Sitewide Groundwater and Surface Water Monitoring Report for the Dugout Creek Area (Including O'Ryan Seep, Pharaoh Seep, and Dugout Creek)

Howard and Mitchell Counties, Texas

Prepared for:

Railroad Commission of Texas

Prepared by:

INTERA Incorporated 1812 Centre Creek Drive Suite 300 Austin, Texas 78754

May 2008

Sitewide Groundwater and Surface Water Monitoring Report for the Dugout Creek Area

Howard and Mitchell Counties, Texas

The information in this report was prepared under my supervision. The information is accurate and correct to the best of my knowledge. The information, data, and figures should not be used for purposes other than as elements of this overall report.

chand AScad

Richard Scadden, P.E.

Senior Engineer

This report is sealed in accordance with the provisions of the Texas Geoscience Practice Act. The validity and integrity of this report, including all maps, figures, diagrams or boring logs, will remain intact as long as the report is reproduced in full and accompanied by this title page and the associated geoscientist seal(s).

Noreen A. Baker, P.G. Senior Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION 1.1 Background 1.2 Objectives	1 1 1
2.0	SITE CONCEPTUAL MODEL	2
3.0	FIELD ACTIVITIES	2
4.0	 RESULTS 4.1 Groundwater Elevation Data 4.2 Groundwater Analytical Results 4.3 Surface Water Analytical Results 	3 4
5.0	CONCLUSIONS AND RECOMMENDATIONS	7
6.0	REFERENCES	7

TABLES

Table	1: Monitor	Well Summar	and Grou	ndwater	Flevations
I UDIC	1. 1010111101			nawator	

- Table 2: Groundwater Analytical Results Dugout Creek
- Table 3: Groundwater Analytical Results O' Ryan Seep
- Table 4: Groundwater Analytical Results Pharaoh Seep
- Table 5: Surface Water Analytical Results O'Ryan and Pharaoh Seeps

FIGURES

- Figure 1A: Site Location Map
- Figure 1B: Well Location Map
- Figure 2A: Potentiometric Surface Map O' Ryan Seep
- Figure 2B: Potentiometric Surface Map Pharaoh Seep
- Figure 3A: BTEX Constituents in Groundwater O' Ryan Seep
- Figure 3B: BTEX Constituents in Groundwater Pharaoh Seep

Figure 4A: Chloride Levels in Groundwater - Dugout Creek

Figure 4B: Chloride Levels in Groundwater - O' Ryan Seep

Figure 4C: Chloride Levels in Groundwater - Pharaoh Seep

APPENDICES

Appendix A: DHL Laboratory Analytical Packages with Data Review Checklists

1.0 INTRODUCTION

INTERA Incorporated (INTERA) was contracted by the Railroad Commission of Texas (RRC) to provide professional environmental engineering services at oil and gas industry exploration and production sites and associated facilities across the State of Texas. Under this contract, INTERA has prepared this Report to document the current groundwater and surface water conditions in the Dugout Creek area, including O' Ryan Seep and Pharaoh Seep in Howard and Mitchell Counties, Texas. A site location map is included as Figure 1A.

1.1 Background

INTERA conducted environmental assessments at the O' Ryan and Pharaoh Seeps during several previous field events in an effort to delineate the extent of chlorideimpacted groundwater at these locations and to determine the source of the chlorides. The results of these assessments have been documented in several reports (DE&S 2001a, DE&S 2001b, INTERA 2002a, INTERA 2002b, INTERA 2003a, INTERA 2006a, and INTERA 2006b). In addition, initial assessment activities were conducted along Dugout Creek in 2006, the results of which are documented in *Environmental Assessment of Dugout Creek, Howard and Mitchell Counties, Texas* (INTERA 2006c). Additional investigation of Dugout Creek and preparation of a memorandum regarding evaluation and development of best management practices was provided in August 2007 (INTERA, 2007). This report describes conduct of a sitewide groundwater and surface water monitoring event for collection of groundwater elevation data and water quality data for all wells and available surface water.

1.2 Objectives

The objective of this fieldwork was to conduct a sitewide groundwater and surface water monitoring event to collect additional data that will be used to help develop the best management practices (BMPs) for the mitigation of chloride impacts from O'Ryan Seep, Pharaoh Seep or other sources along Dugout Creek. The overall BMP objective is to reduce the salinity load to the Colorado River. A complete round of groundwater data and water quality data will provide necessary data to focus each management practice before feasibility testing of the BMPs occurs.

The objectives of the monitoring event were as follows:

- Perform a site visit to assess current conditions and collect groundwater and surface water samples from the site monitor wells, Dugout Creek, O'Ryan Seep and Pharaoh Seep, if possible,
- Compare the groundwater and surface water data to current regulatory standards,
- Determine if additional data collection is warranted, and

• Gather logistical information needed to proceed with selection of BMPs to reduce the chloride load to Dugout Creek, and eventually, the Colorado River.

2.0 SITE CONCEPTUAL MODEL

As described in the August 2007 INTERA report, the working hypothesis for the process by which chloride moves from the seeps to Dugout Creek in the absence of continuous surface water flow or groundwater flow is as follows. Groundwater-bearing alluvium is limited in the channels to the area just downstream of the seeps and to the area just upchannel of the confluences with Dugout Creek. Groundwater in the alluvium downgradient of the seeps receives chloride-containing recharge water directly from the seeps. As the groundwater moves downgradient through the alluvium, the chlorides become concentrated as water is removed through evapotranspiration (i.e. at MW-O-07 downgradient of the O'Ryan Seep). Evapotranspiration not only works to concentrate chloride in the groundwater, but as the process continues, evapotranspiration also draws the chloride-laden groundwater to the soil surface where the water evaporates and chloride salts are left behind on the soil surface. The chloride salt deposits on the soil surface are then available to be dissolved and carried downstream by surface water runoff during precipitation events. Depending on the amount of surface water runoff, the chloride may be carried all the way to Dugout Creek or only down the channel until the surface water dries up and the process starts again. In this way, chloride can migrate in slugs down the channel until reaching the alluvium just upstream of the confluence with Dugout Creek where it may migrate into Dugout Creek either via surface water flow or by groundwater flow in the alluvium. Once in the Dugout Creek flow system, chloride transport may continue in a similar fashion to the Colorado River. The collection of analytical data during a single event along Dugout Creek and from the O' Ryan and Pharaoh Seeps during a single event has helped to determine the current site conditions. This information will aid in the selection of a suitable BMP for the mitigation of chloride impacts to the Colorado River.

3.0 FIELD ACTIVITIES

The objective of the sitewide monitoring event was to collect groundwater elevation data for monitor wells and water samples from groundwater monitor wells and from surface water bodies and seeps, if available, in the Dugout Creek, O' Ryan Seep and Pharaoh Seep study area. A total of 37 groundwater monitor wells are present in the Dugout Creek, O' Ryan Seep and Pharaoh Seep study area. These wells are summarized in Table 1 and located on Figure 1B. The wells were gauged and sampled as planned with two exceptions. MW-O-07, which was located in the drainage way downstream of the O'Ryan Seep, has been destroyed as a result of erosion in the drainage way. However, at the recommendation of Tim Prude, RRC Midland District office site remediation coordinator, an auger was used to dig a hole adjacent to the former well location so that a sample could be obtained at this location. MW-D-03, which is located along Dugout Creek, was overlooked during the sampling event, and a sample was not collected from this well during the January 2008 field effort. Subsequent to the

discovery that the sample was missing, INTERA arranged for the RRC Midland District office site remediation coordinator to collect a groundwater sample from MW-D-03 for field titration with a Hach chloride test kit so that information on the concentration of chloride in this well could be obtained.

Surface water was not present in Dugout Creek at the time of the field effort, therefore a surface water sample could not be collected. Both the O'Ryan Seep and the Pharaoh Seep were flowing, and surface water samples were collected from each of the seeps. Therefore, a total of 36 groundwater samples and two surface water samples were collected.

Groundwater samples and surface water samples were analyzed for total dissolved solids (TDS) and anions (chloride, sulfate, bromide). Based on previous results, a set of select wells were also analyzed for benzene, toluene, ethyl benzene and xylene plus methyl tert-butyl ether (BTEX/MTBE). QA/QC samples for BTEX included a trip blank, an equipment rinsate and sample replicate. QA/QC samples for TDS and chloride included a sample replicate only.

Groundwater sampling was conducted using a bladder pump or disposable bailer depending on the analyses required for each well. The bladder pump was used to collect samples at wells where BTEX analyses were specified, and disposable bailers were used to collect samples at wells where only TDS and anion analyses were specified. Prior to collecting groundwater samples, the wells were purged per INTERA standard operating procedures as provided in the INTERA Sampling and Analysis Plan for the RRC (INTERA, 2003b). Purge water was collected and contained in 55-gallon drums staged at each well location. The drums were labeled with the contents, date, and monitor well number. These drums will remain staged at the study areas for later disposal at an appropriate facility by the RRC.

4.0 RESULTS

4.1 Groundwater Elevation Data

Depth to water measurements were made at all monitor wells except MW-O-07, which was destroyed as noted above, and groundwater elevations were calculated based on previously-surveyed top of PVC casing elevations, where available (Table 1). Surveyed top of casing data is not available for any of the monitor wells located along Dugout Creek (MW-D-01 through MW-D-10), or the three wells installed during the September 2007 field effort (MW-07-01 through MW-07-03). Survey locations and elevations were not conducted by a professionally licensed surveyor for these wells due to the terrain and long distances between monitor wells. RRC staff determined that a survey was cost prohibitive and decided to assume that groundwater flowed in the direction of the topographical gradient of Dugout Creek. This is a valid assumption because the shallow groundwater in this area is perched on the surface of the red clay of the

Dockum Group that outcrops in this area and is only found along creek beds. As such, groundwater elevations cannot be determined for wells in Dugout Creek. Locations of the monitor wells in Dugout Creek were determined in UTM coordinates using a handheld GPS unit.

Potentiometric surface maps were generated for the O' Ryan and Pharaoh Seep study areas and are provided as Figures 2A and 2B. Groundwater elevation and flow direction in January 2008 for the study areas are similar to those determined during the last monitoring event at each study area in March 2006 (refer to INTERA, 2006a and INTERA, 2006b).

Groundwater flow in the area of the O' Ryan Seep is to the southeast, east and northeast toward the seeps and then continues to the northeast along the drainage way away from the seeps and toward Dugout Creek. Elevations in January 2008 are approximately one to two feet higher than those measured in August 2006; these differences are likely due to variations in rainfall and seasonal fluctuations. Monitor wells MW-O-04 and MW-O-02 remain dry.

Groundwater flow in the area of the Pharaoh Seep is to the southeast directed toward Pharaoh Seep and the associated drainage way. Similar to the observations in the O'Ryan Seep area, groundwater elevations in January 2008 around the Pharaoh Seep area are approximately two feet higher than those measured in August 2006. In addition, while MW-P-07 remains dry, groundwater is again present in MW-P-02.

4.2 Groundwater Analytical Results

During the January 2008 field effort, INTERA sampled 36 wells and two seeps for a total of 38 samples. Groundwater and surface water analytical results are presented in Tables 2 through 4. Groundwater samples were analyzed for anions (chloride, sulfate, bromide) and TDS, and select samples were analyzed for BTEX/MTBE. Petroleum hydrocarbon-related odors were not noted during the purging and sampling of the wells.

Chloride

In general, chloride distribution and pattern of occurrence remains essentially unchanged for data obtained in January 2008 as compared to data obtained in March 2006 and August 2007. The lowest chloride value observed in the Dugout Creek, O' Ryan Seep and Pharaoh Seep area was in MW-O-23 at 43.6 mg/L and the highest value was observed in MW-07-03 just upstream of the confluence of the Pharaoh Seep drainage with Dugout Creek at 33,500 mg/L.

In the O'Ryan Seep study area, chloride concentrations remain highest in upgradient well MW-O-21 at 17,200 mg/L and in downgradient well MW-O-07 at 13,100 mg/L. Out of the 15 wells with data from both time periods, 9 wells show decreases in chloride concentrations while 6 wells show increases. Significant increases (increase of 40% or more) were noted in MW-O-03, MW-O-05 and MW-O-11 while significant decreases

(decrease of 40% or more) were noted in MW-O-07, MW-O-12, MW-O-13 and MW-O-23. Wells with increasing chloride concentrations appear confined to upgradient portions of the study area while wells with decreasing concentrations are located throughout the O'Ryan Seep area.

As noted above in Section 3, during the January 2008 field effort, MW-O-07 was discovered washed away. The well completion pad with protective steel casing was eroded away and was broken off from the PVC riser pipe, and therefore, in no condition to sample. A sample was collected approximately fifteen feet up the channel from the original MW-O-07 well location. A sample hole was dug using an auger that penetrated to three and a half feet, and the sample was withdrawn from the hole using a bailer.

In the Pharaoh Seep study area, chloride concentrations remain highest in FINA-01 at 33,300 mg/L and at downgradient well MW-P-01 at 16,900 mg/L. Out of the 6 wells with data from both time periods, 3 wells show decreases in chloride concentrations while 3 wells show increases. Significant increases (increase of 40% or more) were noted in MW-P-01 and MW-P-10 while the largest decrease was noted in MW-P-09 with a decrease in chloride concentration of approximately 26%. Wells with increasing chloride concentrations are located throughout the study area while wells with decreasing concentrations are located in upgradient portions of the Pharaoh Seep area.

Along Dugout Creek, chloride concentrations remain highest at the confluences of the O'Ryan Seep drainage and the Pharaoh Seep drainage at 11,600 mg/L and 33,500 mg/L, respectively. Out of the 6 wells with data from both time periods, 2 wells show decreases in chloride concentrations while 4 wells show increases. Wells with increases were noted throughout the length of the creek sampled and include MW-D-01, MW-D-02, MW-D-06 and MW-D-08 while decreases in chloride concentrations were noted in upgradient well MW-D-10 and in MW-07-03. Chloride concentrations in MW-D-05 and MW-D-07, which were dry in August 2007, are very high at 11,400 mg/L and 10,400 mg/L, respectively, and indicate that chloride impacts persist throughout the sampled length of Dugout Creek.

The high chloride concentration in MW-07-03, which is located in the Pharaoh Seep drainage just above the confluence with Dugout Creek supports the working hypothesis described above in Section 2 and indicates that Pharaoh Seep is contributing a significant amount of chloride to Dugout Creek. Similar results were anticipated for MW-07-02, which is located in the O'Ryan Seep drainage just above its confluence with Dugout Creek. Chloride was detected in MW-07-02 at a concentration of 7,480 mg/L which is an order of magnitude lower than that in MW-07-03. However, chloride in MW-07-02 is still significantly elevated as is the chloride concentration in MW-D-01, which is located in Dugout Creek right at the confluence with the O'Ryan drainage way, both of which indicate that the O'Ryan Seep is also contributing significant amounts of chloride to Dugout Creek.

TDS

TDS concentrations in the Dugout Creek, O' Ryan Seep and Pharaoh Seep groundwater show a positive correlation, as expected, to the chloride concentrations. The TDS values are approximately twice as high as the chloride values, and also appear to be increasing slightly as compared to March 2006 and August 2007 data. The lowest TDS value observed in the Dugout Creek, O' Ryan Seep and Pharaoh Seep area was in MW-D-10 at 544 mg/L and the highest value was observed in MW-07-03 along Dugout Creek at 61,500 mg/L.

BTEX

Six wells were analyzed for BTEX/MTBE; three wells, MW-O-07, MW-O-21 and MW-07-01, were in the O'Ryan Seep study area and three wells, MW-P-01, MW-P-09, and Fina-01, are in the Pharaoh Seep study area. Of the six wells analyzed for BTEX/MTBE, four wells (MW-07-01, MW-O-21, MW-O-07 and MW-P-09) were below detection limits for benzene, toluene, ethylbenzene, xylenes and MTBE. The two remaining wells, FINA-01 and MW-P-01 were nondetect for all constituents except benzene which was detected at 0.0125 mg/L and 0.0136 mg/L, respectively. These values are similar to previous results at these wells and both values exceed the maximum contaminant level of 0.005 mg/L. The BTEX sample for MW-O-07 was collected from the auger-dug hole.

4.3 Surface Water Analytical Results

No flow was present in Dugout Creek at any point during the field effort, therefore a Dugout Creek surface water sample was not collected. However, precipitation has been such over the last several months that both the O' Ryan Seep and Pharaoh Seep were flowing and were sampled. Two field replicate samples were taken at O' Ryan and Pharaoh Seeps by a RRC site remediation coordinator for chloride analyses to be conducted at the RRC District Office in Midland. The replicate samples were analyzed using a Hach test kit for chloride, and were compared to chloride lab analyses for the same sample locations. The analytical results from surface water samples taken at the two seeps are listed in Table 5. Chloride concentration in the O'Ryan Seep surface water sample was detected at 1,740 mg/L chloride based on Hach kit test results as compared to 1,090 mg/L based on laboratory analytical results. Chloride concentration in the Pharaoh Seep surface water sample was detected at 12,040 mg/L chloride based on Hach kit test results as compared to 13,000 mg/L based on laboratory analytical results. These results are similar to those from March 2006 results at 1,210 mg/L and 13,800 mg/L, respectively.

The laboratory data packages from DHL Analytical along with the data review checklists completed by INTERA are included in Appendix A. The data review was conducted in accordance with the Quality Assurance Project Plan (RRC, 2007). Deviations from quality control criteria as presented in the QAPP are noted on the checklists provided in Appendix A. None of the deviations caused significant effects on the data results as

provided by the laboratory. The data presented herein passed data quality review and is considered useable for project purposes.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on analytical data from this field effort, the groundwater at Dugout Creek, O' Ryan and Pharaoh Seeps continue to be impacted by chloride, likely due to reinjection of produced water during the oil production activities that have been underway since at least the 1950's. Chloride concentrations are elevated and exceed the TCEQ drinking water standard of 300 mg/L in 27 out of 33 monitor wells where a sample could be collected. TDS data correlate well with chloride data, and both O'Ryan Seep and Pharaoh Seep contribute to chloride and total dissolved solids impacts downstream in the Colorado River.

The objective of this sitewide groundwater and surface water monitoring event was to collect additional data that will be used to help develop the best management practices for the mitigation of chloride impacts from O'Ryan Seep, Pharaoh Seep or other sources along Dugout Creek. The overall BMP objective is to reduce the salinity load to the Colorado River. The working hypothesis proposed for the transport of chloride and other dissolved constituents appears to be supported in light of the newly collected data. Ongoing reinjection of produced water to facilitate oil production activities in Howard and Mitchell Counties is likely contributing to the exceedingly high chloride and TDS concentrations in the study areas. Alluvial deposits located along the channels in Dugout Creek and O'Ryan and Pharaoh Seeps serve to retain and concentrate chloride loads via evaporation, precipitation and subsequent dissolution and continued movement downstream.

From the previous site reconnaissance work, Crespo has provided INTERA with a BMP evaluation of the Dugout Creek project site. Crespo has provided a list of possible BMPs that can now be used as discussion points for INTERA and RRC moving forward with implementation of a remedy. Moving forward, Crespo, INTERA and RRC should work to determine scope of work and budgetary restraints on the project. The team will work to refine the site conceptual model and to define the process needed for designing BMP(s).

6.0 REFERENCES

DE&S 2001a. Environmental Assessment Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2001.

DE&S 2001b. Environmental Assessment Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2001.

INTERA 2002a. Supplemental Investigation Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2002.

INTERA 2002b. Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2002.

INTERA 2003a. Second Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2003.

INTERA 2003b. Sampling and Analysis Plan for the Texas Railroad Commission. August 2003.

INTERA 2006a. Third Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2006.

INTERA 2006b. Second Supplemental Investigation Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2006.

INTERA 2006c. Environmental Assessment of Dugout Creek, Howard and Mitchell Counties, Texas. August 2006.

INTERA 2007. Investigation and Best Management Practice (BMP) Evaluation and Development Memorandum for O'Ryan Seep, Pharaoh Seep and Dugout Creek, Howard and Mitchell Counties, Texas.

Railroad Commission of Texas (RRC) 2007. Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan, February 2007.

Tables

Locus	Monitor Well	Date Installed	UTM Northing	UTM Easting	Total Depth		Depth to Water*	Water Level Elevation
			(NAD83 meters)	(NAD83 meters)	(ft below TOC)	(ft msl)	(ft below TOC)	(ft msl)
Dugout	MW-D-01	10-Mar-06	3575371	290077	19.7	NS	11.19	NA
Creek**	MW-D-02	10-Mar-06	3574157	291164	22.7	NS	9.97	NA
	MW-D-03	9-Mar-06	3574791	290802	18.9	NS	9.98	NA
	MW-D-04	10-Mar-06	3573143	292323	17.7	NS	11.72	NA
	MW-D-05	13-Mar-06	3572265	292857	24.8	NS	20.65	NA
	MW-D-06	11-Mar-06	3570065	294106	17.6	NS	9.93	NA
	MW-D-07	12-Mar-06	3567828	295057	27.7	NS	24.46	NA
	MW-D-08	12-Mar-06	3567819	296071	37.5	NS	29.1	NA
	MW-D-09	12-Mar-06	3567339	296796	19.9	NS	DRY	NA
	MW-D-10	9-Mar-06	3575642	289778	19.6	NS	9.46	NA
	MW-07-02	16-Aug-07	3575230	289926	20.0	NS	9.1	NA
	MW-07-03	15-Aug-07	3574102	291181	20.0	NS	10.4	NA
O'Ryan	MW-O-01	9-Feb-01	3573901	287806	29.7	2422.98	19.64	2403
	MW-O-02	10-Feb-01	3574158	287981	17.7	2412.50	DRY	NA
	MW-O-03	11-Feb-01	3573734	287420	55.7	2449.26	43.42	2406
	MW-O-04	9-Feb-01	3574321	287970	57.8	2391.44	DRY	NA
	MW-O-05	9-Feb-01	3573624	287756	61.7	2448.14	40.25	2408
	MW-O-06	10-Feb-01	3573976	288039	23.3	2415.80	14.96	2401
	MW-O-07	10-Feb-01	3574269	288657	16.8	2330.18	Well destroyed	NA
	MW-O-08	11-Feb-01	3573950	287403	60.1	2453.59	48.91	2405
	MW-O-09	11-Feb-01	3573880	287390	58.3	2455.60	50.79	2405
	MW-O-11	11-Feb-01	3574253	287510	35.7	2442.99	25.98	2417
	MW-O-12	13-Jun-02	3573834	288087	22.7	2418.15	15.34	2403
	MW-O-13	13-Jun-02	3573760	287968	34.7	2428.42	23.98	2404
	MW-O-15	8-Jul-03	3574143	288403	17.0	2346.90	4.41	2342
	MW-O-21	8-Mar-06	3574436	287480	37.8	2444.06	26.93	2417
	MW-O-22	8-Mar-06	3574367	287443	36.5	2443.51	26.72	2417
	MW-O-23	9-Mar-06	3574227	287348	37.9	2446.66	30.26	2416
	MW-07-01	17-Aug-07	3574499	287482	34.4	NS	24.55	NA
Pharaoh	MW-P-01	7-Feb-01	3573048	288378	29.7	2395.10	9.78	2385
	MW-P-02	8-Feb-01	3573154	288064	28.5	2418.33	14.32	2404
	MW-P-03	12-Feb-01	3573260	288074	24.6	2419.30	14.55	2405
	MW-P-07	8-Feb-01	3572970	288251	52.5	2402.70	DRY	NA
	MW-P-08	11-Feb-01	3573325	288249	27.7	2421.41	18.33	2403
	MW-P-09	10-Feb-01	3573170	288169	20.1	2413.93	10.78	2403
	MW-P-10	14-Jun-02	3573226	288094	26.5	2417.52	13.29	2404
	FINA-01	Unknown	3573093	288299	19.5	2402.31	7.18	2395

 Table 1. Monitor Well Summary and Groundwater Elevations

*All depth to water measurements were taken January 8, 2008. **Elevations for Dugout Creek not surveyed, xy locations determined using handheld GPS

UTM: Universal Transverse Mercator

NAD: North American Datum

TOC: top of casing

ft msl: feet above mean sea level

NS: Not Surveyed

NA: Not Available

Table 2. Groundwater Analytical Results- Dugout Creek

	-								
			MW-D-01	MW-D-02	MW-D-04	MW-D-05	MW-D-06	MW-D-07	MW-D-08
			1/10/2008	1/10/2008	1/10/2008	1/10/2008	1/10/2008	1/9/2008	1/9/2008
		Maximum	801064	801064	801064	801064	801064	801064	801064
		Contaminant	DHL	DHL	DHL	DHL	DHL	DHL	DHL
		Level (MCL)	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Anions									
Bromide	24959-67-9	-	23.4	7.17	93.3	22.8	2.47	20.7	4.35
Chloride	16887-00-6	300*	11600	3480	5710	11400	1550	10400	482
Sulfate	14808-79-8	300*	1470	4620	2310	2280	1370	2130	126
Total Dissolved Solids									
TDS	NL	500**	20100	13300	12700	19700	4660	18400	1250
			MW-D-09	MW-D-10	MW-07-02	MW-07-03	MW-D-03***		
			DRY	1/10/2008	1/10/2008	1/10/2008	2/7/2008		
		Maximum	-	801064	801064	801064			
		Contaminant	-	DHL	DHL	DHL	RRC		
		Level (MCL)	-	Aqueous	Aqueous	Aqueous	Aqueous		
Analyte	CAS	mg/L	-	mg/L	mg/L	mg/L	mg/L		
Anions									
Bromide	24959-67-9	-	NA	< 1.0 U	14.2	116	NS		
Chloride	16887-00-6	300*	NA	68.9	7480	33500	8949		
Sulfate	14808-79-8	300*	NA	35.2	4800	3740	NS		
Total Dissolved Solids									
TDS	NL	500**	NA	544	16900	61500	NS		
NIL NILL Ketterd									

NL- Not listed

NS- Not sampled

NA- Not available for sampling because the well was dry.

Data Qualifiers:

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

Value exceeds MCL

Note: Detected values are in bold font.

* TCEQ drinking water standard based on secondary MCL criteria.

** EPA drinking water standard based on secondary MCL critieria.

***Data from field titration using Hach test kit

Table 3. Groundwater Analytical Results- O'Ryan Seep

	-		MW-O-01	MW-O-02	MW-O-03	MW-O-04	MW-O-05	MW-O-06	MW-O-07	MW-O-08	MW-O-09	MW-O-11
			1/9/2008	DRY	1/9/2008	DRY	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008
		Maximum	801064	-	801064	-	801064	801064	801064	801064	801064	801064
		Contaminant	DHL	-	DHL	-	DHL	DHL	DHL	DHL	DHL	DHL
		Level (MCL)	Aqueous	-	Aqueous	-	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	-	mg/L	-	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Anions												
Bromide	24959-67-9	-	< 1.0 U	NA	< 1.0 U	NA	< 1.0 U	< 1.0 U	17.6	2.21	3.96	5.28
Chloride	16887-00-6	300*	1040	NA	1450	NA	2800	2320	13100	2510	330	3130
Sulfate	14808-79-8	300*	184	NA	291	NA	686	636	1870	440	794	455
Total Dissolved Solids												
TDS	NL	500**	2530	NA	3200	NA	6180	4920	25100	5520	2110	6560
Volatiles												
Methyl tert-butyl ether	1634-04-4	-	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
Benzene	71-43-2	0.005	NS	NS	NS	NS	NS	NS	< 0.002 U	NS	NS	NS
Toluene	108-88-3	1	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
Ethylbenzene	100-41-4	0.7	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
Xylenes, Total	1330-20-7	10	NS	NS	NS	NS	NS	NS	< 0.004 U	NS	NS	NS
							MW-0-31			MW-1-23		
			MW-O-12	MW-O-13	MW-O-15	MW-O-21	Dup MW-O-21	MW-O-22	MW-O-23	Dup MW-O-23	MW-07-01	
			1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/8/2008	
		Maximum	801064	801064	801064	801064	801064	801064	801064	801064	801050	
		Contaminant	DHL	DHL	DHL	DHL	DHL	DHL	DHL	DHL	DHL	
		Level (MCL)	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Anions												
Bromide	24959-67-9	-	< 1.0 U	< 1.0 U	6.76	< 10.0 U	< 10.0 U	3.15	< 1.0 U	< 1.0 U	67.7	
Chloride	16887-00-6	300*	229	245	4600	17200	17000	336	43.6	42.7	7980	
Sulfate	14808-79-8	300*	116	130	1340	2210	1610	313	124	117	727	
Total Dissolved Solids												
TDS	NL	500**	931	1000	11200	32100	30600	1490	699	706	15400	
Volatiles												
Methyl tert-butyl ether	1634-04-4	-	NS	NS	NS	< 0.004 U	< 0.004 U	NS	NS	NS	< 0.004 U	
Benzene	71-43-2	0.005	NS	NS	NS	< 0.002 U	< 0.002 U	NS	NS	NS	< 0.002 U	
			NO	NS	NS	< 0.004 U	< 0.004 U	NS	NS	NS	< 0.004 U	
Toluene	108-88-3	1	NS			< 0.004 0	< 0.004 0		NO		< 0.004 O	
Toluene Ethylbenzene	108-88-3 100-41-4	0.7	NS	NS	NS	< 0.004 U	< 0.004 U	NS	NS	NS	< 0.004 U	

NL- Not listed

NA- Not available for sampling because the well was dry. NS- Not sampled for BTEX.

Data Qualifiers:

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

Value exceeds MCL

Note: Detected values are in bold font.

* TCEQ drinking water standard based on secondary MCL criteria.

** EPA drinking water standard based on secondary MCL critieria.

Table 4. Groundwater Analytical Results- Pharaoh Seep

			MW-P-01	MW-P-02	MW-P-03	MW-P-07	MW-P-08	MW-P-09	MW-P-10	FINA-01
			1/9/2008	1/8/2008	1/8/2008	DRY	1/8/2008	1/9/2008	1/8/2008	1/9/2008
		Maximum	801064	801050	801050	-	801050	801064	801050	801064
		Contaminant	DHL	DHL	DHL	-	DHL	DHL	DHL	DHL
		Level (MCL)	Aqueous	Aqueous	Aqueous	-	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	-	mg/L	mg/L	mg/L	mg/L
Anions										
Bromide	24959-67-9	-	33.5	0.346 J	0.505 J	NA	< 1.0 U	1.29	3.19	73.9
Chloride	16887-00-6	300*	16900	93.7	142	NA	420	542	497	33300
Sulfate	14808-79-8	300*	2540	113	125	NA	225	152	179	1640
Total Dissolved Solids										
TDS	NL	500**	31500	723	836	NA	1380	1550	1410	58500
Volatiles										
Methyl tert-butyl ether	1634-04-4	-	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U
Benzene	71-43-2	0.005	0.0136	NS	NS	NS	NS	< 0.002 U	NS	0.0128
Toluene	108-88-3	1.0	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U
Ethylbenzene	100-41-4	0.7	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U
Xylenes, Total	1330-20-7	10.0	< 0.004 U	NS	NS	NS	NS	< 0.004 U	NS	< 0.004 U

NL- Not listed

NA- Not available for sampling because the well was dry. NS- Not sampled for BTEX.

Data Qualifiers:

J- The reported result is an estimated value.

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

Value exceeds MCL

Note: Detected values are in bold font.

* TCEQ drinking water standard based on secondary MCL criteria.

** EPA drinking water standard based on secondary MCL critieria.

Table 5. Surface Water Analytical Results- O'Ryan and Pharaoh Seeps

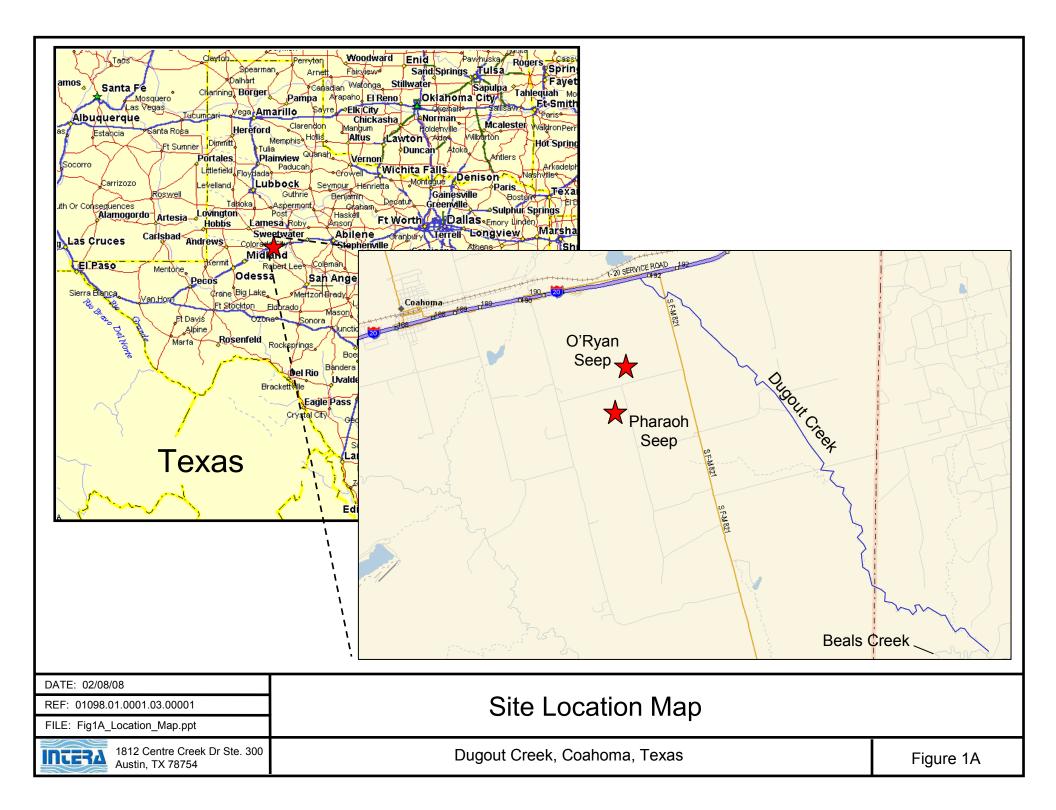
			SW-O-Seep	SW-P-Seep	SW-O-Seep Rep***	SW-P-Seep Rep***
			1/10/2008	1/10/2008	1/10/2008	1/10/2008
		Maximum	801064	801064		
		Contaminant	DHL	DHL	RRC	RRC
		Level (MCL)	Aqueous	Aqueous	Aqueous	Aqueous
Analyte	CAS	mg/L	mg/L	mg/L	mg/L	mg/L
Anions						
Bromide	24959-67-9	-	< 10.0 U	26.8	NS	NS
Chloride	16887-00-6	300*	1090	13000	1740	12040
Sulfate	14808-79-8	300*	442	1250	NS	NS
Total Dissolved Solids						
TDS	NL	500**	2460	24200	NS	NS

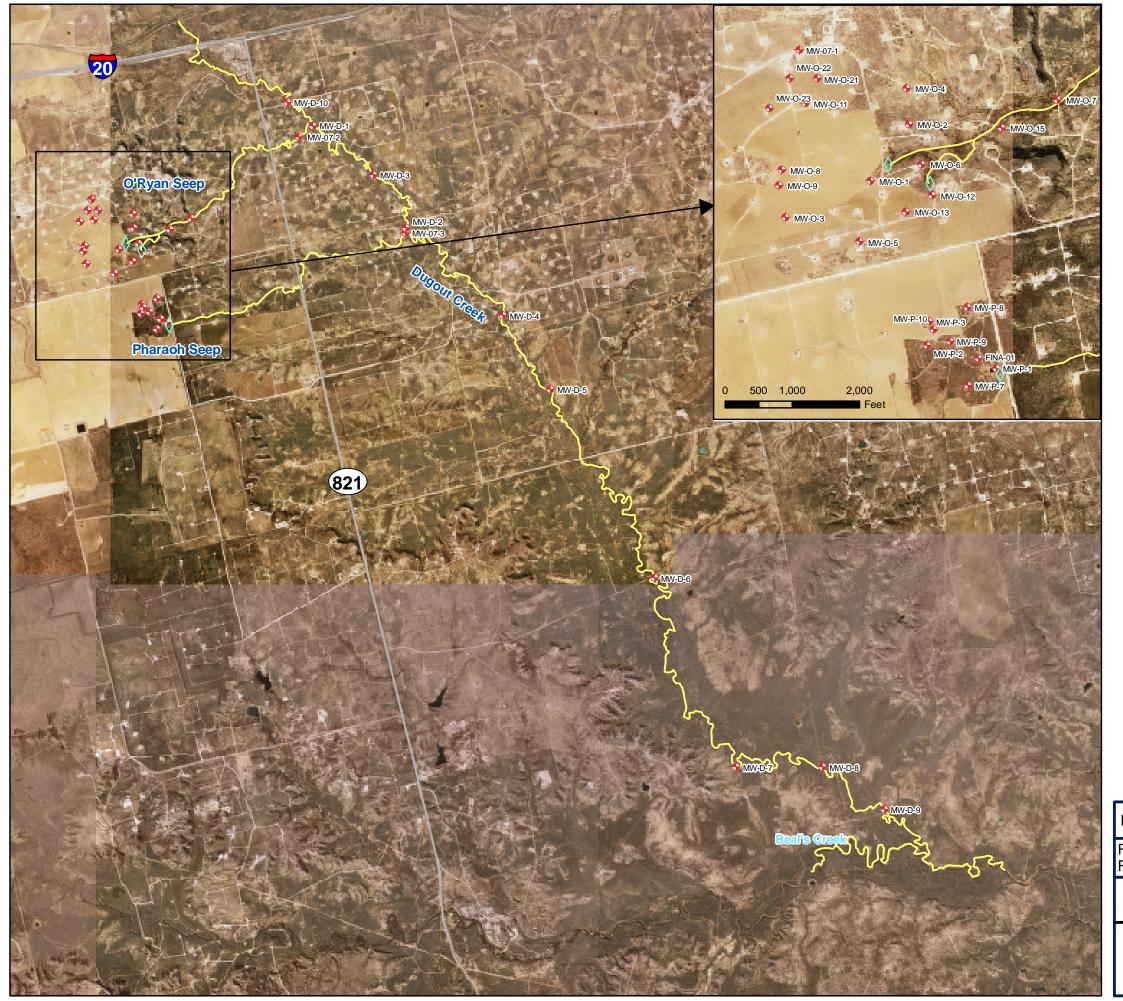
Data Qualifiers:

U- The analyte was analyzed for, but not detected. The associated numerical value is is at or below the method detection limit (MDL).

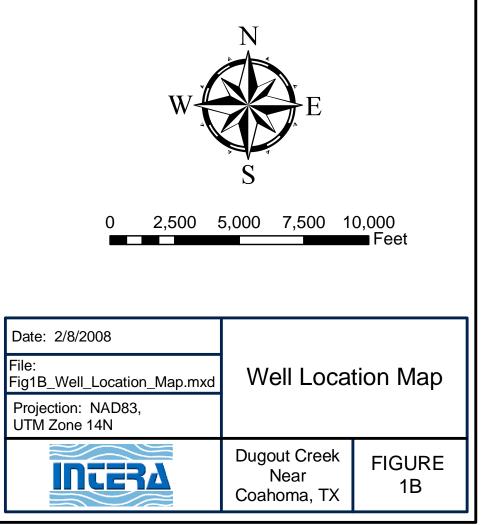
Value exceeds MCL

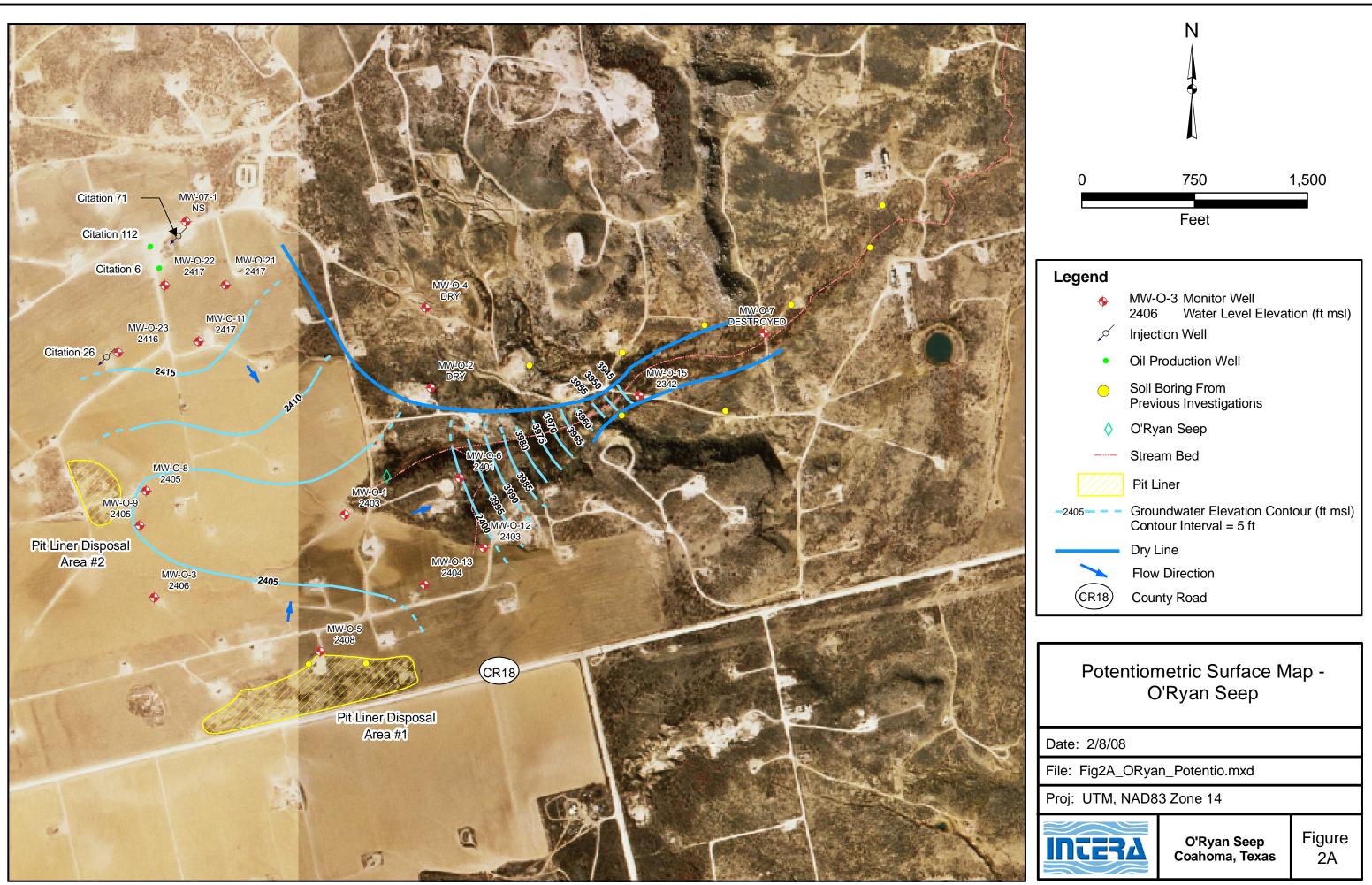
Note: Detected values are in bold font.

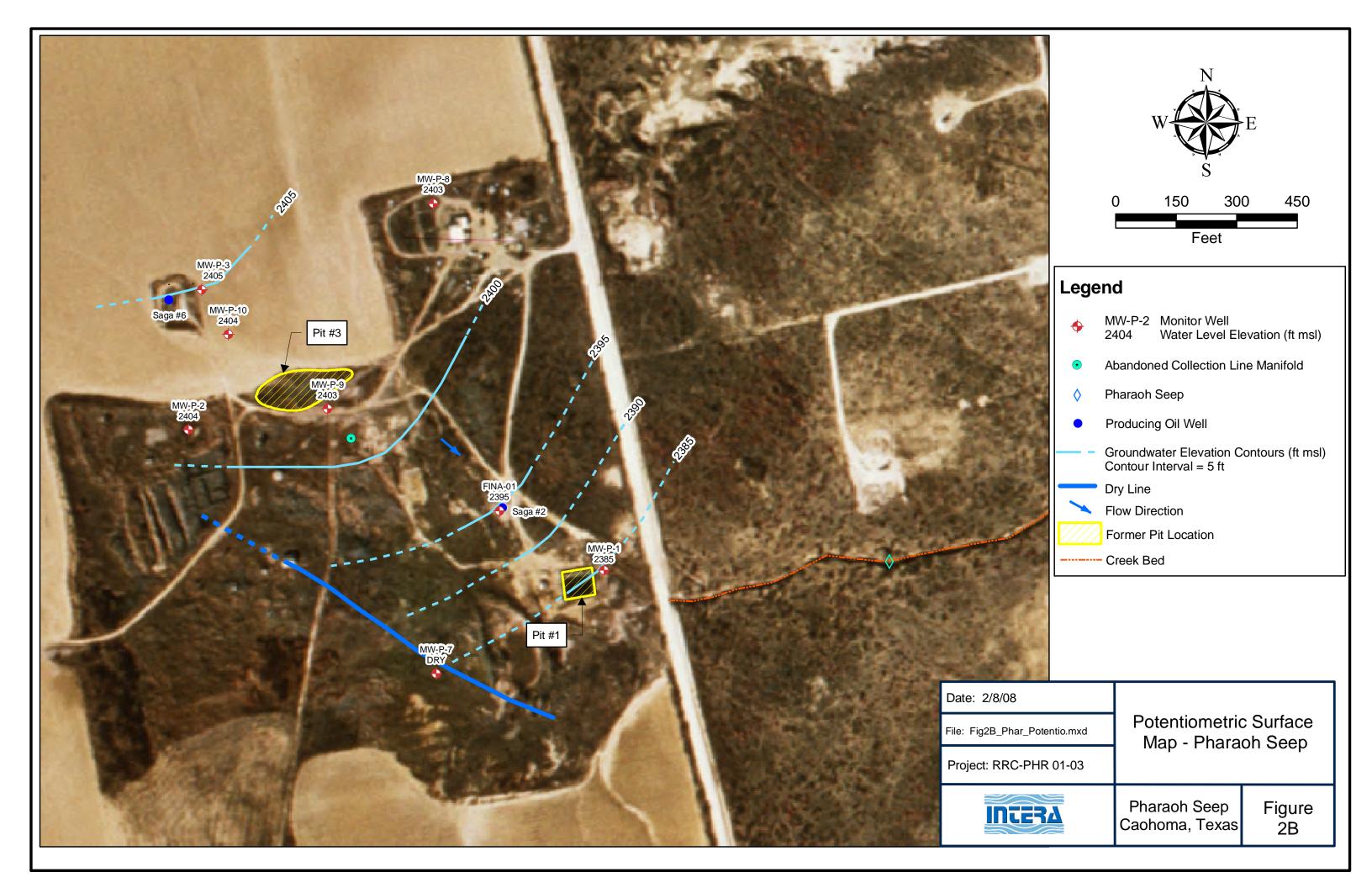

* TCEQ drinking water standard based on secondary MCL criteria.

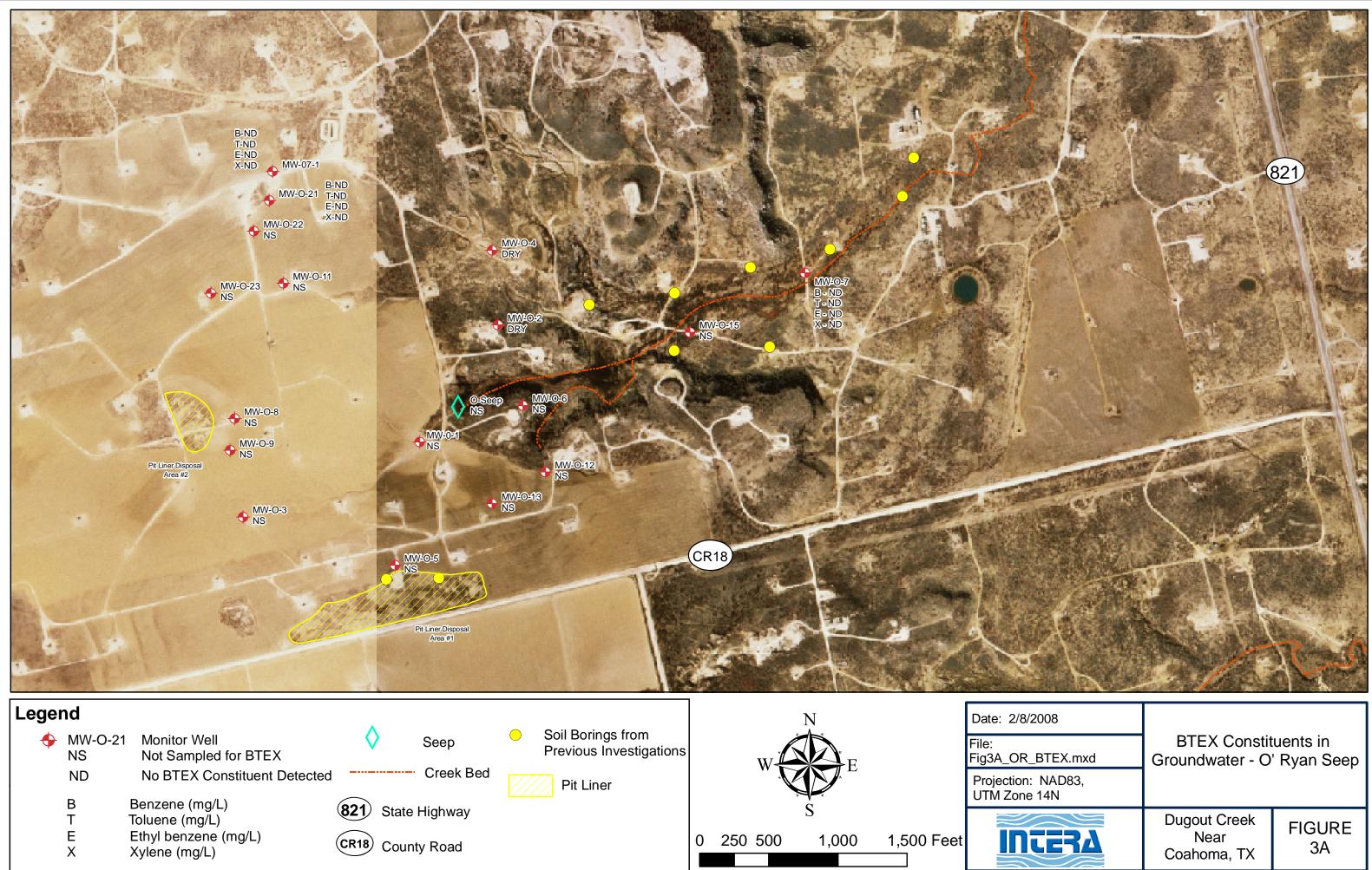

** EPA drinking water standard based on secondary MCL critieria.

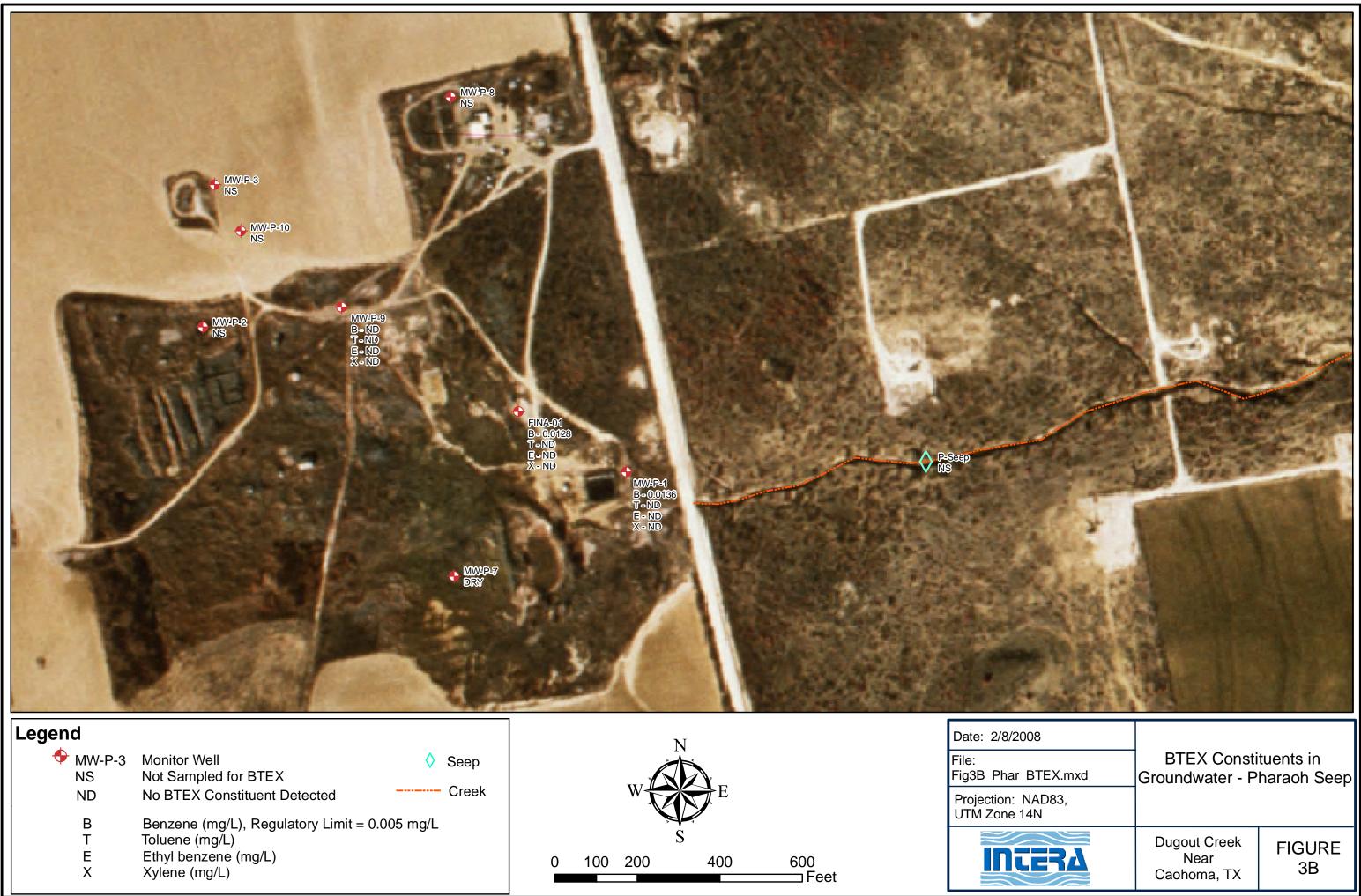
***Data from field titration using Hach test kit

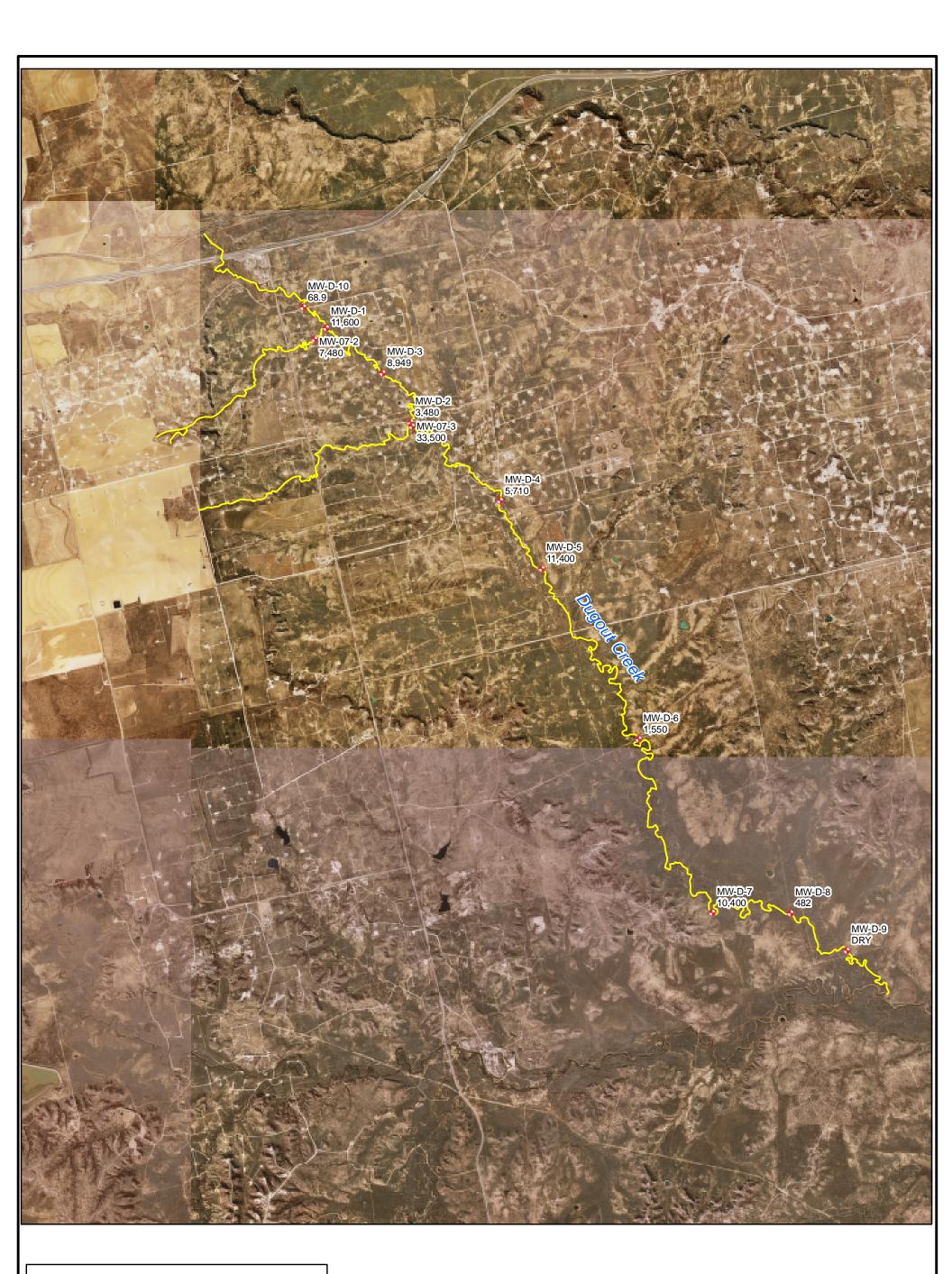

Figures











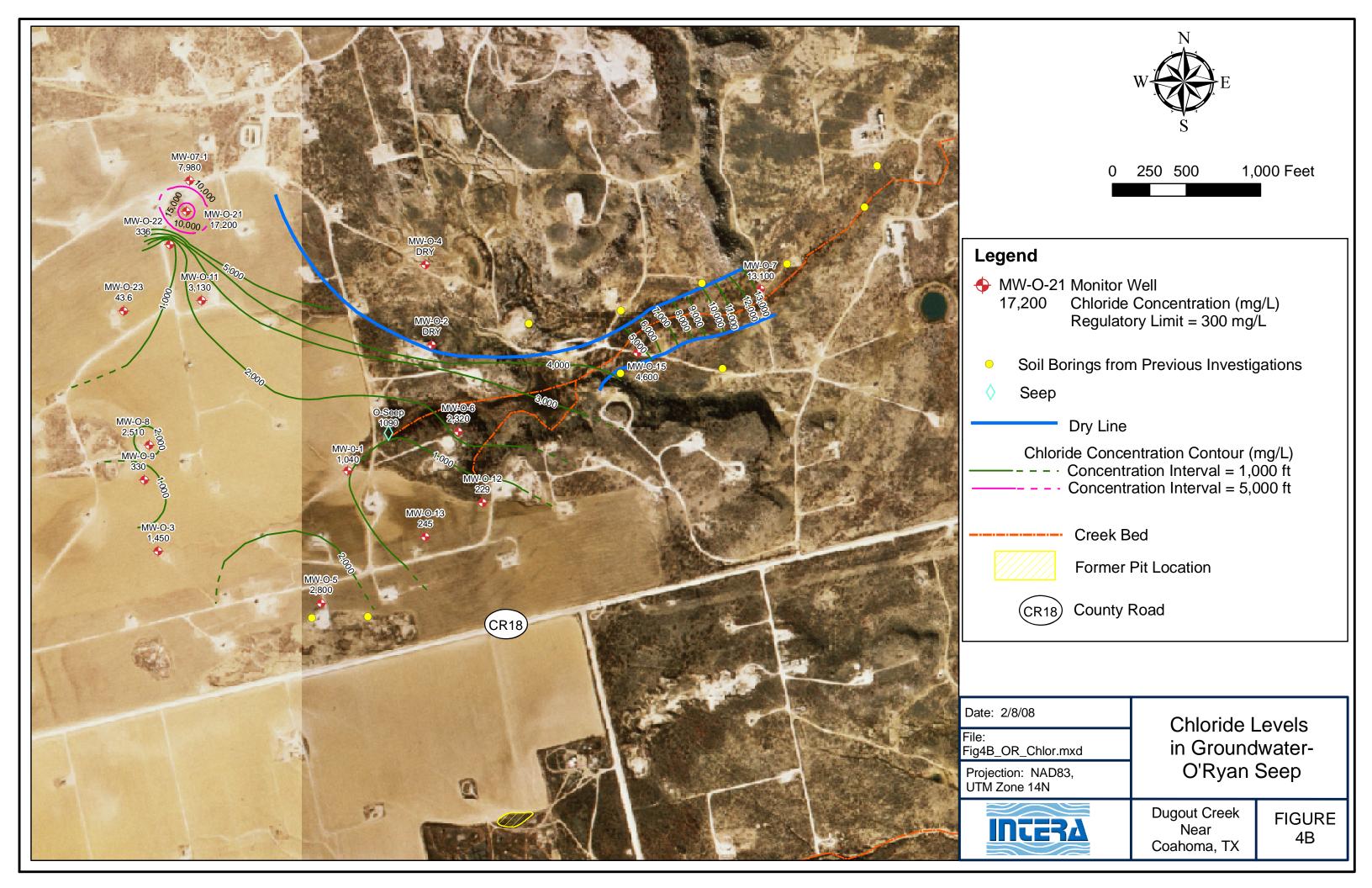
Legend

2,000

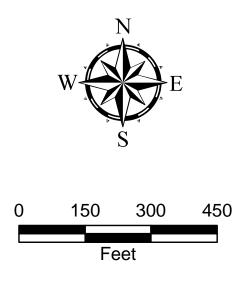
0

MW-D-01 Monitor Well
 11,600 Chloride Concentration (mg/L)
 Regulatory Limit = 300 mg/L

6,000


Feet

- Dugout Creek


4,000

Date: 2/8/2008				
File: Fig4A_Dug_Chlor.mxd	Chloride Levels in Groundwater - Dugout Creek			
Projection: NAD83, UTM Zone 14N				
INCERA	Dugout Creek Near Caohoma, TX	FIGURE 4A		

MW-P-3 Monitor Well 142 Chloride Concentration (mg/L) Regulatory Limit = 300 mg/L						
ollection Line Manifol	b					
Well						
t Location						
— – – – Chloride Concentration Contour (mg/L) Contour Interval = 2000 ft						
– – – · Dry Line						
eek Bed						
Chloride Levels						
in Groundv						
Pharaoh Seep						
Pharaoh Seep Caohoma, Texas	Figure 4C					
	ride Concentration (m ulatory Limit = 300 mg ollection Line Manifold Well t Location oride Concentration C ntour Interval = 2000 f / Line eek Bed Chloride L in Groundv Pharaoh Seep					

APPENDIX A

DHL Laboratory Analytical Packages

with Data Review Checklists

Data Review Checklist

Cli	ent/Project: <u>RRC</u> / <u>Dagont</u> <u>Creek</u> poratory: DHL rk Order No.: 0801050	er: BR	ignoza	Review Date: 2/6/08	
Lal	poratory: DHL	Analyti	cal Met	hod!	Matrix:
Wo	rk Order No.: 0801050	amee	rno -	5300	wall
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
San	aple Preservation and Integrity	• •	L		
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp	ely ble)?	J		
2	Were holding times met?		V		
Dat	a Completeness				
3	Are results reported for all target analytes, with additional analytes?	no	/		
4	Was the requested analytical method followed?				· · · · ·
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	s/MDL)			Soft's elevated direta defution for mw-97-01 for Ba rel. Both analyt
6	Are results reported for all samples submitted for analysis?	or	branch	4	detected, no effector
Cal	ibration and QC Sample Frequency				¥ *
7	Were initial and continuing instrument calibrati analyses performed? And reported? ^a	on			
8	For each analytical batch, are results provided f method blank?	or a	V	-	
9	For each analytical batch, are results provided f LCS/LCSD pair?	òr an			
10	For each analytical batch, are results provided f MS/MSD pair? Alternately, are results for MS/ pairs provided for every 20 field samples analyzed	MSD	\checkmark		
11	Are field duplicate results provided at the proje specified (QAPP) frequency?	ct-	V		

Data Review Checklist (continued)

Cli		viewer: & K				
Lal	poratory: DHC An	alytical Met	hod:	Matrix:		
	rk Order No.: 0801050 4	niono 2	300	- marke		
#				Comments (List Exceptions, Explanations,		
	Review Item or Question	Yes	No	etc.)	-	
12	Organic Analyses Only: For each sample (field and QC), are surrogate spike results provided?			NA		
QC	Results					
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = ND))?				
14	Are LCS/LCSD recoveries and RPDs within limits?	?				
15	Are MS/MSD recoveries and RPDs within limits?	V	5			
16	Are surrogate recoveries within limits (organic analyses only)?			NA	8	
Oth	er Data Quality-Related Issues					
17	The laboratory did not issue any CARs. If this is not true (a CAR was issued), describe impact on sample results.	t e V		e dege		
18	The analyst did not describe any analytical anomalie If this is not true, describe potential impact to sample results.	es. le			2	
19	No other potential data quality issues were identified this is not true, describe issues.	d. If				

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

QAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

Data Review Checklist

Cli	ent/Project: RRC/Dagorat Creek boratory: DHL ork Order No.: 0801050	Reviewe	er: BA	linny	Review Date: 2/4/08
	boratory: DHL	Analytic	cal Met	hod:	Matrix:
Wo	ork Order No.: 0801050	VOCS	- 84	121	Water
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
Sar	nple Preservation and Integrity				
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp		V		
2	Were holding times met?		have a		
Dat	ta Completeness	1 2 2 3			
3	Are results reported for all target analytes, with additional analytes?	no			
4	Was the requested analytical method followed?		\checkmark		
5	Do reported detection limits (or reporting limits, agree with the project specifications (QAPP)?	/MDL)	\checkmark		en en line de la constante de 1929. La constante de la constante de 1929, seu en la constante de 1929. La constante de la constante de la constante de 1928.
6	Are results reported for all samples submitted for analysis?	or	\checkmark		1971 a service glass of 29° and 16 an 18° a Long
Cal	ibration and QC Sample Frequency				
7	Were initial and continuing instrument calibratic analyses performed? And reported? ^a	on	/		
8	For each analytical batch, are results provided for method blank?	or a	\checkmark		1 #
9	For each analytical batch, are results provided for LCS/LCSD pair?	or an		/	Only LCS reported. It
10	For each analytical batch, are results provided for MS/MSD pair? Alternately, are results for MS/M pairs provided for every 20 field samples analyzed	ASD	V		Esta way not qualified.
11	Are field duplicate results provided at the project specified (QAPP) frequency?	:t-	V		

Data Review Checklist (continued)

Laboratory: DHL Analyti		nalytic	er: BRigney- cal Method: -5 8021		Review Date: 2/6/08 Matrix: Water	
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)	
12	Organic Analyses Only: For each sample (field an QC), are surrogate spike results provided?	nd				
QC Results						
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = NI	D)?	\checkmark		,	
14	Are LCS/LCSD recoveries and RPDs within limit	ts?	1	1	thes is within limits,	
15	Are MS/MSD recoveries and RPDs within limits?)	V		affect on data quel	
16	Are surrogate recoveries within limits (organic analyses only)?		V			
Oth	er Data Quality-Related Issues				8-00 A 8	
17	The laboratory did not issue any CARs. If this is n true (a CAR was issued), describe impact on samp results.					
18	The analyst did not describe any analytical anomal If this is not true, describe potential impact to same results.					
19	No other potential data quality issues were identifi this is not true, describe issues.	ied. If				

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

OAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

Trip blank was included in sample coolen; however, it was not on COC. Lab added trip blank to coc and analyzed. There was no effect to data quality.

Data Review Checklist

Client/Project: RECIPEgonet Ersch Reviewer: Blig				Review Date: 2/14/08		
Laboratory: DHL C Analytic		cal Method:		Matrix:		
Work Order No.: 0801050 70.			25		hale & Est	
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)	
San	nple Preservation and Integrity					
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp	ely le)?	1			
2	Were holding times met?		V			
Dat	a Completeness					
3	Are results reported for all target analytes, with additional analytes?	no	\checkmark			
4	Was the requested analytical method followed?		\checkmark		2. 2.	
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	/MDL)	V			
6	Are results reported for all samples submitted for analysis?	or	V			
Calibration and QC Sample Frequency						
7	Were initial and continuing instrument calibration analyses performed? And reported? ^a	on		\checkmark	Report of calibration not regained. Lat Clicklis reports ICV/LLV's were in	
8	For each analytical batch, are results provided for method blank?	or a			dete quality and date	
9	For each analytical batch, are results provided for LCS/LCSD pair?	or an		V	and the provided and Let due formides and in contract. no effect ma	
10	For each analytical batch, are results provided for MS/MSD pair? Alternately, are results for MS/MSD pairs provided for every 20 field samples analyzed	MSD		/ (for TDS analysis, LCS + Lab day ok, No	
11	Are field duplicate results provided at the project specified (QAPP) frequency?	ot-	/	(effect on deste quality	

Data Review Checklist (continued)

		Reviewe	er: Bligney cal Method:		Review Date: Altolo8 Matrix:	
Laboratory: DHL Analytic Work Order No.: 0801050 TDS		2540C		water		
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)	
12	Organic Analyses Only: For each sample (field an QC), are surrogate spike results provided?	nd			NA	
QC Results						
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = N.	D)?	\checkmark			
14	Are LCS/LCSD recoveries and RPDs within limit	its?		V.	SMo LCSD provided.	
15	Are MS/MSD recoveries and RPDs within limits'	?		V	no ms/msp provided	
16	Are surrogate recoveries within limits (organic analyses only)?				Let dup RPD ok. no effect	
Other Data Quality-Related Issues						
17	The laboratory did not issue any CARs. If this is a true (a CAR was issued), describe impact on samp results.	not ple	land			
18	The analyst did not describe any analytical anoma If this is not true, describe potential impact to sam results.		Variant			
19	No other potential data quality issues were identif this is not true, describe issues.	fied. If	barranner			

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate QAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments: 1

January 22, 2008

Daniel Krause INTERA Inc. 1812 Centre Creek Dr. #300 Austin, Texas 78754

TEL: (512) 425-2000 FAX (512) 425-2099

Order No.: 0801050

RE: Pharoah

Dear Daniel Krause:

DHL Analytical received 6 sample(s) on 1/10/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-06-TX

TABLE OF CONTENTS

This report for INTERA Inc. : Pharoah (DHL Work Order 0801050) contains the following information:

	ITEM	Page
•	Cover Page	1
	Table of Contents	2
	Original chain of custody, FedEx slip (if used), log-in checklist	3-5
	Laboratory Data Package Signature Page	6
1.	Laboratory Review Checklist	7-8
	Case Narrative	9
	Work Order Summary	10
	Preparation Dates Report	11
	Analytical Dates Report	12
	Sample Results	13-18
	QC Summary Report	19-27
	MQL Summary Report	28
,	Total Number of Pages	28

January 21, 2008

Approved: John DuPont

1

Nº 34702 CHAIN-OF-CUSTODY	PHARZADH *: 080/050	COLLECTOR:	0.007 314 00 0 0.007 07 00 00 00 0.007 07 00 00 00	C 351 C 10 C 401 C 10 C 401 C 10	X	X X BROMIDE, SULFATE	X X BROMIDE, SULFATE	X X X BEDMIDE SULFATE	X X BROMIDE SULPATE	AN TETOCOC	y cradute ter	BIEX/MTBE	PEC Noviel K. 1.10-05				LABORATORY USE ONLY:	BROKEN	Starrier Bill # ₹X	O HAND DELIVERED
, TX 78664 8229	DATE: 1-8-08 PO# RRU DUW -03-02 PHL WORK ORDE PROJECT LOCATION OR NAME: PHARADH	CLIENT PRO	25° (35°) (3	15101 15101 1000000													TURN AROUND TIME LAE RUSH [] CALL FIRST	CALL FIRST	X	
2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229	125-2099 Maney	LETIEMERA			X	X			HX XX	×								RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	D Return
C A L Phone (512)			- P=PAINT TER SL=SLUDGE OT=OTHER	Date Time Matrix Type	18/08 1545 W P	8/08 1635 W	108 1700 W		5 4 M LOLI 80/84	V/8/08 - TB					 		1/0/08	. [0.08 9:00	DATE/TIME	DHL DISPOSAL @ \$5.00 each
ANALYTI	CLIENT: <u>INTERA, INC.</u> ADDRESS: [3]2, CENTTE (YEEK Dr. 5te. 300 PHONE: 512-425-2000 FAX 512-4 DATA REPORTED TO: DAMIEL KEAAS E. BARBARA	ADDITIONAL REPORT COPIES TO: UYNDA	Authorize 5% S=SOIL surcharge for w=WATER TRRP report? A=AIR D'ves INo	Field DHL دیک Sample I.D. Lab #	MW-P-08 01 1			MW-P-02 04 1	MW-07-01 US	Triv Blonk UG						TOTAL		HELINQUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	

100.00

teelplank Cop/	43 Express Package Service Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs 1 EdeEx Printing Control Provegee up to 150 lbs <	
	Term This preference for The spin encound fore spin encound for the spin enc	
49.	ANGOTOA AAM BONALEO COCSTA #qm3	8°h

DHL Analytical

Client Name INTERA Inc.

Vork Order Number 0801050

Sample Receipt Checklist

1/10/2008

Date

Date Received: Received by DU

Reviewed by

Initials

Checklist completed by:

Signature

28 O F Date

Carrier name: FedEx 1day

Shipping container/cooler in good condition?	Yes	✓ No □	Not Present
Custody seals intact on shippping container/coole	er? Yes	✓ No □	Not Present
Custody seals intact on sample bottles?	Yes	□ No □	Not Present
Chain of custody present?	Yes	✓ No □	
Chain of custody signed when relinquished and re	eceived? Yes	✓ No □	
Chain of custody agrees with sample labels?	Yes	✓ No □	
Samples in proper container/bottle?	Yes	✓ No □	
Sample containers intact?	Yes	✓ No □	
Sufficient sample volume for indicated test?	Yes	No 🗌	
All samples received within holding time?	Yes	No 🗌	
Container/Temp Blank temperature in compliance	? Yes	✓ No □	
.vater - VOA vials have zero headspace?	Yes	✓ No □	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes	□ No □	Not Applicable
A	djusted?	Checked by	

Any No response must be detailed in the comments section below.

Client contacted	Date contacted:	Person contacted	
Contacted by:	Regarding:		
Comments:	-		
Corrective Action			

Laboratory Data Package Signature Page

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- R10 Other problems or anomalies.

Scott Schroeder – Project Manager John DuPont – General / QA Manager

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

AM WinA Signature

01/2-2-08

6

		Analytical, Inc. atory Review Checklist: Reportable Data						
		lame: Phaloch Data Date:	1/22/08					
			tory Work Order: 080 1050					
					0.10.0			
			tch: See Analytical Dates Report					
$\#^1$	A			Ye) N/	A ³ NI	₹ ⁴ ER#
		Chain-of-Custody (C-O-C)					1	
R1	Ol	/		~	_			21-01
		2) Were all departures from standard conditions described in an exc	ception report?		1	1		
R2	OI	Sample and Quality Control (QC) Identification						
		1) Are all field sample ID numbers cross-referenced to the laborato	y ID numbers?	~				
		2) Are all laboratory ID numbers cross-referenced to the correspond	ling QC data?	V				
R3	OI	Test Reports						C CONNER
		1) Were all samples prepared and analyzed within holding times?		~				
		2) Other than those results < MQL, were all other raw values brack	ted by calibration standards?	~				
		3) Were calculations checked by a peer or supervisor?		~				
		4) Were all analyte identifications checked by a peer or supervisor?		5				
		5) Were sample quantitation limits reported for all analytes not dete		1				
		6) Were all results for soil and sediment samples reported on a dry w	veight basis?			~		
		7) Were % moisture (or solids) reported for all soil and sediment sat	nples?			~		
		8) If required for the project, TICs reported?				~		
R 4	0	Surrogate Recovery Data						
		1) Were surrogates added prior to extraction?		~				
		2) Were surrogate percent recoveries in all samples within the laborate	atory QC limits?	V				
25	OI	Test Reports/Summary Forms for Blank Samples						
		1) Were appropriate type(s) of blanks analyzed?		~				
		2) Were blanks analyzed at the appropriate frequency?		~				
		3) Where method blanks taken through the entire analytical process, applicable, cleanup procedures?	including preparation and, if	4				
		4) Were blank concentrations < MQL?	************************************	~	+	+	-	
26	OI	Laboratory Control Samples (LCS):	······································	Ň		1 x = ; 1)	6 (1-1)S.C	
		1) Were all COCs included in the LCS?		~		er versenze	1. 24.000302	
	а -	2) Was each LCS taken through the entire analytical procedure, inclu	iding prep and cleanup steps?	~		1		
		3) Were LCSs analyzed at the required frequency?	B prop and creating otepor	V	14	1	1	
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory (C limits?	~	1	1	1	
		5) Does the detectability data document the laboratory's capability to			1			
		to calculate the SQLs?		~				
		6) Was the LCSD RPD within QC limits (if applicable)?		~	1			
7	Ol	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data				A-N		ALC: NO ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:
		1) Were the project/method specified analytes included in the MS an	I MSD?	~			1	
		2) Were MS/MSD analyzed at the appropriate frequency?	•)	~				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC	limits?	v				
		4) Were MS/MSD RPDs within laboratory QC limits?		5				
8	OI	Analytical Duplicate Data				00000	Statute	
		1) Were appropriate analytical duplicates analyzed for each matrix?		~				
		2) Were analytical duplicates analyzed at the appropriate frequency?		~				
		3) Were RPDs or relative standard deviations within the laboratory Q		~				
9		Method Quantitation Limits (MQLs):			Sale S	A SOLO		elements de la
		1) Are the MQLs for each method analyte included in the laboratory of		~				
		2) Do the MQLs correspond to the concentration of the lowest non-ze	ro calibration standard?	~				
		3) Are unadjusted MQLs included in the laboratory data package?		~				
0		Other Problems/Anomalies				a starter		dellas sur
		1) Are all known problems/anomalies/special conditions noted in this				~		
		2) Were all necessary corrective actions performed for the reported da		~				
		3) Was applicable and available technology used to lower the SQL mathematical sectors and a sector of the sector o	nimize the matrix interference	~				
		affects on the sample results?						

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. 1

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Pro	ject N	Name: Pharoch Date: 1/22/08						
Rev	iewe	r Name: Carlos Castro Laboratory Work Order	NSALASA					
#1	A	² Description	0001030	Yes	No	NA	3 NR4	ER# ⁵
S1	01			1 Co				ER#
						64 6362	as peste	and the second second
		 Were response factors and/or relative response factors for each analyte within QC I Were percent RSDs or correlation coefficient criteria met? 	imits?	V	_	_		_
		3) Was the number of standards recommended in the method used for all analytes?		V				-
		 4) Were all points generated between the lowest and highest standard used to calculate 		12				_
		5) Are ICAL data available for all instruments used?	e the curve?	V			-	
	1	6) Has the initial calibration curve been verified using an appropriate second source st	1 10	~		-	-	
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV) and Continuing	andard?	No.	REPORTED IN	an vencor	We temperate	a Biener Biener
~-		blank (CCB):	Calibration				an Display	a nieksie
		1) Was the CCV analyzed at the method-required frequency?		1		S States		t so start and
		2) Were percent differences for each analyte within the method-required QC limits?		1				
		3) Was the ICAL curve verified for each analyte?		1				
		4) Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			+			
S3	0	Mass Spectral Tuning:		HICK	1		al Personal	
	1	1) Was the appropriate compound for the method used for tuning?		CER CER	2917/1020		and the second	and an
		2) Were ion abundance data within the method-required QC limits?				-	-	
S4	0	Internal Standards (IS):		2 Call And		R DESIE	a dan teta	
		1) Were IS area counts and retention times within the method-required QC limits?		STANDARD AND A	Section and the section of the secti			Salar a caller
55	OI	Raw Data (NELAC section 1 appendix A glossary, and section 5.12)		8 2 P. 1	Sec.		e Stando	1200 1900
		1) Were the raw data (for example, chromatograms, spectral data) reviewed by an analy	vet?		P DESTRICTION OF		12 A DEGINING	Contraction of the second
		2) Were data associated with manual integrations flagged on the raw data?	yat.	V			+	
56	0	Dual Column Confirmation				Augulation		
		1) Did dual column confirmation results meet the method-required QC?				124055.009	A NUMBER OF COMPANY	000000000000000000000000000000000000000
57	0	Tentatively Identified Compounds (TICs):				action of		Sec. 1
		1) If TICs were requested, were the mass spectra and TIC data subject to appropriate ch	necks?				APRIL ACTIV	1042030000000000
8]	Interference Check Sample (ICS) Results:				Un rela		No. Company
		1) Were percent recoveries within method QC limits?				~		and the second
9	1	Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions			and the second	1. Salar		Providences -
		1) Were percent differences, recoveries, and the linearity within the QC limits sp	ecified in the	Inconta pinare				
		method?						
10	Ol	Method Detection Limit (MDL) Studies			State Land Cold		0.000	
	0,	1) Was a MDL study performed for each reported analyte?			691209[200]	S. 512.6 19	A STREET	
		2) Is the MDL either adjusted or supported by the analysis of DCSs?		~				
11	OI	Proficiency Test Reports:			NUCCESS.	Marchel	Haltard.	
	_	1) Was the lab's performance acceptable on the applicable proficiency tests or evaluatio	n studios?		ATRA SOLUTION	Teoresines	Stanie Saint	and the second second
12	Ol	Standards Documentation			Nº SACO	Same Line	1	STATISTICS AND
		1) Are all standards used in the analyses NIST-traceable or obtained from other appropr	into nourroad?	>	ALC HOLD IN	es (Szelete		
13	OI	Compound/Analyte Identification Procedures			PROFILING ST			NUMBER
		1) Are the procedures for compound/analyte identification documented?			are sealed		000000000000000000000000000000000000000	Haspel 273
14	01	Demonstration of Analyst Competency (DOC)					1987 (S. 175	alin basa saas
		1) Was DOC conducted consistent with NELAC Chapter 5C?		\mathbf{r}	ANTINE STREETS	an a	and the second second second	THE CONTRACTOR
		2) Is documentation of the analyst's competency up-to-date and on file?		~				
5	OI	Verification/Validation Documentation for Methods (NELAC Chap 5)						
		1) Are all the methods used to generate the data documented, verified, and vali	dated where	R. S.	ASSAULT REAL	Y BORNAUS		Tentor Red + ID - 19 (52)
1		applicable?	autou, where	\mathbf{v}				
				1		1	1	
6		Laboratory Standard Orangia D. 1 (00D)	160		1			Hill 21 plan and County
6	OI	Laboratory Standard Operating Procedures (SOPs): 1) Are laboratory SOPs current and on file for each method performed?						and the second second

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

2 3 NA = Not applicable.

⁴ NR = Not Reviewed.

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).5

DHL Analytical

CLIENT:	INTERA Inc.
Project:	Pharoah
Lab Order:	0801050

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW8021B - Volatile Organics by GC Analysis Method E300 - Anions Analysis Method M2540C - Total Dissolved Solids

Exception Report R1-01

Samples were received and log-in performed on 1/10/07. A total of 6 samples were received. The Trip Blank was included in the cooler but not listed on the Chain-of-Custody (COC). Added the Trip Blank to the COC as per the client. The samples arrived in good condition and were properly packaged.

DHL Analytical

Date: 22-Jan-08

CLIENT:	INTERA Inc.
Project:	Pharoah
Lab Order:	0801050

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
0801050-01	MW-P-08		01/08/08 03:45 PM	1/10/2008
0801050-02	MW-P-10		01/08/08 04:35 PM	1/10/2008
0801050-03	MW-P-03		01/08/08 05:00 PM	1/10/2008
0801050-04	MW-P-02		01/08/08 05:46 PM	1/10/2008
0801050-05	MW-07-01		01/08/08 05:07 PM	1/10/2008
0801050-06	Trip Blank		01/08/08	1/10/2008

DHL alytical

22-Jan-08

Sample ID Client Sample ID O 0801050-01A MW-P-08 01 0801050-01A MW-P-08 01 MW-P-08 01 01 0801050-02A MW-P-08 01 MW-P-08 01 01 0801050-02A MW-P-10 01 MW-P-10 MW-P-10 01 0801050-03A MW-P-10 01 0801050-03A MW-P-03 01 0801050-03A MW-P-03 01 0801050-04A MW-P-03 01 0801050-05A MW-P-02 01 0801050-05A MW-P-02 01 0801050-05A MW-P-02 01 0801050-05A MW-P-02 01 0801050-05A MW-07-01 01						
MW-P-08 MW-P-08 MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
MW-P-08 MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	
MW-P-08 MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	4/ CCEX
MW-P-08 MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	80/01/10	K357/4
MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-P-03 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 03:45 PM	Aqueous	M2540C	Total Discolved Solide	01/11/08	R35574
MW-P-10 MW-P-10 MW-P-10 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	E300	Anions by IC method - Water	01/10/08 10:00 AM	1 DS_W-01/11/08
MW-P-10 MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	4/ CCCA
MW-P-10 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
MW-P-03 MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 04:35 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/08 10:00 AM	TDS W.11/10
MW-P-03 MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:00 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	D35574
MW-P-03 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:00 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	4/00M
MW-P-02 MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:00 PM	Aqueous	M2540C	T otal Dissolved Solids	01/11/08 10:00 AM	SOLUTION W SUT
MW-P-02 MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:46 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
MW-P-02 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:46 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01 MW-07-01	01/08/08 05:46 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/08 10-00 AM	TDS W 01/11/00
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	D36574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	P35574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/10/08	R35574
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	80/11/10	R35607
	01/08/08 05:07 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	R35721
	01/08/08 05:07 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/08 10:00 AM	TDS W-01/11/08
0801050-05B MW-07-01 01	01/08/08 05:07 PM	Aqueous	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28607
0801050-06A Trip Blank	01/08/08	Trip Blank	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697

Page 1 of 1

-

DHL. alytical

22-Jan-08

Lab Order: 980050 Clion: DuttRA In: Phanoal ANTEXICAL DATES REPORT Panoal NUTERA In: Association Dutreta In: Sample ID Terret Sample ID Markit but Eat Name Barch ID Mutrix Dut Rout Sample ID Terret Sample ID Markit Terr Sample ID Mutrix Dut Rout Common Sample ID Sample ID Nave-Rag Markit Test Name Barch ID Differing ID Mutrix Dut Rout Sample ID Markit Dut Markit Dut Ration Sample ID Markit Dut Rout Common Sample ID Sample ID Markit Dut Markit Dut Ration Sample ID Markit Dut Rout Common Sample ID Sample ID Markit Dut Ration Sample ID Markit Dut Ration Sample ID Markit Dut Ration ID Sample ID Markit Dut Ration Sample ID Markit Dut Ration ID Markit Dut Ration ID Sample ID Markit Dut Ration Sample ID Markit Dut										
INTEA In. ANALYTICAL DATES REP Plancah ANALYTICAL DATES REP Plancah Client Sample ID Matrix Test Number Test Number Test Number Test Number Planca Matrix Test Number Test Number Test Number Test Number Planca Matrix Test Number Test Number Test Number Test Number Test Number Test Number Planca Matrix TESS World Number REACH Matrix TESS World Number REACH Matrix REACH <th co<="" th=""><th>Lab Order:</th><th>0801050</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>Lab Order:</th> <th>0801050</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Lab Order:	0801050							
Planoni.	Client:	INTER A Inc				A N A I A	Child			
Client Sample IDMartixTest NumberTest NumberTest NumberTest NumberTest NumberTest NumberNumberNumberMartisTest NumberNumberNumberMartisTest NumberNumberNumberMartisTest Number <th>Project:</th> <th>Pharoah</th> <th></th> <th></th> <th></th> <th>ALALI</th> <th></th> <th>AL DALES KE</th> <th>LPORT</th>	Project:	Pharoah				ALALI		AL DALES KE	LPORT	
NWV-7-08 Aqueous E300 Anions by IC method - Water Pass 74 10 01/1008 05:31 PM NWV-7-08 Aqueous E300 Anions by IC method - Water R35574 10 01/1008 05:31 PM NWV-7-08 Aqueous E300 Anions by IC method - Water R35574 10 01/1008 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM NWV-7-10 Aqueous E300 Anions by IC me	Sample ID	Client Sample ID	Matrix	Test Number	Test Name		lution			
WW-P.08 Aqueous E300 Anions by IC method - Water R35574 10 01/1008 05:31 PM $WW-P.08$ Aqueous E300 Anions by IC method - Water R35574 10 01/1008 06:41 PM $WW-P.08$ Aqueous E300 Anions by IC method - Water R35574 10 01/1008 06:41 PM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 1 01/1008 06:30 AM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 1 01/1008 06:30 AM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 10 01/1008 06:30 AM $WW-P.10$ Aqueous E300 Anions by IC method - Water R35574 20 01/1008 06:30 AM $WW-P.12$ Aqueous E300 Anions by IC method - Water R35574 5 01/1008 06:30 PM $WW-P.23$ Aqueous E300 Anions by IC method - Water R35574 5 01/1008 06:30 PM $WW-P.23$ Aqueous E300 Anions b							HOHU	Analysis Date	Run ID	
NW.P-08 Aqueous E300 Anions by IC method - Water R33574 10 01/1008 08:31 PM NW.P-08 Aqueous E300 Anions by IC method - Water R33574 1 01/1008 08:31 PM NW.P-10 Aqueous E300 Anions by IC method - Water R33574 1 01/1008 06:30 PM NW.P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 05:30 PM NW.P-03 Aqueous E300 Anions by IC method - Water	0801050-01A	MW-P-08	Aqueous	E300	Anions by IC method - Water	R35574	10	01/10/08 05:31 PM	IC2 080110A	
$MW-P-08$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 04:37 PM $MW-P-10$ Aqueous M3540 Total Dissolved Solids TDS_W-01/11/08 I 01/14/08 05:30 AM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-10$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 I 01/10/08 05:30 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 I 0/1/10/08 05:30 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 I 0/1/10/08 05:30 PM $MW-P-03$ Aqueous M2340C		MW-P-08	Aqueous	E300	Anions by IC method - Water	R35574	10	01/10/08 08:41 PM	102 0801104	
MW-P-08 Aqueous M2340C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 06:30 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 06:30 AM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-02 Aqueous M2340C Total Dissolved		MW-P-08	Aqueous	E300	Anions by IC method - Water	R35574	1	01/10/08 04:17 PM	V011000 201	
MW-P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10088 0545 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 1 01/10088 0545 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10088 0545 PM MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10088 0545 PM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 10 01/10088 0545 PM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0545 PM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0543 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0543 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/1008 0543 PM MW-P-02 Aqueous E300 Anions by IC method - Water		MW-P-08	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/11/08	• •	ML 1 (1:40 80/81/10 MA 08:30 AM	WC DOULLC	
MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 05.54 pm MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 05.54 pm MW-P-10 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 05.39 Am MW-P-03 Aqueous M3240C Total Dissolved Solids TDS_W-01/11/08 1 01/10/08 05.39 Am MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05.39 pm MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05.39 pm MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05.31 pm MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07.33 pm MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07.33 pm MW-07-01 Aqueous E300 Anions by IC met	0801050-02A	MW-P-10	Aqueous	E300	Anions by IC method - Water	R35574	-	01/10/08 04:50 PM		
MW-P-10 Aqueous E300 Anions by IC method - Water R35574 20 01/10/08 06:00 PM MW-P-10 Aqueous M3240C Total Dissolved Suids TDS_W-01/11/08 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 20 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 AM MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:31 PM MW-07-01 Aqueous E300 Anions by IC meth		MW-P-10	Aqueous	E300	Anions by IC method - Water	R35574	01	M4 54:50 80/01/10	102 0801104	
$MW.P-10$ Aqueous M2.540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:15 PM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:10 PM $MW.P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:30 PM $MW.P-02$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:30 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 FM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:30 FM $MW-07-01$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:32 FM $MW-07-01$ Aqueous E300		MW-P-10	Aqueous	E300	Anions by IC method - Water	R35574	20	MT 00.90 80/01/10	1C2_080110A	
MW-P-03 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:15 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW-P-03$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 06:19 PM $MW-P-02$ Aqueous E300 Anions by IC method - Water R35574 1 0 01/10/08 06:19 PM $MW-07-01$ Aqueous E300 Anions by IC method - Water R35574 1 0 01/10/08 07:31 PM $MW-07-01$ Aqueous E300 Anions by IC method - Water R35574 1 0 01/10/08 07:31 PM $MW-07-01$ Aqueous E300 Anions by IC method - Wa		MW-P-10	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/11/08	Ļ	01/14/08 08:30 AM	MC 080111C	
MW-P-03 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:15 PM MW-P-03 Aqueous B300 Anions by IC method - Water R35574 5 01/10/08 06:19 PM MW-P-03 Aqueous B300 Anions by IC method - Water R35574 5 01/10/08 06:19 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:01 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:01 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 07:32 PM MW-07-01 Aqueous E300 Anions by IC metho	0801050-03A	MW-P-03	Aqueous	E300	Anions by IC method - Water	R35574	-	01/10/08 04-47 PM		
MW-P-03 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 05:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:30 AM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:31 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:35 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 PM PM PM PM </td <td></td> <td>MW-P-03</td> <td>Aqueous</td> <td>E300</td> <td>Anions by IC method - Water</td> <td>R35574</td> <td>, v</td> <td>MT (1510 80/01/10</td> <td>1C2_080110A</td>		MW-P-03	Aqueous	E300	Anions by IC method - Water	R35574	, v	MT (1510 80/01/10	1C2_080110A	
MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 06:29 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 5 01/10/08 05:30 PM MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by		MW-P-03	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/11/08	, .	MA 08:30 80/21/10	WC 080111C	
MW-P-02 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:01 PM MW-P-02 Aqueous M3540C Total Dissolved Solids TDS_W-01/11/08 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:28 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 10 01/10/08 07:37 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:37 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 50 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions b	0801050-04A	MW-P-02	Aqueous	E300	Anions by IC method - Water	R35574	5	Md 0C:00 80/01/10		
MW-P-02 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 05:16 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:23 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:23 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/11/08 11:9 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:9 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:11 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000		MW-P-02	Aqueous	E300	Anions by IC method - Water	R35574	-	MG 10:50 20101/10	1C2_000110A	
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/14/08 05:36 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:28 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1 01/10/08 07:28 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:27 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 1000 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 03:30 AM MW-07-01 Aqueous M2540C		MW-P-02	Aqueous	M2540C	Total Dissolved Solids	TDS W 01/11/08			1C2_080110A	
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 50 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 50 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35572 100 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35602 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 03:33 PM MW-07-01 Trip Blank Trip Blank SW8021B </td <td>0801050-05A</td> <td>MW-07-01</td> <td>Aqueous</td> <td>E300</td> <td>Anions by IC method - Water</td> <td>R35574</td> <td>-</td> <td>01/10/08 08:30 AM</td> <td>WC_080111C</td>	0801050-05A	MW-07-01	Aqueous	E300	Anions by IC method - Water	R35574	-	01/10/08 08:30 AM	WC_080111C	
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:43 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35574 100 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 1 01/14/08 1 MW-07-01 Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 1 1/14/08 1		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35574	50	Md 80:00 80/01/10	1C2_080110A	
MW-07-01 Aqueous E300 Anions by IC method - Water R35574 1000 01/10/08 07:57 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35602 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35502 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM 0		10-70-WM	Aqueous	E300	Anions by IC method - Water	R35574	100	01/10/08 07·43 PM	1C2_080110A	
MW-07-01 Aqueous E300 Anions by IC method - Water R35602 5 01/11/08 11:19 AM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/18/08 12:11 PM MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/18/08 12:11 PM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35574	1000	M1 2:::0 200010	1C2_080110A	
MW-07-01 Aqueous E300 Anions by IC method - Water R35721 1000 01/18/08 12:11 PM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM 0		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35602	v	MUT / CT/D CO//11/10	1C2_00011UA	
MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous M2540C Total Dissolved Solids TDS_W-01/11/08 1 01/14/08 08:30 AM MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM 0 Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM 0		MW-07-01	Aqueous	E300	Anions by IC method - Water	R35771	20001		1C2_U80111A	
MW-07-01 Aqueous SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08		MW-07-01	ADIPOLIC	JUNSCIN		17100	1000	MJ 11:71 80/81/10	IC2_080118A	
Trip Blank Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 12:41 PM Trip Blank Trip Blank SW8021B Volatile Organics by GC 28697 1 01/14/08 03:38 PM	DRAIDED AED		en oanhi i	OD + C 7 M	I OTAL DISSOLVED SOLIDS	T.DS_W-01/11/08		01/14/08 08:30 AM	WC_080111C	
1 rip Blank Trip Blank SW8021B Volatile Organics by GC 28697 I 01/14/08 03:38 PM	960-0601080	10-/0-www	Aqueous	SW8021B	Volatile Organics by GC	28697	1	01/14/08 12:41 PM	GC9_080114A	
	Von-nentnen	l rip Blank	T rip Blank	SW8021B	Volatile Organics by GC	28697	I	01/14/08 03:38 PM	GC9_080114A	

Page 1 of 1

12

DHL Ana	lytical				Date:		22-Ja	un-08
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-	P-08
oject:	Pharoah					Lab ID:	08010	50-01
rroject No:	RRC-DUG-03-02				Coll	ection Date:	01/08/	/08 03:45 PM
Lab Order:	0801050					Matrix:	AQU.	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC
Bromide		ND	0.300	1.00		mg/L	1	01/10/08 04:17 PM
Chloride		420	3.00	10.0		mg/L	10	01/10/08 08:41 PM
Sulfate		225	10.0	30.0		mg/L	10	01/10/08 05:31 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	1380	10.0	10.0		mg/L	1	01/14/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 6

DHL Ana	lytical				Date:		22-Ja	ın-08
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	P-10
oject:	Pharoah					Lab ID	: 08010	050-02
1 roject No:	RRC-DUG-03-02				Colle	ection Date	: 01/08/	/08 04:35 PM
Lab Order:	ab Order: 0801050					Matrix	AQU	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC
Bromide		3.19	0.300	1.00		mg/L	1	01/10/08 04:32 PM
Chloride		497	3.00	10.0		mg/L	10	01/10/08 05:45 PM
Sulfate		179	10.0	30.0		mg/L	10	01/10/08 05:45 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Total Dissolved Solids (Residue, Filterable)		10.0	10.0		mg/L	1	01/14/08 08:30 AM

 J - Analyte detected between SDL and RL

 ${\rm B}$ - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 6

DHL Ana	lytical		Date:				22-Ja	un-08
CLIENT:	INTERA Inc.				Clien	t Sample ID	: MW-	P-03
oject:	Pharoah					Lab ID	: 08010	50-03
roject No:	RRC-DUG-03-02				Coll	ection Date	: 01/08/	/08 05:00 PM
Lab Order:	0801050					Matrix	AQU	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC
Bromide		0.505	0.300	1.00	J	mg/L	1	01/10/08 04:47 PM
Chloride		142	1.50	5.00		mg/L	5	01/10/08 06:15 PM
Sulfate		125	5.00	15.0		mg/L	5	01/10/08 06:15 PM
TOTAL DISSOL	VED SOLIDS		M2540)C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	836	10.0	10.0		mg/L	1	01/14/08 08:30 AM

s ND - Not Detected at the SDL

J - Analyte detected between SDL and RL B - Analyte detected in the associated Method Blank

DF- Dilution Factor N - Parameter not NELAC certified

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				Date:			un-08
CLIENT:	INTERA Inc.				Clien	t Sample ID	: MW-	P-02
~oject:	Pharoah					Lab ID	: 08010	50-04
roject No:	RRC-DUG-03-02				Coll	ection Date	01/08	/08 05:46 PM
Lab Order:						Matrix	AQU	EOUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC
Bromide		0.346	0.300	1.00	J	mg/L	1	01/10/08 05:01 PM
Chloride		93.7	1.50	5.00		mg/L	5	01/10/08 06:29 PM
Sulfate		113	5.00	15.0		mg/L	5	01/10/08 06:29 PM
TOTAL DISSOL	OTAL DISSOLVED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	otal Dissolved Solids (Residue,		10.0	10.0		mg/L	1	01/14/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				I	Date:	22-Ja	n-08
CLIENT:	INTERA Inc.				Clien	t Sample ID:	MW-()7-01
nject:	Pharoah					Lab ID:	08010	50-05
roject No:	RRC-DUG-03-02				Coll	ection Date:	01/08/	08 05:07 PM
Lab Order:	0801050					Matrix:		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORC	GANICS BY GC	-	SW8	021B				Analyst: JAW
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 12:41 PM
Ethylbenzene	Ethylbenzene		0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Methyl tert-buty	/l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Toluene	Ethylbenzene Methyl tert-butyl ether		0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 12:41 PM
Surr: a,a,a-T	rifluorotoluene	98.4	0	87-113		%REC	1	01/14/08 12:41 PM
ANIONS BY IC	METHOD - WATER		E3	00				Analyst: JBC
Bromide		67.7	1.50	5.00		mg/L	5	01/11/08 11:19 AM
Chloride		7980	300	1000		mg/L	1000	01/18/08 12:11 PM
Sulfate		727	50.0	150		mg/L	50	01/10/08 07:28 PM
TOTAL DISSOL	VED SOLIDS		M254	40C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	15400	10.0	10.0		mg/L	1	01/14/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				D	ate:	22-Ja	un-08
CLIENT:	INTERA Inc.				Client	t Sample ID:	Trip E	Blank
oject:	Pharoah					Lab ID:	08010	50-06
1 roject No:	RRC-DUG-03-02				Coll	ection Date:	01/08/	/08
Lab Order:	0801050					Matrix:	TRIP	BLANK
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE OR	GANICS BY GC		SW80	021B				Analyst: JAW
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 03:38 PM
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Methyl tert-buty	l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 03:38 PM
Surr: a,a,a-T	rifluorotoluene	97.6	0	87-113		%REC	1	01/14/08 03:38 PM

J - Analyte detected between SDL and RL B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Analytical

CLIENT: INTERA Inc. 'ork Order: 0801050 roject: Pharoah

ANALYTICAL QC SUMMARY REPORT

RunID: GC9_080114A

Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Composed SampType: MSD H Compose		28697		TestNo	J. 3VV	8021B		Units:	mg	/L	
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Coluene Ethylbenzene Kylenes, Total	Run ID:	GC9_0	80114A	Analys	is Date: 1/1-	4/2008 10:5	2:31 A	Prep Dat	e: 1/1	4/2008	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Kylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total SampType: MSD Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimi	t Qu
Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Foluene Ethylbenzene Kylenes, Total		0.0432	0.00600	0.0500	0	86.5	78	122			
Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H SampType: MSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Toluene Sample ID 0801064-14AMSD H SampType: MSD H SampType: MSD H SampType: MSD H SampType: MSD H SampType: MSD H		0.0485	0.00200	0.0500	0	97.1	81	125			
Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total SampType: MSD Analyte		0.0505	0.00600	0.0500	0	101	84	123			
Surr: a,a,a-Trifluorotoluene Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Foluene Ethylbenzene Kylenes, Total		0.0496	0.00600	0.0500	0	99.3	83	119			
Sample ID MB-28697 SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene SampType: MSD I		0.149	0.00900	0.150	0	99.5	81	117			
SampType: MBLK Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampI ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene SampType: MSD I Analyte		199		200.0		99.4	87	113			
Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampI ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene	Batch ID:	28697		TestNo	SW	8021B		Units:	m g/	'L	
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampI ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total	Run ID:	GC9_08	30114A	Analys	is Date: 1/14	/2008 11:0	9:21 A	Prep Date	e: 1/14	/2008	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qua
Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Comple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total		ND	0.00600								
Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampType: MSD Analyte Methyl tert-butyl ether Benzene Foluene Ethylbenzene Kylenes, Total		ND	0.00200								
Xylenes, Total Surr: a,a,a-Trifluorotoluene Cumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total		ND	0.00600								2
Surr: a,a,a-Trifluorotoluene Sumple ID 0801064-14AMS SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total		ND	0.00600				ä.				
SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		ND	0.00900								
SampType: MS Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene SampIe ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		200		200.0		100	87	113			
Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	Batch ID:	28697		TestNo:	SW8	021B		Units:	mg/	L	
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	Run ID:	GC9_08	0114A	Analysi	s Date: 1/14	/2008 1:14:	57 PM	Prep Date	: 1/14	/2008	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qua
Toluene Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD H SampType: MSD H Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	1	0.0543	0.00600	0.0500	0	109	78	122			
Ethylbenzene Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		0.0508	0.00200	0.0500	0	102	81	125			
Xylenes, Total Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	(0.0526	0.00600	0.0500	0	105	84	123			
Surr: a,a,a-Trifluorotoluene Sample ID 0801064-14AMSD I SampType: MSD i Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	(0.0513	0.00600	0.0500	0	103	83	119			
Sample ID 0801064-14AM SD I SampType: MSD I Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		0.154	0.00900	0.150	0	103	81	117			
SampType: MSD Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total		201		200.0		101	87	113	1017 TV		
Analyte Methyl tert-butyl ether Benzene Toluene Ethylbenzene Kylenes, Total	Batch ID:	28697		TestNo:	SW8	021B		Units:	m g/l		
Methyl tert-butyl ether Benzene Toluene Ethylbenzene Xylenes, Total	Run ID:	GC9_08	0114A	Analysis	5 Date: 1/14/	2008 1:31:4	18 PM	Prep Date:	1/14/	2008	
Benzene Toluene Ethylbenzene Xylenes, Total		Result	RL	SPK value	Ref Val	%REC	Low Limit I	HighLimit	%RPD	RPDLimit	Qua
Toluene Ethylbenzene Kylenes, Total	(0.0535	0.00600	0.0500	0	107	78	122	1.48	20	
Ethylbenzene Kylenes, Total	(0.0508	0.00200	0.0500	0	102	81	125	0.0571	20	
(ylenes, Total	(0.0525	0.00600	0.0500	0	105	84	123	0.147	20	
	C	0.0509	0.00600	0.0500	0	102	83	119	0.716	20	
Surr: a,a,a-Trifluorotoluene	1	0.153	0.00900	0.150	0	102	81	117	0.823	20	
		203		200.0		102	87	113	0	0	
Qualifiers: B Analyte detec		ñ		k DF D	ilution Facto						

Not Detected at the Method Detection Limit ND

RL Reporting Limit

Parameter not NELAC certified N

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT:

INTERA Inc. 0801050

Work Order: 0801050 P-oject: Pharoah

ANALYTICAL QC SUMMARY REPORT

RunID: GC9_080114A

Sample ID ICV-080114	Batch ID:	R35636		TestNo	: SV	V8021B		Units:	m	g/L	
SampType: ICV	Run ID:	GC9_08	30114A	Analys	is Date: 1/1	4/2008 10:3	5:40 A	Prep Dat	e:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPE	D RPDLimit	Qua
Methyl tert-butyl ether		0.0890	0.00600	0.100	0	89.0	80	120			
Benzene		0.0972	0.00200	0.100	0	97.2	85	115			
Toluene		0.102	0.00600	0.100	0	102	85	115			
Ethylbenzene		0.101	0.00600	0.100	0	101	85	115			
Xylenes, Total		0.301	0.00900	0.300	0	100	85	115			
Surr: a,a,a-Trifluorotoluene		204		200.0		102	87	113			
Sample ID CCV1-080114	Batch ID:	R35636		TestNo:	SW	/8021B		Units:	mg	g/L	
SampType: CCV	Run ID:	GC9_08	0114A	Analysi	s Date: 1/1	4/2008 2:22:	21 PM	Prep Date	Э:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qua
Methyl tert-butyl ether	(0.0471	0.00600	0.0500	0	94.1	80	120			
Benzene	(0.0512	0.00200	0.0500	0	102	85	115			
Toluene	(0.0529	0.00600	0.0500	0	106	85	115			
Ethylbenzene	(0.0512	0.00600	0.0500	0	102	85	115			
Xylenes, Total		0.153	0.00900	0.150	0	102	85	115			
Surr: a,a,a-Trifluorotoluene		201		200.0		100	87	113			
Sample ID CCV2-080114	Batch ID:	R35636		TestNo:	SW	8021B		Units:	mg	/L	
ρType: CCV	Run ID:	GC9_080	0114A	Analysis	s Date: 1/14	4/2008 8:25:4	48 PM	Prep Date	1		
Analyte	1	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	C	.0543	0.00600	0.0500	0	109	80	120			
Benzene	C	.0501	0.00200	0.0500	0	100	85	115			
Toluene	C	.0515	0.00600	0.0500	0	103	85	115			
Ethylbenzene	0	.0508	0.00600	0.0500	0	102	85	115			
Kylenes, Total	(0.155	0.00900	0.150	0	103	85	115			
Surr: a,a,a-Trifluorotoluene		194		200.0		96.9	87	113			

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 2 of 9

CLIENT Work O		ERA Inc. 050			А	NALYI	TICAL	QC S	UMM	ARYI	REPO	OR
~~oject:	Phar	oah					Runl	D:	IC2_080	0110A		
Sample ID	ICV-080110	Batch ID	R3557	4	Testi	vio: E3	00		Units:	m g.	<u>′</u> L	
SampType	ICV	Run ID:	IC2_0	80110A	Anal	/sis Date: 1/1	0/2008 9:29	0:09 AM	Prep Da	te: 1/10)/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Li	mit HighLimi	t %RPD	RPDLim	it Qu
Bromide			51.8	1.00	50.00	0	104	90	110			
Chloride			25.6	1.00	25.00	0	102	90	110			
Sulfate			78.4	3.00	75.00	0	104	90	110			
Sample ID	MB-080110	Batch ID:	R3557	4 .	TestN	ko: E30	00		Units:	mg/	L	
SampType	MBLK	Run ID:	IC2_0	80110A	Analy	sis Date: 1/1	0/2008 9:50	:51 AM	Prep Dat	:e: 1/10	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD	RPDLimi	t Qua
Bromide			ND	1.00								
Chloride			ND	1.00								
Sulfate			ND	3.00								
Sample ID	LCS-080110	Batch ID:	R3557	4	TestN	o: E30	10		Units:	mg/l	-	
SampType	LCS	Run ID:	IC2_08	30110A	Analy	sis Date: 1/10	0/2008 10:0	5:31 A	Prep Dat	e: 1/10/	2008	
Analyte			Result	RL	SPK value	Ref Val	% REC	Low Lin	nit HighLimit	%RPD	RPDLimit	Qua
Bromide			19.9	1.00	20.00	0	99.6	90	110			
Chloride			9.84	1.00	10.00	0	98.4	90	110			
ate	ana santa ana ana ana ana ana ana ana ana ana		30.1	3.00	30.00	0	100	90	110			
Sample ID	LCSD-080110	Batch ID:	R35574	L.	TestN	E30	0		Units:	mg/L	-	
SampType:	LCSD	Run ID:	IC2_08	0110A	Analys	sis Date: 1/10)/2008 10:20):12 A	Prep Date	e: 1/10/	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	Qua
Bromide			20.0	1.00	20.00	0	99.8	90	110	0.256	20	
Chloride			9.86	1.00	10.00	0	98.6	90	110	0.167	20	
Sulfate			30.3	3.00	30.00	0	101	90	110	0.656	20	
Sample ID	CCV1-080110	Batch ID:	R35574		TestNo	E300	D		Units:	mg/L	h.	
SampType:	CCV	Run ID:	IC2_08	0110A	Analys	is Date: 1/10	/2008 1:21:	35 P M	Prep Date	e: 1/10/2	2008	
Analyte	-		Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD F	RPDLimit	Qual
Bromide			19.9	1.00	20.00	0	99.6	90	110			
Chloride			9.94	1.00	10.00	0	99.4	90	110			
Sulfate		.) 	30.5	3.00	30.00	0	102	90	110			
Sample ID	0801046-01D N	S Batch ID:	R35574		TestNo	E300)		Units:	mg/L		
SampType:	MS	Run ID:	IC2_08	0110A	Analys	is Date: 1/10/	/2008 2:05:3	86 PM	Prep Date	: 1/10/2	8008	
			Result	RL	SPK value	Ref Val	%REC		t HighLimit			0

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

MDL Method Detection Limit

Page 3 of 9

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: Work Or	INTERA 0801050	Inc.			A	NALYT	ICAL	QCS	UMM	ARY	REPO	ORT
work Of Project:	Pharoah						Runl	D:	IC2_080)110A		
Sample ID SampType	0801046-01D MS MS	Batch ID Run ID:	R35574	0110A	TestN Analy	o: E30 sis Date: 1/10		:36 PM	Units: Prep Da	m g. te: 1/10	/L)/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimi	l %RPD	RPDLimi	t Qual
Chloride	9		186	10.0	100.0	91.61	94.5	90	110			
Sample ID SampType:	0801046-01D M SD M SD	Batch ID: Run ID:	R35574 IC2_080	110A	TestNa Analys	o: E30 sis Date: 1/10		:16 PM	Units: Prep Dat	mg/ e: 1/10	L /2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	Qual
Chloride			186	10.0	100.0	91.61	94.3	90	110	0.112	20	
Sample ID SampType:	CCV2-080110 CCV	Batch ID: Run ID:	R35574 IC2_080	110A	TestNo Analys	e: E300 is Date: 1/10		59 PM	Units: Prep Dat	mg/ e: 1/10	L /2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qual
Bromide Chloride Sulfate			20.1 9.98 30.6	1.00 1.00 3.00	20.00 10.00 30.00	0 0 0	100 99.8 102	90 90 90	110 110 110			
Sample ID	CCV3-080110	Batch ID:	R35574		TestNo	: E300			Units:	mg/l		
SampType:	CCV	Run ID:	IC2_080 ⁻	110A	Analys	is Date: 1/10/	2008 6:44:	23 PM	Prep Date	e: 1/10/	2008	
Jyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	t HighLimit	%RPD	RPDLimit	Qual
Bromide Chloride Sulfate			20.2 10.1 30.5	1.00 1.00 3.00	20.00 10.00 30.00	0 0 0	101 101 102	90 90 90	110 110 110			
Sample ID SampType:	0801050-04A MS MS	Batch ID: Run ID:	R35574 IC2_0801	10A	TestNo: Analysi	E300 s Date: 1/10/2	2008 6:59:0)4 PM	Units: Prep Date	m g/L :: 1/10/2		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD F	RPDLimit	Qual
Bromide Sulfate		5	19.8 100	1.00 3.00	20.00 30.00	0.2000 69.18	98.1 104	90 90	110 110			
Sample ID	0801050-04A MSD	Batch ID:	R35574		TestNo:	E300			Units:	mg/L		
SampType:	MSD	Run ID:	IC2_0801	10A	Analysi	5 Date: 1/10/2	2008 7:13:4	4 PM	Prep Date	: 1/10/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Bromide Sulfate			20.0 100	1.00 3.00	20.00 30.00	0.2000 69.18	99.2 104	90 90	110 110	1.14 0.0115	20 20	

Qualifiers:

В Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

. ...

DF Dilution Factor

- MDL Method Detection Limit
- R RPD outside accepted control limits

Page 4 of 9

S Spike Recovery outside control limits

CLIENT: INTERA Inc. Work Order: 0801050 "oject: Pharoah

ANALYTICAL QC SUMMARY REPORT

RunID: IC2_080110A

Sample ID CCV4-080110 SampType: CCV	Batch ID: Run ID:	R35574 IC2_080	110A	TestNo Analys	b: E300 is Date: 1/10		09 PM	Units: Prep Date	mg/L e: 1/10/2008	
Analyte	-	Result	RL	SPK value	Reí Val	%REC	Low Limi	t HighLimit	%RPD RPDLI	mit Quai
Bromide		20.2	1.00	20.00	0	101	90	110		
Chloride		9.98	1.00	10.00	0	99.8	90	110		
Sulfate		30.5	3.00	30.00	0	102	90	110		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit Page 5 of 9 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits N Parameter not NELAC certified

CLIENT:	INTERA : der: 0801050	Inc.			AI	NALYT	ICAL	QC SI	JMMA	ARY REPO	ORT
Work Or	Pharoah						RunI	D: I	C2_080)111A	
Sample ID	ICV-080111	Batch ID	R35602		TestNo	D: E30	0		Units:	mg/L	
SampType:	ICV	Run ID:	IC2_080	0111A	Analys	sis Date: 1/11	1/2008 10:0	07:13 A	Prep Dat	te: 1/11/2008	
Analyte		- 115	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimil	%RPD RPDLimit	Qual
Bromide			50.4	1.00	50.00	0	101	90	110		
Sample ID	MB-080111	Batch ID:	R35602		TestNo	E300	0	i na si	Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_080	111A	Analys	is Date: 1/11	/2008 10:2	1:53 A	Prep Dat	e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD RPDLimit	Qual
Bromide			ND	1.00							
Sample ID	LCS-080111	Batch ID:	R35602		TestNo	E300)	- Andrew Million Control of Con-	Units:	mg/L	
SampType:	LCS	Run ID:	IC2_080	111A	Analys	is Date: 1/11,	/2008 10:3	6:34 A	Prep Date	e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD RPDLimit	Qual
Bromide			19.6	1.00	20.00	0	98.0	90	110		
Sample ID	LCSD-080111	Batch ID:	R35602		TestNo	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_080 [.]	111A	Analysi	s Date: 1/11/	2008 10:51	1:14 A	Prep Date	e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
ide			19.7	1.00	20.00	0	98.6	90	110	0.592 20	
Sample ID	CCV1-080111	Batch ID:	R35602		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_0801	111A	Analysi	s Date: 1/11/	2008 11:45	:06 A	Prep Date	: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Bromide			20.0	1.00	20.00	0	99.8	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 6 of 9
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	-
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	N	Parameter not NELAC certified			

CLIENT: Work Or ject:	INTERA der: 0801050 Pharoah	Inc.			AN	ALYTI	CAL Runl	-	UMMA IC2_080	ARY REPO)RT
Sample ID	ICV-080118	Batch ID:			TestNo				Units:	m g/L	
SampType:	ICV	Run ID:	IC2_0801	18A	Analys	is Date: 1/18	/2008 9:50):57 AM	Prep Dat	te: 1/18/2008	
Analyte		-	Result	RL	SPK value	Ref Val	%REC	Low Lin	hit HighLimil	l %RPD RPDLimi	Qual
Chloride			25.5	1.00	25.00	0	102	90	110		
Sample ID	MB-080118	Batch ID:	R35721		TestNo	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_0801	18A	Analysi	s Date: 1/18/	2008 10:1	5:42 A	Prep Dat	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	iit HighLimit	%RPD RPDLimit	Qual
Chloride			ND	1.00							
Sample ID	LCS-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC2_0801	18A	Analysi	s Date: 1/18/2	2008 10:3	0:22 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Chloride			9.89	1.00	10.00	0	98.9	90	110		
Sample ID	LCSD-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_0801	18A	Analysis	Date: 1/18/2	2008 10:4	5:02 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
ride			9.90	1.00	10.00	0	99.0	90	110	0.140 20	
Sample ID	CCV1-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_08011	I8A	Analysis	Date: 1/18/2	2008 12:41	l:15 P	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD RPDLimit	Qual
Chloride			9.87	1.00	10.00	0	98.7	90	110		
Sample ID	CCV2-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_08011	8A	Analysis	Date: 1/18/2	008 3:48:	13 PM	Prep Date	: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride	17 17 17 17 17 17 17. 17.		10.0	1.00	10.00	0	100	90	110		
Sample ID	0801092-01BMS	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC2_08011	8A	Analysis	Date: 1/18/2	008 4:04:	57 P M	Prep Date	: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride		(1750	50.0	500.0	1258	98.0	90	110		

Qualifiers:

- B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL
 - ND Not Detected at the Method Detection Limit
 - RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

- MDL Method Detection Limit
- R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 7 of 9

CLIENT: Work Ord	INTERA der: 0801050 Pharoah	Inc.	,	2	AN	ALYTI	CAL (RunI)		UMMA 1C2_080		EPC)RT
Sample ID SampType:	0801092-01B MSD MSD	Batch ID: Run ID:	R35721 IC2_080	118A	TestNo: Analysi	E300 s Date: 1/18/2	2008 4:19:	37 PM	Units: Prep Date	m g/L e: 1/18/2		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Li	mit HighLimit	%RPD F	RPDLimit	Qual
Chloride			1740	50.0	500.0	1258	96.8	90	110	0.333	20	
Sample ID SampType:	CCV3-080118 CCV	Batch ID: Run ID:	R35721 IC2_0801	18A	TestNo: Analysis	E300 Date: 1/18/2	008 5:02:	59 PM	Units: Prep Date	m g/L :: 1/18/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD R	PDLimit	Qual
Chloride			10.0	1.00	10.00	0	100	90	110			J

Qualifiers: B Analyte detected in the associated Method Blank J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 8 of 9

CLIENT: Work Order:	INTERA I 0801050 Pharoah	lnc.			AN	ALYT	ICAL (RunI	-	J MMA wc_080	RY REP	ORT
Sample ID MB-0 SampType: MBL	080111 K	Batch ID Run ID:		W-01/11/08 80111C	TestNo: Analysi		540C 4/2008 8:30	:00 AM	Units: Prep Date	m g/L e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	it Qual
Total Dissolved Sc	olids (Residue,	Filtera	ND	10.0							
Sample ID LCS- SampType: LCS	080111	Batch ID Run ID:		V-01/11/08 B0111C	TestNo: Analysis		540C /2008 8:30:	00 AM	Units: Prep Date	m g/L e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimi	t Qual
Total Dissolved So	lids (Residue,	Filtera	717	10.0	745.6	0	96.2	70	126		
Sample ID 08010 SampType: DUP	46-01D DUP	Batch ID: Run ID:	TDS_W WC_08	/-01/11/08 30111C	TestNo: Analysis	M 25 Date: 1/14	40C /2008 8:30:	00 AM	Units: Prep Date	m g/L e: 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Total Dissolved So	lids (Residue,	Filtera	2260	10.0	0	2224				1.56 5	
Sample ID 08010 SampType: DUP	50-05A DUP	Batch ID: Run ID:	TDS_W WC_08	/-01/11/08 0111C	TestNo: Analysis	M 25 Date: 1/14	40C /2008 8:30:0	00 AM	Units: Prep Date	mg/L : 1/11/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Dissolved Sol	ids (Residue, I	Filtera	14900	10.0	0	15420	9 - 110 - 140 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 -			3.16 5	

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 DF
 Dilution Factor

 J
 Analyte detected between MDL and RL
 MDL
 Method Detection Limit

 ND
 Not Detected at the Method Detection Limit
 R
 RPD outside accepted control limits

RL Reporting Limit

N Parameter not NELAC certified

S Spike Recovery outside control limits

Page 9 of 9

DHL Analytical

CLIENT:	INTERA Inc.

Work Order: 0801050

oject: Pharoah

TestNo: E300	MDL	MQL		
Analyte	mg/L	mg/L		
Bromide	0.300	1.00		
Chloride	0.300	1.00		
Sulfate	1.00	3.00		
TestNo: SW8021B	MDL	MQL		
Analyte	mg/L	mg/L		
Methyl tert-butyl ether	0.00200	0.00600		
Benzene	0.000800	0.00200		
Toluene	0.00200	0.00600		
Ethylbenzene	0.00200	0.00600		
Xylenes, Total	0.00300	0.00900		
TestNo: M2540C	MDL	MQL		
Analyte	mg/L	mg/L		
Total Dissolved Solids (Residue, Filt	10.0	10.0		

MQL SUMMARY REPORT

Data Review Checklist

1[°]

Cli	ent/Project: RRC/Dugout Cuek	Review	er: <u>BR</u>	icontry .	Review Date: 2/4/08 Matrix:
La	boratory: DHL ork Order No.: 0801064	Analyti	no -	300	Water
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
Sar	nple Preservation and Integrity		105	110	
1	Did samples arrive at the laboratory appropriate	ly	1		
	preserved (e.g., 4°C, correct acid added to samp	le)?	V		
2	Were holding times met?	-	/		
Dat	ta Completeness				
3	Are results reported for all target analytes, with additional analytes?	no	V		
4	Was the requested analytical method followed?		V		7
5	Do reported detection limits (or reporting limits, agree with the project specifications (QAPP)?	/MDL)		V	SAL was devated lucto Sample dilution for mW-0-31, MW-FINA-01,
6	Are results reported for all samples submitted for analysis?	or	Want		mW-p.01, mW-0-07 mW-07-2, mW-D-01+
Cal	ibration and QC Sample Frequency		ý		SN-P-Seep for Cl. and it
7	Were initial and continuing instrument calibratic analyses performed? And reported? ^a	on	1		how detected in able de a servales. Then was no offerst on sate quadrites
8	For each analytical batch, are results provided for method blank?	or a	V		P U
9	For each analytical batch, are results provided for LCS/LCSD pair?	or an	V		
10	For each analytical batch, are results provided for MS/MSD pair? Alternately, are results for MS/M pairs provided for every 20 field samples analyz	MSD	V		
11	Are field duplicate results provided at the project specified (QAPP) frequency?	:t-	V		Duplicate pale ere: MW-D-23/, MW-1-23
				(Duplicate palu are: MW-0-23/MW-1-23 MW-0-21/MW-0-31 RPD for MW-0-21/ MW-0-31 is above mw-0-31 is above control limits for suffats

Data Review Checklist (continued)

Cli	ent/Project: RRC/ Dugout Cieck Ro	eviewer: 13	Kigen Kong	Review Date: 2/10/08
La	horatory: DHL A	nalytiçal Me	thod:	Matrix: Water
#	Review Item or Question	Yes	No	Comments (List Exceptions, Explanations, etc.)
12	Organic Analyses Only: For each sample (field and QC), are surrogate spike results provided?	đ		NA
QC	Results			
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = ND)?		
14	Are LCS/LCSD recoveries and RPDs within limits	? 1		
15	Are MS/MSD recoveries and RPDs within limits?		V-	ms/ms won mw - 0- 21 to close
16	Are surrogate recoveries within limits (organic analyses only)?			MA in control Samples
Oth	ner Data Quality-Related Issues			on the station of my
17	The laboratory did not issue any CARs. If this is no true (a CAR was issued), describe impact on sampl results.	ot le		alone, There is no affect on the data quality.
18	The analyst did not describe any analytical anomal If this is not true, describe potential impact to samp results.	ies. ble		2 - 1
19	No other potential data quality issues were identified this is not true, describe issues.	ed. If		

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

OAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

inther Comments: There was a discrepancy between sample is on sample label and isl on COC. hal noticed discrepancy have and isl on COC. hal noticed discrepancy upon sample by in. hab called Intera and was informed COC was correct. Let changed sample informed COC was correct. Let changed sample label. There was no effect on data quelity. Label. There was no effect on data quelity. Equipment since had concentration of 1.27 mg/L of Cl. Equipment since had concentrations more than SX ER.

Data Review Checklist

Cli	ent/Project: <u>RRC</u> Dugont Creek boratory: <u>DHL</u> ork Order No.: <u>D</u> 801064	Review	er: K	canty	1 A
La	boratory: DAth	Analyti	cal Met	thod:	Matrix:
Wo	ork Order No.: 0801064	Voc	\$ 8	OLL	Al Bartuskina
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)
Sar	nple Preservation and Integrity			,	
1	Did samples arrive at the laboratory appropriate preserved (e.g., 4°C, correct acid added to samp	ely ble)?	V		
2	Were holding times met?	en a	V		
Dat	a Completeness		I	J	
3	Are results reported for all target analytes, with additional analytes?	no	V		
4	Was the requested analytical method followed?		V		e de
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	s/MDL)	1		
6	Are results reported for all samples submitted f analysis?	or	V		
Cal	ibration and QC Sample Frequency				
7	Were initial and continuing instrument calibration analyses performed? And reported? ^a	lon	\checkmark		
8	For each analytical batch, are results provided f method blank?	òr a	V		
9	For each analytical batch, are results provided f LCS/LCSD pair?	for an		V	Only Les provided. 101/00 and ms/ms0 are in contro No effort on data smell
10	For each analytical batch, are results provided f MS/MSD pair? Alternately, are results for MS/ pairs provided for every 20 field samples analy	MSD	/		<i>k"</i> **
11	Are field duplicate results provided at the proje specified (QAPP) frequency?	ct-	Brancham		Duplicate pairo ane: MW-0-23/mb/-1-23 MW-0-21/MW-0-3/
					Puplicate pairs are: MW-0-23/MW-1-23 MW-0-21/MW-0-31 PPD's for Supplicates are within control Limits

Data Review Checklist (continued)

Cli	ent/Project: RLC Dupout Cruck R	eviewer: BK			
		nalytical Me		Matrix: Water	
#	Review Item or Question	Yes	No	Comments (List Exceptions, Explanations, etc.)	
12	Organic Analyses Only: For each sample (field an QC), are surrogate spike results provided?				
QC	Results	h			
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = NI	D)? b alans			
14	Are LCS/LCSD recoveries and RPDs within limit	s?		no LLS Denovided. 75 R. o. no effect on data question	
15	Are MS/MSD recoveries and RPDs within limits?	V		no effection deta gratity	
16	Are surrogate recoveries within limits (organic analyses only)?	bearing .		3	
Otł	ner Data Quality-Related Issues				
17	The laboratory did not issue any CARs. If this is n true (a CAR was issued), describe impact on samp results.	ot ole Lore			
18	The analyst did not describe any analytical anomal. If this is not true, describe potential impact to same results.	lies. ple durant			
19	No other potential data quality issues were identifi this is not true, describe issues.	ied. If			

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses. CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample MS/MSD = Matrix Spike/Matrix Spike Duplicate

QAPP = Quality Assurance Project Plan RPD = Relative Percent Difference

Further Comments:

Data Review Checklist

Cli	ient/Project: RRC/ Dar out Greek	Reviewe	er:BR	1 govelage	Review Date: 2/co/08	
	boratory: DHL 0	Analytic TDS	cal Met	thod!	Matrix:	
	ork Order No.: 0801064	TRS	254	oc	Water	
#	Review Item or Question		Yes	No	Comments (List Exceptions, Explanations, etc.)	
Sar	mple Preservation and Integrity			11.0		
5a	Did samples arrive at the laboratory appropriate	elv			1	
1	preserved (e.g., 4°C, correct acid added to samp	ole)?	V			
2	Were holding times met?		Contraction			
Dat	ta Completeness					
3	Are results reported for all target analytes, with	i no	anaster.			
E 10	additional analytes?		V	1 /		
4	Was the requested analytical method followed?	?	loren			
5	Do reported detection limits (or reporting limits agree with the project specifications (QAPP)?	s/MDL)	V		t state of the second	
6	Are results reported for all samples submitted f analysis?	or	V		ಶ್ರಾಷನ್ ಪನ್ನಿಜ್. ಆರ್.ಜೈ.ಸ.	
Cal	libration and QC Sample Frequency					
7	Were initial and continuing instrument calibrati analyses performed? And reported? ^a	on			herorting KV/CCVs is not required. Let cleck in dieders, ICV/CCVs ok.	
8	For each analytical batch, are results provided f method blank?	or a	V		no effect an data grad	
9	For each analytical batch, are results provided f LCS/LCSD pair?	or an		\checkmark	Only h CS provided i ht drug provided and in co no effect on date qual	
10	For each analytical batch, are results provided f MS/MSD pair? Alternately, are results for MS/ pairs provided for every 20 field samples analys	'MSD		V	rns/hsb is not winder for tos, Les of Lab day ok. No effect on deta	
11	Are field duplicate results provided at the proje specified (QAPP) frequency?	ct-			Replicate pains are 23 m w-0-21 mw-0-31 RPDs for degelicates are wettin control	

dinne to

Data Review Checklist (continued)

Cli	ent/Project: <u>RRC/Duconst Creek</u> Rev horstory: <u>DHL</u> Ana	viewer: RK	600 bighings	Review Date: 2/10/08
		alytical Met	hod:	Matrix:
Wo	boratory: $\mathcal{P}H\mathcal{L}$ Ana ork Order No.: $\mathcal{O}\mathcal{B}\mathcal{O}\mathcal{O}\mathcal{G}\mathcal{H}$ \mathcal{T}	DS 253	YOC	Water
#				Comments (List Exceptions, Explanations,
	Review Item or Question	Yes	No	etc.)
12	Organic Analyses Only: For each sample (field and QC), are surrogate spike results provided?			1104
QC	Results			
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = ND)?	? V		
14	Are LCS/LCSD recoveries and RPDs within limits?		W	(no LCSD provided. no ms/msp provided.
15	Are MS/MSD recoveries and RPDs within limits?		berny	no majorispersided.
16	Are surrogate recoveries within limits (organic analyses only)?			NA Have RPD oke. No NA Heat molata
Oth	ner Data Quality-Related Issues			
17	The laboratory did not issue any CARs. If this is not true (a CAR was issued), describe impact on sample results.	V		
18	The analyst did not describe any analytical anomalie If this is not true, describe potential impact to sample results.	e V		
19	No other potential data quality issues were identified this is not true, describe issues.	l. If		

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

OAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

There was a discrepancy between sample id on sample label and id on COC. Lab noticed discrepancy upon Sample log in. Lab called Intera and was informed COC was correct. Lab changed sample label. There was no effect on Data quality.

January 24, 2008

Daniel Krause INTERA Inc. 1812 Centre Creek Dr. #300 Austin, Texas 78754

TEL: (512) 425-2000 FAX (512) 425-2099

Order No.: 0801064

RE: RRC-O'Ryan, Dugout, Pharoah

Dear Daniel Krause:

DHL Analytical received 33 sample(s) on 1/10/2008 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

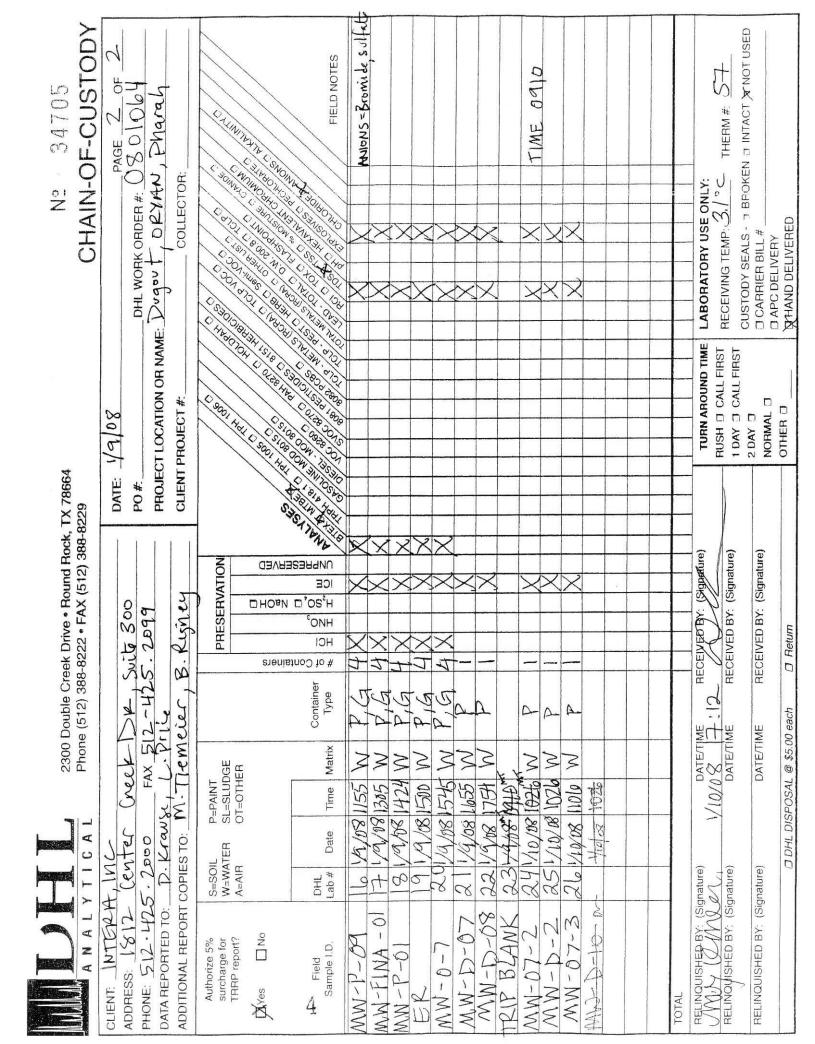
If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

/John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-06-TX

TABLE OF CONTENTS


This report for INTERA Inc. : RRC-O'Ryan, Dugout, Pharoah (DHL Work Order 0801064) contains the following information:

	ITEM						
•	Cover Page	1					
•	Table of Contents	2					
•	Original chain of custody, FedEx slip (if used), log-in checklist	3-7					
•	Laboratory Data Package Signature Page	8					
•	Laboratory Review Checklist	9-10					
•	Case Narrative	11					
•	Work Order Summary	12					
•	Preparation Dates Report	13-17					
•	Analytical Dates Report	18-22					
•	Sample Results	23-55					
•	QC Summary Report	56-70					
•	MQL Summary Report	71					
•	Total Number of Pages	71					

January 24, 2008

Approved: NO n John DuPont

N ² 34703 CHAIN-OF-CUSTODY	PAGE 1 OF 2	DHL WORK ORDER #: 0 8 01064	ECRYAN, DUGOUT, PHARAOH		000	2 10 10 2 11 10 10	002 AN U U	12 C 12	5 (5) (5) (5' (5' (5' (5' (5' (5' (5' (5' (5')))))))) 5 (5' (5' (5' (5' (5' (5' (5' (5' (5' (5	X	XXX	× ×	X X WSW		X	X		X	× ×			CISW/SW XXX			LABORATORY USE ONLY:	RECEIVING TEMP: 2.1 C THERM # 5+	DCARRIER BILL#	A HAND DELIVERED
2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229	DATE: 1/9/08		-ILA	PRICE CLIENT PROJECT	\sum_{n}		13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 00 00 00 00 00 00 00 00 00 00 00 0	0° 0° H H H H H H H H H H H H H H H H H H H						×		×					X	X		(Signature)	BY: (Signature) 1 DAY 3 CALL FIRST	BY: (Signature) 2 DAY 0 NORMAL 0	0THER []
2300 Double Creek Drive • Round Rock, TX 7 A L Phone (512) 388-8222 • FAX (512) 388-8229	4	CREEK Dr. Sto.	100.	D: MUCHELLE IEMELER, LYNDA	P=PAINT SL=SLUDGE		ners	listno	Date Time Matrix Type # C	1 620850 W P 1	1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/08/1040 W	108	081223 W	1281265 W	1/12/250 W, F 1	108 1501 W P 1	M 0551 80/	108 1 610 W	108 11051	108 1015 W	04-10 80,	A		1/10/08 12:12 RECEIVED BY		DATE/TIME RECEIVED BY:	DHL DISPOSAL @ \$5.00 each D Return
ANALYTIC/	NTERA	1212 CEV	DATA REPORTED TO: BAR BAR & KIGNE	ADDITIONAL REPORT COPIES TO: MUCHELLE	Authorize 5% S=SOIL surcharge for W=WATER	TRRP report? A=AIR	XYes DNo		Sample I.D. Lab # Dat	MW-0-15 011/9	MW-0-23 02 1/9	MW-1-23 03 1/9,	MW-0-11 04 1/9	PUISO 8-0-WW	MW-B-9 06 1/9	NW-0-3 071/19	MW - 0 - 5 08 14/	MW-0-12 09 19	1-0-13 10 1	6/ 01	- A-27 13 1/9	1 11 12-0-1	MW-0-31 15119	TOTAL	RELINOUISHED BY: (Signature)	RELINGUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	IHO D

N ² 34700 CHAIN-OF-CUSTODY	PAGE		Dugwit Creek	23-07 C	00/00/	57 5 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 6 6 2 6 6 3 6 6 3 6 7 8 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8		X	X	XXX		XXX	XXX						RECEIVING TEMP: 2.5 C THERM # 57		D HAND DELIVERED
l Rock, TX 78664) 388-8229	DATE: 1/10/08	1	PROJECT I OCATION OR NAME:	CLIENT PROJECT #: RUC-DV (~-13-10)		23 23 23 23 23 23 23 23 23 23 23 23 23 2	LS (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2												- - -			
2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229		S.K. 300	125 . 2099	Tiemeier	PRESERVATION	D HOBN	ICE H ³ 20 ⁴ HNO ³ HCI # 01 C01113	X X	i X	X	i X	×	~	×					RECEIVED BY: (Signature)	U REC	RECEIVED BY: (Signature)	D Return
2300 Double Phone (512)		week Dr. Su	H H	L. Pring, M.	P=PAINT SL=SLUDGE	0T=0THER	Time Matrix Type	COLON Y	8 1002 W P	3 1306 W P	Fill W Fill	Isci W P	1038 W P	iete w P	 				DATE/TIME		DATE/TIME	D DHL DISPOSAL @ \$5.00 each
	1,1116.	L'Center (1.5	D: D. K.K.	TER	A=AIR	DHL Lab # Date	27 Vieles	28 110/08	29 Yioles	0	31 1/2/08	32 1/10/08	23 Vielss	 				(Signature)	(Signature)	(Signature)	анас
ANA	CLIENT: Interva	ADDRESS: 1912	PHONE: 512 . 425 . 200	DAIA REPORTED TO: 15. KILSTE ADDITIONAL REPORT COPIES TO:	Authorize 5% surcharge for	THHP report?	CI Field Sample 1.D.	MW-D-10	12Q-MW	MW-D-DR	MW-D-05	WW-D-OH	5-0-NS	SW-P-Jeep				TOTAL	RELINQUISTED BY	RELINDUISHED BY:	RELINQUISHED BY: (Signature)	

			<i>တ</i> –	ΰz	шш			Γ				
	765531	Round trip		ii							e. 1	
	1	After Hours.			Suite No.:	0			Int		Jes	
	Date 1/8	н. Н. Н.	N N			Weight	Extra time	Mileage	COD Amount		Total Charg	
	Date 1/1/3	. Hr. B.H.	10.					>4		Del. time	Z 5 - Total Charges	
	Account No.	Service Type:			Attn:	Client Ref. No.		Driver 1	Driver 2	P/U time	\$:2	2 m - 2 dogover south 1 prints a test - 1 mm
	Acco	Other				tion						And the second second
NITSI I ATEA ALST ALST ALST ALST ALST ALST ALST ALS	415 Texas Avenue #A1 415 Texas Avenue #A1 Round Rock, Texas 78664 (512) 246-1100 Fax (512) 246-8874	Shipper Consignee	N TRWD			Description/Special Instruction					X X	
CEDVINIC	A15 - 415 -	es paid by:	11			De			11	12	2 Chel	
0	LUBTIN ROFESSIONAL	Delivery charges paid by:	9		20 20	No. of Pieces	~		Received by: Z/	A.	<u>name in</u>	A second s
	Part of the second seco	ο I ·	_ a	<u>م</u>	Ш СС	No. 0			Receiv			

74

 Condity Environmental Containers
 800-255-3950 - 304-255-3900 2 701 Receipt

1

DHL Analytical

Sample Receipt Checklist

Client Name INTERA Inc.		Date Rece	ived: 1/10/2008
Work Order Number 0801064		Received b	y DU
Checklist completed by: Signature / .//. 0.8 Date Carrier name:	Hand Delivered	Reviewed b	ny <u>D</u> Initials <u>Diffug</u>
Shipping container/cooler in good condition?	Yes 🗸	No	Not Present
Custody seals intact on shippping container/cooler?	Yes		Not Present
	_		
Custody seals intact on sample bottles?	Yes 🗌		Not Present 🗹
Chain of custody present?	Yes 🗹	No	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with sample labels?	Yes	No 🔽	
Samples in proper container/bottle?	Yes 🔽	No 🗌	
Sample containers intact?	Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?	Yes 🔽	No 🗌	
All samples received within holding time?	Yes 🖌	No 🗌	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	
Water - VOA vials have zero headspace?	Yes 🗹	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes	No 🗌	Not Applicable 🗹
Adjusted?	Chec	ked by	

Any No response must be detailed in the comments section below.

Client contacted	Intera	Date contacted:	1.11.08	Person contacted	Daniel Krause
Contacted by:	Debbrie U.	Regarding: SM	ple -25	ID	
Comments:	oc ID = M	W-D-2	label I	D = MW - U)-10
		2			
Corrective Action	COC ID I	is Correc	t for th	is samp	le

Laboratory Data Package Signature Page

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

A MAN IN or Signature

01/24/08

Scott Schroeder – Project Manager John DuPont – General / QA Manager

8

		Analytical, Inc.						
La Pro	ject N	Name: RRC-O'RAGN, DULOUT, PHAROGHDate: 1/24/08						
Rev	iewe	r Name: Carlos Castro						
						-		
#1	_	all and a second s	es Report					
#	A	Beserbildh			es 1		VA3	VR ⁴ ER#
		Chain-of-Custody (C-O-C)						ta di Bergarda
R1	0		ipt?			\sim		121-0
		2) Were all departures from standard conditions described in an exception report?		1				
22	01	Sample and Quality Control (QC) Identification						
		1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers?		1	•			
		2) Are all laboratory ID numbers cross-referenced to the corresponding QC data?		1				
23	IO	Test Reports		148				NAT DE DECLET
		1) Were all samples prepared and analyzed within holding times?		~	CONTRACTOR OF THE	20000	10000	
		2) Other than those results < MQL, were all other raw values bracketed by calibration standard	ards?	~				
		3) Were calculations checked by a peer or supervisor?		L	-			
		4) Were all analyte identifications checked by a peer or supervisor?		~	-			
		5) Were sample quantitation limits reported for all analytes not detected?		5		-		
		6) Were all results for soil and sediment samples reported on a dry weight basis?		1	-	-		
		7) Were % moisture (or solids) reported for all soil and sediment samples?		1	-	1		
		8) If required for the project, TICs reported?		1	+	V		-
4	0	Surrogate Recovery Data			24 158			an and the second
		1) Were surrogates added prior to extraction?		199909-02	ILLE COMPANY	~	THEN COASE	
		2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		1		V		
5	OI	Test Reports/Summary Forms for Blank Samples					12	
		1) Were appropriate type(s) of blanks analyzed?		~			200120200	
		2) Were blanks analyzed at the appropriate frequency?		5		1		
		3) Where method blanks taken through the entire analytical process, including preparation an	d, if				-	
		applicable, cleanup procedures?		~				
-	01	4) Were blank concentrations < MQL?		V				
6	OI	Laboratory Control Samples (LCS):	18					5
		1) Were all COCs included in the LCS?		~				
		2) Was each LCS taken through the entire analytical procedure, including prep and cleanup st	eps?	1				
		3) Were LCSs analyzed at the required frequency?		~				
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		1				
		5) Does the detectability data document the laboratory's capability to detect the COCs at the N	ADL used	1				
		to calculate the SQLs?						
1	0]	6) Was the LCSD RPD within QC limits (if applicable)?		1				
-		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data				e (last)	4	he and the second
		1) Were the project/method specified analytes included in the MS and MSD?		7	L	-	-	
		2) Were MS/MSD analyzed at the appropriate frequency?		~		1	-	
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?4) Were MS/MSD RPDs within laboratory QC limits?			~			R7-03
0		Analytical Duplicate Data		~				
-		1) Were appropriate analytical duplicates analyzed for each matrix?				51912	Ng ghay	
	ł	 Were appropriate analytical duplicates analyzed for each matrix? Were applytical duplicates analyzed for each matrix? 		v				
	ŀ	 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were PPDs or relative stor deal duplication within the help of the store store		~				
0	DI	3) Were RPDs or relative standard deviations within the laboratory QC limits?						
-		Method Quantitation Limits (MQLs):		erail			\tilde{m}	
	ŀ	1) Are the MQLs for each method analyte included in the laboratory data package?		~	_			
	H	 Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? Are unadjusted MQLs included in the loberatory data and a standard? 		~				
		3) Are unadjusted MQLs included in the laboratory data package? Other Problems/Anomalies		V	Charles and the	Salara		
10				866 K				
	F	1) Are all known problems/anomalies/special conditions noted in this LRC and ER?						
	1	 2) Were all necessary corrective actions performed for the reported data? 3) Was applicable and available technology used to lower the SQL minimize the matrix interference 					_	
	1.12	JI was applicable and available technology used to lower the SOL minimize the metric interfe	ence 📐	1				

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. 2

O = organic analyses; l = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

NR = Not Reviewed. 4

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). 5

Pro	ject N	ame: RRC-O'RYGN, Ourout, Charonh Date: 1/24/08				- Niles		
Re	viewer	Name: Carlos Castro Laboratory Work Order: 080 (06	1					
#			T Ye	0	No	NIA	1)ID4	ED
S1	OI	Initial Calibration (ICAL)			NO	NA	NR ⁴	ER
		N SCHOLDER R				36.25	00000	n for the and
		1) Were response factors and/or relative response factors for each analyte within QC limits?	V					
		 2) Were percent RSDs or correlation coefficient criteria met? 3) Was the number of star double mercent and highlight in the start of th	1					
		 3) Was the number of standards recommended in the method used for all analytes? 4) Were all points generated between the lower and highly between the lower and high	14	_				
		4) Were all points generated between the lowest and highest standard used to calculate the curve?5) Are ICAL data available for all instruments used?		_			1	_
		6) Has the initial calibration curve been verified using an appropriate second source standard?	t					
52	OI	Initial and Continuing calibration Verification (ICCV and CCV) and Continuing Calibration		0102551205		100 m		
-	10.	blank (CCB):						
		1) Was the CCV analyzed at the method-required frequency?	6163	1. 22			1008330	
		2) Were percent differences for each analyte within the method-required QC limits?	1	_				
		3) Was the ICAL curve verified for each analyte?	1	-				
		 4) Was the absolute value of the analyte concentration in the inorganic CCB < MDL? 	1					
3	0	Mass Spectral Tuning:	- V	16.5 105	ELLER STATE	N MK SDR.M	1 400 ALCONO	a her stational
		1) Was the appropriate compound for the method used for tuning?	100				400	A PARTICIPATION OF
		2) Were ion abundance data within the method-required QC limits?				~		
4	0	Internal Standards (IS):	and the second			~		10.144.555.555
		1) Were IS area counts and retention times within the method-required QC limits?	Conversion of		CALE NO.		Allowing Market 707 - Salary	Contraction of the
5	01	Raw Data (NELAC section 1 appendix A glossary, and section 5.12)	Contraction of the	800 0000		~	Sale Reality	da paranta teran
		1) Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	~			ill'estate		a na chantar an San San San San San San San San San San
		2) Were data associated with manual integrations flagged on the raw data?		+				
6	0	Dual Column Confirmation	>	REC	3400 B 54		THE SECOND	and the second of
		1) Did dual column confirmation results meet the method-required QC?	90.72.45920					IN FRAME
7	0	Tentatively Identified Compounds (TICs):		La Assar	Silves as	्य स्टब्स्	1908000000	
		1) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?				(L) (S)		2 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
8]	Interference Check Sample (ICS) Results:	2000		48, Sil A	~		1. S. S.
		1) Were percent recoveries within method QC limits?	A LEAST		all states and	~	Des Rigers	
9		Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions		(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		SING XESH	1999 94 (1991 1991 1991 1991 1991 1991 1	alfait teals
		1) Were percent differences, recoveries, and the linearity within the QC limits specified in the			ON SECON	Sec. 1	Per la constant	775 - Selfer
		method?	6			\mathbf{v}		
10	OI	Mothed Detection Limit (MDL) 04 1	-					
10		Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?	1					
1	01	2) Is the MDL either adjusted or supported by the analysis of DCSs? Proficiency Test Reports:	N.	× 12607010000				
		1) Was the lable performance accentable on the continuity of the				NUMER !	24250	
2	01	1) Was the lab's performance acceptable on the applicable proficiency tests or evaluation studies? Standards Documentation		-				
				16.90		1.95		
3	01	1) Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources? Compound/Analyte Identification Procedures	•	-				
-		() Are the procedures for compound/analyte identification documented?	Solg Cale				62 (MER)	
4	OI II	Demonstration of Analyst Competency (DOC)	1	SINGS	Second Analysis		100000000000000000000000000000000000000	
-) Was DOC conducted consistent with NELAC Chapter 5C?			26			
		() Is documentation of the analyst's competency up-to-date and on file?	~					
5	01	/erification/Validation Documentation for Methods (NELAC Chap 5)	1	901 - Davis	OBE COR		a post of	CE STATE OF THE OWNER
	1) Are all the methods used to generate the data down and in the internation of the data down and in the data down		Des de	999 (SP)			
	ε) Are all the methods used to generate the data documented, verified, and validated, where pplicable?	~					
5	01 1	aboratory Standard Operating Procedures (SOPs):	a tantata				SUL SALE	-96 - 2018 ⁻¹
								Construction Hill Law

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. 2

O = organic analyses; 1 = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable. 4 NR = Not Reviewed.

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).5

DHL Analytical

Date: 24-Jan-08

CLIENT:INTERA Inc.Project:RRC-O'Ryan, Dugout, Pharoahab Order:0801064

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW8021B - Volatile Organics by GC Analysis Method E300 - Anions Analysis Method M2540C - Total Dissolved Solids

Exception Report R1-01

Samples were received and log-in performed on 1/10/07. A total of 33 samples were received. There was one discrepancy between the sample ID on the Chain of Custody (COC) and the sample label for a sample. The COC had the ID as MW-D-2 and the sample label had the ID MW-D-10. As per the client, the COC was correct and the ID on the label was changed.

Exception Report R7-03 and R7-04

[¬]or Anion analysis, the matrix spikes and/or matrix spike duplicates (0801064-04A MS/MSD and 0801064-4B MS) were slightly below control limits for Bromide or Chloride. These are flagged accordingly in the QC summary report. The reference samples selected for the matrix spikes and matrix spike duplicates were from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

Exception Report R10-01

For Bromide analysis of samples MW-O-21 and SW-O-Seep, the Chloride concentration caused the Chloride peak to coelute with the Bromide peak and the sample required dilution. However, after dilution the bromide was below detection limits.

DHL Analytical

Date:	24-Jan-08	

Induced States and the Real Property of the States of the	The second se
CLIENT:	INTERA Inc.
^D roject:	RRC-O'Ryan, Dugout, Pharoah
ab Order:	0801064

Work Order Sample Summary

	Lab S mp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
	0801064-01	MW-0-15		01/09/08 08:50 AM	1/10/2008
	0801064-02	MW-0-23		01/09/08 10:55 AM	1/10/2008
	0801064-03	MW-I-23		01/09/08 10:40 AM	1/10/2008
	0801064-04	MW-O-11		01/09/08 11:35 AM	1/10/2008
	0801064-05	MW-0-8		01/09/08 12:23 PM	1/10/2008
	0801064-06	MW-0-9		01/09/08 12:55 PM	1/10/2008
	0801064-07	MW-O-3		01/09/08 01:50 PM	1/10/2008
	0801064-08	MW-0-5		01/09/08 03:01 PM	1/10/2008
	0801064-09	MW-0-12		01/09/08 03:30 PM	1/10/2008
	0801064-10	MW-0-13		01/09/08 04:10 PM	1/10/2008
	0801064-11	MW-O-1		01/09/08 04:37 PM	1/10/2008
	0801064-12	MW-0-6		01/09/08 05:25 PM	1/10/2008
	0801064-13	MW-O-22		01/09/08 10:15 AM	1/10/2008
	0801064-14	MW-0-21		01/09/08 09:40 AM	1/10/2008
	0801064-15	MW-O-31		01/09/08 08:48 AM	1/10/2008
	0801064-16	MW-P-09		01/09/08 11:55 AM	1/10/2008
	01064-17	MW-FINA-01		01/09/08 01:05 PM	1/10/2008
	0801064-18	MW-P-01		01/09/08 02:24 PM	1/10/2008
	0801064-19	ER		01/09/08 03:00 PM	1/10/2008
	0801064-20	MW-0-7		01/09/08 03:45 PM	1/10/2008
	0801064-21	MW-D-07		01/09/08 04:55 PM	1/10/2008
1	0801064-22	MW-D-08		01/09/08 05:54 PM	1/10/2008
(0801064-23	Trip Blank		01/09/08	1/10/2008
(0801064-24	MW-07-2		01/10/08 09:10 AM	1/10/2008
(0801064-25	MW-D-2		01/10/08 10:26 AM	1/10/2008
(0801064-26	MW-07-3		01/10/08 11:06 AM	1/10/2008
(0801064-27	MW-D-10		01/10/08 09:04 AM	1/11/2008
(0801064-28	MW-D-01		01/10/08 10:02 AM	1/11/2008
(0801064-29	MW-D-06		01/10/08 01:06 PM	1/11/2008
(0801064-30	MW-D-05		01/10/08 02:24 PM	1/11/2008
(0801064-31	MW-D-04		01/10/08 03:02 PM	1/11/2008
(801064-32	SW-O-Seep		01/10/08 04:38 PM	1/11/2008
(801064-33	SW-P-Seep		01/10/08 04:56 PM	1/11/2008

al
ytic
1
L.F.
ΗI

24-Jan-08

Client: Project: Sample ID C 0801064-01A M M 0801064-02A M	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah	1			PREP]	PREP DATES REPORT	LT .
	RRC-O'Ryan, Du					DALES NELOK	
		gout, Pharoah					
	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
	MW-0-15	01/09/08 08:50 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	D35650
	MW-0-15	01/09/08 08:50 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	010201
	MW-0-15	01/09/08 08:50 AM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 DM	TDS W PUT
	MW-0-23	01/09/08 10:55 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	1 US W-01/14/08
M	MW-0-23	01/09/08 10:55 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	0202CV
M	MW-0-23	01/09/08 10:55 AM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 PM	TDS W 11/10 AV
0801064-03A M	MW-I-23	01/09/08 10:40 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
M	MW-I-23	01/09/08 10:40 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
	MW-I-23	01/09/08 10:40 AM	Aqueous	M2540C	T otal Dissofved Solids	01/14/08 01:30 PM	TDS W-01/14/08
0801064-04A M	MW-0-11	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
M	11-0-MW	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35658
M	MW-0-11	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
M	11-0-WM	01/09/08 11:35 AM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
	11-0-MM	01/09/08 11:35 AM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
0801064-05A M	MW-0-8	01/09/08 12:23 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
M	MW-0-8	01/09/08 12:23 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35632
M	MW-0-8	01/09/08 12:23 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01·30 PM	TDS W 11/10
0801064-06A M	0-0-WM	01/09/08 12:55 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	D15633
M	0-0-WW	01/09/08 12:55 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	
Z	6-0-MW	01/09/08 12:55 PM	Aqueous	M2540C	Total Dissolved Solids	01/11/10 01-30 DW	SCOCEN
0801064-07A M	MW-0-3	01/09/08 01:50 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	1.05.00 1/10- w - 6U 1 1.05.00
M	MW-0-3	01/09/08 01:50 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	CCUCCY
Ψ	MW-0-3	01/09/08 01:50 PM	Aqueous	M2540C	Total Dissolved Solids	Md 06-10 80/01/10	800001
0801064-08A M	MW-0-5	01/09/08 03:01 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	D35633
M	MW-0-5	01/09/08 03:01 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
M	MW-0-5	01/09/08 03:01 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01-30 PM	TDS W 1110 W
0801064-09A M	MW-0-12	01/09/08 03:30 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
M	MW-0-12	01/09/08 03:30 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658

,	_
	Ca
	Ē
	E A
	-
	F
L)
E	E
5	

24-Jan-08

Client: INTERA Inc. Project: RRC-O'Ryan, Du gout, Pharoah Sample ID Client Sample ID Collection Date N 0801064-09A MW-O-13 01/09/08 04:10 PM A 0801064-10A MW-O-13 01/09/08 04:10 PM A 0801064-11A MW-O-13 01/09/08 04:13 PM A 0801064-11A MW-O-13 01/09/08 04:37 PM A 0801064-11A MW-O-1 01/09/08 04:37 PM A 0801064+12A MW-O-1 01/09/08 04:37 PM A 0801064+12A MW-O-1 01/09/08 04:37 PM A 0801064+12A MW-O-2 01/09/08 04:37 PM A 0801064+12A MW-O-2 01/09/08 05:25 PM A 0801064+13A MW-O-22 01/09/08 05:25 PM A 0801064+14B MW-O-22 01/09/08 05:25 PM A 0801064+14B MW-O-22 01/09/08 05:40 AM A 0801064+14B MW-O-21 01/09/08 05:40 AM A 0801064+14B MW-O-21 01/09/08 05:40 AM	x Tes us us us us us us us	PREP 1 Test Name Total Dissolved Solids Anions by IC method - Water Anions by IC method - Water Anions by IC method - Water Total Dissolved Solids	PREP DATES REPORT Prep Date	
RRC-O'Ryan, Du gout, Pharoah Client Sample ID Collection Date MW-0-12 01/09/08 03:30 PM MW-0-13 01/09/08 04:10 PM MW-0-13 01/09/08 04:10 PM MW-0-13 01/09/08 04:37 PM MW-0-1 01/09/08 04:37 PM MW-0-21 01/09/08 05:25 PM MW-0-22 01/09/08 05:25 PM MW-0-22 01/09/08 05:25 PM MW-0-22 01/09/08 05:40 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM	× SN	lved Solids C method C method	Prep Date	
Client Sample ID Collection Date MW-O-12 01/09/08 03:30 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:37 PM MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 08:48 AM MW-O-31 01/09/08 08:48 AM </th <th>X SI SI</th> <th>Test Name Total Dissolved Solids Anions by IC method - Water Anions by IC method - Water Total Dissolved Solids</th> <th>Prep Date</th> <th>Datat ID</th>	X SI	Test Name Total Dissolved Solids Anions by IC method - Water Anions by IC method - Water Total Dissolved Solids	Prep Date	Datat ID
MW-O-12 01/09/08 03:30 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21	21 21 21 21 21 21 21 21 21 21 21 21 21 2	T otal Dissolved Solids Anions by IC method - Water Anions by IC method - Water T otal Dissolved Solids		DALCH III
MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:10 PM MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 04:37 PM MW-O-2 01/09/08 05:25 PM MW-O-2 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-	sh sh sh sh sh sh sh	Anions by IC method - Water Anions by IC method - Water T otal Dissolved Solids	01/14/08 01:30 DNA	TDS W OUT 100
MW-O-13 01/09/08 04:10 PM MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 04:37 PM MW-O-6 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:40 AM	an an an an an an an	Anions by IC method - Water T otal Dissolved Solids	1/17/08/11/10	1.02 W-01/14/08
MW-O-13 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-4 01/09/08 05:25 PM MW-O-5 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 PM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-21 01/09/08 05:40 AM MW-O-31 01/09/08 05:40 AM MW-O-31 01/09/08 05:40 AM MW-0-31 01/09/08 <t< td=""><td>sn sn sn sn sn sn</td><td>T otal Dissolved Solids</td><td>01115/00</td><td></td></t<>	sn sn sn sn sn sn	T otal Dissolved Solids	01115/00	
MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09			80/01/10	R35658
MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:40 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-0-31 01/	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Anione by IC mothed W/	01/14/08 01:30 PM	TDS_W-01/14/08
MW-O-1 01/09/08 04:37 PM MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-5 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 AM MW-O-21 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-0-31 01/09/08 09:40 AM MW-0-31 01/09/08	8 8 8 8	Anions by IC method - Water	01/15/08	R35658
MW-O-1 01/09/08 04:37 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-26 01/09/08 05:25 PM MW-O-22 01/09/08 05:25 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 09:40 AM MW-O-31 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	sn sn	Anions by IC method - Water	01/14/08	R35633
MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	sn sn	Total Discolved Colida	80/01/10	R35658
MW-O-6 01/09/08 05:25 PM MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 10:15 AM MW-O-22 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	SI SI		01/14/08 01:30 PM	TDS_W-01/14/08
MW-O-6 01/09/08 05:25 PM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 01:15 AM MW-O-21 01/09/08 01:15 AM MW-O-22 01/09/08 01:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 08:48 AM MW-O-31 01/09/08 08:48 AM	SI	Anions by IC method - Water	01/14/08	R35633
MW-O-31 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM		Anions by IC method - Water	01/15/08	R35658
MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	N Su	Total Dissolved Solids	01/14/08 01:30 PM	TDS_W-01/14/08
MW-0-22 01/09/08 10:15 AM MW-0-22 01/09/08 10:15 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
MW-O-22 01/09/08 10:15 AM MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:48 AM MW-O-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R35633
MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 08:48 AM	Aqueous M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 08:48 AM MW-O-31 01/09/08 08:48 AM	Aqueous SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	78607
MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 09:40 AM MW-0-21 01/09/08 09:48 AM MW-0-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R35633
MW-O-21 01/09/08 09:40 AM MW-O-21 01/09/08 09:40 AM MW-O-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	D15650
MW-0-21 01/09/08 09:40 AM MW-0-31 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	0202CV
MW-O-31 01/09/08 08:48 AM	Aqueous M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W 011110
MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM MW-0-31 01/09/08 08:48 AM	Aqueous SW5030B	Purge and Trap Water GC	MI 06:10 80/11/10 01/14/08 09-44 AM	1 0.0 W-01/14/08
01/09/08 08:48 AM 01/09/08 08:48 AM 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
01/09/08 08:48 AM 01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R15633
01/09/08 08:48 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
	Aqueous M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-P-09 01/09/08 11:55 AM	Aqueous SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
01/09/08 11:55 AM	Aqueous E300	Anions by IC method - Water	01/14/08	R35633
01/09/08 11:55 AM	Aqueous E300	Anions by IC method - Water	01/15/08	R35658
MW-P-09 01/09/08 11:55 AM A	Aqueous E300	Anions by IC method - Water	01/15/08	R35658

DHL + Jytical

24-Jan-08

INTERA Inc. PREEP DATTES REFPORT RRC-ORyan, Dugout, Phareah Martin Test Name Prop Date RRC-ORyan, Dugout, Phareah Martin Test Name Prop Date NW-FD-00 Olloroffic ID K Matrix Test Name Prop Date NW-FDA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0135 014 NW-FINA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 014 NW-FINA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 0FM NW-FINA-01 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 0FM NW-FIO1 0109058 0135 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 0FM NW-FIO1 0109058 0124 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 AM NW-FIO1 0109058 0124 FM Aqueous E300 Anionis by IC method. Water 01/14/08 0134 AM NW-FIO1 0109098 01234 FM Aqu	Tran OI net	1001004						
RRC-ORyan, Diagous, Phancah Marris Test Number Test Number Prep Date NW-P-09 01/09/08 11:35 AM Aqueous N2540C Total Dissolved Solids Prep Date NW-P-09 01/09/08 11:35 AM Aqueous N2540C Total Dissolved Solids 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FINA-01 01/09/08 01:35 PM Aqueous E300 Anions by Comethiod - Water 01/14/08 01:30 PM NW FP-01 01/09/08 01:35 PM Aqueous E300 Anions by IComethiod - Water 01/14/08 01:30 PM	Client:	INTERA Inc.				PREPT	DATES REPOR	E
Client Sample ID Collection Date Matrix Text Number Text Number Text Number Prep Date NWW-P-09 0.109008 11:35 AM Apreous 8X3500 Total Dissolved Solids 011/4108 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous SY35030 Purge and Trap Water CC 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-F1NA-01 0.109008 01:35 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-P-01 0.109008 02:24 FM Apreous E300 Anions by IC method - Water 01/14/08 01:30 FM NWW-P-01 0.109008 02:24 FM Apreous E300 Anions by IC method - Water 01/14/08 09:44 AM NWW-P-01 0.109008 02:24 FM Apreous E300 Anions by IC method - W	Project:	RRC-O'Ryan, Du	gout, Pharoah					-
MW-F-49 01/09/08 11:35 MA Aqueous M330;01 Purge and Trap Water CC 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous SW35303 Purge and Trap Water CC 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous SW35303 Purge and Trap Water CC 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 01:30 PM NW-FINA-01 01/09/08 01:35 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-FINA-01 01/09/08 01:35 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-FINA-01 01/09/08 02:34 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-F-01 01/09/08 02:34 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-F-01 01/09/08 02:324 PM Aqueous E3:00 Anions by IC method. Water 01/14/08 NW-F-01 01/09/08 02:324 PM Aqueous E3:00 Anions by IC method. Water 01/14/08	Sample ID	Client Sample ID	Collection Date		Fest Number	Test Name	Prep Date	Batch ID
MW-FINA-01 01/09/08 01:05 PM Aqueous SW 5030 Purge and Trap Wreter CC 01/14/08 01/14/08 01/14/08 03/14 MW-FINA-01 01/09/08 01:05 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/0	0801064-16B	0-9-09	01/09/08 11:55 AM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/14/08 NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/15/08 NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/15/08 NW-FINA-01 0.1/9/08 01.35 FM Aqueous E300 Anions by IC method - Water 0.1/14/08 0.1/3/08 NW-FINA-01 0.1/9/08 02.34 FM Aqueous SW3030 Fundo 0.1/14/08 0.1/1	0801064-17A	MW-FINA-01	01/09/08 01:05 PM	Aqueous	SW 5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
WW-FINA-01 01/09/08 01:35 FM Appects E300 Anions by IC method - Water 01/15/08 WW-FINA-01 01/09/08 01:35 FM Appects E300 Anions by IC method - Water 01/15/08 WW-FINA-01 01/09/08 01:35 FM Appects E300 Anions by IC method - Water 01/15/08 MW-FINA-01 01/09/08 01:35 FM Appects K3530B Puge and Trap Water CC 01/14/08 01/14/08 MW-F1NA-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/14/08 01/14/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/14/08 01/14/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/15/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/15/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water 01/14/08 01/14/08 MW-P-01 01/09/08 02:34 FM Appects E300 Anions by IC method - Water	0801064-17B	MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
WW-FINA-01 0109/08 01:05 FM Agreeus E300 Anions by IC method - Water 01/15/08 WW-FINA-01 01/09/08 01:05 FM Aqreeus E300 Anions by IC method - Water 01/14/08 01/14		MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
MW-FINA-01 01/09/08 01:05 PM Aqueous E300 Anions by IC method - Water 01/14/08		MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
WW-FINA-01 01/09/08 01:05 PM Aqueous M2540C Total Dissolved Srids 01/14/08 01:30 PM MW-P-01 01/09/08 02:24 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method- Water 01/14/08 09:44 AM MW-P-01 01/09/08 03:30 PM Equipment Blank R5300 Anions by IC method- Water 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank M2540C Total Dissolved Solids 01/14/08 09:44 AM <		MW-FINA-01	01/09/08 01:05 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	R35721
MW.P-01 01/09/08 02:34 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09/14 AM MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 09/14 AM MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/15/08 MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/16/08 MW.P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08		MW-FINA-01	01/09/08 01:05 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/13/08 MW-P-01 01/09/08 02:34 PM Aqueous E300 Anions by IC method - Water 01/13/08 MW-P-01 01/09/08 02:32 PM Aqueous E300 Anions by IC method - Water 01/13/08 MW-P-01 01/09/08 02:32 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-P-01 01/09/08 02:32 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-P-01 01/09/08 03:30 PM Equipment Blank SW5030B Purge and Tap Water GC 01/14/08 01/14/08 RR 01/09/08 03:30 PM Equipment Blank E8 M350Pcd E4 01/14/08 01/14/08 MW-0-7 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:34 PM Aqueous E730 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:34 PM <	0801064-18A	MW-P-01	01/09/08 02:24 PM	Aqueous	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW. P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW. P-01 01/09/08 02:24 PM Aqueous M3540C Total Dissolved Solids 01/14/08 01:30 PM MW. P-01 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank M2540C Total Dissolved Solids 01/14/08 09:44 AM MW. O-7 01/09/08 03:35 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW. O-7 01/09/08 03:35 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW. O-7 01/09/08 03:35 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW. O-7	0801064-18B	MW-P-01	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
W.P-01 $01/09/08$ 02.24 PM Aqueous E300 Anions by IC method- Water $01/15/08$ $WW-P-01$ $01/09/08$ 02.24 PM Aqueous E300 Anions by IC method- Water $01/14/08$ $01/$		MW-P-01	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
MW-P-01 01/09/08 02:24 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-P-01 01/09/08 02:24 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM FR 01/09/08 03:30 PM Equipment Blank Sv3030B Purge and Trap Water CC 01/14/08 01:30 PM FR 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 FR 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:34 AM FR 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:34 AM FR 01/09/08 03:34 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV5030B Purge and Trap Water GC 01/14/08 MW-O-7 01/09/08 03:45 PM Aqueous SV504		MW-P-01	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	80/81/10	R35721
MW-P-01 01/09/08 02:24 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM ER 01/09/08 03:30 PM Equipment Blank SW3030B Purge and Trap Water GC 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:44 AM ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/14/08 09:44 AM ER 01/09/08 03:345 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:345 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:345 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM <td></td> <td>10-9-WM</td> <td>01/09/08 02:24 PM</td> <th>Aqueous</th> <td>E300</td> <td>Anions by IC method - Water</td> <td>01/15/08</td> <td>R35658</td>		10-9-WM	01/09/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
ER 01/09/08 03:00 PM Equipment Blank SW5030B Purge and Trap Water CC 01/14/08 09:44 AM ER 01/09/08 03:00 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 ER 01/09/08 03:00 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 ER 01/09/08 03:00 PM Equipment Blank M2540C Total Dissolved Solids 01/14/08 03:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 03:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/14/08 MW-0-7 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water <t< td=""><td></td><td>MW-P-01</td><td>01/09/08 02:24 PM</td><th>Aqueous</th><td>M2540C</td><td>Total Dissolved Solids</td><td>01/14/08 01:30 PM</td><td>TDS W-01/14/08</td></t<>		MW-P-01	01/09/08 02:24 PM	Aqueous	M2540C	Total Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 ER 01/09/08 03:30 PM Equipment Blank E300 Anions by IC method - Water 01/15/08 01/16/08 01/15/08 ER 01/09/08 03:30 PM Equipment Blank M2540C Total Dissolved Solids 01/16/08 01/15/08	0801064-19A	ER	01/09/08 03:00 PM Ec	luipment Blank	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	78697
ER 01/09/08 03:00 PM Equipment Blank E300 Anions by IC method - Water 01/16/08	0801064-19B	ER	01/09/08 03:00 PM Ec	luipment Blank	E300	Anions by IC method - Water	01/15/08	R35658
ER 01/09/08 03:05 PM Equipment Blank M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-0-7 01/09/08 03:45 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08		ER	01/09/08 03:00 PM Ec	luipment Blank	E300	Anions by IC method - Water	01/15/08	R35656
MW-0-7 01/09/08 03:45 PM Aqueous SW5030B Purge and Trap Water GC 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 09:44 AM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07		ER	01/09/08 03:00 PM Ec	luipment Blank	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01/15/08 MW-D-07 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 <td< td=""><td>0801064-20A</td><td>MW-0-7</td><td>01/09/08 03:45 PM</td><th>Aqueous</th><td>SW5030B</td><td>Purge and Trap Water GC</td><td>01/14/08 09:44 AM</td><td>28697</td></td<>	0801064-20A	MW-0-7	01/09/08 03:45 PM	Aqueous	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-0-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/14/08 01:30 PM MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 05:54	0801064-20B	MW-0-7	01/09/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/14/08	R35633
MW-O-7 01/09/08 03:45 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-O-7 01/09/08 03:45 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM		MW-0-7	01/09/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35658
MW-0-7 01/09/08 03:45 PM Aqueous M2540C Total Dissolved Solids 01/14/08 01:30 PM MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/16/08 01:00 PM MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		7-0-7M	01/09/08 03:45 PM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35658
MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/16/08 01:00 PM MW-D-07 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-0-7	01/09/08 03:45 PM	Aqueous	M2540C	T otal Dissolved Solids	01/14/08 01:30 PM	TDS W-01/14/08
MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-D-08 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08	0801064-21A	MW-D-07	01/09/08 04:55 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	
MW-D-07 01/09/08 04:55 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-D-08 01/09/08 05:54 PM Aqueous M2300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-D-07	01/09/08 04:55 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
MW-D-07 01/09/08 04:55 PM Aqueous M2540C Total Dissolved Solids 01/16/08 01:00 PM MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-D-07	01/09/08 04:55 PM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08 MW-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08		MW-D-07	01/09/08 04:55 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
IV-D-08 01/09/08 05:54 PM Aqueous E300 Anions by IC method - Water 01/15/08	0801064-22A	MW-D-08	01/09/08 05:54 PM	Aqueous	E300	Anions by IC method - Water	80/51/10	_ R35656
		MW-D-08	01/09/08 05:54 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656

DHL +. ...Iytical

24-Jan-08

Lab Order:	0801064						
Client:	INTERA Inc.				PREPI	PREP DATES REPORT	E
Project:	RRC-O'Ryan, Du gout, Pharoah	ı gout, Pharoah					-
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
0801064-22A	MW-D-08	01/09/08 05:54 PM	Aqueous	M2540C	T otal Dissolved Solids	01/16/08 01:00 PM	T.D.S. W01/16/08
0801064-23A	Trip Blank	01/09/08	Trip Blank	SW5030B	Purge and Trap Water GC	01/14/08 09:44 AM	28697
0801064-24A	MW-07-2	01/10/08 09:10 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-2	01/10/08 09:10 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-2	01/10/08 09:10 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-2	01/10/08 09:10 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-25A	MW-D-2	01/10/08 10:26 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-2	01/10/08 10:26 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-2	01/10/08 10:26 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-2	01/10/08 10:26 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-26A	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	
	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	80/81/10	R35721
	MW-07-3	01/10/08 11:06 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	MW-07-3	01/10/08 11:06 AM	Aqueous	M2540C	T otal Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-27A	MW-D-10	01/10/08 09:04 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	
	MW-D-10	01/10/08 09:04 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-10	01/10/08 09:04 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-28A	10-D-01	01/10/08 10:02 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	MW-D-01	01/10/08 10:02 AM	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	10-D-MM	01/10/08 10:02 AM	Aqueous	E300	Anions by IC method - Water	01/15/08	R3 5656
	10-D-MM	01/10/08 10:02 AM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-29A	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	MW-D-06	01/10/08 01:06 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	R35721
	MW-D-06	01/10/08 01:06 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-30A	MW-D-05	01/10/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
Page 4 of 5	of 5						

DHL Alytical

24-Jan-08

Lab Order:	0801064						
Client:	INTERA Inc.				PREPT	PREP DATES DEDOUT	
Project:	RRC-O'Ryan, Dugout, Pharoah	gout, Pharoah				VALES NELOK	
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
0801064-30A	MW-D-05	01/10/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	DJSESE
	MW-D-05	01/10/08 02:24 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	020201
	MW-D-05	01/10/08 02:24 PM	Aqueous	M2540C	T otal Dissolved Solids	01/16/08 01-00 BM	
0801064-31A	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	01/15/00	1 US_W -01/16/08
	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	00/CT/10	000053
	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	00/01/10	05065X
	MW-D-04	01/10/08 03:02 PM	Aqueous	E300	Anions by IC method - Water	00/01/10	0C0CEX
	MW-D-04	01/10/08 03:02 PM	Aquenus	M7540C	Total Discolved Solids	01/11/10	K35679
0801064-32A	SW-O-Seep	01/10/08 04:38 PM	Anneona	E200		MJ 00:10 80/10 PW	TDS_W-01/16/08
	SW-O-Seen	01/10/08 04-38 DM	encomber.	1200	Autous by IC include - Water	01/15/08	R35656
		IN 1 0C.FU 00/01/10	Aqueous	E300	Anions by IC method - Water	01/12/08	R35656
	SW-U-Seep	01/10/08 04:38 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
0801064-33A	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	R35656
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	P35656
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/15/08	0505CI
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/16/08	000000
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	E300	Anions by IC method - Water	01/18/08	6/0000
	SW-P-Seep	01/10/08 04:56 PM	Aqueous	M2540C	Total Dissolved Solids	01/16/08 01:00 PM	TDS W-01/16/08
							00/01/10- M - CO 1

DHL / alytical

24-Jan-08

REP									
INTERA Inte. ANALYTICAL DATES REP. REC-ORgan, Digout, Planchi Antiona by Common Water Colst Number Antiona by Common Water Colspan="6">Anti-Nationa Science District Anti-National Science Batch ID District Anti-National Science District Anti-Nationaly Comortice A	Lab Order:	0801064							
RIC-OF3an, Dugout, Planch CIFCent Strangle LD Martix Test Number Tes	Client:	INTERA Inc.				ANAI	JITY	AL DATES RI	Tandr
Client Sample ID Natrix Test Number Fist Number	Project:	RRC-O'Ryan, Du	gout, Pharoah						
MW-0-15 Aqueous E300 Anionis by IC method - Water R3563 2 01/14/08 [1:35 AM] MW-0-13 Aqueous E300 Anionis by IC method - Water R3563 10 01/15/08 [1:35 AM] MW-0-13 Aqueous B300 Anionis by IC method - Water R3563 10 01/15/08 [1:35 AM] MW-0-23 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-23 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis by IC method - Water R3563 10 01/14/08 [1:27 AM] MW-0-11 Aqueous B300 Anionis	Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
MW-O-15 Aqueous E10 Anions by IC method - Water R3563 100 011508 11:35 AM MW-O-13 Aqueous B200 Anions by IC method - Water R3563 100 011508 11:35 AM MW-O-13 Aqueous E300 Anions by IC method - Water R3563 10 011508 11:35 AM MW-O-23 Aqueous E300 Anions by IC method - Water R3563 10 011508 11:32 AM MW-O-23 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-13 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water R3563 10 011408 11:32 AM MW-O-11 Aqueous E300 Anions by IC method - Water <	0801064-01A	MW-0-15	A queo us	E300	Anions by IC method - Water	R35633	c	01/14/08 11-13 444	
MW-0-15 Aqueous M2-40(5 Total Dissolved Suits TDS_W-01/14/08 1 0.11/15/08 063-0 AM MW-0-23 Aqueous E30 Anions by IC method - Water E35533 1 0.11/15/08 063-0 AM MW-0-23 Aqueous E300 Anions by IC method - Water E35533 1 0.11/15/08 063-0 AM MW-0-23 Aqueous E300 Anions by IC method - Water E35533 1 0.11/15/08 033-0 AM MW-1-23 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-25 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-25 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-27 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 10 0.11/16/08 11-27 AM MW-0-11 Aqueous E300 Anions by IC method - Water E35533 1 0.11/16/08 11-27 AM MW-0-11 Aqueous E300 An		MW-0-15	Aqueous	E300	Anions by IC method - Water	R35658	- 100	MV 5011 00/51/10	102_080114A
MW-0-23 Aqueous Earlow Anions by Cmethod - Water IDS_MOUTHOMS ID OUT3008 083.0 AM MW-0-23 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-0-23 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-0-13 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-113 Aqueous E300 Anions by Cmethod - Water R35633 1 0.113/08 083.0 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35633 1 0.114/08 11:57 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35653 10 0.113/08 02:32 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35653 1 0.114/08 11:57 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water R35653 1 0.114/08 11:27 AM MW-0-11 Aqueous E300 Anions by Cmethod - Water		MW-0-15	Aqueous	M2540C	Total Discolved Solids	TDC III OTT		MA CC:11 00/C1/10	IC_080115A
MW -0-23 Aqueous E300 Anionus by I Cmethod - Water E35633 I O (1/1308 11:27 AM MW -0-23 Aqueous E300 Anionus by I Cmethod - Water E35633 I O (1/1308 11:32 AM MW -0-13 Aqueous E300 Anions by I Cmethod - Water E35633 I O (1/1308 11:32 AM MW -1-13 Aqueous E300 Anions by I Cmethod - Water E35633 I O (1/1508 11:32 AM MW -1-13 Aqueous E300 Anions by I Cmethod - Water E35633 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 11:32 AM MW -0-11 Aqueous E300 Anions by I Cmethod - Water E35635 I O (1/1508 01:32 PM MW -0-11 Aqueous E300 Anio	0801064-02A	MW-0-23	Aqueous	E300	Anions by IC method - Water	1.D5_W-U1/14/U D35658		01/15/08 08:30 AM	WC_080114A
NW -0.23 Aqueous M2340C Tent bits bles bles bles Decomposition Decomposition </td <td></td> <td>MW-0-23</td> <td>Aqueous</td> <td>E300</td> <td>Anions by IC method - Water</td> <td>D35633</td> <td>10</td> <td>MA 06:11 80/01/10</td> <td>IC_080115A</td>		MW-0-23	Aqueous	E300	Anions by IC method - Water	D35633	10	MA 06:11 80/01/10	IC_080115A
WW-1-23 Aqueous E300 Anions by IC method - Water R35633 1 0.11/308 19:50.6 FM MW-1-23 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 19:50.6 FM MW-1-13 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 19:50.6 FM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 19:50.6 FM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/508 11:57 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 0.11/408 11:57 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/408 12:22 FM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 0.11/408 12:22 FM MW-0-13 Aqueous E300 Anions by IC method - Water R35638 1 0.11/408 12:22 FM MW-0-2 Aqueous E300 Anions by IC metho		MW-0-23	Aqueous	M2540C	Total Dissolved Solids	OTATIO W SOT		01/14/08 11:27 AM	IC2_080114A
WW-1-23 Agrous E300 Automation Matrix Matr	0801064-03A	MW-I-23	Aqueous	E300	Anions hv 1C method - Water	0/41/10- M COTI		MA US:30 80/C1/10	WC_080114A
WW-1-23 Aqueous M24-123 Aqueous M24-124 TDS_W-01/14/08 1 01/15/08 03:30 AM WW-0-11 Aqueous E300 Anious by IC method - Water R3553 1 0.1/15/08 03:30 AM MW-0-11 Aqueous E300 Anious by IC method - Water R3553 2 01/14/08 11:57 AM MW-0-11 Aqueous E300 Anious by IC method - Water R35533 2 01/14/08 01:57 PM MW-0-11 Aqueous E300 Anious by IC method - Water R35533 2 01/14/08 11:57 AM MW-0-11 Aqueous E300 Anious by IC method - Water R35533 1 01/14/08 11:37 AM MW-0-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 11:37 AM MW-0-3 Aqueous E300 Anions by IC method - Water R35553 0 01/15/08 03:30 AM MW-0-3 Aqueous E300 Anions by IC method - Water R35553 1 0/1/14/08 01:37 PM MW-0-3 Aqueous E300 Anions by IC		MW-I-23	Aqueous	E300	Anions by IC method Water	600CM		01/14/08 11:42 AM	IC2_080114A
MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 01:40 PM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 01:40 PM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 11:57 AM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/15/08 11:57 AM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3553 2 01/14/08 11:57 AM MW-O-11 Aqueous E300 Anions by I Cmethod - Water R3553 10 01/15/08 02:34 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water R3553 1 01/14/08 12:12 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water R3563 50 01/14/08 01:37 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water R3563 10 01/14/08 01:37 PM MW-O-3 Aqueous E300 Anions by I Cmethod - Water <td></td> <td>MW-I-23</td> <td>Aditeons</td> <td>JUD S A DC</td> <td>Total Discillation of the</td> <td></td> <td></td> <td>Md 90:71 80/c1/10</td> <td>IC_080115A</td>		MW-I-23	Aditeons	JUD S A DC	Total Discillation of the			Md 90:71 80/c1/10	IC_080115A
MW-0-11 Aqueous E300 Anionis by IC method - water R35638 10 01/15/08 01:40 PM MW-0-11 Aqueous E300 Anionis by IC method - water R35633 2 01/14/08 11:57 AM MW-0-11 Aqueous E300 Anionis by IC method - water R35633 2 01/14/08 01:50 PM MW-0-11 Aqueous M3240C Total Dissolved Suids TDS_W-01/14/08 1 01/15/08 03:20 AM MW-0-11 Aqueous M3240C Total Dissolved Suids TDS_W-01/14/08 1 01/14/08 01:20 PM MW-0-8 Aqueous B300 Anions by IC method - water R35638 10 01/14/08 01:3 PM MW-0-8 Aqueous B300 Anions by IC method - water R35658 10 01/14/08 01:3 PM MW-0-9 Aqueous B300 Anions by IC method - water R35658 10 01/14/08 01:3 PM MW-0-9 Aqueous B300 Anions by IC method - Water R35658 10 01/14/08 01:3 PM MW-0-3 Aqueous B300 Anions by IC metho	0801064-04A	MW-0-11	on on his v	E300		1.DS_W-01/14/0		01/15/08 08:30 AM	WC_080114A
MW-0-11 Aqueous E-300 Anions by IC method - Water R35633 2 01/14/08 01:57 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 01/14/08 02:25 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 01/14/08 02:25 PM MW-0-11 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 02:12 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 02:12 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 02:12 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 02:13 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:13 PM MW-0-9 Aqueous E300 Anions by IC method - W			v ducous	E300	Anions by IC method - Water	R35658	10	01/15/08 01:40 PM	IC_080115A
MW-0-11 Aqueous E300 Anions by IC method - Water R35633 2 01/14/08 02:25 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35638 100 01/15/08 12:32 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 12:12 PM MW-0-11 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 12:12 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 12:12 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:13 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35638 10 01/15/08 02:34 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35638 1 01/14/08 01:13 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35638 1 01/14/08 01:13 PM MW-0-3 Aqueous E300 Anions by IC method - Water<			Aqueous	E300	Anions by IC method - Water	R35633	2	01/14/08 11:57 AM	IC2_080114A
MW-0-11 Aqueous E300 Anions by IC method - Water R35638 100 01/15/08 12:22 PM MW-0-11 Aqueous M240C1 Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-0-11 Aqueous B300 Anions by IC method - Water R35633 1 01/15/08 01:30 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:30 PM MW-0-8 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:30 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 02:34 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:32 AM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:32 AM MW-0-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01:32 AM MW-0-3 Aqueous E300 Anions by IC method		11-0-MW	Aqueous	E300	Anions by IC method - Water	R35633	2	01/14/08 02:25 PM	IC2 080114A
$WW-0-11$ Aqueous $M2340C$ Tad Ibisolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM $WW-0-8$ Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 12:12 PM $WW-0-8$ Aqueous E300 Anions by IC method - Water R35538 50 01/15/08		11-0-MM	Aqueous	E300	Anions by IC method - Water	R35658	001	01/15/08 12:22 PM	IC 080115A
MW-O-8 Aqueous E300 Anions by IC method - Water R3553 1 01/14/08 12:12 PM MW-O-8 Aqueous E300 Anions by IC method - Water R3553 50 01/15/08 01:09 PM MW-O-8 Aqueous E300 Anions by IC method - Water R3553 50 01/15/08 01:09 PM MW-O-8 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/14/08 01:13 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35558 10 01/15/08 02:34 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35553 10 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35553 1 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water </td <td></td> <td>11-0-MM</td> <td>Aqueous</td> <td>M2540C</td> <td>Total Dissolved Solids</td> <td>TDS_W-01/14/0</td> <td>8</td> <td>01/15/08 08:30 AM</td> <td>WC 080114A</td>		11-0-MM	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	8	01/15/08 08:30 AM	WC 080114A
MW-O-8 Aqueous E300 Anions by IC method - Water R35558 50 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 03:30 AM MW-O-9 Aqueous M2540C Total Dissolved Solids R35658 10 01/15/08 02:32 PM MW-O-9 Aqueous B300 Anions by IC method - Water R35658 50 01/15/08 03:30 AM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-O-3 Aqueous M3250C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08	0801064-05A	MW-0-8	Aqueous	E300	Anions by IC method - Water	R35633	1	01/14/08 12:12 PM	- IC2 080114A
MW-O-8 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 I 01/15/08 08:30 AM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 02:24 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 02:24 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 1 01/15/08 02:39 PM MW-O-9 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 02:39 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 01:37 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 01:37 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 10 01/14/08 01:27 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35658 10 01/14/08 01:27 PM MW-O-5 Aqueous E300 Anions by IC method - W		MW-0-8	Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 01:09 PM	IC 080115A
MW-0-9 Aqueous E300 Anions by IC method - Water R35538 10 01/15/08 02:24 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:13 PM MW-0-9 Aqueous E300 Anions by IC method - Water R35533 1 01/15/08 02:39 PM MW-0-9 Aqueous M3540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 02:39 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35533 1 01/14/08 01:27 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-0-3 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-0-5 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:42 PM MW-0-5 Aqueous E300 Anions by IC method - Water </td <td></td> <td>MW-0-8</td> <td>Aqueous</td> <td>M2540C</td> <td>Total Dissolved Solids</td> <td>TDS_W-01/14/0</td> <td></td> <td>01/15/08 08:30 AM</td> <td>WC 080114A</td>		MW-0-8	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0		01/15/08 08:30 AM	WC 080114A
MW-0-9 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:13/08 08:30 MM MW-0-9 Aqueous M32540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-0-3 Aqueous B300 Anions by IC method - Water R35638 50 01/15/08 03:30 AM MW-0-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01/15/08 03:30 AM MW-0-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 1 01/14/08 01/15/08 03:30 AM MW-0-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-0-5 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 M M 01/14/08 01/14/08 01/14/08 0	0801064-06A	MW-0-9	Aqueous	E300	Anions by IC method - Water	R35658	10	01/15/08 02:24 PM	IC 080115A
MW-O-9 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 I 01/15/08 08:30 AM MW-O-3 Aqueous B300 Anions by IC method - Water R35638 50 01/15/08 03:37 PM MW-O-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-O-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-O-3 Aqueous B300 Anions by IC method - Water R35633 1 01/14/08 01:27 PM MW-O-5 Aqueous B300 Anions by IC method - Water R35638 100 01/15/08 02:54 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35658 100 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08 01/15/08		0-0-WM	Aqueous	E300	Anions by IC method - Water	R35633	I	01/14/08 01:13 PM	IC2 080114A
MW-O-3 Aqueous E300 Anions by IC method - Water R35658 50 01/15/08 02:39 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01/15/08 02:37 PM MW-O-3 Aqueous E300 Anions by IC method - Water R35633 1 01/15/08 08:30 AM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-O-5 Aqueous E300 Anions by IC method - Water R35658 10 01/14/08 0		MW-0-9	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	8 I	01/15/08 08:30 AM	WC 080114A
MW-O-3 Aqueous E300 Anions by IC method - Water R35633 I 01/14/08 01:27 PM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 02:54 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35653 100 01/15/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/15/08 03:00 AM MM MM 00/10 01/14/08 01/15/08 03:01 MM MM 00/10 01/14/08 01/15/08 03:03 AM MM MM 00/10 01/14/08 01/16/08 01/15/08 03:08 MM MM 00/10 01/10 01/16/08 01/16/08 01/16/08 01/16/08 01/16/08<	0801064-07A	MW-0-3	Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 02:39 PM	IC 080115A
MW-O-3 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 08:30 AM MW-O-5 Aqueous E300 Anions by IC method - Water R35658 100 01/15/08 03:54 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/15/08 08:30 AM MW-O-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:03 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35653 1 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08 01/14/08		MW-0-3	Aqueous	E300	Anions by IC method - Water	R35633	I	01/14/08 01:27 PM	IC2 080114A
MW-O-5 Aqueous E300 Anions by IC method - Water R35658 100 01/15/08 02:54 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:42 PM MW-O-5 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01:42 PM MW-O-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 1 01/15/08 03:30 AM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM		MW-0-3	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	8	01/15/08 08:30 AM	WC 080114A
MW-O-5 Aqueous E300 Anions by IC method - Water R35633 I 01/14/08 01:42 PM MW-O-5 Aqueous M2540C T otal Dissolved Solids T DS_W-01/14/08 I 01/15/08 08:30 AM MW-O-12 Aqueous M3563 T DS_W-01/14/08 I 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35653 1 01/14/08 01/74/	0801064-08A	MW-0-5	Aqueous	E300	Anions by IC method - Water	R35658	100	01/15/08 02:54 PM	IC 080115A
MW-O-5 Aqueous M2540C Total Dissolved Solids TDS_W-01/14/08 I 01/15/08 08:30 AM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM		MW-0-5	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 01:42 PM	IC2 080114A
MW-O-12 Aqueous E300 Anions by IC method - Water R35658 10 01/15/08 03:08 PM MW-O-12 Aqueous E300 Anions by IC method - Water R35633 1 01/14/08 01 - 57 PM		MW-0-5	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/0	1 8	01/15/08 08:30 AM	WC 080114A
Aqueous E300 Anions by IC method - Water R35633 I 01/14/08 01-57 PM	0801064-09A	MW-0-12	Aqueous	E300	Anions by IC method - Water	R35658	10	01/15/08 03:08 PM	IC 080115A
		MW-0-12	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 01:57 PM	IC2 080114A

DHL Alytical

24-Jan-08

							24-Jan-U8	
Lab Order:	0801064							
Client:	INTERA Inc.				ANALA		ANAL VITCAL DATES DEPORT	
Project:	RRC-O'Ryan, Du gout, Pharoah	gout, Pharoah					N CITED IN	EFUKI
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID D	Dilution	Analvsis Date	Run ID
0801064-09A	MW-0-12	Aqueous	M2540C	Total Dissolved Solids	TDS W 1/10 W			
0801064-10A	MW-0-13	Supering	6300		00/+1/10- M COT 1	-	MA UE:80 80/C1/10	WC_080114A
		en combru	0003	Anions by IC method - Water	R35658	10	01/15/08 03:23 PM	IC_080115A
	MW-0-13	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 02:10 PM	IC2 080114A
	MW-0-13	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	1	01/15/08 08-30 AM	M/C 080114 v
0801064-11A	MW-0-1	Aqueous	E300	Anions by IC method - Water	R35633	-	01/14/08 03·09 PM	1C7 080114A
	MW-0-1	Aqueous	E300	Anions by IC method - Water	R35658	10	01/15/08 03-38 PM	
	MW-0-1	Aqueous	E300	Anions by IC method - Water	R35658	20	MA C2-50 80/21/10	10 0801154
	I-0-WW	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	-	M 1 20:00 80/21/10	MC 0001117A
0801064-12A	MW-0-6	Aqueous	E300	Anions by IC method - Water	- R35658	50	MA CC:00 80/21/10	WC_U8U114A
	MW-0-6	Aqueous	E300	Anions by IC method - Water	R35633	-	MI 12710 80/61/10	102 000113A
	MW-0-6	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	• -	1/15/08 05:20 AM	1C2_080114A
0801064-13A	MW-0-22	Aqueous	E300	Anions by IC method - Water	R35633	-	MA 73-50 80/11/0	WC_080114A
	MW-0-22	Aqueous	E300	Anions by IC method - Water	R35658	20	MI 12:00 80/21/10	10,000,114A
	MW-0-22	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/14/08	_	01/15/08 08:30 AM	
0801064-14A	MW-0-21	Aqueous	SW8021B	Volatile Organics by GC	78697	· -	MA UC.00 00/01/10	WC_080114A
0801064-14B	MW-0-21	Aqueous	E300	Anions hv IC method Water	D35650		MA/C:71 80/41/10	GC9_080114A
	MW-0-21	Aqueous	E300	Anions by IC method - Water	00000V	100	01/15/08 04:51 PM	IC_080115A
	MW-0-71	A critectic	E200		8000 CM	005	01/15/08 05:46 PM	IC_080115A
	12-0- MM	Aqueous	E300	Anions by IC method - Water	R35633	10	01/14/08 04:11 PM	IC2_080114A
0801064-15A	12-0-10M	vaneous	M2540C	I otal Dissolved Solids	TDS_W-01/14/08	-	01/15/08 08:30 AM	WC_080114A
G21 7201080		Aqueous	SW 80 21B	volatile Organics by GC	28697	_	01/14/08 01:48 PM	GC9_080114A
901-400100	MW-0-31	Aqueous	E300	Anions by IC method - Water	R35633	10	01/14/08 04:55 PM	IC2_080114A
	M w - U - 3 [Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 06:33 PM	IC 080115A
	M w - O-3 I	Aqueous	E300	Anions by IC method - Water	R35658	1000	01/15/08 06:48 PM	IC 080115A
	MW-0-31	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/08	_	01/15/08 08:30 AM	WC 080114A
U&U1004-16A	MW-P-09	Aqueous	SW8021B	Volatile Organics by GC	28697		01/14/08 02:05 PM	GC9 080114A
0801064-16B	MW-P-09	Aqueous	E300	Anions by IC method - Water	R35658 ^	10	01/15/08 07:17 PM	IC 080115A
	MW-P-09	Aqueous	E300	Anions by IC method - Water	R35658	100	01/15/08 07:32 PM	IC 080115A
	MW-P-09	Aqueous	E300	Anions by 1C method - Water	R35633	-	01/14/08 05:10 PM	- IC2 080114A
Page 2 of 5	of 5							C+ 1000-100

DHL / ulytical

24-Jan-08

· mn o mn	1001000							
Client:	INTERA Inc.				ANAL	JULA	ANALVIICAL DATES BEBOD	
Project:	RRC-O'Ryan, Du gout, Pharoah	gout, Pharoah					N CITED IN	TLUKI
Sample 1D	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0801064-16B	MW-P-09	Aqueous	M2540C	T otal Dissolved Solids	TDS W-01/14/08	-	01/15/08 08-30 AM	VI DONIA
0801064-17A	MW-FINA-01	Aqueous	SW8021B	Volatile Organics by GC	2,8697	-	FINE OC: PO 80/ P1/ 10	
0801064-17B	MW-FINA-01	Aqueous	E300	Anions hv 1C method - Water	D15650	10001	01/12/00 04:29 F M	GC9_080114A
	MW-FINA-01	Aqueous	E300	Anions by IC method - Water	P35658	0001	M4 / 45:/ 0 80/C1/10	IC_080115A
	MW-FINA-01	Aqueous	F300	Anions by 10 method - Water	000000	07	Md 10:80 80/c1/10	IC_080115A
	MW-FINA-01	Aqueous	E300	Anions by IC method - Water	5500CX	1000	01/14/08 05:25 PM	IC2_080114A
	MW-FINA-01		JUDSCIM	Total Dissolved Sciences	17/001	1	01/18/08 10:58 AM	IC2_080118A
0801064-18A	MW/_P_01		O CONTRA		1 US_W -01/14/08	-	01/15/08 08:30 AM	WC_080114A
		, Aqueous	81708 MC	volatile Urganics by GC	28697	1	01/14/08 04:46 PM	GC9_080114A
901-1001000	1 0- J- M M	Aqueous	E300	Anions by IC method - Water	R35658	50	01/15/08 08:16 PM	IC_080115A
	10-4-MW	Aqueous	E300	Anions by IC method - Water	R35633	10	01/14/08 05:39 PM	IC2 080114A
	10-9-WM	Aqueous	E300	Anions by IC method - Water	R35721	1000	01/18/08 11:13 AM	IC2 080118A
	MW-P-01	Aqueous	E300	Anions by IC method - Water	R35658	1000	01/15/08 08:31 PM	IC 080115A
	MW-P-01	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/08		01/15/08 08:30 AM	WC 080114 V
0801064-19A	ER	quipment Blan	SW8021B	Volatile Organics by GC	28697	-	01/14/08 04:12 PM	CC0 080114A
0801064-19B	ER	quipment Blan	E300	Anions by IC method - Water	R35656	1	01/15/08 09·27 PM	
	ER	quipment Blan	E300	Anions by IC method - Water	R35658	-	01/15/08 08-45 PM	ACTIVEN_201
	ER	quipment Blan	M2540C	Total Dissolved Solids	TDS W-01/16/08	-	MI 61:00 80/21/10	MC 080112A
0801064-20A	MW-0-7	Aqueous	SW8021B	Volatile Organics by GC	28697	-	MU CO.SO 80/11/10	MC_USUIIDA
0801064-20B	7-0-7M	Aqueous	E300	Anions hv 1C method - Water	R35658	1 203	M1 2 CO. CO 00/41/10	GC9_080114A
	MW-0-7	Aqueous	E300	Anions hy 1C method - Water	D35650	0001	M4 00:60 80/01/10	IC_080115A
	7-0-WW	V annound			00000V	1000	M4 C1:60 80/C1/10	IC_080115A
	1-0- MIN	Aqueous	E300	Anions by IC method - Water	R35633	5	01/14/08 06:09 PM	IC2_080114A
7 LC 7 20100	/-O- M M	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/14/08	-	01/15/08 08:30 AM	WC_080114A
USU1004-21A	70-U- M M	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 03:21 PM	IC2 080115A
	MW-D-07	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 03:06 PM	IC2 080115A
	MW-D-07	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 11:26 AM	IC2 080115A
	MW-D-07	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	l	01/17/08 09:40 AM	WC 080116A
0801064-22A	MW-D-08	Aqueous	E300	Anions by IC method - Water	R35656	F	01/15/08 11:41 AM	- IC2_080115A
	MW-D-08	Aditeons	E300	Anione by IC mothed Wetter				U

DHL 4. alytical

24-Jan-08

Lab Order: Client:	0801064				IVNV			
Client.					IVNV			
CHULLI.	IN LEKA Inc.						ANA VICA DATE OF DATE	Tanar
Project:	RRC-O'Ryan, Du gout, Pharoah	gout, Pharoah						
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID I	Dilution	Analvsis Date	Run ID
0801064-22A	MW-D-08	Aqueous	M2540C	Total Dissolved Solids	TDS W 01/16/00	-		
0801064-23A	Trin Blank	Trin Blank	CILCO0/MS				U1/11/U8 U9:40 AM	WC_080116A
V PC P201000		Allald dri 1	91700 MC	volatile Urganics by GC	28697	-	01/14/08 03:55 PM	GC9_080114A
U&U1064-24A	MW-07-2	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 04:05 PM	IC2 080115A
	MW-07-2	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 04:20 PM	- 1C7 080115A
	MW-07-2	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 11:56 AM	AC11000_201
	MW-07-2	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/16/08	Ι	01/17/08 09:40 AM	WC 080115A
0801064-25A	MW-D-2	Aqueous	E300	Anions by IC method - Water	R35656	ć		MC_000110A
	MW-D-2	Aqueous	E300	Anions by IC method - Water	R35656	4 V	MJ 01:21 00/21/10	1C2_080115A
	MW-D-2	Aqueous	E300	Anions hv IC method - Water	DJSKSK		IN 1 40.40 00/21/10	162_080115A
	MW-D-2	Aqueous	M2540C	Total Directived Collide		0,01	M4 64:40 80/C1/10	IC2_080115A
0801064-76A	MW-07-3	on control v	E200		1 US_W-01/16/08	-	01/17/08 09:40 AM	WC_080116A
		snoanhy	E300	Anions by IC method - Water	R35656	50	01/15/08 05:04 PM	IC2_080115A
	M W -U /-3	Aqueous	E300	Anions by IC method - Water	R35656	1000	01/15/08 05:18 PM	IC2_080115A
	MW-07-3	Aqueous	E300	Anions by IC method - Water	R35721	1000	01/18/08 11:27 AM	IC2 080118A
	MW-07-3	Aqueous	E300	Anions by IC method - Water	R35656	10	01/15/08 12:25 PM	LC2 080115A
	MW-07-3	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	Ι	01/17/08 09:40 AM	WC 080116A
0801064-27A	MW-D-10	Aqueous	E300	Anions by IC method - Water	R35656	L	01/15/08 12:40 PM	102 0801154
	MW-D-10	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 05-33 PM	1C2_080115A
	MW-D-10	Aqueous	M2540C	Total Dissolved Solids	TDS W-01/16/08	-	01/17/08 09-40 AM	W/C 0801164
0801064-28A	10-D-01	Aqueous	E300	Anions by IC method - Water	- R35656	50	01/15/08 06:16 PM	102 0801164
	MW-D-01	Aqueous	E300	Anions by IC method - Water	R35656	0001	W 1 01:00 80/51/10	1C2_080115A
	MW-D-01	Aqueous	E300	Anions by IC method - Water	R35656	2	M 1 01:00 00/21/10	
	MW-D-01	Agneons	M7540C	Total Discoluted Solids		л ,	MJ 46:71 00/01/10	IC2_080115A
0801064-29A	MW-D-06	Aditeon	E300	A niona builden ounds	80/91/10-M_SUT	_	01/17/08 09:40 AM	WC_080116A
	MIN D OC	-		AMOUS OF LC INCLUDE - WALER	000053	-	01/15/08 01:24 PM	IC2_080115A
	00-D-01	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 07:00 PM	IC2_080115A
	00-71- AN INI	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 07:15 PM	IC2_080115A
	MW-D-06	Aqueous	E300	Anions by IC method - Water	R35721	100	01/18/08 02:38 PM	IC2_080118A
	MW-D-06	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	-	01/17/08 09:40 AM	WC_080116A
0801064-30A	MW-D-05	Aqueous	E300	Anions by IC method - Water	R35656	S	01/15/08 01:38 PM	102 0801154

DHL , alytical

24-Jan-08

Lab Order:	0801064							
	-				and the second se			
Client:	INTERA Inc.				ANALY	CIIC	ANALYTICAL DATES REPORT	PORT
Project:	RRC-O'Ryan, Dugout, Pharoah	out, Pharoak	_					
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID Di	Dilution	Analysis Date	Run ID
0801064-30A	MW-D-05	Aqueous	E300	Anions by IC method - Water	R35656	500	01/15/08 07:44 PM	102 0801154
	MW-D-05	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 07-30 PM	1C7_080115A
	MW-D-05	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	_	01/17/08 09:40 AM	WC 0801164
0801064-31A	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35656	5	01/15/08 01:53 PM	1C2 080115A
	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 07:59 PM	IC2_080115A
	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35656	100	01/15/08 08:14 PM	IC2_080115A
	MW-D-04	Aqueous	E300	Anions by IC method - Water	R35679	200	01/16/08 11:49 AM	IC2_080116A
	MW-D-04	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	1	01/17/08 09:40 AM	WC 080116A
0801064-32A	SW -O-Seep	Aqueous	E300	Anions by IC method - Water	R35656	10	01/15/08 02:08 PM	IC2_080115A
	SW-O-Seep	Aqueous	E300	Anions by IC method - Water	R35656	50	01/15/08 08:29 PM	IC2_080115A
	SW-O-Seep	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	1	01/17/08 09:40 AM	WC 080116A
0801064-33A	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35656	10	01/15/08 02:22 PM	IC2 080115A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35656	100	01/15/08 08:43 PM	IC2_080115A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35656	200	01/15/08 08:58 PM	IC2 080115A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35679	500	01/16/08 01:23 PM	IC2_080116A
	SW-P-Seep	Aqueous	E300	Anions by IC method - Water	R35721	1000	01/18/08 11:57 AM	IC2_080118A
	SW - P - Seep	Aqueous	M2540C	Total Dissolved Solids	TDS_W-01/16/08	I	01/17/08 09:40 AM	WC_080116A
								(

DHL Ana	lytical				D	ate:	24-Ja	m-08
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	0-15
oject:	RRC-O'Ryan, Dugo	ut, Pharoah				Lab ID	: 08010	64-01
Project No:					Colle	ection Date	: 01/09/	'08 08:50 AM
Lab Order:	0801064					Matrix	: AQUI	EOUS
Analyses	-	Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300	0				Analyst: JBC
ANIONS BY IC METHOD - WATER Bromide		6.76	0.600	2.00		mg/L	2	01/14/08 11:13 AM
Chloride		4600	30.0	100		mg/L	100	01/15/08 11:35 AM
Sulfate		1340	100	300		mg/L	100	01/15/08 11:35 AM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	11200	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit

DHL Ana	lytical				Date:		24-Ja	un-08
CLIENT:	INTERA Inc.				Client Sam	ple ID:	MW-	O-23
oject:	RRC-O'Ryan, Dugo	ut, Pharoah			1	ab ID:	08010	64-02
Project No:					Collection	Date:	01/09/	/08 10:55 AM
Lab Order:	0801064				Ν	Aatrix:	AQUI	EOUS
Analyses		Result	SDL	RL	Qual Un	its	DF	Date Analyzed
ANIONS BY IC METHOD - WATER			E300)				Analyst: JBC
ANIONS BY IC METHOD - WATER Bromide		ND	0.300	1.00	mg/l	-	1	01/14/08 11:27 AM
Chloride		43.6	3.00	10.0	mg/l		10	01/15/08 11:50 AM
Sulfate		124	10.0	30.0	mg/l	-	10	01/15/08 11:50 AM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	699	10.0	10.0	mg/L	W.	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical				Date:	24-Jc	un-08
CLIENT:	INTERA Inc.				Client Sample ID:	MW-	I-23
oject:	RRC-O'Ryan, Dugou	t, Pharoah			Lab ID:	08010	64-03
Project No:					Collection Date:	01/09	/08 10:40 AM
Lab Order:	0801064				Matrix:	AQU	EOUS
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed
ANIONS BY IC METHOD - WATER			E300)	2.		Analyst: JBC
ANIONS BY IC METHOD - WATER Bromide		ND	0.300	1.00	mg/L	1	01/14/08 11:42 AM
Chloride		42.7	3.00	10.0	mg/L	10	01/15/08 12:06 PM
Sulfate		117	10.0	30.0	mg/L	10	01/15/08 12:06 PM
TOTAL DISSOL	VED SOLIDS		M2540)C			Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	706	10.0	10.0	mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical			D	ate:	Analyst: JBC /L 2 01/14/08 11:57 AM /L 100 01/15/08 12:22 PM				
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	D-11		
oject:	RRC-O'Ryan, Dugou	t, Pharoah		: 08010	0801064-04					
Project No:				Collection Date:				01/09/08 11:35 AM		
Lab Order:	0801064			Matrix:			AQUI			
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC		
Bromide		5.28	0.600	2.00		mg/L	2	01/14/08 11:57 AM		
Chloride		3130	30.0	100		mg/L	100	01/15/08 12:22 PM		
Sulfate		455	10.0	30.0		mg/L	10	01/15/08 01:40 PM		
TOTAL DISSOLVED SOLIDS			M2540	С				Analyst: JBC		
Total Dissolved Solids (Residue, Filterable)		6560	10.0	10.0		mg/L	1	01/15/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 33

DHL Ana	lytical			Ľ	ate:	24-Ja	un-08			
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	O-8		
oject:	RRC-O'Ryan, Dugoı	it, Pharoah	Lab ID:					0801064-05		
rroject No:			Collection Date: (: 01/09/	01/09/08 12:23 PM			
Lab Order:	0801064		Matrix: 2				: AQU	A QUEOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC		
Bromide		2.21	0.300	1.00		mg/L	1	01/14/08 12:12 PM		
Chloride		2510	15.0	50.0		mg/L	50	01/15/08 01:09 PM		
Sulfate		440	50.0	150		mg/L	50	01/15/08 01:09 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC		
Total Dissolved Solids (Residue, Filterable)		5520	10.0	10.0		mg/L	1	01/15/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical			Date:	24-Jc	un-08			
CLIENT:	INTERA Inc.	ter i norde de la constante de			Client Sample ID	: MW-	O-9		
oject:	RRC-O'Ryan, Dugo	out, Pharoah			Lab ID	: 08010	0801064-06		
Project No:				Collection Date:			01/09/08 12:55 PM		
Lab Order:	0801064				Matrix	: AQU	EOUS		
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed		
ANIONS BY IC I	METHOD - WATER		E300)			Analyst: JBC		
Bromide		3.96	0.300	1.00	mg/L	1	01/14/08 01:13 PM		
Chloride		330	3.00	10.0	mg/L	10	01/15/08 02:24 PM		
Sulfate		794	10.0	30.0	mg/L	10	01/15/08 02:24 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C			Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	2110	10.0	10.0	mg/L	1	01/15/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical			D	ate:	24-Jc	un-08	
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	O-3
oject:	RRC-O'Ryan, Dugo	ut, Pharoah				Lab ID	: 08010	64-07
Project No:		Coll			ection Date	: 01/09	/08 01:50 PM	
Lab Order:	0801064		Matrix: A				: AQU	EOUS
Analyses	5	Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 01:27 PM
Chloride		1450	15.0	50.0		mg/L	50	01/15/08 02:39 PM
Sulfate		291	50.0	150		mg/L	50	01/15/08 02:39 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	3200	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical			Da	ite:	24-Ja	n-08		
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-	0-5	
oject:	RRC-O'Ryan, Dugou	ıt, Pharoah	Pharoah Lab ID: (0801064-08	
Project No:				Collection Date:			01/09/	01/09/08 03:01 PM	
Lab Order:	0801064				Matrix:			EOUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC	
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 01:42 PM	
Chloride		2800	30.0	100		mg/L	100	01/15/08 02:54 PM	
Sulfate		686	100	300		mg/L	100	01/15/08 02:54 PM	
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	6180	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical			Date:	24-Ju	un-08			
CLIENT:	INTERA Inc.				Client Sample ID:	MW-	·O-12		
oject:	RRC-O'Ryan, Dugo	ut, Pharoah	haroah				064-09		
Project No:			Collection Date: (01/09/08 03:30 PM		
Lab Order:	0801064				Matrix:	AQU	EOUS		
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed		
ANIONS BY IC	METHOD - WATER		E300)			Analyst: JBC		
Bromide		ND	0.300	1.00	mg/L	1	01/14/08 01:57 PM		
Chloride		229	3.00	10.0	mg/L	10	01/15/08 03:08 PM		
Sulfate		116	10.0	30.0	mg/L	10	01/15/08 03:08 PM		
TOTAL DISSOL	VED SOLIDS		M2540)C			Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	931	10.0	10.0	mg/L	1	01/15/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Ana	lytical	D	ate:	24-Ja	un-08				
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-	O-13	
oject:	RRC-O'Ryan, Dugout, P	haroah			Lab ID:	0801064-10			
Project No:			Collection Date: 0				01/09/	01/09/08 04:10 PM	
Lab Order:	0801064		Matrix:				AQUI	EOUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300)		и		Analyst: JBC	
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 02:10 PM	
Chloride		245	3.00	10.0		mg/L	10	01/15/08 03:23 PM	
Sulfate		130	10.0	30.0		mg/L	10	01/15/08 03:23 PM	
TOTAL DISSOLVED SOLIDS			M2540	C				Analyst: JBC	
Total Dissolved Solids (Residue, Filterable)		1000	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 10 of 33

DHL Ana	lytical			Ι)ate:	24-Jc	0801064-11 01/09/08 04:37 PM AQUEOUS		
CLIENT:	INTERA Inc.					Clien	t Sample III): MW-	O-1
-oject:	RRC-O'Ryan, Du	igout, Ph	aroah						
Project No:						Coll	ection Date	: 01/09	/08 04:37 PM
Lab Order:	0801064					Matrix:			EOUS
Analyses			Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER			E300)				Analyst: JBC
Bromide			ND	0.300	1.00		mg/L	1	
Chloride			1040	6.00	20.0		mg/L	20	01/15/08 03:52 PM
Sulfate			184	10.0	30.0		mg/L	10	01/15/08 03:38 PM
TOTAL DISSOL	VED SOLIDS			M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,		2530	10.0	10.0		mg/L	1	01/15/08 08:30 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

 $\ensuremath{\mathsf{S}}$ - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 11 of 33

DHL Ana	lytical			D	ate:	24-Ja	un-08			
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	0-6		
oject:	RRC-O'Ryan, Dugou	t, Pharoah	Lab ID:					0801064-12		
Project No:				Collection Date:				01/09/08 05:25 PM		
Lab Order:	0801064					Matrix	: AQU	EOUS		
Analyses	_	Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC		
Bromide		ND	0.300	1.00		mg/L	1	01/14/08 03:24 PM		
Chloride		2320	15.0	50.0		mg/L	50	01/15/08 04:22 PM		
Sulfate		636	50.0	150		mg/L	50	01/15/08 04:22 PM		
TOTAL DISSOL	VED SOLIDS		M2540)C				Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	4920	10.0	10.0		mg/L	1	01/15/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 12 of 33

DHL Ana	lytical			D	ate:	24-Ja	un-08		
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	0-22	
oject:	RRC-O'Ryan, Dugou	ıt, Pharoah	Lab ID:				: 08010	0801064-13	
rroject No:			Collection Date: 0			: 01/09/	01/09/08 10:15 AM		
Lab Order:	0801064					Matrix	: AQU	EOUS	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC	
Bromide		3.15	0.300	1.00		mg/L	1	01/14/08 03:57 PM	
Chloride		336	6.00	20.0		mg/L	20	01/15/08 04:36 PM	
Sulfate		313	20.0	60.0		mg/L	20	01/15/08 04:36 PM	
TOTAL DISSOL	VED SOLIDS		M2540	с				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	1490	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

DHL Anal	ytical		Date:	24-Jc	an-08			
CLIENT:	INTERA Inc.				Client Sample ID	: MW-	·O-21	
oject:	RRC-O'Ryan, Dugout,	Pharoah				: 08010		
rroject No:							01/09/08 09:40 AM	
Lab Order:	0801064						A QUEOUS	
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed	
VOLATILE ORG	ANICS BY GC		SW8	021B			Analyst: JAW	
Benzene		ND	0.00100	0.00200	mg/L	1	01/14/08 12:57 PM	
Ethylbenzene		ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Methyl tert-butyl	ether	ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Toluene		ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Xylenes, Total		ND	0.00200	0.00400	mg/L	1	01/14/08 12:57 PM	
Surr: a,a,a-Tri	fluorotoluene	99.0	0	87-113	%REC	1	01/14/08 12:57 PM	
ANIONS BY IC M	ETHOD - WATER		E30	00			Analyst: JBC	
Bromide		ND	3.00	10.0	mg/L	10	01/14/08 04:11 PM	
Chloride		17200	150	500	mg/L	500	01/15/08 05:46 PM	
Sulfate		2210	100	300	mg/L	100	01/15/08 04:51 PM	
TOTAL DISSOLV	ED SOLIDS		M254	10C			Analyst: JBC	
Total Dissolved S Filterable)	Solids (Residue,	32100	10.0	10.0	mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 14 of 33

DHL Ana	lytical		I	Date:	24-Ja	n-08			
CLIENT:	INTERA Inc.				Clien	t Sample ID:	MW-0	D-31	
·oject:	RRC-O'Ryan, Dugou	t, Pharoah				Lab ID:	08010	64-15	
Project No:					Collection Date:			08 08:48 AM	
Lab Order:	0801064						A QUEOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORC	GANICS BY GC		SW8	021B			5	Analyst: JAW	
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 01:48 PM	
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM	
Methyl tert-buty	/l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM	
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM	
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 01:48 PM	
Surr: a,a,a-T	rifluorotoluene	100	0	87-113		%REC	1	01/14/08 01:48 PM	
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: JBC	
Bromide		ND	3.00	10.0		mg/L	10	01/14/08 04:55 PM	
Chloride		17000	300	1000		mg/L	1000	01/15/08 06:48 PM	
Sulfate		1610	50.0	150		mg/L	50	01/15/08 06:33 PM	
TOTAL DISSOL	TOTAL DISSOLVED SOLIDS		M254	40C			Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	30600	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit
- E TPH pattern not Gas or Diesel Range Pattern

DHL Analytical						Date:		24-Jan-08		
CLIENT: INTERA Inc.						Client Sample ID:		MW-P-09		
nject:	yject: RRC-O'Ryan, Dugout, Ph		haroah			Lab ID:		0801064-16		
Project No:						Collection Date:		01/09/08 11:55 AM		
Lab Order:	0801064					Matrix:	AQUEOUS			
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
VOLATILE ORG	GANICS BY GC		SW8	021B				Analyst: JAW		
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 02:05 PM		
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM		
Methyl tert-butyl ether		ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM		
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM		
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 02:05 PM		
Surr: a,a,a-Trifluorotoluene		97.5	0	87-113		%REC	1	01/14/08 02:05 PM		
ANIONS BY IC METHOD - WATER			E300			Analyst: JBC				
Bromide	Bromide		0.300	1.00		mg/L	1	01/14/08 05:10 PM		
Chloride		542	30.0	100		mg/L	100	01/15/08 07:32 PM		
Sulfate		152	10.0	30.0		mg/L	10	01/15/08 07:17 PM		
TOTAL DISSOLVED SOLIDS			M2540C					Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	1550	10.0	10.0		mg/L	1	01/15/08 08:30 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 16 of 33

DHL Analytical						Date:		24-Jan-08	
CLIENT:	INTERA Inc.				Client Sample ID:		MW-FINA-01		
•oject: RRC-O'Ryan, Dugout, Pl		haroah					0801064-17		
rroject No:							01/09/08 01:05 PM		
Lab Order:	0801064				Con		AQUEOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORG	ANICS BY GC		SW8021B					Analyst: JAW	
Benzene		0.0128	0.00100	0.00200		mg/L	1	01/14/08 04:29 PM	
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM	
Methyl tert-butyl ether		ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM	
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM	
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 04:29 PM	
Surr: a,a,a-Trifluorotoluene		95.2	0	87-113		%REC	1	01/14/08 04:29 PM	
ANIONS BY IC METHOD - WATER		E300					Analyst: JBC		
Bromide		73.9	6.00	20.0		mg/L	20	01/14/08 05:25 PM	
Chloride		33300	300	1000		mg/L	1000	01/18/08 10:58 AM	
Sulfate		1640	20.0	60.0		mg/L	20	01/15/08 08:01 PM	
TOTAL DISSOLVED SOLIDS		M2540C						Analyst: JBC	
Total Dissolved : Filterable)	Solids (Residue,	58500	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

Qualifiers

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 17 of 33

DHL Anal	lytical				Ľ	ate:	24-Jan-08		
CLIENT:	INTERA Inc.				Clien	Sample ID:	MW-I	P-01	
oject:	RRC-O'Ryan, Dugou	t, Pharoah				Lab ID:			
Project No:				Collection Date:					
Lab Order:	0801064				con	Matrix:			
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORG	ANICS BY GC		SW8	021B				Analyst: JAW	
Benzene		0.0136	0.00100	0.00200		mg/L	1	01/14/08 04:46 PM	
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM	
Methyl tert-butyl	lether	ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM	
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM	
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 04:46 PM	
Surr: a,a,a-Tr	ifluorotoluene	97.1	0	87-113		%REC	1	01/14/08 04:46 PM	
ANIONS BY IC M	IETHOD - WATER		E30	00				Analyst: JBC	
Bromide		33.5	3.00	10.0		mg/L	10	01/14/08 05:39 PM	
Chloride		16900	300	1000		mg/L	1000	01/18/08 11:13 AM	
Sulfate		2540	50.0	150		mg/L	50	01/15/08 08:16 PM	
TOTAL DISSOL	VED SOLIDS		M254	10C				Analyst: JBC	
Total Dissolved S Filterable)	Solids (Residue,	31500	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

Qualifiers

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical				Ι	Date:	24-Jan-08		
CLIENT:	INTERA Inc.				Client Sample ID: ER				
ject:	RRC-O'Ryan, Dugout	, Pharoah				Lab ID:	08010)64-19	
Project No:					Coll	ection Date:	01/09/08 03:00 PM		
Lab Order:	0801064							PMENT BLANK	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORC	GANICS BY GC		SW8	021B				Analyst: JAW	
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 04:12 PM	
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM	
Methyl tert-buty	/l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM	
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM	
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 04:12 PM	
Surr: a,a,a-T	rifluorotoluene	97.3	0	87-113		%REC	1	01/14/08 04:12 PM	
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: JBC	
Bromide		ND	0.300	1.00		mg/L	1	01/15/08 09:27 PM	
Chloride		1.27	0.300	1.00		mg/L	1	01/15/08 09:27 PM	
Sulfate		ND	1.00	3.00		mg/L	1	01/15/08 09:27 PM	
TOTAL DISSOL	VED SOLIDS		M254	40C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	22.0	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 19 of 33

DHL Ana	lytical				Ι	Date:	24-Jan-08		
CLIENT:	INTERA Inc.				Clien	t Sample ID:	MW-(D-7	
oject:	RRC-O'Ryan, Dugout,	Pharoah				Lab ID:	080100	54-20	
Project No:					Collection Date:		01/09/	08 03·45 PM	
Lab Order:	0801064					Matrix:			
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE OR	GANICS BY GC		SW8	021B				Analyst: JAW	
Benzene		ND	0.00100	0.00200		mg/L	1	01/14/08 05:03 PM	
Ethylbenzene		ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Methyl tert-buty	/l ether	ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Toluene		ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Xylenes, Total		ND	0.00200	0.00400		mg/L	1	01/14/08 05:03 PM	
Surr: a,a,a-T	rifluorotoluene	98.5	0	87-113		%REC	1	01/14/08 05:03 PM	
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: JBC	
Bromide		17.6	1.50	5.00		mg/L	5	01/14/08 06:09 PM	
Chloride		13100	300	1000		mg/L	1000	01/15/08 09:15 PM	
Sulfate		1870	50.0	150		mg/L	50	01/15/08 09:00 PM	
TOTAL DISSOL	TOTAL DISSOLVED SOLIDS		M254	40C				Analyst: JBC	
Total Dissolved Filterable)	Solids (Residue,	25100	10.0	10.0		mg/L	1	01/15/08 08:30 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 20 of 33

DHL Ana	lytical				D	ate:	24-Jan-08			
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-	D-07		
oject:	RRC-O'Ryan, Dugo	ut, Pharoah			Lab ID: 0801064-21			64-21		
Project No:	Collection Date:				01/09/	08 04:55 PM				
Lab Order:	0801064				Matrix: AQ			QUEOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC		
Bromide		20.7	1.50	5.00		mg/L	5	01/15/08 11:26 AM		
Chloride		10400	150	500		mg/L	500	01/15/08 03:21 PM		
Sulfate		2130	50.0	150		mg/L	50	01/15/08 03:06 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC		
Total Dissolved Solids (Residue, Filterable)		18400	10.0	10.0		mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 21 of 33

DHL Ana	lytical				Date:	24	Jan-08
CLIENT:	INTERA Inc.	2			Client Sample	/-D-08	
oject:	RRC-O'Ryan, Dugout,	Pharoah			Lat	ID: 080	064-22
Project No:					Collection D	ate: 01/0	9/08 05:54 PM
Lab Order:	0801064				Mat	QUEOUS	
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)			Analyst: JBC
Bromide		4.35	0.300	1.00	mg/L	1	01/15/08 11:41 AM
Chloride		482	15.0	50.0	mg/L	50	01/15/08 03:36 PM
Sulfate		126	1.00	3.00	mg/L	1	01/15/08 11:41 AM
TOTAL DISSOL	VED SOLIDS		M2540	C			Analyst: JBC
Total Dissolved Solids (Residue, Filterable)		1250	10.0	10.0	mg/L	1	01/17/08 09:40 AM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 22 of 33

ytical			Date:		24-Jan-08				
INTERA Inc.			The second s	Client Sampl	e ID:	Trip I	Blank		
RRC-O'Ryan, Dugout	, Pharoah			La	b ID:	08010)64-23		
			Collection Date: (01/09/08		
0801064				Matrix: TRIP BLANK			BLANK		
	Result	SDL	RL	Qual Unit	S	DF	Date Analyzed		
ANICS BY GC		SW80	021B				Analyst: JAW		
	ND	0.00100	0.00200	mg/L		1	01/14/08 03:55 PM		
	ND	0.00200	0.00400	mg/L		1	01/14/08 03:55 PM		
ether	ND	0.00200	0.00400	mg/L		1	01/14/08 03:55 PM		
	ND	0.00200	0.00400	mg/L		1	01/14/08 03:55 PM		
Xylenes, Total		0.00200	0.00400	mg/L		1	01/14/08 03:55 PM		
Surr: a,a,a-Trifluorotoluene		0	87-113	%REC		1	01/14/08 03:55 PM		
	INTERA Inc. RRC-O'Ryan, Dugout 0801064 ANICS BY GC ether	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah 0801064 Result ANICS BY GC ND ether ND ND ND	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah 0801064 Result SDL ANICS BY GC SW80 ND 0.00100 ND 0.00200 ether ND 0.00200 ND 0.00200 ND 0.00200	INTERA Inc. RRC-O'Ryan, Dugout, Pharoah 0801064 Result SDL RL ANICS BY GC SW8021B ND 0.00100 0.00200 ND 0.00200 0.00400 ND 0.00200 0.00400 ND 0.00200 0.00400 ND 0.00200 0.00400	INTERA Inc. Client Sample RRC-O'Ryan, Dugout, Pharoah La 0801064 Mz Result SDL RL Qual Unit ANICS BY GC ND 0.00100 0.00200 mg/L ND 0.00100 0.00400 mg/L ether ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L	VICAI INTERA Inc. Client Sample ID: RRC-O'Ryan, Dugout, Pharoah Lab ID: Collection Date: 0801064 0801064 Matrix: Result SDL RL Qual Units ANICS BY GC SW8021B mg/L ND 0.00100 0.00200 mg/L ether ND 0.00200 0.00400 ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L ND 0.00200 0.00400 mg/L	INTERA Inc. Client Sample ID: Trip I RRC-O'Ryan, Dugout, Pharoah Lab ID: 08010 0801064 Collection Date: 01/09 0801064 Matrix: TRIP Result SDL RL Qual Units DF ANICS BY GC SW8021B ND 0.00100 0.00200 mg/L 1 ND 0.00200 0.00400 mg/L 1		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 23 of 33

DHL Ana	lytical				D	ate:	24-Jan-08		
CLIENT:	INTERA Inc.				Client	Sample ID	MW-0	07-2	
oject:	RRC-O'Ryan, Dugo	ut, Pharoah			Lab ID: 0801064-24				
Project No:					Colle	ection Date:	01/10/	01/10/08 09:10 AM	
Lab Order:	0801064			Matrix: AQUEOUS					
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC	
Bromide		14.2	1.50	5.00		mg/L	5	01/15/08 11:56 AM	
Chloride		7480	150	500		mg/L	500	01/15/08 04:20 PM	
Sulfate		4800	50.0	150		mg/L	50	01/15/08 04:05 PM	
TOTAL DISSOL	TOTAL DISSOLVED SOLIDS		M2540	C				Analyst: JBC	
Total Dissolved Solids (Residue, Filterable)		16900	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 24 of 33

DHL Ana	lytical				Date:	24-Ja	n-08	
CLIENT:	INTERA Inc.				Client Sample ID:	MW-D-2		
ject:	RRC-O'Ryan, Dugou	ıt, Pharoah			Lab ID: 0801064-25			
Project No:			Collection Date: (01/10/08 10:26 AM	
Lab Order:	0801064				Matrix:	AQUEOUS		
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed	
ANIONS BY IC I	METHOD - WATER		E300				Analyst: JBC	
Bromide		7.17	0.600	2.00	mg/L	2	01/15/08 12:10 PM	
Chloride		3480	30.0	100	mg/L	100	01/15/08 04:49 PM	
Sulfate		4620	50.0	150	mg/L	50	01/15/08 04:34 PM	
TOTAL DISSOL	VED SOLIDS		M2540	C			Analyst: JBC	
Total Dissolved Filterable)	Total Dissolved Solids (Residue, Filterable)		10.0	10.0	mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

 ${\sf B}$ - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs $% \mathcal{M} = \mathcal{M}$

S - Spike Recovery outside control limits

 ${\rm C}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical		-		D	ate:	24-Jan-08			
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-07-3			
oject:	RRC-O'Ryan, Dugout	, Pharoah				Lab ID:	0801064-26			
Project No:			Collection Date: 0				01/10/0	08 11:06 AM		
Lab Order:	0801064			Matrix:				AQUEOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC		
Bromide		116	3.00	10.0		mg/L	10	01/15/08 12:25 PM		
Chloride		33500	300	1000		mg/L	1000	01/18/08 11:27 AM		
Sulfate		3740	50.0	150		mg/L	50	01/15/08 05:04 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC		
Total Dissolved Solids (Residue, Filterable)		61500	10.0	10.0		mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 26 of 33

DHL Ana	lytical				D	ate:	24-Ja	m-08	
CLIENT:	INTERA Inc.				: MW-	D-10			
oject:	RRC-O'Ryan, Dugo	ut, Pharoah		Lab ID: 0801064-27					
Project No:					Colle	: 01/10/	01/10/08 09:04 AM		
Lab Order:	0801064			EOUS					
Analyses	andre a set of the a	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300					Analyst: JBC	
Bromide		ND	0.300	1.00		mg/L	1	01/15/08 12:40 PM	
Chloride		68.9	1.50	5.00		mg/L	5	01/15/08 05:33 PM	
Sulfate		35.2	1.00	3.00		mg/L	1	01/15/08 12:40 PM	
TOTAL DISSOLVED SOLIDS			M2540C					Analyst: JBC	
Total Dissolved Solids (Residue, Filterable)		544	10.0	10.0		mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 27 of 33

DHL Ana	lytical				Date:	24-Jai	n-08	
CLIENT:	INTERA Inc.		an a		Client Sample ID:	MW-I	D-01	
)ject:	RRC-O'Ryan, Dugo	out, Pharoah			Lab ID: 0801064-28			
Project No:			Collection Date: 0				01/10/08 10:02 AM	
Lab Order:	0801064				Matrix:	AQUEOUS		
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed	
ANIONS BY IC	METHOD - WATER		E300)			Analyst: JBC	
Bromide		23.4	1.50	5.00	mg/L	5	01/15/08 12:54 PM	
Chloride		11600	300	1000	mg/L	1000	01/15/08 06:46 PM	
Sulfate		1470	50.0	150	mg/L	50	01/15/08 06:16 PM	
TOTAL DISSOL	VED SOLIDS		M2540	oc			Analyst: JBC	
Total Dissolved Solids (Residue, Filterable)		20100	10.0	10.0	mg/L	1	01/17/08 09:40 AM	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 28 of 33

DHL Ana	lytical		D	ate:	24-Ja	n-08		
CLIENT:	INTERA Inc.				Client	Sample ID	: MW-	D-06
oject:	RRC-O'Ryan, Dugo	ut, Pharoah			Lab ID: 0801064-29			
Project No:					Collection Date: 01/10/08 01:06 PM			
Lab Order:	0801064			Matrix: AQUEOUS				
Analyses	- 12 ⁷ - 111 - 12 ¹ 1	Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC I	METHOD - WATER		E300)				Analyst: JBC
Bromide		2.47	0.300	1.00		mg/L	1	01/15/08 01:24 PM
Chloride		1550	30.0	100		mg/L	100	01/18/08 02:38 PM
Sulfate		1370	50.0	150		mg/L	50	01/15/08 07:00 PM
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Solids (Residue, Filterable)		4660	10.0	10.0		mg/L	1	01/17/08 09:40 AM

J - Analyte detected between SDL and RL

 ${\sf B}$ - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 29 of 33

DHL Ana	lytical				Date:			24-Jan-08		
CLIENT:	INTERA Inc.	3			Client	Sample ID	: MW-	D-05		
oject:	RRC-O'Ryan, Dugo	ut, Pharoah				Lab ID	: 08010	64-30		
Project No:					Coll	ection Date	01/10/	08 02:24 PM		
Lab Order:	0801064					Matrix	AQUI	EOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
ANIONS BY IC I	METHOD - WATER	2	E300)	ii.			Analyst: JBC		
Bromide		22.8	1.50	5.00		mg/L	5	01/15/08 01:38 PM		
Chloride		11400	150	500		mg/L	500	01/15/08 07:44 PM		
Sulfate		2280	50.0	150		mg/L	50	01/15/08 07:30 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C				Analyst: JBC		
Total Dissolved Filterable)	Solids (Residue,	19700	10.0	10.0		mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical				Date:	24-Jan-08			
CLIENT:	INTERA Inc.	- Andreas and a second s	C AN ALL CARD		Client Sample ID:	MW-	D-04		
oject:	RRC-O'Ryan, Dugout, P	haroah			Lab ID:	08010	64-31		
Project No:					Collection Date:	01/10/	08 03:02 PM		
Lab Order:	0801064				Matrix:	AQUI	EOUS		
Analyses	· • • • • • • • • •	Result	SDL	RL	Qual Units	DF	Date Analyzed		
ANIONS BY IC I	METHOD - WATER		E300)			Analyst: JBC		
Bromide		93.3	1.50	5.00	mg/L	5	01/15/08 01:53 PM		
Chloride		5710	60.0	200	mg/L	200	01/16/08 11:49 AM		
Sulfate		2310	50.0	150	mg/L	50	01/15/08 07:59 PM		
TOTAL DISSOL	VED SOLIDS		M2540	C			Analyst: JBC		
Total Dissolved Filterable)	Total Dissolved Solids (Residue, Filterable)		10.0	10.0	mg/L	1	01/17/08 09:40 AM		

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathsf{C}}$ - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 31 of 33

DHL Ana	lytical				Date:	24-Ja	24-Jan-08			
CLIENT:	INTERA Inc.			5	Client Sample II	: SW-C)-Seep			
oject:	RRC-O'Ryan, Dugout,	, Pharoah			Lab II	: 08010	64-32			
Project No:					Collection Date	e: 01/10/	08 04:38 PM			
Lab Order:	0801064				Matrix	: AQUI	EOUS			
Analyses	1 a a 100 mod	Result	SDL	RL	Qual Units	DF	Date Analyzed			
ANIONS BY IC I	METHOD - WATER		E300				Analyst: JBC			
Bromide		ND	3.00	10.0	mg/L	10	01/15/08 02:08 PM			
Chloride		1090	15.0	50.0	mg/L	50	01/15/08 08:29 PM			
Sulfate		442	50.0	150	mg/L	50	01/15/08 08:29 PM			
TOTAL DISSOL	VED SOLIDS		M2540C				Analyst: JBC			
Total Dissolved Filterable)	Solids (Residue,	2460	10.0	10.0	mg/L	1	01/17/08 09:40 AM			

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 32 of 33

DHL Ana	lytical				Date:			24-Jan-08				
CLIENT:	INTERA Inc.				Clien	t Sample ID	: SW-P-	-Seep				
oject:	RRC-O'Ryan, Dugo	out, Pharoah				Lab ID	: 080106	54-33				
rroject No:					Coll	ection Date	: 01/10/	08 04:56 PM				
Lab Order:	0801064					Matrix	: AQUE	EOUS				
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed				
ANIONS BY IC	METHOD - WATER		E300	0				Analyst: JBC				
Bromide		26.8	3.00	10.0		mg/L	10	01/15/08 02:22 PM				
Chloride		13000	300	1000		mg/L	1000	01/18/08 11:57 AM				
Sulfate		1250	100	300		mg/L	100	01/15/08 08:43 PM				
TOTAL DISSOL	VED SOLIDS		M2540	0C				Analyst: JBC				
Total Dissolved Filterable)	Solids (Residue,	24200	10.0	10.0		mg/L	1	01/17/08 09:40 AM				

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 33 of 33

CLIENT:INTER/ork Order:0801064Project:RRC-01		aroah	ŀ	ANALYI	FICAL Run		UMMA GC9_08		EPO	OR'
Sample ID LCS-28697	Batch ID: 28	697	Tes	tNo: SV	V8021B		Units:	mg/L	-	
SampType: LCS	Run ID: GC	9_080114A	Ana	alysis Date: 1/1	14/2008 10:	52:31 A	Prep Da	te: 1/14/2	2008	
Analyte	Resu	ult RL	SPK value	e Ref Val	%REC	Low Li	mit HighLimi	%RPD F	RPDLimi	it Qua
Methyl tert-butyl ether	0.043	0.00600	0.0500	0	86.5	78	122		A 4	
Benzene	0.048	0.00200	0.0500	0	97.1	81	125			
Toluene	0.050	0.00600	0.0500	0	101	84	123			
Ethylbenzene	0.049	0.00600	0.0500	0	99.3	83	119			
Xylenes, Total	0.149	0.00900	0.150	0	99.5	81	117			
Surr: a,a,a-Trifluorotoluene	199		200.0		99.4	87	113			
Sample ID MB-28697	Batch ID: 286	97	Test	No: SN	/8021B		Units:	mg/L		
SampType: MBLK	Run ID: GC	9_080114A	Anal	lysis Date: 1/1	4/2008 11:0	9:21 A	Prep Dat	e: 1/14/2	8008	
Analyte	Resu	lt RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD R	PDLimit	Qua
Methyl tert-butyl ether	ND	0.00600								
Benzene	ND	0.00200								
Toluene	ND	0.00600								
Ethylbenzene	ND	0.00600								
Xylenes, Total	ND	0.00900								
Surr: a,a,a-Trifluorotoluene	200	2	200.0		100	87	113			
Sample ID 0801064-14AMS	Batch ID: 286	97	Test	No: SW	8021B		Units:	mg/L		
SampType: MS	Run ID: GC	9_080114A	Analy	ysis Date: 1/14	4/2008 1:14:	57 PM	Prep Date	e: 1/14/2	008	
Analyte	Resul	t RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	% RPD R	PDLimit	Qual
Methyl tert-butyl ether	0.0543	0.00600	0.0500	0	109	78	122			
Benzene	0.0508	0.00200	0.0500	0	102	81	125			
Toluene	0.0526	0.00600	0.0500	0	105	84	123			
Ethylbenzene	0.0513	0.00600	0.0500	0	103	83	119			
Xylenes, Total	0.154	0.00900	0.150	0	103	81	117			
Surr: a,a,a-Trifluorotoluene	201		200.0		101	87	113			
Sample ID 0801064-14AM SD	Batch ID: 2869	17	TestN	io: SW8	3021B		Units:	mg/L		
SampType: MSD	Run ID: GC9	_080114A	Analy	sis Date: 1/14	/2008 1:31:4	48 PM	Prep Date	: 1/14/20	800	
Analyte	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RF	2DLimit	Qual
Methyl tert-butyl ether	0.0535	0.00600	0.0500	0	107	78	122	1.48	20	
Benzene	0.0508	0.00200	0.0500	0	102	81	125	0.0571	20	
Toluene	0.0525	0.00600	0.0500	0	105	84	123	0.147	20	
Ethylbenzene	0.0509	0.00600	0.0500	0	102	83	119	0.716	20	
Kylenes, Total	0.153	0.00900	0.150	0	102	81	117	0.823	20	
Surr: a,a,a-Trifluorotoluene	203		200.0		102	87	113	0	0	
J Analyte de	etected in the associa etected between MD ted at the Method D	L and RL		Dilution Facto Method Detec RPD outside a Spike Recove:	ction Limit accepted con			Pag	ge l of	15

Date: 24-Jan-08

DHL Analytical

N

Parameter not NELAC certified

Work Order:

INTERA Inc.

0801064

ANALYTICAL QC SUMMARY REPORT

oject: RRC-O'Ryan, Dugout, Pharoah

RunID: GC9_080114A

Sample ID ICV-080114	Batch ID	R35636		TestNo): SW	V8021B		Units:	mç		
SampType: ICV	Run ID:	GC9_08	0114A			4/2008 10:3	5:40 A	Prep Dat		<i>v</i> –	
Analyte	ar a tau	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPC) RPDLimit	Qual
Methyl tert-butyl ether		0.0890	0.00600	0.100	0	89.0	80	120			
Benzene		0.0972	0.00200	0.100	0	97.2	85	115			
Toluene		0.102	0.00600	0.100	0	102	85	115			
Ethylbenzene		0.101	0.00600	0.100	0	101	85	115			
Xylenes, Total		0.301	0.00900	0.300	0	100	85	115			
Surr: a,a,a-Trifluorotoluene		204		200.0		102	87	113			
Sample ID CCV1-080114	Batch ID:	R35636		TestNo	: SW	8021B		Units:	mg	ı/L	
SampType: CCV	Run ID:	GC9_08	0114A	Analys	is Date: 1/14	4/2008 2:22:	21 PM	Prep Date	э:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether		0.0471	0.00600	0.0500	0	94.1	80	120			
Benzene		0.0512	0.00200	0.0500	0	102	85	115			
Toluene		0.0529	0.00600	0.0500	0	106	85	115			
Ethylbenzene		0.0512	0.00600	0.0500	0	102	85	115			
Xylenes, Total		0.153	0.00900	0.150	0	102	85	115			
Surr: a,a,a-Trifluorotoluene		201		200.0		100	87	113			
nple ID CCV2-080114	Batch ID:	R35636		TestNo:	SW8	8021B		Units:	m g/	/L	
SampType: CCV	Run ID:	GC9_080	0114A	Analysi	s Date: 1/14	/2008 8:25:4	48 PM	Prep Date	1:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	(0.0543	0.00600	0.0500	0	109	80	120			
Benzene	(0.0501	0.00200	0.0500	0	100	85	115			
Toluene	(0.0515	0.00600	0.0500	0	103	85	115			
Ethylbenzene	(0.0508	0.00600	0.0500	0	102	85	115			
Xylenes, Total		0.155	0.00900	0.150	0	103	85	115			
Surr: a,a,a-Trifluorotoluene		194		200.0		96.9	87	113			

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	DI	Design of the second seco	0	C 11 D

RL Reporting Limit

N Parameter not NELAC certified

S Spike Recovery outside control limits

Page 2 of 15

roject:

Work Order:

INTERA Inc.

0801064

ANALYTICAL QC SUMMARY REPORT

RRC-O'Ryan, Dugout, Pharoah

RunID: IC_080115A

Sample ID	ICV-080115	Batch ID:	R35658	***	TestNo	E300)		Units:	m g/	L	
SampType:	ICV	Run ID:	IC_080115	5A	Analys	is Date: 1/15	/2008 9:24	1:46 AM	Prep Date	e: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	it HighLimit	%RPD	RPDLimit	Qual
Chloride			26.2	1.00	25.00	0	105	90	110			
Sulfate			75.1	3.00	75.00	0	100	90	110			
Sample ID	MB-080115	Batch ID:	R35658		TestNo	: E300		5	Units:	mg/	L	
SampType:	MBLK	Run ID:	IC_080115	A	Analys	is Date: 1/15/	2008 10:4	6:05 A	Prep Date	e: 1/15	/2008	
Analyte		12.	Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	1.00								
Sulfate			ND	3.00								
Sample ID	LCS-080115	Batch ID:	R35658		TestNo	E300			Units:	mg/l	-	
SampType:	LCS	Run ID:	IC_080115/	A	Analysi	s Date: 1/15/2	2008 11:0 [.]	1:47 A	Prep Date	: 1/15/	2008	
Analyte	1		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Chloride			9.52	1.00	10.00	0	95.2	90	110			
Sulfate			28.9	3.00	30.00	0	96.5	90	110			
Sample ID	LCSD-080115	Batch ID:	R35658		TestNo:	E300			Units:	mg/L	1	
npType:	LCSD	Run ID:	IC_0801154	4	Analysi	s Date: 1/15/2	2008 11:17	7:29 A	Prep Date	: 1/15/	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			9.55	1.00	10.00	0	95.5	90	110	0.327	20	
Sulfate			29.2	3.00	30.00	0	97.3	90	110	0.847	20	
Sample ID	0801064-04A MS	Batch ID:	R35658		TestNo:	E300		2	Units:	mg/L		
SampType:	MS	Run ID:	IC_080115A	4	Analysis	B Date: 1/15/2	2008 12:38	3:04 P	Prep Date:	1/15/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			2810	100	1000	1879	92.9	90	110			
Sample ID	0801064-04A MSD	Batch ID:	R35658		TestNo:	E300	******		Units:	mg/L		
SampType: I	MSD	Run ID:	IC_080115A		Analysis	Date: 1/15/2	008 12:53	:44 P	Prep Date:	1/15/2	2008	
Analyte		I	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Chloride			2920	100	1000	1879	105	90	110	4.07	20	

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 3 of 15
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	N	Parameter not NELAC certified			

oject:

Work Order:

INTERA Inc. 0801064

ANALYTICAL QC SUMMARY REPORT

RRC-O'Ryan, Dugout, Pharoah

RunID: IC_080115A

Sample ID	CCV1-080115	Batch ID:	R35658		TestN	o: E300)		Units:	m g/	/L	
SampType:	CCV	Run ID:	IC_080115	δA	Analy	sis Date: 1/15/	/2008 1:25	5:07 PM	Prep Da	te: 1/15	5/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	t %RPD	RPDLim	t Qu
Chloride			9.63	1.00	10.00	0	96.3	90	110			
Sulfate			29.0	3.00	30.00	0	96.6	90	110			
Sample ID	0801064-04A MS	Batch ID:	R35658		TestN	E300			Units:	mg/	L	
SampType:	MS	Run ID:	IC_080115	A	Analy	sis Date: 1/15/	2008 1:55	:26 PM	Prep Dat	e: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	t Qua
Sulfate			564	30.0	300.0	273.1	96.9	90	110			
Sample ID	0801064-04A MSD	Batch ID:	R35658	11220	TestNo	e: E300		-	Units:	m g/l	L	
SampType:	MSD	Run ID:	IC_080115	A	Analys	is Date: 1/15/2	2008 2:10	:03 PM	Prep Date	e: 1/15/	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qua
Sulfate			568	30.0	300.0	273.1	98.3	90	110	0.733	20	
Sample ID	CCV2-080115	Batch ID:	R35658		TestNo	: E300			Units:	m g/l	_	
SampType:	ccv	Run ID:	IC_080115/	4	Analys	is Date: 1/15/2	2008 4:07:	29 PM	Prep Date	e: 1/15/	2008	
lyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD I	RPDLimit	Qua
Chloride			9.63	1.00	10.00	0	96.3	90	110			
Sulfate			28.6	3.00	30.00	0	95.2	90	110			
	0801064-14BMS	Batch ID:	R35658		TestNo	E300			Units:	mg/L		
SampType:	MS	Run ID:	IC_0801154	4	Analys	is Date: 1/15/2	:008 5:15:	09 P M	Prep Date	e: 1/15/:	2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD F	RPDLimit	Qual
Sulfate		ŝ	4290	300	3000	1325	98.9	90	110			
Sample ID	0801064-14B MSD	Batch ID:	R35658		TestNo	E300			Units:	mg/L	5	
SampType:	MSD	Run ID:	IC_080115A	N	Analysi	s Date: 1/15/2	008 5:30:	51 PM	Prep Date	: 1/15/2	2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD F	RPDLimit	Qual
Sulfate	1		4310	300	3000	1325	99.6	90	110	0.504	20	
Sample ID (0801064-14BMS	Batch ID:	R35658		TestNo:	E300			Units:	mg/L		
SampType: I	MS	Run ID:	IC_080115A		Analysi	s Date: 1/15/20	008 6:02:1	16 P M	Prep Date:	1/15/2	8008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD R	PDLimit	Qual
Chloride		1	4800	500	5000	10310	89.1	90	110			S
Qualifiers:	J Analyte dete	cted betweer d at the Met	associated Met MDL and RL hod Detection	-	MDL N R R	ilution Factor lethod Detection PD outside accordent	epted con			Pa	nge 4 of	15

RL Reporting Limit

N Parameter not NELAC certified S Spike Recovery outside control limits

CLIENT: Work Or oject:	INTERA I •der: 0801064 RRC-O'Ry		ut, Pharoa	h	ANALYTICAL QC SUMMARY REPO RunID: IC_080115A							
Sample ID SampType:	0801064-14B MSD	Batch ID: Run ID:	R35658		TestNo		00 5/2008 6:17	-58 PM	Units: Prep Date	m g/L e: 1/15/2008		
		Run ib.										
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lir	nit HighLimit	%RPD RPDLimit	Qual	
Chloride			14800	500	5000	10310	89.8	90	110	0.249 20		
Sample ID	CCV3-080115	Batch ID:	R35658		TestNo:	E30	0		Units:	mg/L		
SampType:	CCV	Run ID:	IC_0801	15A	Analysi	s Date: 1/1	5/2008 7:02:	58 PM	Prep Date	e: 1/15/2008		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD RPDLimit	Qual	
Chloride			9.62	1.00	10.00	0	96.2	90	110			
Sulfate			29.3	3.00	30.00	0	97.6	90	110			
Sample ID	CCV4-080115	Batch ID:	R35658		TestNo:	E30	0		Units:	mg/L		
SampType:	CCV	Run ID:	IC_0801	15A	Analysis	Date: 1/15	/2008 9:29:4	44 PM	Prep Date	e: 1/15/2008		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual	
Chloride			9.63	1.00	10.00	0	96.3	90	110			
Sulfate			28.8	3.00	30.00	0	96.0	90	110			

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit Page 5 of 15 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits Ν Parameter not NELAC certified

CLIENT: Work Order	INTERA I .: 0801064	inc.			AN	ALYTI	[CAL	QC SI	JMMA	RY REP	ORT
·oject:		an, Dugou	ut, Pharoah				RunI	D: 1	IC2_080	114A	
Sample ID IC SampType: IC	℃V-080114 ℃V	Batch ID: Run ID:	R35633 IC2_0801	14A	TestNo Analys	: E300 is Date: 1/14/		17:24 A	Units: Prep Date	m g/L e: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	i t Qual
Bromide			51.3	1.00	50.00	0	103	90	110		
Sample ID M	B-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: MI	BLK	Run ID:	IC2_0801	14A	Analysi	s Date: 1/14/	2008 10:2	8:05 A	Prep Date	e: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	it Qual
Bromide			ND	1.00							
Sample ID LC	CS-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: LC	s	Run ID:	IC2_08011	4A	Analysi	s Date: 1/14/2	2008 10:42	2:46 A	Prep Date	: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimi	it Qual
Bromide			19.8	1.00	20.00	0	99.2	90	110		
Sample ID LC	SD-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: LC	SD	Run ID:	IC2_08011	4A	Analysis	5 Date: 1/14/2	2008 10:57	7:26 A	Prep Date	: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimi	t Qual
mide			20.0	1.00	20.00	0	100	90	110	0.839 20	
Sample ID 080	01064-04A MS	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: MS	6	Run ID;	IC2_08011	4A	Analysis	Date: 1/14/2	2008 12:29	0:00 P	Prep Date:	1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD RPDLimit	Qual
Bromide			37.3	2.00	40.00	3.168	85.3	90	110		S
Sample ID 080	01064-04A MSD	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	
SampType: MS	D	Run ID:	IC2_08011	4A	Analysis	Date: 1/14/2	2008 12:43	:40 P	Prep Date:	1/14/2008	
Analyte		I	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Bromide			37.7	2.00	40.00	3.168	86.4	90	110	1.13 20	S
Sample ID CC	V1-080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L	11
SampType: CC	V	Run ID:	IC2_08011	4A	Analysis	Date: 1/14/2	008 12:58	:21 P	Prep Date:	1/14/2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Bromide			20.2	1.00	20.00	0	101	90	110		

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- DF Dilution Factor
- MDL Method Detection Limit

Page 6 of 15

R RPD outside accepted control limitsS Spike Recovery outside control limits

CLIENT:	INTERA	Inc.			AN	ALYT	ICAL	OC SI	UMMA	RYF	REPO)RT
Work Order: oject:	0801064 RRC-O'Ry	'an, Dugo	ut, Pharoa	ìh			RunI	-	IC2_080			, 1 (1
Sample ID CCV2	2-080114	Batch ID	R35633		TestNo	E30	0		Units:	m g/l	_	
SampType: CCV		Run ID:	IC2_08	0114A	Analysi	s Date: 1/14	/2008 3:38	:42 PM	Prep Date	e: 1/14/	2008	
Anaiyte	1. C. 10	and the second	Result	RL	SPK value	Ref Val	%REC	Low Lin	hit HighLimit	%RPD	RPDLimit	Qual
Bromide			20.2	1.00	20.00	0	101	90	110			
Sample ID 08010	64-14BMS	Batch ID:	R35633		TestNo:	E300)		Units:	m g/L	-	
SampType: MS		Run ID:	IC2_08	0114A	Analysi	s Date: 1/14	/2008 4:26:	31 PM	Prep Date	e: 1/14/	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD F	RPDLimit	Qual
Bromide	52		178	10.0	200.0	0	88.9	90	110			S
Sample ID 080106	64-14BMSD	Batch ID:	R35633		TestNo:	E300			Units:	mg/L		
SampType: MSD		Run ID:	IC2_080	0114A	Analysis	Date: 1/14/	2008 4:41:	11 PM	Prep Date	: 1/14/2	2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD F	RPDLimit	Qual
Bromide			177	10.0	200.0	0	88.4	90	110	0.493	20	S
Sample ID CCV3-	080114	Batch ID:	R35633		TestNo:	E300			Units:	mg/L		
SampType: CCV		Run ID:	IC2_080	114A	Analysis	Date: 1/14/	2008 8:50:4	40 PM	Prep Date	: 1/14/2	8008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD R	PDLimit	Qual
nide			20.1	1.00	20.00	0	100	90	110			

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 7 of 15

62

oject:

INTERA Inc.

ANALYTICAL QC SUMMARY REPORT

Work Order: 0801064 RRC-O'Ryan, Dugout, Pharoah

RunID: IC2_080115A

Sample ID	ICV-080115	Batch ID:	R35656		TestN	b: E30	00		Units:	mg	/L	
SampType	: ICV	Run ID:	IC2_0801	15A	Analy	sis Date: 1/1	5/2008 9:23	3:45 AM	Prep Date	e: 1/1	5/2008	
Analyte		0-X 5 X 8 8 8	Result	RL	SPK value	Ref Val	%REC	Low Lir	mit HighLimit	%RPD	RPDLimit	t Qua
Bromide			51.2	1.00	50.00	0	102	90	110			
Chloride			26.9	1.00	25.00	0	107	90	110			
Sulfate			78.8	3.00	75.00	0	105	90	110			
Sample ID	MB-0801155	Batch ID:	R35656	2	TestN	o: E30	0		Units:	m g,	۲ L	
SampType	MBLK	Run ID:	IC2_0801	15A	Analy	sis Date: 1/1:	5/2008 10:4	2:54 A	Prep Date	e: 1/15	5/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD	RPDLimit	t Qua
Bromide			ND	1.00								
Chloride			ND	1.00								
Sulfate			ND	3.00					and the second secon			
Sample ID	LCS-080115	Batch ID:	R35656		TestNo	: E30	0		Units:	mg/	L	
SampType:	LCS	Run ID:	IC2_0801	15A	Analys	sis Date: 1/15	5/2008 10:5	7:35 A	Prep Date	e: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	hit HighLimit	%RPD	RPDLimit	Qua
Bromide			19.9	1.00	20.00	0	99.7	90	110			
Chloride			9.89	1.00	10.00	0	98.9	90	110			
ate			30.5	3.00	30.00	0	102	90	110			
Sample ID	LCSD-080115	Batch ID:	R35656		TestNo	E300	D		Units:	mg/	L	
SampType:	LCSD	Run ID:	IC2_08011	5A	Analys	is Date: 1/15	/2008 11:12	2:15 A	Prep Date	: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	nit HighLimit	%RPD	RPDLimit	Qua
Bromide			19.9	1.00	20.00	0	99.5	90	110	0.245	20	
Chloride			9.92	1.00	10.00	0	99.2	90	110	0.273	20	
Sulfate			30.6	3.00	30.00	0	102	90	110	0.419	20	
Sample ID	CCV1-080115	Batch ID:	R35656		TestNo	: E300)		Units:	mg/l	_	
SampType:	CCV	Run ID:	IC2_08011	5A	Analys	is Date: 1/15,	/2008 1:09:	23 P M	Prep Date	: 1/15/	2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qual
Bromide			20.1	1.00	20.00	0	100	90	110			
Chloride			10.5	1.00	10.00	0	105	90	110			
Sulfate			30.8	3.00	30.00	0	103	90	110			
Sample ID	0801064-27A MS	Batch ID:	R35656		TestNo	E300			Units:	mg/L	-	
SampType:	MS	Run ID:	IC2_08011	5A	Analys	is Date: 1/15/	2008 2:37:	25 PM	Prep Date:	1/15/	2008	
			Result	RL	SPK value	Ref Val	%REC	F	t HighLimit	0/ 000 1		Qual

J Analyte detected between MDL and RL

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

N Parameter not NELAC certified MDL Method Detection Limit

Page 8 of 15

R RPD outside accepted control limits Spike Recovery outside control limits S

Work Order:

INTERA Inc. 0801064

ANALYTICAL QC SUMMARY REPORT

"oject: RRC-O'Ryan, Dugout, Pharoah

RunID: IC2_080115A

Sample ID	0801064-27A MS	Batch ID:	R35656		TestN	o: E30	0		Units:	mg/L	
SampType:	MS	Run ID:	IC2_08	0115A	Analys	sis Date: 1/15	5/2008 2:37	:25 PM	Prep Dat	e: 1/15/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	t Qua
Bromide Sulfate			20.2 51.7	1.00 3.00	20.00 30.00	0 21.14	101 102	90 90	110 110		
Sample ID	0801064-27A MSD	Batch ID:	R35656		TestNo	D: E30 0	D		Units:	mg/L	
SampType:	MSD	Run ID:	IC2_080	0115A	Analys	sis Date: 1/15	/2008 2:52	:05 PM	Prep Date	e: 1/15/2008	
Analyte	2. 2.		Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimi	t Qual
Bromide Sulfate			20.2 51.7	1.00 3.00	20.00 30.00	0 21.14	101. 102	90 90	110 110	0.0461 20 0.0317 20	
Sample ID	CCV2-080115	Batch ID:	R35656		TestNo	E300)		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_080	0115A	Analys	is Date: 1/15	/2008 3:50:	47 PM	Prep Date	e: 1/15/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
Bromide Chloride Sulfate		0	19.9 9.95 30.5	1.00 1.00 3.00	20.00 10.00 30.00	0 0 0	99.4 99.5 102	90 90 90	110 110 110		
mple ID SampType:	0801064-27A MS	Batch ID: Run ID:	R35656		TestNo				Units: Prep Date	m g/L e: 1/15/2008	
											Qual
Analyte Chloride			Result 88.7	RL 5.00	SPK value 50.00	Ref Val 41.33	%REC 94.7	90	110	%RPD RPDLimit	Quar
				5.00							
Sample ID SampType:	0801064-27A MSD MSD	Batch ID: Run ID:	R35656 IC2_080	115A	TestNo Analysi	E300 is Date: 1/15/		14 P M	Units: Prep Date	m g/L 1/15/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride			88.8	5.00	50.00	41.33	94.9	90	110	0.125 20	
Sample ID	CCV3-080115	Batch ID:	R35656		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_080 [.]	115A	Analysi	s Date: 1/15/2	2008 6:31:3	35 P M	Prep Date	: 1/15/2008	
Analyte		I	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Bromide Chloride Sulfate			20.0 10.2 31.6	1.00 1.00 3.00	20.00 10.00 30.00	0 0 0	100 102 105	90 90 90	110 110 110		

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 9 of 15
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	N	Parameter not NELAC certified			

Work Order:

INTERA Inc. 0801064

ANALYTICAL QC SUMMARY REPORT

oject: RRC-O'Ryan, Dugout, Pharoah

RunID: IC2_080115A

Sample ID SampType:	CCV4-080115 CCV	Batch ID: Run ID:	R35656 IC2_080	115A	TestNo: Analysi	E300 s Date: 1/15		:01 PM	Units: Prep Date	mg/ e: 1/15	/L 5/2008	
Analyte		and and a second second	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Quai
Bromide			20.2	1.00	20.00	0	101	90	110			
Chloride			10.1	1.00	10.00	0	101	90	110			
Sulfate			31.7	3.00	30.00	0	106	90	110			
Sample ID	CCV4-080115	Batch ID:	R35656	-	TestNo:	E300			Units:	mg/	L	
SampType:	CCV	Run ID:	IC2_0801	15A	Analysis	Date: 1/15/	2008 9:42:	22 PM	Prep Date	: 1/15	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
			Result	RL 1.00	SPK value	Ref Val	%REC 101	Low Limit 90	HighLimit	%RPD	RPDLimit	Qual
Analyte		2							-	%RPD	RPDLimit	Qual

 Qualifiers:
 B
 Analyte detected in the associated Method Blank

 J
 Analyte detected between MDL and RL

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

Page 10 of 15

CLIENT: Work Ord		FERA Inc. 1064			AN	ALYT	ICAL	QC SI	JMMA	ARY	REPO	ORT
oject:		C-O'Ryan, Dugoi	ıt, Pharo	ah	8		RunI	D: 1	IC2_080	116A		
Sample ID	ICV-080116	Batch ID:	R3567	9	TestNo	: E30	0		Units:	mç	j/L	
SampType:	ICV	Run ID:	IC2_0	B0116A	Analys	is Date: 1/16	5/2008 9:36	:39 AM	Prep Dat	e: 1/1	6/2008	
Analyte	28		Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimi	Quai
Chloride			25.4	1.00	25.00	0	101	90	110			
Sample ID	MB-080116	Batch ID:	R35679	9	TestNo	E30	0		Units:	mg	/L	
SampType:	MBLK	Run ID:	IC2_08	30116A	Analysi	s Date: 1/16	/2008 10:0	5:55 A	Prep Dat	e: 1/1	6/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	1.00	1							
Sample ID	LCS-080116	Batch ID:	R35679)	TestNo:	E300)	a na ang ang ang ang ang ang ang ang ang	Units:	mg	/L	
SampType:	LCS	Run ID:	IC2_08	0116A	Analysi	s Date: 1/16	/2008 10:20	0:35 A	Prep Date	e: 1/10	6/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD	RPDLimit	Qual
Chloride			9.94	1.00	10.00	0	99.4	90	110			
Sample ID	LCSD-08011	6 Batch ID:	R35679	1	TestNo:	E300)		Units:	m g.	/L	
SampType:	LCSD	Run ID:	IC2_08	0116A	Analysis	s Date: 1/16/	/2008 10:35	5:16 A	Prep Date	e: 1/16	6/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD	RPDLimit	Qual
ride			9.99	1.00	10.00	0	99.9	90	110	0.531	20	
Sample ID	CCV1-08011	6 Batch ID:	R35679		TestNo:	E300)		Units:	m g/	'L	
SampType:	ccv	Run ID:	IC2_08	0116A	Analysis	5 Date: 1/16/	2008 1:57:	43 PM	Prep Date	1/16	/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD	RPDLimit	Qual
Chloride			10.0	1.00	10.00	0	100	90	110			

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 11 of 13
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	N	Parameter not NELAC certified			

CLIENT: Work Or nject:		Inc. yan, Dugoi	ıt, Pharoah		AN	ALYTI	CAL Runl		UMMA IC2_080	ARY REPC	ORT
Sample ID	ICV-080118	Batch ID:			TestNo				Units:	mg/L	
SampType:	ICV	Run ID:	IC2_0801*	18A	Analys	s Date: 1/18/	2008 9:50):57 AM	Prep Dat	e: 1/18/2008	
Analyte	-		Result	RL	SPK value	Ref Val	%REC	Low Lin	it HighLimit	%RPD RPDLimit	Qual
Chloride			25.5	1.00	25.00	0	102	90	110	selvenna	
Sample ID	MB-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC2_08011	8A	Analysi	s Date: 1/18/2	2008 10:1	5:42 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Chloride			ND	1.00						-	
Sample ID	LCS-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC2_08011	8A	Analysis	B Date: 1/18/2	2008 10:3	0:22 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
Chloride			9.89	1.00	10.00	0	98.9	90	110		
Sample ID	LCSD-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC2_08011	8A	Analysis	Date: 1/18/2	2008 10:4	5:02 A	Prep Date	e: 1/18/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
ride			9.90	1.00	10.00	0	99.0	90	110	0.140 20	
Sample ID	CCV1-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	ccv	Run ID:	IC2_08011	BA	Analysis	Date: 1/18/2	2008 12:4	1:15 P	Prep Date	1/18/2008	
Analyte		I	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride			9.87	1.00	10.00	0	98.7	90	110		
Sample ID	CCV2-080118	Batch ID:	R35721		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_080118	3A	Analysis	Date: 1/18/2	008 3:48:	13 PM	Prep Date	1/18/2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride)	10.0	1.00	10.00	0	100	90	110		
Sample ID	0801092-01BMS	Batch ID:	R35721		TestNo:	E300	11		Units:	mg/L	
SampType:	MS	Run ID:	IC2_080118	BA	Analysis	Date: 1/18/2	008 4:04:	57 P M	Prep Date:	1/18/2008	
Analyte		F	Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	%RPD RPDLimit	Qual
Chloride			1750	50.0	500.0	1258	98.0	90	110	-	

Qualifiers:

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND
 - Not Detected at the Method Detection Limit
- RL Reporting Limit
- Ν Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

Page 12 of 15

RPD outside accepted control limits R

S Spike Recovery outside control limits

CLIENT: Work Or oject:			ıt, Pharoal	1	AN	ALYTI	CAL (RunI	-	UMMA IC2_080		EPO	RT
Sample ID SampType:	0801092-01B M SD M SD	Batch ID: Run ID:	R35721 IC2_080	118A	TestNo: Analysis	E300 5 Date: 1/18/2	2008 4:19	:37 PM	Units: Prep Date	m g/L e: 1/18//		
Analyte	n i y - awar i ran b		Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD F	RPDLimit	Qual
Chloride			1740	50.0	500.0	1258	96.8	90	110	0.333	20	
Sample ID SampType:	CCV3-080118 CCV	Batch ID: Run ID:	R35721 IC2_080 [,]	118A	TestNo: Analysis	E300 Date: 1/18/2	008 5:02:	59 PM	Units: Prep Date	m g/L e: 1/18/2		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	nit HighLimit	%RPD F	RPDLimit	Qual
Chloride			10.0	1.00	10.00	0	100	90	110			

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 13 of 15

CLIENT:	INTERA I der: 0801064	nc.			AN	ALYI	TICAL (QC ST	UMMA	RY REP	ORT
Work Or oject:	RRC-O'Ry	an, Dugo	ut, Phar	oah			RunII	D:	WC_080	114A	
Sample ID	MB-080114	Batch ID:	TDS_	W-01/14/08	TestNo:	M2	2540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_0	080114A	Analysis	5 Date: 1/1	5/2008 8:30:	00 AM	Prep Date	e: 1/14/2008	
Analyte	The state of the state of the	- <u>-</u>	Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	%RPD RPDLir	nit Qual
Total Dissol	ved Solids (Residue,	Filtera	ND	10.0							
Sample ID	LCS-080114	Batch ID:	TDS_	W-01/14/08	TestNo:	M 2	540C		Units:	mg/L	
SampType:	LCS	Run ID:	wc_c	80114A	Analysis	Date: 1/1	5/2008 8:30:0	00 A M	Prep Date	e: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lirr	nit HighLimit	%RPD RPDLin	nit Qual
Total Dissol	ved Solids (Residue,	Filtera	757	10.0	745.6	0	102	70	126		
Sample ID	0801064-04A DUP	Batch ID:	TDS_V	N-01/14/08	TestNo:	M 2	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_0	80114A	Analysis	Date: 1/1:	5/2008 8:30:0	0 AM	Prep Date	: 1/14/2008	5
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLim	it Qual
Total Dissolv	ved Solids (Residue,	Filtera	6620	10.0	0	6560				0.910 5	
Sample ID	0801064-14B DUP	Batch ID:	TDS_V	V-01/14/08	TestNo:	M 2:	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_0	80114A	Analysis	Date: 1/15	5/2008 8:30:0	0 A M	Prep Date	: 1/14/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	it HighLimit	%RPD RPDLim	it Qual
l Dissolv	ed Solids (Residue, I	Filtera	31500	10.0	0	32120	4			2.08 5	

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 DF
 Dilution Factor

 J
 Analyte detected between MDL and RL
 MDL
 Method Detection Limit
 Page 14 of 15

 ND
 Not Detected at the Method Detection Limit
 R
 RPD outside accepted control limits
 Page 14 of 15

 RL
 Reporting Limit
 S
 Spike Recovery outside control limits

N

Parameter not NELAC certified

CLIENT: Work Ore				mana Da	AN	ALYT				RY REPO	ORT
°∽oject:	RRC-O'Ry	an, Dugo	ut, Pha	roan			RunI	D:	WC_080	116A	
Sample ID	MB-080116	Batch ID	TDS	_W-01/16/08	TestNo:	M 2	540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_	080116A	Analysi	s Date: 1/17	/2008 9:40	MA 00:	Prep Date	e: 1/16/2008	
Analyte		<i>l a</i>	Result	RL	SPK value	Reí Val	%REC	Low Lin	nit HighLimit	%RPD RPDLimit	Qua
Total Dissol	ved Solids (Residue	Filtera	ND	10.0							
Sample ID	LCS-080116	Batch ID:	TDS_	_W-01/16/08	TestNo:	M 25	540C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_	080116A	Analysis	Date: 1/17	/2008 9:40:	00 AM	Prep Date	e: 1/16/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Total Dissolv	ved Solids (Residue,	Filtera	762	10.0	745.6	0	102	70	126		
Sample ID	0801092-02A DUP	Batch ID:	TDS_	W-01/16/08	TestNo:	M 25	40C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_0	080116A	Analysis	Date: 1/17	/2008 9:40:0	00 AM	Prep Date	: 1/16/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	%RPD RPDLimit	Qual
Total Dissolv	ed Solids (Residue,	Filtera	4250	10.0	0	4253				0.0706 5	
Sample ID	0801064-32A DUP	Batch ID:	TDS_	W-01/16/08	TestNo:	M 254	40C		Units:	m g/L	
SampType:	DUP	Run ID:	wc_c	080116A	Analysis	Date: 1/17/	2008 9:40:0	00 AM	Prep Date:	1/16/2008	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	%RPD RPDLimit	Qual
l Dissolv	ed Solids (Residue,	Filtera	2440	10.0	0	2458				0.612 5	

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

DF Dilution Factor MDL Method Detection Limit

Page 15 of 15

R RPD outside accepted control limits

Spike Recovery outside control limits S

DHL Analytical

CLIENT: INTERA Inc. Work Order: 0801064

Jject: RRC-O'Ryan, Dugout, Pharoah

Contraction of the second state of the second	Contraction of the local division of the loc	and the second se
TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Bromide	0.300	1.00
Chloride	0.300	1.00
Sulfate	1.00	3.00
TestNo: SW8021B	MDL	MQL
Analyte	mg/L	mg/L
Methyl tert-butyl ether	0.00200	0.00600
Benzene	0.000800	0.00200
Toluene	0.00200	0.00600
Ethylbenzene	0.00200	0.00600
Xylenes, Total	0.00300	0.00900
TestNo: M2540C	MDL	MQL
Analyte	mg/L	mg/L
Total Dissolved Solids (Residue, Filt	10.0	10.0

Qualifiers

MQL -Method Quantitation Limit as defined by TRRP MDL -Method Detection Limit as defined by TRRP

MQL SUMMARY REPORT