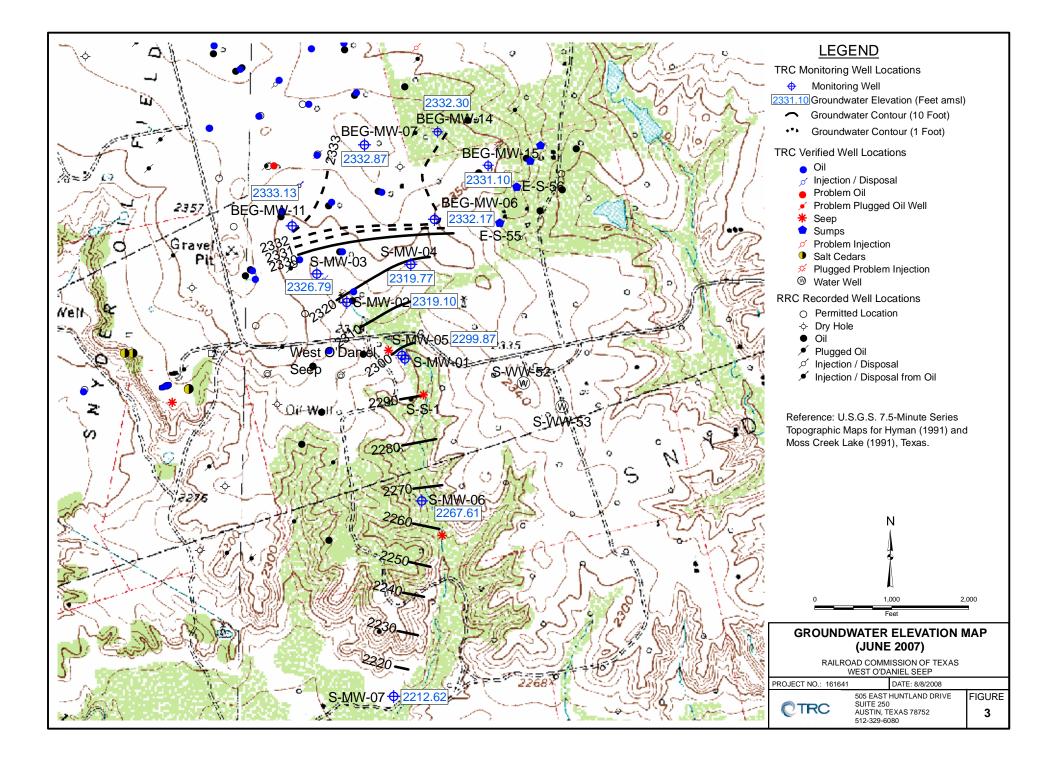
As of August 4, 2008, the average flow rate is 27.6 barrels per day (0.81 gpm), which is 54 percent lower than designed but not unexpected based on the thin zone of saturation and low to moderate permeability. The drawdown in the sumps ranges from seven to ten feet below top of casing (btoc), and the drawdown in the observation wells in the trench is six to nine feet btoc. As expected, the drawdown in the observation wells has been relatively stable since early June 2008, and the drawdown in the recovery sumps has fluctuated slightly between the "on" and "off" settings of the level float assembly. Current operational settings of the system are discussed in the *West O'Daniel Seep Recovery System Operation and Maintenance (O&M) Manual* dated July 2008. System parameters will continue to be examined throughout the life of the system in order to detect trends and maximize system performance.

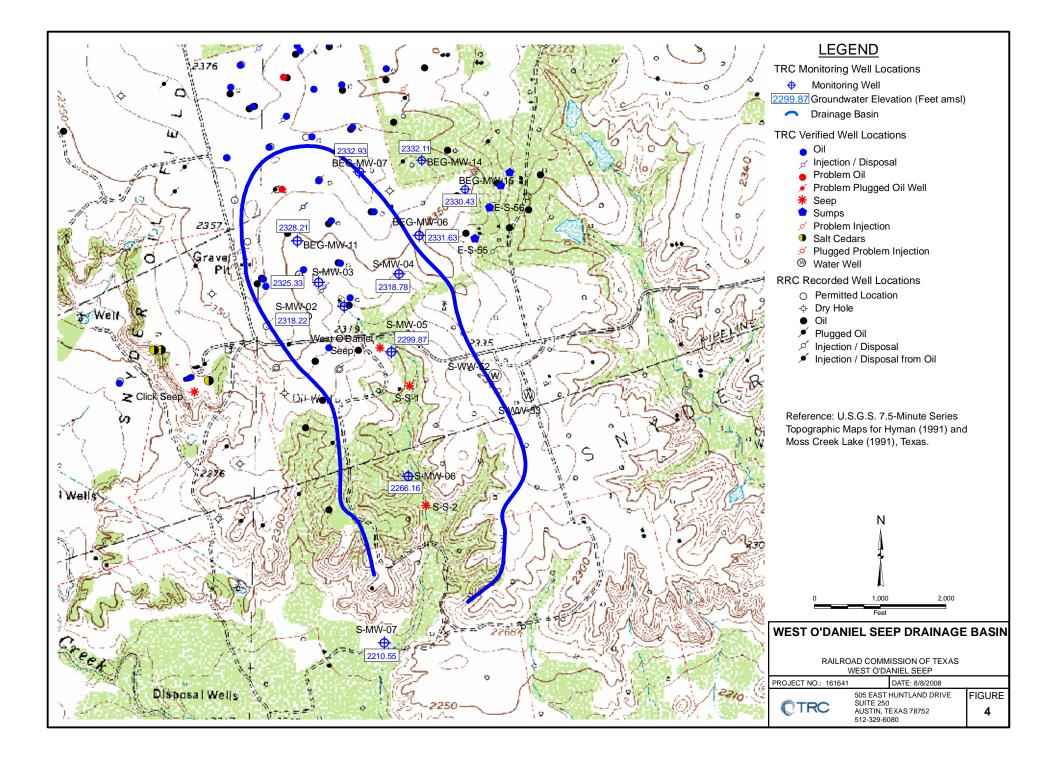
The system will be periodically evaluated to determine the effectiveness of the BMP. Additional sampling events were conducted June 9 and 26, 2008, and August 4, 2008. The laboratory report and quality assurance review are included as Attachment 1 and Attachment 2, respectively. The effectiveness criteria is based on salinity loading removed from the West O'Daniel Seep area; the design criteria was 540 pounds per day. The salinity loading is calculated using flow rate and laboratory analytical data. Immediately after system start-up, samples were collected on May 21, 2008, from locations throughout the system (both sumps, both observation wells, and the pump effluent) and the three monitoring wells (S-MW-02, S-MW-04, S-MW-05) located closest to the trench. The samples were analyzed for anions, cations, alkalinity, TDS, conductivity, and pH. The analytical data are summarized in Table 3. Trend analyses for conductivity, TDS, chloride, sodium, and groundwater elevation are presented in Graphs 1 through 8. A brief discussion of the trends focusing on changes since the BMP implemention is provided below.

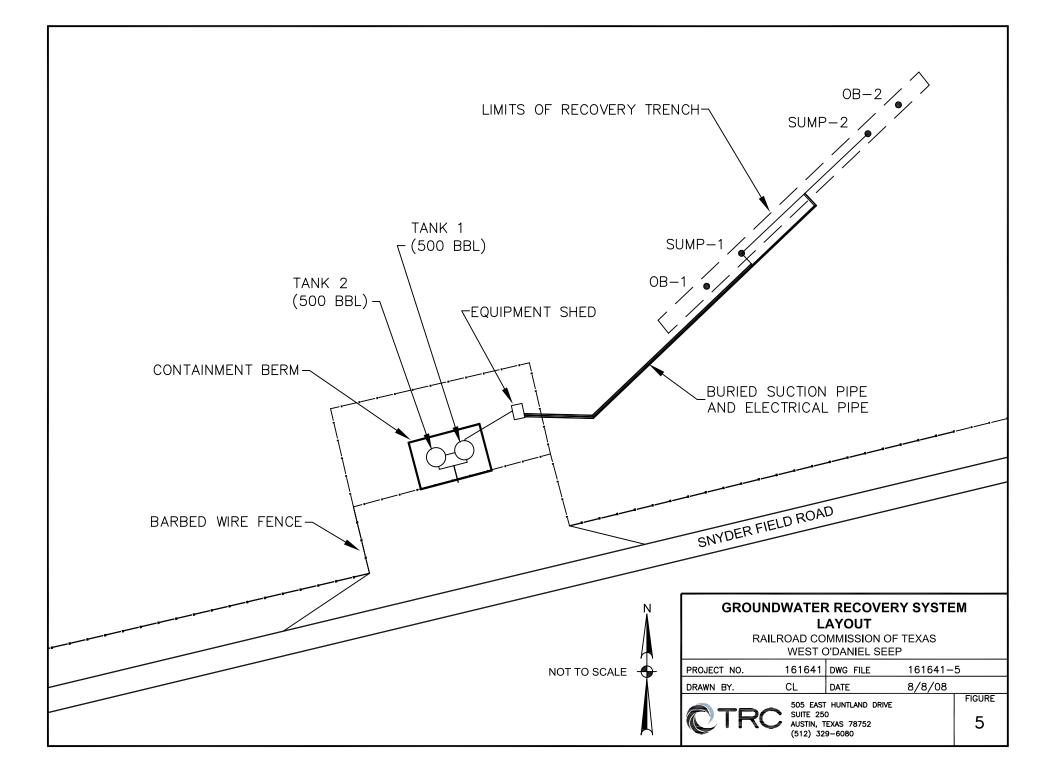
• Upgradient monitoring wells S-MW-02 and S-MW-04: Conductivity has been variable while TDS, chloride, and sodium concentrations remained relatively constant. The groundwater elevation dropped 2 to 3 feet since system start-up,


possibly due to pumping-induced drawdown and/or seasonally dry conditions during summer.


- Downgradient Monitoring Well S-MW-05: TDS, chloride and sodium concentrations have remained relatively constant through June 2008. Based on an estimated groundwater velocity of 62.4 feet/year and a distance of 150 feet from the trench to well S-MW-5, it is estimated that concentrations should decrease at well S-MW-05 within 2.5 years. The groundwater elevation dropped two to three feet since system start-up, possibly due to pumping-induced drawdown and/or seasonally dry conditions during summer. Well S-MW-05 did not have adequate volume present to collect analytical samples during the August 2008 sampling event and did not recharge even after the system was off for two days. This information may be indicative of successful recovery system operation that is prohibiting high salinity/TDS groundwater from migrating downgradient from the West O'Daniel Seep.
- Observation Well OB-1: Conductivity decreased while TDS, chloride, and sodium concentrations have remained constant. The groundwater levels have remained between 7 and 8 feet bloc, which indicates that the system is maintaining a constant drawdown.
- Observation Well OB-2: Conductivity, TDS, and chloride concentrations have increased while sodium concentrations have remained constant. The May 2008 sampling event is not representative of groundwater conditions in the trench and likely influenced by trench development activities. The groundwater levels have remained at nine feet btoc (bottom of casing), which indicates that the system is maintaining a constant drawdown. It appears that drawdown from SUMP-2 has kept water levels in that portion of the trench at or below 9 feet btoc, which prohibits water from entering OB-2.
- Recovery Sumps SUMP-1 and SUMP-2: Conductivity has fluctuated between 50,900 micromhos per centimeter (umhos/cm) and 79,500 umhos/cm since system start-up. TDS, chloride, and sodium concentrations have remained relatively constant. The groundwater levels have remained between seven and ten feet btoc, which indicates that the system is maintaining a constant drawdown between the "on" and "off" positions of the float.
- Pump Effluent: All constituents have remained relatively constant. There have been no major changes in groundwater composition recovered from the trench.


The analytical data from May 21, June 9, June 26, and August 4, 2008, were used to calculate the total mass removed for chlorides and TDS; the calculations are provided in Table 5 and Table 6, respectively. The concentration of the pump effluent was used to determine loading as this location is considered the most representative value of the system recovery. A total of 17,309 pounds (lbs) of chloride and 33,399 lbs of TDS have been removed by the system from May 19 to August 4, 2008. This equates to removal rates of 225 lbs/day for chloride and 434 lbs/day for TDS. The estimated TDS recovery rate referenced in the 95-percent design document cover letter was 540 lbs/day. The daily loading rates calculated from the first three sampling events, shown in Table 5 and Table 6, were above 540 lbs/day. The most recent sampling event had a loading rate of 311 lbs/day; this lower loading rate is largely due to recent operational issues encountered with the system resulting in lower pumping rates. Corrective actions are being taken to resolve these issues and loading rates are expected to return to previous levels. The cumulative pump effluent loading rate for TDS and chloride are presented in Graph 9. The flow rate depicted in this graph is calculated by the change in volume of the storage tanks divided by the time between measurements of storage tank volume. As a result, the calculated flow rate includes the time that the pump is off; which causes the flow rate to be biased low when compared to actual flow rates observed during operation.


8.0 CONCLUSION


As a result of the Section 319 NPS grant for investigation and remediation/abatement of saltwater impacts in the Upper Colorado River drainage basin upstream of the E. V. Spence Reservoir, the RRC has successfully implemented a BMP to reduce salinity/TDS impacts at the West O'Daniel Seep. From May 19 to August 4, 2008, a total of 17,309 lbs of chloride and 33,399 lbs of TDS have been recovered from groundwater. Continued system operation will ensure the future abatement of saltwater impacts in the area. Regular monitoring and evaluation of the system is required to maintain effective operation. The impacts of the system will be better understood after the first year of continuous operation. If properly maintained, this BMP will have a significant impact in reducing salinity/TDS loading to downstream water bodies (i.e., Beals Creek and potentially to the Colorado River). Therefore, this BMP will help achieve the TMDL requirements for Segment 1411 of the Upper Colorado River. FIGURES

TABLES

Location ID	Completion Date	Latitude (°N)	Longitude (°W)	Ground Elevation (ft)	Top-of- Casing Elevation (ft)	Screened Interval (ft bgs)	Total Depth (ft bgs)
S-MW-01	2/16/01	32.22885	-101.24415	2225*	NA	NA	7.0
S-MW-02	6/15/01	32.229396	-101.24573	2321.78	2324.10	4.5-14.5	14.0
S-MW-03	4/12/06	32.230679	-101.247021	2335.79	2337.94	8-23	23.3
S-MW-04	4/11/06	32.231093	-101.243066	2337.07	2339.48	16-26	26.1
S-MW-05	4/11/06	32.227831	-101.243368	2302.11	2304.74	1-6	6.1
S-MW-06	4/12/06	32.222628	-101.242404	2270.35	2272.28	3-13	13.5
S-MW-07	4/12/06	32.215624	-101.243415	2230.71	2232.85	13-33	33.5
BEG-MW-06	8/12/98	32.23273	-101.24211	2347.6	2350.89	NA	24.8
BEG-MW-07	8/12/98	32.2353	-101.2451	2370.9	2373.50	NA	45.7
BEG-MW-11	8/18/98	32.232389	-101.248096	2347.4	2350.88	NA	24.8
BEG-MW-14	8/14/98	32.2359	-101.2421	2355.2	2358.10	NA	25.0
BEG-MW-15	8/11/98	32.2347	-101.2399	2348.4	2351.46	NA	29.5
OB-1	5/19/08	NA	NA	2305.50	2305.46	3-9	9.0
OB-2	5/19/08	NA	NA	2306.37	2306.87	3-9	9.0
Sump-1	5/19/08	NA	NA	2305.50	2305.53	3-11	12.0
Sump-2	5/19/08	NA	NA	2305.55	2306.10	3-11	12.0

Table 1. Well and Sump Information

<u>Notes</u>

ft bgs = feet below ground surface

NA = not available

Elevation Survey Benchmark = U.S.C & G.S. MOOR ELEVATION 2754.0 MSL (FEET)

* Estimated

Observation wells and sump screen intervals and total depths are measured below top of casing (btoc) instead of bgs

Table 2. Water Level Gauging Data

		Top-of-		Total		[
	Ground	Casing	Date Water	Depth of	Depth to	Water
	Elevation	Elevation	Level	Well	Water	Elevation
Location ID	(ft)	(ft)	Measured	(ft btoc)	(ft btoc)	(ft)
			ell 01 (Estima			
S-MW-01	2225.00	NA	2/21/2001	NA	5.00	NA
5 10 01			iel Monitoring		5.00	1111
S-MW-02	2321.78	2324.10	8/4/2008	16.86	8.71	2315.39
S-MW-02	2321.78	2324.10	6/23/2008	16.87	7.72	2316.38
S-MW-02	2321.78	2324.10	6/4/2007	17.12	5.00	2319.10
S-MW-02	2321.78	2324.10	4/21/2006	16.97	5.88	2318.22
S-MW-02	2321.78	2324.10	6/16/2001	16.97	4.99	2319.11
			iel Monitoring			
S-MW-03	2335.79	2337.94	6/23/2008	25.45	14.90	2323.04
S-MW-03	2335.79	2337.94	6/4/2007	25.45	11.15	2326.79
S-MW-03	2335.79	2337.94	4/21/2006	25.45	12.61	2325.33
		West O'Dan	iel Monitoring	g Well 04		
S-MW-04	2337.07	2339.48	8/4/2008	27.46	22.59	2316.89
S-MW-04	2337.07	2339.48	6/23/2008	28.48	22.25	2317.23
S-MW-04	2337.07	2339.48	6/4/2007	27.74	19.71	2319.77
S-MW-04	2337.07	2339.48	4/21/2006	28.48	20.70	2318.78
		West O'Dan	iel Monitoring	g Well 05		
S-MW-05	2302.11	2304.74	8/4/2008	8.27	8.08	2296.66
S-MW-05	2302.11	2304.74	6/23/2008	8.36	7.15	2297.59
S-MW-05	2302.11	2304.74	6/4/2007	8.36	4.87	2299.87
S-MW-05	2302.11	2304.74	4/21/2006	8.69	4.87	2299.87
	•	West O'Dan	iel Monitoring	g Well 06		
S-MW-06	2270.35	2272.28	6/23/2008	15.41	8.52	2263.76
S-MW-06	2270.35	2272.28	6/4/2007	14.70	4.67	2267.61
S-MW-06	2270.35	2272.28	4/21/2006	15.41	6.12	2266.16
		West O'Dan	iel Monitoring	g Well 07	-	
S-MW-07	2230.71	2232.85	6/23/2008	35.58	21.30	2211.55
S-MW-07	2230.71	2232.85	6/4/2007	35.58	20.23	2212.62
S-MW-07	2230.71	2232.85	4/21/2006	35.62	22.30	2210.55
		East O'Dani	iel Monitoring	Well 06		
BEG-MW-06	2347.60	2350.89	6/23/2008	27.84	19.45	2331.44
BEG-MW-06	2347.60	2350.89	6/4/2007	27.88	18.72	2332.17
BEG-MW-06	2347.60	2350.89	4/21/2006	28.10	19.26	2331.63
BEG-MW-06	2347.60	2350.89	9/9/1998	28.10	17.41	2333.48
BEG-MW-06	2347.60	2350.89	8/29/1998	28.10	17.45	2333.44
BEG-MW-06	2347.60	2350.89	8/26/1998	28.10	17.44	2333.45
			iel Monitoring	Well 07		
BEG-MW-07	2370.90	2373.50	6/23/2008	48.34	40.48	2333.02
BEG-MW-07	2370.90	2373.50	6/4/2007	48.34	40.63	2332.87
BEG-MW-07	2370.90	2373.50	4/21/2006	48.31	40.57	2332.93
BEG-MW-07	2370.90	2373.50	9/9/1998	48.30	38.56	2334.94
BEG-MW-07	2370.90	2373.50	8/29/1998	48.30	38.95	2334.55
			iel Monitoring			
BEG-MW-11	2347.40	2350.88	6/23/2008	28.28	18.22	2332.66
BEG-MW-11	2347.40	2350.88	6/4/2007	28.28	17.75	2333.13
BEG-MW-11	2347.40	2350.88	4/21/2006	28.30	22.67	2328.21
BEG-MW-11	2347.40	2350.88	2/22/2001	NA	14.21	2336.67
BEG-MW-11	2347.40	2350.88	9/9/1998	28.30	16.81	2334.07
BEG-MW-11	2347.40	2350.88	8/29/1998	28.30	16.82	2334.06
BEG-MW-11	2347.40	2350.88	8/25/1998	28.30	16.85	2334.03
			iel Monitoring			
BEG-MW-14	2355.20	2358.10	6/23/2008	27.89	25.97	2332.13
BEG-MW-14	2355.20	2358.10	6/4/2007	28.14	25.80	2332.30
BEG-MW-14	2355.20	2358.10	4/21/2006	27.90	25.99	2332.11
BEG-MW-14	2355.20	2358.10	9/9/1998	27.90	24.83	2333.27
BEG-MW-14	2355.20	2358.10	8/29/1998	27.90	24.97	2333.13
DECLE			iel Monitoring			
BEG-MW-15	2348.40	2351.46	6/23/2008	32.50	21.39	2330.07
BEG-MW-15	2348.40	2351.46	6/4/2007	32.50	20.36	2331.10
BEG-MW-15	2348.40	2351.46	4/21/2006	32.60	21.03	2330.43
BEG-MW-15	2348.40	2351.46	9/9/1998	32.60	19.37	2332.09
BEG-MW-15	2348.40	2351.46	8/29/1998	32.60	19.47	2331.99
BEG-MW-15	2348.40	2351.46	8/26/1998	32.60	19.29	2332.17

Table 3 - West O'Daniel Water Analytical Results

	Enco Cond	Piasehouoto	Canhanata	Unduovido	Total	TDC	'nIJ	Dongono	Tahaaa	Ethylhongono	Total Vylopag														
Monitor Well	(µmhos/cm)	Bicarbonate (mg/L)	Carbonate (mg/L)	Hydroxide (mg/L)	Alkalinity (mg/L)	TDS (mg/L)	рН	(mg/L)	(mg/L)	Ethylbenzene (mg/L)	Total Xylenes (mg/L)	Chloride (mg/L)		Nitrate (mg/L)	Bromide (mg/L)		Calcium (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Iron (mg/L)	Barium (mg/L)	TPH C6-C12 (mg/L)	2 TPH >C12-C28 (mg/L)	TPH >C28-C35 (mg/L)	TPH C6-C35 (mg/L)
S-MW-01		-			-	-		(8)	(0 /			× 0 /													(0 /
2/21/2001	58,000	258.37	<3	NA	258.37	38,131.2	6.60					21432.6	1976.14	NA	NA	8972.19	4313.2	1,150.63	28.07	NA	NA				
S-MW-02 6/16/2001	54,200	293.00	<2	NA	293	37,415.0	6.59	< 0.0004	< 0.0003	< 0.0003	< 0.001	22,000	1,810	NA	NA	9,630	2,780	902	NA	0.273	0.1340				
8/20/2002	54,200	275.00	12	1471	275	57,415.0	0.57	<0.0004	<0.0005	<0.0005	<0.001	28,300	1,010	1411	1411	2,050	2,700	702	1411	0.275	0.1540				
	52.100	250.00	10	10	2.50	10 510 5		0.00120	0.005	0.005	0.005					0.440	2 000			1 0 5 0	0.00.50				
4/13/2006	73,100	259.00	<10	<10	259	40,719.7		0.00129	< 0.005	< 0.005	< 0.005	23,700	2,130	<1	56.5	9,410	3,980	1,210	30.7	1.970					
4/13/2006	74,000	259.00	<10	<10	259	41,359.9	6.47	< 0.005	< 0.005	< 0.005	< 0.005	24,300	2,140	<1	56.7	9,440	3,990	1,200	30.9	5.480	0.1050				
6/8/2007	58,500	250.00	<10	<10	250	49,000.0	6.55					25,800	2,310			9,630	3,730	950	34.1	1.260	0.0886				
6/8/2007	59,000	250.00	<10	<10	250	49,400.0	6.56					26,300	2,470	NA	NA	10,200	3,530	966	33.7	1.160	0.0879				
5/21/2008	86,800	262.00	<1	NA	NA	43,300.0	6.65					13,100	16,200	NA	NA	8,910	3,040	890	56.1	0.080	0.0440				
6/24/2008		260.00	ND	ND	260	46,800.0		< 0.0008	< 0.002	< 0.002	< 0.003	24,000	2,290			9,200	3,100	783	24.8	2.20	0.0831 J	< 0.668	< 0.668	< 0.668	< 0.668
8/4/2008	66,400	197.00	ND	ND	197	43,000.0						23,900	2,170			8,590	3,120	856	26.0	3.980	0.1240				
S-MW-03																									
4/13/2006	67,000	123.00	<10	<10	123	38,465.3	6.61	< 0.005	< 0.005	< 0.005	< 0.005	22,300	1,930	1.24	56.1	9,240	3,780	1,080	12.3	0.550	0.1080				
6/7/2007	44,600	206.00	<10	<10	206	36,400.0	6.54					18,400	1,980	NA	NA	6,230	2,690	851	11.1	0.642	0.1010				
6/24/2008		209.00	ND	ND	209	38,200.0		< 0.0008	< 0.002	< 0.002	< 0.003	19,200	1850			6,350	3,080	742	9.33	0.656	0.101	< 0.684	< 0.684	< 0.684	< 0.684
S-MW-04																									
4/13/2006	90,500	180.00	<10	<10	180	50,925.0	6.67	0.0083	$<\!0.005$	< 0.005	< 0.005	29,600	2,780	29.40	69.2	14,200	3,230	728	207.0	1.750	0.2230				
4/13/2006	90,800	181.00	<10	<10	181	52,851.0	6.65	0.00692	< 0.005	< 0.005	< 0.005	29,600	2,850	33.70	74.9	16,000	3,250	756	214.0	1.890	0.2240				
6/8/2007	66,000	139.00	<10	<10	139	52,900.0	6.67					28,800	2,740	NA	NA	12,800	2,950	643	211.0	1.310					
5/21/2008	96,600	142.00	<1	NA	NA	45,000.0	6.95					21,500	3,820	NA	NA	11,600	2,050	560	260.0	0.050	0.0700				
6/24/2008	, ,,	153	ND	ND	153	48,400.0		0.00152 J	< 0.002	< 0.002	< 0.003	25,200	2,480			11,600	2,100	526	160	0.525	0.127	< 0.661	< 0.661	< 0.661	< 0.661
8/4/2008	81,200	116	ND	ND	116	45,400.0		5.501 <i>52</i> J	-0.002	10.002	(0.005	26,000	2,480			12,100	2,100	548	180.0	4.020	0.127	.0.001	-0.001	.0.001	.0.001
S-MW-05																									
4/14/2006	56,800	264.00	<10	<10	264	31,886.3	6.71	< 0.005	< 0.005	< 0.005	< 0.005	17,100	1,710	<1	44.3	9,130	2,930	730	22.3	5.500	0.4970				
6/8/2007	43,300	262.00	<10	<10	262	34,200.0	6.59	101000	(01000	(01002	(01005	17,900	1,620	NA	NA	7,480	2,960	602	24.2	9.470	0.2540				
5/21/2008	71,800	252.00	<10	NA		33,500.0	6.77					17,300	2,500		NA	7,430	2,540	680	44.8	10.600					
	/1,800				NA 257		0.77	-0.0008	-0.002	-0.002	-0.002			NA	INA							0 (77	-0.777	-0 (77	-0 (77
6/24/2008 8/4/2008	Insufficient vo	257.00 lume to collect	ND analytical sample	ND es	257	37,300.0		< 0.0008	< 0.002	< 0.002	<0.003	19,700	1,620			7,320	3,190	732	15.9	15.1	0.404	<0.677	<0.677	<0.677	<0.677
S-MW-06																									
4/14/2006	55,800	188.00	<10	<10	188	30,047.9	6.39	< 0.005	< 0.005	< 0.005	< 0.005	17,600	1,380	1.27	43.6	6,060	3,810	975	34.9	5.060	0.5210				
6/4/2007	38,000	234.00	<10	<10	234	31,200.0	6.54	<0.005	<0.005	<0.005	<0.005	16,100	1,260	NA	45.0 NA	5,790	3,050	827	32.9	2.830	0.3350				
6/25/2008	58,000	221.00	ND	ND	234 221	40,100.0	0.54	< 0.0008	< 0.002	< 0.002	< 0.003	19,500	1,630	1974	INA	6,390	3,440	908	31.7	2.830	0.261	< 0.672	<0.672	< 0.672	< 0.672
S-MW-07																									
4/14/2006	24,400	119.00	<10	<10	119	12,542.6	6.73	< 0.005	< 0.005	< 0.005	< 0.005	7,540	480	ND	20.1	1,950	1,670	746	37.6	0.833	0.3730				
6/4/2007	25,200	223.00	<10	<10	223	22,100.0	6.56	<0.005	<0.005	<0.005	<0.005	8,490	690	NA	NA	2,040	2,680	705	23.0	1.630	0.1850				
6/24/2008	25,200	223.00	ND	ND	223	22,600.0	0.50	< 0.0008	< 0.002	< 0.002	< 0.003	10,000	683	11A	na -	2,040	2,080	538	20.4	<0.5	0.1350	< 0.683	<0.683	< 0.683	<0.683
S-WW-52																									
6/4/2007	66,500	119.00	<10	<10	119.00	52,900.0	6.59					31,400	3,060			13,300	2,940	925	74.4	0.261	0.1570				
6/25/2008	00,500	119.00	ND	ND	121	52,900.0 54,700.0	0.59	< 0.0008	< 0.002	< 0.002	< 0.003	29,100	2,890			11,800	2,940	790	73.9	0.201 0.680 J		< 0.678	< 0.678	< 0.678	< 0.678
0/23/2008		121.00	ND	ND	121	54,700.0		<0.0008	<0.002	<0.002	<0.005	29,100	2,890			11,000	2,800	790	73.9	0.080 J	0.134	<0.078	<0.078	<0.078	<0.078
S-WW-53																									
4/14/2006	67,400	70.50	<10	<10	70.50	36,947.0		< 0.005	< 0.005	< 0.005	< 0.005	21,000	2,090	19.80	54.7	8,890	3,560	1,280	56.5	9.930	0.1990				
6/4/2007	49,100	83.80	<10	<10	83.80	42,000.0	6.53					21,500	2,290	NA	NA	7,450	3,090	1,080	49.3	38.300					
6/25/2008		91.00	ND	ND	91.0	43,200.0		< 0.0008	< 0.002	< 0.002	< 0.003	21,700	2,260			7,550	3,050	922	47.5	14.9	0.171	<0.669	<0.669	<0.669	<0.669
SUMP-1																									
5/21/2008	63,400	1,260.00	<1	NA	NA	31,300.0	6.27					16,100	1,850	NA	NA	7,630	2,230	620	44.4	5.050	0.2890				
6/9/2008	75,400	820.00	<1	NA	NA	31,300.0						16,100	1,150	NA	NA	5,780	2,480	660	34.8	2.670	0.6100				
6/26/2008	61,200	355.00	ND	ND	355	37,200.0		< 0.0008	< 0.002	< 0.002	< 0.003	18,600	1,690			7,440	2,460	726	10.8	1.00	0.270	< 0.676	< 0.676	< 0.676	< 0.676
8/4/2008	53,200	310.00	ND	ND	310.00	32,800.0						16,400	1,380			5,420	2,540	703	14.7	19.300					
SUMP-2																									
5/21/2008	50,900	1,230.00	<1	NA	NA	27,800.0	6.47					14,600	1,820	NA	NA	6,730	1,660	440	28.1	9.820	0.5160				
6/9/2008	79,500	430.00	<1	NA	NA	34,000.0						18,500	2,380	NA	NA	7,940	2,230	560	16.9	3.040	0.2400				
6/26/2008	58,600	497.00	ND	ND	497	35,200.0	0.00	< 0.0008	< 0.002	< 0.002	< 0.003	17,000	1,830	1		7,470	2,230	531	9.63	1.57	0.2400	< 0.668	<0.668	<0.668	<0.668
8/4/2008	52,500	497.00	ND	ND	445.00	33,100.0		~0.0000	~0.002	<0.002	<0.005	18,900	1,830			6,670	2,040	615	13.0		1.1100	~0.000	<0.000	<0.000	<0.000
	52,500		nD	nD	+-5.00	55,100.0						10,700	1,700			0,070	2,200	015	15.0	17.400	1.1100				
OB-1	70 500	650.00	~1	NT A	NI A	21 000 0	C 11					16 200	1 650	NI 4	NT A	6 050	2 460	200	42.0	1 0 40	0 1010				
5/21/2008	70,500	650.00	<1	NA	NA	31,800.0	6.44		.0.000	.0.002	0.002	16,200	1,650	NA	NA	6,050	2,460	690 726	43.8	1.840		.0.777	0.777	0.777	0.000
6/26/2008	48,000	817.00	ND	ND	817	30,800.0		< 0.0008	< 0.002	< 0.002	< 0.003	14,400	861			4,700	2,400	726	14.8	<0.5	1.01	< 0.676	<0.676	< 0.676	<0.676
6/26/2008	49,200	823.00	ND	ND	823	31,300.0		< 0.0008	< 0.002	< 0.002	< 0.003	14,400	815			4,270	2,260	758	14.0	<2.5	1.00	< 0.669	<0.669	<0.669	<0.669
8/4/2008	51,200	ND	ND	ND	ND	30,700.0						17,400	1,610			5,190	2,590	820	15.9	15.200	0.2890				
OB-2																									
5/21/2008	18,100	2,400.00	<1	NA	NA	11,800.0	8.33					2,060	712	NA	NA	3,230	385	112	39.4		1.1100				
6/26/2008	54,600	543.00	ND	ND	543	36,500.0		< 0.0008	< 0.002	< 0.002	< 0.003	16,600	1,880			4,970	3140	845	11.8	48.9	0.546	< 0.682	< 0.682	< 0.682	< 0.682
8/4/2008	44,400	431.00	ND	ND	431.00	28,500.0						14,600	1,300			4,360	2,800	806	13.8	35.100	0.7600				

Table 3 - West O'Daniel Water Analytical Results

Monitor Well	Spec. Cond.	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	TDS	pH Benze	e Toluene	Ethylbenzene	Total Xylenes	Chloride	Sulfate	Nitrate	Bromide	Sodium	Calcium	Magnesium	Potassium	Iron	Rarium	трн с6-с12	TPH >C12-C28	TPH >C28-C35	TPH C6-C35
	(umhos/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/I) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	(µmmos/cm)	(g/2)	(ing/2)	(ing, 2)	(g , 2)	(g/2)	() (g/2)	(ing/2)	(ing/2)	(ing, 2)	(g/.2.)	(IIIg / I)	(iiig / 2)	(g/.2)	(iiig/12)	((iiig / 1)	(ing/2)	(iiig, 12)	(g/12)	(iiig/2)	(ing /2)	(ing/2)
S-S-1																								
4/14/2006	63,400	111.00	<10	<10	111.00	36,615.9	7.23				20,200	1,830	<1	52.0	9,780	3,590	1,070	34.9	3.050	0.2050				
6/8/2007	44,900	95.80	<10	<10	95.80	36,800.0	7.00				19,600	1,770	NA	NA	7,120	2,830	813	28.2	3.050	0.1250				
6/24/2008		121.00	ND	ND	121	42,600.0	< 0.00	8 <0.002	< 0.002	< 0.003	21,400	1,810			8,230	2,390	686	30.9	4.00	0.281	< 0.678	< 0.678	< 0.678	< 0.678
S-S-2																								
4/14/2006	46.200	83.90	<10	<10	83.90	25,648.5	7.13				14,800	1060*	<1	37.8	5,400	3,240	1,050	14.6	1.790	0.2160				
6/25/2008	,	152.00	ND	ND	152	35,100.0	< 0.00	8 <0.002	< 0.002	< 0.003	16,800	1,280			5,350	2,910	785	18.1	0.526 J	0.476	< 0.681	< 0.681	< 0.681	< 0.681
Pump Effluent																								
5/21/2008	60,600	840.00	<1	NA	NA	29,600.0	6.38				12,000	1,640	NA	NA	6,590	1,770	460	48.5	7.720	0.3360				
6/9/2008	50,300	350.00	<1	NA	NA	38,400.0	6.53				21,300	2,680	NA	NA	10,500	3,600	950	28.1	1.230	0.1300				
6/26/2008	58,200	494.00	ND	ND	494	36,000.0	< 0.00	8 <0.002	< 0.002	< 0.003	17,900	1,670			6,650	2,150	622	11.0	1.23	0.495	< 0.69	<0.69	<0.69	< 0.69
8/4/2008	54,800	236.00	ND	ND	236.00	34,200.0					18,000	1,750			6,310	2,380	667	12.0	4.510	0.2720				
8/4/2008	54,400	240.00	ND	ND	240.00	34,900.0					17,600	1,640			6,430	2,480	687	12.6	4.660	0.2820				
BEG-MW-06																								
9/9/1998					393	49.676	7.63 0.007	5 <0.005	< 0.005	< 0.005	26,565	3,214	<1	650	15,980	2,277	788	459	< 0.1	0.15				
4/1/1999	69,100.00				393		7.63 7.75	< 0.005	< 0.005	< 0.005	26,565	3,214	<1	65.00	15,980	2,277	788	459	< 0.1	0.15				
4/13/2006					260	58,710	6.42 0.49	< 0.005	< 0.005	< 0.005	32,600	3,310	6.51	85	18,800	2,670	757	313	0.192	0.141				
6/7/2007					231	57,900	6.57				32,700	3,430	NA	NA	15,500	2,630	706	294	0.610	0.133				
6/25/2008		201	<10	<10	201	52,300	0.015	2 <0.002	< 0.002	< 0.003	26,200	2,930			12,400	2,040	523	211	0.407	0.109	< 0.663	< 0.663	< 0.663	< 0.663
6/25/2008		195	<10	<10	195	54,200	0.018	< 0.002	< 0.002	< 0.003	27,300	2,820 J			11,700	1,960	524	212	0.305	0.108	< 0.674	< 0.674	< 0.674	< 0.674
BEG-MW-11																								
8/29/1998					306	1,557.61	8.43 <0.00	5 <0.005	< 0.005	< 0.005	521	253	30.8	3.96	366	127	28.7	6.61	0.0174	NA				
4/1/1999	2,710.00				306		8.43 <0.00	5 <0.005	< 0.005	< 0.005	538	244	25.0	2.00	280	137	38.00	<5	< 0.1	0.20				
4/1/1999	NA				255		NA				521	253	30.80	3.96	366	127	28.70	6.61	NA	NA				
2/22/2001					213.56	3,312.68	7.40 <0.00	2 <0.005	< 0.005	< 0.005	1,244.30	504.3	NA	NA	395.42	456.91	103.28	394.91	NA	NA				
4/13/2006					112	17,644.30	6.78 <0.00	5 <0.005	< 0.005	< 0.005	10,400	1,080	3.92	25.5	2,650	2,750	632	20.3	0.0984	0.096				
6/7/2007					121	19,300	6.84 no da	a			9,130	940	NA	NA	2,020	2,150	496	19.3	< 0.500	0.115				
6/24/2008		135	<10	<10	135	19,200	< 0.00	8 <0.002	< 0.002	< 0.003	8,310	1,010			2,000	2,040	473	<20	2.16	0.0983	< 0.684	< 0.684	< 0.684	< 0.684

Notes:

Milligrams per Liter
Total Petroleum Hydrocarbons
Total Dissolved Solids
Microohms per centimeter
Analyte detected between sample detection limit and reporting limit
Analytical result rejected during QA process based on MS/MSD recoveries
Not analyzed

Table 4 - Groundwater Recovery System Operational Parameters West O'Daniel Seep

								Flow Meter	r Measurements			Storag	ge Tank Mea	surements		Flow Me	eter Error	Offsite	Disposal
Date		OB-1 (DTW btoc)	Sump-1 (DTW btoc)	Sump-2 (DTW btoc)	OB-2 (DTW btoc)	Pump Inlet Air Pressure (psi)	Pump Strokes per minute	Flow Rate (gpm)	Totalized Flow (gal)	AIR COMPRESSOR CYCLES ON and OFF (min)	Tank Gauge Height (one tank only) (ft)	Total Tank Volume (bbl)	Change in Storage (bbl)	Average Flow Rate (bbl/day)	Average Flow Rate (gpm)	Volume Change (flow meter vs tanks)	Ratio of water to	Disposal Date	Disposa
05/19/08	1100	6.15	5.86	5.70	6.41	30	0	0.0	536	-		-		-	-				
	1207 1215	6.15 6.15	5.86 5.86	5.70 5.70	6.41 6.41	30 30	17 17	2.0 0.9	-	-		-		-	-				
	1227	6.15	5.86	5.70	6.41	30	17	0.9	546	-		-		-	-				
	1245	6.15	5.86	5.70	6.41	30	17	0.9	556	-		-		-	-				
	1250	6.15	5.86	5.70	6.41	40	170	5.2 5.2	-	-		-		-	-				
	1257 1315	6.15 6.14	6.01 6.64	6.05 6.60	6.41 6.41	40 40	170 170	5.2	-	-		-		-	-				
	1330	-	-	-	-	40	170	5.0	-	-		-		-	-				[
	1400	6.15	8.69	5.98	6.40	40	170	5.0	760	-		-		-	-				
	1427	-	-	6.38	6.40	40 40	170	4.5 4.5	-	-		-		-	-				
	1432 1441	-	-	6.91 7.29	6.40 6.40	40	170 170	4.5	-	-		-		-	-				
	1447	-	-	7.48	6.40	40	170	4.5	-	-		-		-	-				[
	1454	-	-	7.77	6.40	40	170	4.5	-	-		-		-	-				
	1509	-	-	7.83	6.40	40	170	4.5	-	-		-		-	-				
	1520 1521	-	- 7.15	NM 7.35	NM NM	40 40	170 180	0.0 5.0	-	-		-		-	-				1
	1535	-	7.78	7.75	NM	40	180	5.0	-	-		-		-	-				<u> </u>
	1600	6.17	8.35	8.07	6.45	50	220	5.0	-	-		-		-	-				l
	1618	-	-	-	-	60	-	5.2	-	-		-		-	-				
	1620 1639	- 6.17	- 8.72	- 8.68	- 6.47	80 40	-	5.4 5.0	-	-		-		-	-				
	1710	-	-	-	-	-	-	-	1470	-		-		-	-				1
05/20/08	1030	6.21	6.03	5.92	6.61	35	65	2.4	1470	-		-		-	-				
	1048 1110	6.21	6.14	6.23	6.61	35	64	2.3	1500	-		-		-	-				
	1110	-	-	-	-	35 35	-	-	-	-		-		-	-				
	1125	6.21	6.26	6.44	6.61	35	60	2.3	1533	16.00		-		-	-				[
	1200	6.21	6.48	6.64	6.62	35	60	2.2	1560	14.00		-		-	-				
	1435	6.22	6.67	6.77	6.64	35	60	2.4	1631	-		-		-	-				
	1545 1550	6.22	6.71	6.85	6.65	35 40	56 196	2.2 4.5	1977 2114	-		-		-	-				
	1645	6.22	7.95	7.98	6.66	40	180	4.6	2130	7.50		-		-	-				
	1715	-	-	-	-	38	120	-	2360	8.00		-		-	-				
	1716	-	-	-	-	38	152	4.3	-	8.00		-		-	-				l
05/21/08	1815 1030	6.23 6.33	8.26 9.25	8.28 9.33	6.68 6.99	38 42	154 100	4.2 3.4	2680 6275	-		-		-	-				
00/21/00	1115	-	-	-	-	70	300	6.0	6370	-		-		-	-				[
	1128	6.34	9.40	-	-	70	300	6.0	-	-		-		-	-				
	1630	6.35	9.52	9.47	7.11	42	112	3.5	7180	-		-		-	-				
05/22/08	1800 800	- 6.43	- 8.01	- 8.68	- 7.43	42 40	160 0	4.2 0.0	7380 10120	-		-		-	-				
00/22/00	1200	6.44	8.98	9.02	7.80	40	106	2.6	10900	10.75		-		-	-				[
	2000	-	-	-	-	42	180	3.2	11150	-		-		-	-				
05/23/08	1345	6.42	7.08	7.23	7.51	48	240	5.1	11900	8.50		-		-	-				
05/27/08 05/30/08	1600 1000	6.65 6.48	7.96 6.42	8.20 6.51	8.31 7.54	50 45	- 240	6.0 5.0	21980 22110	15.00 15.00		382 397	15	5.0	- 0.15	-500	3%		
06/03/08	1500	6.85	7.15	8.13	8.92	45	100	4.5	34100	-		599	202	50.5	1.47	3506	33%		1
06/05/08	1500	7.07	8.74	9.11	8.92	45	212	4.5	40401	-		672	73	36.5	1.06	3235	24%		
06/09/08	1500	7.17	7.52	8.56	9.00	45	216	4.4	51570	-		896	224	56.0	1.63	1761	37%		
06/11/08 06/13/08	1500 1500	7.96	7.09 9.87	8.00 9.55	9.00 9.00	45 45	- 224	- 5.0	54010 57750	- 6.50		935 193	39	19.5	0.57	802	-	6/11/2008	806
06/17/08	1500	7.43	8.28	9.05	9.00	48	240	5.0	67950	-	5.79	389	196	49.0	1.43	1964	29%	0/11/2000	000
06/23/08	1500	7.70	8.45	9.30	8.13	48	240	5.2	81810	-	6.25	420	31	5.2	0.15	12562	3%	6/17/2008	245
06/27/08	1500	7.51	9.98	9.82	9.00	45	236	5.5	90850	-	5.71	384	-	-	-	-	-	6/24/2008	221
07/01/08 07/03/08	1500 1500	7.60	8.59 8.25	9.27 9.05	8.98 8.98	48 48	256.0 244	5.0 5.3	99610 103920	7.20 7.25	8.25 2.92	554 196	- 171	42.7	- 1.24	- 1591	25%	7/2/2008	226
07/03/08	1500	7.69	8.60	9.03	8.98	48	244	5.0	103920	8.00	5.00	336	- 140	34.9	1.02	1589	20%	7/3/2008	220
07/10/08	1500	7.65	7.96	8.86	8.98	48	240	5.3	116320	7.00	3.22	216	-	-	-	-	-	7/9/2008	210
07/14/08	1100	7.25	7.36	8.26	8.98	48	228	5.0	120630	-	4.16	280	63	15.8	0.46	1657	9%		
07/17/08	1500	7.27	7.35	8.26	8.98	48	248	5.0	124040	7.00	2.17	146	-	-	- 0.71	-	-	7/15/2008	238
07/21/08 07/23/08	1100 1030	7.41 7.65	7.54 7.95	8.20 8.91	8.98 8.98	52 53	272 296	5.9 4.8	132900 134910	- 7.20	3.63 4.10	244 276	98 32	24.5 16.0	0.71 0.47	4744 669	12% 10%		
07/23/08	1030	7.03	1.93	0.91	0.90	33	290	4.0	134910	1.20	4.10	2/0	32	10.0	0.47	009	10%		L

	Cumulative	
sal	Volume Removed	
ne	(bbl)	Notes
		Trip Off - Water level below low level switch in SUMP-1
		manually tripped to test high float
		manuary upped to test ingit noat
		Pump off to test tank floats
		Pump off to test tank floats
	382	
	397	
	599	
	672	
	896	Duran not maning officiently, DDC is stilled as a second (02)
5	935 999	Pump not running efficiently - RRC installed new pump (#2)
,	1195	
i	1471	
	1656	
	1826	
	1694	
	2069 2159	
,	2159	Pump not running efficiently - RRC installed new pump (#3)
3	2327	a sup not running enterently. Take instance new pump (#5)
	2425	
	2457	

Table 4 - Groundwater Recovery System Operational Parameters West O'Daniel Seep

								Flow Meter	Measurements			Storag	ge Tank Mea	surements		Flow Me	ter Error	Offsite	Disposal		
							Pump										Ratio of water to				
		OB-1	Sump-1	Sump-2	OB-2	Pump Inlet Air Pressure		Flow Poto	Totalized Flow	AIR COMPRESSOR CYCLES ON and			0			Volume Change (flow meter vs	total flowmeter reading	Disposal	Disposal	Cumulative Volume Removed	
Date	Time	-	-	-	(DTW btoc)		minute		(gal)		tank only) (ft)			Rate (bbl/day)		tanks)	(% water)	Date	Volume	(bbl)	Notes
07/25/08	1035	7.75	8.08	8.91	8.98	53	224	4.8	137440	3.45	4.84	325	50	24.9	0.73	441	15%			2506	
07/28/08	1315	7.63	9.37	9.27	8.98	53	220	4.8	141420	3.21	5.91	397	72	24.0	0.70	960	15%			2578	
07/30/08	1030	7.78	8.05	8.82	8.98	53	230	4.8	143190	3.40	6.80	457	60	29.9	0.87	-742	18%			2638	
08/01/08	1310	7.89	8.16	9.28	8.98	53	286	3.8	147590	3.25	0.96	65	-	-	-	-	-	8/1/2008	380	2626	
08/04/08	1105	7.53	9.04	8.99	8.98	50	240	5.0	150660	13.40	1.30	87	23	7.6	0.22	2110	4%			2648	

Notes

-Only the volume and flow rate values derived from storage tank measurements are considered valid. The volume and flow rate values from the flow meter measurements are considered invalid (biased high) due to air and water passing through the flow meter.

-DTW btoc = depth to water below top of casing

-psi = pounds per square inch

-gpm = gallons per minute -gal = gallons

-min = minutes

-bbl = barrels [US, petroleum]

Table 5 - West O'Daniel Seep Recovery System Chloride Loading Calculations

Period	5/19/08 - 5/21/08				
Sample Date	5/21/2008		_		
Extracted Water	125	bbl			
Volume	19873	L			
Location	Chloride (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (Ibs/day)
OB-1	16,200	321,942,600	710	710	355
SUMP-1	16,100	319,955,300	705	705	353
SUMP-2	14,600	290,145,800	640	640	320
OB-2	2,060	40,938,380	90	90	45
PUMP EFFLUENT	12,000	238,476,000	526	526	263

Period	5/21/08 - 6/9/08				
Sample Date	6/9/2008		_		
Extracted Water	771	bbl			
Volume	122579	L			
Location	Chloride (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (lbs/day)
OB-1	NS	-	-	710	-
SUMP-1	16,100	1,973,521,900	4,351	5,056	229
SUMP-2	18,500	2,267,711,500	4,999	5,639	263
OB-2	NS	-	-	90	-
PUMP EFFLUENT	21,300	2,610,932,700	5,756	6,282	303

Period	6/9/08 - 6/26/08]			
Sample Date	6/26/2008				
Extracted Water	760	bbl			
Volume	120830	L			
Location	Chloride (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (lbs/day)
OB-1	14,400	1,739,952,000	3,836	4,546	226
SUMP-1	18,600	2,247,438,000	4,955	10,011	291
SUMP-2	17,000	2,054,110,000	4,529	10,168	266
OB-2	16,600	2,005,778,000	4,422	4,512	260
PUMP EFFLUENT	17,900	2,162,857,000	4,768	11,050	280

Period	6/26/08 - 8/4/08				
Sample Date	8/4/2008				
Extracted Water	992	bbl			
Volume	157715	L			
Location	Chloride (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (lbs/day)
OB-1	17,400	2,744,241,000	6,050	10,596	155
SUMP-1	16,400	2,586,526,000	5,702	15,713	146
SUMP-2	18,900	2,980,813,500	6,572	16,739	169
OB-2	14,600	2,302,639,000	5,076	9,589	130
PUMP EFFLUENT	18,000	2,838,870,000	6,259	17,309	160

PUMP EFFLUENT Total Loading	17,309 lbs
PUMP EFFLUENT Loading Rate	225 lbs/day

<u>Notes</u>

- The extracted volume of water removed from 5/19/08 to 5/21/08 was approximated from the totalized flow meter reading on 5/21/08. The extracted volume of water removed from 5/21/08 to 6/9/08 was from the storage tank gauging data.

- NS = Not sampled

- L = liters

- mg = milligrams

- lbs = pounds

- bbl = barrels [US, petroleum]

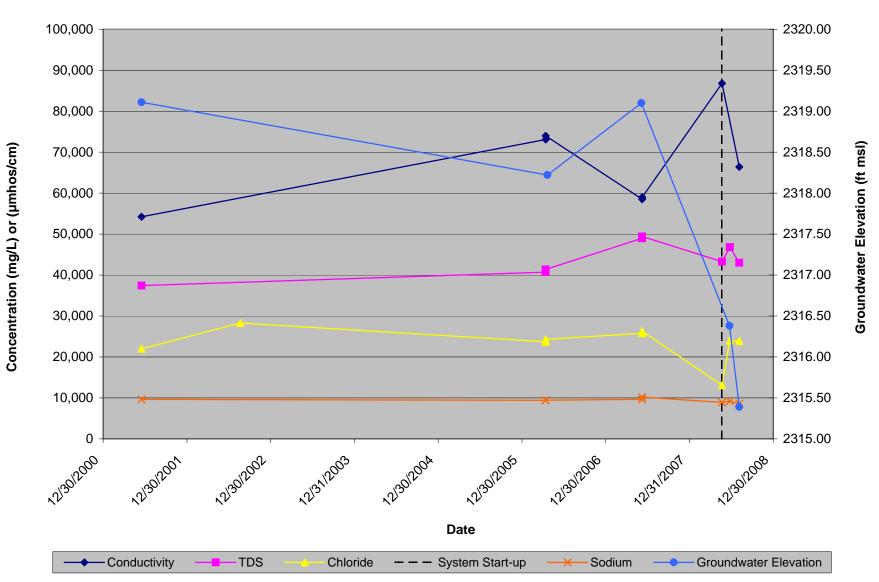
Table 6 - West O'Daniel Seep Recovery System TDS Loading Calculations

Period	5/19/08 - 5/21/08					
Sample Date	5/21/2008		_			
Extracted Water	125	bbl				
Volume	19873	L				
Location	TDS (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (lbs/day)	
OB-1	31,800	631,961,400	1,393	1,393	697	
SUMP-1	31,300	622,024,900	1,371	1,371	686	
SUMP-2	27,800	552,469,400	1,218	1,218	609	
OB-2	11,800	234,501,400	517	517	258	
PUMP EFFLUENT	29,600	588,240,800	1,297	1,297	648	

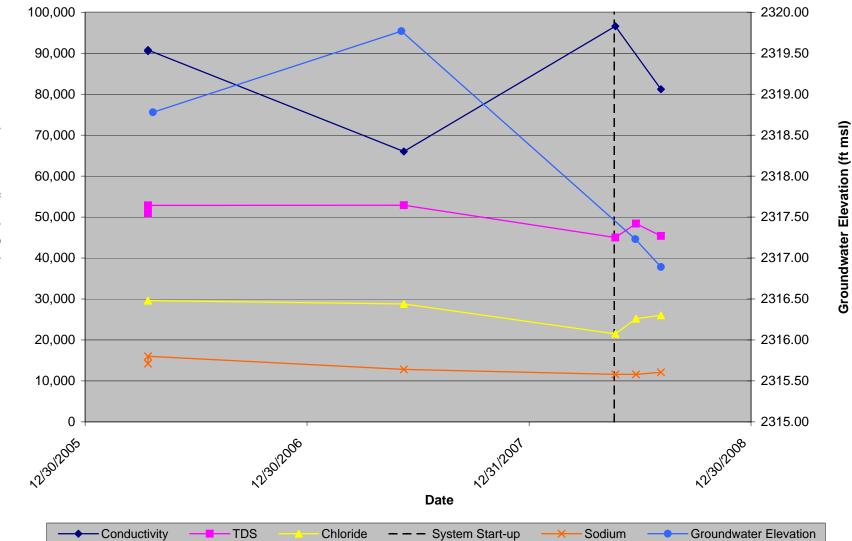
Period	5/21/08 - 6/9/08	ľ				
Sample Date	6/9/2008					
Extracted Water	771	bbl				
Volume	122579	L				
Location	TDS (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (lbs/day)	
OB-1	NS	-	-	1,393	-	
SUMP-1	31,300	3,836,722,700	8,459	9,830	445	
SUMP-2	34,000	4,167,686,000	9,188	10,406	484	
OB-2	NS	-	-	517	-	
PUMP EFFLUENT	38,400	4,707,033,600	10,377	11,674	546	

Period	6/9/08 - 6/26/08	Ī					
Sample Date	6/26/2008						
Extracted Water	760	bbl					
Volume	120830	L					
Location	TDS (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (lbs/day)		
OB-1	31,300	3,781,979,000	8,338	9,731	490		
SUMP-1	37,200	4,494,876,000	9,910	19,739	583		
SUMP-2	35,200	4,253,216,000	9,377	19,783	552		
OB-2	36,500	4,410,295,000	9,723	10,240	572		
PUMP EFFLUENT	36,000	4,349,880,000	9,590	21,264	564		

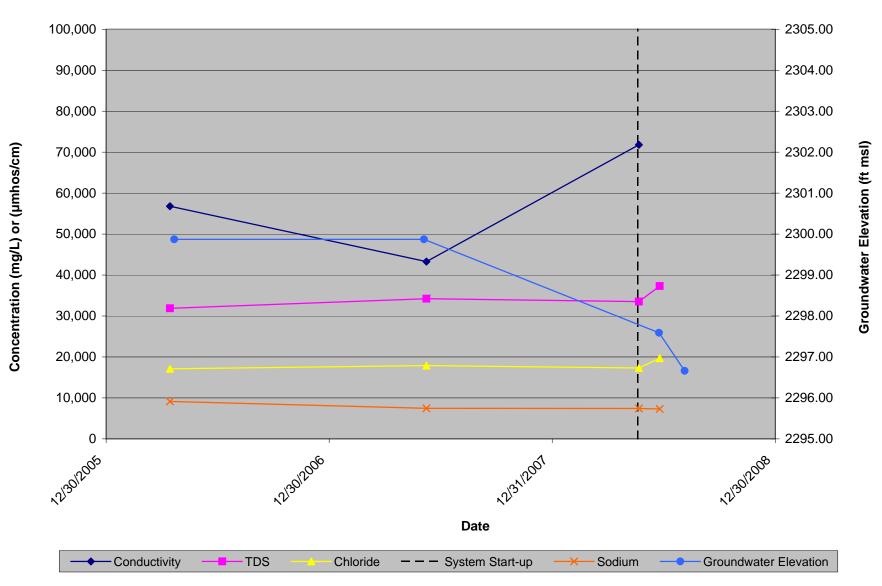
Period	6/26/08 - 8/4/08						
Sample Date	8/4/2008		_				
Extracted Water	992	bbl					
Volume	157715	L					
Location	TDS (mg/L)	Loading (mg)	Loading (lbs)	Cumulative Loading (lbs)	Loading Rate (lbs/day)		
OB-1	30,700	4,841,850,500	10,674	20,406	274		
SUMP-1	32,800	5,173,052,000	11,405	31,144	292		
SUMP-2	33,100	5,220,366,500	11,509	31,292	295		
OB-2	28,500	4,494,877,500	9,910	20,150	254		
PUMP EFFLUENT	34,900	5,504,253,500	12,135	33,399	311		

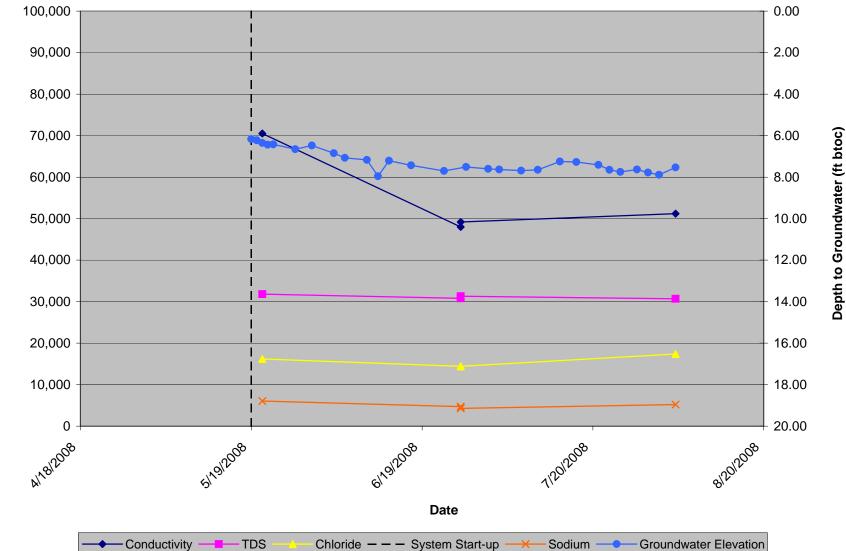

PUMP EFFLUENT Total Loading	33,399 lbs
PUMP EFFLUENT Loading Rate	434 lbs/day

Notes

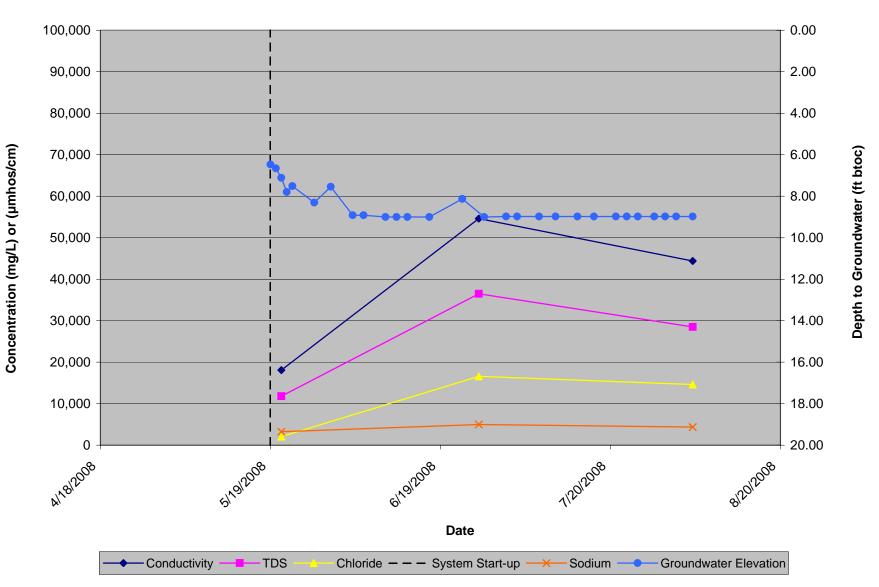

- The extracted volume of water removed from 5/19/08 to 5/21/08 was approximated from the totalized flow meter reading on 5/21/08. The extracted volume of water removed from 5/21/08 to 6/9/08 was from the storage tank gauging data.

- TDS = Total dissolved solids
- NS = Not sampled
- L = liters
- mg = milligrams
- lbs = pounds
- bbl = barrels [US, petroleum]

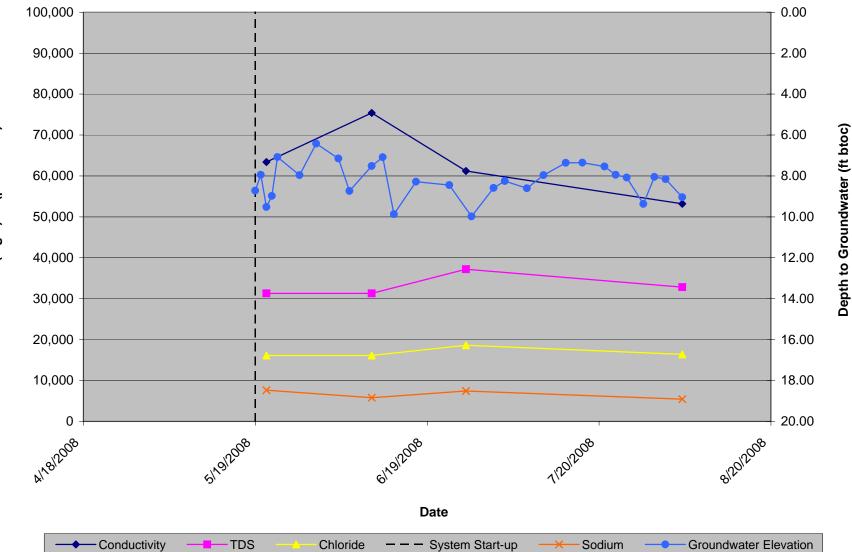

GRAPHS


GRAPH 1 - S-MW-02 CONCENTRATIONS AND GROUNDWATER ELEVATIONS

GRAPH 2 - S-MW-04 CONCENTRATIONS AND GROUNDWATER ELEVATIONS

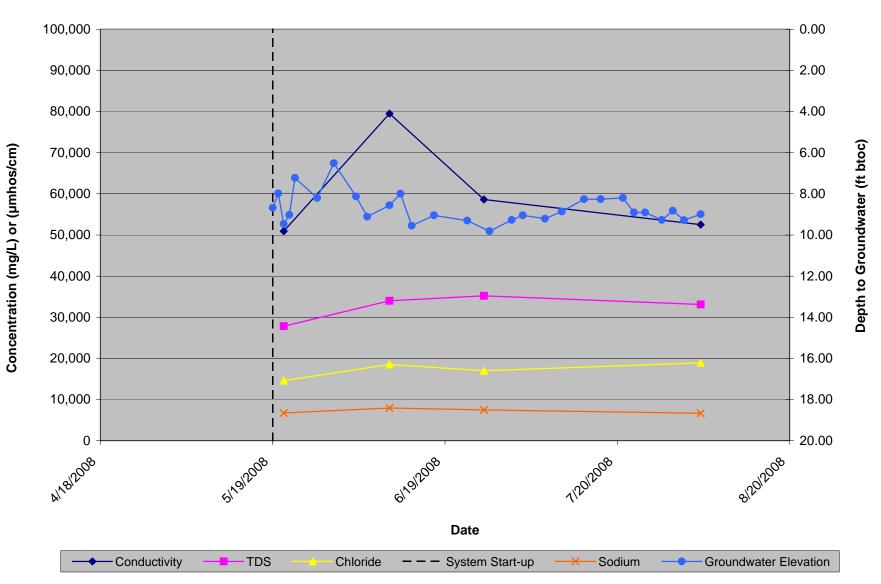


GRAPH 3 - S-MW-05 CONCENTRATIONS AND GROUNDWATER ELEVATIONS

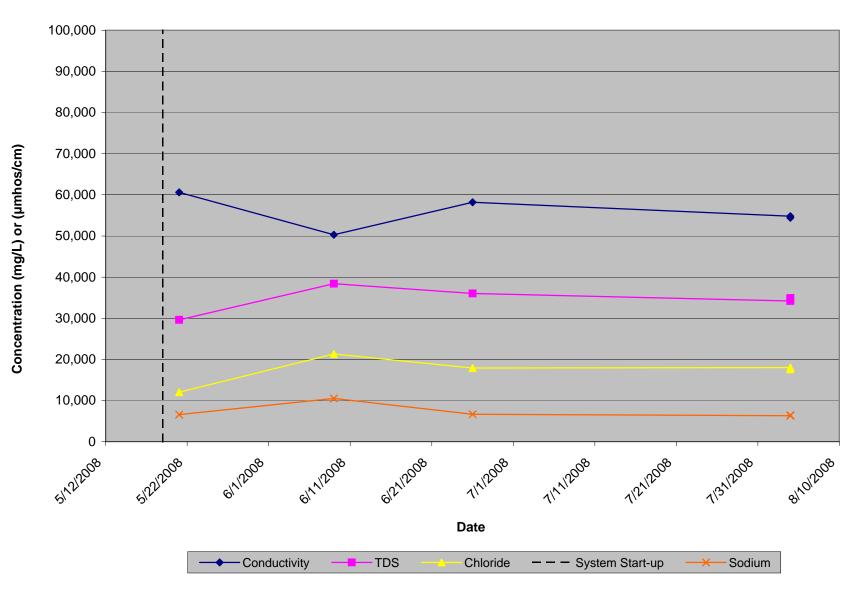


GRAPH 4 - OB-1 CONCENTRATIONS AND GROUNDWATER ELEVATIONS

Concentration (mg/L) or (µmhos/cm)

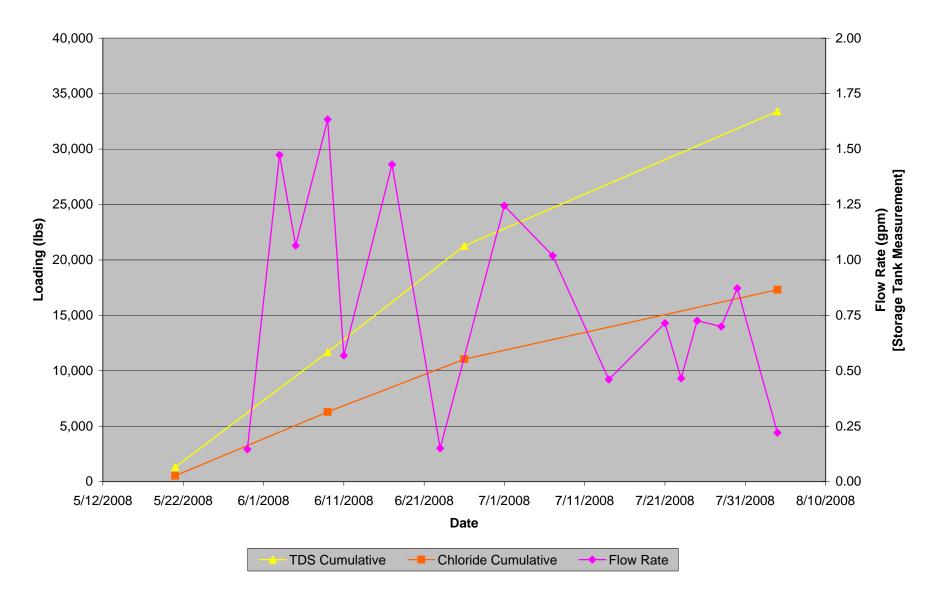


GRAPH 5 - OB-2 CONCENTRATIONS AND GROUNDWATER ELEVATIONS



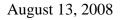
GRAPH 6 - SUMP-1 CONCENTRATIONS AND GROUNDWATER ELEVATIONS

Concentration (mg/L) or (µmhos/cm)



GRAPH 7 - SUMP-2 CONCENTRATIONS AND GROUNDWATER ELEVATIONS

GRAPH 8 - PUMP EFFLUENT CONCENTRATIONS


GRAPH 9 - PUMP EFFLUENT LOADING AND FLOW RATE

APPENDIX A

LABORATORY ANALYTICAL DATA REPORTS AND CHAIN-OF-CUSTODY FORMS

(NOTE: COPIES OF THE LABORATORY ANALYTICAL DATA ARE NOT INCLUDED IN THIS REPORT BUT ARE AVAIALBLE AT <u>HTTP://WWW.RRC.STATE.TX.US/DIVISIONS/OG/SITE_REM/NPS/UPPER/INDEX.HTML)</u>

Arsin Sahba TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752

Order No: 0808040

TEL: (512) 329-6080 FAX: (512) 329-8750

RE: RRC - West O'Daniel

Dear Arsin Sahba:

DHL Analytical received 8 sample(s) on 8/6/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John Duton

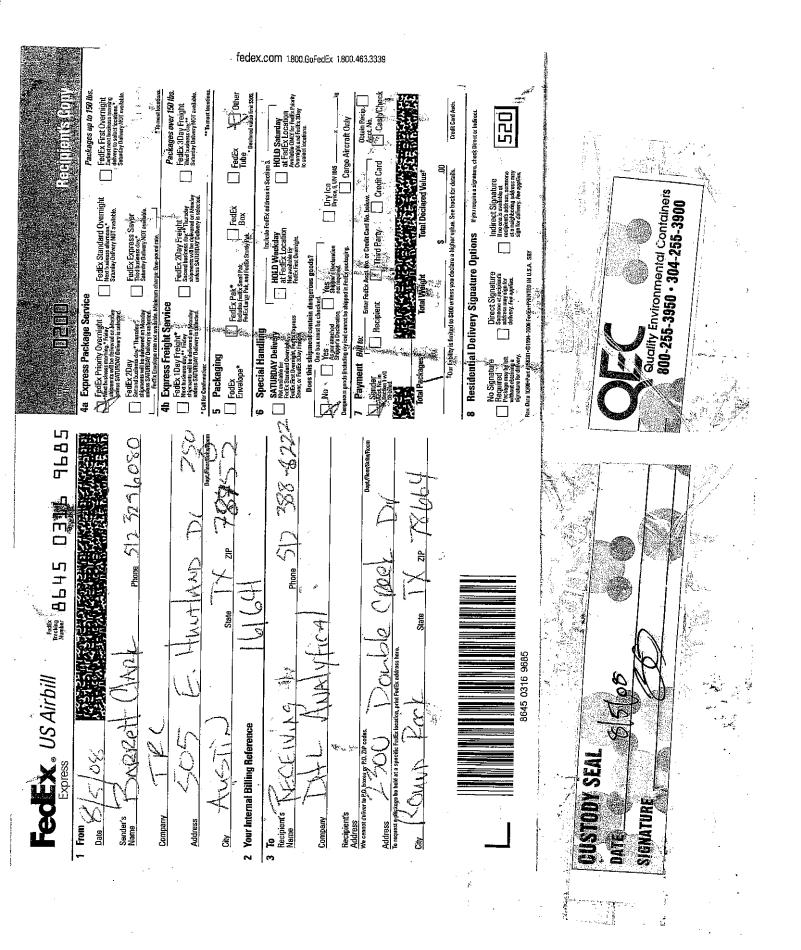
John DuPont Lab Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-08A-TX

Table of Contents

Miscellaneous Documents	3
Case Narrative	6
Sample Summary	7
Prep Dates Report	8
Analytical Dates Report	11
Sample Results	14
Analytical QC Summary Report	22

))]	E]]		_
_มเมนุขวงเนณจนพา	Α	N	Α	L	Y	Т	1	C	A	Ł


2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229

№ 29764 CHAIN-OF-CUSTODY

}

		ICA	L		· · /					<u> </u>																<u>1-0031001</u>
CLIENT:TR	С											D.	ATE:		8-4	+ -D	8								F	
ADDRESS: 505	<u> </u>	Hunfle	and	Dr	Ste 250	AU	ska	ŤΧ	78	75	2	PI	0 #:							DHL	NORI	< OR	DE	R#:	_6	9808040
PHONE: <u>57ኢ-32</u> DATA REPORTED TO:	19-6c	<u>80</u>	F	AX								PI	ROJE	CT LO	OCAT	rion	OR		ЛЕ:_	RR	C	we	st	01	Da	niel
ADDITIONAL REPORT		<u>-377 20</u>	(h Do																							BC/TK
						1					1						7	_			<i></i>		/			
Authorize 5% surcharge for TRRP report?	S=SC W=W A=All	ATER S	P=PAINT SL=SLU DT=OTH	DGE			PRI	ESEF	Т																(PHILE)	
□Yes 🛣o						iners		L HOeN		RVED		S.		1.00 1.00		2000 12 10 10 10 10 10 10 10 10 10 10 10 10 10		N.S.	E S						NIC CON	
Field	DHL				Container	# of Containers	Ю	HN0 [°]	- ∑	UNPRESERVED	MA			NO S												YOY OF Van P
Sample I.D.	Lab #	Date	Time	Matrix	Туре	*	Ī	TI		2 5	X	1& /	3/3/	\$\$/a	\$/\$	\$/\$ ^{\$} /.	\$Ž	\$X,	5}/4	ŧ/\$)/	\$]\$	18/	3)	$\langle \rangle$	<u> S</u> S	FIELD NOTES
																				¥						AlkaliNi+/=
5-08-01	01	3/1/08	1235	W		3		X	X	X										X		Ň	X	X	X	CARDONAIR +
S-SUMP-1		8/4/08	1250	W		3		X	X	X										X		ij	(X	X	X	bicarbourse
5-SUMP-2		8/4/09				3		X	X	X										X		X	$ \times$	(X	X	•
5-0B-02	04	8/4/08	1345	W		2		X X X	X	X										Ϋ́		12	(X	X	X	Not enough to'r 3 bolth
S-MW-02		8/4/08				3 3		X	X											X		X		$\langle x \rangle$	X	•
5-MW-04	a	8/4/08	1435	W				χ	X	X										X		X	X	X	X	
Pump Efflient	07	8/4/08	1450	W		3		X	X	X										X		12			X	
Pump Effluent -D	08	8/4/08	1450	6		3		X	X	(X										X		X	X	X	. X	
																									\vdash	** In accordance
																								Y		with Colorado River
																								K.		REC-TEC PAPP *
																								Γ		
										1													1			
TOTAL	1			<u>.</u>																				ĺ		
RELINQUISTED BY. SI	gnature)	_ 1		ME RE	ECEI	VED	BY: ((Sign	ature	; ;)			τι	JRN A	ROUI	ND '	тіме		BOR						~
RELINCOISHED BY: (SI	aneture		_\$[ME BE	CEN		BY: (<u>II</u> Sim	<u>ب</u>	X					CALI			RE	CEIV	NG T	EMP:	<u>3</u> ,	\mathcal{L}	~	THERM #:
1	Pec	(de	2	5/4/3	28 [0132	2	<		3	a	JU				AY 🗆 AY 🗆	CAL	LFI	RST	CL	ISTOE	Y SE	ALS ·	- 0	BRO	OKÊN	
RELINQUISHED BY: (Si	gnature)		DATE/TI	ME RE	ECEI	VED	BY: (Sign	ature	e)			NO	RMAL	٥			\mathcal{C}	CARR. APC D		ILL#		K	d	ep
<u>.</u>		O DHL DIS	SPOSAL	. @ \$5.0	0 each	O R	eturr	1						OTH	HER 1	x <u>3</u> ∙	-D	uj.		HAND			Đ			

.

Page 4 of 36

Sample Receipt Checklist

Client Name TRC Environmental Corp. Work Order Number 0808040 Date Received:

Received by JB

8/6/2008

8/6/58 Date (D) 8/4108 Barla Checklist completed by: Reviewed by Date

Carrier name: FedEx 1day

Shipping container/cooler in good condition?	Yes 🖌	No 🗌	Not Present
Custody seals intact on shippping container/cooler?	Yes	No 🗋	Not Present
Custody seals intact on sample bottles?	Yes	□ No □	Not Present
Chain of custody present?	Yes 🕨	Z No 🗌	
Chain of custody signed when relinquished and recei	ved? Yes 🛛	Z No 🗌	
Chain of custody agrees with sample labels?	Yes 🖢	🖌 No 🗌	
Samples in proper container/bottle?	Yes 🖌	No 🗆	
Sample containers intact?	Yes 🖌	No 🗌	
Sufficient sample volume for indicated test?	Yes 🖌	No 🗆	
All samples received within holding time?	Yes 🖌	No 🗌	
Container/Temp Blank temperature in compliance?	Yes 🖌	No 🗌	
Water - VOA vials have zero headspace?	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🖌	No 🗆	Not Applicable
Adju	sted? No	Checked by	93

Any No response must be detailed in the comments section below.

Client contacted		Person contacted	
Contacted by:	Regarding:		
Comments:			
Corrective Action			
· · · · · · · · · · · · · · · · · · ·			

Page 1 of 1

CLIENT:TRC Environmental Corp.CASE NARRATIVEProject:RRC - West O'DanielCASE NARRATIVELab Order:0808040CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method E300 - Anions Analyis Method SW6020 - Metals Analysis Method M2320 B (18th edition) - Alkalinity Analysis Method M2540C (18th edition) - TDS Analysis Method M2540 B (18th edition) - Specific Conductance

LOG IN

Samples were received and log-in performed on 8/6/08. A total of 8 samples were received. The samples arrived in good condition and were properly packaged.

METALS ANALYSIS

For Metals analysis performed on 8/7/08 the matrix spike and matrix spike duplicate recoveries were out of control limits for a few analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

DHL Analytical

=

Date: 08/13/08

_

CLIENT: Project: Lab Order:	TRC Environmen RRC - West O'Da 0808040	1	Work Order Sample Summary						
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recv'd					
0808040-01	S-OB-01		08/04/08 12:35 PM	08/06/08					
0808040-02	S-SUMP-1		08/04/08 12:50 PM	08/06/08					
0808040-03	S-SUMP-2		08/04/08 01:00 PM	08/06/08					
0808040-04	S-OB-02		08/04/08 01:45 PM	08/06/08					
0808040-05	S-MW-02		08/04/08 02:10 PM	08/06/08					
0808040-06	S-MW-04		08/04/08 02:35 PM	08/06/08					
0808040-07	Pump Effluent		08/04/08 02:50 PM	08/06/08					
0808040-08	Pump Effluent-D		08/04/08 02:50 PM	08/06/08					

CLIENT: Project: Lab Order:	TRC Environmental Corp. RRC - West O'Daniel 0808040		PREP DATES REPORT					
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID	
0808040-01A	S-OB-01	08/04/08 12:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-OB-01	08/04/08 12:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-OB-01	08/04/08 12:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-OB-01	08/04/08 12:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
0808040-01B	S-OB-01	08/04/08 12:35 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-OB-01	08/04/08 12:35 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-OB-01	08/04/08 12:35 PM	Aqueous	M2320 B	Alkalinity	08/07/08 01:02 PM	R39059	
0808040-01C	S-OB-01	08/04/08 12:35 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08	
	S-OB-01	08/04/08 12:35 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08	
0808040-02A	S-SUMP-1	08/04/08 12:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-SUMP-1	08/04/08 12:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-SUMP-1	08/04/08 12:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-SUMP-1	08/04/08 12:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
0808040-02B	S-SUMP-1	08/04/08 12:50 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-SUMP-1	08/04/08 12:50 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-SUMP-1	08/04/08 12:50 PM	Aqueous	M2320 B	Alkalinity	08/07/08 01:14 PM	R39059	
0808040-02C	S-SUMP-1	08/04/08 12:50 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08	
	S-SUMP-1	08/04/08 12:50 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08	
0808040-03A	S-SUMP-2	08/04/08 01:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-SUMP-2	08/04/08 01:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-SUMP-2	08/04/08 01:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-SUMP-2	08/04/08 01:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
0808040-03B	S-SUMP-2	08/04/08 01:00 PM	Aqueous	E300	Anions by IC method - Water	08/11/08	R39093	
	S-SUMP-2	08/04/08 01:00 PM	Aqueous	E300	Anions by IC method - Water	08/11/08	R39093	
	S-SUMP-2	08/04/08 01:00 PM	Aqueous	M2320 B	Alkalinity	08/07/08 01:30 PM	R39059	
0808040-03C	S-SUMP-2	08/04/08 01:00 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08	
	S-SUMP-2	08/04/08 01:00 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08	
0808040-04A	S-OB-02	08/04/08 01:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-OB-02	08/04/08 01:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
			-					

CLIENT: Project: Lab Order:	TRC Environmental Corp. RRC - West O'Daniel 0808040		PREP DATES REPORT					
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID	
	S-OB-02	08/04/08 01:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
0808040-04B	S-OB-02	08/04/08 01:45 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-OB-02	08/04/08 01:45 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-OB-02	08/04/08 01:45 PM	Aqueous	M2320 B	Alkalinity	08/07/08 01:44 PM	R39059	
	S-OB-02	08/04/08 01:45 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08	
	S-OB-02	08/04/08 01:45 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08	
0808040-05A	S-MW-02	08/04/08 02:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-MW-02	08/04/08 02:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-MW-02	08/04/08 02:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
0808040-05B	S-MW-02	08/04/08 02:10 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-MW-02	08/04/08 02:10 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-MW-02	08/04/08 02:10 PM	Aqueous	M2320 B	Alkalinity	08/07/08 01:51 PM	R39059	
0808040-05C	S-MW-02	08/04/08 02:10 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08	
	S-MW-02	08/04/08 02:10 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08	
0808040-06A	S-MW-04	08/04/08 02:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-MW-04	08/04/08 02:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-MW-04	08/04/08 02:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	S-MW-04	08/04/08 02:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
0808040-06B	S-MW-04	08/04/08 02:35 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-MW-04	08/04/08 02:35 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	S-MW-04	08/04/08 02:35 PM	Aqueous	M2320 B	Alkalinity	08/07/08 01:57 PM	R39059	
0808040-06C	S-MW-04	08/04/08 02:35 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08	
	S-MW-04	08/04/08 02:35 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08	
0808040-07A	Pump Effluent	08/04/08 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	Pump Effluent	08/04/08 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
	Pump Effluent	08/04/08 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240	
0808040-07B	Pump Effluent	08/04/08 02:50 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	Pump Effluent	08/04/08 02:50 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027	
	Pump Effluent	08/04/08 02:50 PM	Aqueous	E300	Anions by IC method - Water	08/11/08	R39093	

TRC Environmental Corp. RRC - West O'Daniel CLIENT: Project: Lab Order:

0808040

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
	Pump Effluent	08/04/08 02:50 PM	Aqueous	M2320 B	Alkalinity	08/07/08 02:11 PM	R39059
0808040-07C	Pump Effluent	08/04/08 02:50 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08
	Pump Effluent	08/04/08 02:50 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08
0808040-08A	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240
	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240
	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/06/08 12:10 PM	31240
0808040-08B	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027
	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	E300	Anions by IC method - Water	08/06/08	R39027
	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	E300	Anions by IC method - Water	08/11/08	R39093
	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	M2320 B	Alkalinity	08/07/08 02:20 PM	R39059
0808040-08C	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	M2510 B	Specific Conductance	08/07/08	CONDW-08/07/08
	Pump Effluent-D	08/04/08 02:50 PM	Aqueous	M2540C	Total Dissolved Solids	08/07/08	TDS_W-8/7/08

CLIENT: Project: Lab Order:		ronmental Corp est O'Daniel).		ANALYTICAL DATES REPORT					
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID		
0808040-01A	S-OB-01	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/06/08 06:17 PM	ICP-MS3_080806A		
	S-OB-01	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	10	08/07/08 08:40 PM	ICP-MS3_080807A		
	S-OB-01	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1	08/07/08 11:05 PM	ICP-MS3_080807A		
	S-OB-01	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/11/08 05:42 PM	ICP-MS3_080811A		
0808040-01B	S-OB-01	Aqueous	M2320 B	Alkalinity	R39059	1	08/07/08 01:02 PM	TITRATOR_080807B		
	S-OB-01	Aqueous	E300	Anions by IC method - Water	R39027	500	08/06/08 02:45 PM	IC2_080806A		
	S-OB-01	Aqueous	E300	Anions by IC method - Water	R39027	20	08/06/08 03:58 PM	IC2_080806A		
0808040-01C	S-OB-01	Aqueous	M2510 B	Specific Conductance	CONDW-08/07/08	5	08/07/08 11:40 AM	WC_080807A		
	S-OB-01	Aqueous	M2540C	Total Dissolved Solids	TDS_W-8/7/08	1	08/07/08 02:30 PM	WC_080807B		
0808040-02A	S-SUMP-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/06/08 06:22 PM	ICP-MS3_080806A		
	S-SUMP-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	10	08/07/08 08:45 PM	ICP-MS3_080807A		
	S-SUMP-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1	08/07/08 11:10 PM	ICP-MS3_080807A		
	S-SUMP-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/11/08 05:47 PM	ICP-MS3_080811A		
0808040-02B	S-SUMP-1	Aqueous	M2320 B	Alkalinity	R39059	1	08/07/08 01:14 PM	TITRATOR_080807B		
	S-SUMP-1	Aqueous	E300	Anions by IC method - Water	R39027	10	08/06/08 03:00 PM	IC2_080806A		
	S-SUMP-1	Aqueous	E300	Anions by IC method - Water	R39027	500	08/06/08 05:27 PM	IC2_080806A		
0808040-02C	S-SUMP-1	Aqueous	M2510 B	Specific Conductance	CONDW-08/07/08	5	08/07/08 11:40 AM	WC_080807A		
	S-SUMP-1	Aqueous	M2540C	Total Dissolved Solids	TDS_W-8/7/08	1	08/07/08 02:30 PM	WC_080807B		
0808040-03A	S-SUMP-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	5	08/08/08 01:23 PM	ICP-MS2_080808A		
	S-SUMP-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/06/08 08:21 PM	ICP-MS3_080806A		
	S-SUMP-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1	08/07/08 11:15 PM	ICP-MS3_080807A		
	S-SUMP-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/11/08 10:59 PM	ICP-MS3_080811A		
0808040-03B	S-SUMP-2	Aqueous	M2320 B	Alkalinity	R39059	1	08/07/08 01:30 PM	TITRATOR_080807B		
	S-SUMP-2	Aqueous	E300	Anions by IC method - Water	R39093	500	08/11/08 12:15 PM	IC2_080811A		
	S-SUMP-2	Aqueous	E300	Anions by IC method - Water	R39093	20	08/11/08 12:30 PM	IC2_080811A		
0808040-03C	S-SUMP-2	Aqueous	M2510 B	Specific Conductance	CONDW-08/07/08	5	08/07/08 11:40 AM	WC_080807A		
	S-SUMP-2	Aqueous	M2540C	Total Dissolved Solids	TDS_W-8/7/08	1	08/07/08 02:30 PM	WC_080807B		
0808040-04A	S-OB-02	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	5	08/08/08 01:29 PM	ICP-MS2_080808A		
	S-OB-02	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/06/08 08:27 PM	ICP-MS3_080806A		

CLIENT: TRC Environmental Corp. ANALYTICAL DATES REPORT RRC - West O'Daniel Project: Lab Order: 0808040 Sample ID **Client Sample ID** Matrix Test Number Test Name Batch ID Dilution Analysis Date Run ID S-OB-02 Aqueous SW6020 Trace Metals: ICP-MS - Water 31240 1 08/07/08 11:20 PM ICP-MS3 080807A 0808040-04B S-OB-02 Aqueous M2320 B Alkalinity R39059 1 08/07/08 01:44 PM TITRATOR 080807B E300 S-OB-02 Aqueous Anions by IC method - Water R39027 20 08/06/08 03:29 PM IC2_080806A S-OB-02 E300 R39027 500 08/06/08 05:56 PM IC2_080806A Aqueous Anions by IC method - Water S-OB-02 M2510 B CONDW-08/07/08 5 WC 080807A Specific Conductance 08/07/08 11:40 AM Aqueous S-OB-02 Aqueous M2540C Total Dissolved Solids TDS_W-8/7/08 1 08/07/08 02:30 PM WC_080807B 0808040-05A S-MW-02 SW6020 Trace Metals: ICP-MS - Water 31240 1000 08/06/08 08:32 PM ICP-MS3 080806A Aqueous S-MW-02 SW6020 Trace Metals: ICP-MS - Water 31240 10 08/07/08 08:50 PM ICP-MS3 080807A Aqueous SW6020 31240 1000 S-MW-02 Aqueous Trace Metals: ICP-MS - Water 08/11/08 11:04 PM ICP-MS3_080811A 0808040-05B S-MW-02 Aqueous M2320 B Alkalinity R39059 1 08/07/08 01:51 PM TITRATOR 080807B 100 S-MW-02 E300 Anions by IC method - Water R39027 08/06/08 03:44 PM IC2 080806A Aqueous S-MW-02 E300 R39027 1000 IC2_080806A Aqueous Anions by IC method - Water 08/06/08 06:11 PM 0808040-05C S-MW-02 M2510 B Specific Conductance CONDW-08/07/08 5 08/07/08 11:40 AM WC_080807A Aqueous S-MW-02 M2540C Total Dissolved Solids Aqueous TDS_W-8/7/08 1 08/07/08 02:30 PM WC_080807B 0808040-06A S-MW-04 SW6020 Trace Metals: ICP-MS - Water 31240 100 08/08/08 01:34 PM ICP-MS2_080808A Aqueous S-MW-04 Aqueous SW6020 Trace Metals: ICP-MS - Water 31240 1000 08/06/08 08:37 PM ICP-MS3 080806A S-MW-04 SW6020 31240 2000 Aqueous Trace Metals: ICP-MS - Water 08/07/08 01:02 PM ICP-MS3 080807A Aqueous SW6020 31240 1 S-MW-04 Trace Metals: ICP-MS - Water 08/07/08 11:25 PM ICP-MS3_080807A 0808040-06B S-MW-04 M2320 B Alkalinity R39059 1 08/07/08 01:57 PM TITRATOR_080807B Aqueous S-MW-04 E300 Anions by IC method - Water R39027 100 08/06/08 04:28 PM IC2_080806A Aqueous S-MW-04 Aqueous E300 Anions by IC method - Water R39027 500 08/06/08 06:26 PM IC2 080806A 0808040-06C S-MW-04 M2510 B Specific Conductance CONDW-08/07/08 25 08/07/08 11:40 AM WC 080807A Aqueous M2540C S-MW-04 Total Dissolved Solids TDS_W-8/7/08 1 08/07/08 02:30 PM WC_080807B Aqueous 0808040-07A SW6020 31240 5 ICP-MS2_080808A Pump Effluent Aqueous Trace Metals: ICP-MS - Water 08/08/08 01:39 PM 1000 Pump Effluent Aqueous SW6020 Trace Metals: ICP-MS - Water 31240 08/06/08 08:42 PM ICP-MS3 080806A Pump Effluent Aqueous SW6020 Trace Metals: ICP-MS - Water 31240 1 08/07/08 11:30 PM ICP-MS3 080807A 0808040-07B M2320 B R39059 1 Pump Effluent Alkalinity 08/07/08 02:11 PM TITRATOR_080807B Aqueous Pump Effluent E300 Anions by IC method - Water R39027 100 08/06/08 04:59 PM IC2_080806A Aqueous Pump Effluent Aqueous E300 Anions by IC method - Water R39027 500 08/06/08 06:40 PM IC2 080806A

CLIENT: Project: Lab Order:		ronmental Corp est O'Daniel	ANALYTICAL DATES REPORT					
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
	Pump Effluent	Aqueous	E300	Anions by IC method - Water	R39093	500	08/11/08 12:44 PM	IC2_080811A
0808040-07C	Pump Effluent	Aqueous	M2510 B	Specific Conductance	CONDW-08/07/08	5	08/07/08 11:40 AM	WC_080807A
	Pump Effluent	Aqueous	M2540C	Total Dissolved Solids	TDS_W-8/7/08	1	08/07/08 02:30 PM	WC_080807B
0808040-08A	Pump Effluent-D	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	5	08/08/08 01:45 PM	ICP-MS2_080808A
	Pump Effluent-D	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1000	08/06/08 08:47 PM	ICP-MS3_080806A
	Pump Effluent-D	Aqueous	SW6020	Trace Metals: ICP-MS - Water	31240	1	08/07/08 11:35 PM	ICP-MS3_080807A
0808040-08B	Pump Effluent-D	Aqueous	M2320 B	Alkalinity	R39059	1	08/07/08 02:20 PM	TITRATOR_080807B
	Pump Effluent-D	Aqueous	E300	Anions by IC method - Water	R39027	100	08/06/08 05:13 PM	IC2_080806A
	Pump Effluent-D	Aqueous	E300	Anions by IC method - Water	R39027	500	08/06/08 06:55 PM	IC2_080806A
	Pump Effluent-D	Aqueous	E300	Anions by IC method - Water	R39093	500	08/11/08 12:59 PM	IC2_080811A
0808040-08C	Pump Effluent-D	Aqueous	M2510 B	Specific Conductance	CONDW-08/07/08	5	08/07/08 11:40 AM	WC_080807A
	Pump Effluent-D	Aqueous	M2540C	Total Dissolved Solids	TDS_W-8/7/08	1	08/07/08 02:30 PM	WC_080807B

Date	08/13/08
Date.	00/15/00

CLIENT:TRC EnvironmeProject:RRC - West O'DProject No:161641Lab Order:0808040		÷			Client Sample ID: Lab ID: Collection Date: Matrix:		S-OB-01 0808040-01 08/04/08 12:35 PM Aqueous	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: I	CP-MS - Water	SV	W6020					Analyst: AJR
Barium		0.289	0.00300	0.0100		mg/L	1	08/07/08 11:05 PM
Calcium		2590	100	100		mg/L	1000	08/11/08 05:42 PM
Iron		15.2	0.500	1.00		mg/L	10	08/07/08 08:40 PM
Magnesium		820	100	100		mg/L	1000	08/11/08 05:42 PM
Potassium		15.9	1.00	1.00		mg/L	10	08/07/08 08:40 PM
Sodium		5190	100	100		mg/L	1000	08/11/08 05:42 PM
Anions by IC n	nethod - Water	E	300					Analyst: JBC
Chloride		17400	150	500		mg/L	500	08/06/08 02:45 PM
Sulfate		1610	20.0	60.0		mg/L	20	08/06/08 03:58 PM
Alkalinity		Μ	2320 B					Analyst: SW
Alkalinity, Bicarb	oonate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:02 PM
Alkalinity, Carbo	nate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:02 PM
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:02 PM
Alkalinity, Total	(As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:02 PM
Specific Condu	ictance	Μ	2510 B					Analyst: SW
Specific Conducta	ance	51200	50.0	50.0		µmhos/cm	5	08/07/08 11:40 AM
Total Dissolved	d Solids	Μ	2540C					Analyst: SW
Total Dissolved S	olids (Residue, Filterable)	30700	10.0	10.0		mg/L	1	08/07/08 02:30 PM

Date: 08/13/08

CLIENT:TRC EnvironmenProject:RRC - West O'DaProject No:161641Lab Order:0808040		-			Client Sample ID: Lab ID: Collection Date: Matrix:		S-SUMP-1 0808040-02 08/04/08 12:50 PM Aqueous		
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
Trace Metals: I	CP-MS - Water	SV	W6020					Analyst: AJR	
Barium		0.423	0.00300	0.0100		mg/L	1	08/07/08 11:10 PM	
Calcium		2540	100	100		mg/L	1000	08/11/08 05:47 PM	
Iron		19.3	0.500	1.00		mg/L	10	08/07/08 08:45 PM	
Magnesium		703	100	100		mg/L	1000	08/06/08 06:22 PM	
Potassium		14.7	1.00	1.00		mg/L	10	08/07/08 08:45 PM	
Sodium		5420	100	100		mg/L	1000	08/11/08 05:47 PM	
Anions by IC n	nethod - Water	E	300					Analyst: JBC	
Chloride		16400	150	500		mg/L	500	08/06/08 05:27 PM	
Sulfate		1380	10.0	30.0		mg/L	10	08/06/08 03:00 PM	
Alkalinity		Μ	2320 B					Analyst: SW	
Alkalinity, Bicarb	oonate (As CaCO3)	310	10.0	20.0		mg/L	1	08/07/08 01:14 PM	
Alkalinity, Carbo	nate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:14 PM	
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:14 PM	
Alkalinity, Total	(As CaCO3)	310	10.0	20.0		mg/L	1	08/07/08 01:14 PM	
Specific Condu	ictance	Μ	2510 B					Analyst: SW	
Specific Conducta	ance	53200	50.0	50.0		µmhos/cm	5	08/07/08 11:40 AM	
Total Dissolved	d Solids	Μ	2540C					Analyst: SW	
Total Dissolved S	olids (Residue, Filterable)	32800	10.0	10.0		mg/L	1	08/07/08 02:30 PM	

CLIENT:TRC Environme:Project:RRC - West O'DProject No:161641Lab Order:0808040		-			Client Sample ID: Lab ID: Collection Date: Matrix:		S-SUMP-2 0808040-03 08/04/08 01:00 PM Aqueous	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: 1	ICP-MS - Water	S	W6020					Analyst: AJR
Barium		1.11	0.00300	0.0100		mg/L	1	08/07/08 11:15 PM
Calcium		2200	100	100		mg/L	1000	08/11/08 10:59 PM
Iron		17.4	0.250	0.500		mg/L	5	08/08/08 01:23 PM
Magnesium		615	100	100		mg/L	1000	08/06/08 08:21 PM
Potassium		13.0	0.500	0.500		mg/L	5	08/08/08 01:23 PM
Sodium		6670	100	100		mg/L	1000	08/11/08 10:59 PM
Anions by IC n	nethod - Water	Ε	300					Analyst: JBC
Chloride		18900	150	500		mg/L	500	08/11/08 12:15 PM
Sulfate		1780	20.0	60.0		mg/L	20	08/11/08 12:30 PM
Alkalinity		\mathbf{N}	I2320 B					Analyst: SW
Alkalinity, Bicarb	ponate (As CaCO3)	445	10.0	20.0		mg/L	1	08/07/08 01:30 PM
Alkalinity, Carbo	nate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:30 PM
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:30 PM
Alkalinity, Total	(As CaCO3)	445	10.0	20.0		mg/L	1	08/07/08 01:30 PM
Specific Condu	ictance	Ν	I2510 B					Analyst: SW
Specific Conduct	ance	52500	50.0	50.0		µmhos/cm	5	08/07/08 11:40 AM
Total Dissolved	d Solids	Ν	I2540C					Analyst: SW
Total Dissolved S	Solids (Residue, Filterable)	33100	10.0	10.0		mg/L	1	08/07/08 02:30 PM

DHL	Analytical
-----	------------

Date:	08/13/08

CLIENT:TRC EnvironmentProject:RRC - West O'DProject No:161641Lab Order:0808040		-			Client Sample ID: Lab ID: Collection Date: Matrix:		S-OB-02 0808040-04 08/04/08 01:45 PM Aqueous	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: 1	CP-MS - Water	S	W6020					Analyst: AJR
Barium		0.760	0.00300	0.0100		mg/L	1	08/07/08 11:20 PM
Calcium		2800	100	100		mg/L	1000	08/06/08 08:27 PM
Iron		35.1	0.250	0.500		mg/L	5	08/08/08 01:29 PM
Magnesium		806	100	100		mg/L	1000	08/06/08 08:27 PM
Potassium		13.8	0.500	0.500		mg/L	5	08/08/08 01:29 PM
Sodium		4360	100	100		mg/L	1000	08/06/08 08:27 PM
Anions by IC n	nethod - Water	E	300					Analyst: JBC
Chloride		14600	150	500		mg/L	500	08/06/08 05:56 PM
Sulfate		1300	20.0	60.0		mg/L	20	08/06/08 03:29 PM
Alkalinity		Μ	2320 B					Analyst: SW
Alkalinity, Bicarb	oonate (As CaCO3)	431	10.0	20.0		mg/L	1	08/07/08 01:44 PM
Alkalinity, Carbo	nate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:44 PM
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:44 PM
Alkalinity, Total	(As CaCO3)	431	10.0	20.0		mg/L	1	08/07/08 01:44 PM
Specific Condu	ictance	Μ	2510 B					Analyst: SW
Specific Conduct	ance	44400	50.0	50.0		µmhos/cm	5	08/07/08 11:40 AM
Fotal Dissolved	d Solids	Μ	2540C					Analyst: SW
Total Dissolved S	olids (Residue, Filterable)	28500	10.0	10.0		mg/L	1	08/07/08 02:30 PM

Date:	08/13/08

CLIENT:TRC EnvironmentProject:RRC - West O'DProject No:161641Lab Order:0808040		-			Client Sample ID: Lab ID: Collection Date: Matrix:		S-MW-02 0808040-05 08/04/08 02:10 PM Aqueous	
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: I	CP-MS - Water	SV	W6020					Analyst: AJR
Barium		0.124	0.0300	0.100		mg/L	10	08/07/08 08:50 PM
Calcium		3120	100	100		mg/L	1000	08/11/08 11:04 PM
Iron		3.98	0.500	1.00		mg/L	10	08/07/08 08:50 PM
Magnesium		856	100	100		mg/L	1000	08/06/08 08:32 PM
Potassium		26.0	1.00	1.00		mg/L	10	08/07/08 08:50 PM
Sodium		8590	100	100		mg/L	1000	08/11/08 11:04 PM
Anions by IC n	nethod - Water	E	300					Analyst: JBC
Chloride		23900	300	1000		mg/L	1000	08/06/08 06:11 PM
Sulfate		2170	100	300		mg/L	100	08/06/08 03:44 PM
Alkalinity		Μ	2320 B					Analyst: SW
Alkalinity, Bicarb	oonate (As CaCO3)	197	10.0	20.0		mg/L	1	08/07/08 01:51 PM
Alkalinity, Carbo	nate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:51 PM
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:51 PM
Alkalinity, Total	(As CaCO3)	197	10.0	20.0		mg/L	1	08/07/08 01:51 PM
Specific Condu	ictance	Μ	2510 B					Analyst: SW
Specific Conduct	ance	66400	50.0	50.0		µmhos/cm	5	08/07/08 11:40 AM
Total Dissolved	d Solids	Μ	2540C					Analyst: SW
Total Dissolved S	Solids (Residue, Filterable)	43000	10.0	10.0		mg/L	1	08/07/08 02:30 PM

*

J

S

Date:	08/13/08

CLIENT: Project: Project No: Lab Order:	TRC Environmen RRC - West O'Da 161641 0808040	-		Client Sa Lab ID: Collectio Matrix:	-	S-MW-04 0808040-06 08/04/08 02:35 PM Aqueous			
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
Trace Metals: ICP-MS - Water		S	W6020					Analyst: AJR	
Barium		0.191	0.00300	0.0100		mg/L	1	08/07/08 11:25 PM	
Calcium		2450	100	100		mg/L	1000	08/06/08 08:37 PM	
Iron		4.02	0.0500	0.100		mg/L	1	08/07/08 11:25 PM	
Magnesium		548	100	100		mg/L	1000	08/06/08 08:37 PM	
Potassium		180	10.0	10.0		mg/L	100	08/08/08 01:34 PM	
Sodium		12100	200	200		mg/L	2000	08/07/08 01:02 PM	
Anions by IC n	nethod - Water	E	300					Analyst: JBC	
Chloride		26000	150	500		mg/L	500	08/06/08 06:26 PM	
Sulfate		2490	100	300		mg/L	100	08/06/08 04:28 PM	
Alkalinity		Μ	2320 B					Analyst: SW	
Alkalinity, Bicarb	oonate (As CaCO3)	116	10.0	20.0		mg/L	1	08/07/08 01:57 PM	
Alkalinity, Carbo	nate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:57 PM	
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 01:57 PM	
Alkalinity, Total	(As CaCO3)	116	10.0	20.0		mg/L	1	08/07/08 01:57 PM	
Specific Condu	ictance	Μ	2510 B					Analyst: SW	
Specific Conduct	ance	81200	250	250		µmhos/cm	25	08/07/08 11:40 AM	
Total Dissolved	d Solids	Μ	2540C					Analyst: SW	
Total Dissolved S	olids (Residue, Filterable)	45400	10.0	10.0		mg/L	1	08/07/08 02:30 PM	

*

J

DHL	Analy	ytical
-----	-------	--------

Date: 08/13/08

Analyses Result MDL RL Qual Units DF Trace Metals: ICP-MS - Water SW6020 1 Barium 0.272 0.00300 0.0100 mg/L 1 Calcium 2380 100 100 mg/L 1000 Iron 4.51 0.0500 0.100 mg/L 1 Magnesium 667 100 100 mg/L 1000 Potassium 12.0 0.500 0.500 mg/L 5	4/08 02:50 PM cous
Barium0.2720.003000.0100mg/L1Calcium2380100100mg/L1000Iron4.510.05000.100mg/L1Magnesium667100100mg/L1000	Date Analyzed
Calcium 2380 100 100 mg/L 1000 Iron 4.51 0.0500 0.100 mg/L 1 Magnesium 667 100 100 mg/L 1000	Analyst: AJR
Iron 4.51 0.0500 0.100 mg/L 1 Magnesium 667 100 100 mg/L 100	08/07/08 11:30 PM
Magnesium 667 100 100 mg/L 1000	08/06/08 08:42 PM
	08/07/08 11:30 PM
Potassium 12.0 0.500 0.500 mg/L 5	08/06/08 08:42 PM
	08/08/08 01:39 PM
Sodium 6310 100 100 mg/L 1000	08/06/08 08:42 PM
Anions by IC method - Water E300	Analyst: JBC
Chloride 18000 150 500 mg/L 500	08/11/08 12:44 PM
Sulfate 1750 500 1500 mg/L 500	08/11/08 12:44 PM
Alkalinity M2320 B	Analyst: SW
Alkalinity, Bicarbonate (As CaCO3) 236 10.0 20.0 mg/L 1	08/07/08 02:11 PM
Alkalinity, Carbonate (As CaCO3) ND 10.0 20.0 mg/L 1	08/07/08 02:11 PM
Alkalinity, Hydroxide (As CaCO3) ND 10.0 20.0 mg/L 1	08/07/08 02:11 PM
Alkalinity, Total (As CaCO3) 236 10.0 20.0 mg/L 1	08/07/08 02:11 PM
Specific Conductance M2510 B	Analyst: SW
Specific Conductance 54800 50.0 50.0 µmhos/cm 5	08/07/08 11:40 AM
Total Dissolved Solids M2540C	Amalauda CIM
Total Dissolved Solids (Residue, Filterable) 34200 10.0 10.0 mg/L 1	Analyst: SW

Qualifiers:

*

J Analyte detected between MDL and RL MDL Method Detection Limit Parameter not NELAC certified Ν ND Not Detected at the Method Detection Limit RL Reporting Limit Spike Recovery outside control limits S

DHL .	Analy	vtical
-------	-------	--------

Date: 08/13/08

CLIENT: Project: Project No: Lab Order:	TRC Environmen RRC - West O'Da 161641 0808040	-		Client Sa Lab ID: Collectio Matrix:	-	Pump Effluent-D 0808040-08 08/04/08 02:50 PM Aqueous			
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	
Trace Metals: ICP-MS - Water		SV	W6020					Analyst: AJR	
Barium		0.282	0.00300	0.0100		mg/L	1	08/07/08 11:35 PM	
Calcium		2480	100	100		mg/L	1000	08/06/08 08:47 PM	
Iron		4.66	0.0500	0.100		mg/L	1	08/07/08 11:35 PM	
Magnesium		687	100	100		mg/L	1000	08/06/08 08:47 PM	
Potassium		12.6	0.500	0.500		mg/L	5	08/08/08 01:45 PM	
Sodium		6430	100	100		mg/L	1000	08/06/08 08:47 PM	
Anions by IC me	ethod - Water	E	300					Analyst: JBC	
Chloride		17600	150	500		mg/L	500	08/11/08 12:59 PM	
Sulfate		1640	500	1500		mg/L	500	08/11/08 12:59 PM	
Alkalinity		Μ	2320 B					Analyst: SW	
Alkalinity, Bicarbo	nate (As CaCO3)	240	10.0	20.0		mg/L	1	08/07/08 02:20 PM	
Alkalinity, Carbona	ate (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 02:20 PM	
Alkalinity, Hydroxi	ide (As CaCO3)	ND	10.0	20.0		mg/L	1	08/07/08 02:20 PM	
Alkalinity, Total (A	as CaCO3)	240	10.0	20.0		mg/L	1	08/07/08 02:20 PM	
Specific Conduc	tance	Μ	2510 B					Analyst: SW	
Specific Conductan	ice	54400	50.0	50.0		µmhos/cm	5	08/07/08 11:40 AM	
Total Dissolved	Solids	Μ	2540C					Analyst: SW	
Total Dissolved Sol	lids (Residue, Filterable)	34900	10.0	10.0		mg/L	1	08/07/08 02:30 PM	

Qualifiers:

*

J Analyte detected between MDL and RL MDL Method Detection Limit Parameter not NELAC certified Ν ND Not Detected at the Method Detection Limit RL Reporting Limit Spike Recovery outside control limits S

CLIENT: Work Orde Project:	er: 0808040	vironmental Con Vest O'Daniel	р.		ANALYTICAL QC SUMMARY REPOR RunID: ICP-MS2_080808								
Sample ID:	ICV1-080808	Batch ID:	R39078		TestNo:	_	SW6020		Units:	mg/L			
SampType:	ICV	Run ID:	Run ID: ICP-MS2_08080		A Analysis Date: 08/08/08			01:07 PM Prep		Date:			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual			
Iron		2.64	0.100	2.50	0	105	90	110					
Potassium		2.43	0.100	2.50	0	97.4	90	110					
Sample ID:	CCV1-080808	Batch ID:	R39078		TestNo:		SW6020		Units:	mg/L			
SampType:	CCV	Run ID:	ICP-MS2_	_080808A	Analysis	Date:	08/08/08 02	2:06 PM	Prep D	ate:			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual			
Iron		4.85	0.100	5.00	0	97.1	90	110					
Potassium		4.93	0.100	5.00	0	98.6	90	110					

Qualifiers:

- В Analyte detected in the associated Method Blank DF **Dilution Factor**
 - J Analyte detected between MDL and RL MDL Method Detection Limit
 - ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- Spike Recovery outside control limits Analyte detected between SDL and RL S J
- Parameter not NELAC certified Ν

CLIENT: Work Orde Project:	r: 0808040 RRC - We	ANALYTICAL QC SUMMARY REPORT RunID: ICP-MS3_080806A									
Sample ID:	MB-31240	Batch ID:	31240		TestNo:		SW6020		Units:		mg/L
SampType:	MBLK	Run ID:	ICP-MS3_		Analysis l		08/06/08 05		Prep D		08/06/08
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Barium		ND	0.0100								
Calcium		ND	0.100								
Iron		ND	0.100								
Magnesium		ND	0.100								
Potassium		ND	0.100								
Sodium		ND	0.100								
Sample ID:	LCS-31240	Batch ID:	31240		TestNo:		SW6020		Units:		mg/L
SampType:	LCS	Run ID:	ICP-MS3_	080806A	Analysis I	Date:	08/06/08 05	5:34 PM	Prep D	Date:	08/06/08
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Barium		0.182	0.0100	0.200	0	91.0	80	120			
Calcium		4.45	0.100	5.00	0	89.1	80	120			
Iron		4.57	0.100	5.00	0	91.4	80	120			
Magnesium		4.32	0.100	5.00	0	86.3	80	120			
Potassium		4.70	0.100	5.00	0	94.0	80	120			
Sodium		4.26	0.100	5.00	0	85.3	80	120			
Sample ID:	LCSD-31240	Batch ID:	31240		TestNo:		SW6020		Units:		mg/L
SampType:	LCSD	Run ID:	ICP-MS3	080806A	Analysis l	Date:	08/06/08 05	5:39 PM	Prep D	Date:	08/06/08
Analyte		Result	RL –	SPK value	Ref Val		LowLimit	HighLimit	%RPD		Limit Qual
Barium		0.181	0.0100	0.200	0	90.5	80	120	0.606	15	-
Calcium		4.39	0.100	5.00	0	87.8	80	120	1.42	15	
Iron		4.52	0.100	5.00	0	90.4	80	120	1.19	15	
Magnesium		4.34	0.100	5.00	0	86.8	80	120	0.531	15	
Potassium		4.67	0.100	5.00	0	93.3	80	120	0.747	15	
Sodium		4.27	0.100	5.00	0	85.5	80	120	0.234	15	

- В Analyte detected in the associated Method Blank DF **Dilution Factor** J Analyte detected between MDL and RL
- MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

RPD outside accepted control limits

RL Reporting Limit

- S Spike Recovery outside control limits
- J Analyte detected between SDL and RL
- Parameter not NELAC certified Ν

Date: 08/13/08

CLIENT:TRC Environmental Corp.Work Order:0808040Project:RRC - West O'Daniel					ANALYTICAL QC SUMMARY REPORT RunID: ICP-MS3_080806A								
Sample ID:	ICV1-080806	Batch ID:					SW6020		Units:		mg/L		
SampType:	ICV	Run ID:	ICP-MS3_	080806A	Analysis l	Date:	08/06/08 01		Prep D				
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qua		
Barium		0.101	0.0100	0.100	0	101	90	110					
Calcium		2.49	0.100	2.50	0	99.4	90	110					
Iron		2.58	0.100	2.50	0	103	90	110					
Magnesium		2.46	0.100	2.50	0	98.4	90	110					
Potassium		2.48	0.100	2.50	0	99.2	90	110					
Sodium		2.46	0.100	2.50	0	98.5	90	110					
Sample ID:	CCV1-080806	Batch ID:	R39067		TestNo:		SW6020		Units:		mg/L		
SampType:	CCV	Run ID:	ICP-MS3_	080806A	Analysis l	Date: 08/06/08 06:27 PM		Prep D	Date:				
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qua		
Barium		0.201	0.0100	0.200	0	101	90	110					
Calcium		4.86	0.100	5.00	0	97.2	90	110					
Iron		4.86	0.100	5.00	0	97.1	90	110					
Magnesium		4.84	0.100	5.00	0	96.7	90	110					
Potassium		5.14	0.100	5.00	0	103	90	110					
Sodium		4.78	0.100	5.00	0	95.6	90	110					
Sample ID:	CCV2-080806	Batch ID:	R39067		TestNo:		SW6020		Units:		mg/L		
SampType:	CCV	Run ID:	ICP-MS3_	080806A	Analysis l	Date:	08/06/08 07	7:50 PM	Prep D	Date:			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qua		
Calcium		4.86	0.100	5.00	0	97.2	90	110					
Magnesium		4.88	0.100	5.00	0	97.5	90	110					
Sodium		4.76	0.100	5.00	0	95.2	90	110					
Sample ID:	CCV3-080806	Batch ID:	R39067		TestNo:		SW6020		Units:		mg/L		
SampType:	CCV	Run ID:	ICP-MS3_	080806A	Analysis l	Date:	08/06/08 09	9:14 PM	Prep D	Date:			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qua		
Calcium		4.87	0.100	5.00	0	97.4	90	110					
Magnesium		4.88	0.100	5.00	0	97.5	90	110					
Sodium		4.78	0.100	5.00	0	95.5	90	110					

- В Analyte detected in the associated Method Blank DF **Dilution Factor**
- J Analyte detected between MDL and RL
- MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- S Spike Recovery outside control limits
- J Analyte detected between SDL and RL
- Parameter not NELAC certified Ν

Date: 08/13/08

ANALYTICAL QC SUMMARY REPORT RunID: ICP-MS3_080807A								р.		r: 0808040 RRC - West	CLIENT: Work Orde Project:
mg/L		Units:		SW6020		TestNo:		31240	Batch ID:	0808041-04A SD	Sample ID:
08/06/0	Date:	Prep D	:18 PM	08/07/08 01	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	SD	SampType:
Limit Qu		%RPD	HighLimit	LowLimit		Ref Val	SPK value	RL –	Result		Analyte
· ·	10	0.681	8			373	0	50.0	376		Calcium
	10	1.10				137	0	50.0	136		Magnesium
	10	1.78				235	0	50.0	231		Sodium
mg/L		Units:		SW6020		TestNo:		31240	Batch ID:	0808041-04A PDS	ample ID:
08/06/08	Date:	Prep D	:23 PM	08/07/08 01	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	PDS	ampType:
Limit Qu	RPD	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		analyte
			125	75	104	373	500	10.0	892		Calcium
			125	75	106	137	500	10.0	667		Aagnesium
			125	75	109	235	500	10.0	779		Sodium
mg/L		Units:		SW6020		TestNo:		31240	Batch ID:	0808041-04A MS	Sample ID:
08/06/08	Date:	Prep D	:28 PM	08/07/08 01	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	MS	SampType:
Limit Qu	RPD	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		Analyte
S			120	80	-92.0	373	5.00	10.0	368		Calcium
S			120	80	-20.0	137	5.00	10.0	136		Magnesium
S			120	80	-124	235	5.00	10.0	229		Sodium
mg/L		Units:		SW6020		TestNo:		31240	Batch ID:	0808041-04A MSD	Sample ID:
08/06/08	Date:	Prep D	:34 PM	08/07/08 01	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	MSD	ampType:
Limit Qu	RPD	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		Analyte
	15	2.73	120	80	112	373	5.00	10.0	379		Calcium
S	15	2.11	120	80	38.0	137	5.00	10.0	139		Magnesium
S	15	2.63	120	80	-2.00	235	5.00	10.0	235		Sodium
mg/L		Units:		SW6020		TestNo:		31240	Batch ID:	0808041-04A SD	ample ID:
08/06/08		Prep D		08/07/08 09		Analysis I		ICP-MS3_	Run ID:	SD	ampType:
Limit Qu		%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		nalyte
	10	2.40				0.0760	0	0.0500	0.0742		Barium
	10	5.63				0.292	0	0.500	0.276		ron
	10	1.67				6.09	0	0.500	5.99		otassium
mg/L		Units:		SW6020		TestNo:		31240	Batch ID:	0808041-04A PDS	ample ID:
08/06/08		Prep D		08/07/08 09		Analysis I		ICP-MS3_	Run ID:	PDS	SampType:
Limit Qu	KPD	%KPD	HighLimit			Ref Val	SPK value	RL	Result		Analyte
			125	75	98.2	0.0760	0.200	0.0100	0.272		Barium
			125	75 75	96.1	0.292	5.00	0.100	5.10		ron
			125	75	85.2	6.09	5.00	0.100	10.4		otassium
mg/L		Units:		SW6020		TestNo:		31240	Batch ID:	0808041-04A MS	ample ID:
08/06/08	Date:	7 PM Prep Date:		08/07/08 09	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	MS	ampType:
Limit Qu	RPD	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		nalyte
			120	80	101	0.0760	0.200	0.0100	0.278		Barium

В Analyte detected in the associated Method Blank DF **Dilution Factor**

J Analyte detected between MDL and RL

Qualifiers:

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit RPD outside accepted control limits

RL Reporting Limit

R

Ν

S Spike Recovery outside control limits J

Analyte detected between SDL and RL

Parameter not NELAC certified

Date: 08/13/08

CLIENT: Work Orde Project:	r: 0808040 RRC - West		тр.		ANALYTICAL QC SUMMARY REPORT RunID: ICP-MS3_080807A								
Potassium		10.7	0.100	5.00	6.09	91.4	80	120					
Sample ID:	0808041-04A MSD	Batch ID:	31240		TestNo:	_	SW6020		Units:		mg/L		
SampType:	MSD	Run ID:	ICP-MS3_	_080807A	Analysis	Date:	08/07/08 0	9:52 PM	Prep I	Date:	08/06/08		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Li	mit Qual		
Barium		0.275	0.0100	0.200	0.0760	99.5	80	120	1.09	15			
Iron		4.94	0.100	5.00	0.292	93.0	80	120	2.34	15			
Potassium		10.4	0.100	5.00	6.09	86.8	80	120	2.18	15			

Qualifiers:

- В Analyte detected in the associated Method Blank DF **Dilution Factor** J Analyte detected between MDL and RL MDL Method Detection Limit
 - ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- S Spike Recovery outside control limits J
 - Analyte detected between SDL and RL
- Parameter not NELAC certified Ν

Date: 08/13/08

g/L	mg/	Units:		SW6020		TestNo:		R39068	Batch ID:	ICV1-080807	Sample ID:
	ate:	Prep D	:31 PM	08/07/08 12	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	ICV	SampType:
t Qua	RPD Limit	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		Analyte
			110	90	96.4	0	2.50	0.100	2.41		Calcium
			110	90	97.5	0	2.50	0.100	2.44		Magnesium
			110	90	98.0	0	2.50	0.100	2.45		Sodium
g/L	mg/	Units:		SW6020		TestNo:		R39068	Batch ID:	CCV1-080807	ample ID:
	ate:	Prep D	:55 PM	08/07/08 01	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	CCV	ampType:
t Qua	RPD Limit	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		analyte
			110	90	97.8	0	5.00	0.100	4.89		Calcium
			110	90	95.6	0	5.00	0.100	4.78		/lagnesium
			110	90	94.8	0	5.00	0.100	4.74		Sodium
g/L	mg/	Units:		SW6020		TestNo:		R39068	Batch ID:	ICV2-080807	ample ID:
	ate:	Prep D	5:15 PM	08/07/08 06	Date:	Analysis I	080807A	ICP-MS3_	Run ID:	ICV	SampType:
t Qua	RPD Limit	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		Analyte
			110	90	101	0	0.100	0.0100	0.101		Barium
			110	90	103	0	2.50	0.100	2.58		ron
			110	90	97.0	0	2.50	0.100	2.43		Potassium
g/L	mg/	Units:		SW6020		TestNo:		R39068	Batch ID:	CCV3-080807	ample ID:
	ate:	Prep D	':38 PM	08/07/08 07)ate:	Analysis I	080807A	ICP-MS3_	Run ID:	CCV	ampType:
t Qua	RPD Limit	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		nalyte
			110	90	101	0	0.200	0.0100	0.201		Barium
			110	90	101	0	5.00	0.100	5.05		ron
			110	90	99.5	0	5.00	0.100	4.97		Potassium
g/L	mg/	Units:		SW6020		TestNo:		R39068	Batch ID:	CCV4-080807	ample ID:
		Prep D		08/07/08 09		Analysis I		ICP-MS3_	Run ID:	CCV	ampType:
t Qua	RPD Limit	%RPD	HighLimit		%REC	Ref Val	SPK value	RL	Result		nalyte
			110	90	101	0	0.200	0.0100	0.203		Barium
			110	90	102	0	5.00	0.100	5.08		ron
			110	90	99.8	0	5.00	0.100	4.99		otassium
g/L	mg/	Units:		SW6020		TestNo:		R39068	Batch ID:	CCV5-080807	ample ID:
		Prep D		08/07/08 10		Analysis I		ICP-MS3_	Run ID:	CCV	ampType:
t Qua	RPD Limit	%RPD	HighLimit			Ref Val	SPK value	RL	Result		Analyte
			110	90	99.6	0	0.200	0.0100	0.199		Barium
			110	90	100	0	5.00	0.100	5.00		ron
			110	90	99.1	0	5.00	0.100	4.96		otassium
g/L	mg/	Units:		SW6020		TestNo:		R39068	Batch ID:	CCV6-080807	ample ID:
	ate:	Prep D	:51 PM	08/07/08 11)ate:	Analysis I	080807A	ICP-MS3_	Run ID:	CCV	ampType:
t Ω	RPD Limit	%RPD	HighLimit	LowLimit	%REC	Ref Val	SPK value	RL	Result		nalyte
ιQu							0.000	0.0100	0.107		
i Qu			110	90	98.7	0	0.200	0.0100	0.197		Barium

В Analyte detected in the associated Method Blank DF **Dilution Factor**

- J Analyte detected between MDL and RL
- MDL Method Detection Limit

Qualifiers:

ND Not Detected at the Method Detection Limit RPD outside accepted control limits

RL Reporting Limit

R

S Spike Recovery outside control limits J

Analyte detected between SDL and RL

Parameter not NELAC certified Ν

Date: 08/13/08

CLIENT: Work Order Project:	r: 0808040 RRC - Wes		ANALYTICAL QC SUMMARY REPORT RunID: ICP-MS3_080811A								
Sample ID:	ICV1-080811	Batch ID:	R39104		TestNo:		SW6020		Units:	mg/L	
SampType:	ICV	Run ID:	ICP-MS3_		Analysis		08/11/08 01	l:19 PM	Prep D		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual	
Calcium		2.41	0.100	2.50	0	96.4	90	110			
Magnesium		2.43	0.100	2.50	0	97.0	90	110			
Sodium		2.42	0.100	2.50	0	96.8	90	110			
Sample ID:	CCV3-080811	Batch ID:	R39104		TestNo:		SW6020		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	080811A	Analysis	Date:	08/11/08 04	4:57 PM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual	
Calcium		4.95	0.100	5.00	0	98.9	90	110			
Magnesium		4.90	0.100	5.00	0	98.0	90	110			
Sodium		4.78	0.100	5.00	0	95.6	90	110			
Sample ID:	CCV4-080811	Batch ID:	R39104		TestNo:		SW6020		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	080811A	Analysis	Date:	08/11/08 00	5:13 PM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual	
Calcium		4.86	0.100	5.00	0	97.3	90	110			
Magnesium		4.91	0.100	5.00	0	98.2	90	110			
Sodium		4.76	0.100	5.00	0	95.3	90	110			
Sample ID:	CCV7-080811	Batch ID:	R39104		TestNo:		SW6020		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	080811A	Analysis	Date:	08/11/08 10):28 PM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual	
Calcium		4.85	0.100	5.00	0	96.9	90	110			
Sodium		4.74	0.100	5.00	0	94.7	90	110			
Sample ID:	CCV8-080811	Batch ID:	R39104		TestNo:		SW6020		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	080811A	Analysis	Date:	08/11/08 11	l:15 PM	Prep D	ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual	
Calcium		4.87	0.100	5.00	0	97.3	90	110			
Sodium		4.68	0.100	5.00	0	93.5	90				

- BAnalyte detected in the associated Method BlankDFDilution Factor
- J Analyte detected between MDL and RL MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

R

J

- S Spike Recovery outside control limits
 - Analyte detected between SDL and RL
- N Parameter not NELAC certified

CLIENT: Work Orde Project:	r: 0808040 RRC - West		p.		ANALYTICAL QC SUMMARY REPOR RunID: IC2_080806A						
Sample ID: SampType:	ICV-080806 ICV	Batch ID: Run ID:	R39027 IC2_0808)6A	TestNo: Analysis I	Date:	E300 08/06/08 10):09 AM	Units: Prep E	Date:	mg/L 08/06/08
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	-		Limit Qual
Chloride		25.3	1.00	25.00	0	101	90	110			
Sulfate		76.4	3.00	75.00	0	102	90	110			
Sample ID:	MB-080806	Batch ID:	R39027		TestNo:		E300		Units:		mg/L
SampType:	MBLK	Run ID:	IC2_0808	06A	Analysis	Date:	08/06/08 10	0:32 AM	Prep L	Date:	08/06/08
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Chloride		ND	1.00								
Sulfate		ND	3.00								
Sample ID:	LCS-080806	Batch ID:	R39027		TestNo:		E300		Units:		mg/L
SampType:	LCS	Run ID:	IC2_0808	06A	Analysis	Date:	08/06/08 10	0:46 AM	Prep I	Date:	08/06/08
Analyte		Result	RL	SPK value	Ref Val	%REC		HighLimit	%RPD	RPD	Limit Qual
Chloride		10.0	1.00	10.00	0	100	90	110			
Sulfate		30.4	3.00	30.00	0	101	90	110			
Sample ID:	LCSD-080806	Batch ID:	R39027		TestNo:		E300		Units:		mg/L
SampType:	LCSD	Run ID:	IC2_0808	06A	Analysis 1	Date:	08/06/08 11	1:01 AM	Prep I		08/06/08
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD		Limit Qual
Chloride		10.0	1.00	10.00	0	100	90	110	0.201	20	
Sulfate		30.6	3.00	30.00	0	102	90	110	0.595	20	
Sample ID:	CCV1-080806	Batch ID:	R39027		TestNo:		E300		Units:		mg/L
SampType:	CCV	Run ID:	IC2_0808	06A	Analysis 1	Date:	08/06/08 01	1:26 PM	Prep I	Date:	08/06/08
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Chloride		10.4	1.00	10.00	0	104	90	110			
Sulfate		31.3	3.00	30.00	0	104	90	110			
Sample ID:	0808032-02F MS	Batch ID:	R39027		TestNo:		E300		Units:		mg/L
SampType:	MS	Run ID:	IC2_0808		Analysis 1		08/06/08 02		Prep I		08/06/08
Analyte		Result	RL	SPK value		%REC		HighLimit	%RPD	RPD	Limit Qual
Chloride		564	20.0	200.0	360.6		90	110			
Sulfate		877	60.0	600.0	262.0	103	90	110			
Sample ID:	0808032-02F MSD	Batch ID:	R39027		TestNo:	_	E300		Units:		mg/L
SampType:	MSD	Run ID:	IC2_0808		Analysis		08/06/08 02		Prep I		08/06/08
Analyte		Result	RL	SPK value		%REC		HighLimit			Limit Qual
Chloride		567	20.0	200.0	360.6	103	90	110	0.423	20	
Sulfate		888	60.0	600.0	262.0	104	90	110	1.26	20	
Sample ID:	CCV2-080806	Batch ID:	R39027		TestNo:		E300		Units:		mg/L
SampType:	CCV	Run ID:	IC2_0808		Analysis 1		08/06/08 04	4:42 PM	Prep I		08/06/08
Analyte		Result	RL	SPK value		%REC		HighLimit	%RPD	RPD	Limit Qual
Chloride		10.2	1.00	10.00 30.00	0	102	90	110			
Sulfate		30.3	3.00			101		110			

Qualifiers: В Analyte detected in the associated Method Blank DF **Dilution Factor**

J Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit RPD outside accepted control limits

RL Reporting Limit S

R

J

Spike Recovery outside control limits

Analyte detected between SDL and RL

Parameter not NELAC certified Ν

CLIENT: TRC Environmental Corp. ANALYTICAL QC SUMMARY REPORT Work Order: 0808040 RRC - West O'Daniel ANALYTICAL QC SUMMARY REPORT Project: RRC - West O'Daniel RunID: IC2_080806A

Sample ID:	CCV3-080806	Batch ID:	R39027		TestNo: E		E300		Units:	m	g/L
SampType:	CCV	Run ID:	IC2_080806	бA	Analysis l	Date:	08/06/08 07	7:10 PM	Prep D	ate: 08	8/06/08
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Chloride		10.0	1.00	10.00	0	100	90	110			

- BAnalyte detected in the associated Method BlankDFDilution FactorJAnalyte detected between MDL and RL
- MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- S Spike Recovery outside control limits
- J Analyte detected between SDL and RL
- N Parameter not NELAC certified

|--|

Sample ID:	ICV-080811	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	ICV	Run ID:	IC2_0808		Analysis 1		08/11/08 09		Prep D		08/11/0
Analyte		Result	RL	SPK value		%REC		HighLimit	%RPD	RPD	Limit Q
Chloride		26.3	1.00	25.00	0	105	90 90	110			
Sulfate		77.4	3.00	75.00	0	103	90	110			
Sample ID:	MB-080811	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	MBLK	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 09	9:34 AM	Prep D	Date:	08/11/0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Q
Chloride		ND	1.00								
Sulfate		ND	3.00								
Sample ID:	LCS-080811	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	LCS	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 09	9:48 AM	Prep D	Date:	08/11/0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qu
Chloride		9.86	1.00	10.00	0	98.6	90	110			
Sulfate		29.8	3.00	30.00	0	99.3	90	110			
Sample ID:	LCSD-080811	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	LCSD	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 10):03 AM	Prep D	Date:	08/11/0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qu
Chloride		9.75	1.00	10.00	0	97.5	90	110	1.14	20	
Sulfate		29.6	3.00	30.00	0	98.7	90	110	0.602	20	
Sample ID:	CCV1-080811	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	CCV	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 12	2:00 PM	Prep D	Date:	08/11/0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qu
Chloride		9.79	1.00	10.00	0	97.9	90	110			
Sulfate		29.6	3.00	30.00	0	98.7	90	110			
Sample ID:	0808040-03B MS	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	MS	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 01	1:14 PM	Prep D	Date:	08/11/0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qu
Chloride		16700	500	5000	11340	107	90	110			
Sample ID:	0808040-03B MSD	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 01	1:28 PM	Prep D	Date:	08/11/0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qu
Chloride		16700	500	5000	11340	106	90	110	0.285	20	
Sample ID:	0808040-03B MS	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	MS	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 01	1:43 PM	Prep D	Date:	08/11/0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qu
Sulfate		1700	60.0	600.0	1065	106	90	110			
Sample ID:	0808040-03B MSD	Batch ID:	R39093		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC2_0808	11A	Analysis l	Date:	08/11/08 01	1:58 PM	Prep D	Date:	08/11/0

Analyte detected in the associated Method Blank DF **Dilution Factor**

J Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RL Reporting Limit S

J

Ν

Spike Recovery outside control limits Analyte detected between SDL and RL

Parameter not NELAC certified

CLIENT: Work Order Project:		onmental Con at O'Daniel	rp.	ANALYTICAL QC SUMMARY REPORT RunID: IC2_080811A								
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual		
Sulfate		1700	60.0	600.0	1065	106	90	110	0.131	20		
Sample ID:	CCV2-080811	Batch ID:	R39093		TestNo:		E300		Units:	mg/L		
SampType:	CCV	Run ID:	IC2_08081	1A	Analysis	Date:	08/11/08 02	2:42 PM	Prep I	Date: 08/11/08		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual		
Chloride		9.83	1.00	10.00	0	98.3	90	110				
Sulfate		29.5	3.00	30.00	0	98.3	90	110				

Qualifiers:

- В Analyte detected in the associated Method Blank DF **Dilution Factor** J Analyte detected between MDL and RL MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- S Spike Recovery outside control limits J
 - Analyte detected between SDL and RL
- Parameter not NELAC certified Ν

Date: 08/13/08

Sample ID:	ICV-080807	Batch ID:	R39059	-	TestNo:	_	M2320 B		Units:	mg/L
SampType:	ICV	Run ID:		R_080807B	Analysis		08/07/08 08		Prep Date	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qua
•	carbonate (As CaCO3)	15.7	20.0	0						
	arbonate (As CaCO3)	86.6	20.0	0						
	ydroxide (As CaCO3)	0	20.0	0						
Alkalinity, To	otal (As CaCO3)	102	20.0	100.0	0	102	98	102		
ample ID:	MB2-080807	Batch ID:	R39059		TestNo:		M2320 B		Units:	mg/L
ampType:	MBLK	Run ID:	TITRATO	R_080807B	Analysis	Date:	08/07/08 11	1:19 AM	Prep Date	e: 08/07/08
nalyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qua
lkalinity, Bi	carbonate (As CaCO3)	ND	20.0							
Alkalinity, Ca	arbonate (As CaCO3)	ND	20.0							
Alkalinity, H	ydroxide (As CaCO3)	ND	20.0							
Alkalinity, To	otal (As CaCO3)	ND	20.0							
Sample ID:	LCS2-080807	Batch ID:	R39059		TestNo:		M2320 B		Units:	mg/L
ampType:	LCS	Run ID:	TITRATO	R_080807B	Analysis	Date:	08/07/08 11	1:23 AM	Prep Date	e: 08/07/08
nalyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qua
lkalinity, Bi	carbonate (As CaCO3)	0	20.0	0						
Alkalinity, Ca	arbonate (As CaCO3)	47.0	20.0	0						
Alkalinity, H	ydroxide (As CaCO3)	0	20.0	0						
Alkalinity, To	otal (As CaCO3)	51.7	20.0	50.00	0	103	74	129		
Sample ID:	CCV3-080807	Batch ID:	R39059		TestNo:		M2320 B		Units:	mg/L
ampType:	CCV	Run ID:	TITRATO	R_080807B	Analysis	Date:	08/07/08 12	2:20 PM	Prep Date	e: 08/07/08
nalyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qua
Alkalinity, Bi	carbonate (As CaCO3)	21.1	20.0	0						
Alkalinity, Ca	arbonate (As CaCO3)	80.8	20.0	0						
Alkalinity, H	ydroxide (As CaCO3)	0	20.0	0						
Alkalinity, To	otal (As CaCO3)	102	20.0	100.0	0	102	90	110		
ample ID:	0808040-01B DUP	Batch ID:	R39059		TestNo:		M2320 B		Units:	mg/L
ampType:	DUP	Run ID:	TITRATO	R_080807B	Analysis	Date:	08/07/08 01	1:03 PM	Prep Date	e: 08/07/08
nalyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qua
lkalinity, Bi	carbonate (As CaCO3)	0	20.0	0	0				0 20	0
Alkalinity, Ca	arbonate (As CaCO3)	0	20.0	0	0				0 20	0
Alkalinity, H	ydroxide (As CaCO3)	0	20.0	0	0				0 20	0
Alkalinity, To	otal (As CaCO3)	0	20.0	0	0				0 20	0
ample ID:	CCV4-080807	Batch ID:	R39059		TestNo:		M2320 B		Units:	mg/L
ampType:	CCV	Run ID:	TITRATO	R_080807B	Analysis	Date:	08/07/08 02	2:01 PM	Prep Date	e: 08/07/08
nalyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qua
lkalinity, Bi	carbonate (As CaCO3)	20.2	20.0	0						
lkalinity, Ca	arbonate (As CaCO3)	82.1	20.0	0						
lkalinity, H	ydroxide (As CaCO3)	0	20.0	0						

 Qualifiers:
 B
 Analyte detected in the associated Method Blank

 DF
 Dilution Factor

 J
 Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

R

S Spike Recovery outside control limits

J Analyte detected between SDL and RL

N Parameter not NELAC certified

Work Order: 0808040	ronmental Cor est O'Daniel	rp.		ANALYTICAL QC SUMMARY REPORT RunID: TITRATOR_080807F							
Sample ID: 0808032-02F DUP	Batch ID:	R39059		TestNo:		M2320 B		Units:		mg/L	
SampType: DUP	Run ID:	TITRATO	R_080807B	Analysis 1	Date:	08/07/08 0	2:40 PM	Prep I	Date:	08/07/08	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Li	mit Qual	
Alkalinity, Bicarbonate (As CaCO3) 275	20.0	0	277.2				0.811	20		
Alkalinity, Carbonate (As CaCO3)	0	20.0	0	0				0	20		
Alkalinity, Hydroxide (As CaCO3)	0	20.0	0	0				0	20		
Alkalinity, Total (As CaCO3)	275	20.0	0	277.2				0.811	20		
Sample ID: CCV5-080807	Batch ID:	R39059		TestNo:		M2320 B		Units:		mg/L	
SampType: CCV	Run ID:	TITRATO	R_080807B	Analysis 1	Date:	08/07/08 0	2:45 PM	Prep I	Date:	08/07/08	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Li	mit Qual	
Alkalinity, Bicarbonate (As CaCO3) 25.0	20.0	0								
Alkalinity, Carbonate (As CaCO3)	76.8	20.0	0								
Alkalinity, Hydroxide (As CaCO3)	0	20.0	0								
Alkalinity, Total (As CaCO3)	102	20.0	100.0	0	102	90	110				

- В Analyte detected in the associated Method Blank DF **Dilution Factor** J Analyte detected between MDL and RL
- MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- S Spike Recovery outside control limits J
 - Analyte detected between SDL and RL
- Parameter not NELAC certified Ν

Date: 08/13/08

CLIENT: Work Orde Project:	TRC Environ 0808040 RRC - West		p.		ANAI	LYTI(FICAL QC SUMMARY REPOR RunID: WC_080807A						
Sample ID:	ICV-088007	Batch ID:	CONDW-		TestNo:	_	M2510 B		Units:	µmhos/ci			
SampType:	ICV	Run ID:	WC_0808		Analysis		08/07/08 11		Prep D				
Analyte		Result	RL	SPK value	Ref Val			HighLimit	%RPD	RPD Limit Qua			
Specific Cond	ductance	12800	10.0	12880	0	99.5	95	105					
Sample ID:	MBLK-080807	Batch ID:	CONDW-	08/07/08	TestNo:		M2510 B		Units:	µmhos/c			
SampType:	MBLK	Run ID:	WC_0808	07A	Analysis	Date:	08/07/08 11	1:40 AM	Prep D	Date: 08/07/08			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua			
Specific Cond	ductance	ND	10.0										
Sample ID:	LCS-080807	Batch ID:	CONDW-	08/07/08	TestNo:		M2510 B		Units:	µmhos/ci			
SampType:	LCS	Run ID:	WC_0808	07A	Analysis	Date:	08/07/08 11	1:40 AM	Prep D	ate: 08/07/08			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua			
Specific Cond	ductance	1360	10.0	1413	0	96.3	95	105					
Sample ID:	0808039-13D DUP	Batch ID:	CONDW-	08/07/08	TestNo:		M2510 B		Units:	µmhos/c			
SampType:	DUP	Run ID:	WC_0808	07A	Analysis	Date:	08/07/08 11	1:40 AM	Prep D	Date: 08/07/08			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua			
Specific Cond	ductance	1960	10.0	0	1928				1.80	2			
Sample ID:	CCV1-080807	Batch ID:	CONDW-	08/07/08	TestNo:		M2510 B		Units:	µmhos/ci			
SampType:	CCV	Run ID:	WC_0808	07A	Analysis	Date:	08/07/08 11	1:40 AM	Prep D	Date: 08/07/08			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua			
Specific Cond	ductance	12700	10.0	12880	0	98.3	95	105					
Sample ID:	0808040-08C DUP	Batch ID:	CONDW-	08/07/08	TestNo:		M2510 B		Units:	µmhos/ci			
SampType:	DUP	Run ID:	WC_0808	07A	Analysis	Date:	08/07/08 11	1:40 AM	Prep D	Date: 08/07/08			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua			
Specific Cond	ductance	55200	50.0	0	54350				1.46	2			
Sample ID:	CCV2-080807	Batch ID:	CONDW-	08/07/08	TestNo:		M2510 B		Units:	µmhos/c			
SampType:	CCV	Run ID:	WC_0808	07A	Analysis	Date:	08/07/08 11	1:40 AM	Prep D	Date: 08/07/08			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua			
Specific Cond	ductance	12600	10.0	12880	0	97.4	95	105					

Qualifiers:

- BAnalyte detected in the associated Method BlankDFDilution Factor
- J Analyte detected between MDL and RL
- MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- S Spike Recovery outside control limits
- J Analyte detected between SDL and RL
- N Parameter not NELAC certified

Date: 08/13/08

CLIENT: Work Orde Project:	r: 0808040 RRC - West		p.		ANALYTICAL QC SUMMARY REPOR RunID: WC_080807B						
Sample ID: SampType: Analyte	MB-080807 MBLK	Batch ID: Run ID: Result	TDS_W-8/ WC_08080 RL		TestNo: Analysis I Ref Val	Date: %REC	M2540C 08/07/08 02 LowLimit	2:30 PM HighLimit	Units: Prep D %RPD	mg/L Pate: 08/07/08 RPD Limit Qual	
Total Dissolve Sample ID: SampType:	ed Solids (Residue, Fi LCS-080807 LCS	ND Batch ID: Run ID:	10.0 TDS_W-8/ WC_08080		TestNo: Analysis l	Date:	M2540C 08/07/08 02	2:30 PM	Units: Prep D	mg/L Pate: 08/07/08	
Analyte Total Dissolve	ed Solids (Residue, Fi	Result 765	RL 10.0	SPK value 745.6	Ref Val 0	%REC 103	LowLimit 90	HighLimit 113	%RPD	RPD Limit Qual	
Sample ID: SampType: Analyte Total Dissolve	0808040-04B DUP DUP ed Solids (Residue, Fi	Batch ID: Run ID: Result 28000	TDS_W-8/ WC_08080 RL 10.0		TestNo: Analysis I Ref Val 28500		M2540C 08/07/08 02 LowLimit	2:30 PM HighLimit	Units: Prep D %RPD 1.63	mg/L Pate: 08/07/08 RPD Limit Qual 5	
Sample ID: SampType: Analyte Total Dissolve	0808032-02E DUP DUP ed Solids (Residue, Fi	Batch ID: Run ID: Result 2050	TDS_W-8/ WC_08080 RL 10.0		TestNo: Analysis I Ref Val 2083	Date: %REC	M2540C 08/07/08 02 LowLimit	2:30 PM HighLimit	Units: Prep D %RPD 1.40	mg/L Pate: 08/07/08 RPD Limit Qual 5	

- В Analyte detected in the associated Method Blank DF **Dilution Factor** J Analyte detected between MDL and RL
- MDL Method Detection Limit
- ND Not Detected at the Method Detection Limit

- RPD outside accepted control limits
- RL Reporting Limit

- S J
- Spike Recovery outside control limits Analyte detected between SDL and RL
- Parameter not NELAC certified Ν

APPENDIX B

ANALYTICAL DATA REVIEW/VALIDATION CHECKLIST

QA Data Evaluation Results RRC – West O'Daniel Seep

Background

Water samples were collected on August 4, 2008. The samples were submitted to DHL Analytical in Round Rock, Texas for analysis. Results for the following methods are reported:

- Chloride and Sulfate by U.S. EPA Method 300.0
- Alkalinity by SM 2320 B
- Specific Conductance by SM 2510 B
- Total Dissolved Solids (TDS) by SM 2540 C
- Barium, Calcium, Iron, Magnesium, Potassium, and Sodium by SW846 Method 6020

TRC QA staff performed a review of quality control (QC) data associated with the samples to ensure that the reported analytical results are valid, accurate, and sufficient to meet quality objectives. Data were reviewed for compliance with the requirements given in *Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan (Railroad Commission of Texas, Oil and Gas Division, Revision 2, March 7, 2008)(the QAPP). Items reviewed during the data validation process included sample integrity, blank analyses, spike recoveries, and duplicate recoveries. Samples reviewed to prepare this evaluation are presented in Table 1.*

The following is a discussion of the QC analyses performed with the site samples and any potential data limitations associated with the results of analyses.

Sample Integrity

All samples were adequately preserved and arrived at the laboratory in good condition. All preparatory steps were performed within method-defined holding times. All samples were analyzed within method-defined holding times.

Blank Analyses

Target analytes were not detected in reported blanks indicating that laboratory contamination did not impact analytical results.

Spike Recoveries

All reported LCS recoveries fall within QAPP-derived QC limits. These results are indicative adequate laboratory measurement control in the absence of potential matrix interferences at the time of sample analyses.

Sample S-SUMP-2 was analyzed as MS/MSD pairs for chloride and sulfate. All recoveries fall within QAPP-specified limits indicating that potential matrix interferences with target analyte recoveries are minimal.

QA Data Evaluation Results RRC – West O'Daniel Seep August 2008 Page 2 of 3

Duplicate Sample Analyses

All reported RPD values for LCS/LCSD pairs are within laboratory-derived limits indicating that the laboratory achieved adequate precision in the absence of potential matrix interferences at the time of sample analysis.

RPD values associated with MS/MSD analyses are within laboratory-specified limits indicating that the sample matrix has minimal impact, if any, on analytical precision.

Sample Pump Effluent-D was collected as a field duplicate of sample Pump Effluent. Calculated RPD values for detected analytes in these analyses are presented in Table 2. Adequate precision is exhibited for all detected analytes and data interpretation issues are not indicated.

The following samples were analyzed as laboratory duplicates for which all RPD values are within laboratory-specified control limits and no data interpretation issues are indicated:

- S-OB-01 for Alkalinity
- S-OB-2 for TDS
- Pump Effluent-D for Specific Conductance

Conclusions

QC data associated with laboratory measurements indicate that data are defensible and that measurement data reliability within expected limits of sampling and analytical error. No interpretation issues were identified during this evaluation of the analytical data.

TRC ID	Collected	Matrix	DHL ID
S-OB-01	8/4/2008	Water	0808040-01
S-SUMP-1	8/4/2008	Water	0808040-02
S-SUMP-2	8/4/2008	Water	0808040-03
S-OB-02	8/4/2008	Water	0808040-04
S-MW-02	8/4/2008	Water	0808040-05
S-MW-04	8/4/2008	Water	0808040-06
Pump Effluent	8/4/2008	Water	0808040-07
Pump-Effluent-D	8/4/2008	Water	0808040-08

Table 1. Evaluated Samples

Table 2. Calculated RPD Values for Field DuplicateAnalyses of Sample Pump Effluent

Analyte	Result	Duplicate Result	Units	RPD	Flag
Barium	0.272	0.282	mg/L	3.61	
Calcium	2380	2480	mg/L	4.12	
Iron	4.51	4.66	mg/L	3.27	
Magnesium	667	687	mg/L	2.95	
Potassium	12	12.6	mg/L	4.88	
Sodium	6310	6430	mg/L	1.88	
Chloride	18000	17600	mg/L	2.25	
Sulfate	1750	1640	mg/L	6.49	
Alkalinity	236	240	mg/L	1.68	
Specific Conductance	54800	54400	umhos/cm	0.73	
TDS	34200	34900	mg/L	2.03	

* RPD Greater than expected (i.e., RPD > 20)

Attachment B

Comprehensive Summary Report for the Dugout Creek Area (Including O'Ryan Seep, Pharaoh Seep, and Dugout Creek), Howard and Mitchell Counties, Texas Sitewide Groundwater and Surface Water Monitoring Report for the Dugout Creek Area (Including O'Ryan Seep, Pharaoh Seep, and Dugout Creek)

Howard and Mitchell Counties, Texas

Prepared for:

Railroad Commission of Texas

Prepared by:

INTERA Incorporated 1812 Centre Creek Drive Suite 300 Austin, Texas 78754

May 2008

Sitewide Groundwater and Surface Water Monitoring Report for the Dugout Creek Area

Howard and Mitchell Counties, Texas

The information in this report was prepared under my supervision. The information is accurate and correct to the best of my knowledge. The information, data, and figures should not be used for purposes other than as elements of this overall report.

chand AScad

Richard Scadden, P.E.

Senior Engineer

This report is sealed in accordance with the provisions of the Texas Geoscience Practice Act. The validity and integrity of this report, including all maps, figures, diagrams or boring logs, will remain intact as long as the report is reproduced in full and accompanied by this title page and the associated geoscientist seal(s).

Noreen A. Baker, P.G. Senior Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION 1.1 Background 1.2 Objectives	1 1 1
2.0	SITE CONCEPTUAL MODEL	2
3.0	FIELD ACTIVITIES	2
4.0	 RESULTS 4.1 Groundwater Elevation Data 4.2 Groundwater Analytical Results 4.3 Surface Water Analytical Results 	3 4
5.0	CONCLUSIONS AND RECOMMENDATIONS	7
6.0	REFERENCES	7

TABLES

Table	1: Monitor	Well Summar	and Grou	ndwater	Flevations
I UDIC	1. 1010111101			nawator	

- Table 2: Groundwater Analytical Results Dugout Creek
- Table 3: Groundwater Analytical Results O' Ryan Seep
- Table 4: Groundwater Analytical Results Pharaoh Seep
- Table 5: Surface Water Analytical Results O'Ryan and Pharaoh Seeps

FIGURES

- Figure 1A: Site Location Map
- Figure 1B: Well Location Map
- Figure 2A: Potentiometric Surface Map O' Ryan Seep
- Figure 2B: Potentiometric Surface Map Pharaoh Seep
- Figure 3A: BTEX Constituents in Groundwater O' Ryan Seep
- Figure 3B: BTEX Constituents in Groundwater Pharaoh Seep

Figure 4A: Chloride Levels in Groundwater - Dugout Creek

Figure 4B: Chloride Levels in Groundwater - O' Ryan Seep

Figure 4C: Chloride Levels in Groundwater - Pharaoh Seep

APPENDICES

Appendix A: DHL Laboratory Analytical Packages with Data Review Checklists

1.0 INTRODUCTION

INTERA Incorporated (INTERA) was contracted by the Railroad Commission of Texas (RRC) to provide professional environmental engineering services at oil and gas industry exploration and production sites and associated facilities across the State of Texas. Under this contract, INTERA has prepared this Report to document the current groundwater and surface water conditions in the Dugout Creek area, including O' Ryan Seep and Pharaoh Seep in Howard and Mitchell Counties, Texas. A site location map is included as Figure 1A.

1.1 Background

INTERA conducted environmental assessments at the O' Ryan and Pharaoh Seeps during several previous field events in an effort to delineate the extent of chlorideimpacted groundwater at these locations and to determine the source of the chlorides. The results of these assessments have been documented in several reports (DE&S 2001a, DE&S 2001b, INTERA 2002a, INTERA 2002b, INTERA 2003a, INTERA 2006a, and INTERA 2006b). In addition, initial assessment activities were conducted along Dugout Creek in 2006, the results of which are documented in *Environmental Assessment of Dugout Creek, Howard and Mitchell Counties, Texas* (INTERA 2006c). Additional investigation of Dugout Creek and preparation of a memorandum regarding evaluation and development of best management practices was provided in August 2007 (INTERA, 2007). This report describes conduct of a sitewide groundwater and surface water monitoring event for collection of groundwater elevation data and water quality data for all wells and available surface water.

1.2 Objectives

The objective of this fieldwork was to conduct a sitewide groundwater and surface water monitoring event to collect additional data that will be used to help develop the best management practices (BMPs) for the mitigation of chloride impacts from O'Ryan Seep, Pharaoh Seep or other sources along Dugout Creek. The overall BMP objective is to reduce the salinity load to the Colorado River. A complete round of groundwater data and water quality data will provide necessary data to focus each management practice before feasibility testing of the BMPs occurs.

The objectives of the monitoring event were as follows:

- Perform a site visit to assess current conditions and collect groundwater and surface water samples from the site monitor wells, Dugout Creek, O'Ryan Seep and Pharaoh Seep, if possible,
- Compare the groundwater and surface water data to current regulatory standards,
- Determine if additional data collection is warranted, and

• Gather logistical information needed to proceed with selection of BMPs to reduce the chloride load to Dugout Creek, and eventually, the Colorado River.

2.0 SITE CONCEPTUAL MODEL

As described in the August 2007 INTERA report, the working hypothesis for the process by which chloride moves from the seeps to Dugout Creek in the absence of continuous surface water flow or groundwater flow is as follows. Groundwater-bearing alluvium is limited in the channels to the area just downstream of the seeps and to the area just upchannel of the confluences with Dugout Creek. Groundwater in the alluvium downgradient of the seeps receives chloride-containing recharge water directly from the seeps. As the groundwater moves downgradient through the alluvium, the chlorides become concentrated as water is removed through evapotranspiration (i.e. at MW-O-07 downgradient of the O'Ryan Seep). Evapotranspiration not only works to concentrate chloride in the groundwater, but as the process continues, evapotranspiration also draws the chloride-laden groundwater to the soil surface where the water evaporates and chloride salts are left behind on the soil surface. The chloride salt deposits on the soil surface are then available to be dissolved and carried downstream by surface water runoff during precipitation events. Depending on the amount of surface water runoff, the chloride may be carried all the way to Dugout Creek or only down the channel until the surface water dries up and the process starts again. In this way, chloride can migrate in slugs down the channel until reaching the alluvium just upstream of the confluence with Dugout Creek where it may migrate into Dugout Creek either via surface water flow or by groundwater flow in the alluvium. Once in the Dugout Creek flow system, chloride transport may continue in a similar fashion to the Colorado River. The collection of analytical data during a single event along Dugout Creek and from the O' Ryan and Pharaoh Seeps during a single event has helped to determine the current site conditions. This information will aid in the selection of a suitable BMP for the mitigation of chloride impacts to the Colorado River.

3.0 FIELD ACTIVITIES

The objective of the sitewide monitoring event was to collect groundwater elevation data for monitor wells and water samples from groundwater monitor wells and from surface water bodies and seeps, if available, in the Dugout Creek, O' Ryan Seep and Pharaoh Seep study area. A total of 37 groundwater monitor wells are present in the Dugout Creek, O' Ryan Seep and Pharaoh Seep study area. These wells are summarized in Table 1 and located on Figure 1B. The wells were gauged and sampled as planned with two exceptions. MW-O-07, which was located in the drainage way downstream of the O'Ryan Seep, has been destroyed as a result of erosion in the drainage way. However, at the recommendation of Tim Prude, RRC Midland District office site remediation coordinator, an auger was used to dig a hole adjacent to the former well location so that a sample could be obtained at this location. MW-D-03, which is located along Dugout Creek, was overlooked during the sampling event, and a sample was not collected from this well during the January 2008 field effort. Subsequent to the

discovery that the sample was missing, INTERA arranged for the RRC Midland District office site remediation coordinator to collect a groundwater sample from MW-D-03 for field titration with a Hach chloride test kit so that information on the concentration of chloride in this well could be obtained.

Surface water was not present in Dugout Creek at the time of the field effort, therefore a surface water sample could not be collected. Both the O'Ryan Seep and the Pharaoh Seep were flowing, and surface water samples were collected from each of the seeps. Therefore, a total of 36 groundwater samples and two surface water samples were collected.

Groundwater samples and surface water samples were analyzed for total dissolved solids (TDS) and anions (chloride, sulfate, bromide). Based on previous results, a set of select wells were also analyzed for benzene, toluene, ethyl benzene and xylene plus methyl tert-butyl ether (BTEX/MTBE). QA/QC samples for BTEX included a trip blank, an equipment rinsate and sample replicate. QA/QC samples for TDS and chloride included a sample replicate only.

Groundwater sampling was conducted using a bladder pump or disposable bailer depending on the analyses required for each well. The bladder pump was used to collect samples at wells where BTEX analyses were specified, and disposable bailers were used to collect samples at wells where only TDS and anion analyses were specified. Prior to collecting groundwater samples, the wells were purged per INTERA standard operating procedures as provided in the INTERA Sampling and Analysis Plan for the RRC (INTERA, 2003b). Purge water was collected and contained in 55-gallon drums staged at each well location. The drums were labeled with the contents, date, and monitor well number. These drums will remain staged at the study areas for later disposal at an appropriate facility by the RRC.

4.0 RESULTS

4.1 Groundwater Elevation Data

Depth to water measurements were made at all monitor wells except MW-O-07, which was destroyed as noted above, and groundwater elevations were calculated based on previously-surveyed top of PVC casing elevations, where available (Table 1). Surveyed top of casing data is not available for any of the monitor wells located along Dugout Creek (MW-D-01 through MW-D-10), or the three wells installed during the September 2007 field effort (MW-07-01 through MW-07-03). Survey locations and elevations were not conducted by a professionally licensed surveyor for these wells due to the terrain and long distances between monitor wells. RRC staff determined that a survey was cost prohibitive and decided to assume that groundwater flowed in the direction of the topographical gradient of Dugout Creek. This is a valid assumption because the shallow groundwater in this area is perched on the surface of the red clay of the

Dockum Group that outcrops in this area and is only found along creek beds. As such, groundwater elevations cannot be determined for wells in Dugout Creek. Locations of the monitor wells in Dugout Creek were determined in UTM coordinates using a handheld GPS unit.

Potentiometric surface maps were generated for the O' Ryan and Pharaoh Seep study areas and are provided as Figures 2A and 2B. Groundwater elevation and flow direction in January 2008 for the study areas are similar to those determined during the last monitoring event at each study area in March 2006 (refer to INTERA, 2006a and INTERA, 2006b).

Groundwater flow in the area of the O' Ryan Seep is to the southeast, east and northeast toward the seeps and then continues to the northeast along the drainage way away from the seeps and toward Dugout Creek. Elevations in January 2008 are approximately one to two feet higher than those measured in August 2006; these differences are likely due to variations in rainfall and seasonal fluctuations. Monitor wells MW-O-04 and MW-O-02 remain dry.

Groundwater flow in the area of the Pharaoh Seep is to the southeast directed toward Pharaoh Seep and the associated drainage way. Similar to the observations in the O'Ryan Seep area, groundwater elevations in January 2008 around the Pharaoh Seep area are approximately two feet higher than those measured in August 2006. In addition, while MW-P-07 remains dry, groundwater is again present in MW-P-02.

4.2 Groundwater Analytical Results

During the January 2008 field effort, INTERA sampled 36 wells and two seeps for a total of 38 samples. Groundwater and surface water analytical results are presented in Tables 2 through 4. Groundwater samples were analyzed for anions (chloride, sulfate, bromide) and TDS, and select samples were analyzed for BTEX/MTBE. Petroleum hydrocarbon-related odors were not noted during the purging and sampling of the wells.

Chloride

In general, chloride distribution and pattern of occurrence remains essentially unchanged for data obtained in January 2008 as compared to data obtained in March 2006 and August 2007. The lowest chloride value observed in the Dugout Creek, O' Ryan Seep and Pharaoh Seep area was in MW-O-23 at 43.6 mg/L and the highest value was observed in MW-07-03 just upstream of the confluence of the Pharaoh Seep drainage with Dugout Creek at 33,500 mg/L.

In the O'Ryan Seep study area, chloride concentrations remain highest in upgradient well MW-O-21 at 17,200 mg/L and in downgradient well MW-O-07 at 13,100 mg/L. Out of the 15 wells with data from both time periods, 9 wells show decreases in chloride concentrations while 6 wells show increases. Significant increases (increase of 40% or more) were noted in MW-O-03, MW-O-05 and MW-O-11 while significant decreases

(decrease of 40% or more) were noted in MW-O-07, MW-O-12, MW-O-13 and MW-O-23. Wells with increasing chloride concentrations appear confined to upgradient portions of the study area while wells with decreasing concentrations are located throughout the O'Ryan Seep area.

As noted above in Section 3, during the January 2008 field effort, MW-O-07 was discovered washed away. The well completion pad with protective steel casing was eroded away and was broken off from the PVC riser pipe, and therefore, in no condition to sample. A sample was collected approximately fifteen feet up the channel from the original MW-O-07 well location. A sample hole was dug using an auger that penetrated to three and a half feet, and the sample was withdrawn from the hole using a bailer.

In the Pharaoh Seep study area, chloride concentrations remain highest in FINA-01 at 33,300 mg/L and at downgradient well MW-P-01 at 16,900 mg/L. Out of the 6 wells with data from both time periods, 3 wells show decreases in chloride concentrations while 3 wells show increases. Significant increases (increase of 40% or more) were noted in MW-P-01 and MW-P-10 while the largest decrease was noted in MW-P-09 with a decrease in chloride concentration of approximately 26%. Wells with increasing chloride concentrations are located throughout the study area while wells with decreasing concentrations are located in upgradient portions of the Pharaoh Seep area.

Along Dugout Creek, chloride concentrations remain highest at the confluences of the O'Ryan Seep drainage and the Pharaoh Seep drainage at 11,600 mg/L and 33,500 mg/L, respectively. Out of the 6 wells with data from both time periods, 2 wells show decreases in chloride concentrations while 4 wells show increases. Wells with increases were noted throughout the length of the creek sampled and include MW-D-01, MW-D-02, MW-D-06 and MW-D-08 while decreases in chloride concentrations were noted in upgradient well MW-D-10 and in MW-07-03. Chloride concentrations in MW-D-05 and MW-D-07, which were dry in August 2007, are very high at 11,400 mg/L and 10,400 mg/L, respectively, and indicate that chloride impacts persist throughout the sampled length of Dugout Creek.

The high chloride concentration in MW-07-03, which is located in the Pharaoh Seep drainage just above the confluence with Dugout Creek supports the working hypothesis described above in Section 2 and indicates that Pharaoh Seep is contributing a significant amount of chloride to Dugout Creek. Similar results were anticipated for MW-07-02, which is located in the O'Ryan Seep drainage just above its confluence with Dugout Creek. Chloride was detected in MW-07-02 at a concentration of 7,480 mg/L which is an order of magnitude lower than that in MW-07-03. However, chloride in MW-07-02 is still significantly elevated as is the chloride concentration in MW-D-01, which is located in Dugout Creek right at the confluence with the O'Ryan drainage way, both of which indicate that the O'Ryan Seep is also contributing significant amounts of chloride to Dugout Creek.

TDS

TDS concentrations in the Dugout Creek, O' Ryan Seep and Pharaoh Seep groundwater show a positive correlation, as expected, to the chloride concentrations. The TDS values are approximately twice as high as the chloride values, and also appear to be increasing slightly as compared to March 2006 and August 2007 data. The lowest TDS value observed in the Dugout Creek, O' Ryan Seep and Pharaoh Seep area was in MW-D-10 at 544 mg/L and the highest value was observed in MW-07-03 along Dugout Creek at 61,500 mg/L.

BTEX

Six wells were analyzed for BTEX/MTBE; three wells, MW-O-07, MW-O-21 and MW-07-01, were in the O'Ryan Seep study area and three wells, MW-P-01, MW-P-09, and Fina-01, are in the Pharaoh Seep study area. Of the six wells analyzed for BTEX/MTBE, four wells (MW-07-01, MW-O-21, MW-O-07 and MW-P-09) were below detection limits for benzene, toluene, ethylbenzene, xylenes and MTBE. The two remaining wells, FINA-01 and MW-P-01 were nondetect for all constituents except benzene which was detected at 0.0125 mg/L and 0.0136 mg/L, respectively. These values are similar to previous results at these wells and both values exceed the maximum contaminant level of 0.005 mg/L. The BTEX sample for MW-O-07 was collected from the auger-dug hole.

4.3 Surface Water Analytical Results

No flow was present in Dugout Creek at any point during the field effort, therefore a Dugout Creek surface water sample was not collected. However, precipitation has been such over the last several months that both the O' Ryan Seep and Pharaoh Seep were flowing and were sampled. Two field replicate samples were taken at O' Ryan and Pharaoh Seeps by a RRC site remediation coordinator for chloride analyses to be conducted at the RRC District Office in Midland. The replicate samples were analyzed using a Hach test kit for chloride, and were compared to chloride lab analyses for the same sample locations. The analytical results from surface water samples taken at the two seeps are listed in Table 5. Chloride concentration in the O'Ryan Seep surface water sample was detected at 1,740 mg/L chloride based on Hach kit test results as compared to 1,090 mg/L based on laboratory analytical results. Chloride concentration in the Pharaoh Seep surface water sample was detected at 12,040 mg/L chloride based on Hach kit test results as compared to 13,000 mg/L based on laboratory analytical results. These results are similar to those from March 2006 results at 1,210 mg/L and 13,800 mg/L, respectively.

The laboratory data packages from DHL Analytical along with the data review checklists completed by INTERA are included in Appendix A. The data review was conducted in accordance with the Quality Assurance Project Plan (RRC, 2007). Deviations from quality control criteria as presented in the QAPP are noted on the checklists provided in Appendix A. None of the deviations caused significant effects on the data results as

provided by the laboratory. The data presented herein passed data quality review and is considered useable for project purposes.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on analytical data from this field effort, the groundwater at Dugout Creek, O' Ryan and Pharaoh Seeps continue to be impacted by chloride, likely due to reinjection of produced water during the oil production activities that have been underway since at least the 1950's. Chloride concentrations are elevated and exceed the TCEQ drinking water standard of 300 mg/L in 27 out of 33 monitor wells where a sample could be collected. TDS data correlate well with chloride data, and both O'Ryan Seep and Pharaoh Seep contribute to chloride and total dissolved solids impacts downstream in the Colorado River.

The objective of this sitewide groundwater and surface water monitoring event was to collect additional data that will be used to help develop the best management practices for the mitigation of chloride impacts from O'Ryan Seep, Pharaoh Seep or other sources along Dugout Creek. The overall BMP objective is to reduce the salinity load to the Colorado River. The working hypothesis proposed for the transport of chloride and other dissolved constituents appears to be supported in light of the newly collected data. Ongoing reinjection of produced water to facilitate oil production activities in Howard and Mitchell Counties is likely contributing to the exceedingly high chloride and TDS concentrations in the study areas. Alluvial deposits located along the channels in Dugout Creek and O'Ryan and Pharaoh Seeps serve to retain and concentrate chloride loads via evaporation, precipitation and subsequent dissolution and continued movement downstream.

From the previous site reconnaissance work, Crespo has provided INTERA with a BMP evaluation of the Dugout Creek project site. Crespo has provided a list of possible BMPs that can now be used as discussion points for INTERA and RRC moving forward with implementation of a remedy. Moving forward, Crespo, INTERA and RRC should work to determine scope of work and budgetary restraints on the project. The team will work to refine the site conceptual model and to define the process needed for designing BMP(s).

6.0 REFERENCES

DE&S 2001a. Environmental Assessment Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2001.

DE&S 2001b. Environmental Assessment Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2001.

INTERA 2002a. Supplemental Investigation Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2002.

INTERA 2002b. Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2002.

INTERA 2003a. Second Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2003.

INTERA 2003b. Sampling and Analysis Plan for the Texas Railroad Commission. August 2003.

INTERA 2006a. Third Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2006.

INTERA 2006b. Second Supplemental Investigation Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2006.

INTERA 2006c. Environmental Assessment of Dugout Creek, Howard and Mitchell Counties, Texas. August 2006.

INTERA 2007. Investigation and Best Management Practice (BMP) Evaluation and Development Memorandum for O'Ryan Seep, Pharaoh Seep and Dugout Creek, Howard and Mitchell Counties, Texas.

Railroad Commission of Texas (RRC) 2007. Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan, February 2007.

Tables

Locus	Monitor Well	Date Installed	UTM Northing	UTM Easting	Total Depth		Depth to Water*	Water Level Elevation
			(NAD83 meters)	(NAD83 meters)	(ft below TOC)	(ft msl)	(ft below TOC)	(ft msl)
Dugout	MW-D-01	10-Mar-06	3575371	290077	19.7	NS	11.19	NA
Creek**	MW-D-02	10-Mar-06	3574157	291164	22.7	NS	9.97	NA
	MW-D-03	9-Mar-06	3574791	290802	18.9	NS	9.98	NA
	MW-D-04	10-Mar-06	3573143	292323	17.7	NS	11.72	NA
	MW-D-05	13-Mar-06	3572265	292857	24.8	NS	20.65	NA
	MW-D-06	11-Mar-06	3570065	294106	17.6	NS	9.93	NA
	MW-D-07	12-Mar-06	3567828	295057	27.7	NS	24.46	NA
	MW-D-08	12-Mar-06	3567819	296071	37.5	NS	29.1	NA
	MW-D-09	12-Mar-06	3567339	296796	19.9	NS	DRY	NA
	MW-D-10	9-Mar-06	3575642	289778	19.6	NS	9.46	NA
	MW-07-02	16-Aug-07	3575230	289926	20.0	NS	9.1	NA
	MW-07-03	15-Aug-07	3574102	291181	20.0	NS	10.4	NA
O'Ryan	MW-O-01	9-Feb-01	3573901	287806	29.7	2422.98	19.64	2403
	MW-O-02	10-Feb-01	3574158	287981	17.7	2412.50	DRY	NA
	MW-O-03	11-Feb-01	3573734	287420	55.7	2449.26	43.42	2406
	MW-O-04	9-Feb-01	3574321	287970	57.8	2391.44	DRY	NA
	MW-O-05	9-Feb-01	3573624	287756	61.7	2448.14	40.25	2408
	MW-O-06	10-Feb-01	3573976	288039	23.3	2415.80	14.96	2401
	MW-O-07	10-Feb-01	3574269	288657	16.8	2330.18	Well destroyed	NA
	MW-O-08	11-Feb-01	3573950	287403	60.1	2453.59	48.91	2405
	MW-O-09	11-Feb-01	3573880	287390	58.3	2455.60	50.79	2405
	MW-O-11	11-Feb-01	3574253	287510	35.7	2442.99	25.98	2417
	MW-O-12	13-Jun-02	3573834	288087	22.7	2418.15	15.34	2403
	MW-O-13	13-Jun-02	3573760	287968	34.7	2428.42	23.98	2404
	MW-O-15	8-Jul-03	3574143	288403	17.0	2346.90	4.41	2342
	MW-O-21	8-Mar-06	3574436	287480	37.8	2444.06	26.93	2417
	MW-O-22	8-Mar-06	3574367	287443	36.5	2443.51	26.72	2417
	MW-O-23	9-Mar-06	3574227	287348	37.9	2446.66	30.26	2416
	MW-07-01	17-Aug-07	3574499	287482	34.4	NS	24.55	NA
Pharaoh	MW-P-01	7-Feb-01	3573048	288378	29.7	2395.10	9.78	2385
	MW-P-02	8-Feb-01	3573154	288064	28.5	2418.33	14.32	2404
	MW-P-03	12-Feb-01	3573260	288074	24.6	2419.30	14.55	2405
	MW-P-07	8-Feb-01	3572970	288251	52.5	2402.70	DRY	NA
	MW-P-08	11-Feb-01	3573325	288249	27.7	2421.41	18.33	2403
	MW-P-09	10-Feb-01	3573170	288169	20.1	2413.93	10.78	2403
	MW-P-10	14-Jun-02	3573226	288094	26.5	2417.52	13.29	2404
	FINA-01	Unknown	3573093	288299	19.5	2402.31	7.18	2395

 Table 1. Monitor Well Summary and Groundwater Elevations

*All depth to water measurements were taken January 8, 2008. **Elevations for Dugout Creek not surveyed, xy locations determined using handheld GPS

UTM: Universal Transverse Mercator

NAD: North American Datum

TOC: top of casing

ft msl: feet above mean sea level

NS: Not Surveyed

NA: Not Available

Table 2. Groundwater Analytical Results- Dugout Creek

	-								
			MW-D-01	MW-D-02	MW-D-04	MW-D-05	MW-D-06	MW-D-07	MW-D-08
			1/10/2008	1/10/2008	1/10/2008	1/10/2008	1/10/2008	1/9/2008	1/9/2008
		Maximum	801064	801064	801064	801064	801064	801064	801064
		Contaminant	DHL	DHL	DHL	DHL	DHL	DHL	DHL
		Level (MCL)	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Anions									
Bromide	24959-67-9	-	23.4	7.17	93.3	22.8	2.47	20.7	4.35
Chloride	16887-00-6	300*	11600	3480	5710	11400	1550	10400	482
Sulfate	14808-79-8	300*	1470	4620	2310	2280	1370	2130	126
Total Dissolved Solids									
TDS	NL	500**	20100	13300	12700	19700	4660	18400	1250
			MW-D-09	MW-D-10	MW-07-02	MW-07-03	MW-D-03***		
			DRY	1/10/2008	1/10/2008	1/10/2008	2/7/2008		
		Maximum	-	801064	801064	801064			
		Contaminant	-	DHL	DHL	DHL	RRC		
		Level (MCL)	-	Aqueous	Aqueous	Aqueous	Aqueous		
Analyte	CAS	mg/L	-	mg/L	mg/L	mg/L	mg/L		
Anions									
Bromide	24959-67-9	-	NA	< 1.0 U	14.2	116	NS		
Chloride	16887-00-6	300*	NA	68.9	7480	33500	8949		
Sulfate	14808-79-8	300*	NA	35.2	4800	3740	NS		
Total Dissolved Solids									
TDS	NL	500**	NA	544	16900	61500	NS		
NIL NILL Ketterd									

NL- Not listed

NS- Not sampled

NA- Not available for sampling because the well was dry.

Data Qualifiers:

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

Value exceeds MCL

Note: Detected values are in bold font.

* TCEQ drinking water standard based on secondary MCL criteria.

** EPA drinking water standard based on secondary MCL critieria.

***Data from field titration using Hach test kit

Table 3. Groundwater Analytical Results- O'Ryan Seep

	-		MW-O-01	MW-O-02	MW-O-03	MW-O-04	MW-O-05	MW-O-06	MW-O-07	MW-O-08	MW-O-09	MW-O-11
			1/9/2008	DRY	1/9/2008	DRY	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008
		Maximum	801064	-	801064	-	801064	801064	801064	801064	801064	801064
		Contaminant	DHL	-	DHL	-	DHL	DHL	DHL	DHL	DHL	DHL
		Level (MCL)	Aqueous	-	Aqueous	-	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	-	mg/L	-	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Anions												
Bromide	24959-67-9	-	< 1.0 U	NA	< 1.0 U	NA	< 1.0 U	< 1.0 U	17.6	2.21	3.96	5.28
Chloride	16887-00-6	300*	1040	NA	1450	NA	2800	2320	13100	2510	330	3130
Sulfate	14808-79-8	300*	184	NA	291	NA	686	636	1870	440	794	455
Total Dissolved Solids												
TDS	NL	500**	2530	NA	3200	NA	6180	4920	25100	5520	2110	6560
Volatiles												
Methyl tert-butyl ether	1634-04-4	-	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
Benzene	71-43-2	0.005	NS	NS	NS	NS	NS	NS	< 0.002 U	NS	NS	NS
Toluene	108-88-3	1	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
Ethylbenzene	100-41-4	0.7	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
Xylenes, Total	1330-20-7	10	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
							MW-0-31			MW-1-23		
			MW-O-12	MW-O-13	MW-O-15	MW-O-21	Dup MW-O-21	MW-O-22	MW-O-23	Dup MW-O-23	MW-07-01	
			1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/8/2008	
		Maximum	801064	801064	801064	801064	801064	801064	801064	801064	801050	
		Contaminant	DHL	DHL	DHL	DHL	DHL	DHL	DHL	DHL	DHL	
		Level (MCL)	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Anions												
Bromide	24959-67-9	-	< 1.0 U	< 1.0 U	6.76	< 10.0 U	< 10.0 U	3.15	< 1.0 U	< 1.0 U	67.7	
Chloride	16887-00-6	300*	229	245	4600	17200	17000	336	43.6	42.7	7980	
Sulfate	14808-79-8	300*	116	130	1340	2210	1610	313	124	117	727	
Total Dissolved Solids												
TDS	NL	500**	931	1000	11200	32100	30600	1490	699	706	15400	
Volatiles												
Methyl tert-butyl ether	1634-04-4	-	NS	NS	NS	< 0.004 U	< 0.004 U	NS	NS	NS	< 0.004 U	
Benzene	71-43-2	0.005	NS	NS	NS	< 0.002 U	< 0.002 U	NS	NS	NS	< 0.002 U	
			NO	NS	NS	< 0.004 U	< 0.004 U	NS	NS	NS	< 0.004 U	
Toluene	108-88-3	1	NS			< 0.004 0	< 0.004 0		NO		< 0.004 O	
Toluene Ethylbenzene	108-88-3 100-41-4	0.7	NS	NS	NS	< 0.004 U	< 0.004 U	NS	NS	NS	< 0.004 U	

NL- Not listed

NA- Not available for sampling because the well was dry. NS- Not sampled for BTEX.

Data Qualifiers:

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

Value exceeds MCL

Note: Detected values are in bold font.

* TCEQ drinking water standard based on secondary MCL criteria.

** EPA drinking water standard based on secondary MCL critieria.

Table 4. Groundwater Analytical Results- Pharaoh Seep

			MW-P-01	MW-P-02	MW-P-03	MW-P-07	MW-P-08	MW-P-09	MW-P-10	FINA-01
			1/9/2008	1/8/2008	1/8/2008	DRY	1/8/2008	1/9/2008	1/8/2008	1/9/2008
		Maximum	801064	801050	801050	-	801050	801064	801050	801064
		Contaminant	DHL	DHL	DHL	-	DHL	DHL	DHL	DHL
		Level (MCL)	Aqueous	Aqueous	Aqueous	-	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	-	mg/L	mg/L	mg/L	mg/L
Anions										
Bromide	24959-67-9	-	33.5	0.346 J	0.505 J	NA	< 1.0 U	1.29	3.19	73.9
Chloride	16887-00-6	300*	16900	93.7	142	NA	420	542	497	33300
Sulfate	14808-79-8	300*	2540	113	125	NA	225	152	179	1640
Total Dissolved Solids										
TDS	NL	500**	31500	723	836	NA	1380	1550	1410	58500
Volatiles										
Methyl tert-butyl ether	1634-04-4	-	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U
Benzene	71-43-2	0.005	0.0136	NS	NS	NS	NS	< 0.002 U	NS	0.0128
Toluene	108-88-3	1.0	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U
Ethylbenzene	100-41-4	0.7	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U
Xylenes, Total	1330-20-7	10.0	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U

NL- Not listed

NA- Not available for sampling because the well was dry. NS- Not sampled for BTEX.

Data Qualifiers:

J- The reported result is an estimated value.

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

Value exceeds MCL

Note: Detected values are in bold font.

* TCEQ drinking water standard based on secondary MCL criteria.

** EPA drinking water standard based on secondary MCL critieria.

Table 5. Surface Water Analytical Results- O'Ryan and Pharaoh Seeps

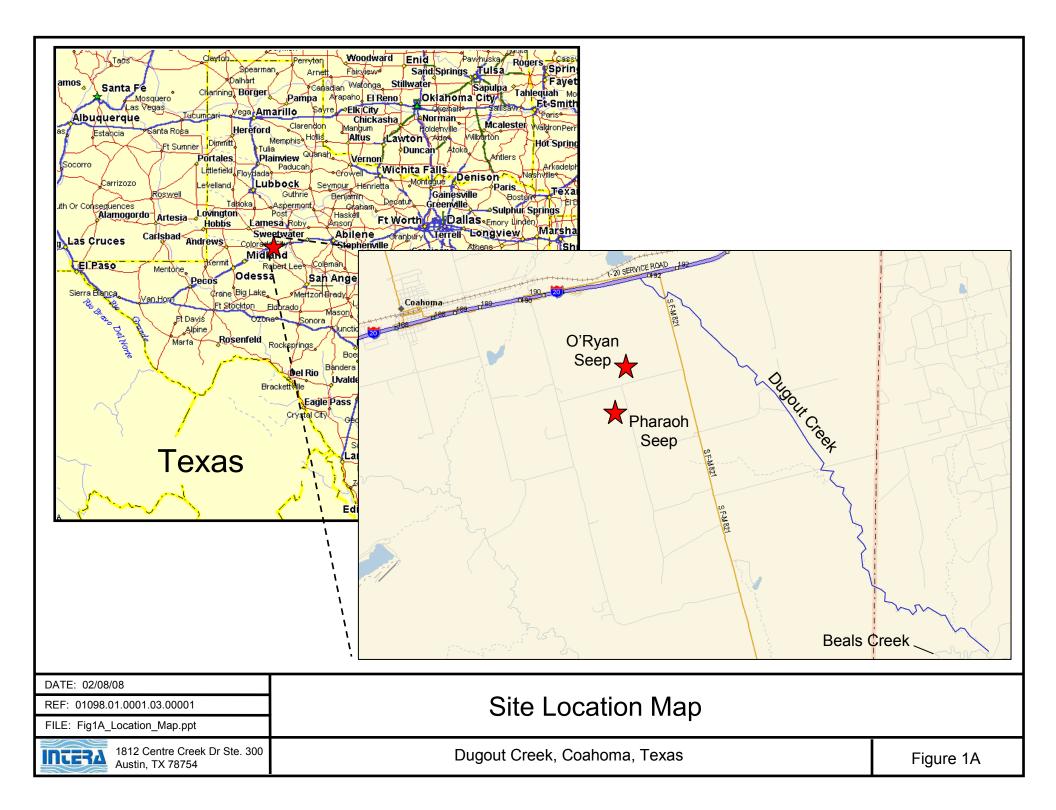
			SW-O-Seep	SW-P-Seep	SW-O-Seep Rep***	SW-P-Seep Rep***
			1/10/2008	1/10/2008	1/10/2008	1/10/2008
		Maximum	801064	801064		
		Contaminant	DHL	DHL	RRC	RRC
		Level (MCL)	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	mg/L
Anions						
Bromide	24959-67-9	-	< 10.0 U	26.8	NS	NS
Chloride	16887-00-6	300*	1090	13000	1740	12040
Sulfate	14808-79-8	300*	442	1250	NS	NS
Total Dissolved Solids						
TDS	NL	500**	2460	24200	NS	NS

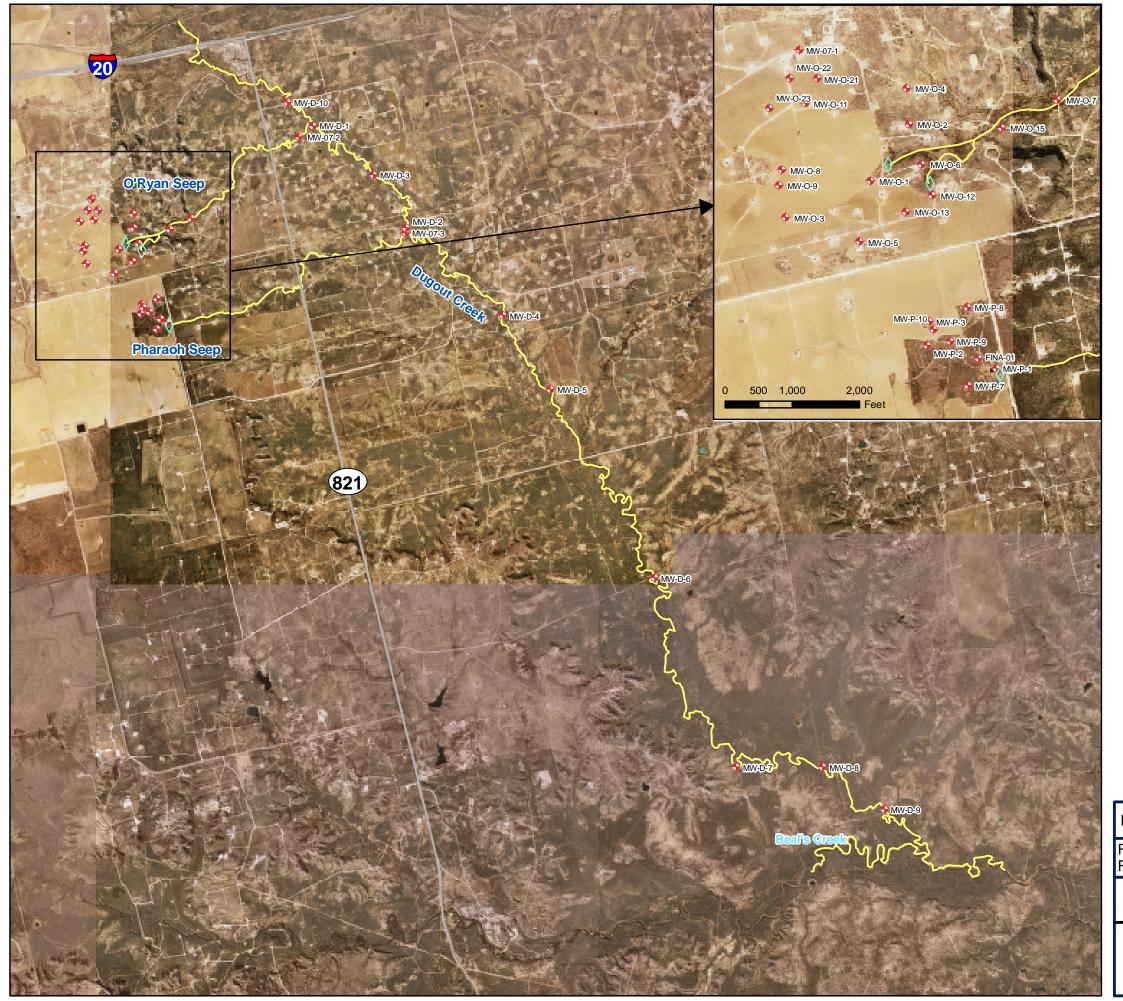
Data Qualifiers:

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

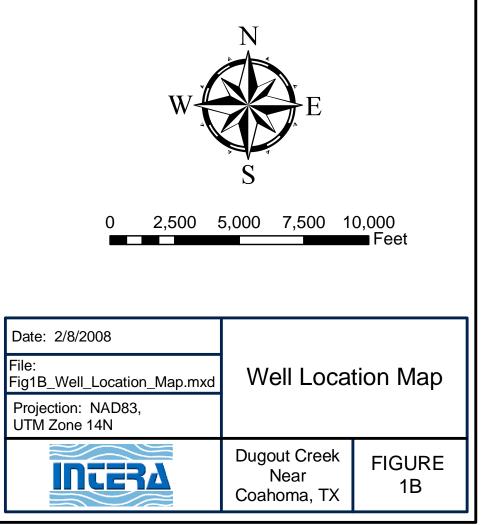
Value exceeds MCL

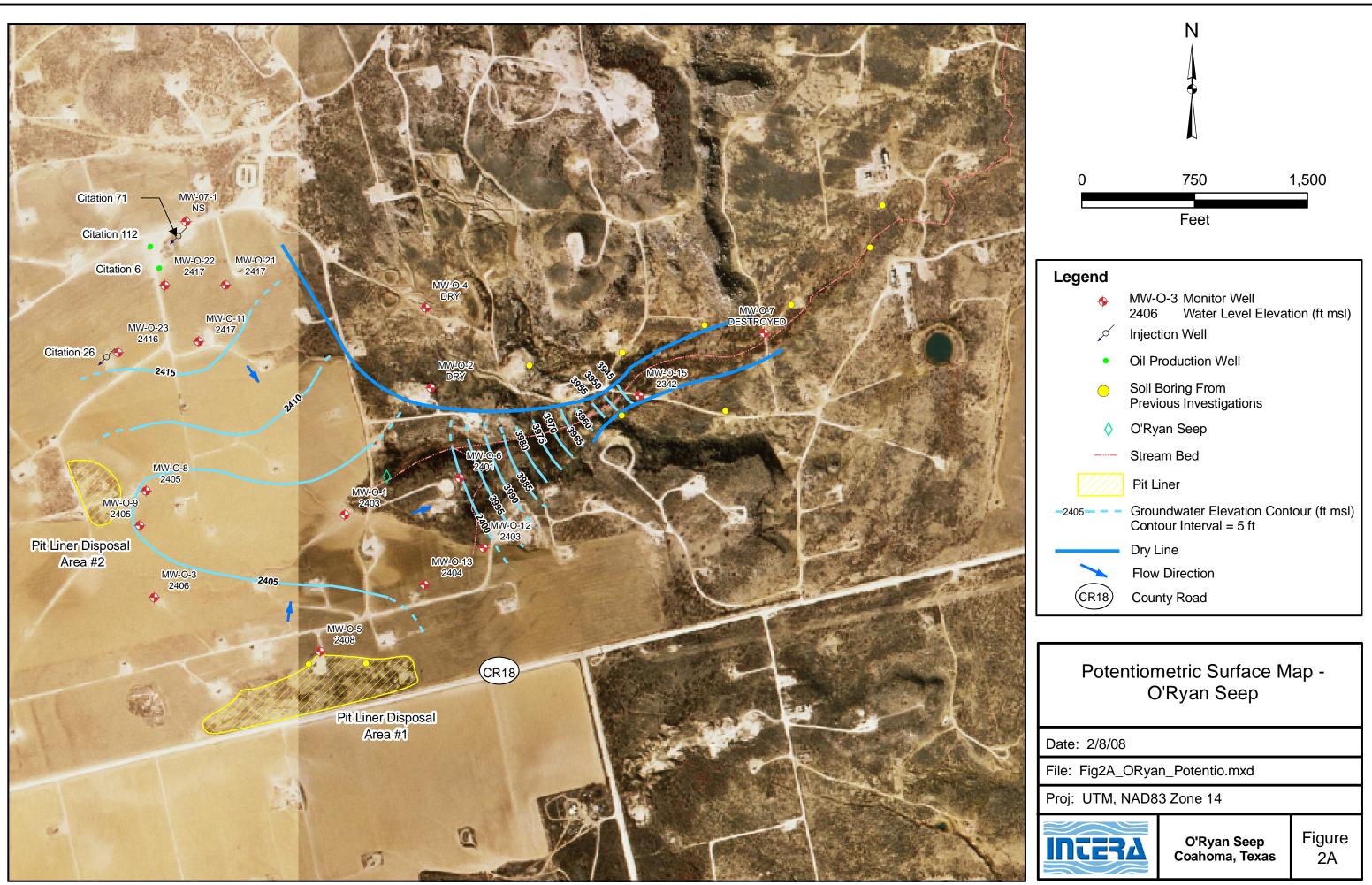
Note: Detected values are in bold font.

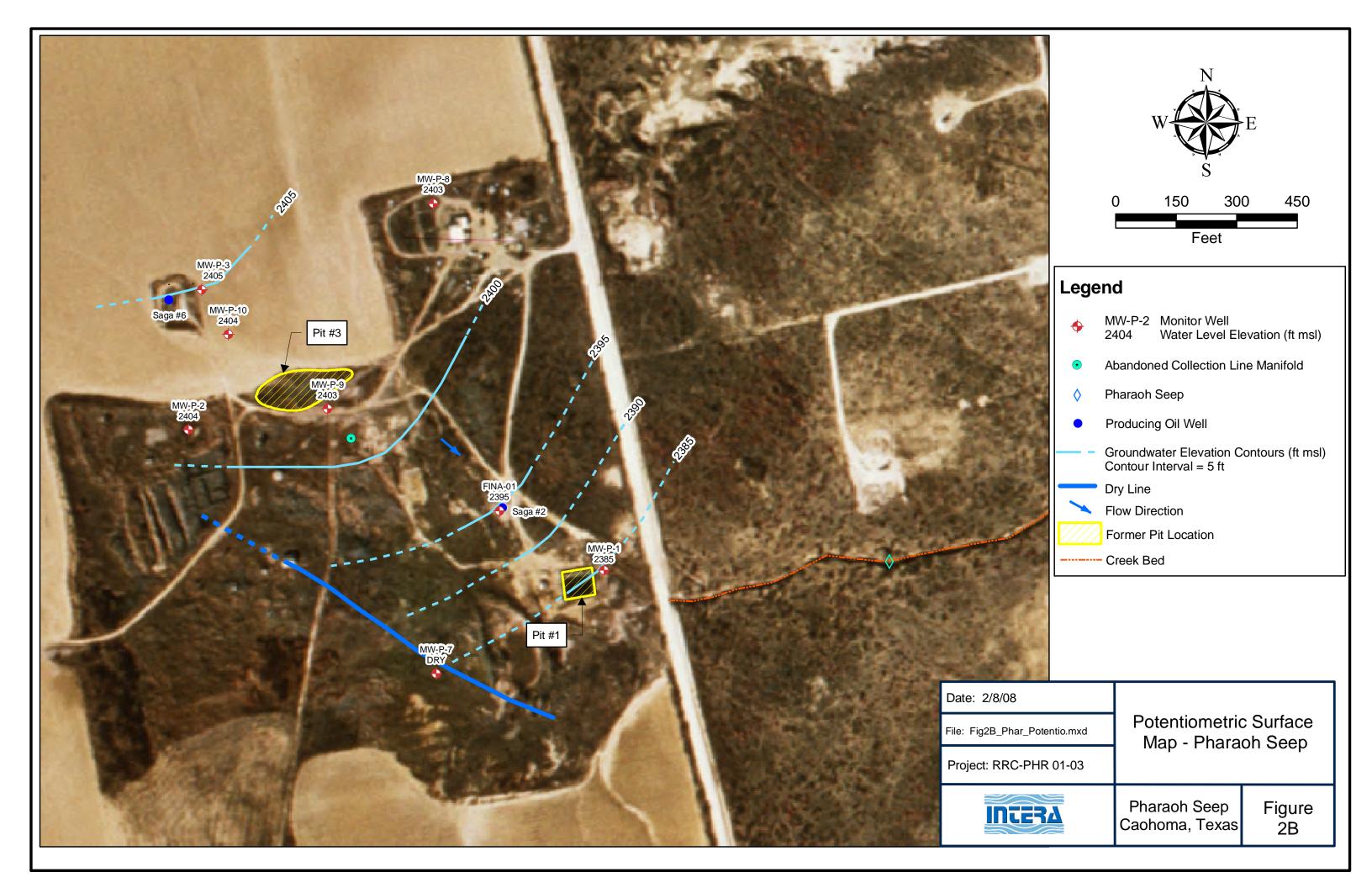

* TCEQ drinking water standard based on secondary MCL criteria.

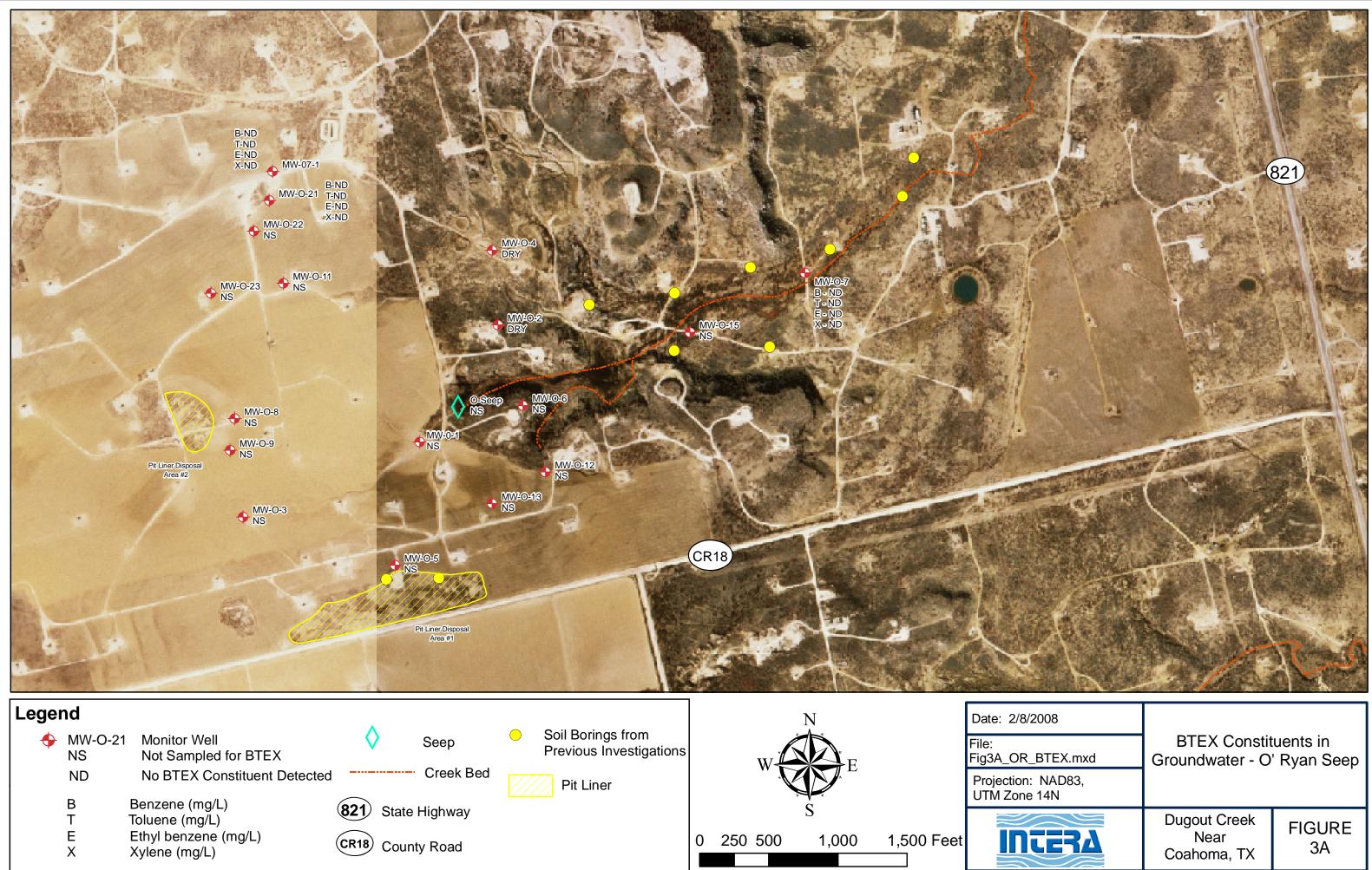

** EPA drinking water standard based on secondary MCL critieria.

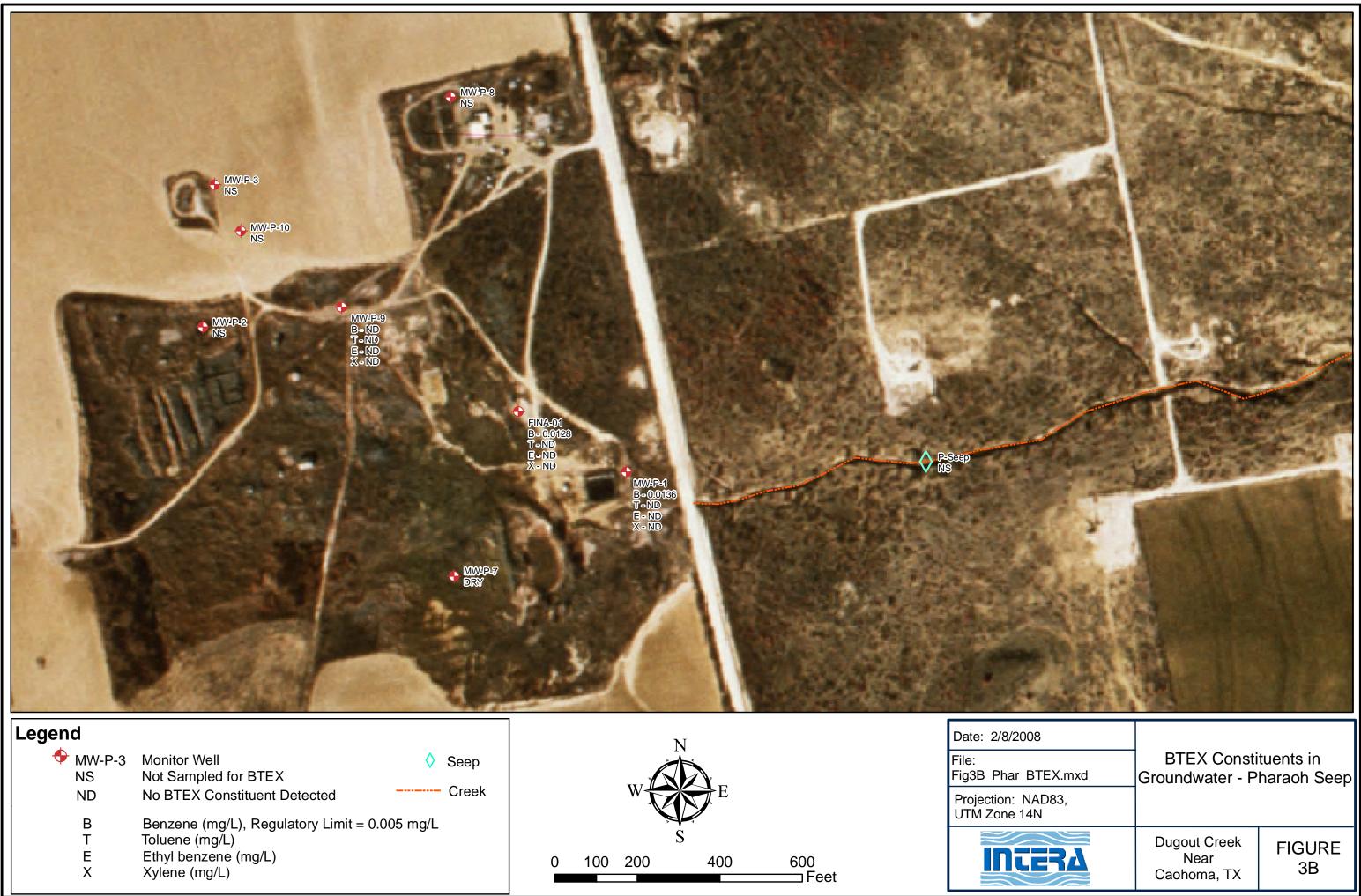
***Data from field titration using Hach test kit

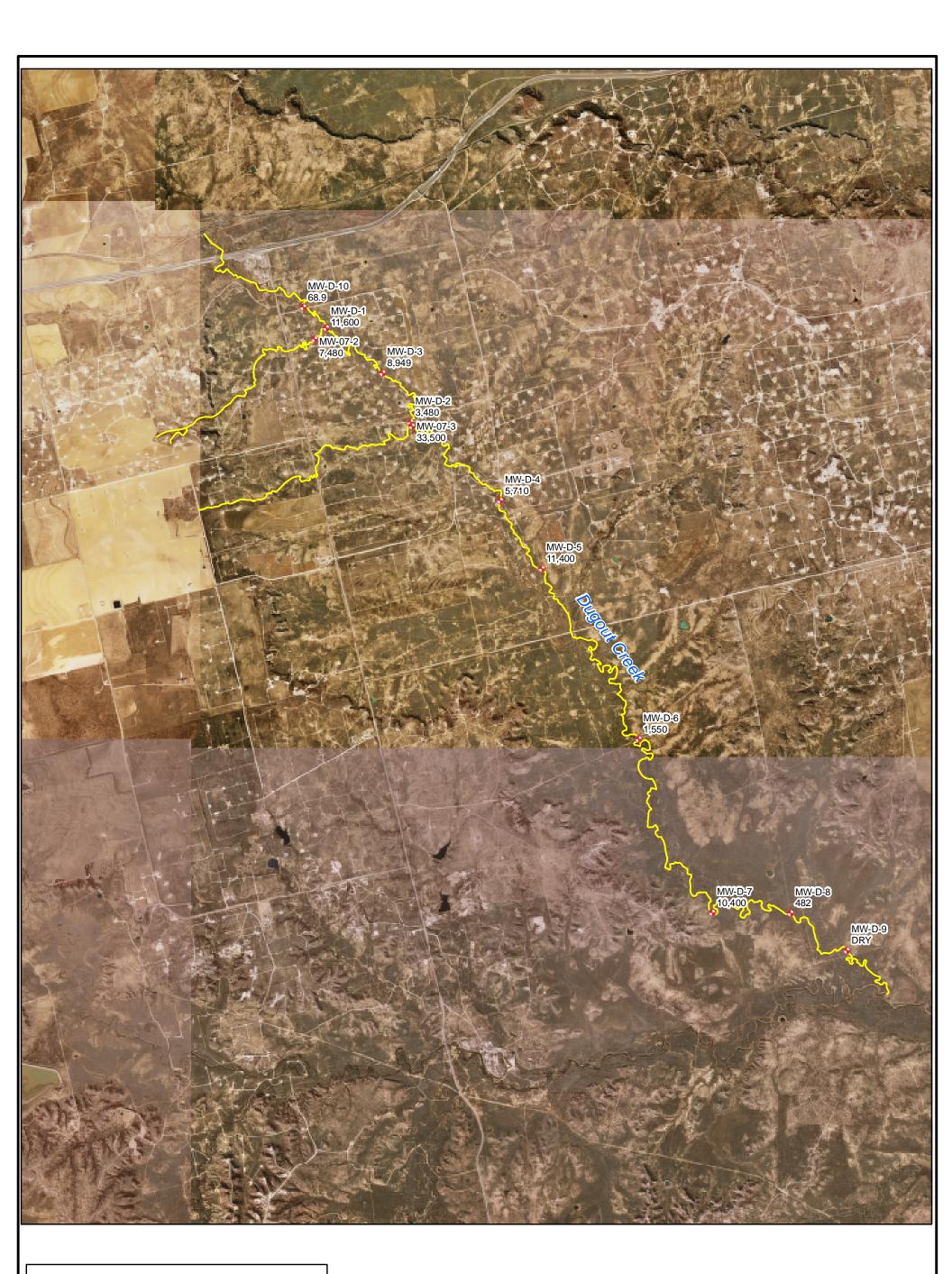

Figures











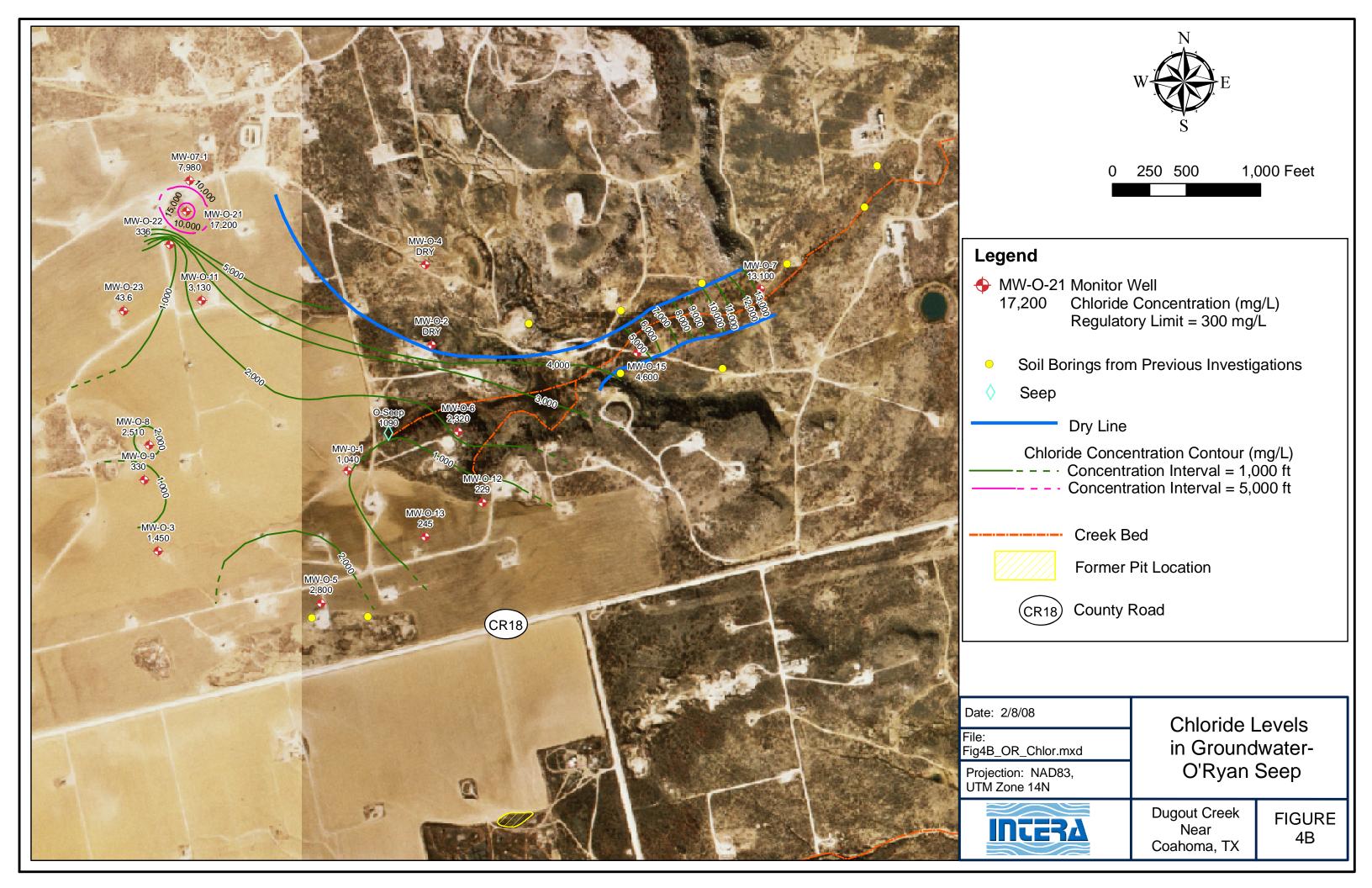
Legend

2,000

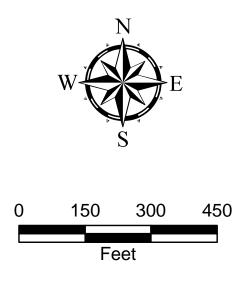
0

MW-D-01 Monitor Well
 11,600 Chloride Concentration (mg/L)
 Regulatory Limit = 300 mg/L

6,000


Feet

- Dugout Creek


4,000

Date: 2/8/2008						
File: Fig4A_Dug_Chlor.mxd	Chloride Levels in Groundwater - Dugout Creek					
Projection: NAD83, UTM Zone 14N						
INCERA	Dugout Creek Near Caohoma, TX	FIGURE 4A				

MW-P-3 Monitor Well 142 Chloride Concentration (mg/L) Regulatory Limit = 300 mg/L								
Abandoned Collection Line Manifold								
Seep								
Well								
Former Pit Location								
— – – – Chloride Concentration Contour (mg/L) Contour Interval = 2000 ft								
· Dry Line								
eek Bed								
Chloride L	evels							
in Groundv								
Pharaoh Seep								
Pharaoh Seep Caohoma, Texas	Figure 4C							
	ride Concentration (m ulatory Limit = 300 mg ollection Line Manifold Well t Location oride Concentration C ntour Interval = 2000 f / Line eek Bed Chloride L in Groundv Pharaoh Seep							

APPENDIX A

DHL Laboratory Analytical Packages

with Data Review Checklists

Data Review Checklist

Client/Project:Reviewer					Review Date: 2/6/08
Lal	poratory: DHL	Analyti	cal Met	hod!	Matrix:
Wo	rk Order No.: 0801050	amee	rno -	5300	wall
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
San	aple Preservation and Integrity	• •	L		
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp	ely ble)?	J		
2	Were holding times met?		V		
Dat	a Completeness				
3	Are results reported for all target analytes, with additional analytes?	no	/		
4	Was the requested analytical method followed?				· · · · ·
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	s/MDL)			Soft's elevated direta defution for mw-97-01 for Ba rel. Both analyt
6	Are results reported for all samples submitted for analysis?	or	Brann	4	detected, no effector
Cal	ibration and QC Sample Frequency				¥ *
7	Were initial and continuing instrument calibrati analyses performed? And reported? ^a	on			
8	For each analytical batch, are results provided f method blank?	or a	V	-	
9	For each analytical batch, are results provided f LCS/LCSD pair?	òr an			
10	For each analytical batch, are results provided f MS/MSD pair? Alternately, are results for MS/ pairs provided for every 20 field samples analyzed	MSD	\checkmark		
11	Are field duplicate results provided at the proje specified (QAPP) frequency?	ct-	V		

Data Review Checklist (continued)

Cli		viewer: & K				
Lal	poratory: DHC An	alytical Met	hod:	Matrix:		
	rk Order No.: 0801050 4	niono 2	300	and a dere		
#				Comments (List Exceptions, Explanations,		
	Review Item or Question	Yes	No	etc.)	-	
12	Organic Analyses Only: For each sample (field and QC), are surrogate spike results provided?			NA		
QC	Results					
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = ND))?				
14	Are LCS/LCSD recoveries and RPDs within limits?	?				
15	Are MS/MSD recoveries and RPDs within limits?	V	5			
16	Are surrogate recoveries within limits (organic analyses only)?			NA	8	
Oth	er Data Quality-Related Issues					
17	The laboratory did not issue any CARs. If this is not true (a CAR was issued), describe impact on sample results.	t e V		e dege		
18	The analyst did not describe any analytical anomalie If this is not true, describe potential impact to sample results.	es. le			2	
19	No other potential data quality issues were identified this is not true, describe issues.	d. If				

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

QAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

Data Review Checklist

Cli	ent/Project: RRC/Dagorat Creek boratory: DHL ork Order No.: 0801050	Reviewe	er: BA	linny	Review Date: 2/4/08
	boratory: DHL	Analytic	cal Met	hod:	Matrix:
Wo	ork Order No.: 0801050	VOCS	- 84	121	Water
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
Sar	nple Preservation and Integrity				
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp		V		
2	Were holding times met?		have a second		
Dat	ta Completeness	1 2 2 3			
3	Are results reported for all target analytes, with additional analytes?	no			
4	Was the requested analytical method followed?		\checkmark		
5	Do reported detection limits (or reporting limits, agree with the project specifications (QAPP)?	/MDL)	/		en en line de la constante de 1929. La constante de la constante de 1929, seu en la constante de 1929. La constante de la constante de la constante de 1928.
6	Are results reported for all samples submitted for analysis?	or	\checkmark		1971 a service glass of 29° and 16 an 18° a Long
Cal	ibration and QC Sample Frequency				
7	Were initial and continuing instrument calibratic analyses performed? And reported? ^a	on	1		
8	For each analytical batch, are results provided for method blank?	or a	\checkmark		1 #
9	For each analytical batch, are results provided for LCS/LCSD pair?	or an		/	Only LCS reported. It
10	For each analytical batch, are results provided for MS/MSD pair? Alternately, are results for MS/M pairs provided for every 20 field samples analyzed	ASD	V		Esta way not qualified.
11	Are field duplicate results provided at the project specified (QAPP) frequency?	:t-	V		

Data Review Checklist (continued)

Lal Wo		nalytic		hod:	Review Date: 2/6/08 Matrix: Water
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
12	Organic Analyses Only: For each sample (field an QC), are surrogate spike results provided?	nd			
QC	Results				
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = NI	D)?	\checkmark		,
14	Are LCS/LCSD recoveries and RPDs within limit	ts?	1	1	thes is within limits,
15	Are MS/MSD recoveries and RPDs within limits?)	V		affect on data quel
16	Are surrogate recoveries within limits (organic analyses only)?		V		
Oth	er Data Quality-Related Issues				8-00 A 8
17	The laboratory did not issue any CARs. If this is n true (a CAR was issued), describe impact on samp results.				
18	The analyst did not describe any analytical anomal If this is not true, describe potential impact to same results.				
19	No other potential data quality issues were identifit this is not true, describe issues.	ied. If			

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

OAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

Trip blank was included in sample coolen; however, it was not on COC. Lab added trip blank to coc and analyzed. There was no effect to data quality.

Data Review Checklist

Client/Project: RECIPEgout Catch Review					Review Date: 2/14/08
	poratory: DHL	Analytic			Matrix:
Wo	rk Order No.: 0801050	70.5	25		hale & Est
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
San	nple Preservation and Integrity				
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp	ely le)?	1		
2	Were holding times met?		V		
Dat	a Completeness				
3	Are results reported for all target analytes, with additional analytes?	no	\checkmark		
4	Was the requested analytical method followed?		\checkmark		2. 2.
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	/MDL)	V		
6	Are results reported for all samples submitted for analysis?	or	V		
Cal	ibration and QC Sample Frequency				it work and
7	Were initial and continuing instrument calibration analyses performed? And reported? ^a	on		\checkmark	Report of calibration not acquired. Lat Clicklis reports ICV/CLVS were in
8	For each analytical batch, are results provided for method blank?	or a			dete quality and date
9	For each analytical batch, are results provided for LCS/LCSD pair?	or an		V	and the formided and Let due formided and in contrat. no effect ma
10	For each analytical batch, are results provided for MS/MSD pair? Alternately, are results for MS/MSD pairs provided for every 20 field samples analyzed	MSD		/ (for TDS analysis, LCS + Lab day ok, No
11	Are field duplicate results provided at the project specified (QAPP) frequency?	ot-	/	(effect on deste quality

Data Review Checklist (continued)

		Reviewe Analytic	r: <i>BL</i> e al Met	gney hod	Review Date: Altolo8 Matrix:
	boratory: DHL: 0 ork Order No.: 0801050	TDS	2.5	"40C	water
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
12	Organic Analyses Only: For each sample (field an QC), are surrogate spike results provided?	nd			NA
QC	Results				
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = N.	D)?	\checkmark		
14	Are LCS/LCSD recoveries and RPDs within limit	its?		V.	SMo LCSD provided.
15	Are MS/MSD recoveries and RPDs within limits'	?		V	no ms/msp provided
16	Are surrogate recoveries within limits (organic analyses only)?				Let dup RPD ok. no effect
Oth	ner Data Quality-Related Issues			2	
17	The laboratory did not issue any CARs. If this is a true (a CAR was issued), describe impact on samp results.	not ple	land		
18	The analyst did not describe any analytical anoma If this is not true, describe potential impact to sam results.		Variant		
19	No other potential data quality issues were identif this is not true, describe issues.	fied. If	barranner		

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate QAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments: 1

January 22, 2008

Daniel Krause INTERA Inc. 1812 Centre Creek Dr. #300 Austin, Texas 78754

TEL: (512) 425-2000 FAX (512) 425-2099

Order No.: 0801050

RE: Pharoah

Dear Daniel Krause:

DHL Analytical received 6 sample(s) on 1/10/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-06-TX

TABLE OF CONTENTS

This report for INTERA Inc. : Pharoah (DHL Work Order 0801050) contains the following information:

	ITEM	Page
•	Cover Page	1
	Table of Contents	2
	Original chain of custody, FedEx slip (if used), log-in checklist	3-5
	Laboratory Data Package Signature Page	6
1.	Laboratory Review Checklist	7-8
	Case Narrative	9
	Work Order Summary	10
	Preparation Dates Report	11
	Analytical Dates Report	12
	Sample Results	13-18
	QC Summary Report	19-27
	MQL Summary Report	28
	Total Number of Pages	28

January 21, 2008

Approved: John DuPont

1

Nº 34702 CHAIN-OF-CUSTODY	PHARZADH *: 080/050	COLLECTOR:	0.007 314 00 0 0.007 07 00 00 00 0.007 07 00 00 00	C 351 C 10 C 401 C 10 C 401 C 10	X	X X BROMIDE, SULFATE	X X BROMIDE, SULFATE	X X X BEDMIDE SULFATE	X X BROMIDE SULPATE	AN TETOCOC	y cradute ter	BIEX/MTBE	PEC Norviel K. 1.12.05				NILY:	CUSTODY SEALS - J BROKEN X INTACT - NOT USED	T 1	D HAND DELIVERED
, TX 78664 8229	DATE: 1-8-08 PO# RRU DUW -03-02 PHL WORK ORDE PROJECT LOCATION OR NAME: PHARADH	CLIENT PRO	25° (35°) (3	15101 15101 1000000													TURN AROUND TIME LAE RUSH 7 CALL FIBST		X	0THER 0 0TH
2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229	125-2099 Maney	LETIEMERA			X	X			HX XX	×					-			RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	a Return
C A L Phone (512)			- P=PAINT TER SL=SLUDGE OT=OTHER	Date Time Matrix Type	18/08 1545 W P	8/08 1635 W	108 1700 W		5 4 M LOLI 80/84	V/8/08 - TB							1/0/08	1.10.089:00	DATE/TIME	DHL DISPOSAL @ \$5.00 each
ANALYTI	CLIENT: <u>INTERA, INC.</u> ADDRESS: [3]2, CENTTE (YEEK Dr. 5te. 300 PHONE: 512-425-2000 FAX 512-4 DATA REPORTED TO: DAMIEL KEAAS E. BARBARA	ADDITIONAL REPORT COPIES TO: UYNDA	Authorize 5% S=SOIL surcharge for w=WATER TRRP report? A=AIR D'ves INo	Field DHL دیک Sample I.D. Lab #	MW-P-08 01 1			MW-P-02 04 1	MW-07-01 US	Triv Blank UG						TOTAL		RELINQUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	

100.00

teelplank Cop/	43 Express Package Service Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs <	
	1 From This preference the The spirates increased. Date L.GG. Felix Tracking Number B.L.J.B.H.F.T.H.B.B. Senders DAMEL L.M.L.L. Senders DAMEL L.M.L.B.H.B.B.B. Senders INTERA INC. Date Annes J.B.L.B.H.B.R.B.F.E. Scholl DAMEL Annes J.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B	
49.	ANGOTOA AAM BONALEO COCSTA #qm3	8°h

DHL Analytical

Client Name INTERA Inc.

Vork Order Number 0801050

Sample Receipt Checklist

1/10/2008

Date Received: Received by DU

Reviewed by

Initials

Checklist completed by:

Signature

08 0 Date

Carrier name: FedEx 1day

Shipping container/cooler in good condition?	Ye	s 🗸	No 🗌	Not Present
Custody seals intact on shippping container/cooler?	Ye	s 🗹	No 🗌	Not Present
Custody seals intact on sample bottles?	Ye	s 🗌	No 🗔	Not Present
Chain of custody present?	Ye	s 🗸	No 🗌	
Chain of custody signed when relinquished and received?	Ye	5	No 🗌	
Chain of custody agrees with sample labels?	Ye	5 🗸	No 🗌	
Samples in proper container/bottle?	Yes		No 🗌	
Sample containers intact?	Yes		No 🗌	
Sufficient sample volume for indicated test?	Yes		No 🗌	
All samples received within holding time?	Yes		No 🗌	
Container/Temp Blank temperature in compliance?	Yes		No 🗌	
.vater - VOA vials have zero headspace?	Yes	~	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes		No 🗌	Not Applicable 🗹
Adjusted?			Checked by	

Any No response must be detailed in the comments section below.

Client contacted	Date contacted:	Person contacted	
Contacted by:	Regarding:		
Comments:	-		
Corrective Action			

Laboratory Data Package Signature Page

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

AM WinA Signature

01/2-2-08

Scott Schroeder – Project Manager John DuPont – General / QA Manager

		Analytical, Inc. atory Review Checklist: Reportable Data						
		lame: Phaloch Data Date:	1/22/08					
			tory Work Order: 080 1050					
					0.10.0			
			tch: See Analytical Dates Report					-
$\#^1$	A			Ye) N/	A ³ NI	₹ ⁴ ER#
		Chain-of-Custody (C-O-C)					1	
R1	Ol	/		~	_			21-01
		2) Were all departures from standard conditions described in an exc	ception report?		1	1		
R2	OI	Sample and Quality Control (QC) Identification						
		1) Are all field sample ID numbers cross-referenced to the laborato	y ID numbers?	~				
		2) Are all laboratory ID numbers cross-referenced to the correspond	ling QC data?	V				
R3	OI	Test Reports						C CONNER
		1) Were all samples prepared and analyzed within holding times?		~				
		2) Other than those results < MQL, were all other raw values brack	ted by calibration standards?	~				
		3) Were calculations checked by a peer or supervisor?		~				
		4) Were all analyte identifications checked by a peer or supervisor?		5				
		5) Were sample quantitation limits reported for all analytes not dete		1				
		6) Were all results for soil and sediment samples reported on a dry w	veight basis?			~		
		7) Were % moisture (or solids) reported for all soil and sediment sat	nples?			~		
		8) If required for the project, TICs reported?				~		
R 4	0	Surrogate Recovery Data						
		1) Were surrogates added prior to extraction?		~				
		2) Were surrogate percent recoveries in all samples within the laborate	atory QC limits?	V				
25	OI	Test Reports/Summary Forms for Blank Samples						
		1) Were appropriate type(s) of blanks analyzed?		~				
		2) Were blanks analyzed at the appropriate frequency?		~				
		3) Where method blanks taken through the entire analytical process, applicable, cleanup procedures?	including preparation and, if	4				
		4) Were blank concentrations < MQL?	************************************	~	+	+	-	
26	OI	Laboratory Control Samples (LCS):	······································	Ň		1 (s - ; 1)	6 (1-1)S.C	
		1) Were all COCs included in the LCS?		~		er versenze	1. 20.000302	
	а -	2) Was each LCS taken through the entire analytical procedure, inclu	iding prep and cleanup steps?	~		1		
		3) Were LCSs analyzed at the required frequency?	B prop and creating otepor	V	14	1	1	
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory (C limits?	~	1	1	1	
		5) Does the detectability data document the laboratory's capability to			1			
		to calculate the SQLs?		~				
		6) Was the LCSD RPD within QC limits (if applicable)?		~	1			
7	Ol	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data				A-N		A
		1) Were the project/method specified analytes included in the MS an	d MSD?	~			1	
		2) Were MS/MSD analyzed at the appropriate frequency?	•)	~				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC	limits?	v				
		4) Were MS/MSD RPDs within laboratory QC limits?		5				
8	OI	Analytical Duplicate Data				00000	Statute	
		1) Were appropriate analytical duplicates analyzed for each matrix?		~				
		2) Were analytical duplicates analyzed at the appropriate frequency?		~				
		3) Were RPDs or relative standard deviations within the laboratory Q		~				
9		Method Quantitation Limits (MQLs):			Sale S	2000		elements de la
		1) Are the MQLs for each method analyte included in the laboratory of		~				
		2) Do the MQLs correspond to the concentration of the lowest non-ze	ro calibration standard?	~				
		3) Are unadjusted MQLs included in the laboratory data package?		~				
0		Other Problems/Anomalies				a starter		dellas soje
		1) Are all known problems/anomalies/special conditions noted in this				~		
		2) Were all necessary corrective actions performed for the reported da		~				
		3) Was applicable and available technology used to lower the SQL mathematical sectors and a sector of the sector o	nimize the matrix interference	~				
		affects on the sample results?						

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. 1

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Pro	ject N	Name: Pharoch Date: 1/22/08						
Rev	iewe	r Name: Carlos Castro Laboratory Work Order	NSALASA					
#1	A	² Description	0001030	Yes	No	NA	3 NR4	ER# ⁵
S1	01			1 Co				ER#
						64 6362	as peste	and the second second
		 Were response factors and/or relative response factors for each analyte within QC I Were percent RSDs or correlation coefficient criteria met? 	imits?	V	_	_		_
		3) Was the number of standards recommended in the method used for all analytes?		V				-
		 4) Were all points generated between the lowest and highest standard used to calculate 		12				_
		5) Are ICAL data available for all instruments used?	e the curve?	V			-	
	1	6) Has the initial calibration curve been verified using an appropriate second source st	1 10	~		-	-	
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV) and Continuing	andard?		REPORTED IN	an vencor	We temperate	a Biener Biener
~-		blank (CCB):	Calibration	in a chine			an Display	a nieksie
		1) Was the CCV analyzed at the method-required frequency?		1		S States		t so start and
		2) Were percent differences for each analyte within the method-required QC limits?		1				
		3) Was the ICAL curve verified for each analyte?		1				
		4) Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			+			
S3	0	Mass Spectral Tuning:		HICK	10 24 Z 4		al Personal	
		1) Was the appropriate compound for the method used for tuning?		CER CER	2917/1020		and the second	
		2) Were ion abundance data within the method-required QC limits?				-	-	
S4	0	Internal Standards (IS):		2 Call And		R DESING	a dan teta	
		1) Were IS area counts and retention times within the method-required QC limits?		STANDARD AND A	Section and the section of the secti			Salar a caller
55	OI	Raw Data (NELAC section 1 appendix A glossary, and section 5.12)		8 2 P. 1	Sec.		e Stando	1200 1900
		1) Were the raw data (for example, chromatograms, spectral data) reviewed by an analy	vet?		P DESTRICTION OF		12 A DEGINING	Contraction of the second
		2) Were data associated with manual integrations flagged on the raw data?	yat.	V			+	
56	0	Dual Column Confirmation				Augulation		
		1) Did dual column confirmation results meet the method-required QC?				124055.009	A NUMBER OF COMPANY	000000000000000000000000000000000000000
57	0	Tentatively Identified Compounds (TICs):				action of		Sec. 1
		1) If TICs were requested, were the mass spectra and TIC data subject to appropriate ch	necks?				APRIL ACTIV	10420310101012
8]	Interference Check Sample (ICS) Results:				Un rela		No. Company
		1) Were percent recoveries within method QC limits?				~		and the second
9	1	Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions			and the second	1. Salar		Providences -
		1) Were percent differences, recoveries, and the linearity within the QC limits sp	ecified in the	Inconta pinare				
		method?						
10	Ol	Method Detection Limit (MDL) Studies			State Land Cold		0.000	
	0,	1) Was a MDL study performed for each reported analyte?			691309[200]	S. 512.6 [2]	A STREET	
		2) Is the MDL either adjusted or supported by the analysis of DCSs?		~ ~				
11	OI	Proficiency Test Reports:			NUCCESS.	Marchel	Haltard.	
	_	1) Was the lab's performance acceptable on the applicable proficiency tests or evaluatio	n studios?		ATRA SOLUTION	Teoresines	Stanie Saint	and the property of
12	Ol	Standards Documentation			Nº SACO	Same Line	1	STATISTICS AND
		1) Are all standards used in the analyses NIST-traceable or obtained from other appropr	into nourroad?	>	ALCHORUS N	es (Szelete)		
13	OI	Compound/Analyte Identification Procedures			PROFILING ST			NUMBER
		1) Are the procedures for compound/analyte identification documented?			and the second second		000000000000000000000000000000000000000	Haspel 273
14	01	Demonstration of Analyst Competency (DOC)					1987 (S. 175	alin basa sala
		1) Was DOC conducted consistent with NELAC Chapter 5C?		\mathbf{r}	ANTINE STREETS	an a	and the second second second	THE CONTRACTOR
		2) Is documentation of the analyst's competency up-to-date and on file?		~				
5	OI	Verification/Validation Documentation for Methods (NELAC Chap 5)						
		1) Are all the methods used to generate the data documented, verified, and vali	dated where	R. S.		Y BORNAUS		Tentor Red + ID - 19 (52)
1		applicable?	autou, where	\mathbf{v}				
				1		1	1	
6		Laboratory Standard Orangia D. 1 (00D)	160		1			Hill 21 plan and County
6	OI	Laboratory Standard Operating Procedures (SOPs): 1) Are laboratory SOPs current and on file for each method performed?						an a

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

2 3 NA = Not applicable.

⁴ NR = Not Reviewed.

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).5

DHL Analytical

CLIENT:	INTERA Inc.
Project:	Pharoah
Lab Order:	0801050

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW8021B - Volatile Organics by GC Analysis Method E300 - Anions Analysis Method M2540C - Total Dissolved Solids

Exception Report R1-01

Samples were received and log-in performed on 1/10/07. A total of 6 samples were received. The Trip Blank was included in the cooler but not listed on the Chain-of-Custody (COC). Added the Trip Blank to the COC as per the client. The samples arrived in good condition and were properly packaged.

DHL Analytical

Date: 22-Jan-08

CLIENT:	INTERA Inc.
Project:	Pharoah
Lab Order:	0801050

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
0801050-01	MW-P-08		01/08/08 03:45 PM	1/10/2008
0801050-02	MW-P-10		01/08/08 04:35 PM	1/10/2008
0801050-03	MW-P-03		01/08/08 05:00 PM	1/10/2008
0801050-04	MW-P-02		01/08/08 05:46 PM	1/10/2008
0801050-05	MW-07-01		01/08/08 05:07 PM	1/10/2008
0801050-06	Trip Blank		01/08/08	1/10/2008

DHL alytical

22-Jan-08

Sample ID Client Sample ID O 0801050-01A MW-P-08 01 0801050-01A MW-P-08 01 MW-P-08 01 01 0801050-02A MW-P-08 01 MW-P-08 01 01 0801050-02A MW-P-10 01 MW-P-10 MW-P-10 01 0801050-03A MW-P-10 01 0801050-03A MW-P-03 01 0801050-03A MW-P-03 01 0801050-04A MW-P-03 01 0801050-05A MW-P-02 01 0801050-05A MW-P-02 01 0801050-05A MW-P-02 01 0801050-05A MW-P-02 01 0801050-05A MW-07-01 01						
MW-P-08 MW-P-08 MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
MW-P-08 MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	
MW-P-08 MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	4/ CCEX
MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	00/01/10	K357/4
MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	M2540C	Total Discolved Solide	01/11/08	R35574
MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	E300	Anions by IC method - Water	01/10/08 10:00 AM	1 DS_W-01/11/08
MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	4/ CCCA
MW-P-10 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/08 10:00 AM	TDS W.11/10
MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:00 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	D35574
MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:00 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	4/00M
MW-P-02 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:00 PM	Aqueous	M2540C	T otal Dissolved Solids	01/11/08 10:00 AM	SOLUTION W SUT
MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:46 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:46 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:46 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/08 10-00 AM	TDS W 01/11/00
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	D36574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	P35574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	80/11/10	R35607
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	R35721
	01/08/08 05:07 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/08 10:00 AM	TDS W-01/11/08
0801050-05B MW-07-01 01	01/08/08 05:07 PM	Aqueous	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28607
0801050-06A Trip Blank	01/08/08	Trip Blank	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697

Page 1 of 1

-

DHL. alytical

22-Jan-08

Lab Order: 980050 Clion: DuttRA In: Phanoal ANTEXICAL DATES REPORT Panoal NUTERA In: Association Dutreta In: Sample ID Terret Sample ID Markit but Eat Name Barch ID Mutrix Dut Rout Sample ID Terret Sample ID Markit Terr Sample ID Mutrix Dut Rout Common Sample ID Sample ID Nave-Rag Markit Test Name Barch ID Differing ID Mutrix Dut Rout Sample ID Markit Dut Markit Dut Antoxite Dut Mutrix D									
INTEA In. ANALYTICAL DATES REP Plancah ANALYTICAL DATES REP Plancah Client Sample ID Matrix Test Number Test Number Test Number Test Number Planca Matrix Test Number Test Number Test Number Test Number Planca Matrix Test Number Test Number Test Number Test Number Test Number Test Number Planca Matrix TESS World Number READ Anions by Cmethod - Water R35574 10 01/1008 06:31 PM NW-P-10 Aqueous E300 Anions by Cmethod - Water R35574 1 0.1/1008 06:39 PM NW-P-10 Aqueous E300 Anions by Cmethod - Water R35574 1 0.1/1008 06:39 PM NW-P-10 Aqueous E300 Anions by Cmethod - Water R35574 1 0.1/1008 06:39 PM NW-P-10	Lab Order:	0801050							
Planoni.	Client:	INTER A Inc				A N A I A	Child		
Client Sample IDMartixTest NumberTest NumberTest NumberTest NumberTest NumberTest NumberNumberNumberMartisTest NumberNumberNumberMartisTest NumberNumberNumberMartisTest Number <th>Project:</th> <th>Pharoah</th> <th></th> <th></th> <th></th> <th>ALALI</th> <th></th> <th>AL DALES KE</th> <th>LPORT</th>	Project:	Pharoah				ALALI		AL DALES KE	LPORT
NWV-7-08 Aqueous E300 Anions by IC method - Water Pass 74 10 01/1008 05:31 PM NWV-7-08 Aqueous E300 Anions by IC method - Water R35574 10 01/1008 05:31 PM NWV-7-08 Aqueous E300 Anions by IC method - Water R35574 10 01/1008 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC me	Sample ID	Client Sample ID	Matrix	Test Number	Test Name		Infion		
WW-P.08 Aqueous E300 Anions by IC method - Water R35574 10 01/1008 05:31 PM $WW-P.08$ Aqueous E300 Anions by IC method - Water R35574 10 01/1008 06:41 PM $WW-P.08$ Aqueous E300 Anions by IC method - Water R35574 10 01/1008 06:41 PM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 1 01/1008 06:30 AM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 1 01/1008 06:30 AM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 10 01/1008 06:30 AM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 20 01/1008 06:30 AM $WW-P.12$ Aqueous E300 Anions by IC method - Water R35574 5 01/1008 06:30 PM $WW-P.23$ Aqueous E300 Anions by IC method - Water R35574 5 01/1008 06:30 PM $WW-P.23$ Aqueous E300 Anions b							HOHU	Analysis Date	Run ID
NW.P-08 Aqueous E300 Anions by IC method - Water R33574 10 01/1008 08:31 PM NW.P-08 Aqueous E300 Anions by IC method - Water R33574 1 01/1008 08:31 PM NW.P-10 Aqueous E300 Anions by IC method - Water R33574 1 01/1008 06:30 PM NW.P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water	0801050-01A	MW-P-08	Aqueous	E300	Anions by IC method - Water	R35574	10	01/10/08 05:31 PM	IC2 080110A
$MW-P-08$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 04:37 PM $MW-P-10$ Aqueous M3540 Total Dissolved Solids TDS_W-01/11/08 I 01/14/08 05:30 AM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 I 0/1/10/08 05:30 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 I 0/1/10/08 05:30 PM $MW-P-03$ Aqueous M2340C		MW-P-08	Aqueous	E300	Anions by IC method - Water	R35574	10	01/10/08 08:41 PM	102 0801104
MW-P-08 Aqueous M2340C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 06:30 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 06:30 AM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-02 Aqueous M2340C Total Dissolved		MW-P-08	Aqueous	E300	Anions by IC method - Water	R35574	1	01/10/08 04:17 PM	V011000 201
MW-P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10088 0545 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10088 0545 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10088 0545 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10088 0545 PM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 10 01/10088 0545 PM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0545 PM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0543 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0543 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0543 PM MW-P-02 Aqueous E300 Anions by IC method - Water		MW-P-08	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/11/08	• •	ML 1 (1:40 80/81/10 MA 08:30 AM	WC DOULLC
MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 05.54 pm MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 05.54 pm MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 05.39 Am MW-P-03 Aqueous M3240C Total Dissolved Solids TDS_W-01/11/08 1 01/10/08 05.39 Am MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05.39 pm MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05.39 pm MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05.31 pm MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07.33 pm MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07.33 pm MW-07-01 Aqueous E300 Anions by IC met	0801050-02A	MW-P-10	Aqueous	E300	Anions by IC method - Water	R35574	-	01/10/08 04:50 PM	
MW-P-10 Aqueous E300 Anions by IC method - Water R35574 20 01/10/08 06:00 PM MW-P-10 Aqueous M3240C Total Dissolved Suids TDS_W-01/11/08 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 20 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:31 PM MW-07-01 Aqueous E300 Anions by IC meth		MW-P-10	Aqueous	E300	Anions by IC method - Water	R35574	01	M4 54:50 80/01/10	102 0801104
$MW.P-10$ Aqueous M2.540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:15 PM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:10 PM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:30 PM $MW.P-02$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:30 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 FM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 FM $MW-07-01$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:32 FM $MW-07-01$ Aqueous E300		MW-P-10	Aqueous	E300	Anions by IC method - Water	R35574	20	MT 00.90 80/01/10	1C2_080110A
MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:15 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:19 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 0 01/10/08 06:19 PM $MW-07-01$ Aqueous E300 Anions by IC method - Water R35574 1 0 01/10/08 07:31 PM $MW-07-01$ Aqueous E300 Anions by IC method - Water R35574 1 0 01/10/08 07:31 PM $MW-07-01$ Aqueous E300 Anions by IC method - Wa		MW-P-10	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/11/08	Ļ	01/14/08 08:30 AM	MC 080111C
MW-P-03 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM MW-P-03 Aqueous M3240C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 06:39 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:39 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 50 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC	0801050-03A	MW-P-03	Aqueous	E300	Anions by IC method - Water	R35574	-	01/10/08 04-47 PM	
MW-P-03 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 05:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:30 FM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:30 FM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/14/08 05:31 FM MW-P-02 Aqueous M3540C Total Dissolved Solids TDS_W-01/11/08 1 01/10/08 05:31 FM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:31 FM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 FM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 FM MW-07-01 Aqueous E300 Anions by IC method - Water R355774 100		MW-P-03	Aqueous	E300	Anions by IC method - Water	R35574	, v	M1 (110 80/01/10	1C2_080110A
MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:29 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:30 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by		MW-P-03	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/11/08	, .	MA 08:30 80/21/10	WC 080111C
MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:01 PM MW-P-02 Aqueous M3540C Total Dissolved Solids TDS_W-01/11/08 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:28 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 07:37 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:37 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 50 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions b	0801050-04A	MW-P-02	Aqueous	E300	Anions by IC method - Water	R35574	5	Md 0C:00 80/01/10	
MW-P-02 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:23 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:23 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/11/08 11:9 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:9 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:11 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000		MW-P-02	Aqueous	E300	Anions by IC method - Water	R35574	-	MG 10:50 20101/10	1C2_000110A
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/14/08 05:36 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:28 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:28 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:27 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 1000 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 03:30 AM MW-07-01 Aqueous M2540C		MW-P-02	Aqueous	M2540C	Total Dissolved Solids	TDS W 01/11/08			1C2_080110A
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 50 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 50 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 100 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35602 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 03:33 PM MW-07-01 Trip Blank Trip Blank SW8021B </td <td>0801050-05A</td> <td>MW-07-01</td> <td>Aqueous</td> <td>E300</td> <td>Anions by IC method - Water</td> <td>R35574</td> <td>-</td> <td>01/10/08 08:30 AM</td> <td>WC_080111C</td>	0801050-05A	MW-07-01	Aqueous	E300	Anions by IC method - Water	R35574	-	01/10/08 08:30 AM	WC_080111C
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 1 01/14/08 1 01/14/08 1 01/14/08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35574	50	Md 80:00 80/01/10	1C2_080110A
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35602 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08<		10-70-WM	Aqueous	E300	Anions by IC method - Water	R35574	100	01/10/08 07·43 PM	1C2_080110A
MW-07-01 Aqueous E300 Anions by IC method - Water R35602 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/18/08 12:11 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/18/08 12:11 PM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35574	1000	M1 2:::0 200010	1C2_080110A
MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/18/08 12:11 PM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM 0		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35602	v	MUT / CT/D CO//11/10	1C2_00011UA
MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM 0 Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM 0		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35771	20001		1C2_U80111A
MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08		MW-07-01	ADIPOLIC	JUNSCIN		17100	1000	MJ 11:71 80/81/10	IC2_080118A
Trip Blank Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM	DRAIDED AED		en oanhi i	OD + C 7 M	I OTAL DISSOLVED SOLIDS	T.DS_W-01/11/08		01/14/08 08:30 AM	WC_080111C
1 rip Blank Trip Blank SW8021B Volatile Organics by GC 28697 I 01/14/08 03:38 PM	960-0601080	10-/0-www	Aqueous	SW8021B	Volatile Organics by GC	28697	I	01/14/08 12:41 PM	GC9_080114A
	Von-nentnen	l rip Blank	T rip Blank	SW8021B	Volatile Organics by GC	28697	I	01/14/08 03:38 PM	GC9_080114A

Page 1 of 1

12

DHL Ana	lytical				D	ate:	22-Ja	un-08
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-	P-08
oject:	Pharoah					Lab ID:	08010	50-01
rroject No:	RRC-DUG-03-02				Coll	ection Date:	01/08/	/08 03:45 PM
Lab Order:	0801050					Matrix:	AQU.	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER	E300				Analyst: JBC		
Bromide		ND	0.300	1.00		mg/L	1	01/10/08 04:17 PM
Chloride		420	3.00	10.0		mg/L	10	01/10/08 08:41 PM
Sulfate		225	10.0	30.0		mg/L	10	01/10/08 05:31 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	1380	10.0	10.0		mg/L	1	01/14/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 6

DHL Ana	lytical				D	ate:	22-Ja	ın-08
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	P-10
oject:	Pharoah					Lab ID	: 08010	050-02
1 roject No:	RRC-DUG-03-02				Colle	ection Date	: 01/08/	/08 04:35 PM
Lab Order:	0801050					Matrix	AQU	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER	E300						Analyst: JBC
Bromide		3.19	0.300	1.00		mg/L	1	01/10/08 04:32 PM
Chloride		497	3.00	10.0		mg/L	10	01/10/08 05:45 PM
Sulfate		179	10.0	30.0		mg/L	10	01/10/08 05:45 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	1410	10.0	10.0		mg/L	1	01/14/08 08:30 AM

 J - Analyte detected between SDL and RL

 ${\rm B}$ - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 6

DHL Ana	lytical				ľ)ate:	22-Ja	un-08
CLIENT:	INTERA Inc.				Clien	t Sample ID	: MW-	P-03
oject:	Pharoah					Lab ID	: 08010	50-03
roject No:	RRC-DUG-03-02				Coll	ection Date	: 01/08/	/08 05:00 PM
Lab Order:	0801050					Matrix	AQU	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER	E300				Analyst: JBC		
Bromide		0.505	0.300	1.00	J	mg/L	1	01/10/08 04:47 PM
Chloride		142	1.50	5.00		mg/L	5	01/10/08 06:15 PM
Sulfate		125	5.00	15.0		mg/L	5	01/10/08 06:15 PM
TOTAL DISSOL	VED SOLIDS		M2540)C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	836	10.0	10.0		mg/L	1	01/14/08 08:30 AM

s ND - Not Detected at the SDL

J - Analyte detected between SDL and RL B - Analyte detected in the associated Method Blank

DF- Dilution Factor N - Parameter not NELAC certified

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				I	ate:	22-Ja	un-08		
CLIENT:	INTERA Inc.				Clien	t Sample ID	: MW-	P-02		
~oject:	Pharoah					Lab ID	: 08010	50-04		
roject No:	RRC-DUG-03-02				Coll	ection Date	01/08	/08 05:46 PM		
Lab Order:	0801050					Matrix	AQU	EOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC	METHOD - WATER	E300					Analyst: JBC			
Bromide		0.346	0.300	1.00	J	mg/L	1	01/10/08 05:01 PM		
Chloride		93.7	1.50	5.00		mg/L	5	01/10/08 06:29 PM		
Sulfate		113	5.00	15.0		mg/L	5	01/10/08 06:29 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	723	10.0	10.0		mg/L	1	01/14/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				I	Date:	22-Ja	n-08
CLIENT:	INTERA Inc.				Clien	t Sample ID:	MW-()7-01
nject:	Pharoah					Lab ID:	08010	50-05
roject No:	RRC-DUG-03-02				Coll	ection Date:	01/08/	08 05:07 PM
Lab Order:	0801050					Matrix:		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORC	GANICS BY GC	-	SW8	021B				Analyst: JAW
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 12:41 PM
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Methyl tert-buty	/l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Surr: a,a,a-T	rifluorotoluene	98.4	0	87-113		%REC	1	01/14/08 12:41 PM
ANIONS BY IC	METHOD - WATER		E3	00				Analyst: JBC
Bromide		67.7	1.50	5.00		mg/L	5	01/11/08 11:19 AM
Chloride		7980	300	1000		mg/L	1000	01/18/08 12:11 PM
Sulfate		727	50.0	150		mg/L	50	01/10/08 07:28 PM
TOTAL DISSOL	VED SOLIDS		M254	40C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	15400	10.0	10.0		mg/L	1	01/14/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				D	ate:	22-Ja	un-08
CLIENT:	INTERA Inc.				Client	t Sample ID:	Trip E	Blank
oject:	Pharoah					Lab ID:	08010	50-06
1 roject No:	RRC-DUG-03-02				Coll	ection Date:	01/08/	/08
Lab Order:	0801050					Matrix:	TRIP	BLANK
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE OR	GANICS BY GC		SW80	021B				Analyst: JAW
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 03:38 PM
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Methyl tert-buty	l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Surr: a,a,a-T	rifluorotoluene	97.6	0	87-113		%REC	1	01/14/08 03:38 PM

J - Analyte detected between SDL and RL B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Analytical

CLIENT: INTERA Inc. 'ork Order: 0801050 roject: Pharoah

ANALYTICAL QC SUMMARY REPORT

RunID: GC9_080114A

Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Composed SampType: MSD H Compose		28697		TestNo	J. 3VV	8021B		Units:	mg	/L	
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Coluene Ethylbenzene Kylenes, Total	Run ID:	GC9_0	80114A	Analys	is Date: 1/1-	4/2008 10:5	2:31 A	Prep Dat	e: 1/1	4/2008	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Kylenes, Total Surr: a,a,a-Trifluorotoluene SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total Surr: a,a,a-Trifluorotoluene SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluen		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimi	t Qu
Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Foluene Ethylbenzene Kylenes, Total		0.0432	0.00600	0.0500	0	86.5	78	122			
Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H SampType: MSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Toluene Sample ID 0801064-14AMSD H SampType: MSD H SampType: MSD H SampType: MSD H		0.0485	0.00200	0.0500	0	97.1	81	125			
Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total SampType: MSD Analyte		0.0505	0.00600	0.0500	0	101	84	123			
Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Foluene Ethylbenzene Kylenes, Total		0.0496	0.00600	0.0500	0	99.3	83	119			
Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene SampType: MSD I		0.149	0.00900	0.150	0	99.5	81	117			
SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampI ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene SampType: MSD I Analyte		199		200.0		99.4	87	113			
Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampI ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene	Batch ID:	28697		TestNo	SW	8021B		Units:	m g/	'L	
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampI ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total	Run ID:	GC9_08	30114A	Analys	is Date: 1/14	/2008 11:0	9:21 A	Prep Date	e: 1/14	/2008	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qua
Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total		ND	0.00600								
Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampType: MSD Analyte Methyl tert-butyl ether Benzene Foluene Ethylbenzene Kylenes, Total		ND	0.00200								
Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total		ND	0.00600								2
Surr: a,a,a-Trifluorotoluene Sumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total		ND	0.00600				ä.				
SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		ND	0.00900								
SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampIe ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		200		200.0		100	87	113			
Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	Batch ID:	28697		TestNo:	SW8	021B		Units:	mg/	L	
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	Run ID:	GC9_08	0114A	Analysi	s Date: 1/14	/2008 1:14:	57 PM	Prep Date	: 1/14	/2008	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qua
Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	1	0.0543	0.00600	0.0500	0	109	78	122			
Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		0.0508	0.00200	0.0500	0	102	81	125			
Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	(0.0526	0.00600	0.0500	0	105	84	123			
Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD i Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	(0.0513	0.00600	0.0500	0	103	83	119			
Sample ID 0801064-14AM SD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		0.154	0.00900	0.150	0	103	81	117			
SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		201		200.0		101	87	113	1017 TV		
Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total	Batch ID:	28697		TestNo:	SW8	021B		Units:	m g/l		
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	Run ID:	GC9_08	0114A	Analysis	5 Date: 1/14/	2008 1:31:4	18 PM	Prep Date:	1/14/	2008	
Benzene Toluene Ethylbenzene Xylenes, Total		Result	RL	SPK value	Ref Val	%REC	Low Limit I	HighLimit	%RPD	RPDLimit	Qua
Toluene Ethylbenzene Kylenes, Total	(0.0535	0.00600	0.0500	0	107	78	122	1.48	20	
Ethylbenzene Kylenes, Total	(0.0508	0.00200	0.0500	0	102	81	125	0.0571	20	
(ylenes, Total	(0.0525	0.00600	0.0500	0	105	84	123	0.147	20	
	C	0.0509	0.00600	0.0500	0	102	83	119	0.716	20	
Surr: a,a,a-Trifluorotoluene	1	0.153	0.00900	0.150	0	102	81	117	0.823	20	
		203		200.0		102	87	113	0	0	
Qualifiers: B Analyte detec		ñ		k DF D	ilution Facto						

Not Detected at the Method Detection Limit ND

RL Reporting Limit

Parameter not NELAC certified N

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT:

INTERA Inc. 0801050

Work Order: 0801050 P-oject: Pharoah

ANALYTICAL QC SUMMARY REPORT

RunID: GC9_080114A

Sample ID ICV-080114	Batch ID:	R35636		TestNo	: SV	V8021B		Units:	m	g/L	
SampType: ICV	Run ID:	GC9_08	30114A	Analys	is Date: 1/1	4/2008 10:3	5:40 A	Prep Dat	e:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPE	D RPDLimit	Qua
Methyl tert-butyl ether		0.0890	0.00600	0.100	0	89.0	80	120			
Benzene		0.0972	0.00200	0.100	0	97.2	85	115			
Toluene		0.102	0.00600	0.100	0	102	85	115			
Ethylbenzene		0.101	0.00600	0.100	0	101	85	115			
Xylenes, Total		0.301	0.00900	0.300	0	100	85	115			
Surr: a,a,a-Trifluorotoluene		204		200.0		102	87	113			
Sample ID CCV1-080114	Batch ID:	R35636		TestNo:	SW	/8021B		Units:	mg	g/L	
SampType: CCV	Run ID:	GC9_08	0114A	Analysi	s Date: 1/1	4/2008 2:22:	21 PM	Prep Date	Э:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qua
Methyl tert-butyl ether	(0.0471	0.00600	0.0500	0	94.1	80	120			
Benzene	(0.0512	0.00200	0.0500	0	102	85	115			
Toluene	(0.0529	0.00600	0.0500	0	106	85	115			
Ethylbenzene	(0.0512	0.00600	0.0500	0	102	85	115			
Xylenes, Total		0.153	0.00900	0.150	0	102	85	115			
Surr: a,a,a-Trifluorotoluene		201		200.0		100	87	113			
Sample ID CCV2-080114	Batch ID:	R35636		TestNo:	SW	8021B		Units:	mg	/L	
ρType: CCV	Run ID:	GC9_080	0114A	Analysis	s Date: 1/14	4/2008 8:25:4	48 PM	Prep Date	1		
Analyte	1	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	C	.0543	0.00600	0.0500	0	109	80	120			
Benzene	C	.0501	0.00200	0.0500	0	100	85	115			
Toluene	C	.0515	0.00600	0.0500	0	103	85	115			
Ethylbenzene	0	.0508	0.00600	0.0500	0	102	85	115			
Kylenes, Total	(0.155	0.00900	0.150	0	103	85	115			
Surr: a,a,a-Trifluorotoluene		194		200.0		96.9	87	113			

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 2 of 9

CLIENT Work O		ERA Inc. 050			А	NALYI	TICAL	QC S	UMM	ARYI	REPO	OR
~~oject:	Phar	oah					Runl	D:	IC2_080	0110A		
Sample ID	ICV-080110	Batch ID	R3557	4	Testi	vio: E3	00		Units:	m g.	<u>′</u> L	
SampType	ICV	Run ID:	IC2_0	80110A	Anal	/sis Date: 1/1	0/2008 9:29	0:09 AM	Prep Da	te: 1/10)/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Li	mit HighLimi	t %RPD	RPDLim	it Qu
Bromide			51.8	1.00	50.00	0	104	90	110			
Chloride			25.6	1.00	25.00	0	102	90	110			
Sulfate			78.4	3.00	75.00	0	104	90	110			
Sample ID	MB-080110	Batch ID:	R3557	4 .	TestN	ko: E30	00		Units:	mg/	L	
SampType	MBLK	Run ID:	IC2_0	80110A	Analy	sis Date: 1/1	0/2008 9:50	:51 AM	Prep Dat	:e: 1/10	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD	RPDLimi	t Qua
Bromide			ND	1.00								
Chloride			ND	1.00								
Sulfate			ND	3.00								
Sample ID	LCS-080110	Batch ID:	R3557	4	TestN	o: E30	10		Units:	mg/l	-	
SampType	LCS	Run ID:	IC2_08	30110A	Analy	sis Date: 1/10	0/2008 10:0	5:31 A	Prep Dat	e: 1/10/	2008	
Analyte			Result	RL	SPK value	Ref Val	% REC	Low Lin	nit HighLimit	%RPD	RPDLimit	Qua
Bromide			19.9	1.00	20.00	0	99.6	90	110			
Chloride			9.84	1.00	10.00	0	98.4	90	110			
ate	ana santa ana ana ana ana ana ana ana ana ana		30.1	3.00	30.00	0	100	90	110			
Sample ID	LCSD-080110	Batch ID:	R35574	l.	TestN	E30	0		Units:	mg/L	-	
SampType:	LCSD	Run ID:	IC2_08	0110A	Analys	sis Date: 1/10)/2008 10:20):12 A	Prep Date	e: 1/10/	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	Qua
Bromide			20.0	1.00	20.00	0	99.8	90	110	0.256	20	
Chloride			9.86	1.00	10.00	0	98.6	90	110	0.167	20	
Sulfate			30.3	3.00	30.00	0	101	90	110	0.656	20	
Sample ID	CCV1-080110	Batch ID:	R35574		TestNo	E300	D		Units:	mg/L	h.	
SampType:	CCV	Run ID:	IC2_08	0110A	Analys	is Date: 1/10	/2008 1:21:	35 P M	Prep Date	e: 1/10/2	2008	
Analyte	-		Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD F	RPDLimit	Qual
Bromide			19.9	1.00	20.00	0	99.6	90	110			
Chloride			9.94	1.00	10.00	0	99.4	90	110			
Sulfate			30.5	3.00	30.00	0	102	90	110			
Sample ID	0801046-01D N	S Batch ID:	R35574		TestNo	E300)		Units:	mg/L		
SampType:	MS	Run ID:	IC2_08	0110A	Analys	is Date: 1/10/	/2008 2:05:3	86 PM	Prep Date	: 1/10/2	8008	
			Result	RL	SPK value	Ref Val	%REC		t HighLimit			Qual

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

MDL Method Detection Limit

Page 3 of 9

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: Work Or	INTERA 0801050	Inc.			A	NALYT	ICAL	QCS	UMM	ARY	REPO	ORT
work Of Project:	Pharoah						Runl	D:	IC2_08()110A		
Sample ID SampType	0801046-01D MS MS	Batch ID Run ID:	R35574	0110A	TestN Analy	o: E30 sis Date: 1/10		:36 PM	Units: Prep Da	m g. te: 1/10	/L)/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimi	l %RPD	RPDLimi	t Qual
Chloride	9		186	10.0	100.0	91.61	94.5	90	110			
Sample ID SampType:	0801046-01D M SD M SD	Batch ID: Run ID:	R35574 IC2_080	110A	TestNa Analys	o: E30 sis Date: 1/10		:16 PM	Units: Prep Dat	mg/ e: 1/10	L /2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	Qual
Chloride			186	10.0	100.0	91.61	94.3	90	110	0.112	20	
Sample ID SampType:	CCV2-080110 CCV	Batch ID: Run ID:	R35574 IC2_080	110A	TestNo Analys	e: E300 is Date: 1/10		59 PM	Units: Prep Dat	mg/ e: 1/10	L /2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qual
Bromide Chloride Sulfate			20.1 9.98 30.6	1.00 1.00 3.00	20.00 10.00 30.00	0 0 0	100 99.8 102	90 90 90	110 110 110			
Sample ID	CCV3-080110	Batch ID:	R35574		TestNo	: E300			Units:	mg/l		
SampType:	CCV	Run ID:	IC2_080 ⁻	110A	Analys	is Date: 1/10/	2008 6:44:	23 PM	Prep Date	e: 1/10/	2008	
Jyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	t HighLimit	%RPD	RPDLimit	Qual
Bromide Chloride Sulfate			20.2 10.1 30.5	1.00 1.00 3.00	20.00 10.00 30.00	0 0 0	101 101 102	90 90 90	110 110 110			
Sample ID SampType:	0801050-04A MS MS	Batch ID: Run ID:	R35574 IC2_0801	10A	TestNo: Analysi	E300 s Date: 1/10/2	2008 6:59:0)4 PM	Units: Prep Date	m g/L :: 1/10/2		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD F	RPDLimit	Qual
Bromide Sulfate		2	19.8 100	1.00 3.00	20.00 30.00	0.2000 69.18	98.1 104	90 90	110 110			
Sample ID	0801050-04A MSD	Batch ID:	R35574		TestNo:	E300			Units:	mg/L		
SampType:	MSD	Run ID:	IC2_0801	10A	Analysi	5 Date: 1/10/2	2008 7:13:4	4 PM	Prep Date	: 1/10/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Bromide Sulfate			20.0 100	1.00 3.00	20.00 30.00	0.2000 69.18	99.2 104	90 90	110 110	1.14 0.0115	20 20	

Qualifiers:

В Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

. ...

DF Dilution Factor

- MDL Method Detection Limit
- R RPD outside accepted control limits

Page 4 of 9

S Spike Recovery outside control limits

CLIENT: INTERA Inc. Work Order: 0801050 "oject: Pharoah

ANALYTICAL QC SUMMARY REPORT

RunID: IC2_080110A

Sample ID CCV4-080110 SampType: CCV	Batch ID: Run ID:	R35574 IC2_080	110A	TestNo Analys	b: E300 is Date: 1/10		09 PM	Units: Prep Date	mg/L e: 1/10/2008	
Analyte	-	Result	RL	SPK value	Reí Val	%REC	Low Limi	t HighLimit	%RPD RPDLI	mit Quai
Bromide		20.2	1.00	20.00	0	101	90	110		
Chloride		9.98	1.00	10.00	0	99.8	90	110		
Sulfate		30.5	3.00	30.00	0	102	90	110		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit Page 5 of 9 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits N Parameter not NELAC certified

CLIENT:	INTERA : der: 0801050	Inc.			AI	NALYT	ICAL	QC SI	JMMA	ARY REPO	ORT
Work Or	Pharoah						RunI	D: I	C2_080)111A	
Sample ID	ICV-080111	Batch ID	R35602		TestNo	D: E30	0		Units:	mg/L	
SampType:	ICV	Run ID:	IC2_080	0111A	Analys	sis Date: 1/11	1/2008 10:0	07:13 A	Prep Dat	te: 1/11/2008	
Analyte		- 115	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimil	%RPD RPDLimit	Qual
Bromide			50.4	1.00	50.00	0	101	90	110		
Sample ID	MB-080111	Batch ID:	R35602		TestNo	E300	0	i na si	Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_080	111A	Analys	is Date: 1/11	/2008 10:2	1:53 A	Prep Dat	e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD RPDLimit	Qual
Bromide			ND	1.00							
Sample ID	LCS-080111	Batch ID:	R35602		TestNo	E300)	- Andrew Million Control of Con-	Units:	mg/L	
SampType:	LCS	Run ID:	IC2_080	111A	Analys	is Date: 1/11,	/2008 10:3	6:34 A	Prep Date	e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD RPDLimit	Qual
Bromide			19.6	1.00	20.00	0	98.0	90	110		
Sample ID	LCSD-080111	Batch ID:	R35602		TestNo	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_080 [.]	111A	Analysi	s Date: 1/11/	2008 10:51	1:14 A	Prep Date	e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
ide			19.7	1.00	20.00	0	98.6	90	110	0.592 20	
Sample ID	CCV1-080111	Batch ID:	R35602		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_0801	111A	Analysi	s Date: 1/11/	2008 11:45	:06 A	Prep Date	: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Bromide			20.0	1.00	20.00	0	99.8	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 6 of 9
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	-
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	N	Parameter not NELAC certified			

CLIENT: Work Or ject:	INTERA der: 0801050 Pharoah	Inc.			AN	ALYTI	CAL Runl	-	UMMA IC2_080	ARY REPO)RT
Sample ID	ICV-080118	Batch ID:			TestNo				Units:	m g/L	
SampType:	ICV	Run ID:	IC2_0801	18A	Analys	is Date: 1/18	/2008 9:50):57 AM	Prep Dat	te: 1/18/2008	
Analyte		-	Result	RL	SPK value	Ref Val	%REC	Low Lin	hit HighLimil	l %RPD RPDLimi	Qual
Chloride			25.5	1.00	25.00	0	102	90	110		
Sample ID	MB-080118	Batch ID:	R35721		TestNo	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_0801	18A	Analysi	s Date: 1/18/	2008 10:1	5:42 A	Prep Dat	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	iit HighLimit	%RPD RPDLimit	Qual
Chloride			ND	1.00							
Sample ID	LCS-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC2_0801	18A	Analysi	s Date: 1/18/2	2008 10:3	0:22 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Chloride			9.89	1.00	10.00	0	98.9	90	110		
Sample ID	LCSD-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_0801	18A	Analysis	Date: 1/18/2	2008 10:4	5:02 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
ride			9.90	1.00	10.00	0	99.0	90	110	0.140 20	
Sample ID	CCV1-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_08011	I8A	Analysis	Date: 1/18/2	2008 12:41	l:15 P	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD RPDLimit	Qual
Chloride			9.87	1.00	10.00	0	98.7	90	110		
Sample ID	CCV2-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_08011	8A	Analysis	Date: 1/18/2	008 3:48:	13 PM	Prep Date	: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride	17 17 17 17 17 17 17. 17		10.0	1.00	10.00	0	100	90	110		
Sample ID	0801092-01BMS	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC2_08011	8A	Analysis	Date: 1/18/2	008 4:04:	57 P M	Prep Date	: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride		(1750	50.0	500.0	1258	98.0	90	110		

Qualifiers:

- B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL
 - ND Not Detected at the Method Detection Limit
 - RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

- MDL Method Detection Limit
- R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 7 of 9

CLIENT: Work Ord	INTERA der: 0801050 Pharoah	Inc.	,	2	AN	ALYTI	CAL (RunI)		UMMA 1C2_080		EPC)RT
Sample ID SampType:	0801092-01B MSD MSD	Batch ID: Run ID:	R35721 IC2_080	118A	TestNo: Analysi	E300 s Date: 1/18/2	2008 4:19:	37 PM	Units: Prep Date	m g/L e: 1/18/2		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Li	mit HighLimit	%RPD F	RPDLimit	Qual
Chloride			1740	50.0	500.0	1258	96.8	90	110	0.333	20	
Sample ID SampType:	CCV3-080118 CCV	Batch ID: Run ID:	R35721 IC2_0801	18A	TestNo: Analysis	E300 Date: 1/18/2	008 5:02:	59 PM	Units: Prep Date	m g/L :: 1/18/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD R	PDLimit	Qual
Chloride			10.0	1.00	10.00	0	100	90	110			J

Qualifiers: B Analyte detected in the associated Method Blank J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 8 of 9

CLIENT: Work Order:	INTERA I 0801050 Pharoah	lnc.			AN	ALYT	ICAL (RunI	-	J MMA wc_080	RY REP	ORT
Sample ID MB-0 SampType: MBL	080111 K	Batch ID Run ID:		W-01/11/08 80111C	TestNo: Analysi		540C 4/2008 8:30	:00 AM	Units: Prep Date	m g/L e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	it Qual
Total Dissolved Sc	olids (Residue,	Filtera	ND	10.0							
Sample ID LCS- SampType: LCS	080111	Batch ID Run ID:		V-01/11/08 B0111C	TestNo: Analysis		540C /2008 8:30:	00 AM	Units: Prep Date	m g/L e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimi	t Qual
Total Dissolved So	lids (Residue,	Filtera	717	10.0	745.6	0	96.2	70	126		
Sample ID 08010 SampType: DUP	46-01D DUP	Batch ID: Run ID:	TDS_W WC_08	/-01/11/08 30111C	TestNo: Analysis	M 25 Date: 1/14	40C /2008 8:30:	00 AM	Units: Prep Date	m g/L e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Total Dissolved So	lids (Residue,	Filtera	2260	10.0	0	2224				1.56 5	
Sample ID 08010 SampType: DUP	50-05A DUP	Batch ID: Run ID:	TDS_W WC_08	/-01/11/08 0111C	TestNo: Analysis	M 25 Date: 1/14	40C /2008 8:30:0	00 AM	Units: Prep Date	mg/L : 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Dissolved Sol	ids (Residue, I	Filtera	14900	10.0	0	15420	9 - 110 - 140 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 -			3.16 5	

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 DF
 Dilution Factor

 J
 Analyte detected between MDL and RL
 MDL
 Method Detection Limit

 ND
 Not Detected at the Method Detection Limit
 R
 RPD outside accepted control limits

RL Reporting Limit

N Parameter not NELAC certified

S Spike Recovery outside control limits

Page 9 of 9

DHL Analytical

CLIENT:	INTERA Inc.

Work Order: 0801050

oject: Pharoah

TestNo: E300	MDL	MQL		
Analyte	mg/L	mg/L		
Bromide	0.300	1.00		
Chloride	0.300	1.00		
Sulfate	1.00	3.00		
TestNo: SW8021B	MDL	MQL		
Analyte	mg/L	mg/L		
Methyl tert-butyl ether	0.00200	0.00600		
Benzene	0.000800	0.00200		
Toluene	0.00200	0.00600		
Ethylbenzene	0.00200	0.00600		
Xylenes, Total	0.00300	0.00900		
TestNo: M2540C	MDL	MQL		
Analyte	mg/L	mg/L		
Total Dissolved Solids (Residue, Filt	10.0	10.0		

MQL SUMMARY REPORT

Data Review Checklist

1[°]

Cli	ent/Project: RRC/Dugout Cuek	er: <u>BR</u>	icontry .	Review Date: 2/4/08 Matrix:	
La	boratory: DHL ork Order No.: 0801064	Analyti	no -	300	Water
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
Sar	nple Preservation and Integrity		105	110	
1	Did samples arrive at the laboratory appropriate	ly	1		
	preserved (e.g., 4°C, correct acid added to samp	le)?	V		
2	Were holding times met?	-	/		
Dat	ta Completeness				
3	Are results reported for all target analytes, with additional analytes?	no	V		
4	Was the requested analytical method followed?		V		7
5	Do reported detection limits (or reporting limits, agree with the project specifications (QAPP)?	/MDL)		V	SAL was devated lucto Sample dilution for mW-0-31, MW-FINA-01,
6	Are results reported for all samples submitted for analysis?	or	Want		mW-p.01, mW-0-07 mW-07-2, mW-D-01+
Cal	ibration and QC Sample Frequency		ý		SN-P-Seep for Cl. and it
7	Were initial and continuing instrument calibratic analyses performed? And reported? ^a	on	1		how detected in able de a servales. Then was no offerst on sate quadrites
8	For each analytical batch, are results provided for method blank?	or a	V		P U
9	For each analytical batch, are results provided for LCS/LCSD pair?	or an	V		
10	For each analytical batch, are results provided for MS/MSD pair? Alternately, are results for MS/M pairs provided for every 20 field samples analyz	MSD	V		
11	Are field duplicate results provided at the project specified (QAPP) frequency?	:t-	V		Duplicate pale ere: MW-D-23/, MW-1-23
				(Duplicate palu are: MW-0-23/MW-1-23 MW-0-21/MW-0-31 RPD for MW-0-21/ MW-0-31 is above mw-0-31 is above control limits for suffats

Data Review Checklist (continued)

Cli	ent/Project: RRC/ Dugout Cieck Ro	eviewer: 13	Kigen Kong	Review Date: 2/10/08
La	horatory: DHL A	nalytiçal Me	thod:	Matrix: Water
#	Review Item or Question	Yes	No	Comments (List Exceptions, Explanations, etc.)
12	Organic Analyses Only: For each sample (field and QC), are surrogate spike results provided?	đ		NA
QC	Results			
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = ND)?		
14	Are LCS/LCSD recoveries and RPDs within limits	? 1		
15	Are MS/MSD recoveries and RPDs within limits?		V-	ms/ms won mw - 0- 21 to close
16	Are surrogate recoveries within limits (organic analyses only)?			MA in control Samples
Oth	ner Data Quality-Related Issues			on the station of my
17	The laboratory did not issue any CARs. If this is no true (a CAR was issued), describe impact on sampl results.	ot le		alone, There is no affect on the data quality.
18	The analyst did not describe any analytical anomal. If this is not true, describe potential impact to samp results.	ies. ble		2 - 1
19	No other potential data quality issues were identified this is not true, describe issues.	ed. If		

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

OAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

inther Comments: There was a discrepancy between sample is on sample label and isl on COC. hal noticed discrepancy have and isl on COC. hal noticed discrepancy upon sample by in. hab called Intera and was informed COC was correct. Let changed sample informed COC was correct. Let changed sample label. There was no effect on data quelity. Label. There was no effect on data quelity. Equipment since had concentration of 1.27 mg/L of Cl. Equipment since had concentrations more than SX ER.

Data Review Checklist

Cli	ent/Project: <u>RRC</u> Dugont Creek boratory: <u>DHL</u> ork Order No.: <u>D</u> 801064	Review	er: K	canty	1 A
La	boratory: DAth	cal Met	thod:	Matrix:	
Wo	ork Order No.: 0801064	\$ 8	OLL	Al Bartuskina	
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
Sar	nple Preservation and Integrity			,	
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp	ely ble)?	V		
2	Were holding times met?	en a	V		
Dat	a Completeness		I	J	
3	Are results reported for all target analytes, with additional analytes?	no	V		
4	Was the requested analytical method followed?		V		e de
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	s/MDL)	1		
6	Are results reported for all samples submitted f analysis?	or	V		
Cal	ibration and QC Sample Frequency				
7	Were initial and continuing instrument calibration analyses performed? And reported? ^a	lon	\checkmark		
8	For each analytical batch, are results provided f method blank?	òr a	V		
9	For each analytical batch, are results provided f LCS/LCSD pair?	for an		V	Only Les provided. 101/00 and ms/ms0 are in contro No effort on data smell
10	For each analytical batch, are results provided f MS/MSD pair? Alternately, are results for MS/ pairs provided for every 20 field samples analy	MSD	/		<i>k"</i> **
11	Are field duplicate results provided at the proje specified (QAPP) frequency?	ct-	Brancham		Duplicate pairo ane: MW-0-23/mb/-1-23 MW-0-21/MW-0-3/
					Puplicate pairs are: MW-0-23/MW-1-23 MW-0-21/MW-0-31 PPD's for Supplicates are within control Limits

Data Review Checklist (continued)

Cli	ent/Project: RLC Dupout Cruck R	eviewer: BK						
		nalytical Me		Matrix: Water				
#	Review Item or Question	Yes	No	Comments (List Exceptions, Explanations, etc.)				
12	Organic Analyses Only: For each sample (field an QC), are surrogate spike results provided?							
QC	Results	h						
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = NI	D)? b alans						
14	Are LCS/LCSD recoveries and RPDs within limit	s?		no LLS Denovided. 75 R. o. no effect on data question				
15	Are MS/MSD recoveries and RPDs within limits?	V		no effection deta gratity				
16	Are surrogate recoveries within limits (organic analyses only)?	bearing .		3				
Otł	ner Data Quality-Related Issues							
17	The laboratory did not issue any CARs. If this is n true (a CAR was issued), describe impact on samp results.	ot ole Lore						
18	The analyst did not describe any analytical anomal. If this is not true, describe potential impact to same results.	lies. ple durant						
19	No other potential data quality issues were identifi this is not true, describe issues.	ied. If						

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses. CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample MS/MSD = Matrix Spike/Matrix Spike Duplicate

QAPP = Quality Assurance Project Plan RPD = Relative Percent Difference

Further Comments:

Data Review Checklist

Cli	ient/Project: RRC/ Dar out Greek	Reviewe	er:BR	1 govelage	Review Date: 2/co/08					
	boratory: DHL 0	Analytic TDS	cal Met	thod!	Matrix:					
	ork Order No.: 0801064	TRS	254	oc	Water					
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)					
Sar	mple Preservation and Integrity			11.0						
5a	Did samples arrive at the laboratory appropriate	elv			1					
1	preserved (e.g., 4°C, correct acid added to samp	ole)?	V							
2	Were holding times met?		Contraction							
Dat	ta Completeness									
3	Are results reported for all target analytes, with	i no	anaster.							
E 10	additional analytes?		V	1 /						
4	Was the requested analytical method followed?	?	loren							
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	s/MDL)	V		t state of the second					
6	Are results reported for all samples submitted f analysis?	or	V		ಶ್ರಾಷನ್ ಪನ್ನಿಜ್. ಆರ್.ಜೈ.ಸ.					
Cal	libration and QC Sample Frequency									
7	Were initial and continuing instrument calibrati analyses performed? And reported? ^a	on			herorting KV/CCVs is not required. Let cleck in dieders, ICV/CCVs ok.					
8	For each analytical batch, are results provided f method blank?	or a	V		no effect an data grad					
9	For each analytical batch, are results provided f LCS/LCSD pair?	or an		\checkmark	Only h CS provided i ht drug provided and in co no effect on date qual					
10	For each analytical batch, are results provided f MS/MSD pair? Alternately, are results for MS/ pairs provided for every 20 field samples analys	'MSD		V	rns/hsb is not winder for tos, Les of Lab dry sk. No effect on deta					
11	Are field duplicate results provided at the proje specified (QAPP) frequency?	ct-			Replicate pains are 23 m w-0-21 mw-0-31 RPDs for degelicates are wettin control					

dinne to

Data Review Checklist (continued)

Cli	ent/Project: <u>RRC/Duconst Creek</u> Rev horstory: <u>DHL</u> Ana	viewer: RK	600 bighings	Review Date: 2/10/08
		alytical Met	hod:	Matrix:
Wo	boratory: $\mathcal{P}H\mathcal{L}$ Ana ork Order No.: $\mathcal{O}\mathcal{B}\mathcal{O}\mathcal{O}\mathcal{G}\mathcal{H}$ \mathcal{T}	DS 253	YOC	Water
#				Comments (List Exceptions, Explanations,
	Review Item or Question	Yes	No	etc.)
12	Organic Analyses Only: For each sample (field and QC), are surrogate spike results provided?			1104
QC	Results			
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = ND)?	? V		
14	Are LCS/LCSD recoveries and RPDs within limits?		W	(no LCSD provided. no ms/msp provided.
15	Are MS/MSD recoveries and RPDs within limits?		berny	no majorispersided.
16	Are surrogate recoveries within limits (organic analyses only)?			NA Heat molata
Oth	ner Data Quality-Related Issues			
17	The laboratory did not issue any CARs. If this is not true (a CAR was issued), describe impact on sample results.	V		
18	The analyst did not describe any analytical anomalie If this is not true, describe potential impact to sample results.	e V		
19	No other potential data quality issues were identified this is not true, describe issues.	l. If		

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

OAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

There was a discrepancy between sample id on sample label and id on COC. Lab noticed discrepancy upon Sample log in. Lab called Intera and was informed COC was correct. Lab changed sample label. There was no effect on Data quality.

January 24, 2008

Daniel Krause INTERA Inc. 1812 Centre Creek Dr. #300 Austin, Texas 78754

TEL: (512) 425-2000 FAX (512) 425-2099

Order No.: 0801064

RE: RRC-O'Ryan, Dugout, Pharoah

Dear Daniel Krause:

DHL Analytical received 33 sample(s) on 1/10/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

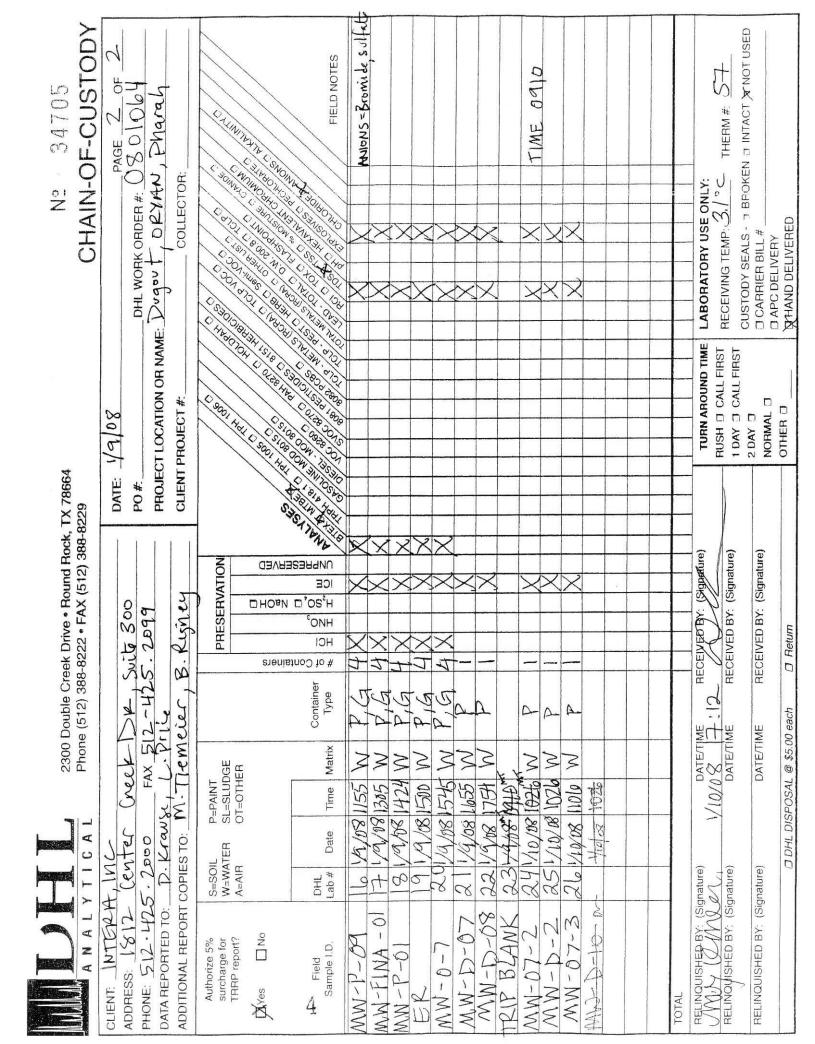
If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

/John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-06-TX

TABLE OF CONTENTS


This report for INTERA Inc. : RRC-O'Ryan, Dugout, Pharoah (DHL Work Order 0801064) contains the following information:

	ITEM	Page
•	Cover Page	1
•	Table of Contents	2
•	Original chain of custody, FedEx slip (if used), log-in checklist	3-7
•	Laboratory Data Package Signature Page	8
•	Laboratory Review Checklist	9-10
•	Case Narrative	11
•	Work Order Summary	12
•	Preparation Dates Report	13-17
	Analytical Dates Report	18-22
•	Sample Results	23-55
•	QC Summary Report	56-70
•	MQL Summary Report	71
	Total Number of Pages	71

January 24, 2008

Approved: NO n John DuPont

N ² 34703 CHAIN-OF-CUSTODY	PAGE 1 OF 2	DHL WORK ORDER #: 0 8 01064	ECRYAN, DUGOUT, PHARAOH		0000	2 10 10 2 11 10 10	002 AN U U	12 C 12	5 (5) (5) (5' (5' (5' (5' (5' (5' (5' (5' (5')))))))) 5 (5' (5' (5' (5' (5' (5' (5' (5' (5' (5	X	X X	×	X X WSW		X	X		X	<u>×</u>	X		X X X X			LABORATORY USE ONLY:	RECEIVING TEMP: 2.1 C THERM # 5+	DCARRIER BILL#	A HAND DELIVERED
2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229	DATE: 1/9/08		-ILA	PRICE CLIENT PROJECT	\sum_{n}		13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 00 00 00 00 00 00 00 00 00 00 00 0	0° 0° H H H H H H H H H H H H H H H H H H H						×		×						X		(Signature)	BY: (Signature) 1 DAY 3 CALL FIRST	BY: (Signature) 2 DAY 0 NORMAL 0	0THER []
2300 Double Creek Drive • Round Rock, TX 7 A L Phone (512) 388-8222 • FAX (512) 388-8229	4	CREEK Dr. Sto.	100.	O:INNCAELLE IEMELER, LYNDA	P=PAINT SL=SLUDGE		Jers	listno	Date Time Matrix Type # C	1/030850 W P 1		/08/1040 W	108	081223 W	1281265 W	1/18/350 W, F 1	108 1501 W P 1	M 0551 80/	08 1610 W	108 1 10 37 W	1/18/10/15/14/ P	08 0941 W/ P	4		1/10/08 12:12 RECEIVED BY		DATE/TIME RECEIVED BY:	DHL DISPOSAL @ \$5.00 each D Return
ANALYTIC!	NTERA	1212 CEV	DATA REPORTED TO: BAR BAR & KIGNE	ADDITIONAL REPORT COPIES TO: MUCHELLE	Authorize 5% S=SOIL surcharge for W=WATER	TRRP report? A=AIR	XYes DNo		Sample I.D. Lab # Da	MW-0-15 011/9	MW-0-23 03 1/9	NW-1-23 03 1/9,	MW-0-11 04 1/9	PU 20 8-0-WW	MW-B-9 06 1/9	NW - 0 - 3 071/99	MW - 0 - 5 08 191	MW-0-12 09 14	1-0-13 10 1		- A-77 12 1/4	1 11 12-01	MW-0-31 1514	TOTAL	RELINQUISHED BY: (Signature)	RELINGUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	HOD

N ² 34700 CHAIN-OF-CUSTODY	PAGE		Dugwit Creek	23-07 C	00/00/	57 5 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 6 6 2 6 6 3 6 6 3 6 7 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		X	X	XXX		XXX	XXX						RECEIVING TEMP: 2.5 C THERM # 57		D HAND DELIVERED
l Rock, TX 78664) 388-8229	DATE: 1/10/08	1	PROJECT I OCATION OR NAME:	CLIENT PROJECT #: RUC-DV (~-13-10)		23 23 23 23 23 23 23 23 23 23 23 23 23 2	LS (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2												- - -			
2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229		S.K. 300	125 . 2099	Tiemeier	PRESERVATION	D HOBN	ICE H ³ 20 ⁴ HNO ³ HCI # 01 C01113	X X	i X	X	i X	×	~	×					RECEIVED BY: (Signature)	U REC	RECEIVED BY: (Signature)	D Return
2300 Double Phone (512)		week Dr. Su	H H	L. Pring, M.	P=PAINT SL=SLUDGE	0T=0THER	Time Matrix Type	COLON VN P	8 1002 W P	3 1306 W P	Fill W Fill	Isci W P	1038 W P	iete w P	 				DATE/TIME		DATE/TIME	D DHL DISPOSAL @ \$5.00 each
	1,1116.	L'Center (1.5	D: D. K.K.	TER	A=AIR	DHL Lab # Date	27 Vieles	28 No/08	29 Yioles	0	31 1/2/08	32 1/10/08	23 Vielss	 				(Signature)	(Signature)	(Signature)	анас
ANA	CLIENT: Interva	ADDRESS: 1912	PHONE: 512 . 425 . 200	DAIA REPORTED TO: 15. KILSTE ADDITIONAL REPORT COPIES TO:	Authorize 5% surcharge for	THHP report?	CI Field Sample 1.D.	01-0-MW	12Q-MW	MW-D-DR	MW-D-05	WW-D-OH	5-0-NS	SW-P-Jeep				TOTAL	RELINQUISTED BY	RELINDUISHED BY:	RELINQUISHED BY: (Signature)	

			<i>တ</i> –	ΰz	шш			Γ				
	765531	Round trip									e. 1	
	1	After Hours.			Suite No.:	0			Int		jes	
	Date 1/8	н. Н. Н.	N N			Weight	Extra time	Mileage	COD Amount		Total Charg	
	Date 1/1/3	. Hr. ∃Hr.	10.					74		Del. time	Z 5 - Total Charges	
	Account No.	Service Type:			Attn:	Client Ref. No.		Driver 1	Driver 2	P/U time	\$:2	2 m - 2 dogover south 1 prints a test - 1 mm
	Acco	Other				tion						And the second second
NITSI I ATEA ALST ALST ALST ALST ALST ALST ALST ALS	415 Texas Avenue #A1 415 Texas Avenue #A1 Round Rock, Texas 78664 (512) 246-1100 Fax (512) 246-8874	Shipper Consignee	N TRWD			Description/Special Instruction					X X	
CEDVINIC	A15 - 415 -	es paid by:	11			De			11	12	2 Chel	
0	LUBTIN ROFESSIONAL	Delivery charges paid by:	9		2. 2.	No. of Pieces			Received by: Z/	A.	<u>name in</u>	A second s
	Part of the second seco	ο I ·	_ a	<u>م</u>	Ш СС	No. 0			Receiv			

74

 Condity Environmental Containers
 800-255-3950 - 304-255-3900 2 701 Receipt

1

6

DHL Analytical

Sample Receipt Checklist

Client Name INTERA Inc.		Date Rece	ived: 1/10/2008
Work Order Number 0801064		Received b	y DU
Checklist completed by: Signature / .//. 0.8 Date Carrier name:	Hand Delivered	Reviewed b	ny <u>D</u> Initials <u>Diffug</u>
Shipping container/cooler in good condition?	Yes 🗸	No	Not Present
Custody seals intact on shippping container/cooler?	Yes		Not Present
	_		
Custody seals intact on sample bottles?	Yes 🗌		Not Present 🗹
Chain of custody present?	Yes 🗹	No	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with sample labels?	Yes	No 🔽	
Samples in proper container/bottle?	Yes 🔽	No 🗌	
Sample containers intact?	Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?	Yes 🔽	No 🗌	
All samples received within holding time?	Yes 🖌	No 🗌	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	
Water - VOA vials have zero headspace?	Yes 🗹	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes	No 🗌	Not Applicable 🗹
Adjusted?	Chec	ked by	

Any No response must be detailed in the comments section below.

Client contacted	Intera	Date contacted:	1.11.08	Person contacted	Daniel Krause
Contacted by:	Debbrie U.	Regarding: SM	ple -25	ID	
Comments:	oc ID = M	W-D-2	label I	D = MW - U)-10
		2			
Corrective Action	COC ID I	is Correc	t for th	is samp	le

Laboratory Data Package Signature Page

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

A MAN IN or Signature

01/24/08

Scott Schroeder – Project Manager John DuPont – General / QA Manager

8

		Analytical, Inc.						
La Pro	ject N	Name: RRC-O'RAGN, DULOUT, PHAROGHDate: 1/24/08						
Rev	iewe	r Name: Carlos Castro						
						-		
#1	_	all and a second s	es Report					
#	A	Beserbildh			es 1		VA3	VR ⁴ ER#
		Chain-of-Custody (C-O-C)						ta di Bergarda
R1	0		ipt?			\sim		121-0
		2) Were all departures from standard conditions described in an exception report?		1				
22	01	Sample and Quality Control (QC) Identification						
		1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers?		1	•			
		2) Are all laboratory ID numbers cross-referenced to the corresponding QC data?		1				
23	IO	Test Reports		148				NAT DE DECLES
		1) Were all samples prepared and analyzed within holding times?		~	CONTRACTOR OF THE	20000	10000	
		2) Other than those results < MQL, were all other raw values bracketed by calibration standard	ards?	~				
		3) Were calculations checked by a peer or supervisor?		L	-			
		4) Were all analyte identifications checked by a peer or supervisor?		~	-			
		5) Were sample quantitation limits reported for all analytes not detected?		5		-		
		6) Were all results for soil and sediment samples reported on a dry weight basis?		1	-	-		
		7) Were % moisture (or solids) reported for all soil and sediment samples?		1	-	1		
		8) If required for the project, TICs reported?		1	+	V		-
4	0	Surrogate Recovery Data			24 158			an and the second
		1) Were surrogates added prior to extraction?		199909-02	ILLE COMPANY	~	THEN COASE	
		2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		1		V		
5	OI	Test Reports/Summary Forms for Blank Samples					12	
		1) Were appropriate type(s) of blanks analyzed?		~			200120200	
		2) Were blanks analyzed at the appropriate frequency?		5		1		
		3) Where method blanks taken through the entire analytical process, including preparation an	d, if				-	
		applicable, cleanup procedures?		~				
-	01	4) Were blank concentrations < MQL?		V				
6	OI	Laboratory Control Samples (LCS):	18					5
		1) Were all COCs included in the LCS?		~				
		2) Was each LCS taken through the entire analytical procedure, including prep and cleanup st	eps?	٢				
		3) Were LCSs analyzed at the required frequency?		~				
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		1				
		5) Does the detectability data document the laboratory's capability to detect the COCs at the N	ADL used	1				
		to calculate the SQLs?						
1	0]	6) Was the LCSD RPD within QC limits (if applicable)?		1				
-		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data				e (Jast)	4	he and the second
		1) Were the project/method specified analytes included in the MS and MSD?		7	L	-	-	
		2) Were MS/MSD analyzed at the appropriate frequency?		~		1	-	
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?4) Were MS/MSD RPDs within laboratory QC limits?			~			R7-03
0		Analytical Duplicate Data		~				
-		1) Were appropriate analytical duplicates analyzed for each matrix?				51912	Ng ghay	
	ł	 Were appropriate analytical duplicates analyzed for each matrix? Were applytical duplicates analyzed for each matrix? 		v				
	ŀ	 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were PPDs or relative stor deal duplication within the help of the store store		~				
0	DI	3) Were RPDs or relative standard deviations within the laboratory QC limits?						
-		Method Quantitation Limits (MQLs):		erail			\tilde{m}	
	ŀ	1) Are the MQLs for each method analyte included in the laboratory data package?		~	_			
	H	 Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? Are unadjusted MQLs included in the loberatory data and a standard? 		~				
		3) Are unadjusted MQLs included in the laboratory data package? Other Problems/Anomalies		V	Charles and the	Salara		
				866 K				
	F	1) Are all known problems/anomalies/special conditions noted in this LRC and ER?						
	1	 2) Were all necessary corrective actions performed for the reported data? 3) Was applicable and available technology used to lower the SQL minimize the matrix interference 					_	
	1.12	JI was applicable and available technology used to lower the SOL minimize the metric interfe	ence 📐	1				

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. 2

O = organic analyses; l = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

NR = Not Reviewed. 4

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5

Pro	ject N	ame: RRC-O'RYGN, Ourout, Charonh Date: 1/24/08				- Niles		
Re	viewer	Name: Carlos Castro Laboratory Work Order: 080 (06	1					
#			T Ye	0	No	NIAS	1)ID4	- DD
S1	OI	Initial Calibration (ICAL)			NO	NA	NR ⁴	ER
		N SCHOLDER R		1. a		36.25	00000	n for the sol
		1) Were response factors and/or relative response factors for each analyte within QC limits?	V					
		 2) Were percent RSDs or correlation coefficient criteria met? 3) Was the number of star double mercent and highlight in the start of th	1					
		 3) Was the number of standards recommended in the method used for all analytes? 4) Were all points generated between the lower and highly between the lower and high	14	_				
		4) Were all points generated between the lowest and highest standard used to calculate the curve?5) Are ICAL data available for all instruments used?		_			1	_
		6) Has the initial calibration curve been verified using an appropriate second source standard?	t					
52	OI	Initial and Continuing calibration Verification (ICCV and CCV) and Continuing Calibration		0102551205		100 m		
-	10.	blank (CCB):						
		1) Was the CCV analyzed at the method-required frequency?	6163	1. 22			1008330	
		2) Were percent differences for each analyte within the method-required QC limits?	1	_				
		3) Was the ICAL curve verified for each analyte?	1	-				
		 4) Was the absolute value of the analyte concentration in the inorganic CCB < MDL? 	1					
3	0	Mass Spectral Tuning:	- V	16.5 105	ELLER STATE	N MK SDR. A	1 400 ALCONO	a her stations
	1	1) Was the appropriate compound for the method used for tuning?	100				400	a providental
		2) Were ion abundance data within the method-required QC limits?				~		
4	0	Internal Standards (IS):	and the second			~		10.144.555.555
		1) Were IS area counts and retention times within the method-required QC limits?	Conversion of		CALE NO.		Allowing Market 707 - Salary	Contraction of the
5	01	Raw Data (NELAC section 1 appendix A glossary, and section 5.12)	and the second	800 0000		~	Sale Reality	dis parameter de la
		1) Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	~			ill'estate		a na chantar 16 San San San San San San San San San San
		2) Were data associated with manual integrations flagged on the raw data?		+				
6	0	Dual Column Confirmation	>	REC	3400 B 54		THE SECOND	and the second of
		1) Did dual column confirmation results meet the method-required QC?	90.72.45920					
7	0	Tentatively Identified Compounds (TICs):		La Assar	Silves as	्य स्टब्स्	1908000000	
		1) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?				(L) (S)		2 . 1
8]	Interference Check Sample (ICS) Results:	2000		48, Sil A	~		1. 1. J.
		1) Were percent recoveries within method QC limits?	A LEAST		and the second second	~	Des Rigers	
9		Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions		(1-1-2)-(1-2		SING XESH	1999 94 (1991 1991 1991 1991 1991 1991 1	alfait teals
		1) Were percent differences, recoveries, and the linearity within the QC limits specified in the			ON SECON	Sec. 1	Per la constant	775 - Selfer
		method?	6			\mathbf{v}		
10	OI	Mothed Detection Limit (MDL) 04 1	-					
10		Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?	1					
1	01	2) Is the MDL either adjusted or supported by the analysis of DCSs? Proficiency Test Reports:	N.	× 12607010000				
		1) Was the lable performance accentable on the continuity of the				NUMER !	24250	
2	01	1) Was the lab's performance acceptable on the applicable proficiency tests or evaluation studies? Standards Documentation		-				
				16.90		1.95		
3	01	1) Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources? Compound/Analyte Identification Procedures	•	-				
-		() Are the procedures for compound/analyte identification documented?	Solg Cale				62 (MER)	
4	OI II	Demonstration of Analyst Competency (DOC)	1	SINGS	Second Analysis		100000000000000000000000000000000000000	
-) Was DOC conducted consistent with NELAC Chapter 5C?			26			
		() Is documentation of the analyst's competency up-to-date and on file?	~					
5	01	/erification/Validation Documentation for Methods (NELAC Chap 5)	1	901 - Davis	OBE COR		a per u la	CE STATE OF THE OWNER
	1) Are all the methods used to generate the data down and in the internation of the data down and in the data down		Des de	999 (P)			
	ε) Are all the methods used to generate the data documented, verified, and validated, where pplicable?	~					
5	01 1	aboratory Standard Operating Procedures (SOPs):	a tantata				SUL SALE	-96 - 2018 ⁻¹
								Construction Hill Law

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. 2

O = organic analyses; 1 = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable. 4 NR = Not Reviewed.

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).5

DHL Analytical

Date: 24-Jan-08

CLIENT:INTERA Inc.Project:RRC-O'Ryan, Dugout, Pharoahab Order:0801064

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW8021B - Volatile Organics by GC Analysis Method E300 - Anions Analysis Method M2540C - Total Dissolved Solids

Exception Report R1-01

Samples were received and log-in performed on 1/10/07. A total of 33 samples were received. There was one discrepancy between the sample ID on the Chain of Custody (COC) and the sample label for a sample. The COC had the ID as MW-D-2 and the sample label had the ID MW-D-10. As per the client, the COC was correct and the ID on the label was changed.

Exception Report R7-03 and R7-04

[¬]or Anion analysis, the matrix spikes and/or matrix spike duplicates (0801064-04A MS/MSD and 0801064-4B MS) were slightly below control limits for Bromide or Chloride. These are flagged accordingly in the QC summary report. The reference samples selected for the matrix spikes and matrix spike duplicates were from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

Exception Report R10-01

For Bromide analysis of samples MW-O-21 and SW-O-Seep, the Chloride concentration caused the Chloride peak to coelute with the Bromide peak and the sample required dilution. However, after dilution the bromide was below detection limits.

DHL Analytical

Date:	24-Jan-08	

Induced States and the Real Property of the States of the	The second se
CLIENT:	INTERA Inc.
^D roject:	RRC-O'Ryan, Dugout, Pharoah
ab Order:	0801064

Work Order Sample Summary

	Lab S mp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
	0801064-01	MW-0-15		01/09/08 08:50 AM	1/10/2008
	0801064-02	MW-0-23		01/09/08 10:55 AM	1/10/2008
	0801064-03	MW-I-23		01/09/08 10:40 AM	1/10/2008
	0801064-04	MW-O-11		01/09/08 11:35 AM	1/10/2008
	0801064-05	MW-0-8		01/09/08 12:23 PM	1/10/2008
	0801064-06	MW-0-9		01/09/08 12:55 PM	1/10/2008
	0801064-07	MW-O-3		01/09/08 01:50 PM	1/10/2008
	0801064-08	MW-0-5		01/09/08 03:01 PM	1/10/2008
	0801064-09	MW-0-12		01/09/08 03:30 PM	1/10/2008
	0801064-10	MW-0-13		01/09/08 04:10 PM	1/10/2008
	0801064-11	MW-O-1		01/09/08 04:37 PM	1/10/2008
	0801064-12	MW-0-6		01/09/08 05:25 PM	1/10/2008
	0801064-13	MW-O-22		01/09/08 10:15 AM	1/10/2008
	0801064-14	MW-0-21		01/09/08 09:40 AM	1/10/2008
	0801064-15	MW-O-31		01/09/08 08:48 AM	1/10/2008
	0801064-16	MW-P-09		01/09/08 11:55 AM	1/10/2008
	01064-17	MW-FINA-01		01/09/08 01:05 PM	1/10/2008
	0801064-18	MW-P-01		01/09/08 02:24 PM	1/10/2008
	0801064-19	ER		01/09/08 03:00 PM	1/10/2008
	0801064-20	MW-0-7		01/09/08 03:45 PM	1/10/2008
	0801064-21	MW-D-07		01/09/08 04:55 PM	1/10/2008
1	0801064-22	MW-D-08		01/09/08 05:54 PM	1/10/2008
(0801064-23	Trip Blank		01/09/08	1/10/2008
(0801064-24	MW-07-2		01/10/08 09:10 AM	1/10/2008
(0801064-25	MW-D-2		01/10/08 10:26 AM	1/10/2008
(0801064-26	MW-07-3		01/10/08 11:06 AM	1/10/2008
(0801064-27	MW-D-10		01/10/08 09:04 AM	1/11/2008
(0801064-28	MW-D-01		01/10/08 10:02 AM	1/11/2008
(0801064-29	MW-D-06		01/10/08 01:06 PM	1/11/2008
(0801064-30	MW-D-05		01/10/08 02:24 PM	1/11/2008
(0801064-31	MW-D-04		01/10/08 03:02 PM	1/11/2008
(801064-32	SW-O-Seep		01/10/08 04:38 PM	1/11/2008
(801064-33	SW-P-Seep		01/10/08 04:56 PM	1/11/2008

al
ytic
1
L.F.
ΗI

24-Jan-08

Client: Project: Sample ID C 0801064-01A M M 0801064-02A M	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah	1			PREP]	PREP DATES REPORT	LT .
	RRC-O'Ryan, Du					DALES NELOK	
		gout, Pharoah					
	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
	MW-0-15	01/09/08 08:50 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	D35650
	MW-0-15	01/09/08 08:50 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	010201
	MW-0-15	01/09/08 08:50 AM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 DM	TDS W PUT
	MW-0-23	01/09/08 10:55 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	1 US W-01/14/08
M	MW-0-23	01/09/08 10:55 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	0202CV
M	MW-0-23	01/09/08 10:55 AM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 PM	TDS W 11/10 AV
0801064-03A M	MW-I-23	01/09/08 10:40 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
M	MW-I-23	01/09/08 10:40 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
	MW-I-23	01/09/08 10:40 AM	Aqueous	M2540C	T otal Dissofved Solids	01/14/08 01:30 PM	TDS W-01/14/08
0801064-04A M	MW-0-11	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
M	11-0-MW	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35658
M	MW-0-11	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
M	11-0-WM	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
	11-0-MM	01/09/08 11:35 AM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
0801064-05A M	MW-0-8	01/09/08 12:23 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
M	MW-0-8	01/09/08 12:23 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35632
M	MW-0-8	01/09/08 12:23 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01·30 PM	TDS W 11/10
0801064-06A M	0-0-WM	01/09/08 12:55 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	D15633
M	0-0-WW	01/09/08 12:55 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	
Z	6-0-MW	01/09/08 12:55 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/10 01-30 DW	SCOCEN
0801064-07A M	MW-0-3	01/09/08 01:50 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	1.05.00 1/10- w - 6U 1 1.05.00
M	MW-0-3	01/09/08 01:50 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	CCUCCY
Ψ	MW-0-3	01/09/08 01:50 PM	Aqueous	M2540C	Total Dissolved Solids	Md 06-10 80/01/10	800001
0801064-08A M	MW-0-5	01/09/08 03:01 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	D35633
M	MW-0-5	01/09/08 03:01 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R36658
M	MW-0-5	01/09/08 03:01 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01-30 PM	TDS W 1110 W
0801064-09A M	MW-0-12	01/09/08 03:30 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
M	MW-0-12	01/09/08 03:30 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658

,	_
	Ca
	Ē
	E A
	-
	F
L)
E	E
5	

24-Jan-08

Client: INTERA Inc. Project: RRC-O'Ryan, Du gout, Pharoah Sample ID Client Sample ID Collection Date N 0801064-09A MW-O-13 01/09/08 04:10 PM A 0801064-10A MW-O-13 01/09/08 04:10 PM A 0801064-11A MW-O-13 01/09/08 04:13 PM A 0801064-11A MW-O-13 01/09/08 04:37 PM A 0801064-11A MW-O-1 01/09/08 04:37 PM A 0801064+12A MW-O-1 01/09/08 04:37 PM A 0801064+12A MW-O-1 01/09/08 04:37 PM A 0801064+12A MW-O-2 01/09/08 04:37 PM A 0801064+12A MW-O-2 01/09/08 05:25 PM A 0801064+13A MW-O-22 01/09/08 05:25 PM A 0801064+14B MW-O-22 01/09/08 05:25 PM A 0801064+14B MW-O-22 01/09/08 05:40 AM A 0801064+14B MW-O-21 01/09/08 05:40 AM A 0801064+14B MW-O-21 01/09/08 05:40 AM	x Tes us us us us us us us	PREP 1 Test Name Total Dissolved Solids Anions by IC method - Water Anions by IC method - Water Anions by IC method - Water Total Dissolved Solids	PREP DATES REPORT Prep Date	
RRC-O'Ryan, Du gout, Pharoah Client Sample ID Collection Date MW-0-12 01/09/08 03:30 PM MW-0-13 01/09/08 04:10 PM MW-0-13 01/09/08 04:10 PM MW-0-13 01/09/08 04:37 PM MW-0-1 01/09/08 04:37 PM MW-0-21 01/09/08 05:25 PM MW-0-22 01/09/08 05:25 PM MW-0-22 01/09/08 05:25 PM MW-0-22 01/09/08 05:40 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM	× SN	lved Solids C method C method	Prep Date	
Client Sample ID Collection Date MW-O-12 01/09/08 03:30 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:37 PM MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 08:48 AM MW-O-31 01/09/08 08:48 AM </th <th>X SI SI</th> <th>Test Name Total Dissolved Solids Anions by IC method - Water Anions by IC method - Water Total Dissolved Solids</th> <th>Prep Date</th> <th>Datat ID</th>	X SI	Test Name Total Dissolved Solids Anions by IC method - Water Anions by IC method - Water Total Dissolved Solids	Prep Date	Datat ID
MW-O-12 01/09/08 03:30 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21	21 21 21 21 21 21 21 21 21 21 21 21 21 2	T otal Dissolved Solids Anions by IC method - Water Anions by IC method - Water T otal Dissolved Solids		Daten III
MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-	sh sh sh sh sh sh sh	Anions by IC method - Water Anions by IC method - Water T otal Dissolved Solids	01/14/08 01:30 DNA	TDS W OUT 100
MW-O-13 01/09/08 04:10 PM MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 04:37 PM MW-O-6 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:40 AM	an an an an an an an	Anions by IC method - Water T otal Dissolved Solids	M1107100001100	1.02 W-01/14/08
MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-4 01/09/08 05:25 PM MW-O-5 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-31 01/09/08 05:40 AM MW-O-31 01/09/08 05:40 AM MW-0-31 01/09/08 <t< td=""><td>sn sn sn sn sn sn</td><td>T otal Dissolved Solids</td><td>01115/00</td><td></td></t<>	sn sn sn sn sn sn	T otal Dissolved Solids	01115/00	
MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09			80/01/10	R35658
MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-0-31 01/	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Anione by IC mothed W/	01/14/08 01:30 PM	TDS_W-01/14/08
MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-5 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 AM MW-O-21 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-0-31 01/09/08 09:40 AM MW-0-31 01/09/08	8 8 8 8	Anions by IC method - Water	01/15/08	R35658
MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-26 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	sn sn	Anions by IC method - Water	01/14/08	R35633
MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	sn sn	Total Discolved Colida	80/01/10	R35658
MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 10:15 AM MW-O-22 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	SI SI		01/14/08 01:30 PM	TDS_W-01/14/08
MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 01:15 AM MW-O-21 01/09/08 01:15 AM MW-O-22 01/09/08 01:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 08:48 AM MW-O-31 01/09/08 08:48 AM	SI	Anions by IC method - Water	01/14/08	R35633
MW-O-31 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM		Anions by IC method - Water	01/15/08	R35658
MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	N Su	Total Dissolved Solids	01/14/08 01:30 PM	TDS_W-01/14/08
MW-0-22 01/09/08 10:15 AM MW-0-22 01/09/08 10:15 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R35633
MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 08:48 AM	Aqueous M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 08:48 AM MW-O-31 01/09/08 08:48 AM	Aqueous SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	78607
MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 09:48 AM MW-0-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R35633
MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	D15650
MW-0-21 01/09/08 09:40 AM MW-0-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	0202CV
MW-O-31 01/09/08 08:48 AM	Aqueous M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W 011110
MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM	Aqueous SW5030B	Purge and Trap Water GC	MI 06:10 80/11/10 01/14/08 09-44 AM	1 0.0 W-01/14/08
01/09/08 08:48 AM 01/09/08 08:48 AM 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
01/09/08 08:48 AM 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R15633
01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
	Aqueous M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-P-09 01/09/08 11:55 AM	Aqueous SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
01/09/08 11:55 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R35633
01/09/08 11:55 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
MW-P-09 01/09/08 11:55 AM A	Aqueous E300	Anions by IC method - Water	01/15/08	R35658

DHL + Jytical

24-Jan-08

INTERA Inc. PREEP DATTES REFPORT RRC-ORyan, Dugout, Phareah Martin Test Name Prop Date RRC-ORyan, Dugout, Phareah Martin Test Name Prop Date NW-FD-00 Olloroffic ID K Matrix Test Name Prop Date NW-FDA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0135 014 NW-FINA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 014 NW-FINA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 0FM NW-FINA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 0FM NW-FIO1 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 0FM NW-FIO1 0109058 0124 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 AM NW-FIO1 0109058 0124 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 AM NW-FIO1 0109098 01234 FM Aqu	Tran OI net	1001004						
RRC-ORyan, Diagous, Phancah Marris Test Number Test Number Prep Date NW-P-09 01/09/08 11:35 AM Aqueous N2540C Total Dissolved Solids Prep Date NW-P-09 01/09/08 11:35 AM Aqueous N2540C Total Dissolved Solids 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FP-01 01/09/08 01:35 PM Aqueous E300 Anions by IComethiod - Water 01/14/08 01:30 PM	Client:	INTERA Inc.				PREPT	DATES REPOR	E
Client Sample ID Collection Date Matrix Text Number Text Number Text Number Prep Date NWW-P-09 0.109008 11:35 AM Apreous 8X3500 Total Dissolved Solids 011/4108 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous SY35030 Purge and Trap Water CC 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-P-01 0.109008 02:24 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-P-01 0.109008 02:24 FM Apreous E300 Anions by IC method - Water 01/14/08 09:44 AM NWW-P-01 0.109008 02:24 FM Apreous E300 Anions by IC method - W	Project:	RRC-O'Ryan, Du	gout, Pharoah					-
MW-F-49 01/09/08 11:35 MA Aqueous M330;01 Purge and Trap Water CC 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous SW35303 Purge and Trap Water CC 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous SW35303 Purge and Trap Water CC 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-FINA-01 01/09/08 01:35 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-FINA-01 01/09/08 02:34 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-F-01 01/09/08 02:34 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-F-01 01/09/08 02:324 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-F-01 01/09/08 02:324 PM Aqueous E3:00 Anions by IC method. Water 01/14/08	Sample ID	Client Sample ID	Collection Date		Fest Number	Test Name	Prep Date	Batch ID
MW-FINA-01 01/09/08 01:05 PM Aqueous SW 5030 Purge and Trap Wreter CC 01/14/08 01/14/08 01/14/08 03/14 MW-FINA-01 01/09/08 01:05 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/0	0801064-16B	0-9-09 MW	01/09/08 11:55 AM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/14/08 NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/15/08 NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/15/08 NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/14/08 0.1/3/08 NW-FINA-01 0.1/9/08 02.34 FM Aqueous SW3030 Fundo 0.1/14/08 0.1/1	0801064-17A	MW-FINA-01	01/09/08 01:05 PM	Aqueous	SW 5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
WW-FINA-01 01/09/08 01:35 FM Appects E300 Anions by IC method - Water 01/15/08 WW-FINA-01 01/09/08 01:35 FM Appects E300 Anions by IC method - Water 01/15/08 WW-FINA-01 01/09/08 01:35 FM Appects E300 Anions by IC method - Water 01/15/08 MW-FINA-01 01/09/08 01:35 FM Appects K3530B Puge and Trap Water CC 01/14/08 01/14/08 MW-F1NA-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/14/08 01/14/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/14/08 01/14/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/15/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/15/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/14/08 01/14/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water	0801064-17B	MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
WW-FINA-01 0109/08 01:05 FM Agreeus E300 Anions by IC method - Water 01/15/08 WW-FINA-01 01/09/08 01:05 FM Aqreeus E300 Anions by IC method - Water 01/14/08 01/14		MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
MW-FINA-01 01/09/08 01:05 PM Aqueous E300 Anions by IC method - Water 01/14/08		MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
WW-FINA-01 01/09/08 01:05 PM Aqueous M2540C Total Dissolved Srids 01/14/08 01:30 PM MW-P-01 01/09/08 02:24 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 03:30 PM Equipment Blank R5300 Anions by IC method- Water 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank M2540C Total Dissolved Solids 01/14/08 09:44 AM <		MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	R35721
MW.P-01 01/09/08 02:34 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09/14 AM MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 09/14 AM MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/15/08 MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/16/08 MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08		MW-FINA-01	01/09/08 01:05 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/13/08 MW-P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/13/08 MW-P-01 01/09/08 02:32 PM Aqueous E300 Anions by IC method - Water 01/13/08 MW-P-01 01/09/08 02:32 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-P-01 01/09/08 02:32 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-P-01 01/09/08 03:30 PM Equipment Blank SW5030B Purge and Tap Water GC 01/14/08 01/14/08 RR 01/09/08 03:30 PM Equipment Blank E8 M350Pcd E4 01/14/08 01/14/08 MW-0-7 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:34 PM Aqueous E730 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:34 PM <	0801064-18A	MW-P-01	01/09/08 02:24 PM	Aqueous	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW. P-01 01/09/08 02:24 PM Aqueous M3540C Total Dissolved Solids 01/14/08 01:30 PM MW. P-01 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank M2540C Total Dissolved Solids 01/14/08 09:44 AM MW. O-7 01/09/08 03:35 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW. O-7 01/09/08 03:35 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW. O-7 01/09/08 03:35 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW. O-7	0801064-18B	MW-P-01	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
W.P-01 $01/09/08$ 02.24 PM Aqueous E300 Anions by IC method- Water $01/15/08$ $WW-P-01$ $01/09/08$ 02.24 PM Aqueous E300 Anions by IC method- Water $01/14/08$ $01/$		MW-P-01	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-P-01 01/09/08 02:24 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM FR 01/09/08 03:30 PM Equipment Blank Sv3030B Purge and Trap Water CC 01/14/08 01:30 PM FR 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 FR 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:34 AM FR 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:34 AM FR 01/09/08 03:34 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV504		MW-P-01	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	80/81/10	R35721
MW-P-01 01/09/08 02:24 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM ER 01/09/08 03:30 PM Equipment Blank SW3030B Purge and Trap Water GC 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:44 AM ER 01/09/08 03:345 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:345 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:345 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM <td></td> <td>10-9-WM</td> <td>01/09/08 02:24 PM</td> <th>Aqueous</th> <td>E300</td> <td>Anions by IC method - Water</td> <td>01/15/08</td> <td>R35658</td>		10-9-WM	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
ER 01/09/08 03:00 PM Equipment Blank SW5030B Purge and Trap Water CC 01/14/08 09:44 AM ER 01/09/08 03:00 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 ER 01/09/08 03:00 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 ER 01/09/08 03:00 PM Equipment Blank M2540C Total Dissolved Solids 01/14/08 03:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 03:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water <t< td=""><td></td><td>MW-P-01</td><td>01/09/08 02:24 PM</td><th>Aqueous</th><td>M2540C</td><td>Total Dissolved Solids</td><td>01/14/08 01:30 PM</td><td>TDS W-01/14/08</td></t<>		MW-P-01	01/09/08 02:24 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 01/16/08 01/15/08 ER 01/09/08 03:30 PM Equipment Blank M2540C Total Dissolved Solids 01/16/08 01/15/08	0801064-19A	ER	01/09/08 03:00 PM Ec	luipment Blank	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	78697
ER 01/09/08 03:00 PM Equipment Blank E300 Anions by IC method - Water 01/16/08	0801064-19B	ER	01/09/08 03:00 PM Ec	luipment Blank	E300	Anions by IC method - Water	01/15/08	R35658
ER 01/09/08 03:05 PM Equipment Blank M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-0-7 01/09/08 03:45 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08		ER	01/09/08 03:00 PM Ec	luipment Blank	E300	Anions by IC method - Water	01/15/08	R35656
MW-0-7 01/09/08 03:45 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07		ER	01/09/08 03:00 PM Ec	luipment Blank	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/15/08 MW-D-07 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 <td< td=""><td>0801064-20A</td><td>MW-0-7</td><td>01/09/08 03:45 PM</td><th>Aqueous</th><td>SW5030B</td><td>Purge and Trap Water GC</td><td>01/14/08 09:44 AM</td><td>28697</td></td<>	0801064-20A	MW-0-7	01/09/08 03:45 PM	Aqueous	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 05:54	0801064-20B	MW-0-7	01/09/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
MW-O-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-O-7 01/09/08 03:45 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM		MW-0-7	01/09/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
MW-0-7 01/09/08 03:45 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/16/08 01:00 PM MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/16/08 01:00 PM MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		7-0-7M	01/09/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35658
MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/16/08 01:00 PM MW-D-07 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-0-7	01/09/08 03:45 PM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-D-08 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08	0801064-21A	MW-D-07	01/09/08 04:55 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	
MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-D-08 01/09/08 05:54 PM Aqueous M2300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-D-07	01/09/08 04:55 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-D-07	01/09/08 04:55 PM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-D-07	01/09/08 04:55 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
IV-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08	0801064-22A	MW-D-08	01/09/08 05:54 PM	Aqueous	E300	Anions by IC method - Water	80/51/10	
		MW-D-08	01/09/08 05:54 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656

DHL +. ...Iytical

24-Jan-08

Lab Order:	0801064						
Client:	INTERA Inc.				PREPI	PREP DATES REPORT	E
Project:	RRC-O'Ryan, Du gout, Pharoah	ı gout, Pharoah					-
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
0801064-22A	MW-D-08	01/09/08 05:54 PM	Aqueous	M2540C	T otal Dissolved Solids	01/16/08 01:00 PM	TDS W_01/16/08
0801064-23A	Trip Blank	01/09/08	Trip Blank	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
0801064-24A	MW-07-2	01/10/08 09:10 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-2	01/10/08 09:10 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-2	01/10/08 09:10 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-2	01/10/08 09:10 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-25A	MW-D-2	01/10/08 10:26 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-2	01/10/08 10:26 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-2	01/10/08 10:26 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-2	01/10/08 10:26 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-26A	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	
	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	80/81/10	R35721
	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	MW-07-3	01/10/08 11:06 AM	Aqueous	M2540C	T otal Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-27A	MW-D-10	01/10/08 09:04 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	
	MW-D-10	01/10/08 09:04 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-10	01/10/08 09:04 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-28A	10-D-01	01/10/08 10:02 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	MW-D-01	01/10/08 10:02 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	10-D-MM	01/10/08 10:02 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R3 5656
	10-D-MM	01/10/08 10:02 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-29A	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	R35721
	MW-D-06	01/10/08 01:06 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-30A	MW-D-05	01/10/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
Page 4 of 5	of 5						

DHL Alytical

24-Jan-08

Lab Order:	0801064						
Client:	INTERA Inc.				PREPT	PREP DATES DEDOUT	
Project:	RRC-O'Ryan, Dugout, Pharoah	gout, Pharoah				VALES NELOK	
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
0801064-30A	MW-D-05	01/10/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	DJSESE
	MW-D-05	01/10/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	020201
	MW-D-05	01/10/08 02:24 PM	Aqueous	M2540C	T otal Dissolved Solids	01/16/08 01-00 BM	
0801064-31A	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	01/15/00	1 US_W-01/10/08
	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	00/CT/10	000053
	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	00/01/10	05065X
	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	00/01/10	0C0CEX
	MW-D-04	01/10/08 03:02 PM	Aquenus	M7540C	Total Discolved Solids	01/11/10	K35679
0801064-32A	SW-O-Seep	01/10/08 04:38 PM	Anneons	E200		MJ 00:10 80/10 PW	TDS_W-01/16/08
	SW-O-Seen	01/10/08 04-38 DM	encomber.	1200	Autous by IC include - Water	01/15/08	R35656
		IN 1 0C.FU 00/01/10	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	SW-U-Seep	01/10/08 04:38 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-33A	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	P35656
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	0505CI
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/16/08	000000
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	6/0000
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
							00/01/10- M - CO 1

DHL / alytical

24-Jan-08

REP									
INTERA Inte. ANALYTICAL DATES REP. REC-ORgan, Digout, Planchi Antiona by Common Water Colst Number Antiona by Common Water Colspan="6">Anti-Nationa Science District Anti-National Science Batch ID District Anti-National Science District Anti-Nationaly Comortice A	Lab Order:	0801064							
RIC-OF3an, Dugout, Planch CIFCent Strangle LD Martix Test Number Tes	Client:	INTERA Inc.				ANAI	JITY	AL DATES RI	Tangr
Client Sample ID Natrix Test Number Fist Number	Project:	RRC-O'Ryan, Du	gout, Pharoah						
MW-0-15 Aqueous E300 Anionis by IC method - Water R3563 2 01/14/08 [1:35 AM] MW-0-13 Aqueous E300 Anionis by IC method - Water R3563 10 01/15/08 [1:35 AM] MW-0-13 Aqueous B300 Anionis by IC method - Water R3563 10 01/15/08 [1:35 AM] MW-0-23 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-23 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis	Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
MW-O-15 Aqueous E10 Anions by IC method - Water R3563 100 011508 11:35 AM MW-O-13 Aqueous B200 Anions by IC method - Water R3563 100 011508 11:35 AM MW-O-13 Aqueous E300 Anions by IC method - Water R3563 10 011508 11:35 AM MW-O-23 Aqueous E300 Anions by IC method - Water R3563 10 011508 11:32 AM MW-O-23 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-13 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water <	0801064-01A	MW-0-15	A queo us	E300	Anions by IC method - Water	R35633	c	01/14/08 11-13 444	
MW-0-15 Aqueous M2-40(5 Total Dissolved Suits TDS_W-01/14/08 1 0.11/15/08 063-0 AM MW-0-23 Aqueous E30 Anions by IC method - Water E35533 1 0.11/15/08 063-0 AM MW-0-23 Aqueous E300 Anions by IC method - Water E35533 1 0.11/15/08 063-0 AM MW-0-23 Aqueous E300 Anions by IC method - Water E35533 1 0.11/15/08 033-0 AM MW-1-23 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-25 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-25 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-27 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 10 0.11/16/08 11-27 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-27 AM MW-0-11 Aqueous E300 An		MW-0-15	Aqueous	E300	Anions by IC method - Water	R35658	- 100	MV 5011 00/51/10	102_080114A
MW-0-23 Aqueous Earlow Anions by Cmethod - Water IDS_MOUTHOMS ID OUT3008 083.0 AM MW-0-23 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-0-23 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-0-13 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-113 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35633 1 0.114/08 11:57 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35653 10 0.113/08 02:32 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35653 1 0.114/08 11:57 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35653 1 0.114/08 11:27 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water		MW-0-15	Aqueous	M2540C	Total Discolved Solids	TDC III OTT		MA CC:11 00/C1/10	IC_080115A
MW -0-23 Aqueous E300 Anionus by I Cmethod - Water E35633 I O (1/1308 11:27 AM MW -0-23 Aqueous E300 Anionus by I Cmethod - Water E35633 I O (1/1308 11:32 AM MW -0-13 Aqueous E300 Anions by I Cmethod - Water E35633 I O (1/1308 11:32 AM MW -1-13 Aqueous E300 Anions by I Cmethod - Water E35633 I O (1/1508 11:32 AM MW -1-13 Aqueous E300 Anions by I Cmethod - Water E35633 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 01:32 PM MW -0-11 Aqueous E300 Anio	0801064-02A	MW-0-23	Aqueous	E300	Anions by IC method - Water	1.D5_W-U1/14/U D35658		01/15/08 08:30 AM	WC_080114A
NW -0.23 Aqueous M2340C Tent bits bles bles bles Decomposition Decomposition </td <td></td> <td>MW-0-23</td> <td>Aqueous</td> <td>E300</td> <td>Anions by IC method - Water</td> <td>D35633</td> <td>10</td> <td>MA 06:11 80/01/10</td> <td>IC_080115A</td>		MW-0-23	Aqueous	E300	Anions by IC method - Water	D35633	10	MA 06:11 80/01/10	IC_080115A
WW-1-23 Aqueous E300 Anions by IC method - Water R35633 1 0.11/308 19:50.6 FM MW-1-23 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 19:50.6 FM MW-1-13 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 19:50.6 FM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 19:50.6 FM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 11:57 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 0.11/408 11:57 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/408 12:22 FM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/408 12:22 FM MW-0-13 Aqueous E300 Anions by IC method - Water R35638 1 0.11/408 12:22 FM MW-0-2 Aqueous E300 Anions by IC metho		MW-0-23	Aqueous	M2540C	Total Dissolved Solids	OTATIO W SOT		01/14/08 11:27 AM	IC2_080114A
WW-1-23 Agrous E300 Automation Matrix Matr	0801064-03A	MW-I-23	Aqueous	E300	Anions hv 1C method - Water	0/41/10- M COTI		MA US:30 80/C1/10	WC_080114A
WW-1-23 Aqueous M24-123 Aqueous M24-124 TDS_W-01/14/08 1 01/15/08 03:30 AM WW-0-11 Aqueous E300 Anious by IC method - Water R3553 1 0.1/15/08 03:30 AM MW-0-11 Aqueous E300 Anious by IC method - Water R3553 2 01/14/08 11:57 AM MW-0-11 Aqueous E300 Anious by IC method - Water R35533 2 01/14/08 01:57 PM MW-0-11 Aqueous E300 Anious by IC method - Water R35533 2 01/14/08 11:57 AM MW-0-11 Aqueous E300 Anious by IC method - Water R35533 1 01/14/08 11:37 AM MW-0-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 11:37 AM MW-0-3 Aqueous E300 Anions by IC method - Water R35553 0 01/15/08 03:30 AM MW-0-3 Aqueous E300 Anions by IC method - Water R35553 1 0/1/14/08 01:37 PM MW-0-3 Aqueous E300 Anions by IC		MW-I-23	Aqueous	E300	Anions by IC method Water	600CM		01/14/08 11:42 AM	IC2_080114A
MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 01:40 PM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 01:40 PM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 11:57 AM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 11:57 AM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3553 2 01/14/08 11:57 AM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3553 10 01/15/08 02:34 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water R3553 1 01/14/08 12:12 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water R3563 50 01/14/08 01:37 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/14/08 01:37 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water <td></td> <td>MW-I-23</td> <td>Aditeons</td> <td>M7540C</td> <td>Total Discillation of the</td> <td></td> <td></td> <td>Md 90:71 80/c1/10</td> <td>IC_080115A</td>		MW-I-23	Aditeons	M7540C	Total Discillation of the			Md 90:71 80/c1/10	IC_080115A
MW-0-11 Aqueous E300 Anionis by IC method - water R35638 10 01/15/08 01:40 PM MW-0-11 Aqueous E300 Anionis by IC method - water R35633 2 01/14/08 11:57 AM MW-0-11 Aqueous E300 Anionis by IC method - water R35633 2 01/14/08 01:50 PM MW-0-11 Aqueous M3240C Total Dissolved Suids TDS_W-01/14/08 1 01/15/08 03:20 AM MW-0-11 Aqueous M3240C Total Dissolved Suids TDS_W-01/14/08 1 01/14/08 01:20 PM MW-0-8 Aqueous B300 Anions by IC method - water R35638 10 01/14/08 01:3 PM MW-0-8 Aqueous B300 Anions by IC method - water R35658 10 01/14/08 01:3 PM MW-0-9 Aqueous B300 Anions by IC method - water R35658 10 01/14/08 01:3 PM MW-0-9 Aqueous B300 Anions by IC method - Water R35658 10 01/14/08 01:3 PM MW-0-3 Aqueous B300 Anions by IC metho	0801064-04A	MW-0-11	on on his v	E300		1.DS_W-01/14/0		01/15/08 08:30 AM	WC_080114A
MW-0-11 Aqueous E-300 Anions by IC method - Water R35633 2 01/14/08 01:57 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 01/14/08 01:25 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 01/14/08 01:25 PM MW-0-11 Aqueous M3540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:12 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:13 PM MW-0-3 Aqueous E300 Anions by IC method - Water R3553 1 01/14/08 01:13 PM MW-0-3 Aqueous E300 Anions by IC method - Water R3553 1 01/14/08 01:13 PM MW-0-3 Aqueous E300 Anions by IC method - Water R3553 1 01/14/08 01:13 PM MW-0-3 Aqueous E300 Anions by IC method - Wate			v ducous	E300	Anions by IC method - Water	R35658	10	01/15/08 01:40 PM	IC_080115A
MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 01/14/08 02:25 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35638 100 01/15/08 12:32 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 12:12 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 12:12 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 12:12 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:13 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35638 10 01/15/08 02:34 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35638 1 01/14/08 01:13 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35638 1 01/14/08 01:13 PM MW-0-3 Aqueous E300 Anions by IC method - Water<			Aqueous	E300	Anions by IC method - Water	R35633	2	01/14/08 11:57 AM	IC2_080114A
MW-0-11 Aqueous E300 Anions by IC method - Water R35638 100 01/15/08 12:22 PM MW-0-11 Aqueous M240C1 Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-0-11 Aqueous B300 Anions by IC method - Water R35633 1 01/15/08 01:30 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:30 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:30 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 02:34 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:32 AM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:32 AM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:32 PM MW-0-3 Aqueous E300 Anions by IC method		11-0-MW	Aqueous	E300	Anions by IC method - Water	R35633	2	01/14/08 02:25 PM	IC2 080114A
$WW-0-11$ Aqueous $M2340C$ Tad Ibisolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM $WW-0-8$ Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 12:12 PM $WW-0-8$ Aqueous E300 Anions by IC method - Water R35538 50 01/15/08		11-0-MM	Aqueous	E300	Anions by IC method - Water	R35658	001	01/15/08 12:22 PM	IC 080115A
MW-O-8 Aqueous E300 Anions by IC method - Water R3553 1 01/14/08 12:12 PM MW-O-8 Aqueous E300 Anions by IC method - Water R3553 50 01/15/08 01:09 PM MW-O-8 Aqueous E300 Anions by IC method - Water R3553 50 01/15/08 01:09 PM MW-O-8 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/14/08 01:13 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35558 10 01/15/08 02:34 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35553 10 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35553 1 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water </td <td></td> <td>11-0-WM</td> <td>Aqueous</td> <td>M2540C</td> <td>Total Dissolved Solids</td> <td>TDS_W-01/14/0</td> <td>8</td> <td>01/15/08 08:30 AM</td> <td>WC 080114A</td>		11-0-WM	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	8	01/15/08 08:30 AM	WC 080114A
MW-O-8 Aqueous E300 Anions by IC method - Water R35558 50 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 03:30 AM MW-O-9 Aqueous M2540C Total Dissolved Solids R35658 10 01/15/08 02:32 PM MW-O-9 Aqueous B300 Anions by IC method - Water R35658 10 01/15/08 03:30 AM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-O-3 Aqueous M3250C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08	0801064-05A	MW-0-8	Aqueous	E300	Anions by IC method - Water	R35633	1	01/14/08 12:12 PM	- IC2 080114A
MW-O-8 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 I 01/15/08 08:30 AM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 02:24 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 02:24 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 1 01/15/08 02:39 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 02:39 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 01:37 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 01:37 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 10 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 10 01/14/08 01:27 PM MW-O-5 Aqueous E300 Anions by IC method - W		MW-0-8	Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 01:09 PM	IC 080115A
MW-0-9 Aqueous E300 Anions by IC method - Water R35538 10 01/15/08 02:24 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:13 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35533 1 01/15/08 02:39 PM MW-0-3 Aqueous B300 Anions by IC method - Water R35533 1 01/15/08 02:39 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-0-5 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:42 PM MW-0-5 Aqueous E300 Anions by IC method - Water		MW-0-8	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0		01/15/08 08:30 AM	WC 080114A
MW-0-9 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:13/08 08:30 MM MW-0-9 Aqueous M32540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-0-3 Aqueous B300 Anions by IC method - Water R35638 50 01/15/08 03:30 AM MW-0-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01/15/08 03:30 AM MW-0-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 1 01/14/08 01/15/08 03:30 AM MW-0-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-0-5 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 M M 01/14/08 1 01/14/08 1	0801064-06A	MW-0-9	Aqueous	E300	Anions by IC method - Water	R35658	10	01/15/08 02:24 PM	IC 080115A
MW-O-9 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 I 01/15/08 08:30 AM MW-O-3 Aqueous B300 Anions by IC method - Water R35638 50 01/15/08 03:27 PM MW-O-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-O-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-O-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 02:54 PM MW-O-5 Aqueous B300 Anions by IC method - Water R35658 100 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/		0-0-WM	Aqueous	E300	Anions by IC method - Water	R35633	I	01/14/08 01:13 PM	IC2 080114A
MW-O-3 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 02:39 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01/15/08 02:37 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35633 1 01/15/08 08:30 AM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-O-5 Aqueous E300 Anions by IC method - Water R35653 1 01/14/08 01		MW-0-9	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	8 I	01/15/08 08:30 AM	WC 080114A
MW-O-3 Aqueous E300 Anions by IC method - Water R35633 I 01/14/08 01:27 PM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 02:54 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35653 100 01/15/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/15/08 03:30 AM MW-O-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water	0801064-07A	MW-0-3	Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 02:39 PM	IC 080115A
MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-O-5 Aqueous E300 Anions by IC method - Water R35658 100 01/15/08 03:54 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/15/08 08:30 AM MW-O-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:03 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35653 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08		MW-0-3	Aqueous	E300	Anions by IC method - Water	R35633	I	01/14/08 01:27 PM	IC2 080114A
MW-O-5 Aqueous E300 Anions by IC method - Water R35658 100 01/15/08 02:54 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:42 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:42 PM MW-O-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM		MW-0-3	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	8	01/15/08 08:30 AM	WC 080114A
MW-O-5 Aqueous E300 Anions by IC method - Water R35633 I 01/14/08 01:42 PM MW-O-5 Aqueous M2540C T otal Dissolved Solids T DS_W-01/14/08 I 01/15/08 08:30 AM MW-O-12 Aqueous M3563 T DS_W-01/14/08 I 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35653 1 01/14/08 01/74/	0801064-08A	MW-0-5	Aqueous	E300	Anions by IC method - Water	R35658	100	01/15/08 02:54 PM	IC 080115A
MW-O-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 I 01/15/08 08:30 AM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01-57 PM		MW-0-5	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 01:42 PM	IC2 080114A
MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01.57 PM		MW-0-5	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	1 8	01/15/08 08:30 AM	WC 080114A
Aqueous E300 Anions by IC method - Water R35633 I 01/14/08 01-57 PM	0801064-09A	MW-0-12	Aqueous	E300	Anions by IC method - Water	R35658	10	01/15/08 03:08 PM	IC 080115A
		MW-0-12	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 01:57 PM	IC2 080114A

DHL Alytical

24-Jan-08

							24-Jan-U8	
Lab Order:	0801064							
Client:	INTERA Inc.				ANALA		ANAL VITCAL DATES DEPORT	
Project:	RRC-O'Ryan, Du gout, Pharoah	gout, Pharoah					N CITED IN	EFUKI
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID D	Dilution	Analvsis Date	Run ID
0801064-09A	MW-0-12	Aqueous	M2540C	Total Dissolved Solids	TDS W 1/10 W			
0801064-10A	MW-0-13	Supering	6300		00/+1/10- M COT 1	-	MA UE:80 80/C1/10	WC_080114A
		en combru	0003	Anions by IC method - Water	R35658	10	01/15/08 03:23 PM	IC_080115A
	MW-0-13	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 02:10 PM	IC2 080114A
	MW-0-13	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	1	01/15/08 08-30 AM	M/C 080114 v
0801064-11A	MW-0-1	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 03·09 PM	1C7 080114A
	MW-0-1	Aqueous	E300	Anions by IC method - Water	R35658	10	01/15/08 03-38 PM	
	MW-0-1	Aqueous	E300	Anions by IC method - Water	R35658	20	MA C2-50 80/21/10	10 0801154
	I-0-MM	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	-	M 1 20:00 80/21/10	MC 0001117
0801064-12A	MW-0-6	Aqueous	E300	Anions by IC method - Water	- R35658	50	MA CC:00 80/21/10	WC_U80114A
	MW-0-6	Aqueous	E300	Anions by IC method - Water	R35633	-	MI 127.10 80/61/10	102 000113A
	MW-0-6	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	• -	1/15/08 05:20 AM	1C2_080114A
0801064-13A	MW-0-22	Aqueous	E300	Anions by IC method - Water	R35633	-	MA 73-50 80/11/0	WC_080114A
	MW-0-22	Aqueous	E300	Anions by IC method - Water	R35658	20	MI 12:00 80/21/10	10,000,114A
	MW-0-22	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	_	01/15/08 08:30 AM	
0801064-14A	MW-0-21	Aqueous	SW8021B	Volatile Organics by GC	78697	· -	MA UC.00 00/01/10	WC_080114A
0801064-14B	MW-0-21	Aqueous	E300	Anions hv IC method Water	D35650		MA/C:71 80/41/10	GC9_080114A
	MW-0-21	Aqueous	E300	Anions by IC method - Water	00000V	100	01/15/08 04:51 PM	IC_080115A
	MW-0-71	A critectic	E200		8000 CM	005	01/15/08 05:46 PM	IC_080115A
	12-0- MM	Aqueous	E300	Anions by IC method - Water	R35633	10	01/14/08 04:11 PM	IC2_080114A
0801064-15A	12-0-41W	vaneous	M2540C	I otal Dissolved Solids	TDS_W-01/14/08	-	01/15/08 08:30 AM	WC_080114A
G21 7201080		Aqueous	SW 80 21B	volatile Organics by GC	28697	_	01/14/08 01:48 PM	GC9_080114A
901-400100	MW-0-31	Aqueous	E300	Anions by IC method - Water	R35633	10	01/14/08 04:55 PM	IC2_080114A
	M w - U - 3 [Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 06:33 PM	IC 080115A
	M w - O-3 I	Aqueous	E300	Anions by IC method - Water	R35658	1000	01/15/08 06:48 PM	IC 080115A
	MW-0-31	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/08	-	01/15/08 08:30 AM	WC 080114A
U&U1004-16A	MW-P-09	Aqueous	SW8021B	Volatile Organics by GC	28697		01/14/08 02:05 PM	GC9 080114A
0801064-16B	MW-P-09	Aqueous	E300	Anions by IC method - Water	R35658 ^	10	01/15/08 07:17 PM	IC 080115A
	MW-P-09	Aqueous	E300	Anions by IC method - Water	R35658	100	01/15/08 07:32 PM	IC 080115A
	MW-P-09	Aqueous	E300	Anions by 1C method - Water	R35633	-	01/14/08 05:10 PM	- IC2 080114A
Page 2 of 5	of 5							C+ 1000-100

DHL / ulytical

24-Jan-08

· mn o mn	1001000							
Client:	INTERA Inc.				ANAL	JULA	ANALVIICAL DATES BEBOD	
Project:	RRC-O'Ryan, Du gout, Pharoah	gout, Pharoah					N CITED IN	TLUKI
Sample 1D	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0801064-16B	MW-P-09	Aqueous	M2540C	T otal Dissolved Solids	TDS W-01/14/08	-	01/15/08 08-30 AM	VI DONIA
0801064-17A	MW-FINA-01	Aqueous	SW8021B	Volatile Organics by GC	2,8697	-	FINE OC: PO 80/ P1/ 10	
0801064-17B	MW-FINA-01	Aqueous	E300	Anions hv 1C method - Water	D15650	10001	01/12/00 04:29 F M	GC9_080114A
	MW-FINA-01	Aqueous	E300	Anions by IC method - Water	P35658	0001	M4 / 45:/ 0 80/C1/10	IC_080115A
	MW-FINA-01	Aqueous	F300	Anions by 10 method - Water	000000	07	M4 10:80 80/c1/10	IC_080115A
	MW-FINA-01	Aqueous	E300	Anions by IC method - Water	5500CX	1000	01/14/08 05:25 PM	IC2_080114A
	MW-FINA-01		JUDSCIM	Total Dissolved Sciences	17/001	1	01/18/08 10:58 AM	IC2_080118A
0801064-18A	MW/_P_01		O CONTRA		1 US_W -01/14/08	-	01/15/08 08:30 AM	WC_080114A
		, Aqueous	81708 MC	volatile Urganics by GC	28697	1	01/14/08 04:46 PM	GC9_080114A
901-1001000	1 0- J- M M	Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 08:16 PM	IC_080115A
	10-4-MW	Aqueous	E300	Anions by IC method - Water	R35633	10	01/14/08 05:39 PM	IC2 080114A
	10-9-WM	Aqueous	E300	Anions by IC method - Water	R35721	1000	01/18/08 11:13 AM	IC2 080118A
	MW-P-01	Aqueous	E300	Anions by IC method - Water	R35658	1000	01/15/08 08:31 PM	IC 080115A
	MW-P-01	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/08		01/15/08 08:30 AM	WC 080114 V
0801064-19A	ER	quipment Blan	SW8021B	Volatile Organics by GC	28697	-	01/14/08 04:12 PM	CC0 080114A
0801064-19B	ER	quipment Blan	E300	Anions by IC method - Water	R35656	1	01/15/08 09·27 PM	
	ER	quipment Blan	E300	Anions by IC method - Water	R35658	-	01/15/08 08-45 PM	ACTIVEN_201
	ER	quipment Blan	M2540C	Total Dissolved Solids	TDS W-01/16/08	-	MI 61:00 80/21/10	MC 080112A
0801064-20A	MW-0-7	Aqueous	SW8021B	Volatile Organics by GC	28697	-	MU CO.SO 80/11/10	WC_000110A
0801064-20B	7-0-7M	Aqueous	E300	Anions hv 1C method - Water	R35658	1 203	M1 2 CO. CO 00/41/10	GC9_080114A
	MW-0-7	Aqueous	E300	Anions hy 1C method - Water	D35650	0001	M4 00:60 80/01/10	IC_080115A
	7-0-WW	V annound			00000V	1000	M4 C1:60 80/C1/10	IC_080115A
	1-0- MIN	Aqueous	E300	Anions by IC method - Water	R35633	5	01/14/08 06:09 PM	IC2_080114A
7 LC 7 20100	/-O- M M	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/08	-	01/15/08 08:30 AM	WC_080114A
USU1004-21A	70-U- M M	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 03:21 PM	IC2 080115A
	MW-D-07	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 03:06 PM	IC2 080115A
	MW-D-07	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 11:26 AM	IC2 080115A
	MW-D-07	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	l	01/17/08 09:40 AM	WC 080116A
0801064-22A	MW-D-08	Aqueous	E300	Anions by IC method - Water	R35656	F	01/15/08 11:41 AM	- IC2_080115A
	MW-D-08	Aditeons	E300	Anione by IC mothed Wetter				U

DHL 4. alytical

24-Jan-08

Lab Order: Client:	0801064				IVNV			
Client.					IVNV			
CHULLI.	IN LEKA Inc.						ANA VICA DATE OF DATE	Tanar
Project:	RRC-O'Ryan, Du gout, Pharoah	gout, Pharoah						
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID I	Dilution	Analvsis Date	Run ID
0801064-22A	MW-D-08	Aqueous	M2540C	Total Dissolved Solids	TDS W 01/16/00	-		
0801064-23A	Trin Blank	Trin Blank	CILCO0/MS				U1/11/U8 U9:40 AM	WC_080116A
V PC P201000		Allald dri 1	91700 MC	volatile Urganics by GC	28697	-	01/14/08 03:55 PM	GC9_080114A
U&U1064-24A	MW-07-2	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 04:05 PM	IC2 080115A
	MW-07-2	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 04:20 PM	- 1C7 080115A
	MW-07-2	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 11:56 AM	AC11000_201
	MW-07-2	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/16/08	Ι	01/17/08 09:40 AM	WC 080115A
0801064-25A	MW-D-2	Aqueous	E300	Anions by IC method - Water	R35656	ć		MC_000110A
	MW-D-2	Aqueous	E300	Anions by IC method - Water	R35656	4 V	MJ 01:21 00/21/10	1C2_080115A
	MW-D-2	Aqueous	E300	Anions hv IC method - Water	DJSKSK		IN 1 40.40 00/21/10	162_080115A
	MW-D-2	Aqueous	M2540C	Total Directived Collide		0,01	M4 64:40 80/C1/10	IC2_080115A
0801064-76A	MW-07-3	on control v	E200		1 US_W-01/16/08	-	01/17/08 09:40 AM	WC_080116A
		snoanhy	E300	Anions by IC method - Water	R35656	50	01/15/08 05:04 PM	IC2_080115A
	M W -U /-3	Aqueous	E300	Anions by IC method - Water	R35656	1000	01/15/08 05:18 PM	IC2_080115A
	MW-07-3	Aqueous	E300	Anions by IC method - Water	R35721	1000	01/18/08 11:27 AM	IC2 080118A
	MW-07-3	Aqueous	E300	Anions by IC method - Water	R35656	10	01/15/08 12:25 PM	LC2 080115A
	MW-07-3	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	Ι	01/17/08 09:40 AM	WC 080116A
0801064-27A	MW-D-10	Aqueous	E300	Anions by IC method - Water	R35656	L	01/15/08 12:40 PM	102 0801154
	MW-D-10	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 05-33 PM	1C2_080115A
	MW-D-10	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/16/08	-	01/17/08 09-40 AM	W/C 0801164
0801064-28A	10-D-01	Aqueous	E300	Anions by IC method - Water	- R35656	50	01/15/08 06:16 PM	102 0801164
	MW-D-01	Aqueous	E300	Anions by IC method - Water	R35656	0001	M 1 01:00 80/51/10	1C2_080115A
	MW-D-01	Aqueous	E300	Anions by IC method - Water	R35656	2	M 1 01:00 00/21/10	
	MW-D-01	Agneons	M7540C	Total Discoluted Solids		л ,	MJ 46:71 00/01/10	IC2_080115A
0801064-29A	MW-D-06	Aditeon	E300	A niona builden ounds	80/91/10-M_SUT	_	01/17/08 09:40 AM	WC_080116A
	MIN D OC	-		AMOUS OF LC INCLUDE - WALER	000053	-	01/15/08 01:24 PM	IC2_080115A
	00-D-01	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 07:00 PM	IC2_080115A
	00-71- AA IAI	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 07:15 PM	IC2_080115A
	MW-D-06	Aqueous	E300	Anions by IC method - Water	R35721	100	01/18/08 02:38 PM	IC2_080118A
	MW-D-06	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	-	01/17/08 09:40 AM	WC_080116A
0801064-30A	MW-D-05	Aqueous	E300	Anions by IC method - Water	R35656	S	01/15/08 01:38 PM	102 0801154

DHL , alytical

24-Jan-08

Lab Order:	0801064							
	-				and the second se			
Client:	INTERA Inc.				ANALY	CIIC	ANALYTICAL DATES REPORT	PORT
Project:	RRC-O'Ryan, Dugout, Pharoah	out, Pharoak	_					
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID Di	Dilution	Analysis Date	Run ID
0801064-30A	MW-D-05	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 07:44 PM	102 0801154
	MW-D-05	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 07-30 PM	1C7_080115A
	MW-D-05	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	_	01/17/08 09:40 AM	WC 0801164
0801064-31A	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 01:53 PM	1C2 080115A
	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 07:59 PM	IC2_080115A
	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35656	100	01/15/08 08:14 PM	IC2_080115A
	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35679	200	01/16/08 11:49 AM	IC2_080116A
	MW-D-04	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	1	01/17/08 09:40 AM	WC 080116A
0801064-32A	SW -O-Seep	Aqueous	E300	Anions by IC method - Water	R35656	10	01/15/08 02:08 PM	IC2_080115A
	SW-O-Seep	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 08:29 PM	IC2_080115A
	SW-O-Seep	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	1	01/17/08 09:40 AM	WC 080116A
0801064-33A	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35656	10	01/15/08 02:22 PM	IC2 080115A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35656	100	01/15/08 08:43 PM	IC2_080115A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35656	200	01/15/08 08:58 PM	IC2 080115A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35679	500	01/16/08 01:23 PM	IC2_080116A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35721	1000	01/18/08 11:57 AM	IC2_080118A
	SW - P - Seep	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	I	01/17/08 09:40 AM	WC_080116A
								(

DHL Ana	lytical				D	ate:	24-Ja	m-08
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	0-15
oject:	RRC-O'Ryan, Dugo	ut, Pharoah				Lab ID	: 08010	64-01
Project No:					Colle	ection Date	: 01/09/	'08 08:50 AM
Lab Order:	0801064					Matrix	: AQUI	EOUS
Analyses	-	Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300	0				Analyst: JBC
Bromide		6.76	0.600	2.00		mg/L	2	01/14/08 11:13 AM
Chloride		4600	30.0	100		mg/L	100	01/15/08 11:35 AM
Sulfate		1340	100	300		mg/L	100	01/15/08 11:35 AM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	11200	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit

DHL Ana	lytical				Date:		24-Ja	un-08
CLIENT:	INTERA Inc.				Client Sam	ple ID:	MW-	O-23
oject:	RRC-O'Ryan, Dugo	ut, Pharoah			1	ab ID:	08010	64-02
Project No:					Collection	Date:	01/09/	/08 10:55 AM
Lab Order:	0801064				Ν	latrix:	AQUI	EOUS
Analyses		Result	SDL	RL	Qual Un	its	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC
Bromide		ND	0.300	1.00	mg/l	-	1	01/14/08 11:27 AM
Chloride		43.6	3.00	10.0	mg/l	_	10	01/15/08 11:50 AM
Sulfate		124	10.0	30.0	mg/l	-	10	01/15/08 11:50 AM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	699	10.0	10.0	mg/L	W.	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				Date:	24-Jc	un-08
CLIENT:	INTERA Inc.				Client Sample ID:	MW-	I-23
oject:	RRC-O'Ryan, Dugou	t, Pharoah			Lab ID:	08010	64-03
Project No:					Collection Date:	01/09	/08 10:40 AM
Lab Order:	0801064				Matrix:	AQU	EOUS
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)	2.		Analyst: JBC
Bromide		ND	0.300	1.00	mg/L	1	01/14/08 11:42 AM
Chloride		42.7	3.00	10.0	mg/L	10	01/15/08 12:06 PM
Sulfate		117	10.0	30.0	mg/L	10	01/15/08 12:06 PM
TOTAL DISSOL	VED SOLIDS		M2540)C			Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	706	10.0	10.0	mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				D	ate:	24-Ja	n-08
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	D-11
oject:	RRC-O'Ryan, Dugou	t, Pharoah				Lab ID	: 08010	64-04
Project No:					Coll	ection Date	: 01/09/	08 11:35 AM
Lab Order:	0801064					Matrix	: AQUI	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC
Bromide		5.28	0.600	2.00		mg/L	2	01/14/08 11:57 AM
Chloride		3130	30.0	100		mg/L	100	01/15/08 12:22 PM
Sulfate		455	10.0	30.0		mg/L	10	01/15/08 01:40 PM
TOTAL DISSOL	VED SOLIDS		M2540	С				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	6560	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 33

DHL Ana	lytical				Ľ	ate:	24-Ja	un-08	
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	O-8	
oject:	RRC-O'Ryan, Dugoı	it, Pharoah				Lab ID	: 08010	64-05	
rroject No:					Coll	ection Date	: 01/09/	/08 12:23 PM	
Lab Order:	0801064					Matrix	: AQU	EOUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC	
Bromide		2.21	0.300	1.00		mg/L	1	01/14/08 12:12 PM	
Chloride		2510	15.0	50.0		mg/L	50	01/15/08 01:09 PM	
Sulfate		440	50.0	150		mg/L	50	01/15/08 01:09 PM	
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	5520	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				Date:	24-Jc	un-08
CLIENT:	INTERA Inc.	ter i norde de la constante de			Client Sample ID	: MW-	O-9
oject:	RRC-O'Ryan, Dugo	out, Pharoah			Lab ID	: 08010	64-06
Project No:					Collection Date	: 01/09	/08 12:55 PM
Lab Order:	0801064				Matrix	: AQU	EOUS
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300)			Analyst: JBC
Bromide		3.96	0.300	1.00	mg/L	1	01/14/08 01:13 PM
Chloride		330	3.00	10.0	mg/L	10	01/15/08 02:24 PM
Sulfate		794	10.0	30.0	mg/L	10	01/15/08 02:24 PM
TOTAL DISSOL	VED SOLIDS		M2540	C			Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	2110	10.0	10.0	mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				D	ate:	24-Jc	un-08
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	O-3
oject:	RRC-O'Ryan, Dugo	ut, Pharoah				Lab ID	: 08010	64-07
Project No:					Colle	ection Date	: 01/09	/08 01:50 PM
Lab Order:	0801064					Matrix	: AQU	EOUS
Analyses	5	Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 01:27 PM
Chloride		1450	15.0	50.0		mg/L	50	01/15/08 02:39 PM
Sulfate		291	50.0	150		mg/L	50	01/15/08 02:39 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	3200	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical			Da	ite:	24-Ja	n-08		
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-	0-5	
oject:	RRC-O'Ryan, Dugou	ıt, Pharoah				Lab ID:	08010	64-08	
Project No:			Collection Date:				01/09/	01/09/08 03:01 PM	
Lab Order:	0801064					Matrix:	AQUI	EOUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC	
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 01:42 PM	
Chloride		2800	30.0	100		mg/L	100	01/15/08 02:54 PM	
Sulfate		686	100	300		mg/L	100	01/15/08 02:54 PM	
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	6180	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical			Date:	24-Jan-08		
CLIENT:	INTERA Inc.				Client Sample ID:	MW-	·O-12
oject:	RRC-O'Ryan, Dugo	ut, Pharoah			Lab ID:	08010	064-09
Project No:					Collection Date:	01/09	/08 03:30 PM
Lab Order:	0801064				Matrix:	AQU	EOUS
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)			Analyst: JBC
Bromide		ND	0.300	1.00	mg/L	1	01/14/08 01:57 PM
Chloride		229	3.00	10.0	mg/L	10	01/15/08 03:08 PM
Sulfate		116	10.0	30.0	mg/L	10	01/15/08 03:08 PM
TOTAL DISSOL	VED SOLIDS		M2540)C			Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	931	10.0	10.0	mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical	24-Ja	un-08					
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-	O-13
oject:	RRC-O'Ryan, Dugout, P	haroah				Lab ID:	08010	64-10
Project No:	No:			Collection Date: 01/09/08 04:10 PM				
Lab Order:	0801064					Matrix:	AQUI	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)		и		Analyst: JBC
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 02:10 PM
Chloride		245	3.00	10.0		mg/L	10	01/15/08 03:23 PM
Sulfate		130	10.0	30.0		mg/L	10	01/15/08 03:23 PM
TOTAL DISSOLVED SOLIDS			M2540C					Analyst: JBC
Total Dissolved Solids (Residue, Filterable)		1000	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 10 of 33

DHL Ana	lytical			Ι)ate:	24-Jc	un-08				
CLIENT:	INTERA Inc.					Clien	t Sample III): MW-	O-1		
-oject:	RRC-O'Ryan, Du	igout, Ph	aroah			Lab ID: 0801064-11					
Project No:						Coll	ection Date	: 01/09	/08 04:37 PM		
Lab Order:	0801064						Matrix	: AQU	AQUEOUS		
Analyses			Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC I	METHOD - WATER			E300)				Analyst: JBC		
Bromide			ND	0.300	1.00		mg/L	1	01/14/08 03:09 PM		
Chloride			1040	6.00	20.0		mg/L	20	01/15/08 03:52 PM		
Sulfate			184	10.0	30.0		mg/L	10	01/15/08 03:38 PM		
TOTAL DISSOL	VED SOLIDS			M2540	C				Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,		2530	10.0	10.0		mg/L	1	01/15/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

 $\ensuremath{\mathsf{S}}$ - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 11 of 33

DHL Ana	lytical	ate:	24-Ja	un-08					
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	0-6	
oject:	RRC-O'Ryan, Dugou	t, Pharoah	h Lab ID:					64-12	
Project No:				Collection Date:				01/09/08 05:25 PM	
Lab Order:	0801064					Matrix	: AQU	EOUS	
Analyses	_	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC	
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 03:24 PM	
Chloride		2320	15.0	50.0		mg/L	50	01/15/08 04:22 PM	
Sulfate		636	50.0	150		mg/L	50	01/15/08 04:22 PM	
TOTAL DISSOL	VED SOLIDS		M2540)C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	4920	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 12 of 33

DHL Ana	lytical			Date:		24-Ja	24-Jan-08		
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	0-22	
oject:	RRC-O'Ryan, Dugou	ıt, Pharoah		Lab ID: 0801064				64-13	
rroject No:		Collection Date:			: 01/09/	01/09/08 10:15 AM			
Lab Order:	0801064					Matrix	: AQU	EOUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC	
Bromide		3.15	0.300	1.00		mg/L	1	01/14/08 03:57 PM	
Chloride		336	6.00	20.0		mg/L	20	01/15/08 04:36 PM	
Sulfate		313	20.0	60.0		mg/L	20	01/15/08 04:36 PM	
TOTAL DISSOL	VED SOLIDS		M2540	с				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	1490	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Anal	ytical		Date:	24-Jc	24-Jan-08			
CLIENT:	INTERA Inc.				Client Sample ID	: MW-	·O-21	
oject:	RRC-O'Ryan, Dugout,	Pharoah				: 08010		
rroject No:					Collection Date:			
Lab Order:	0801064				Matrix			
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed	
VOLATILE ORG	ANICS BY GC		SW8	021B			Analyst: JAW	
Benzene		ND	0.00100	0.00200	mg/L	1	01/14/08 12:57 PM	
Ethylbenzene		ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Methyl tert-butyl	ether	ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Toluene		ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Xylenes, Total		ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Surr: a,a,a-Tri	fluorotoluene	99.0	0	87-113	%REC	1	01/14/08 12:57 PM	
ANIONS BY IC M	ETHOD - WATER		E30	00			Analyst: JBC	
Bromide		ND	3.00	10.0	mg/L	10	01/14/08 04:11 PM	
Chloride		17200	150	500	mg/L	500	01/15/08 05:46 PM	
Sulfate		2210	100	300	mg/L	100	01/15/08 04:51 PM	
TOTAL DISSOLV	ED SOLIDS		M254	10C			Analyst: JBC	
Total Dissolved S Filterable)	Solids (Residue,	32100	10.0	10.0	mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 14 of 33

DHL Ana	lytical		I	Date:	24-Jan-08			
CLIENT:	INTERA Inc.				Clien	t Sample ID:	MW-0	D-31
·oject:	RRC-O'Ryan, Dugou	t, Pharoah				Lab ID:	08010	64-15
Project No:					Collection Date:			08 08:48 AM
Lab Order:	0801064					Matrix:		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORC	GANICS BY GC		SW8	021B			5	Analyst: JAW
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 01:48 PM
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM
Methyl tert-buty	/l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM
Surr: a,a,a-T	rifluorotoluene	100	0	87-113		%REC	1	01/14/08 01:48 PM
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: JBC
Bromide		ND	3.00	10.0		mg/L	10	01/14/08 04:55 PM
Chloride		17000	300	1000		mg/L	1000	01/15/08 06:48 PM
Sulfate		1610	50.0	150		mg/L	50	01/15/08 06:33 PM
TOTAL DISSOL	OTAL DISSOLVED SOLIDS		M254	40C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	30600	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit
- E TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical			Date:		24-Jan-08			
CLIENT:	INTERA Inc.				Clien	t Sample ID:	MW-	MW-P-09	
oject:	RRC-O'Ryan, Dugout	, Pharoah				Lab ID:	0801064-16		
rroject No:	al de la secola de la constante			Collection Date:			01/09/	01/09/08 11:55 AM	
Lab Order:	0801064					Matrix:	AQUEOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORG	GANICS BY GC		SW8	021B				Analyst: JAW	
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 02:05 PM	
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM	
Methyl tert-buty	l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM	
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM	
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM	
Surr: a,a,a-Ti	rifluorotoluene	97.5	0	87-113		%REC	1	01/14/08 02:05 PM	
ANIONS BY IC N	IETHOD - WATER		E30	00				Analyst: JBC	
Bromide		1.29	0.300	1.00		mg/L	1	01/14/08 05:10 PM	
Chloride		542	30.0	100		mg/L	100	01/15/08 07:32 PM	
Sulfate		152	10.0	30.0		mg/L	10	01/15/08 07:17 PM	
TOTAL DISSOL	VED SOLIDS		M254	40C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	1550	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 16 of 33

DHL Ana	lytical		Date:		24-Jan-08			
CLIENT:	INTERA Inc.				Clien	t Sample ID:	MW-I	FINA-01
·oject:	RRC-O'Ryan, Dugout,	Pharoah	ah Lab ID: 0					
Project No:					Coll	ection Date:		
Lab Order:	0801064				Con	Matrix:		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORG	ANICS BY GC		SW8	021B				Analyst: JAW
Benzene		0.0128	0.00100	0.00200		mg/L	1	01/14/08 04:29 PM
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM
Methyl tert-buty	lether	ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM
Surr: a,a,a-Tr	rifluorotoluene	95.2	0	87-113		%REC	1	01/14/08 04:29 PM
ANIONS BY IC N	IETHOD - WATER		E30	00				Analyst: JBC
Bromide		73.9	6.00	20.0		mg/L	20	01/14/08 05:25 PM
Chloride		33300	300	1000		mg/L	1000	01/18/08 10:58 AM
Sulfate		1640	20.0	60.0		mg/L	20	01/15/08 08:01 PM
TOTAL DISSOL	VED SOLIDS		M254	40C				Analyst: JBC
Total Dissolved : Filterable)	Solids (Residue,	58500	10.0	10.0		mg/L	1	01/15/08 08:30 AM

Qualifiers

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 17 of 33

DHL Anal	lytical			Date:		24-Jan-08		
CLIENT:	INTERA Inc.				Clien	Sample ID:	MW-I	P-01
oject:	ect: RRC-O'Ryan, Dugout, Pha					Lab ID:		
Project No:					Coll	ection Date:		
Lab Order:	0801064				con	Matrix:		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORG	ANICS BY GC		SW8	021B				Analyst: JAW
Benzene		0.0136	0.00100	0.00200		mg/L	1	01/14/08 04:46 PM
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM
Methyl tert-butyl	lether	ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM
Surr: a,a,a-Tr	ifluorotoluene	97.1	0	87-113		%REC	1	01/14/08 04:46 PM
ANIONS BY IC M	IETHOD - WATER		E30	00				Analyst: JBC
Bromide		33.5	3.00	10.0		mg/L	10	01/14/08 05:39 PM
Chloride		16900	300	1000		mg/L	1000	01/18/08 11:13 AM
Sulfate		2540	50.0	150		mg/L	50	01/15/08 08:16 PM
TOTAL DISSOL	TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: JBC
Total Dissolved S Filterable)	Solids (Residue,	31500	10.0	10.0		mg/L	1	01/15/08 08:30 AM

Qualifiers

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical		Date:		24-Jan-08			
CLIENT:	INTERA Inc.				Clien	Client Sample ID: ER		
ject:	RRC-O'Ryan, Dugout	, Pharoah				Lab ID:	08010)64-19
Project No:				Collection Date:		01/09	/08 03:00 PM	
Lab Order:	0801064							PMENT BLANK
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORC	GANICS BY GC		SW8	021B				Analyst: JAW
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 04:12 PM
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM
Methyl tert-buty	/l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM
Surr: a,a,a-T	rifluorotoluene	97.3	0	87-113		%REC	1	01/14/08 04:12 PM
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: JBC
Bromide		ND	0.300	1.00		mg/L	1	01/15/08 09:27 PM
Chloride		1.27	0.300	1.00		mg/L	1	01/15/08 09:27 PM
Sulfate		ND	1.00	3.00		mg/L	1	01/15/08 09:27 PM
TOTAL DISSOL	VED SOLIDS		M254	40C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	22.0	10.0	10.0		mg/L	1	01/17/08 09:40 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 19 of 33

DHL Ana		Date:		24-Jan-08					
CLIENT:	INTERA Inc.				Client Sample ID:		MW-0-7		
oject:	RRC-O'Ryan, Dugout,	Pharoah				Lab ID:	0801064-20		
Project No:				Coll	ection Date.	01/09/08 03:45 PM			
Lab Order:	0801064				000		AQUEOUS		
Analyses	рр — нет н —	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE OR	GANICS BY GC		SW8	021B				Analyst: JAW	
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 05:03 PM	
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Methyl tert-butyl ether		ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Surr: a,a,a-Trifluorotoluene		98.5	0	87-113		%REC	1	01/14/08 05:03 PM	
ANIONS BY IC METHOD - WATER			E300				Analyst: JBC		
Bromide		17.6	1.50	5.00		mg/L	5	01/14/08 06:09 PM	
Chloride		13100	300	1000		mg/L	1000	01/15/08 09:15 PM	
Sulfate		1870	50.0	150		mg/L	50	01/15/08 09:00 PM	
TOTAL DISSOLVED SOLIDS			M2540C					Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	25100	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 20 of 33

DHL Ana		Date:		24-Jan-08					
CLIENT:	INTERA Inc.				Client Sample ID:		MW-D-07		
oject:	RRC-O'Ryan, Dugout, Pharoah					Lab ID: 0801064-21			
Project No:		Collection Date				ection Date:	01/09/08 04:55 PM		
Lab Order:	0801064				Matrix: AQUEOUS				
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC METHOD - WATER			E300				Analyst: JBC		
Bromide		20.7	1.50	5.00		mg/L	5	01/15/08 11:26 AM	
Chloride		10400	150	500		mg/L	500	01/15/08 03:21 PM	
Sulfate		2130	50.0	150		mg/L	50	01/15/08 03:06 PM	
TOTAL DISSOLVED SOLIDS			M2540C			Analyst: JBC			
Total Dissolved Solids (Residue, Filterable)		18400	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 21 of 33

DHL Ana	lytical	24	24-Jan-08						
CLIENT:	INTERA Inc.				Client Sample	ID: MW	MW-D-08		
oject:	RRC-O'Ryan, Dugout,	RRC-O'Ryan, Dugout, Pharoah Lab ID:					0801064-22		
Project No:			Collection Date:			ate: 01/0	01/09/08 05:54 PM		
Lab Order:	0801064				Matrix: AQUEOUS				
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed		
ANIONS BY IC METHOD - WATER			E300				Analyst: JBC		
Bromide		4.35	0.300	1.00	mg/L	1	01/15/08 11:41 AM		
Chloride		482	15.0	50.0	mg/L	50	01/15/08 03:36 PM		
Sulfate		126	1.00	3.00	mg/L	1	01/15/08 11:41 AM		
TOTAL DISSOLVED SOLIDS			M2540C				Analyst: JBC		
Total Dissolved Solids (Residue, Filterable)		1250	10.0	10.0	mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 22 of 33

ytical				Date:		24-Jc	an-08
INTERA Inc.			The second s	Client Sampl	e ID:	Trip I	Blank
RRC-O'Ryan, Dugout	, Pharoah			La	b ID:	08010)64-23
				Collection]	Date:	01/09	/08
0801064				Ma	atrix:	TRIP	BLANK
	Result	SDL	RL	Qual Unit	S	DF	Date Analyzed
ANICS BY GC		SW80	021B				Analyst: JAW
	ND	0.00100	0.00200	mg/L		1	01/14/08 03:55 PM
	ND	0.00200	0.00400	mg/L		1	01/14/08 03:55 PM
ether	ND	0.00200	0.00400	mg/L		1	01/14/08 03:55 PM
	ND	0.00200	0.00400	mg/L		1	01/14/08 03:55 PM
	ND	0.00200	0.00400	mg/L		1	01/14/08 03:55 PM
ifluorotoluene	97.2	0	87-113	%REC		1	01/14/08 03:55 PM
	INTERA Inc. RRC-O'Ryan, Dugout 0801064 ANICS BY GC ether	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah 0801064 Result ANICS BY GC ND ether ND ND ND	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah 0801064 Result SDL ANICS BY GC SW80 ND 0.00100 ND 0.00200 ether ND 0.00200 ND 0.00200 ND 0.00200	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah 0801064 Result SDL RL ANICS BY GC SW8021B ND 0.00100 0.00200 ND 0.00200 0.00400 ND 0.00200 0.00400 ND 0.00200 0.00400 ND 0.00200 0.00400	INTERA Inc. Client Sample RRC-O'Ryan, Dugout, Pharoah La 0801064 Mz Result SDL RL Qual Unit ANICS BY GC ND 0.00100 0.00200 mg/L ND 0.00100 0.00400 mg/L ether ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L	VICAI INTERA Inc. Client Sample ID: RRC-O'Ryan, Dugout, Pharoah Lab ID: Collection Date: 0801064 0801064 Matrix: Result SDL RL Qual Units ANICS BY GC SW8021B mg/L ND 0.00100 0.00200 mg/L ether ND 0.00200 0.00400 ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L	INTERA Inc. Client Sample ID: Trip I RRC-O'Ryan, Dugout, Pharoah Lab ID: 08010 0801064 Collection Date: 01/09 0801064 Matrix: TRIP Result SDL RL Qual Units DF ANICS BY GC SW8021B ND 0.00100 0.00200 mg/L 1 ND 0.00200 0.00400 mg/L 1

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 23 of 33

DHL Ana	lytical		D	ate:	24-Ja	n-08			
CLIENT:	INTERA Inc.				Client	Sample ID	MW-0	07-2	
oject:	RRC-O'Ryan, Dugo	ut, Pharoah			Lab ID: 0801064-24				
Project No:					Colle	ection Date:	01/10/	08 09:10 AM	
Lab Order:	0801064					Matrix:	AQUI	EOUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC	
Bromide		14.2	1.50	5.00		mg/L	5	01/15/08 11:56 AM	
Chloride		7480	150	500		mg/L	500	01/15/08 04:20 PM	
Sulfate		4800	50.0	150		mg/L	50	01/15/08 04:05 PM	
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	16900	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 24 of 33

DHL Ana	lytical			Date:	24-Ja	n-08			
CLIENT:	INTERA Inc.				Client Sample ID:	MW-	D-2		
ject:	RRC-O'Ryan, Dugou	ıt, Pharoah			Lab ID: 0801064-25				
Project No:					Collection Date:	01/10/	08 10:26 AM		
Lab Order:	0801064				Matrix:	AQUI	EOUS		
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed		
ANIONS BY IC I	METHOD - WATER		E300				Analyst: JBC		
Bromide		7.17	0.600	2.00	mg/L	2	01/15/08 12:10 PM		
Chloride		3480	30.0	100	mg/L	100	01/15/08 04:49 PM		
Sulfate		4620	50.0	150	mg/L	50	01/15/08 04:34 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C			Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	13300	10.0	10.0	mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

 ${\sf B}$ - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs $% \mathcal{M} = \mathcal{M}$

S - Spike Recovery outside control limits

 ${\rm C}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical		D	ate:	24-Jai	1-08			
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-07-3		
oject:	RRC-O'Ryan, Dugout	, Pharoah				Lab ID:	080106	4-26	
Project No:					Colle	ection Date:	01/10/08 11:06 AM		
Lab Order:	0801064					Matrix:	AQUE	OUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300			Analyst: JBC			
Bromide		116	3.00	10.0		mg/L	10	01/15/08 12:25 PM	
Chloride		33500	300	1000		mg/L	1000	01/18/08 11:27 AM	
Sulfate		3740	50.0	150		mg/L	50	01/15/08 05:04 PM	
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	61500	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 26 of 33

DHL Ana	HL Analytical						24-Ja	m-08		
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	D-10		
oject:	RRC-O'Ryan, Dugo	ut, Pharoah		Lab ID: 0801064-27						
Project No:					Colle	ection Date	: 01/10/	01/10/08 09:04 AM		
Lab Order:	0801064					Matrix	AQUI	EOUS		
Analyses	andre a set of the a	Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC	METHOD - WATER		E300					Analyst: JBC		
Bromide		ND	0.300	1.00		mg/L	1	01/15/08 12:40 PM		
Chloride		68.9	1.50	5.00		mg/L	5	01/15/08 05:33 PM		
Sulfate		35.2	1.00	3.00		mg/L	1	01/15/08 12:40 PM		
TOTAL DISSOL	TOTAL DISSOLVED SOLIDS		M2540C					Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	544	10.0	10.0		mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 27 of 33

DHL Ana	lytical			Date:	24-Jai	n-08		
CLIENT:	INTERA Inc.		an a		Client Sample ID:	MW-I	D-01	
)ject:	RRC-O'Ryan, Dugo	out, Pharoah			Lab ID:	080106	54-28	
Project No:					Collection Date:	01/10/	08 10:02 AM	
Lab Order:	0801064				AQUE	AQUEOUS		
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300)			Analyst: JBC	
Bromide		23.4	1.50	5.00	mg/L	5	01/15/08 12:54 PM	
Chloride		11600	300	1000	mg/L	1000	01/15/08 06:46 PM	
Sulfate		1470	50.0	150	mg/L	50	01/15/08 06:16 PM	
TOTAL DISSOL	VED SOLIDS		M2540	oc			Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	20100	10.0	10.0	mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 28 of 33

DHL Ana	lytical		D	ate:	24-Ja	n-08			
CLIENT:	INTERA Inc.				Client Sample ID: MW-D-06				
oject:	RRC-O'Ryan, Dugo	ut, Pharoah				Lab ID	: 08010	64-29	
Project No:					Coll	ection Date	: 01/10/	'08 01:06 PM	
Lab Order:	0801064					Matrix	: AQUI	EOUS	
Analyses	- 12 ⁷ - 111 - 12 ⁷ 1	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC	
Bromide		2.47	0.300	1.00		mg/L	1	01/15/08 01:24 PM	
Chloride		1550	30.0	100		mg/L	100	01/18/08 02:38 PM	
Sulfate		1370	50.0	150		mg/L	50	01/15/08 07:00 PM	
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	4660	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

 ${\sf B}$ - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 29 of 33

DHL Ana	HL Analytical					ate:	24-Ja	n-08
CLIENT:	INTERA Inc.	3			Client	Sample ID	: MW-	D-05
oject:	RRC-O'Ryan, Dugo	ut, Pharoah				Lab ID	: 08010	64-30
Project No:					Coll	ection Date	01/10/	08 02:24 PM
Lab Order:	0801064					Matrix	AQUI	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER	2	E300)	ii.			Analyst: JBC
Bromide		22.8	1.50	5.00		mg/L	5	01/15/08 01:38 PM
Chloride		11400	150	500		mg/L	500	01/15/08 07:44 PM
Sulfate		2280	50.0	150		mg/L	50	01/15/08 07:30 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	19700	10.0	10.0		mg/L	1	01/17/08 09:40 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical			Date:	24-Ja	n-08			
CLIENT:	INTERA Inc.	- Andreas and a second s	C AN ALL CARD		Client Sample ID: MW-D-04				
oject:	RRC-O'Ryan, Dugout, P	haroah			Lab ID:	08010	64-31		
Project No:					Collection Date: 01/10/08 03:02 PM				
Lab Order:	0801064				Matrix:	AQUI	EOUS		
Analyses	· • • • • • • • • •	Result	SDL	RL	Qual Units	DF	Date Analyzed		
ANIONS BY IC I	METHOD - WATER		E300)			Analyst: JBC		
Bromide		93.3	1.50	5.00	mg/L	5	01/15/08 01:53 PM		
Chloride		5710	60.0	200	mg/L	200	01/16/08 11:49 AM		
Sulfate		2310	50.0	150	mg/L	50	01/15/08 07:59 PM		
TOTAL DISSOL	TOTAL DISSOLVED SOLIDS		M2540	C			Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	12700	10.0	10.0	mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 31 of 33

DHL Ana	lytical				Date:	24-Ja	n-08
CLIENT:	INTERA Inc.			5	Client Sample II	: SW-C)-Seep
oject:	RRC-O'Ryan, Dugout,	, Pharoah			Lab II	: 08010	64-32
Project No:					Collection Date	e: 01/10/	08 04:38 PM
Lab Order:	0801064				Matrix	: AQUI	EOUS
Analyses	1 a a 100 mod	Result	SDL	RL	Qual Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300				Analyst: JBC
Bromide		ND	3.00	10.0	mg/L	10	01/15/08 02:08 PM
Chloride		1090	15.0	50.0	mg/L	50	01/15/08 08:29 PM
Sulfate		442	50.0	150	mg/L	50	01/15/08 08:29 PM
TOTAL DISSOL	TOTAL DISSOLVED SOLIDS		M2540C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	2460	10.0	10.0	mg/L	1	01/17/08 09:40 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 32 of 33

DHL Ana	lytical			I	ate:	24-Ja	n-08		
CLIENT:	INTERA Inc.				Clien	t Sample ID	: SW-P-	-Seep	
oject:	RRC-O'Ryan, Dugo	out, Pharoah				Lab ID	: 080106	54-33	
rroject No:					Collection Date: 01/10/08 04:56 PM				
Lab Order:	0801064			Matrix	: AQUE	EOUS			
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300	0				Analyst: JBC	
Bromide		26.8	3.00	10.0		mg/L	10	01/15/08 02:22 PM	
Chloride		13000	300	1000		mg/L	1000	01/18/08 11:57 AM	
Sulfate		1250	100	300		mg/L	100	01/15/08 08:43 PM	
TOTAL DISSOL	VED SOLIDS		M2540	0C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	24200	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 33 of 33

CLIENT:INTER/ork Order:0801064Project:RRC-01		aroah	ŀ	ANALYI	FICAL Run		UMMA GC9_08		EPO	OR'
Sample ID LCS-28697	Batch ID: 28	697	Tes	tNo: SV	V8021B		Units:	mg/L	-	
SampType: LCS	Run ID: GC	9_080114A	Ana	alysis Date: 1/1	14/2008 10:	52:31 A	Prep Da	te: 1/14/2	2008	
Analyte	Resu	ult RL	SPK value	e Ref Val	%REC	Low Li	mit HighLimi	%RPD F	RPDLimi	it Qua
Methyl tert-butyl ether	0.043	0.00600	0.0500	0	86.5	78	122		A 4	
Benzene	0.048	0.00200	0.0500	0	97.1	81	125			
Toluene	0.050	0.00600	0.0500	0	101	84	123			
Ethylbenzene	0.049	0.00600	0.0500	0	99.3	83	119			
Xylenes, Total	0.149	0.00900	0.150	0	99.5	81	117			
Surr: a,a,a-Trifluorotoluene	199		200.0		99.4	87	113			
Sample ID MB-28697	Batch ID: 286	97	Test	No: SN	/8021B		Units:	mg/L		
SampType: MBLK	Run ID: GC	9_080114A	Anal	lysis Date: 1/1	4/2008 11:0	9:21 A	Prep Dat	e: 1/14/2	8008	
Analyte	Resu	lt RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD R	PDLimit	Qua
Methyl tert-butyl ether	ND	0.00600								
Benzene	ND	0.00200								
Toluene	ND	0.00600								
Ethylbenzene	ND	0.00600								
Xylenes, Total	ND	0.00900								
Surr: a,a,a-Trifluorotoluene	200	2	200.0		100	87	113			
Sample ID 0801064-14AMS	Batch ID: 286	97	Test	No: SW	8021B		Units:	mg/L		
SampType: MS	Run ID: GC	9_080114A	Analy	ysis Date: 1/14	4/2008 1:14:	57 PM	Prep Date	e: 1/14/2	008	
Analyte	Resul	t RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	% RPD R	PDLimit	Qual
Methyl tert-butyl ether	0.0543	0.00600	0.0500	0	109	78	122			
Benzene	0.0508	0.00200	0.0500	0	102	81	125			
Toluene	0.0526	0.00600	0.0500	0	105	84	123			
Ethylbenzene	0.0513	0.00600	0.0500	0	103	83	119			
Xylenes, Total	0.154	0.00900	0.150	0	103	81	117			
Surr: a,a,a-Trifluorotoluene	201		200.0		101	87	113			
Sample ID 0801064-14AM SD	Batch ID: 2869	17	TestN	io: SW8	3021B		Units:	mg/L		
SampType: MSD	Run ID: GC9	_080114A	Analy	sis Date: 1/14	/2008 1:31:4	48 PM	Prep Date	: 1/14/20	800	
Analyte	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RF	2DLimit	Qual
Methyl tert-butyl ether	0.0535	0.00600	0.0500	0	107	78	122	1.48	20	
Benzene	0.0508	0.00200	0.0500	0	102	81	125	0.0571	20	
Toluene	0.0525	0.00600	0.0500	0	105	84	123	0.147	20	
Ethylbenzene	0.0509	0.00600	0.0500	0	102	83	119	0.716	20	
Kylenes, Total	0.153	0.00900	0.150	0	102	81	117	0.823	20	
Surr: a,a,a-Trifluorotoluene	203		200.0		102	87	113	0	0	
J Analyte de	etected in the associa etected between MD ted at the Method D	L and RL		Dilution Facto Method Detec RPD outside a Spike Recove:	ction Limit accepted con			Pag	ge l of	15

Date: 24-Jan-08

DHL Analytical

N

Parameter not NELAC certified

Work Order:

INTERA Inc.

0801064

ANALYTICAL QC SUMMARY REPORT

oject: RRC-O'Ryan, Dugout, Pharoah

RunID: GC9_080114A

Sample ID ICV-080114	Batch ID	R35636		TestNo): SW	V8021B		Units:	mç		
SampType: ICV	Run ID:	GC9_08	0114A			4/2008 10:3	5:40 A	Prep Dat		<i>v</i> –	
Analyte	ar a tau	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPC) RPDLimit	Qual
Methyl tert-butyl ether		0.0890	0.00600	0.100	0	89.0	80	120			
Benzene		0.0972	0.00200	0.100	0	97.2	85	115			
Toluene		0.102	0.00600	0.100	0	102	85	115			
Ethylbenzene		0.101	0.00600	0.100	0	101	85	115			
Xylenes, Total		0.301	0.00900	0.300	0	100	85	115			
Surr: a,a,a-Trifluorotoluene		204		200.0		102	87	113			
Sample ID CCV1-080114	Batch ID:	R35636		TestNo	: SW	8021B		Units:	mg	ı/L	
SampType: CCV	Run ID:	GC9_08	0114A	Analys	is Date: 1/14	4/2008 2:22:	21 PM	Prep Date	э:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether		0.0471	0.00600	0.0500	0	94.1	80	120			
Benzene		0.0512	0.00200	0.0500	0	102	85	115			
Toluene		0.0529	0.00600	0.0500	0	106	85	115			
Ethylbenzene		0.0512	0.00600	0.0500	0	102	85	115			
Xylenes, Total		0.153	0.00900	0.150	0	102	85	115			
Surr: a,a,a-Trifluorotoluene		201		200.0		100	87	113			
nple ID CCV2-080114	Batch ID:	R35636		TestNo:	SW8	8021B		Units:	m g/	/L	
SampType: CCV	Run ID:	GC9_080	0114A	Analysi	s Date: 1/14	/2008 8:25:4	48 PM	Prep Date	1:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	(0.0543	0.00600	0.0500	0	109	80	120			
Benzene	(0.0501	0.00200	0.0500	0	100	85	115			
Toluene	(0.0515	0.00600	0.0500	0	103	85	115			
Ethylbenzene	(0.0508	0.00600	0.0500	0	102	85	115			
Xylenes, Total		0.155	0.00900	0.150	0	103	85	115			
Surr: a,a,a-Trifluorotoluene		194		200.0		96.9	87	113			

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	DI	D	0	C 11 D

RL Reporting Limit

N Parameter not NELAC certified

S Spike Recovery outside control limits

Page 2 of 15

roject:

Work Order:

INTERA Inc.

0801064

ANALYTICAL QC SUMMARY REPORT

RRC-O'Ryan, Dugout, Pharoah

RunID: IC_080115A

Sample ID	ICV-080115	Batch ID:	R35658	***	TestNo	E300)		Units:	m g/	L	
SampType:	ICV	Run ID:	IC_080115	5A	Analys	is Date: 1/15	/2008 9:24	1:46 AM	Prep Date	e: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	it HighLimit	%RPD	RPDLimit	Qual
Chloride			26.2	1.00	25.00	0	105	90	110			
Sulfate			75.1	3.00	75.00	0	100	90	110			
Sample ID	MB-080115	Batch ID:	R35658		TestNo	: E300		5	Units:	mg/	L	
SampType:	MBLK	Run ID:	IC_080115	A	Analys	is Date: 1/15/	2008 10:4	6:05 A	Prep Date	e: 1/15	/2008	
Analyte		12	Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	1.00								
Sulfate			ND	3.00								
Sample ID	LCS-080115	Batch ID:	R35658		TestNo	E300			Units:	mg/l	-	
SampType:	LCS	Run ID:	IC_080115/	A	Analysi	s Date: 1/15/2	2008 11:0 [.]	1:47 A	Prep Date	: 1/15/	2008	
Analyte	1		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Chloride			9.52	1.00	10.00	0	95.2	90	110			
Sulfate			28.9	3.00	30.00	0	96.5	90	110			
Sample ID	LCSD-080115	Batch ID:	R35658		TestNo:	E300			Units:	mg/L	1	
npType:	LCSD	Run ID:	IC_0801154	4	Analysi	s Date: 1/15/2	2008 11:17	7:29 A	Prep Date	: 1/15/	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			9.55	1.00	10.00	0	95.5	90	110	0.327	20	
Sulfate			29.2	3.00	30.00	0	97.3	90	110	0.847	20	
Sample ID	0801064-04A MS	Batch ID:	R35658		TestNo:	E300		1	Units:	mg/L		
SampType:	MS	Run ID:	IC_080115A	4	Analysis	B Date: 1/15/2	2008 12:38	3:04 P	Prep Date:	1/15/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			2810	100	1000	1879	92.9	90	110			
Sample ID	0801064-04A MSD	Batch ID:	R35658		TestNo:	E300	******		Units:	mg/L		
SampType: I	MSD	Run ID:	IC_080115A		Analysis	Date: 1/15/2	008 12:53	:44 P	Prep Date:	1/15/2	2008	
Analyte		I	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			2920	100	1000	1879	105	90	110	4.07	20	

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 3 of 15
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	N	Parameter not NELAC certified			

oject:

Work Order:

INTERA Inc. 0801064

ANALYTICAL QC SUMMARY REPORT

RRC-O'Ryan, Dugout, Pharoah

RunID: IC_080115A

Sample ID	CCV1-080115	Batch ID:	R35658		TestN	o: E300)		Units:	m g/	/L	
SampType:	CCV	Run ID:	IC_080115	δA	Analy	sis Date: 1/15/	/2008 1:25	5:07 PM	Prep Da	te: 1/15	5/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	t %RPD	RPDLim	t Qu
Chloride			9.63	1.00	10.00	0	96.3	90	110			
Sulfate			29.0	3.00	30.00	0	96.6	90	110			
Sample ID	0801064-04A MS	Batch ID:	R35658		TestN	E300			Units:	mg/	L	
SampType:	MS	Run ID:	IC_080115	A	Analy	sis Date: 1/15/	2008 1:55	:26 PM	Prep Dat	e: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	t Qua
Sulfate			564	30.0	300.0	273.1	96.9	90	110			
Sample ID	0801064-04A MSD	Batch ID:	R35658	11220	TestNo	e: E300		-	Units:	m g/l	L	
SampType:	MSD	Run ID:	IC_080115	A	Analys	is Date: 1/15/2	2008 2:10	:03 PM	Prep Date	e: 1/15/	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qua
Sulfate			568	30.0	300.0	273.1	98.3	90	110	0.733	20	
Sample ID	CCV2-080115	Batch ID:	R35658		TestNo	: E300			Units:	m g/l	_	
SampType:	ccv	Run ID:	IC_080115/	4	Analys	is Date: 1/15/2	2008 4:07:	29 PM	Prep Date	e: 1/15/	2008	
lyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD I	RPDLimit	Qua
Chloride			9.63	1.00	10.00	0	96.3	90	110			
Sulfate			28.6	3.00	30.00	0	95.2	90	110			
	0801064-14BMS	Batch ID:	R35658		TestNo	E300			Units:	mg/L		
SampType:	MS	Run ID:	IC_0801154	4	Analys	is Date: 1/15/2	:008 5:15:	09 P M	Prep Date	e: 1/15/:	2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD F	RPDLimit	Qual
Sulfate		ŝ	4290	300	3000	1325	98.9	90	110			
Sample ID	0801064-14B MSD	Batch ID:	R35658		TestNo	E300			Units:	mg/L		
SampType:	MSD	Run ID:	IC_080115A	N	Analysi	s Date: 1/15/2	008 5:30:	51 PM	Prep Date	: 1/15/2	2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Sulfate	1		4310	300	3000	1325	99.6	90	110	0.504	20	
Sample ID (0801064-14BMS	Batch ID:	R35658		TestNo:	E300			Units:	mg/L		
SampType: I	MS	Run ID:	IC_080115A		Analysi	s Date: 1/15/20	008 6:02:1	16 P M	Prep Date:	1/15/2	8008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD R	PDLimit	Qual
Chloride		1	4800	500	5000	10310	89.1	90	110			S
Qualifiers:	J Analyte dete	cted betweer d at the Met	associated Met MDL and RL hod Detection	-	MDL N R R	ilution Factor lethod Detection PD outside according Recovery	epted con			Pa	nge 4 of	15

RL Reporting Limit

N Parameter not NELAC certified S Spike Recovery outside control limits

CLIENT: Work Or oject:	INTERA I •der: 0801064 RRC-O'Ry		ut, Pharoa	h	AN	ALYT	ICAL (RunI		UMMA 1C_0801	ARY REPO)RT
Sample ID SampType:	0801064-14B MSD	Batch ID: Run ID:	R35658		TestNo		00 5/2008 6:17	-58 PM	Units: Prep Date	m g/L e: 1/15/2008	
		Run ib.									
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD RPDLimit	Qual
Chloride			14800	500	5000	10310	89.8	90	110	0.249 20	
Sample ID	CCV3-080115	Batch ID:	R35658		TestNo:	E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC_0801	15A	Analysi	s Date: 1/1	5/2008 7:02:	58 PM	Prep Date	e: 1/15/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD RPDLimit	Qual
Chloride			9.62	1.00	10.00	0	96.2	90	110		
Sulfate			29.3	3.00	30.00	0	97.6	90	110		
Sample ID	CCV4-080115	Batch ID:	R35658		TestNo:	E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC_0801	15A	Analysis	Date: 1/15	/2008 9:29:	44 PM	Prep Date	e: 1/15/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Chloride			9.63	1.00	10.00	0	96.3	90	110		
Sulfate			28.8	3.00	30.00	0	96.0	90	110		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit Page 5 of 15 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits Ν Parameter not NELAC certified

CLIENT: Work Order	INTERA I .: 0801064	inc.			AN	ALYTI	[CAL	QC SI	JMMA	RY REP	ORT
·oject:		an, Dugou	ut, Pharoah				RunI	D: 1	IC2_080	114A	
Sample ID IC SampType: IC	℃V-080114 ℃V	Batch ID: Run ID:	R35633 IC2_0801	14A	TestNo Analys	: E300 is Date: 1/14/		17:24 A	Units: Prep Date	m g/L e: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	i t Qual
Bromide			51.3	1.00	50.00	0	103	90	110		
Sample ID M	B-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: MI	BLK	Run ID:	IC2_0801	14A	Analysi	s Date: 1/14/	2008 10:2	8:05 A	Prep Date	e: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	it Qual
Bromide			ND	1.00							
Sample ID LC	CS-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: LC	s	Run ID:	IC2_08011	4A	Analysi	s Date: 1/14/2	2008 10:42	2:46 A	Prep Date	: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimi	it Qual
Bromide			19.8	1.00	20.00	0	99.2	90	110		
Sample ID LC	SD-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: LC	SD	Run ID:	IC2_08011	4A	Analysis	5 Date: 1/14/2	2008 10:57	7:26 A	Prep Date	: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimi	t Qual
mide			20.0	1.00	20.00	0	100	90	110	0.839 20	
Sample ID 080	01064-04A MS	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: MS	6	Run ID;	IC2_08011	4A	Analysis	Date: 1/14/2	2008 12:29	0:00 P	Prep Date:	1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD RPDLimit	Qual
Bromide			37.3	2.00	40.00	3.168	85.3	90	110		S
Sample ID 080	01064-04A MSD	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: MS	D	Run ID:	IC2_08011	4A	Analysis	Date: 1/14/2	2008 12:43	:40 P	Prep Date:	1/14/2008	
Analyte		I	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Bromide			37.7	2.00	40.00	3.168	86.4	90	110	1.13 20	S
Sample ID CC	V1-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	11
SampType: CC	V	Run ID:	IC2_08011	4A	Analysis	Date: 1/14/2	008 12:58	:21 P	Prep Date:	1/14/2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Bromide			20.2	1.00	20.00	0	101	90	110		

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- DF Dilution Factor
- MDL Method Detection Limit

Page 6 of 15

R RPD outside accepted control limitsS Spike Recovery outside control limits

CLIENT:	INTERA	Inc.			AN	ALYT	ICAL	OC SI	UMMA	RYF	REPO)RT
Work Order: oject:	0801064 RRC-O'Ry	'an, Dugo	ut, Pharoa	ìh			RunI	-	IC2_080			, 1 (1
Sample ID CCV2	2-080114	Batch ID	R35633		TestNo	E30	0		Units:	m g/l	_	
SampType: CCV		Run ID:	IC2_08	0114A	Analysi	s Date: 1/14	/2008 3:38	:42 PM	Prep Date	e: 1/14/	2008	
Anaiyte	1. C. 10		Result	RL	SPK value	Ref Val	%REC	Low Lin	hit HighLimit	%RPD	RPDLimit	Qual
Bromide			20.2	1.00	20.00	0	101	90	110			
Sample ID 08010	64-14BMS	Batch ID:	R35633		TestNo:	E300)		Units:	m g/L	-	
SampType: MS		Run ID:	IC2_08	0114A	Analysi	s Date: 1/14	/2008 4:26:	31 PM	Prep Date	e: 1/14/	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD F	RPDLimit	Qual
Bromide	52		178	10.0	200.0	0	88.9	90	110			S
Sample ID 080106	64-14BMSD	Batch ID:	R35633		TestNo:	E300			Units:	mg/L		
SampType: MSD		Run ID:	IC2_080	0114A	Analysis	Date: 1/14/	2008 4:41:	11 PM	Prep Date	: 1/14/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD F	RPDLimit	Qual
Bromide			177	10.0	200.0	0	88.4	90	110	0.493	20	S
Sample ID CCV3-	080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L		
SampType: CCV		Run ID:	IC2_080	114A	Analysis	Date: 1/14/	2008 8:50:4	40 PM	Prep Date	: 1/14/2	8008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD R	PDLimit	Qual
nide			20.1	1.00	20.00	0	100	90	110			

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 7 of 15

62

oject:

INTERA Inc.

ANALYTICAL QC SUMMARY REPORT

Work Order: 0801064 RRC-O'Ryan, Dugout, Pharoah

RunID: IC2_080115A

Sample ID	ICV-080115	Batch ID:	R35656		TestN	b: E30	00		Units:	mg	/L	
SampType	: ICV	Run ID:	IC2_0801	15A	Analy	sis Date: 1/1	5/2008 9:23	3:45 AM	Prep Date	e: 1/1	5/2008	
Analyte		0-X 5 X 8 8 8	Result	RL	SPK value	Ref Val	%REC	Low Lir	mit HighLimit	%RPD	RPDLimit	t Qua
Bromide			51.2	1.00	50.00	0	102	90	110			
Chloride			26.9	1.00	25.00	0	107	90	110			
Sulfate			78.8	3.00	75.00	0	105	90	110			
Sample ID	MB-0801155	Batch ID:	R35656	2	TestN	o: E30	0		Units:	m g,	۲ L	
SampType	MBLK	Run ID:	IC2_0801	15A	Analy	sis Date: 1/1:	5/2008 10:4	2:54 A	Prep Date	e: 1/15	5/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	t Qua
Bromide			ND	1.00								
Chloride			ND	1.00								
Sulfate			ND	3.00					and the second secon			
Sample ID	LCS-080115	Batch ID:	R35656		TestNo	: E30	0		Units:	mg/	L	
SampType:	LCS	Run ID:	IC2_0801	15A	Analys	sis Date: 1/15	5/2008 10:5	7:35 A	Prep Date	e: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	hit HighLimit	%RPD	RPDLimit	Qua
Bromide			19.9	1.00	20.00	0	99.7	90	110			
Chloride			9.89	1.00	10.00	0	98.9	90	110			
ate			30.5	3.00	30.00	0	102	90	110			
Sample ID	LCSD-080115	Batch ID:	R35656		TestNo	E300	D		Units:	mg/	L	
SampType:	LCSD	Run ID:	IC2_08011	5A	Analys	is Date: 1/15	/2008 11:12	2:15 A	Prep Date	: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	nit HighLimit	%RPD	RPDLimit	Qua
Bromide			19.9	1.00	20.00	0	99.5	90	110	0.245	20	
Chloride			9.92	1.00	10.00	0	99.2	90	110	0.273	20	
Sulfate			30.6	3.00	30.00	0	102	90	110	0.419	20	
Sample ID	CCV1-080115	Batch ID:	R35656		TestNo	: E300)		Units:	mg/l	_	
SampType:	CCV	Run ID:	IC2_08011	5A	Analys	is Date: 1/15,	/2008 1:09:	23 P M	Prep Date	: 1/15/	2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qual
Bromide			20.1	1.00	20.00	0	100	90	110			
Chloride			10.5	1.00	10.00	0	105	90	110			
Sulfate			30.8	3.00	30.00	0	103	90	110			
Sample ID	0801064-27A MS	Batch ID:	R35656		TestNo	E300			Units:	mg/L	-	
SampType:	MS	Run ID:	IC2_08011	5A	Analys	is Date: 1/15/	2008 2:37:	25 PM	Prep Date:	1/15/	2008	
			Result	RL	SPK value	Ref Val	%REC	F	t HighLimit	0/ 000 1		Qual

J Analyte detected between MDL and RL

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

N Parameter not NELAC certified MDL Method Detection Limit

Page 8 of 15

R RPD outside accepted control limits Spike Recovery outside control limits S

Work Order:

INTERA Inc. 0801064

ANALYTICAL QC SUMMARY REPORT

"oject: RRC-O'Ryan, Dugout, Pharoah

RunID: IC2_080115A

0801064-27A MS MS	Batch ID:	R35656		TestNa		0				
MS	Due ID.			165 live	o: E30	U		Units:	mg/L	
	Run ID:	IC2_080	0115A	Analys	sis Date: 1/15	5/2008 2:37	:25 PM	Prep Date	e: 1/15/2008	
		Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLim	it Quai
		20.2 51.7	1.00 3.00	20.00 30.00	0 21.14	101 102	90 90	110 110		
0801064-27A MSD	Batch ID:	R35656		TestNo	D: E30	0		Units:	mg/L	
MSD	Run ID:	IC2_080	115A	Analys	sis Date: 1/15	/2008 2:52	:05 PM	Prep Date	e: 1/15/2008	
10		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimi	t Qual
		20.2 51.7	1.00 3.00	20.00 30.00	0 21.14	101 . 102	90 90	110 110	0.0461 20 0.0317 20	
CCV2-080115	Batch ID:	R35656		TestNo	E300)	11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Units:	mg/L	*****
CCV	Run ID:	IC2_080 ⁻	115A	Analys	is Date: 1/15	/2008 3:50:	47 PM	Prep Date	e: 1/15/2008	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
-	D	19.9 9.95	1.00	20.00	0	99.4 99.5	90 90	110 110		
			3.00				90			
	Batch ID: Run ID:		115A				10 PM			
		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
		88.7	5.00	50.00	41.33	94.7	90	110		
	Batch ID: Run ID:	R35656 IC2_0801	15A						m g/L : 1/15/2008	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
		88.8	5.00	50.00	41.33	94.9	90	110	0.125 20	
CCV3-080115	Batch ID:	R35656		TestNo:	E300			Units:	mg/L	
ccv	Run ID:	IC2_0801	15A	Analysi	s Date: 1/15/	2008 6:31:3	35 P M	Prep Date:	1/15/2008	
	F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
		10.2	1.00 1.00 3.00	20.00 10.00 30.00	0 0 0	100 102 105	90 90 90	110 110 110		
	M SD CCV2-080115 CCV 0801064-27A M S MS 0801064-27A M SD MSD CCV3-080115	MSD Run ID: CCV2-080115 Batch ID: CCV Run ID: 0801064-27A MS Batch ID: MS Batch ID: Run ID: CCV3-080115 Batch ID: Run ID:	51.7 0801064-27A MSD Batch ID: R35656 MSD Run ID: IC2_080 20.2 51.7 CCV2-080115 Batch ID: R35656 CCV Run ID: IC2_080 CCV2-080115 Batch ID: R35656 CCV Run ID: IC2_080 S0 Run ID: IC2_080 S0 Batch ID: R35656 MS Run ID: IC2_080 MSD Batch ID: R35656 MSD Batch ID: R35656 MSD Batch ID: IC2_0801 MSD Run ID: IC2_0801 RS0 RUN ID: <td>51.7 3.00 0801064-27A MSD Batch ID: R35656 MSD Run ID: IC2_080115 Result RL 20.2 1.00 20.2 1.00 51.7 3.00 CCV2-080115 Batch ID: R35656 100 CCV2-080115 Batch ID: R25050 1.00 CCV2-080115 Batch ID: Result RL 19.9 1.00 9.95 1.00 0801064-27A MS Batch ID: R35656 3.00 0801064-27A MS Batch ID: R2-080115/ S.00 0801064-27A MSD Batch ID: R2-080115/ S.00 0801064-27A MSD Batch ID: R2-080115// S.00 0CV3-080115 Batch ID: <</td> <td>51.7 3.00 30.00 0801064-27A MSD Batch ID: R35656 TestNo MSD Run ID: IC2_080115A Analys Result RL SPK value 20.2 1.00 20.00 CCV2-080115 Batch ID: R35656 TestNo 30.00 CCV2-080115 Batch ID: R35656 TestNo CCV Run ID: IC2_080115A Analys CCV Run ID: IC2_080115A Analys MSD Batch ID: R35656 TestNo MS Batch ID: R35656 TestNo MS Run ID: IC2_080115A Analys MS Run ID: IC2_080115A Analys MSD Run ID: IC2_080115A Analys MSD Run ID: IC2_080115A Analys MSD Run ID: IC2_080115A Analys Result RL SPK value SPK value MSD Run ID: IC2_080115A Analys <td>51.7 3.00 30.00 21.14 0801064-27A MSD Batch ID: R35656 TestNo: E30 MSD Run ID: IC2_080115A Analysis Date: 1/15 Result RL SPK value Ref Val 20.2 1.00 20.00 0 51.7 3.00 30.00 21.14 CCV2-080115 Batch ID: R35656 TestNo: E300 CCV Run ID: IC2_080115A Analysis Date: 1/15 CCV Run ID: IC2_080115A Analysis Date: 1/15 Result RL SPK value Ref Val 19.9 1.00 20.00 0 9.95 1.00 10.00 0 0801064-27A MS Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/ 0801064-27A MSD Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/ MSD</td><td>51.7 3.00 30.00 21.14 102 0801064-27A MSD Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52 20.2 1.00 20.00 0 101 51.7 3.00 30.00 21.14 102 CCV2-080115 Batch ID: R35656 TestNo: E300 CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50: CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50: MS Batch ID: R35656 TestNo: E300 MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MSD Run ID: IC2_080115A <t< td=""><td>51.7 3.00 30.00 21.14 102 90 0801064-27A MSD Batch ID: R35656 TestNo: E30 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM CCV2-080115 Batch ID: R35656 Ref Val %REC Low Limit CCV2-080115 Batch ID: R35656 TestNo: E300 21.14 102 90 CCV2-080115 Batch ID: R35656 TestNo: E300 20.00 0 101 90 CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM 102 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 99.5 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD<</td><td>51.7 3.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: MSD Run ID IC2_080115A Analysis Date: 1/15/2008 2:52:55 PM Prep Date MSD Run ID Result RL SPK value Ref Val %REC Low Limit HighLimit 20.2 1.00 20.00 0 101 90 110 CCV2-080115 Batch ID: R35656 TestNo: E300 Low Limit HighLimit CCV Run ID: 102_080115A Analysis Date: 1/15/2008 3:50 +7 PM Prep Date MS Batch ID: R35656 TestNo: E300 Low Limit HighLimit 9.95 1.00 20.00 0 99.4 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 30.00 90 <t< td=""><td>51.7 3.00 30.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: mg/L MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Prep Dete: 1/15/2008 RSD Run ID: IC2_080115A SPK value Ref Val %REC Low Limit HighLimit %RPD RPDLimit 20.2 1.00 20.00 0 101 90 110 0.0461 20 CCV2-080115 Batch ID: R35656 TestNo: E300 Units: mg/L CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM Prep Date: 1/15/2008 19.9 1.00 20.00 0 99.4 90 110 90 100 0801064-27A MS Batch ID: R35656 TestNo: E300 Units: mg/L MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48:10 PM Prep Date: 1/15/2008 0801064-27</td></t<></td></t<></td></td>	51.7 3.00 0801064-27A MSD Batch ID: R35656 MSD Run ID: IC2_080115 Result RL 20.2 1.00 20.2 1.00 51.7 3.00 CCV2-080115 Batch ID: R35656 100 CCV2-080115 Batch ID: R25050 1.00 CCV2-080115 Batch ID: Result RL 19.9 1.00 9.95 1.00 0801064-27A MS Batch ID: R35656 3.00 0801064-27A MS Batch ID: R2-080115/ S.00 0801064-27A MSD Batch ID: R2-080115/ S.00 0801064-27A MSD Batch ID: R2-080115// S.00 0CV3-080115 Batch ID: <	51.7 3.00 30.00 0801064-27A MSD Batch ID: R35656 TestNo MSD Run ID: IC2_080115A Analys Result RL SPK value 20.2 1.00 20.00 CCV2-080115 Batch ID: R35656 TestNo 30.00 CCV2-080115 Batch ID: R35656 TestNo CCV Run ID: IC2_080115A Analys CCV Run ID: IC2_080115A Analys MSD Batch ID: R35656 TestNo MS Batch ID: R35656 TestNo MS Run ID: IC2_080115A Analys MS Run ID: IC2_080115A Analys MSD Run ID: IC2_080115A Analys MSD Run ID: IC2_080115A Analys MSD Run ID: IC2_080115A Analys Result RL SPK value SPK value MSD Run ID: IC2_080115A Analys <td>51.7 3.00 30.00 21.14 0801064-27A MSD Batch ID: R35656 TestNo: E30 MSD Run ID: IC2_080115A Analysis Date: 1/15 Result RL SPK value Ref Val 20.2 1.00 20.00 0 51.7 3.00 30.00 21.14 CCV2-080115 Batch ID: R35656 TestNo: E300 CCV Run ID: IC2_080115A Analysis Date: 1/15 CCV Run ID: IC2_080115A Analysis Date: 1/15 Result RL SPK value Ref Val 19.9 1.00 20.00 0 9.95 1.00 10.00 0 0801064-27A MS Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/ 0801064-27A MSD Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/ MSD</td> <td>51.7 3.00 30.00 21.14 102 0801064-27A MSD Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52 20.2 1.00 20.00 0 101 51.7 3.00 30.00 21.14 102 CCV2-080115 Batch ID: R35656 TestNo: E300 CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50: CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50: MS Batch ID: R35656 TestNo: E300 MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MSD Run ID: IC2_080115A <t< td=""><td>51.7 3.00 30.00 21.14 102 90 0801064-27A MSD Batch ID: R35656 TestNo: E30 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM CCV2-080115 Batch ID: R35656 Ref Val %REC Low Limit CCV2-080115 Batch ID: R35656 TestNo: E300 21.14 102 90 CCV2-080115 Batch ID: R35656 TestNo: E300 20.00 0 101 90 CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM 102 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 99.5 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD<</td><td>51.7 3.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: MSD Run ID IC2_080115A Analysis Date: 1/15/2008 2:52:55 PM Prep Date MSD Run ID Result RL SPK value Ref Val %REC Low Limit HighLimit 20.2 1.00 20.00 0 101 90 110 CCV2-080115 Batch ID: R35656 TestNo: E300 Low Limit HighLimit CCV Run ID: 102_080115A Analysis Date: 1/15/2008 3:50 +7 PM Prep Date MS Batch ID: R35656 TestNo: E300 Low Limit HighLimit 9.95 1.00 20.00 0 99.4 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 30.00 90 <t< td=""><td>51.7 3.00 30.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: mg/L MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Prep Dete: 1/15/2008 RSD Run ID: IC2_080115A SPK value Ref Val %REC Low Limit HighLimit %RPD RPDLimit 20.2 1.00 20.00 0 101 90 110 0.0461 20 CCV2-080115 Batch ID: R35656 TestNo: E300 Units: mg/L CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM Prep Date: 1/15/2008 19.9 1.00 20.00 0 99.4 90 110 90 100 0801064-27A MS Batch ID: R35656 TestNo: E300 Units: mg/L MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48:10 PM Prep Date: 1/15/2008 0801064-27</td></t<></td></t<></td>	51.7 3.00 30.00 21.14 0801064-27A MSD Batch ID: R35656 TestNo: E30 MSD Run ID: IC2_080115A Analysis Date: 1/15 Result RL SPK value Ref Val 20.2 1.00 20.00 0 51.7 3.00 30.00 21.14 CCV2-080115 Batch ID: R35656 TestNo: E300 CCV Run ID: IC2_080115A Analysis Date: 1/15 CCV Run ID: IC2_080115A Analysis Date: 1/15 Result RL SPK value Ref Val 19.9 1.00 20.00 0 9.95 1.00 10.00 0 0801064-27A MS Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/ 0801064-27A MSD Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/ MSD	51.7 3.00 30.00 21.14 102 0801064-27A MSD Batch ID: R35656 TestNo: E300 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52 20.2 1.00 20.00 0 101 51.7 3.00 30.00 21.14 102 CCV2-080115 Batch ID: R35656 TestNo: E300 CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50: CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50: MS Batch ID: R35656 TestNo: E300 MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MS Run ID: IC2_080115A Analysis Date: 1/15/2008 6:02: MSD Run ID: IC2_080115A <t< td=""><td>51.7 3.00 30.00 21.14 102 90 0801064-27A MSD Batch ID: R35656 TestNo: E30 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM CCV2-080115 Batch ID: R35656 Ref Val %REC Low Limit CCV2-080115 Batch ID: R35656 TestNo: E300 21.14 102 90 CCV2-080115 Batch ID: R35656 TestNo: E300 20.00 0 101 90 CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM 102 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 99.5 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD<</td><td>51.7 3.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: MSD Run ID IC2_080115A Analysis Date: 1/15/2008 2:52:55 PM Prep Date MSD Run ID Result RL SPK value Ref Val %REC Low Limit HighLimit 20.2 1.00 20.00 0 101 90 110 CCV2-080115 Batch ID: R35656 TestNo: E300 Low Limit HighLimit CCV Run ID: 102_080115A Analysis Date: 1/15/2008 3:50 +7 PM Prep Date MS Batch ID: R35656 TestNo: E300 Low Limit HighLimit 9.95 1.00 20.00 0 99.4 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 30.00 90 <t< td=""><td>51.7 3.00 30.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: mg/L MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Prep Dete: 1/15/2008 RSD Run ID: IC2_080115A SPK value Ref Val %REC Low Limit HighLimit %RPD RPDLimit 20.2 1.00 20.00 0 101 90 110 0.0461 20 CCV2-080115 Batch ID: R35656 TestNo: E300 Units: mg/L CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM Prep Date: 1/15/2008 19.9 1.00 20.00 0 99.4 90 110 90 100 0801064-27A MS Batch ID: R35656 TestNo: E300 Units: mg/L MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48:10 PM Prep Date: 1/15/2008 0801064-27</td></t<></td></t<>	51.7 3.00 30.00 21.14 102 90 0801064-27A MSD Batch ID: R35656 TestNo: E30 MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM CCV2-080115 Batch ID: R35656 Ref Val %REC Low Limit CCV2-080115 Batch ID: R35656 TestNo: E300 21.14 102 90 CCV2-080115 Batch ID: R35656 TestNo: E300 20.00 0 101 90 CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM 102 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 99.5 90 0801064-27A MS Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD Batch ID: R35656 TestNo: E300 100 100 90 0801064-27A MSD<	51.7 3.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: MSD Run ID IC2_080115A Analysis Date: 1/15/2008 2:52:55 PM Prep Date MSD Run ID Result RL SPK value Ref Val %REC Low Limit HighLimit 20.2 1.00 20.00 0 101 90 110 CCV2-080115 Batch ID: R35656 TestNo: E300 Low Limit HighLimit CCV Run ID: 102_080115A Analysis Date: 1/15/2008 3:50 +7 PM Prep Date MS Batch ID: R35656 TestNo: E300 Low Limit HighLimit 9.95 1.00 20.00 0 99.4 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 0 99.5 90 110 9.95 1.00 20.00 30.00 90 <t< td=""><td>51.7 3.00 30.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: mg/L MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Prep Dete: 1/15/2008 RSD Run ID: IC2_080115A SPK value Ref Val %REC Low Limit HighLimit %RPD RPDLimit 20.2 1.00 20.00 0 101 90 110 0.0461 20 CCV2-080115 Batch ID: R35656 TestNo: E300 Units: mg/L CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM Prep Date: 1/15/2008 19.9 1.00 20.00 0 99.4 90 110 90 100 0801064-27A MS Batch ID: R35656 TestNo: E300 Units: mg/L MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48:10 PM Prep Date: 1/15/2008 0801064-27</td></t<>	51.7 3.00 30.00 21.14 102 90 110 0801064-27A MSD Batch ID R35656 TestNo: E30 Units: mg/L MSD Run ID: IC2_080115A Analysis Date: 1/15/2008 2:52:05 PM Prep Dete: 1/15/2008 RSD Run ID: IC2_080115A SPK value Ref Val %REC Low Limit HighLimit %RPD RPDLimit 20.2 1.00 20.00 0 101 90 110 0.0461 20 CCV2-080115 Batch ID: R35656 TestNo: E300 Units: mg/L CCV Run ID: IC2_080115A Analysis Date: 1/15/2008 3:50:47 PM Prep Date: 1/15/2008 19.9 1.00 20.00 0 99.4 90 110 90 100 0801064-27A MS Batch ID: R35656 TestNo: E300 Units: mg/L MS Run ID: IC2_080115A Analysis Date: 1/15/2008 5:48:10 PM Prep Date: 1/15/2008 0801064-27

Qualifiers: В DF Dilution Factor Analyte detected in the associated Method Blank Page 9 of 15 J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit RPD outside accepted control limits R S Spike Recovery outside control limits RL Reporting Limit N Parameter not NELAC certified

Work Order:

INTERA Inc. 0801064

ANALYTICAL QC SUMMARY REPORT

oject: RRC-O'Ryan, Dugout, Pharoah

RunID: IC2_080115A

Sample ID SampType:	CCV4-080115 CCV	Batch ID: Run ID:	R35656 IC2_080	115A	TestNo: Analysi	E300 s Date: 1/15		:01 PM	Units: Prep Date	mg/ e: 1/15	/L 5/2008	
Analyte		and and a second se	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Quai
Bromide			20.2	1.00	20.00	0	101	90	110			
Chloride			10.1	1.00	10.00	0	101	90	110			
Sulfate			31.7	3.00	30.00	0	106	90	110			
Sample ID	CCV4-080115	Batch ID:	R35656	-	TestNo:	E300			Units:	mg/	L	
SampType:	CCV	Run ID:	IC2_0801	15A	Analysis	Date: 1/15/	2008 9:42:	22 PM	Prep Date	: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
			Result	RL 1.00	SPK value	Ref Val	%REC 101	Low Limit 90	HighLimit	%RPD	RPDLimit	Qual
Analyte	1	2							-	%RPD	RPDLimit	Qual

 Qualifiers:
 B
 Analyte detected in the associated Method Blank

 J
 Analyte detected between MDL and RL

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

Page 10 of 15

CLIENT: Work Ord		FERA Inc. 1064			AN	ALYT	ICAL	QC SI	JMMA	ARY	REPO	ORT
oject:		C-O'Ryan, Dugoi	ıt, Pharo	ah	8		RunI	D: 1	IC2_080	116A		
Sample ID	ICV-080116	Batch ID:	R3567	9	TestNo	: E30	0		Units:	mç	j/L	
SampType:	ICV	Run ID:	IC2_0	B0116A	Analys	is Date: 1/16	5/2008 9:36	:39 AM	Prep Dat	e: 1/1	6/2008	
Analyte	28		Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimi	Quai
Chloride			25.4	1.00	25.00	0	101	90	110			
Sample ID	MB-080116	Batch ID:	R35679	9	TestNo	E30	0		Units:	mg	/L	
SampType:	MBLK	Run ID:	IC2_08	30116A	Analysi	s Date: 1/16	/2008 10:0	5:55 A	Prep Dat	e: 1/1	6/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	1.00	1							
Sample ID	LCS-080116	Batch ID:	R35679)	TestNo:	E300)	a na ang ang ang ang ang ang ang ang ang	Units:	mg	/L	
SampType:	LCS	Run ID:	IC2_08	0116A	Analysi	s Date: 1/16	/2008 10:20	0:35 A	Prep Date	e: 1/10	6/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD	RPDLimit	Qual
Chloride			9.94	1.00	10.00	0	99.4	90	110			
Sample ID	LCSD-08011	6 Batch ID:	R35679	1	TestNo:	E300)		Units:	m g.	/L	
SampType:	LCSD	Run ID:	IC2_08	0116A	Analysis	s Date: 1/16/	/2008 10:35	5:16 A	Prep Date	e: 1/16	6/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD	RPDLimit	Qual
ride			9.99	1.00	10.00	0	99.9	90	110	0.531	20	
Sample ID	CCV1-08011	6 Batch ID:	R35679		TestNo:	E300)		Units:	m g/	'L	
SampType:	ccv	Run ID:	IC2_08	0116A	Analysis	5 Date: 1/16/	2008 1:57:	43 PM	Prep Date	1/16	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Chloride			10.0	1.00	10.00	0	100	90	110			

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 11 of 13
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	N	Parameter not NELAC certified			

CLIENT: Work Ord nject:		Inc. yan, Dugou	ıt, Pharoah		AN	ALYTI	CAL Runl		U MMLA IC2_080	RY REPC 118A	ORT
Sample ID SampType:	ICV-080118	Batch ID: Run ID:	R35721	18A	TestNo	E300):57 AM	Units: Prep Date	mg/L e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC			%RPD RPDLimit	Oual
Chloride			25.5	1.00	25.00	0	102	90	110		Quar
Sample ID	MB-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_08011	8A	Analysi	s Date: 1/18/2	2008 10:1	5:42 A	Prep Date	-	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Chloride			ND	1.00							
Sample ID	LCS-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC2_08011	8A	Analysis	5 Date: 1/18/2	2008 10:3	0:22 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
Chloride	and the second second second		9.89	1.00	10.00	0	98.9	90	110		
Sample ID	LCSD-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_08011	8A	Analysis	Date: 1/18/2	008 10:4	5:02 A	Prep Date	: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
ride			9.90	1.00	10.00	0	99.0	90	110	0.140 20	
Sample ID	CCV1-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_08011	BA	Analysis	Date: 1/18/2	008 12:41	I:15 P	Prep Date	1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride			9.87	1.00	10.00	0	98.7	90	110		
Sample ID	CCV2-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	ccv	Run ID:	IC2_080118	BA	Analysis	Date: 1/18/2	008 3:48:	13 PM	Prep Date:	1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride		2	10.0	1.00	10.00	0	100	90	110		
Sample ID	0801092-01BMS	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC2_080118	A	Analysis	Date: 1/18/20	008 4:04:	57 PM	Prep Date:	1/18/2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride			1750	50.0	500.0	1258	98.0	90	110		

Qualifiers:

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND
 - Not Detected at the Method Detection Limit

RL Reporting Limit

Ν Parameter not NELAC certified

DF Dilution Factor MDL Method Detection Limit

Page 12 of 15

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: Work Or oject:			ıt, Pharoal	1	AN	ALYTI	CAL (RunI	-	UMMA 1C2_080		REPO	RT
Sample ID SampType:	0801092-01B M SD M SD	Batch ID: Run ID:	R35721 IC2_080	1 1 8A	TestNo: Analysis	E300 5 Date: 1/18/2	2008 4:19	:37 PM	Units: Prep Date	m g/L e: 1/18/		
Analyte	n i v - anne		Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD F	RPDLimit	Qual
Chloride	1977 - Maria Andrew M. Maria and Andrew A. 1977 - 1977		1740	50.0	500.0	1258	96.8	90	110	0.333	20	
Sample ID SampType:	CCV3-080118 CCV	Batch ID: Run ID:	R35721 IC2_080 ⁻	118A	TestNo: Analysis	E300 Date: 1/18/2	:008 5:02:	59 PM	Units: Prep Date	m g/L e: 1/18/2		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD F	RPDLimit	Qual
Chloride			10.0	1.00	10.00	0	100	90	110			

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 13 of 15

CLIENT:	INTERA I der: 0801064	nc.			AN	ALYI	TICAL (QC ST	UMMA	RY REP	ORT
Work Or oject:	RRC-O'Ry	an, Dugo	ut, Phar	oah			RunII	D:	WC_080	114A	
Sample ID	MB-080114	Batch ID:	TDS_	W-01/14/08	TestNo:	M2	2540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_0	080114A	Analysis	5 Date: 1/1	5/2008 8:30:	00 AM	Prep Date	e: 1/14/2008	
Analyte	The state of the state of the	- <u>-</u>	Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD RPDLir	nit Qual
Total Dissol	ved Solids (Residue,	Filtera	ND	10.0							
Sample ID	LCS-080114	Batch ID:	TDS_	W-01/14/08	TestNo:	M 2	540C		Units:	mg/L	
SampType:	LCS	Run ID:	wc_c	80114A	Analysis	Date: 1/1	5/2008 8:30:0	00 A M	Prep Date	e: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lirr	nit HighLimit	%RPD RPDLin	nit Qual
Total Dissol	ved Solids (Residue,	Filtera	757	10.0	745.6	0	102	70	126		
Sample ID	0801064-04A DUP	Batch ID:	TDS_V	N-01/14/08	TestNo:	M 2	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_0	80114A	Analysis	Date: 1/1:	5/2008 8:30:0	0 AM	Prep Date	: 1/14/2008	5
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	it Qual
Total Dissolv	ved Solids (Residue,	Filtera	6620	10.0	0	6560				0.910 5	
Sample ID	0801064-14B DUP	Batch ID:	TDS_V	V-01/14/08	TestNo:	M 2:	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_0	80114A	Analysis	Date: 1/15	5/2008 8:30:0	0 A M	Prep Date	: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	it HighLimit	%RPD RPDLim	it Qual
l Dissolv	ed Solids (Residue, I	Filtera	31500	10.0	0	32120	4			2.08 5	

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 DF
 Dilution Factor

 J
 Analyte detected between MDL and RL
 MDL
 Method Detection Limit
 Page 14 of 15

 ND
 Not Detected at the Method Detection Limit
 R
 RPD outside accepted control limits
 Page 14 of 15

 RL
 Reporting Limit
 S
 Spike Recovery outside control limits

N

Parameter not NELAC certified

CLIENT: Work Ord	INTERA 1 ler: 0801064 RRC-O'Ry		ut Pha	roah	AN	ALYT	ICAL (RunI	-	UMMA WC_080	RY REPO)RT
Sample ID	MB-080116	Batch ID		W-01/16/08	TestNo:	MQ	540C	<u> </u>	Units:	mg/L	
SampType:		Run ID:		_080116A			7/2008 9:40:	MA 00:	Prep Date	•	
Analyte			Result	RL	SPK value	Reí Val	%REC	Low Lin	nit HighLimit	%RPD RPDLimit	Qual
Total Dissolv	ved Solids (Residue,	Filtera	ND	10.0							
Sample ID	LCS-080116	Batch ID:	TDS	W-01/16/08	TestNo:	M 25	540C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_	080116A	Analysis	Date: 1/17	/2008 9:40:	00 AM	Prep Date	e: 1/16/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Total Dissolv	ed Solids (Residue,	Filtera	762	10.0	745.6	0	102	70	126		
Sample ID	0801092-02A DUP	Batch ID:	TDS_	W-01/16/08	TestNo:	M 25	40C		Units:	mg/L	
SampType:	DUP	Run ID:	wc_	080116A	Analysis	Date: 1/17	/2008 9:40:0	00 AM	Prep Date	: 1/16/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	it HighLimit	%RPD RPDLimit	Qual
Total Dissolv	ed Solids (Residue,	Filtera	4250	10.0	0	4253				0.0706 5	
Sample ID SampType:	0801064-32A DUP DUP	Batch ID: Run ID:		W-01/16/08 080116A	TestNo: Analysis	M 254 Date: 1/17/	40C /2008 9:40:(00 AM	Units: Prep Date	m g/L : 1/16/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
l Dissolv	ed Solids (Residue,	Filtera	2440	10.0	0	2458				0.612 5	

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor MDL Method Detection Limit

Page 15 of 15

R RPD outside accepted control limits

Spike Recovery outside control limits S

DHL Analytical

CLIENT: INTERA Inc. Work Order: 0801064

Jject: RRC-O'Ryan, Dugout, Pharoah

been shared as a second state of the second st	Contraction of the local division of the loc	and the second se
TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Bromide	0.300	1.00
Chloride	0.300	1.00
Sulfate	1.00	3.00
TestNo: SW8021B	MDL	MQL
Analyte	mg/L	mg/L
Methyl tert-butyl ether	0.00200	0.00600
Benzene	0.000800	0.00200
Toluene	0.00200	0.00600
Ethylbenzene	0.00200	0.00600
Xylenes, Total	0.00300	0.00900
TestNo: M2540C	MDL	MQL
Analyte	mg/L	mg/L
Total Dissolved Solids (Residue, Filt	10.0	10.0

Qualifiers

MQL -Method Quantitation Limit as defined by TRRP MDL -Method Detection Limit as defined by TRRP

MQL SUMMARY REPORT