

FINAL

Site Investigation Report

West O'Daniel Seep Howard County, Texas

Prepared for:

Railroad Commission of Texas Oil and Gas Division Site Remediation and Special Response

William B. Miertschin, Assistant Director

Prepared by:

TRC 505 East Huntland Drive, Suite 250 Austin, Texas 78752

Mark A. Robbins, Project Manager

August 2006

Final

Site Investigation Report

West O'Daniel Seep Howard County, Texas

Prepared for:

Railroad Commission of Texas Oil and Gas Division, Site Remediation and Special Response 1701 North Congress Avenue Austin, Texas 78711 William B. Miertschin, Assistant Director

Prepared by:

TRC

505 East Huntland Drive, Suite 250 Austin, Texas 78752 Mark A. Robbins, Project Manager

TRC Project No. 53680

August 2006

TABLE OF CONTENTS

Page

1.0	INTR	RODUCTION	
	1.1	Site Background	
	1.2	Investigation Objectives	
	1.3	Report Contents	1-1
2.0	SITE	INFORMATION	2-1
	2.1	Site History	
	2.2	Previous Site Investigations	
3.0	INVE	ESTIGATION METHODOLOGY	
	3.1	Field Inspection of the Drainage Basin	
	3.2	Monitoring Well Installation	
	3.3	Well Gauging	
	3.4	Water Sampling	
	3.5	Monitoring Well Survey	
	3.6	Dye Tracing	
4.0	INVE	ESTIGATION RESULTS	4-1
	4.1	Geology and Groundwater	
	4.2	Analytical Results and Field Measurements	
		4.2.1 Chloride Data	
		4.2.2 Salinity Data	
		4.2.3 BTEX Data	
		4.2.4 Dye Tracer Data	
	4.3	Quality Assurance	
5.0	CON	CLUSIONS	
6.0	REC	OMMENDATIONS	6-1
7.0	REFI	ERENCES	7-1

TABLE OF CONTENTS (cont.)

APPENDIX A	Tables
APPENDIX B	Boring Logs and Well Construction Reports
APPENDIX C	Well Development and Water Sampling Field Forms
APPENDIX D	Laboratory Analytical Reports - Ozark Underground Laboratory, Inc.
APPENDIX E	Laboratory Analytical Reports – DHL Analytical
APPENDIX F	Analytical Data Review/Validation Checklists

LIST OF FIGURES

Figure 3-1.Site Plan (April 2006)3-3Figure 3-2.Chloride Distribution Map (April 2006)3-4Figure 4-1.Groundwater Elevation Map (April 2006)4-2Figure 4-2.Analytical Results for BTEX (April 2006)4-5

LIST OF TABLES

TRC Project No. 53680

Page

1.0 INTRODUCTION

1.1 Site Background

The Railroad Commission of Texas (RRC), Oil and Gas Division, has documented the occurrence of several saltwater seeps in the Snyder Oil Field, Block 30, of Howard County, Texas. The saltwater seeps in the Snyder Oil Field, including the West O'Daniel Seep, emanate from the base of the Ogallala Formation, which lies unconformably on the Dockum Group (Ogallala/Dockum Contact). These seeps are associated with an outlier of the Ogallala Aquifer. The water from these seeps discharges into tributaries of Beals Creek, which ultimately empties into the Colorado River. There is concern that the Ogallala is being impacted and that the seeps will degrade the quality of receiving waters by increasing the overall chloride content.

Preliminary investigations of the East O'Daniel Seep and Click Seep documented elevated chloride concentrations and areas of distressed vegetation. The West O'Daniel Seep is located between these two seeps. The RRC applied to the United States Environmental Protection Agency (USEPA) for a non-point source grant to investigate and remediate/abate saltwater impacts in the Upper Colorado River drainage basin upstream of Spence Reservoir (Texas Surface Water Segment 1411). The funding from the USEPA is administered by the Texas Commission on Environmental Quality (TCEQ). As part of this effort to identify sources and reduce the salinity of the affected drainage ways and ultimately the Colorado River, the RRC asked that an assessment be performed on the West O'Daniel Seep. On behalf of the RRC, TRC Environmental Corporation (TRC) conducted a site assessment of the area surrounding the West O'Daniel Seep from April 10 to 14, 2006 and on April 21, 2006.

1.2 Investigation Objectives

The objectives of this site investigation were to gather information to further delineate the extent of saltwater impacts from oil and gas operations and to identify possible source(s) of the impacts. This information will be used to design a remedy for the site.

1.3 Report Contents

This report provides a brief site history, summarizes the site investigation field methods, presents the results of the site investigation including analytical data, and provides conclusions and recommendations.

2.0 SITE INFORMATION

This section provides a summary of the West O'Daniel Seep (Site) history as provided by the RRC including information on previous site investigations. The site is located in the Snyder Oil Field, Block 30, of Howard County, Texas.

2.1 Site History

The RRC has documented the occurrence of several saltwater seeps in the Coahoma, Texas area. The water from these seeps discharges into intermittent streams and drainage ways that lead to tributaries of the Colorado River and eventually into the Colorado River. In order to reduce the salinity of the affected drainage ways and ultimately the Colorado River, the RRC asked TRC to investigate the West O'Daniel Seep.

The saltwater seeps in the Snyder Oil Field, including the West O'Daniel Seep, emanate along the Ogallala/Dockum Contact. These seeps are associated with an outlier of the Ogallala Aquifer. The water from these seeps discharges into tributaries of Beals Creek, which ultimately empties into the Colorado River. There is concern that the Ogallala is being impacted and that the seeps will degrade the quality of receiving waters by increasing the overall chloride content.

2.2 Previous Site Investigations

The Bureau of Economic Geology (BEG) conducted an investigation of the Snyder Oil Field in 1998. The investigation consisted of a geophysical survey, drilling soil borings, installing monitoring wells, exploratory trenching, and water sampling. The results of the BEG investigation are presented in the April 1999 report titled *Investigation of the Snyder Field Site, Howard County, Texas*.

On December 30, 1998, the RRC began a dye tracing test. Fluorescein dye was mixed with produced water at two tank batteries and then pumped by the operator into 10 injection wells located near the East and West O'Daniel Seeps. The Fluorescein dye was detected in several of the nearby monitoring wells and the East O'Daniel Seep.

In September 1999, the operator conducted a second dye tracing test during which Eosine OJ dye was pumped into injection well 17W, D&C Red #28 dye was pumped into injection well 8W, and Sulforhodamine B was pumped into injection well 18W. These dyes were again detected in several of the nearby monitoring wells and the East O'Daniel Seep.

At the request of the RRC, TRC performed an initial investigation of the site in February and June 2001 while conducting an assessment of the adjacent Click Seep site.

During this assessment, two boreholes were drilled at the West O'Daniel Seep site. One of these boreholes was converted into temporary monitoring well S-MW-01, and the other borehole was converted into permanent monitoring well S-MW-02. Groundwater samples were collected from both monitoring wells, and the analytical results were compared to the assessment results of the adjacent Click Seep. BEG monitoring well BEG-MW-11, located north of the West O'Daniel Seep area, was also groundwater sampled. BEG monitoring well BEG-MW-11 was installed during the site investigation of the adjacent East O'Daniel Seep. Groundwater samples were collected from the three wells and analyzed for complete salinity (pH, electrical conductivity, cations, and anions), benzene, toluene, ethyl benzene, total xylenes (BTEX), and total petroleum hydrocarbons (TPH). The chloride analytical results exhibited concentrations of 1,244.30 milligrams per liter (mg/L) in BEG-MW-11, 21,432.60 mg/L in S-MW-01, and 22,000 mg/L in S-MW-02. According to the April 1999 BEG report titled Investigation of the Snyder Field Site, Howard County, Texas, chloride concentrations typically range from 100 to 1,000 mg/L in the Ogallala Aquifer in Howard County. Therefore, the chloride concentrations in wells S-MW-01 and S-MW-02 exceeded typical background levels. BTEX and TPH concentrations were below detection limits for all three samples signifying no recent impact from produced water. Three additional boreholes located near these wells were completed as part of the Click Seep Assessment but were dry holes and therefore were not sampled.

3.0 INVESTIGATION METHODOLOGY

TRC conducted site investigation activities at the West O'Daniel Seep site from April 10 to 14, 2006, and on April 21, 2006. Mr. Tim Prude, Site Remediation Coordinator for the RRC Districts 8 and 8A, was present during field activities. The investigation was conducted in accordance with the following documents:

- Final Work Plan and Health and Safety Plan, West O'Daniel Seep Site Assessment (TRC, 2005) submitted to the RRC by TRC in May 2005 ("Work Plan").
- Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan (RRC, 2005) submitted by the RRC to the TCEQ and USEPA in September 2005 ("QAPP").

The field investigation consisted of the following tasks: (1) inspecting and field sampling the drainage basin downstream of the West O'Daniel Seep, (2) installing five monitoring wells, (3) collecting groundwater samples from eight monitoring wells, one water well, and two sumps, (4) collecting water samples from one surface and one shallow subsurface location within the drainage basin downstream of the West O'Daniel Seep, (5) synoptic well gauging, and (6) managing investigation-derived waste (IDW). The field investigation tasks were completed in accordance with the Work Plan and QAPP with the following variances:

- Water well S-WW-52 was not sampled because the well was dry.
- The groundwater sample from water well S-WW-53 was collected as a grab sample using a bailer rather than by purging with the well pump. The well was not purged because the well pump was not operational and purging using a bailer would have been ineffective based on the unknown well depth and large well diameter (six inches).
- Groundwater samples were collected from existing monitoring wells BEG-MW-06 and BEG-MW-07 to evaluate conditions upgradient of S-MW-04.
- The location for monitoring well S-MW-05 was inaccessible to a drilling rig, so S-MW-05 was drilled and installed using a temporary casing, hand auger, shovel, and dozer. The well was installed in loose alluvial sediments; so, to ensure a proper sand pack, a six-inch diameter polyvinyl chloride (PVC)

casing was pushed to seven feet below ground surface (bgs) using a dozer. Soil samples were collected from inside the casing using a 3-inch outside diameter hand auger and shovel to seven feet bgs. The two-inch diameter PVC well casing and screen were installed inside the six-inch PVC casing, and then the annular space was filled with sand and bentonite chips. The sixinch PVC casing was then removed from the ground using the dozer.

A summary of the groundwater data points is provided as Table 3-1.

Sample Location Type	Description	Sample Location ID
Monitoring Well	Installed by BEG	BEG-MW-06, BEG-MW-07, BEG-MW- 11, BEG-MW-14, and BEG-MW-15
	Installed by TRC	S-MW-01 (abandoned), S-MW-02, S-MW-03, S-MW-04, S-MW-05, S-MW-06, and S-MW-07
Water Well	Existing wells located east of the West O'Daniel Seep	S-WW-52 and S-WW-53
Sump	Located at the East O'Daniel Seep	E-S-55 and E-S-56

 Table 3-1.
 Summary of Groundwater Data Points

3.1 Field Inspection of the Drainage Basin

A field inspection of the drainage basin downstream of the West O'Daniel Seep was conducted on April 10, 2006, and indicated a decreasing trend in chloride concentrations in the downstream direction. The sample locations are shown on Figure 3-1, and the field chloride data are shown on Figure 3-2.

The West O'Daniel Seep was dry; however, surface water was observed at a seep identified as S-S-1, which was approximately 650 feet downstream of the West O'Daniel Seep. A sample (W-FS-S-1) was collected at this location and had a field chloride concentration of 23,800 mg/L. A sample (S-S-1) from this location was also submitted for laboratory analysis. The surface water flowed within the drainage basin for approximately 1,100 feet to field sample location W-FS-S-2 where the surface flow stopped most likely due to recharge into the subsurface. A sample (W-FS-S-2) was collected at this location and had a field chloride concentration of 26,000 mg/L.

Hand auger boring HA-2 was completed approximately 350 feet downstream from the end of the surface water flow to evaluate groundwater conditions in the shallow

Figure 3-1. Site Plan (April 2006) BEG 四代 S-MW-02 6

LEGEND

TRC Monitoring Well Locations ✦ Monitoring Well
 ▲ Field Sample

TRC Verified Well Locations

- 0
- ✓ Injection / Disposal
 Problem Oil
 Problem Plugged Oil Well

- Seepont Register Control
 Sumps
 Problem Injection
 Salt Cedars
 Plugged Problem Injection
 Water Well

RRC Recorded Well Locations

- Permitted Location
 Dry Hole
 Oil
 Plugged Oil
 Injection / Disposal
 Injection / Disposal from Oil

Note: 1. S-MW-01 is abandoned.

Reference: U.S.G.S. Digital Orthophoto Quarter Quadrangle (DOQ) Hyman SW (2004) and Moss Creek Lake NE (2004),Texas DOQs.

The following concentration data are field samples: E-MW-07, W-FS-S-1, W-FS-S-2, W-FS-S-3, W-FS-S-4, and W-FS-ST-5.

Reference: U.S.G.S. Digital Orthophoto Quarter Quadrangle (DOQ) Hyman SW (2004) and Moss Creek Lake

alluvial material. Boring HA-2 was completed to a depth of five feet bgs and groundwater was observed at three feet bgs. The field chloride concentration at HA-2 was 19,100 mg/L (sample W-FS-S-3). Monitoring well S-MW-06 was installed at this location based on the moderate decrease in chloride concentration.

A stock tank and minor tributary draining into the stock tank were identified approximately 900 feet downstream of boring HA-2. A sample (W-FS-S-4) was collected from the minor tributary and had a field chloride concentration of 19,600 mg/L. A sample (S-S-2) from this location was submitted for laboratory analysis. A sample (W-FS-ST-5) was collected from the stock tank and had a field chloride concentration of 14,900 mg/L.

Hand auger boring HA-3 was completed approximately 650 feet downstream of the stock tank to evaluate groundwater conditions in the shallow alluvial material. Boring HA-3 was completed to a depth of two feet bgs where refusal was encountered; the boring was dry.

Hand auger boring HA-1 was completed approximately 1,500 feet downstream of HA-2 and approximately 1,300 feet upstream of the confluence with Beals Creek. The boring was completed to evaluate groundwater conditions in the shallow alluvial material and to delineate chloride in the downstream direction. Boring HA-1 was completed to a depth of 10 feet bgs and was dry, so monitoring well S-MW-07 was drilled and installed to a depth of 33.48 feet bgs at this location.

3.2 Monitoring Well Installation

Five monitoring wells were installed on April 11 and 12, 2006, to characterize lithology, collect groundwater samples, and measure the depth to groundwater. The locations of the monitoring wells were selected based on the results of previous investigations and the chloride field test results discussed in Section 3.1. Borehole and well information are summarized on Table 1 of Appendix A, and the boring logs and well construction diagrams are included in Appendix B. Wells S-MW-03 and S-MW-04 were placed upgradient of the West O'Daniel Seep to evaluate potential source pathways along the two drainage basins. Well S-MW-05 was placed near the West O'Daniel Seep and near former temporary well S-MW-01. Wells S-MW-06 and S-MW-07 were placed downgradient of the West O'Daniel Seep for delineation; the locations of these two wells were based on the field data discussed in Section 3.1.

All five boreholes produced groundwater, so they were converted into monitoring wells S-MW-03, S-MW-04, S-MW-05, S-MW-06, and S-MW-07. All of the boreholes except S-MW-05 were completed using an air rotary drilling rig. Well S-MW-05 was

completed using a temporary casing, hand auger, shovel, and dozer because the location was inaccessible to the drill rig. The boreholes were converted into two-inch diameter PVC monitoring wells and were developed until groundwater parameters (i.e., pH, temperature, conductivity, and oxidation-reduction potential [ORP]) stabilized to within ten percent of the previous two readings and a minimum of three well volumes had been purged. The well development forms are presented in Appendix C. The soil IDW was spread on the ground surface because there was no obvious evidence of hydrocarbon impacts.

3.3 Well Gauging

Before the monitoring wells were purged and sampled, the depth to groundwater was gauged. The data were recorded using a water level meter with an accuracy of 0.01 feet. A synoptic gauging of the five new monitoring wells and the six existing wells was conducted on April 21, 2006. Gauging data were used to determine the groundwater flow direction and gradient at the site. The water level meter was decontaminated between wells. The well gauging data are provided in Table 2 of Appendix A.

3.4 Water Sampling

Groundwater samples were collected from eight monitoring wells (three existing wells and five new wells), one water well, and two sumps. One surface water sample and one shallow subsurface water sample were collected at two locations within the drainage basin downstream of the West O'Daniel Seep. The surface water sample (S-S-1) and the shallow subsurface water sample (S-S-2) were collected as grab samples. The water samples from the sumps were also collected as grab samples. The sumps were equipped with pumps so the samples were collected directly from a sample port on the effluent pipe. The sample from the water well was collected as a grab sample using a bailer.

Prior to purging the monitoring wells, the depth to water and total depth of the monitoring wells were measured and recorded. Each monitoring well was purged with a dedicated 1.5-inch diameter disposable PVC bailer until the water quality parameters (temperature, pH, conductivity, and ORP) stabilized to within 10 percent of the previous two readings and a minimum of three well volumes was purged. The field meter was calibrated according to the manufacturer's specifications. The meter probes were triple rinsed with groundwater from the next sample aliquot. A description of the water quality (e.g., turbidity, sheen, odor) was also recorded. Each sample was collected using the PVC bailer used for purging. The field sampling forms are presented in Appendix C.

The samples were collected on April 13, 14, and 21, 2006, and were submitted to DHL Analytical in Round Rock, Texas, for analysis of the following chemicals:

- BTEX by SW846 Method 8021B
- Barium, calcium, iron, magnesium, potassium, and sodium by SW846 Method 6020
- Bromide, chloride, nitrate, and sulfate by USEPA Method 300.0
- Alkalinity by USEPA Method 310.1
- pH by USEPA Method 150.1
- Specific conductance by USEPA Method 120.1

The samples were placed in coolers with ice, and the coolers remained in the custody of TRC personnel until they were shipped. Signed and dated chain-of-custody records and custody seals were completed for each cooler. The analytical data are provided in Tables 3, 4, 5, and 6 of Appendix A.

Quality assurance/quality control (QA/QC) samples were collected in the field to check the validity of the data. Field duplicate samples and matrix spike/matrix spike duplicate (MS/MSD) samples were collected at a frequency of 10 percent from sample locations being analyzed for complete salinity and BTEX. Trip blanks were included with each cooler that contained samples for BTEX analysis.

The water IDW, was contained in 55-gallon drums, properly labeled, and stored on-site for future disposal by the RRC.

3.5 Monitoring Well Survey

In order to determine the location and elevation of the wells, a survey of the five newly installed monitoring wells was conducted on May 10, 2006, using a global positioning system (GPS) unit. Coordinates, ground elevation, and top-of-casing elevation were surveyed by Crim and Bradshaw Engineering of Big Spring, Texas. The survey data are provided in Table 1 of Appendix A.

3.6 Dye Tracing

The RRC installed dye detectors in nine monitoring wells during July and August 2006 to determine whether the tracer dyes injected in 1998 and 1999 were still present in the groundwater. The dye detectors were installed in each monitoring well for seven days and this procedure was repeated over a three week period from July 24 to August 14, 2006. The dye detectors consisted of activated charcoal in a mesh packet that was placed approximately one foot above the bottom of each well and secured with white nylon twine. The charcoal packets were removed from the nine wells after seven days,

placed in a sealed plastic bag, and submitted to Ozark Underground Laboratory, Inc. in Protem, Missouri, for analyses. After removal of the charcoal packets, a groundwater sample was collected from each of the nine wells using a bailer that was dropped to the bottom of the well. On July 31 and August 7, 2006, a new charcoal packet was placed in each of the nine monitoring wells after collection of the groundwater sample. The laboratory analytical data are presented in Appendix D.

4.0 INVESTIGATION RESULTS

This section presents the geologic and groundwater data, analytical results and field measurements, and quality assurance information. TRC conducted site investigation activities from April 10 to 14, 2006, and on April 21, 2006. The investigation was conducted to achieve the objectives discussed in Section 1.2.

4.1 Geology and Groundwater

The subsurface lithology was interpreted to a maximum depth of 35 feet bgs based on boring logs for monitoring wells S-MW-02 through S-MW-07. The general lithology consists of sand overlying clay. The sand is primarily fine grained with some medium and coarse grain particles and includes minor amounts of gravel, silt and clay. There are intermittent lenses of silt within the sand, especially at wells S-MW-05 and S-MW-06. At well S-MW-07, there is five feet of clay at the surface, most likely topsoil. The topsoil was only encountered at well S-MW-07 because it is not as close to the sandy drainage basin as the other wells. A red clay (Dockum Group) occurs beneath the sand at depths ranging from 9 feet bgs at S-MW-02 to 27 feet bgs at S-MW-07. In general, the contact between the sand and clay mimics the ground topography.

A synoptic gauging of the six monitoring wells at the West O'Daniel Seep and five monitoring wells at the East O'Daniel Seep was conducted on April 21, 2006. The groundwater elevations are provided in Table 2 of Appendix A and are shown in Figure 4-1. Based on the groundwater elevation data, groundwater occurs in the sand unit under unconfined conditions. The groundwater flow pattern roughly follows the surface water flow pattern to the south at a hydraulic gradient of 0.019 feet per foot. There is a minor groundwater flow component to the east towards the East O'Daniel Seep. It would be expected that sources of saltwater and hydrocarbons would be located at or north (upgradient) of the monitoring wells with elevated chloride and BTEX concentrations, and would then migrate to the south.

4.2 Analytical Results and Field Measurements

This section discusses the analytical data from April 2006 and compares the results to previous analytical data. A summary of the analytical results from the April 2006 site investigation and the previous investigations are provided in Tables 3, 4, 5, and 6 of Appendix A. The laboratory analytical reports are provided in Appendix E. The evaluation of the current chemical concentrations in the wells was conducted to determine any potential source(s) of salinity and hydrocarbons at the site, determine the extent of impact, and determine any temporal trends.

-

-

4.2.1 Chloride Data

The 1999 BEG investigation report documented that chloride concentrations typically range from 100 to 1,000 mg/L in the Ogallala Formation in Howard County, and that background chloride values in the Ogallala within the investigation area ranged from 100 to 700 mg/L (BEG, 1999). For the purposes of this study, chloride concentrations below 1,000 mg/L are considered indicative of background conditions typical of the Ogallala Formation in this area. All of the April 2006 chloride concentrations from the West O'Daniel Seep investigation area exceeded the background level. Several BEG wells located approximately 0.5 miles north of the West O'Daniel Seep investigation area had concentrations indicative of background conditions. Figure 3-2 presents a chloride distribution map of the investigation area.

Monitoring wells BEG-MW-06, BEG-MW-07, and S-MW-04 had the highest chloride concentrations (32,600 mg/L, 29,000 mg/L, and 29,600 mg/L, respectively) and well S-MW-07 had the lowest chloride concentration (7,450 mg/L). The highest chloride concentrations occurred at the upgradient extent of the investigation area, which is west of the East O'Daniel Seep and north of the West O'Daniel Seep. Chloride concentrations decreased in the crossgradient direction to the west, and in the downgradient directions to south and east. The chloride concentration decreases rapidly from BEG-MW-06 (32,000 mg/L) to S-MW-05 (17,100 mg/L) that is near the West O'Daniel Seep, then stays relatively stable from S-MW-05 (17,100 mg/L) to S-MW-06 (17,600 mg/L), and finally decreases rapidly from S-MW-06 (17,600 mg/l) to S-MW-07 (7,540 mg/L).

The chloride results from two of the three previously installed monitoring wells, BEG-MW-11 and BEG-MW-06, increased since the previous investigations. The chloride concentration at BEG-MW-11 increased significantly from 1,244.30 mg/L in February 2001 (TRC, 2001) to 10,400 mg/L in April 2006. Sulfate, sodium, calcium, magnesium, and electrical conductivity also increased at BEG-MW-11 over this same time period; yet, carbonate and bicarbonate decreased over this time period. The chloride concentration at BEG-MW-06 increased from 26,565 mg/L in September 1998 (BEG, 1999) to 32,600 mg/L in April 2006. The results from the third previously installed monitoring well, S-MW-02, remained relatively stable from June 2001 (22,000 mg/L) to April 2006 (24,300 mg/L). Tables 3 and 4 of Appendix A presents the cation and anion concentrations measured in the samples collected during the site investigation. The pH and electrical conductivity are presented in Table 4 of Appendix A.

Delineation of chloride to the background concentration of 1,000 mg/L was not achieved. However, a notable decrease in the chloride concentration from 32,600 mg/L to 7,540 mg/L was documented to the south (downgradient). The significant increase in

chloride concentration at BEG-MW-11 may indicate migration of the plume to the west or a recent source in the vicinity.

4.2.2 Salinity Data

The concentration of salinity or total dissolved solids (TDS) can be used to classify water as fresh, saline, or brine. More than 90 percent of the TDS in groundwater can be attributed to eight ions: sodium, calcium, potassium, magnesium, sulfate, chloride, carbonate, and bicarbonate. Therefore, an estimate of the TDS concentration can be obtained by summing the concentration of these eight ions (Fetter, 1994.) The calculated TDS concentrations are included in Table 5 of Appendix A.

The Texas Water Development Board (TWDB) outlines five categories of water based on the TDS concentration (TWDB, 1969). Based on the TWDB report categories, the water samples collected from locations BEG-MW-06, sump E-S-55, sump E-S-56, S-MW-02, S-MW-03, S-MW-04, S-S-1, and S-WW-53) are characterized as brine. The water samples collected from S-MW-05, S-MW-06, S-MW-07, BEG-MW-11, and S-S-2 are characterized as very saline. TDS concentrations in the very saline and brine ranges that usually exhibit elevated sodium chloride content are often associated with produced water.

4.2.3 BTEX Data

The presence of BTEX can be an indicator of produced water associated with oilfield operations. Produced water typically contains residual BTEX compounds as a result of the contact between the produced water and oil. However, it is not unusual to see negligible concentrations of BTEX when high chloride concentrations are caused by produced water since the BTEX compounds may volatilize or biodegrade as the groundwater migrates through the subsurface.

The April 2006 data indicated the presence of benzene at BEG-MW-06, S-MW-02, S-MW-04, and sump E-S-55, and toluene, ethylbenzene and total xylenes at sump E-S-55. Figure 4-2 and Table 6 of Appendix A present the BTEX analytical results. The BTEX extent is located upgradient of the West O'Daniel Seep and has been delineated to the south (downgradient) by S-MW-05 and to the west (crossgradient) by S-MW-03 and BEG-MW-11 as shown on Figure 4-2. The highest benzene concentration occurs at BEG-MW-06 and decreases in the downgradient directions (south and east). The benzene concentration at BEG-MW-06 decreased significantly from September 1998 (7.750 mg/L) to April 2006 (0.4940 mg/l). The benzene concentration at S-MW-02

0/18/100

17

1000 Feet

Well has always been non-detect for BTEX

increased slightly from June 2001 (<0.0004 mg/L) to April 2006 (0.00129 mg/l). The benzene concentrations at BEG-MW-06, S-MW-04, and sump E-S-55 exceed the Texas Risk Reduction Program (TRRP) Tier 1 Residential Protective Concentration Level (PCL) of 0.005 mg/L for Class 1 Groundwater (TCEQ, 2006).

The BTEX data may indicate an inactive source area that is located near or upgradient of BEG-MW-06. The BTEX compounds then migrate to the south towards the West O'Daniel Seep and east towards the East O'Daniel Seep due to a groundwater divide that occurs near BEG-MW-06. There is no BTEX data available north (upgradient) of BEG-MW-06 to more precisely determine the potential source location.

4.2.4 Dye Tracer Data

The dye tracer data indicates that Fluorescein dye was only detected in BEG-MW-07. Eosine, Rhodamine WT, and Sulforhodamine B dyes were not detected in any of the wells.

4.3 Quality Assurance

The analytical results were reviewed by TRC's QA/QC chemist for compliance with the criteria presented in the QAPP. The QC review is provided in Appendix F. QC data associated with laboratory measurements indicate that measurement data are defensible and that measurement data reliability is generally within expected limits of sampling and analytical error given the data interpretation issues identified in the evaluation. The data user is advised that, based on MS/MSD recoveries, the reported concentration of sulfate in sample S-S-2-1 includes a low bias and should not be used for decision-making purposes.

Two duplicate samples (S-MW-02-2 and S-MW-04-2) were submitted for laboratory analysis of the same parameters as the original samples. The duplicate samples were collected at a frequency of five percent. The duplicate samples were collected from S-MW-02 and S-MW-04 by collecting a water sample immediately subsequent to the original sample from each well (S-MW-02-1 and S-MW-04-1).

Three trip blanks (Trip Blank 4-13-06, Trip Blank 4/14/06, and TB-4-21-06-1) were submitted for laboratory analysis. The trip blanks consisted of two 40-milliliter vials of reagent water provided by the laboratory. A trip blank was included in the cooler each day water samples were collected for BTEX analysis. Consequently, these trip blanks were analyzed for BTEX only. The trip blanks analytical results are included in the laboratory analytical reports presented in Appendix E.

5.0 CONCLUSIONS

A site investigation was conducted at the West O'Daniel Seep site to achieve the objectives identified in Section 1.2. The following conclusions were developed based on the investigation results:

- Groundwater occurs under unconfined conditions in the sand unit. Groundwater generally flows to the south with a minor flow component to the east.
- All of the sample locations had chloride concentrations above background conditions.
- The highest chloride concentrations occurred in the vicinity of BEG-MW-06, BEG-MW-07, and S-MW-04, which are located at the upgradient extent of the investigation area, which is west of the East O'Daniel Seep and north of the West O'Daniel Seep.
- The lowest chloride concentration occurred at S-MW-07, which is located at the downgradient extent of the investigation area.
- Chloride concentrations decreased in the crossgradient direction to the west, and in the downgradient directions to south and west.
- The chloride, sulfate, sodium, calcium, magnesium, and electrical conductivity results at BEG-MW-11 increased significantly since the previous investigations. The significant increase in chloride concentration at BEG-MW-11 may indicate plume migration to the west or a recent source in the vicinity.
- The chloride results at BEG-MW-06 increased from the previous investigations and may be related to effects from the potential source area.
- Delineation of chloride concentrations to the background level was not achieved, but a notable decrease in the chloride concentration was documented to the south (downgradient).
- Benzene is present at BEG-MW-06, S-MW-02, S-MW-04, and sump E-S-55, and toluene, ethylbenzene and total xylenes are present at sump E-S-55. The BTEX extent is located upgradient of the West O'Daniel Seep and has been delineated in the downgradient direction.

- The highest benzene concentration occurs at BEG-MW-06 and decreases in the downgradient directions (south and east).
- The benzene concentration at BEG-MW-06 decreased significantly from the previous investigations.
- The benzene concentrations at BEG-MW-06, S-MW-04, and sump E-S-55 exceed the TRRP Tier 1 Residential PCL of 0.005 mg/L for Class 1 Groundwater.
- The source area seems to be located near or upgradient of BEG-MW-06 based on this well having the highest chloride and benzene concentrations. There is no BTEX data available north (upgradient) of BEG-MW-06 to more precisely determine the potential source location.
- The significant decrease in BTEX concentrations, especially at BEG-MW-06, may indicate that the source is no longer active. There had not been a corresponding decrease in the chloride concentration. This may be because chloride undergoes negligible, if any, attenuation and thus concentrations of chloride take a longer time to decrease even when the source area is eliminated.
- There seems to be a groundwater divide near BEG-MW-06, with groundwater flow from this location going east towards the East O'Daniel Seep and south towards the West O'Daniel Seep. The presence of benzene in the wells isolated to the drainage basin for the East O'Daniel Seep (e.g., sump E-S-55 and BEG-MW-15) and isolated to the drainage basin for the West O'Daniel Seep (e.g., S-MW-04) may indicate that the two seeps have a common source located generally to the north.

6.0 **RECOMMENDATIONS**

The following recommendations are provided based on the currently available data:

- 1. Continue to periodically monitor water concentrations at the current sample locations, possibly on an annual schedule.
- 2. Add upgradient sample locations BEG-MW-07, BEG-MW-14, and BEG-MW-15 to the monitoring program to delineate chemical concentrations and possibly identify the potential source location(s).
- 3. Consider reducing the analytical suite to chloride, electrical conductivity, and BTEX.
- 4. Consider installing one monitoring well southeast of BEG-MW-06 and S-MW-04 for delineation and additional information regarding the possible groundwater divide between the East and West O'Daniel Seeps.
- 5. Conduct a preliminary feasibility study for the abatement of high salinity water from the West O'Daniel Seep investigation area into Beals Creek and the Colorado River. The feasibility study will focus on best management practices (BMPs) and will consider the abatement measures already deployed for the East O'Daniel Seep. Alternatives will be evaluated on their ability to achieve the project goal (abatement of high salinity water), implementability, regulatory acceptance, and cost.

7.0 REFERENCES

Bureau of Economic Geology, The University of Texas at Austin (BEG). *Final Technical Report, Investigation of the Snyder Field Site, Howard County, Texas.* 1999.

Fetter, C. W. Applied Hydrogeology. 3rd ed., Prentice-Hall, Inc. 1994.

- Railroad Commission of Texas (RRC). Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan. September 2005.
- Texas Commission on Environmental Quality (TCEQ). Texas Risk Reduction Program, *Protective Concentration Level Tables*. March 2006.
- Texas Water Development Board (TWDB). Occurrence and Quality of Groundwater in Shackelford County, Texas. Report 100, 1969.
- TRC Environmental Corporation (TRC). Final Work Plan and Health and Safety Plan, West O'Daniel Seep Site Assessment, Howard County, Texas. May 2005.
- TRC Environmental Corporation (TRC). Site Assessment Report, Click Seep Site Assessment, Howard County, Texas. August 2001.
- United States Geological Survey (USGS). Digital Orthophoto Quarter Quadrangle Hyman SW and Moss Creek Lake NE, Texas. 2004.
- United States Geological Survey (USGS). 7.5-Minute Series Hyman and Moss Creek Lake, Texas Topographic Quadrangle Maps. 1991.

APPENDIX A

TABLES

Location ID	Completion Date	Latitude (°N)	Longitude (°W)	Ground Elevation (ft)	Top-of- Casing Elevation (ft)	Screened Interval (ft bgs)	Total Depth (ft bgs)
S-MW-01	2/16/01	32.22885	-101.24415	2225*	NA	NA	7.0
S-MW-02	6/15/01	32.229396	-101.245730	2321.78	2324.10	4.5-14.5	13.95
S-MW-03	4/12/06	32.230679	-101.247021	2335.79	2337.94	8-23	23.30
S-MW-04	4/11/06	32.231093	-101.243066	2337.07	2339.48	16-26	26.07
S-MW-05	4/11/06	32.227831	-101.243368	2302.11	2304.74	1-6	6.06
S-MW-06	4/12/06	32.222628	-101.242404	2270.35	2272.28	3-13	13.48
S-MW-07	4/12/06	32.215624	-101.243415	2230.71	2232.85	13-33	33.48
BEG-MW-06	8/12/98	32.23273	-101.24211	2347.6	2350.89	NA	24.8
BEG-MW-07	8/12/98	32.2353	-101.2451	2370.9	2373.50	NA	45.7
BEG-MW-11	8/18/98	32.232389	-101.248096	2347.4	2350.88	NA	24.8
BEG-MW-14	8/14/98	32.2359	-101.2421	2355.2	2358.10	NA	25.0
BEG-MW-15	8/11/98	32.2347	-101.2399	2348.4	2351.46	NA	29.5

Table 1. Monitoring Well and Borehole Information

Notes ft bgs = feet below ground surface NA = not available Elevation Survey Benchmark = U.S.C & G.S. MOOR ELEVATION 2754.0 MSL (FEET)

* Estimated

		Top-of- Casing	Date Water	Total Depth of	Depth to	Water						
	Ground	Elevation	Level	Well	Water	Elevation						
Location ID	Elevation (ft)	(ft)	Measured	(ft btoc)	(ft btoc)	(ft)						
	West O'Da	niel Monitor	ing Well 01 (Es	timated Dat	a)							
S-MW-01	2225	NA	2/21/01	NA	5	NA						
	W	est O'Daniel	Monitoring W	ell 02								
S-MW-02	2321.78	2324.10	4/21/06	25.9	5.88	2318.22						
S-MW-02	2321.8	2324.10	6/16/01	25.9	4.99	2319.11						
West O'Daniel Monitoring Well 03												
S-MW-03	2335.79	2337.94	4/21/06	25.45	12.61	2325.33						
	W	est O'Daniel	Monitoring W	ell 04								
S-MW-04	2337.07	2339.48	4/21/06	28.48	20.70	2318.78						
	W	est O'Daniel	Monitoring W	ell 05								
S-MW-05	2302.11	2304.74	4/21/06	8.69	4.87	2299.87						
	W	est O'Daniel	Monitoring W	ell 06								
S-MW-06	2270.35	2272.28	4/21/06	27.85	6.12	2266.16						
	West O'Daniel Monitoring Well 07											
S-MW-07	2230.71	2232.85	4/21/06	15.39	22.30	2210.55						
	Ea	ast O'Daniel	Monitoring Wo	ell 06								
BEG-MW-06	2347.6	2350.89	4/21/06	28.1	19.26	2331.63						
BEG-MW-06	2347.6	2350.89	9/9/98	28.1	17.41	2333.48						
BEG-MW-06	2347.6	2350.89	8/29/98	28.1	17.45	2333.44						
BEG-MW-06	2347.6	2350.89	8/26/98	28.1	17.44	2333.45						
	Ea	ast O'Daniel	Monitoring Wo	ell 07								
BEG-MW-07	2370.9	2373.50	4/21/06	48.31	40.57	2332.93						
BEG-MW-07	2370.9	2373.50	9/9/98	48.3	38.56	2334.9						
BEG-MW-07	2370.9	2373.50	8/29/98	48.3	38.95	2334.6						
	Ea	ast O'Daniel	Monitoring Wo	ell 11								
BEG-MW-11	2347.4	2350.88	4/21/06	28.3	22.67	2328.21						
BEG-MW-11	2347.4	2350.8	2/22/01	NA	14.21	2336.67						
BEG-MW-11	2347.4	2350.88	9/9/98	28.3	16.81	2334.07						
BEG-MW-11	2347.4	2350.88	8/29/98	28.3	16.82	2334.06						
BEG-MW-11	2347.4	2350.88	8/25/98	28.3	16.85	2334.03						

Table 2.	Water Level 0	Gauging Data
		Judging Dutu

Location ID	Ground Elevation (ft)	Top-of- Casing Elevation (ft)	Date Water Level Measured	Total Depth of Well (ft btoc)	Depth to Water (ft btoc)	Water Elevation (ft)						
East O'Daniel Monitoring Well 14												
BEG-MW-14	2355.2	2358.10	4/21/06	27.9	25.99	2332.11						
BEG-MW-14	2355.2	2358.10	9/9/98	27.9	24.83	2333.27						
BEG-MW-14	2355.2	2358.10	8/29/98	27.9	24.97	2333.13						
		East O'Dan	iel Monitoring	Well 15		•						
BEG-MW-15	2348.4	2351.46	4/21/06	32.6	21.03	2330.43						
BEG-MW-15	2348.4	2351.46	9/9/98	32.6	19.37	2332.09						
BEG-MW-15	2348.4	2351.46	8/29/98	32.6	19.47	2331.99						
BEG-MW-15	2348.4	2351.46	8/26/98	32.6	19.29	2332.17						

Table 2. Water Level Gauging Data (cont.)

<u>Notes</u> ft btoc = feet below top of casing NA = Not available

Location Eight Security Results of Cations and Anions Analysis (reported in mg/l						mg/L)							
ID	ID	Sample Date	Chloride	Sulfate	Nitrate	Bromide	Sodium	Calcium	Magnesium	Potassium	Iron	Barium	
West O'Daniel Monitoring Well 01													
S-MW-01	Click 2-1-1	2/21/01	21,432.60	1976.14	NA	NA	8,972.19	4313.20	1150.63	28.07	NA	NA	
West O'Daniel Monitoring Well 02													
S-MW-02	S-MW-02-1	4/13/06	23,700	2,130	<1	56.50	9,410	3,980	1,210	30.7	1.97	0.0959	
S-MW-02 (duplicate)	S-MW-02-2	4/13/06	24,300	2,140	<1	56.70	9,440	3,990	1,200	30.9	5.48	0.105	
S-MW-02	9029	6/16/01	22,000	1,810	NA	NA	9,630	2,780	902	NA	0.273	0.134	
West O'Daniel Monitoring Well 03													
S-MW-03	S-MW-03-1	4/13/06	22,300	1,930	1.24	56.10	9,240	3,780	1,080	12.3	0.55	0.108	
			We	est O'Dani	iel Monito	oring Well ()4						
S-MW-04	S-MW-04-1	4/13/06	29,600	2,780	29.40	69.20	14,200	3,230	728	207	1.75	0.223	
S-MW-04 (duplicate)	S-MW-04-2	4/13/06	29,600	2,850	33.70	74.90	16,000	3,250	756	214	1.89	0.224	
			We	est O'Dani	iel Monito	oring Well ()5						
S-MW-05	S-MW-05-1	4/14/06	17,100	1,710	<1	44.30	9,130	2,930	730	22.3	5.5	0.497	
			We	est O'Dani	iel Monito	oring Well ()6						
S-MW-06	S-MW-06-1	4/14/06	17,600	1,380	1.27	43.60	6,060	3,810	975	34.9	5.06	0.521	
	West O'Daniel Monitoring Well 07												
S-MW-07	S-MW-07-1	4/14/06	7,540	480	ND	20.10	1,950	1,670	746	37.6	0.833	0.373	

Table 3. Analytical Results for Cations and Anions

Location	Field Sample Sample Results of Cations and Anions Analysis (reported in mg/L)													
ID	ID	Date	Chloride	Sulfate	Nitrate	Bromide	Sodium	Calcium	Magnesium	Potassium	Iron	Barium		
East O'Daniel Monitoring Well 06														
BEG-MW-06	E-MW-06-1	4/13/06	32,600	3,310	6.51	85	18,800	2,670	757	313.0	0.192	0.141		
BEG-MW-06	9042	9/09/98	26,565	3,214	<1	650	15,980	2,277	788	459	<0.1	0.15		
East O'Daniel Monitoring Well 11														
BEG-MW-11	S-MW-BEG-11-1	4/13/06	10,400	1,080	3.92	25.50	2,650	2,750	632	20.3	0.0984	0.096		
BEG-MW-11	Click 3-11-1	2/22/01	1,244.30	504.30	NA	NA	395.42	456.91	103.28	394.91	NA	NA		
BEG-MW-11	9032	8/29/98	538	244	25	2	280	137	38	<5	<0.1	0.2		
BEG-MW-11	9032	8/29/98	521	253	30.80	3.96	366	127	28.7	6.61	0.0174	NA		
					East O'D	aniel Sump	55							
E-S-55	E-S-55-1	4/14/06	22,500	2,210	<1	62.30	15,300	2,320	759	106.0	0.707	0.108		
					East O'D	aniel Sump	56							
E-S-56	E-S-56-1	4/21/06	22,600	2,190	14.00	57.10	11,600	1,850	447	172.0	0.0642	0.0779		
					West O'	Daniel Seep	01							
S-S-1	S-S-1-1	4/14/06	20,200	1,830	<1	52.00	9,780	3,590	1,070	34.9	3.05	0.205		
	West O'Daniel Seep 2													
S-S-2	S-S-2-1	4/14/06	14,800	1,060*	<1	37.80	5,400	3,240	1,050	14.6	1.79	0.216		
				We	est O'Dan	iel Water V	Vell 53							
S-WW-53	S-WW-53-1	4/14/06	21,000	2,090	19.80	54.70	8,890	3,560	1,280	56.5	9.93	0.199		

Table 3. Analytical Results for Cations and Anions (cont.)

 $\frac{\text{Notes}}{\text{TDS}} = \text{total dissolved solids (sum of cations and anions)}$ NA = not analyzed

mg/L = milligrams per liter * - Analytical result rejected during QA process based on MS/MSD recoveries

Location ID	Field Sample ID	Sample Date	pH (SU)	Electrical Conductivity (µmhos/cm)
S-MW-01	Click-2-1-1	2/21/01	6.6	58,000
S-MW-02	S-MW-02-1	4/13/06	6.45	73,100
S-MW-02 (duplicate)	S-MW-02-2	4/13/06	6.47	74,000
S-MW-02	W-O'Daniel-2-1	6/16/01	6.59	54,200
S-MW-03	S-MW-03-1	4/13/06	6.61	67,000
S-MW-04	S-MW-04-1	4/13/06	6.67	90,500
S-MW-04 (duplicate)	S-MW-04-2	4/13/06	6.65	90,800
S-MW-05	S-MW-05-1	4/14/06	6.71	56,800
S-MW-06	S-MW-06-1	4/14/06	6.39	55,800
S-MW-07	S-MW-07-1	4/14/06	6.73	24,400
BEG-MW-06	E-MW-06-1	4/13/06	6.42	98,300
BEG-MW-06	9042	9/09/98	7.63	69,100
BEG-MW-11	S-MW-BEG11-1	4/13/06	6.78	32,600
BEG-MW-11	Click 3-11-1	2/22/01	7.4	5,200
BEG-MW-11	9032	8/29/98	8.43	2,710
E-8-55	E-S-55-1	4/14/06	6.75	77,400
E-S-56	E-S-56-1	4/21/06	7.15	81,000
S-S-1	S-S-1-1	4/14/06	7.23	63,400
S-S-2	S-S-2-1	4/14/06	7.13	46,200
S-WW-53	S-WW-53-1	4/14/06	6.45	67,400

Table 4. Analytical Results for Conductivity and pH

 $\frac{\text{Notes}}{\text{SU}} = \text{standard units}$

NA= not analyzed μmhos/cm = micromhos per centimeter

			Results of Cations and Anions Analysis (reported in mg/L)											
Location ID	Field Sample ID	Sample Date	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Calculated TDS*							
	West O'Daniel Monitoring Well 01													
S-MW-01	Click-2-1-1	2/21/01	258.37	<3	NA	258.37	38,131.20							
West O'Daniel Monitoring Well 02														
S-MW-02	S-MW-02-1	4/13/06	259	<10	<10	259	40,719.70							
S-MW-02 (duplicate)	S-MW-02-2	4/13/06	259	<10	<10	259	41,359.90							
S-MW-02	W-O'Daniel-2-1	6/16/01	293	<2	NA	293	37,415							
West O'Daniel Monitoring Well 03														
S-MW-03	S-MW-03-1	4/13/06	123	<10	<10	123	38,465.30							
		West	O'Daniel Moni	toring Well 04	4									
S-MW-04	S-MW-04-1	4/13/06	180	<10	<10	180	50,925.00							
S-MW-04 (duplicate)	S-MW-04-2	4/13/06	181	<10	<10	181	52,851.00							
		West	O'Daniel Moni	toring Well 0	5									
S-MW-05	S-MW-05-1	4/14/06	264	<10	<10	264	31,886.30							
		West	O'Daniel Moni	toring Well 0	6									
S-MW-06	S-MW-06-1	4/14/06	188	<10	<10	188	30,047.90							
	•	West	O'Daniel Moni	toring Well 0	7									
S-MW-07	S-MW-07-1	4/14/06	119	<10	<10	119	12,542.60							

Table 5. Analytical Results for Alkalinity and TDS

			Results of Cations and Anions Analysis (reported in mg/L)				
Location ID	Field Sample ID	Sample Date	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Calculated TDS*
East O'Daniel Monitoring Well 06							
BEG-MW-06	E-MW-06-1	4/13/06	260	<10	<10	260	58,710.00
BEG-MW-06	9042	9/09/98	393	0	NA	393	49,676.00
East O'Daniel Monitoring Well 11							
BEG-MW-11	S-MW-BEG11-1	4/13/06	112	<10	<10	112	17,644.30
BEG-MW-11	Click 3-11-1	2/22/01	213.56	<3.0	NA	213.56	3,312.68
BEG-MW-11	9032	8/29/98	298	8	NA	306	1,543.00
BEG-MW-11	9032	8/29/98	255	0	NA	255	1,557.61
East O'Daniel Sump 55							
E-S-55	E-S-55-1	4/14/06	287	<10	<10	287	43,482.00
East O'Daniel Sump 56							
E-S-56	E-S-56-1	4/21/06	135	<10	<10	135	38,994.00
West O'Daniel Seep 1							
S-S-1	S-S-1-1	4/14/06	111.0	<10	<10	111.0	36,615.90
West O'Daniel Seep 2							
S-S-2	S-S-2-1	4/14/06	83.9	<10	<10	83.9	25,648.50
West O'Daniel Water Well 53							
S-WW-53	S-WW-53-1	4/14/06	70.5	<10	<10	70.5	36,947.00

Table 5. Analytical Results for Alkalinity and TDS (cont.)

Notes NA= not analyzed *Includes data from Table 4 mg/L = milligrams per liter
Sample Location ID	Field Sample ID	Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethyl Benzene (mg/L)	Total Xylenes (mg/L)					
	v	Vest O'Danie	l Monitoring '	Well 01							
S-MW-01	Click-2-1-1	2/21/01	< 0.002	< 0.005	< 0.005	< 0.005					
	West O'Daniel Monitoring Well 02										
S-MW-02	S-MW-02-1	4/13/06	0.00129	< 0.005	< 0.005	< 0.005					
S-MW-02 (duplicate)	S-MW-02-2	4/13/06	< 0.005	< 0.005	< 0.005	< 0.005					
S-MW-02	W-O'Daniel-2-1	6/16/01	< 0.0004	< 0.0003	< 0.0003	< 0.001					
	West O'Daniel Monitoring Well 03										
S-MW-03	S-MW-03-1	4/13/06	< 0.005	< 0.005	< 0.005	< 0.005					
	V	Vest O'Danie	l Monitoring '	Well 04							
S-MW-04	S-MW-04-1	4/13/06	0.0083	< 0.005	< 0.005	< 0.005					
S-MW-04 (duplicate)	S-MW-04-2	4/13/06	0.00692	< 0.005	< 0.005	< 0.005					
	v	Vest O'Danie	l Monitoring '	Well 05	1						
S-MW-05	S-MW-05-1	4/14/06	< 0.005	< 0.005	< 0.005	< 0.005					
	V	Vest O'Danie	l Monitoring '	Well 06							
S-MW-06	S-MW-06-1	4/14/06	< 0.005	< 0.005	< 0.005	< 0.005					
	v	Vest O'Danie	l Monitoring '	Well 07							
S-MW-07	S-MW-07-1	4/14/06	< 0.005	< 0.005	< 0.005	< 0.005					

Table 6. Analytical Results for BTEX

Sample Location ID	Field Sample ID	Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethyl Benzene (mg/L)	Total Xylenes (mg/L)
	East	t O'Daniel M	onitoring Wel	11 06		
BEG-MW-06	E-MW-06-1	4/13/06	0.494	< 0.005	< 0.005	< 0.005
BEG-MW-06	9042D	9/09/98	7.750	< 0.005	< 0.005	< 0.005
BEG-MW-06	9040-2	8/29/98	6.930	0.0148	< 0.005	< 0.005
	East	t O'Daniel M	onitoring Wel	111		
BEG-MW-11	S-MW-BEG11-1	4/13/06	< 0.005	< 0.005	< 0.005	< 0.005
BEG-MW-11	Click 3-11-1	2/22/01	< 0.002	< 0.005	< 0.005	< 0.005
BEG-MW-11	9032	8/29/98	< 0.005	< 0.005	< 0.005	< 0.005
		East O'Dan	iel Sump 55			
E-S-55	E-S-55-1	4/14/06	0.0151	0.0142	0.0166	0.00957
		East O'Dan	iel Sump 56			
E-S-56	E-S-56-1	4/21/06	< 0.005	< 0.005	< 0.005	< 0.005
		West O'Da	niel Seep 1	1		
S-S-1	S-S-1-1	4/14/06	< 0.005	< 0.005	< 0.005	< 0.005
		West O'Da	niel Seep 2	-		
S-S-2	S-S-2-1	4/14/06	< 0.005	< 0.005	< 0.005	< 0.005
	W	/est O'Daniel	Water Well 5	53		
S-WW-53	S-WW-53-1	4/14/06	< 0.005	< 0.005	< 0.005	< 0.005

Table 6. Analytical Results for BTEX (cont.)

<u>Notes</u> mg/L = milligrams per liter **bold** = exceeds Texas Risk Reduction Program (TRRP) Residential Land Use, Class 1 Groundwater Protective Concentration Level (PCL) for the groundwater ingestion exposure pathway

APPENDIX B

BORING LOGS AND WELL CONSTRUCTION REPORTS

TRC BORING LOG WELL CONST	and RUCTION	S-MW-0	3		
Client: Railroad Commission of Texas			TRC Project #: 53680		
Site: West O'Daniel Seep			Start Date: 4/12/06		
Address: Synder Oil Field, Howard Coun	ity, TX		Finish Date: 4/12/06		
Project: Site Assessment			Permit #: NA		
Drilling Company: Scarborough Drilling	Drilling Crew:L. Sca	arborough & Crew	TRC Site Rep.: M.Webre, B.Clark		
Drilling Method: Air Rotary			TRC Reviewer:A. Sahba		
Boring Diameter (in):5.25	Boring Depth (ft bg	js):25	X-Y Coord. System: Lat-Long		
Sampling Method: Cuttings			Latitude: 32.230679		
Blow Count Method: NA			Longitude: -101.247021		
Field Screening Parameter: Volatile Orga	nic Vapors		Elevation Datum: NGVD 29		
Meter: PID - MiniRAE 2000	Units: ppm		Ground Elevation (ft):2335.79		
Well Depth (ft bgs): 23.30	Well Depth (ft too	c): 25.45	Well Elevation (ft): 2337.94		
Casing Length (ft): 10.20	Screen Length (f	t): 15	Well Measuring Point: Top of Casing		
Surface Completion: Steel Stick-up with C	Concrete Pad (2'x2'	')	Depth to Water (ft toc): 12.61		
Well Development: Bail-Surge with Bailer	total 11.25 gal		Date/Time: 4/21/06, 1230		

Angel Constraints of the second secon

Lithologic Description

Well Construction Diagram

TRC BORING LOG and WELL CONSTRUCTION	04								
Client: Railroad Commission of Texas TRC Project #: 53680									
Site: West O'Daniel Seep	Start Date: 4/11/06								
Address: Synder Oil Field, Howard County, TX	Finish Date: 4/11/06								
Project: Site Assessment		Permit #: NA							
Drilling Company: Scarborough Drilling Drilling Crew:	L. Scarborough & Crew	TRC Site Rep.: M. Webre, B. Clark							
Drilling Method: Air Rotary		TRC Reviewer:A. Sahba							
Boring Diameter (in):5.25 Boring Depth	(ft bgs):27	X-Y Coord. System:Lat-Long							
Sampling Method: Cuttings		Latitude: 32.231093							
Blow Count Method: NA		Longitude: -101.243066							
Field Screening Parameter: Volatile Organic Vapors		Elevation Datum: NGVD 29							
Meter: PID - MiniRAE 2000 Units: ppm		Ground Elevation (ft):2337.07							
Well Depth (ft bgs): 26.07 Well Depth	(ft toc): 28.48	Well Elevation (ft): 2339.48							
Casing Length (ft): 18.23 Screen Len	gth (ft): 10	Well Measuring Point: Top of Casing							
Surface Completion: Steel Stick-up with Concrete Pad	(2'x2')	Depth to Water (ft toc): 20.70							
Well Development: Bail-Surge with Bailer total 10 gal		Date/Time: 4/21/06, 1240							
Deption (Comparing Lithology Lithologic) (Comparing Lithology Lithologic) (Comparing Lithology Lithologic)	Description	Well Construction Diagram							
-2340 - 	fine gravel, few silt, reddish br tation, caliche layers at 3 feet	rown, no							
5.8 SC: Clayey fine sand, few odor, moist, strong cemer	fine gravel, few clay, light brown nation nd, few silt, light brown, no odd	wn, no							
-2325 - 									
SP: Poorly graded fine (+) -2320 - 7.5), medium (-) to coarse sand w or, moist	ITT TINE 8/16 Grade Sand Pack							

-2320-	7.5				Pack
20					
-2315	4.9		SP: Poorly graded fine (+), medium to coarse sand with fine gravel, reddish brown to light brown, no odor, moist to wet, reddish-brown zone at 21-22 feet		2" PVC Screen, 0.010 Slot
	7.2		SP: Poorly graded clayey fine (+) to coarse sand with fine gravel, brownish red, no odor, moist		Сар
		(These logs should not be used separately from the original report.	/	I

TRC BORI	NG LOG and CONSTRUCTION	S-MW-0)7
Client: Railroad Commission	n of Texas		TRC Project #: 53680
Site: West O'Daniel Seep			Start Date: 4/12/06
Address: Synder Oil Field, H	loward County, TX		Finish Date: 4/12/06
Project: Site Assessment			Permit #: NA
Drilling Company: Scarborou	ugh Drilling Drilling Crew:L. Sca	arborough & Crew	TRC Site Rep.: M. Webre, B. Clark
Drilling Method: Air Rotary			TRC Reviewer:A. Sahba
Boring Diameter (in): 5.25	Boring Depth (ft bo	gs):35	X-Y Coord. System: Lat-Long
Sampling Method: Cuttings			Latitude: 32.215624
Blow Count Method: NA			Longitude: -101.243415
Field Screening Parameter:	/olatile Organic Vapors		Elevation Datum: NGVD 29
Meter: PID - MiniRAE 2000	Units: ppm		Ground Elevation (ft):2230.71
Well Depth (ft bgs): 33.48	Well Depth (ft too	c): 35.62	Well Elevation (ft): 2232.85
Casing Length (ft): 15.37	Screen Length (f	t): 20	Well Measuring Point: Top of Casing
Surface Completion: Steel S	tick-up with Concrete Pad (2'x2	')	Depth to Water (ft toc): 22.30
Well Development: Bail-Surg	e with Bailer total 8 gal		Date/Time: 4/21/06, 1325

Lithologic Description

Well Construction Diagram

	-					
- -2230	0 - -		55		CL: Lean clay, few silt, few fine sand, brownish red, no odor, dry	Concrete
_	_		010			2" PVC Casing
-2225	-5				SP: Poorly graded fine (+) to medium sand, few silt, reddish brown, no odor, dry	
-	-		4.5			3/8" Bentonite Chips
-2220	-10 -				SP-SM: Poorly graded fine (+) to medium sand with silt, brownish	
_	-		6.6			
- 2215	-15 -				SP: Poorly graded fine (+), medium to coarse sand, few fine	9/16 Crode Sand
_	-		8.4	•••••	gravel, rew slit, brownish dark red, no odor, moist to wet	Pack
- 2210	_20				SP: Poorly graded fine, medium (+) to coarse (-) sand, few silt,	
-	-		5.1		brownish dark red, no odor, wet	2" PVC Screen, 0.010 Slot
-	- 25 -			·····		
-2205	-		4.5		SP: Poorly graded tine (+), medium to coarse sand, tew tine gravel, few silt, brownish dark red, no odor, wet	
_	-				CL: Lean clay, few silt, brownish dark red, no odor, dry	
-2200	-30					
-	-		7.1			Сар
-2195	-35				These logs should not be used separately from the original report.	

Attention Owner	Texas	Departme	ent of Lice	nsing an	d Reg	ulation	Thia	form mus	+ ha ann	a lata d
Confidentiality Privilege Notice	P.O. Box 12	Water Wei 2157 Austin Te	ll Driller/Pump	Installer Pro	ogram	512) 463-8616	and	filed with	the depa	rtment
on reverse side of owner's copy.		T. 11.11	oll free (800)	803-9202		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and upor	owner wit completi	hin 60 d on of the	ays well.
100D - M(D) = 3	3	Email address V	s: water.well	PORT	tate.tx.i	lS	•	1		
1) OWNER	A. WE	LL IDENTIF	ICATION	AND LOC	ATIO	N DATA				
Name Railroad Commission of Texa	e	Address 1701 North	Congress			City		State	Zip	11
2) WELL LOCATION	5	1701 North	Congress			Austin			[/98]	
County		Physical Address				City		State	Zip	
Howard	T	South Snyde	er Field Ro	ad		Coahoma	r	Tx	7951	1
3) Type of Work	Lat. 32°	330'	<u>679"</u> L	ong. 101	° 24	17' 021"	Grid #			
New Well Reconditioning	4) Proposed	Use (check)	Monitor		mental S	oil Boring	Domestic	5)		NŤ
	Rig Supply	Stock or Liv	Injection If I	Public Supply a	Supply	De-watering				
6) Drilling Date	D	iameter of H	ole	7) Drill	ing Me	thod (check)		4		
Started <u>4/11/6</u>	Dia. (in)	From (ft)	To (ft)		ven 🛛	Air Rotary	Mud Rotary	,		
		Surface		Bor	ed	Air Hammer	Cable Tool			
Completed <u>4/12/6</u>	5	0	25	Jett	ed	Hollow Stem Au	ger			
					erse Circu or	lation		L		
Energy (A) To (A) Describ									<u></u>	
1000000000000000000000000000000000000	graded fine	r of formation	eddish dk	8) Bore	nole Co er-ream	ed 🖾 Gravel	Den Ho Packed	Die ∐] Other	Straig	ht Wall
brown	, Studen mie	Sund (17,5111, 17	cuuisii uiki	Gravel Pa	cked inte	rval from 6 ft. to	25 ft. Size:			
5 17 Well g	raded coarse	to fine sand,	reddish	Casing	g, Blanl	k Pipe, and V	Vell Scree	n Data		
brown	to light redd	ish brown.		Dia.	New Or	Steel, Plastic, etc. Perf. Slotted etc.		Settin	g (ft)	Gage
17 25 Clayste	one, brownis	h red		(in.)	Used	Screen Mfg., if co	mmercial	From	To	Screen
				$\frac{2}{2}$	N	Pvc screen		10	25	.010
· · · · · · · · · · · · · · · · · · ·		******	*****	9) Annı	llar Sea	al Data: i.e. (fro	om 0 ft to 100	ft #sacks &	material	13 cement)
				from <u>0</u>	ft.	to <u>2</u> ft.	#sacks & mat	erial <u>1 c</u>	ement	
(Lise reverse side of)	Vell Owner's cor	w If necessary)		from $\frac{2}{\sqrt{2}}$	ft.	to <u>6</u> ft.	#sacks & mat	erial <u>2</u>	<u>penton</u>	ite
13) Plugged Well plu	gged within 4	8 hours		Method II	from <u>6</u> ft. to <u>25</u> ft. #sacks & material <u>4 sand</u>					
Casing left in well: Cement/Ben	tonite placed in	well:		Distance to	Distance to septic field or other concentrated contamination ft					
From (ft) To (ft) From (ft)	To (ft)	Material us	ed & # Sacks	Distance t	Distance to Property Line ft Method ft.					
				Verified:		and an	an status (so e of taxa so in a pice so in or		notoridraankom	
				10) Sur	face Co	mpletion (If s	teel cased, leav	e blank)		
14) Type Pump	nin and an operation in Aspectation Constants	i and a second se	******	Ditless	e Slab In	Stalled Z	Surface Sie	eve Install	ed	
Turbine Jet [] Submersible	Cylinder		11) Wat	ter Lev] Anemative	FIOCEULIE	Useu	
Other				- Static leve	110.46	ft.	Date	1	1	
Depth to pump bowls, cylinder, jet, etc.,	ft.			Artesian F	low	gpm				
15) Water Test				12) Pacl	kers					
Type test Pump Bailer Je	tted Estimate	ed		Туре		Depth	Туре	1	Depth	
Yield: gpm with ft. dra	wdown after	hrs.								
16) Water Quality			n Makang dalam kana kana kana kana kana kana kana ka			*****				
Type of water: Depth of Strata:	Was a c	hemical analysis	made? 🕅 Yes	□ No						[
Did you knowingly penetrate a strata wh	ich contains unde	esirable constitue	nts? 🗌 Yes 🕻	No If yes,	Continue	:				
Check One: Naturally poor	-quality groundy	water - type	1864-1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 19	_ 🗌 Hydro	ocarbons	(i.e. gas, oil, etc.)			
Hazardous ma	terial/waste cont	amination encour	ntered	U Other	r (describ	e)		7.1 *	1	
informed that such well must be complete	g, or otherwise a ed or plugged in .	uering the above such a manner as	uescribed well to avoid injury	, unaesirable [.] v or pollution.	water or i	constituents was	encountered	and the la	ndowner	was
Company or Individual's Name (type or print)	Scarboroug	h Drilling,	Inc.	**************************************	Li	c. No. WP	K2969		
Address P.O. Box 305		1	City La	mesa		State	e Tx	Zip 7	79331	
Signature Consed Driller/Pump Inst	aller		<u>-106</u>	lignature	An	prontico		/	/ Data	

TDLR FORM 001WWD / 9-03	
-------------------------	--

Copies to TDLR-Owner - Driller/Pump Installer

Form provided by Forms On-A-Disk · (214) 340-9429 · FormsOnADisk.com

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy. WOD - MLO-	Texas P.O. Box 12	B Departme Water Well 2157 Austin, Ter Tc Email address W	nt of Licen I Driller/Pump II xas 78711 (51: bil free (800) 80 : water.well(VELL REP	ising an installer Prop 2) 463-7886 03-9202 0) license.st ORT	d Reg gram D FAX (S cate.tx.)	Sulation 512) 463-8616 us	This and fi and o upon	form must iled with th wner with completio	be comp the depart in 60 da n of the	oleted tment tys well.
Name	A. WE	Address	ICATIONA	ND LUC	AHU	City		State	Zip	
Railroad Commission of Texa	S	1701 North (Congress			Austin		Tx	7981	1
2) WELL LOCATION		1								
County		Physical Address	r Field Dood			City		State	Zip	4
110waru	T	South Shyue	Field Road	1		Coanoma		1 X	/931	<u> </u>
3) Type of Work	Lat. 32°	231'	093" Lo	ng. 101	° 24	43' 066" Gi	rid #			
New Well Reconditioning	4) Proposed	Use (check)	X Monitor	Environ	mental S	Soil Boring	Domestic	5)		N↑
Replacement Deepening	Dia Sumalu				upply					
6) Duilling Date		Stock or Live	estock If Put	ohe Supply, w	ere plans :	approved? Yes				
Started 4/11/6	Dia (in)	From (ft)			ng me	anoa (check)	(10)			
Startou		Surface	10(11)		en 🗠	Air Kotary	Aud Kotary			
Completed 4/11/6	5	0	27	Jette	d [Hollow Stem Auger	2000 1000			
					erse Circu	lation				
				Othe	r			L		
From (ft) To (ft) Descrip	tion and colo	r of formation	material	8) Borel	hole Co	ompletion \Box (Dnen Ho		Straigh	t Wall
0 10 Clayey	fine sand, re	ddish brown	to lt. brown		r-ream	ed 🖾 Gravel Pa	cked	Other	Juaign	t wan
10 15 Poorly	graded fine s	sand, lt brown	n.	Gravel Pac	ked inte	rval from 14 ft. to 2	7 ft. Size:			
15 27 Well g	raded coarse	to fine sandst	tone with	Casing	, Blan	k Pipe, and Wel	l Screen	Data		
fine gr	avel, lt. brow	n to reddish k	brown to					6 ²	(0)	Gage
brown	ish red.			Dia.	New Or	Steel, Plastic, etc. Perf., Slotted, etc.	L	Setting	(n)	Casing Screen
				(in.)	Used	Screen Mfg., if comm	ercial F	rom	To	
				2	IN N	PVC Pvc sereen		+2	1/	.010
					1	r ve sereen		11	21	

				9) Annu	lar Sea	al Data: i.e. (from <u>6</u>	ft to <u>100</u> ft	#sacks & n	aterial <u>13</u>	<u>3 cement</u>)
				from $\underline{0}$	ft.	to $\frac{2}{14}$ ft. #sac	ks & mate	rial <u>1 ce</u>	ment	
(Use reverse side of	Well Owner's cop	y, If necessary)		from $\frac{1}{4}$	Π. Ĥ	to $\underline{14}$ ft. #sac	ks & mate	rial <u>4 D</u>	entoni nd	<u>te</u>
13) Plugged 🗌 Well plu	gged within 4	8 hours		Method Us	ed n.	10 <u>27</u> 11. #Sac	ks & mat	11a1 <u>4 5a</u>	nu	
Casing left in well: Cement/Ber	ntonite placed in v	well:		Distance to	septic fiel	ld or other concentrated	l contamina	tion		
From (ft) To (ft) From (ft)	To (ft)	Material use	d & # Sacks	Distance to Property Line ft Method						
				Verified:						
				10) Surf	ace Co	mpletion (If steel o	cased, leave	blank)		
1 A Trung Deserve			an a	Surface	e Slab In	stalled 🛛 Su	rface Sleev	ve Installe	đ	
Turbine Lat	Cubmanihla			Pitless	Adapter	Used Al	ternative F	Procedure	Used	
C Other				11) Wat	er Lev	el			****	
Depth to pump bowls, cylinder jet etc	ft	*****	****	Static level	<u>18.29</u>	ft. D	ate	/ /	/	
				Artesian Fl	ow	gpm				
15) water Test				12) Pack	ters					
Type test Pump Bailer Je	tted Estimate	ed .		Туре		Depth 1	ype	D	epth	
Y reld: gpm with it. dra	wdown after	hrs.								
16 Water Orality	n daga sa kana kana kana kana kana kana kana	a na an	a na ana ana ana ana ang kana tang kana kang kang kang kang kang kang k	1			anianda a secondary a variante			
Type of water: Depth of Strate:	Waa a al	anniaal anabasia a								
Did you knowingly penetrate a strata wh	ich contains unde	sirable constituen	11300 1130	NO No Ifves (ontinue					
Check One: Naturally poo	r-quality groundy	vater – type		Hvdro	carbons	(ie gas oil etc.)				
Hazardous ma	iterial/waste conta	mination encount	tered	Other	(describ	(gus, on, etc.) e)				
I certify that while drilling, deepening	g, or otherwise a	ltering the above of	described well, u	indesirable w	vater or	constituents was enco	ountered a	nd the land	downer v	vas
informed that such well must be complete	ed or plugged in s	such a manner as	to avoid injury o	or pollution.	·····]
Company or Individual's Name (type or print)	Scarboroug	h Drilling, In	ic.		Lic. N	lo. WPI	K2969		
Address P.O. Box 305	1	1	City Lam	lesa		State 7	ľx –	Zip 79	9331	
Signature	to TDLR - Owner	- Driller/Pump Ir	OC Signature	nature orm provideo	i by For	ms On-A-Disk • (214)	340-9429	/ • FormeO:	/ nADiek r	

Copies to TDLR - Owner - Driller/Pump Installer Form provided by Forms	s On-
--	-------

ovided by Forms On-A-Disk · (214) 340-9429 · FormsOnADisk.com i pi

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy. WOD - MW-E	Texas	Departme Water Well 2157 Austin, Te To Email address W	nt of Li I Driller/Pui xas 78711 bill free (800 :: water.w /ELL R	censi mp Insi (512) 803- ell@li EPO	ng an aller Pro 463-788 9202 cense.s RT	d Reg ogram 0 FAX (tate.tx.	gulation 512) 463-86 us	This and and upo	s form mus filed with owner wit n completi	st be com the depa thin 60 d	ipleted rtment ays : well.
1) OWNER	A. WE	LL IDENTIF	ICATIO	N AN	D LOC	ATIO	N DATA		La.	Tau	
Railroad Commission of Texa	s	1701 North	Congress				Austin		State Tx	Zip 7981	1
2) WELL LOCATION		1					Trabelli		1 * *		
County		Physical Address		-			City		State	Zip	
Howard	Т	South Snyde	er Field R	load			Coahom	a	Tx	7951	1
3) Type of Work	Lat. 32°	227'	831"	Long	g. 101	° 2.	43' 368	" Grid #			
New Well Reconditioning	4) Proposed	Use (check)	🛛 Monite	or 🗌] Enviror	nmental S	Soil Boring	Domestic	5)		NŤ
Replacement Deepening	Industrial	Irrigation	Injection	n [_] Public S	Supply	De-water	ring 🗌 Testwo	11		
	Rig Supply	Stock or Live	estock	If Public	Supply, w	ere plans	approved?	Yes N	0		
6) Drilling Date	D	iameter of H	ole		7) Drill	ing Me	ethod (chec	:k)			
Started <u>4/11/6</u>	Dia. (in)	From (ft)	To (ft)	Driv	ven 🖄	Air Rotary	Mud Rotar	y		
Completed 4/11/6	_	Surface			Bor	ed L	Air Hammer	Cable Tool			
Completed <u>4/11/6</u>	5	0	7			ed [J Hollow Stem	Auger			
						erse Urct	llation		L		
		<u> </u>								*****	
$\frac{1}{1}$ From (ft) 10 (ft) Description	otion and colo	r of formation	material		S) Bore	hole C	ompletion			Straig	ht Wall
$\begin{array}{c c} 0 & 1 & \text{Sitty II} \\ \hline 1 & 3 & \text{Fine so} \end{array}$	nd with silt	heaven		L		er-ream					
$\frac{1}{3} \qquad \frac{5}{7} \qquad \text{Silt gr}$	avish brown	brown		(Gasing	cked inte	Prval from 1 f	t. to / ft. Size:	n Data		
<u> </u>	cylsh brown				Casing	New	Steel. Plastic.	etc.	n Data	a (B)	Gage
					Dia. (in.)	Or	Perf., Slotted,	etc.	From		Casing
		*****			2	N	Pvc	ii commerciai	+2	1	.010
			****		2	N	Pvc scree	n	1	7	
) Annu	lar Se	al Natar : .	Grow 0 At to 100	ft #aaaba P		12
				f	rom 0	nai Sea ft	to .02	ft #sacks & ma	n #sacks & terial 1/2	<i>malerial</i> <u>i</u> ceme	nt
				f	rom .02	ft	. to 1	ft. #sacks & ma	terial $\frac{1}{2}$	bento	onite
(Use reverse side of V	Well Owner's cop	y, If necessary)		fi	from 1 ft. to 7 ft. #sacks & material $\frac{172}{1}$ performe						
13) Plugged U Well plu	gged within 4	8 hours		N	Method Used						
Casing left in well: Cement/Ben	tonite placed in v	vell:	10 // 0 1	I	Distance to septic field or other concentrated contamination ft.						
$\frac{10 \text{ (ft)}}{10 \text{ (ft)}} = \frac{10 \text{ (ft)}}{10 \text{ (ft)}}$	lo (ff)	Material use	d & # Sacks	<u>s [</u>	Distance to Property Line ft Method						
					erified:			nonana a sanah karang sa an	an an an an an Anna an Sanasa sh	16002.000 <u>000.000.000.000</u>	
				1	0) Suri	lace Co	ompletion	If steel cased, leav	e blank)		
14) Type Pump		******		k	Surfac	e Slab In	istalled	Surface Sle	eve Install	leđ	
Turbine Jet	Submersible	Cvlinder			Pitiess	Adapter	Used		Procedure	Used	
Other					1) wat	er Lev	ei	. .	1	1	
Depth to pump bowls, cylinder, jet, etc.,	ft.				tatic leve	1 <u>3.24</u> fi	t.	Date	_/	/	terita bermana an
15) Water Test				A	2) Pool	low	gpm				
Type test Pump Bailer Le	tted Estimate	•d		T	2) I aci	ACIS	Depth	Type		Donth	
Yield: grom with ft dra	wdown after	hre		1	ype		Depth	Type		Depui	
Freide, semanana Bpin with semananan it. dit				-							
16) Water Quality		aliya dalamat karantan yang karang	anna an		****	an a					at approximation of the second
Type of water: Depth of Strata:	Was a cl	nemical analysis r	nade? 🕅 Y	es П	No						
Did you knowingly penetrate a strata wh	ich contains unde	sirable constituen	ts? 🗌 Yes	×Ν	o If yes,	Continue	5:				
Check One: Naturally poor	-quality groundw	ater – type		(Hydro	ocarbons	(i.e. gas, oil,	etc.)			
Hazardous ma	terial/waste conta	mination encoun	tered	[] Other	(describ	e)	-			
I certify that while drilling, deepenin	g, or otherwise a	ltering the above	described w	ell, und	esirable v	water or	constituents v	vas encountered	and the la	ndowner	was
informed that such well must be complete	ed or plugged in s	uch a manner as	to avoid inj	ury or p	ollution.			T	1744.20		
Address PO Box 205	(ype or print)	Scarboroug	City T	g, inc.	2			LIC. NO. WE	K2969	70334	
Contraction of the second seco	1	1/15		James	a		51	late IX		/9331	
Licensed Driller/Pump Inst	aller	Date	$\frac{1}{2}$	· Signat	ure	Ap	prentice		/	/ Date	

Form provided by Forms On-A-Disk · (214) 340-9429 · FormsOnADisk.com

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy.	Texas P.O. Box 12	Departme Water Wel 2157 Austin, Te	nt of Li I Driller/Pu xas 78711	cens mp Ins (512)	ing an taller Pro 463-788	d Reg gram 0 FAX (gulation 512) 463-8616	This and f and o	form mus iled with wner wit	t be com the depar hin 60 da	pleted rtment ays
WOD-MW-	-6	Email address	s: water.w	ell@l	icense.s) RT	tate.tx.	us	upon	completio	on of the	well.
1) OWNER	A. WE	LL IDENTIF	ICATIO	N AN	D LOC	ATIO	N DATA				
Name Railroad Commission of Taya	6	Address	Congress				City		State	Zip	-
2) WELL LOCATION	15		Congress	•			Austin			/981	1
County		Physical Address					City		State	Zip	
Howard		South Snyde	er Field F	load			Coahoma		Тх	7951	1
3) Type of Work	Lat. 32°	222'	628"	Lon	σ 101	o 🤈	47' 404"	Grid #			
New Well Reconditioning	4) Proposed	Use (check)	Monit	or [Finvitor	mental	Soil Boring	Domestic	5)		NT
Replacement Deepening				n Γ	Public S	Supply	De-watering	Doniestie	5)		191
	Rig Supply	Stock or Live	estock	If Public	c Supply, w	ere plans	approved?	es \Box No			
6) Drilling Date	D	ameter of H	ole	T	7) Drilli	ing Me	ethod (check)		-		
Started <u>4/12/6</u>	Dia. (in)	From (ft)	To (f)	Driv	ven 🔽	Air Rotary	Mud Rotary			
		Surface	1		Bor	ed] Air Hammer	Cable Tool			
Completed <u>4/12/6</u>	5	0	15		Jette	ed] Hollow Stem Aug	er			
			1		Rev	erse Circu	lation				
			1		Othe	er			L		
From (ft) To (ft) Descrip	otion and colo	r of formation	material		8) Bore	hole C	ompletion [Open Ho	le 🗌	Straigh	nt Wall
0 5 Well g	raded coarse	and fine sand	l with fin	e	🗋 Unde	er-rean	ned 🛛 Gravel	Packed] Other	B-	
gravel,	, reddish bro	wn.			Gravel Pa	cked inte	erval from 2.5 ft.	to 15 ft. Size			
<u> </u>	th fine gravel	, dark reddis	h brown	1000	Casing	, Blan	k Pipe, and V	Vell Screen	Data		
<u>10 13 Silty co</u>	parse to fine s	sand, dark re	ddish bro	own [Dia.	New	Steel, Plastic, etc.		Setting	; (ft)	Gage
<u>13 15 Silt wit</u>	th coarse to f	ine sand, redo	lish brov	vn	(in.)	Used	Screen Mfg., if co	mmercial H	From	То	Screen
			******		2	N	Pvc		+2	5	.010
					4	N	Pvc screen		5	15	
									·····		**************************************
							1				
					9) Annu	lar Se	al Data: i.e. (fro	m <u>0</u> ft to <u>100 ft</u>	<i>≖sacks</i> & i	naterial I	3 cement)
				l	from <u>0</u>	ft	. to <u>1</u> ft. #	sacks & mate	erial <u>1/2</u>	ceme	nt
(I lea reverse side of)	Wall Oxenada aca				from <u>1</u>	ft	. to <u>2.5</u> ft. #	≠sacks & mate	erial <u>1/2</u>	bento	nite
13) Pluggod Wall plu	agod within 4	9 hours		t	from <u>2.5</u>	ft	. to <u>15</u> ft. #	sacks & mate	rial <u>1 sa</u>	Ind	
Casing loft in well	gged within 4	8 nours			Method U	sed				la training the pro-	-
From (ft) To (ft) From (ft)	To (ft)	Well: Material use	d & # Sack		Distance to	septic fie	d or other concentr	ated contamina	tion		ft.
		ivrater tar use	u a # Back		Jistance to	o Proper	ty Line II	Method	****		
					(0) Surf	face Co	mulation deat	aal assud taara	(-1t-)	in dia amin'n'i Macana	
				r	X Surfac	e Slah Ir		Surface Sleep	uank) vo Install	.d	
14) Type Pump				۲ ۱	Pitless	Adapter		Alternative E	ve nistan Procedure	u Ucad	
Turbine Jet [Submersible	Cylinder			(1) Wat	er Lev		7 montative 1	locculic	Oscu	
Other				[s	Static level	14.19 f		Date	1	1	
Depth to pump bowls, cylinder, jet, etc.,	ft.				Artesian Fi	low	gnm	Dute		/	
15) Water Test				1	(2) Pack	cers	5pm				
Type test Pump Bailer Je	tted Estimate	ed		1	vpe		Depth	Type	Ir)enth	
Yield: gpm with ft. dra	wdown after	hrs.			21			-)] -		opui	
		depression of the second se									
16) Water Ouality		n an		and the second	******	aliyyaana mada saayada	An de septembre de la sectembre		monumental		********
Type of water: Depth of Strata:	Was a cl	hemical analysis r	nade? 🖂 🗴	(es	No						
Did you knowingly penetrate a strata whi	ich contains unde	sirable constituen	nts? 🗌 Yes		lo If yes,	Continue	2:				
Check One: Naturally poor	r-quality groundv	vater – type			Hydro	ocarbons	(i.e. gas, oil, etc.)	•			
Hazardous ma	terial/waste conta	amination encoun	tered		Other	(describ	e)				
$\bigsqcup_{i=1}^{n}$ I certify that while drilling, deepening	g, or otherwise a	ltering the above	described w	ell, unc	lesirable v	vater or	constituents was a	encountered a	nd the lar	downer	was
informed that such well must be complete	ed or plugged in s	such a manner as	to avoid inj	ury or p	pollution.	an in by instance of the specific		ът –			
Address D.O. D 202 C	type or print)	Scarboroug	h Drilling	g, Inc.	•			No. WPI	K2969		
Auuress / P.U. BOX 305		-/	City 1	James	sa		State	Tx	Zip 7	9331	
Signature Licensed Dritter (Dune L		tet ?	NOÇ	Signa	ture				/	/	
Encensed Driffer/Fump Inst	aner	Date	Ľ			Ap	prentice			Date	

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy.	Texas P.O. Box 12 7	s Departme Water Well 2157 Austin, Te To Email address W	nt of Licen I Driller/Pump II xas 78711 (51) bil free (800) 80 :: water.well(VELL REP	sing an Installer Pro 2) 463-7886 3-9202 Dicense.st ORT	d Reg gram D FAX (S tate.tx.)	ulation 512) 463-8616 us	This f and fi and or upon a	form must led with th wner with completion	be com ne depar in 60 d n of the	pleted rtment ays well.
Name	A. WE	LL IDENIIF	ICATION A	ND LUC	ATIO	N DATA		Inter	Tria	
Railroad Commission of Texa	s	1701 North	Congress			Austin		Tx	7981	1
2) WELL LOCATION						1		1.4	1,201	•
County		Physical Address				City		State	Zip	
Howard	T	South Snyde	er Field Road	l		Coahoma		Tx	7951	1
3) Type of Work	Lat. 32°	215'	624" Lo	ng. 101	° 24	43' 415"	Grid #			
New Well Reconditioning	4) Proposed	Use (check)	Monitor	Environ	mental S	loil Boring	Domestic	5)		N↑
Replacement Deepening	Industrial	Irrigation	Injection	Public S	Supply	De-watering	Testwell			
	Rig Supply	Stock or Live	estock If Put	olic Supply, w	ere plans :	approved? Y	es 🗌 No			
6) Drilling Date	E	Diameter of H	ole	7) Drilli	ng Me	thod (check)				
Started $\frac{4/12/6}{}$	Dia. (in)	From (ft)	To (ft)	Driv	en 🔀	Air Rotary	Mud Rotary			
Completed 4/13/6]	Surface		Bore	ed L	Air Hammer	Cable Tool			
Completed <u>4/12/6</u>	5	0	35		d L	J Hollow Stem Aug	er			
					erse Urcu	lation		L		
					71 					
From (ft) To (ft) Descrip	otion and cold	or of formation	material	8) Borel	hole Co	ompletion	Open Hol		Straigh	nt Wall
5 10 December	lay, brownis	n red	X		er-ream	ed 🛛 Gravel		Other _		
5 IU Poorly	graded fine	sand, reddish	brown	Gravel Pac	cked inte	rval from 11 ft. to	5 35 ft. Size:	-		
10 15 Poorly	graded med	ium to fine sa	na,	Casing	, Blan	K Pipe, and W	ell Screen	Data		Cara
15 25 Well gr	sil uark reu.	to fine sand	hrownish	Dia.	Or	Perf., Slotted, etc.		Setting	(ff)	Casing
dark re	ed.	to mie sanu,	01 OW IIISII	2	N N	Screen Mfg., if con	nmercial F	rom +2	15	Screen 010
25 27 Poorly	graded coar	se to fine sand	l, brownish	2	N	Pvc screen		15	35	.010
dark re	ed.									
27 35 Claysto	one, brownis	h dark red.								
				0) 4	1					
				(9) Annu	lar Sea	in Data: i.e. (from	n <u>0</u> ft to <u>100</u> ft	#sacks & m 	aterial <u>1</u>	<u>3 cement</u>)
				from $\frac{10}{2}$	II. A	to $\underline{11}$ ft. #	sacks & mate	rial <u>1/2</u>	enton	<u>ito</u>
(Use reverse side of V	Well Owner's cop	y, If necessary)		from 11	ft.	to $\frac{11}{35}$ ft. #	sacks & mate	rial <u>6 sa</u>	nd	
13) Plugged 🛛 🗌 Well plu	gged within 4	8 hours		Method Us	sed					
Casing left in well: Cement/Ben	tonite placed in	well:		Distance to	septic fiel	ld or other concentra	ated contaminat	tion	************	ft.
From (ft) To (ft) From (ft)	To (ft)	Material use	d & # Sacks	Distance to	Propert	y Line ft	Method		****	
				Verified:						Mangalan ang Katalan Ing Ka
				10) Surf	ace Co	mpletion (If ste	el cased, leave l	blank)		
14) Type Pump				Surfac	e Slab In	stalled	Surface Sleev	e Installe	đ	
Turbine	Submersible	Cylinder		Pitless	Adapter	Used	Alternative P	rocedure	Jsed	
Other		Cymae		11) Wat	er Lev	el				
Depth to pump bowls, cylinder, jet, etc.,	ft.			Static level	<u>20.16</u>	ft.	Date	/		
16) Water Test			·····	Artesian Fl	ow	gpm				
Type test Drive Drive Drive Drive				T2) Pack	ters	D d	TT.			
Yeld		ed		Туре		Depth	Type		epth	
rield: gpm with ft. dra	wdown after	hrs.								
16) Water Quality	an a sur	and the second secon	and the Restaurant of the second state						ennesterios etaliona	
Type of water Depth of Strate:	Wasaa	hamiaal analysis	nadal 🔽 Var [
Did you knowingly penetrate a strata whi	ich contains unde	estrable constituer	$11aue : \square 1es \square$	NO No Ifves (ontinue	•				
Check One: Naturally poor	-quality groundy	vafer – type		Hvdrc	carbons	(ie oas oil etc.)				
Hazardous ma	terial/waste cont	amination encoun	tered	Other	(describ	(i.e. gas, on, etc.) e)				
I certify that while drilling, deepening	g, or otherwise a	ltering the above	described well, u	ndesirable v	vater or	constituents was e	ncountered ar	nd the land	lowner	was
informed that such well must be complete	ed or plugged in	such a manner as	to avoid injury o	r pollution.	-	• • • • •				
Company or Individual's Name (type or print)	Scarboroug	h Drilling, In	c.		Lic	. No. WPF	(2969		
Address/ P.O. Box 305			City Lam	esa	and a start of the	State	Тх	Zip 79)331	
Signature Com	ne	Le'ã	10 G Sig	nature				/	/	
 Licensed Driller/Pump Inst 	aller	Date	8		Ap	orentice]	Date	

TDLR FORM 001WWD / 9-03 Copies to TDLR - Owner - Driller/Pump Installer

Form provided by Forms On-A-Disk · (214) 340-9429 · FormsOnADisk.com

APPENDIX C

WELL DEVELOPMENT AND WATER SAMPLING FIELD FORMS

			<u> </u>	<u> </u>		[Woo-mine 9]
	Hermitian Britistan		Sample Location	S-MW	- 402-1	
	TR	C	Client	RRC		
			Site	West 0	Dennel	
Depth to	Before Sampling	5,88	Sam	ole Collection Time	1107	
Water (ft)	After Sampling	6:38		Purge Method	Disposable BANCE	R
	Total Depth (ft)	17,15	s	ample Method	Dispositble Brile	R
Stand	ling Water Column (ft)	11.27	w	ater Description	Slightly silly red - clear	
One	Purge Volume (gal)	1.92	Sar	npling Personnel	MW BC	

		Purge Vo	lume (gal)	Depth to			Conductivity			Disserved	
Date 4/13/06	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(u.siemens/cm)	TD S (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)
fort	1040	for the second	A STATE OF CONTRACT OF CONT	5.85	Contraction of the second seco	Laboration and the starting			M Koosinsi ayanna - 1954 mini Ki Ki Ki Kana - 1 kanadiya Dadati ki katati Koosinsi ayanna - 1954 mini katati katati Ki Ki K	a prozenijelo na po na konstrukcija po na konstrukcija po na poslavana po na konstrukcija po na konstrukcija po	oravet. A second with A conservative and of the oracle second second second second second second second second
	1044	2.0	2.0		ter	1511	52,95		-209		
	1047	2.0	4.0	BL	H 385	14,6	53.29		-179		
	1057	20	6-0		6.11	174	56.67	_	-\$ 70		
	1100	1.0	7.0		6410	17,00	56,90		-32		
	1102	10	Q.00		6.40	16.9	56.98		-24		
	165	1:25	9,25		6.41	16.8	56.41		5		
I											

Well Leadspace PID 0.5 ppm Field CI- result (S.V. D.S.ML), DT 262 Fred result 26,200 ppm

1050 Recalibrated uttraneter b/c of malfanction

(in man ?)

											5	
					·	Sample	Location	(WOD-n	(W03)	S-MW	1-3-1	
		7	FR (Cli	ent	RRC				
						Si	ite	U.U.S	-6 DA	nict		
	Depth to	Before S	Sampling	12.50			Sample	Collection Time	1525			
	Water (ft)	After S	ampling	12.70			Pun	ge Method	DRP.	BHER	- <u></u>	
		Total Depth (ft))	25.45	·		Sam	ple Method	Dish	BARER		
	Stand	ling Water Colu	ımn (ft)	12.95			Wate	r Description	Sill-	Slighth S	illy-red	from soils
	One	Purge Volume	(gal)	2.2	>		Sampli	ing Personnel	MWB	$\overline{\overline{}}$		
1131	%	1. 			12,50	<u>A</u>	WORKSTON CONTRACTOR	and an a standard of the	CLONES - MORE SERVICE SCHOOL - MARKEN	and the second		
1.1		<u> </u>	Purge Vo	lume (gal)	Dopth to			Conductivity			Discoluted	
z	Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(u-siemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)
Inte	12163	1216	2.25	2.25		6.91	19.00	45,25		45		
1.1		1221	2.25	4.5		6.048	19,4	5 50		9		
		1227	2.25	ta. 75		10120	18.3	52.40	_	6		
		1231	2.25	9.0		le jo	19.0	51.25		24		
		1724	225	11125	-	1.77	19.3	53,40		50		
		1240			24.00	6.40	14,9	50.54		162		
		1523	.25	11,50		~	1	- V		<u>s</u>		
		1524	15	12.00		6.53	19.1	48,41		142		
									_			

			5-MW-0	3	MOr	ę				
	DC	v	NELL # WOD-MWOZ	Client	ACD AN	HO3 RRC		Date & Time	Start	1210
			· · · · · · · · · · · · · · · · · · ·	Site	West O	'Danel		4/13/06	Finish	124
Development Eq	uipment	Dispus	oble built	<u> </u>						
Turbidity M	eter	3450422000000000000000000000000000000000			<u> </u>					
Actual Time	Developme	ent Action (e.g	g., surge, pump, bail, etc)			Volume Extracted (gal)	Tur	bidity (NPUs)	Water Level	(ft toc)
1210	Bas	in 4	LIN CAT LONGAL	<u> </u>			<u> </u>			
1216	-ver	<u>h</u> io o	1 PALEAR			.2.25	41	ty Red		
17/2						2.25	Sil	by Red		
1227						2.25	511	the Red		-
1235		ŕ	V (1		2,25	Silt	4 Red		
1230	EL	SI	Derelonus	Tuell	DR	2.25	Silt	TRE	24.05	
				(slow	recordy)					
				() ; 	\					
	ļ									
	<u> </u>						_			
	ļ									
	<u> </u>			· · ·						
							<u> </u> =	<u> </u>		
								·		
	<u> </u>									
			· · · · · · · · · · · · · · · · · · ·							<u> </u>

			Sample	Location	S-MW-	-04-1	(WOD-MWO4)
		C	Cli	ent	RRC		
			Si	te	WEST	TOD	stail
Depth to	Before Sampling	20.6		Sample (Collection Time	14	\mathcal{D}
Water (ft)	After Sampling	28,48man 2	D.6B	Purg	je Method	Disa	Dr. Briler
	Total Depth (ft)	28.40 (hard	bottom)	Sam	ble Method	Disn	BALER
Stand	ding Water Column (ft)	7.87	1	Water	Description	Stisht	4 sill ben fine should
One	e Purge Volume (gai)	1.34		Sampli	ng Personnel	MW	BC .

		Purge Vo	lume (gal)	Depth to			. Conductivity			Dissolved	ΔA
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	W(y-siemens/cm)	TOS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidirty (NTUs)
13/00	1313	Contraction Contractor Contractor	and the second s	20.61	Contraction of the local designment of the local desig					and the second	
1 1	1321	15-	15		6.66	21,1	63.92		70		
	1325	15	ふし		6.67	19.7	65198		29		
	1331	2.0	5.0		6.64	20,4	66.19		34		
	1335	1.5	65		1.55	20,4	67.65		39		
	1339	1.5	\$,0		STE BO	205	65.4	_	41		
	1356	20	10.0		6.55	209	68,82		24		
		1									

		5-MW-04				
TR	RC	WELL # Clier WoD - Why 04 Site	n PAC		Date & Time	Start 15/3 Finish 1400
Development Ec	uipment	Dizp. BATLER			412/00	
Turbidity M	eter					
					Visual	
Actual Time	Developme	ent Action (e.g., surge, pump, bail, etc)		Volume Extracted (gal)	Turbidity (NTUS)	Water Level (ft toc)
1319	De	gin SWK FINW			Silty Sight	+ Brown
1321				1.5	Silly Light Blou	
1325				1.3	5. by Light BRow	·
1331				2.0	Silty Cight Bro	·
1335				1.3 3/14	21th Cight Ba	L
1337	loc	Snige Parlal		115 1	2/ 19/14 31/47 L	19 1 + Bran
1736	P-P	NIGe		2.0 3	Paltby 31 Hy Ligh	+ Byen
	J	\$,			
	<u> </u>					

							5-	-MN-0	95-1		
	2. 3au	anteriati kananantika			Sample	Location	WOD-M	WOS			
	7	FR			Cli	ent	RRC				
					Si	ite	West O'Do	niel		_	
Depth to	Before S	Sampling	5.40	A. TOC		Sample	Collection Time	1140			
Water (ft)	After S	ampling	5.53	A TUC		Pur	ge Method	Pisp.	Briler		
	Total Depth (ft))	3.69	Pr tox (hard bottom	Sam	ple Method	Disp	BAILER		
Stand	ding Water Colu	mn (ft)		3:21		Wate	r Description	Sand yll J.	14 boun		
One	e Purge Volume	(gal)		<u>. 57</u>		Sampl	ing Personnel	Mr e	3C		·····
	**************************************			-5.48							
Date	Time	Purge Vo	lume (gal)	Depth to	pH (SU)	Temp (C)		TDS (opm)	ORP (mV)	Dissolved	Turbidity (NTUs)
		This Period	Cumulative	vvater (π)			(u-siemens/cm)		, ,	Oxygerx(mg/L)	
4/14/06	1123	.5	.5	5.480	16.26	15.0	38.00		~49		
, ,	1126	5	1.0		6,20	18,4	39.51		43		<u> </u>
	1121	. 5	1.5		6,26	18.0	41.04		34		
	1131	1.5	2.0	· · · · · ·	6,25	1812	41.90		20		
·	1135	12	2.5		6.23	18.1	42.84		19		
	1134		3.0		12:10	17,0	43.47				
		<u> </u>									
											<u>_</u>
							<u> </u>				
		 									
	· · · · ·										
						_					

Well headspace 0.5 ppm

Frild CI-result (J.V. O. 5ML) DT NSULT 205 CI-result 20, 500 PPM

Form Date: 09/27/02

Å.

des-y - Z

Page _____ of ____

			S-MW.	07						
)C		WELL # WOD. MWOS	Client	PRC			Date & Time	Start	5121
				Site	WOD			4/14/06	Finish	
Development E	quipment	Disp	ossable barks							
Turbidity N	leter				<u></u>			<u> </u>		
Actual Time	Developm	ent Actio	n (e.g., surge, pump, bail, etc)			Volume Extracted (gal)	Tur	bidity (NTUs)	Water Leve	l (ft toc)
1121	Be	LIN	SWIR/ PWge		<u></u>	paraterise and the second second	Silti	stady Rea	r	
1123)				.5		1		
1120	1					(3				
1129						15				
131	EN	e Si	rige		<u>_</u>	(5	_			
1133			-0			15				
1134	E	rd	pulge					¥		
			·				_			

			Sample	Location	EUD-	MW6 (18-MW-506-()
	TR	C	Cli	ent	RRC		
			Si	ite	WE	JT SIDA	TE
Depth to	Before Sampling	19,21		Sample	Collection Time	0851	
Water (ft)	After Sampling	19.21		Pur	ge Method	Disposabl	ic bailer
т	otal Depth (ft)	27:85 50	ft bottom	Sam	pie Method	Dispojat	le boiler
Standir	ig Water Column (ft)	8.64		Water	Description	31:145- 5:11	n red - clear
One F	Purge Volume (gal)	BL+++61	.47	Sampli	ng Personnel	MWAH	36

		Purge Vo	lume (gal)	Depth to			▲ Conductivity			Dissofved	
Date	l ime	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(y-siemens/cm)	TDS (com)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)
4/13/06	829	115	1.5		6.87	1411	71.20		~535		
	831	1.5	3.0		6,81	15.8	74,28		-49		
	834	1.5	4.5		7,00	16.8	75.63		-99		
	839	.5	5		6.67	17,5	76.41		-100		
	841	,5	5.5		6,67	17.6	706.60		-136		
	SUD	15	6.0		6.60	17.2	76.71		-1.36		
							· · · · · · · · · · · · · · · · · · ·				
										<u> </u>	
									·		

Page ____ of ___

Form Date: 09/27/02

					5-W	NW-06-1
	antonursesanter frazz antina		Sample Location		WOD MW-	-06
	TRC			Client		
			S	ite	WEST.	O'DANIE
Depth to	Before Sampling	7.06		Sample (Collection Time	8080
Water (ft)	After Sampling	PAT 710		Purç	ge Method	Dispositole BAILER
	Total Depth (ft)	15.37 (sett bonton)		Sam	ple Method	Dispositile Boiler
Stand	ding Water Column (ft)	8.33		Water	Description	Sindy-red
One Purge Volume (gal)		1.42		Sampli	ng Personnel	mw isc

Date		Purge Vo	lume (gal)	Depth to			W/Conductivity	$\overline{}$		Dissolved	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(rá-siemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)
4/14/06				7.06	<u> </u>				3		
<i>r i</i>	742	1.5	1,5	,	582	1517	37.31		82		
	747	1.5	3.0		6.07	16,2	38.65		56		
	751	1.5	4,5		6.14	15.7	38,87		72		
	156	1.5	6.0		6.25	14.9	28.06		64		
	759	1.5	7.6		6,24	15.4	39,03		61		
	804	1.5	9.0		6.26	15.4	39.32		12		
									0		
, Č											

Page _____ of _____

		5-MW	106						
	26	WELL # WOD MW-06	Client	RRC	D4-a x		Date & Time	Start	736
Development E	quipment		<u> </u>	<u>nen u</u>	UNMQ		1/17/00	<u> </u>	
Turbidity N	leter			:			k 		
L	<u>l</u> _						V, SUAL		
Actual Time	Development Act	tion (e.g., surge, pump, bail, etc)			Volume Extracted (gal)	Turb	oidity (NTUs)	Water Level	(ft toc)
736	Begin	SURDE/PUTCH				SAND	red		
742		· / ·			1.5	7			
747					1,5				
751					(15				
750	En	12 Surge			1.5				
259					C15		1		
804	Er.	2 purge			115	`	\bigvee		
825	Remension	el TD → 15.41 ft	_ Smooth	Amt			ne	7.10	
	6F	sitt/stad in both	om, ha	rd bofform					
		1	/						
			· 						

					5-	MW-07-1
	on na real for the second for the second for the second		Sample	Location	WOD V	MW-07
	TR		CI	ient	RFR	
			S	ite	WEST	O'DANIE!
Depth to	Before Sampling	72.30		Sample (Collection Time	930
Water (ft)	After Sampling	29.15		Purç	je Method	Disp. BALLER
Total Depth (ft)		35.62 (hard	35.62 (hand bottom)		ole Method	Disp. BAILER
Stand	ding Water Column (ft)	13.32	13.32		Description	Stripy Red
One	e Purge Volume (gal)	3.26		Sampli	ng Personnel	MUL BC

		Purge Vo	lume (gal)	Depth to				$\Box \nabla$		Dissolved	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(v-siemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbiditý (NTUs)
4/14/06	851			22,30			16				
(I	907	225	225		6:54	18,5	21,40		77		
	908	225	4,50		6.70	igit	20.70		67		
	914	2,25	6.75		6:15	19.0	20125		55		
	919	1.25	8.0		6.77	19,5	20.03		61		
	(¢					
		4							*>		i Marta La La Carta
							· ·				
										y ^	_
		_					×				

PED HEADSPHEL 2.3ppM Freid CI- result (S.V. O.SML) DT noult 119 CI-result 11,900 pph

		S-MW-C	51				
	DE	₩ELL # MW -07	Client	RRC	······	Date & Time	Start 077
			Site	uesta	Jonel	-(14)6	Finish
Development Eq	uipment	Disposable baile				l	
Turbidity Me	eter		<u> </u>				
Actual Time	Developm	ent Action (e.g. surge nump bail etc)			Volume Extracted (nat)	Turbidity (NTUs)	Water Level (ft toc)
						Caroling (19100)	
907	Be	gir sargefpurge			2.25	Stacy rec	<u> </u>
204					2.25		
914	En	1D Surge			2,25	<u> </u>	heur Now
919	E	nd purge			1,25		75.6270
<u> </u>							
	ļ						
					10,		
							<u> </u>
							
		·					
						·····	

	attantar and sources		Sample Location	-5-BEGN	1W-11-1 S-MW-BEGII-1
			Client	RRC	
			Site	WEST	O'DAVIE!
Depth to	Before Sampling	18.26	Sample	e Collection Time	1500
Water (ft)	After Sampling		Pi	urge Method	Disperable BHLER
	Total Depth (ft)	28,26	Sa	mple Method	DISPOSTIDE BAILER
Stand	ling Water Column (ft)	10:00	Wat	er Description	Silty Red
One	e Purge Volume (gal)	1.7	Sam	pling Personnel	MW +BC

(REK-II)

Date Time		Purge Vo	lume (gal)	Depth to						Dissolved	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(y-siemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)
413101	0940	hant war and the second	AND DESCRIPTION OF THE OWNER OF T	1826	4				and a second	nn andalaisteadhalaisteadhalaisteadhalainn an ann an an ann an an ann an an ann an a	and the manufacture of the second
1 1	0949	1.75	1.75		6.62	17.7	28,25		-30		
	0952	1.75	3,50		6.38	18.8	28,09		-70		
	0957	1.75	5.25		6.71	18.5	2775		-38		
	0957	Purged d	N-will	REFURN	to SAI	mole			<u> </u>		
	1450	, 25	15.5		10,70	227	25189		103		
	+523/30								,		
	Ľ										

Well headquice 710 needy 0.1 ppm Field CIT test (S.V. SML) DT KONIT 2400 CIT ROUT 24,000 PPM (J.V. ZML) DT ROUT 425 CIT ROUT 10,625 ppm

Form Date: 09/27/02

<u>. </u>			_		5-	WW-53-1
	pulling strength		Sample Location		W-06W	W553
		C	Client		FRC	
			Sit	e	WOD	
Depth to	Before Sampling	28,10		Sample (Collection Time	1065
Water (ft)	After Sampling	NA		Purç	ge Method	-
Total Depth (ft)		38,75		Sam	ple Method	Dispostele BAiler
Stand	ling Water Column (ft)			Water	Description	Clear / Slighthe silty
One Purge Volume (gal)		NP		Sampli	ng Personnel	MW BC

		Purge Vo	lume (gal)	Depth to			Conductivity			Dissolated	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(u-siemens/cm)	TDS (opm)	ORP (mV)	Oxygen (mg/L)	Turbicity (NTUS)
4/14/06	1005				5.99	19.8	49,20		12		
, c											
				_							
								_			

Steel 6" CASing @ Surface

Freid CT result (S.Y. O. SmL) DT result 240 CT result 24,000 ppm

				5-	MW-52	
			Sample Location	WOD NWZ	52	
		C	Client	RRC		
			Site	WOD		
Depth to	Before Sampling	DRY	Sample	e Collection Time		
Water (ft)	After Sampling		Pi	urge Method		
Total Depth (ft) 21,5 bas		21,5 35	Sa	mple Method	77350 BAILOR	
Standing Water Column (ft)			Wat	ter Description		
One	Purge Volume (gal)		Sam	pling Personnel		

		Purge Volume (gal)		Depth to			Conductivity			Dissolved	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(u-siemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)

Visually observed bottom of hole (dry) using reflection from watch

Surface Water

	sportensi (ortanica) dista sportensi		Sample Location Client		\$-5	-/-/	
	TR	C			RRC		
			Site		WOI	$\overline{)}$	
Depth to	Before Sampling			Sample C	ollection Time	1310	
Water (ft)	After Sampling	i n n		Purge Method		Arn	
	Total Depth (ft)			Sample Method		INIC	
Standing Water Column (ft)			Water Description		clear		
One Purge Volume (gal)			Sampling Personnel		mnBC		

			Purge Vo	lume (gal)	Depth to			Luc Conductivity			Dissolved	
elssell	Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(Usiemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)
1111	1305 -	\rightarrow				6:92	32.6	49,28		518		
												

Ĺ

	Altertos en la Matanana		Sample Location Client		S-5-	2-1
	TR				RRC	
		Site		West (3ª parel	
Depth to	Before Sampling			Sample C	collection Time	1355
Water (ft)	After Sampling	n DA	Purge Method		e Method	A A A
Total Depth (ft)		Sample Method		le Method		
Standing Water Column (ft)			Water Description		SlidAth Silty	
One Purge Volume (gal)				Sampling Personnel		Mr /BC

		Purge Volume (gal)		Depth to			Conductivity			Dissolved	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(u-siemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbidity (NTUs)
4/14/06	1350				6.90	32.9	37.36		531		
11-1											
									·		

					{	2-5-55-1
	anananisina muunaana		Sample Location		EOD-	5-55
TRC			Client		RRC	4 ADD-1-
			Site		uo.	\mathcal{D}
Depth to	Before Sampling		Sample C Purg		Collection Time	1245
Water (ft)	After Sampling				ge Method	1 mm
Total Depth (ft)			Sam	ple Method	Sample port	
Standing Water Column (ft)			Water Description		Clear	
One Purge Volume (gal)			Sampling Personnel		MW BC	

		Purge Vo	lume (gal)	Denth to			Conductivity		pare the second s	Dissolved	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(u-siemens/cm) TDS (ppm) OI		ORP (mV)	Oxygen (mg/L) Turbidity (NTU	
4/19106	1253				10,56	22.9	56,80		-221	-6	
						_					
				_							_

					E-S-55-1		
			Sample L	ocation	FOD - 5-56.		
			Clie	nt	RRC		
				2	WOD		
Depth to	Before Sampling	A		Sample Collection T	Time 1520		
Water (ft)	After Sampling	, NA		Purge Method	d /A		
	Total Depth (ft)			Sample Method	bd / / / +		
Standing Water Column (ft)			Water Description	ion Clear			
One	One Purge Volume (gal)			Sampling Personn	nnel BCE6		

		Purge Vo	lume (gal)	Depth to		- (0)	Conductivity			Dissolved	
Date	Time	This Period	Cumulative	Water (ft)	pH (SU)	Temp (C)	(u-siemens/cm)	TDS (ppm)	ORP (mV)	Oxygen (mg/L)	Turbicaty (NTUs)
4/2106	150		_		6.74	227	59,79		-219		<u> </u>
	~				-						

APPENDIX D

LABORATORY ANALYTICAL REPORTS - OZARK UNDERGROUND LABORATORY, INC.

August 14, 2006

CERTIFICATE OF ANALYSIS

Bill Renfro Tim Prude Texas Railroad Commission 10 Desta Drive, Suite 500 E Midland, Texas 79705-4515

RE: West O'Daniel Seep Area, Week 1 Analysis results for charcoal and water samples shipped on August 1, 2006 Ozark Underground Laboratory (OUL) numbers P9217 through P9228

Dear Mr. Renfro and Mr. Prude:

We have completed analysis of the charcoal and water samples received at the OUL on August 2, 2006. We have indicated the OUL number for each of these samples on the enclosed Table 1.

The fluorescein, eosine, rhodamine WT (RWT) and sulforhodamine B (SRB) dye concentrations are based upon standards routinely used at the OUL. The fluorescein, eosine and SRB are mixtures of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye.

Additional sampling information is available on the enclosed analysis graphs.

Sincerely,

Enclosures:

Thomas J. Aley, PHG and RG

- 1) Table 1 Analysis results for charcoal and water samples
 - 2) Sample collection data sheets
 - 3) Sample analysis graphs

Ozark Underground Laboratory, Inc. for Texas Railroad Commission

Project name:	West O'Daniel Seep Area
Samples collected by:	Tim Prude
Date samples shipped:	August 1, 2006
Date samples rec'd at OUL:	August 2, 2006
Date samples analyzed by OUL:	August 3 and 9, 2006

Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein, eosine, rhodamine WT (RWT) and sulforhodamine B (SRB) dyes. Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). Results are for charcoal unless otherwise indicated. OUL Stn. **Station Name** Date/Time **Date/Time** Fluorescein Eosine RWT SRB # # Placed Collected Peak Peak Peak Peak Conc. Conc. Conc. Conc. MW2 7/24/06 1230 ND ND ND P9217 West O'Daniel Seep Area 7/31/06 1720 ND West O'Daniel Seep Area P9218 MW3 7/31/06 1705 ND ND ND ND 7/24/06 1255 West O'Daniel Seep Area P9219 MW4 7/24/06 1320 7/31/06 1645 ND 549.8 * 5.75 ND ND P9220 Laboratory control charcoal blank 7/31/06 1735 ND ND ND ND P9221 MW5 West O'Daniel Seep Area 7/24/06 1150 P9222 MW6 West O'Daniel Seep Area 7/24/06 1425 7/31/06 1540 ND ND ND ND 539.0 * ND ND P9223 MWBeg6 West O'Daniel Seep Area 7/24/06 1440 7/31/06 1630 ND 2.23 515.9 14.3 ND ND ND P9224 MWBEg7 West O'Daniel Seep Area 7/24/06 1505 7/31/06 1615 MWBeg11 West O'Daniel Seep Area ND ND P9225 7/24/06 1405 7/31/06 1745 ND ND 533.2 * ND ND P9226 MWBeg15 West O'Daniel Seep Area 7/24/06 1340 7/31/06 1550 ND 2.31ND ND P9227 MW4 West O'Daniel Seep Area Water 7/31/06 1645 ND ND 508.7 ND ND ND P9228 MWBEg7 West O'Daniel Seep Area Water 7/31/06 1615 0.124

FOOTNOTES:

ND = None Detected

* = A fluorescence peak is present that does not meet all the requirements for a positive dye result. However, it has been calculated as though it were the tracer dye for background purposes.
August 16, 2006

CERTIFICATE OF ANALYSIS

Bill Renfro Tim Prude Texas Railroad Commission 10 Desta Drive, Suite 500 E Midland, Texas 79705-4515

RE: West O'Daniel Seep Area, Week 2 Analysis results for charcoal and water samples shipped on August 8, 2006 Ozark Underground Laboratory (OUL) numbers P9335 through P9344 and P9367

Dear Mr. Renfro and Mr. Prude:

We have completed analysis of the charcoal and water samples received at the OUL on August 9, 2006. We have indicated the OUL number for each of these samples on the enclosed Table 1.

The fluorescein, eosine, rhodamine WT (RWT) and sulforhodamine B (SRB) dye concentrations are based upon standards routinely used at the OUL. The fluorescein, eosine and SRB are mixtures of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye.

Additional sampling information is available on the enclosed analysis graphs.

Sincerely,

Thomas J. Aley, PHG and RG

- Enclosures: 1) Table 1 Analysis results for charcoal and water samples
 - 2) Sample collection data sheets
 - 3) Sample analysis graphs

f:\docs\coa\trrc06.doc

Ozark Underground Laboratory, Inc. for Texas Railroad Commission

Project name:	West O'Daniel Seep Area
Samples collected by:	Tim Prude
Date samples shipped:	August 8, 2006
Date samples rec'd at OUL:	August 9, 2006
Date samples analyzed by OUL:	August 14, 2006

 Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein, eosine, rhodamine WT (RWT) and sulforhodamine B (SRB) dyes.

 Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). Results are for charcoal unless otherwise indicated.

OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	escein	Eo	sine	RV	RWT		RB
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.	Peak	Conc.	Peak	Conc.
P9335	MW2	West O'Daniel Seep Area	7/31/06 1720	8/7/06 1150	ND		ND		ND		ND	
P9336	MW3	West O'Daniel Seep Area	7/31/06 1705	8/7/06 1140	ND		ND		ND		ND	
P9337	MW4	West O'Daniel Seep Area	7/31/06 1645	8/7/06 1120	ND		550.6 *	4.81	ND		ND	
P9338	MW5	West O'Daniel Seep Area	7/31/06 1735	8/7/06 1200	ND		ND		ND		ND	
P9339	MW6	West O'Daniel Seep Area	7/31/06 1540	8/7/06 1030	ND		ND		ND		ND	
P9340	340 Laboratory control charcoal blank											
P9341	MWBeg6	West O'Daniel Seep Area	7/31/06 1630	8/7/06 1110	ND		535.6 *	2.51	ND		ND	
P9342	MWBEg7	West O'Daniel Seep Area	7/31/06 1615	8/7/06 1130	516.6	15.3	ND		ND		ND	
P9343	MWBeg11	West O'Daniel Seep Area	7/31/06 1745	8/7/06 1215	ND		ND		ND		ND	
P9344	MWBeg15	West O'Daniel Seep Area	7/31/06 1550	8/7/06 1055	ND		533.4 *	1.38	ND		ND	
P9367	MWBEg7	West O'Daniel Seep Area	Water	8/7/06 1130	509.0	0.046	ND		ND		ND	

FOOTNOTES:

ND = None Detected

* = A fluorescence peak is present that does not meet all the requirements for a positive dye result. However, it has been calculated as though it were the tracer dye for background purposes.

August 25, 2006

CERTIFICATE OF ANALYSIS

Bill Renfro Tim Prude Texas Railroad Commission 10 Desta Drive, Suite 500 E Midland, Texas 79705-4515

RE: West O'Daniel Seep Area, Week 3 Analysis results for charcoal and water samples shipped on August 15, 2006 Ozark Underground Laboratory (OUL) numbers P9439 through P9448 and P9462

Dear Mr. Renfro and Mr. Prude:

We have completed analysis of the charcoal and water samples received at the OUL on August 17, 2006. We have indicated the OUL number for each of these samples on the enclosed Table 1.

The fluorescein, eosine, rhodamine WT (RWT) and sulforhodamine B (SRB) dye concentrations are based upon standards routinely used at the OUL. The fluorescein, eosine and SRB are mixtures of 75% dye and 25% diluent; the RWT is a 20% solution. The concentrations are based upon the as-sold weight of the dye.

Additional sampling information is available on the enclosed analysis graphs.

Sincerely,

Thomas J. Aley, PHG and RG

- Enclosures: 1) Table 1 Analysis results for charcoal and water samples
 - 2) Sample collection data sheets
 - 3) Sample analysis graphs

f:\docs\coa\trrc07.doc

Ozark Underground Laboratory, Inc. for Texas Railroad Commission

Project name:	West O'Daniel Seep Area, Week 3
Samples collected by:	Tim Prude
Date samples shipped:	August 15, 2006
Date samples rec'd at OUL:	August 17, 2006
Date samples analyzed by OUL:	August 21, 2006

 Table 1. Results for charcoal and water samples analyzed for the presence of fluorescein, eosine, rhodamine WT (RWT) and sulforhodamine B (SRB) dyes.

 Peak wavelengths are reported in nanometers (nm); dye concentrations are reported in parts per billion (ppb). Results are for charcoal unless otherwise indicated.

	0	1	,, ,	1	1	1	UI /					
OUL	Stn.	Station Name	Date/Time	Date/Time	Fluor	escein	Ео	sine	RV	VT	SF	RB
#	#		Placed	Collected	Peak	Conc.	Peak	Conc.	Peak	Conc.	Peak	Conc.
P9439	MW2	West O'Daniel Seep Area	8/7/06 1150	8/14/06 1140	ND		ND		ND		ND	
P9440	Laboratory of	control charcoal blank										
P9441	MW3	West O'Daniel Seep Area	8/7/06 1140	8/14/06 1130	ND		ND		ND		ND	
P9442	MW4	West O'Daniel Seep Area	8/7/06 1120	8/14/06 1110	ND		550.9 *	10.3	ND		ND	
P9443	MW5	West O'Daniel Seep Area	8/7/06 1200	8/14/06 1150	ND		ND		ND		ND	
P9444	MW6	West O'Daniel Seep Area	8/7/06 1030	8/14/06 1010	ND		ND		ND		ND	
P9445	MWBeg6	West O'Daniel Seep Area	8/7/06 1110	8/14/06 1100	ND		536.4 *	1.48	ND		ND	
P9446	MWBeg7	West O'Daniel Seep Area	8/7/06 1130	8/14/06 1120	516.7	11.2	ND		ND		ND	
P9447	MWBeg11	West O'Daniel Seep Area	8/7/06 1215	8/14/06 1200	ND		ND		ND		ND	
P9448	MWBeg15	West O'Daniel Seep Area	8/7/06 1055	8/14/06 1040	ND		535.2 *	2.09	ND		ND	
P9462	MWBeg7	West O'Daniel Seep Area	Water	8/14/06 1120	ND		ND		ND		ND	

FOOTNOTES:

ND = None Detected

* = A fluorescence peak is present that does not meet all the requirements for a positive dye result. However, it has been calculated as though it were the tracer dye for background purposes.

APPENDIX E

LABORATORY ANALYTICAL REPORTS - DHL ANALYTICAL

April 21, 2006

Steve Miller TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752 TEL: (512) 329-6080 FAX (512) 329-8750

Order No.: 0604091

RE: RRC West O'Daniel

Dear Steve Miller:

DHL Analytical received 8 sample(s) on 4/14/2006 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

. .

This report for TRC Environmental: RRC West O'Daniel (DHL Work Order 0604091) contains the following information:

ITEM	Page
Cover Page	1
Table of Contents	2
• Original chain of custody, fedex slip (if used), log-in checklist	3-5
Laboratory Data Package Signature Page	6
Laboratory Review Checklist	7-8
Case Narrative	9-10
Work Order Sample Summary	11
Prep Dates Report	12-14
Analytical Dates Report	15-17
Sample Results	18-25
QC Summary Report	26-43
MQL Summary Report	44
Total Number of Pages	44

April 21, 2006

Approved:

10 W d.

John DuPont

	ment
	¢
-	ပ
based	VIIIBUS
r m	j
	≫
	¢
	Z
	Ø
	Monut

2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229

Nº 23526 CHAIN-OF-CUSTODY

CLIENT: TRC	V T I C A	-			7770-(2 f		Soc (;	DATE	4 13106						5
ADDRESS: <u>503 E.</u> PHONE: <u>512 - 32</u> DATA REPORTED TO:_	Fluntta Jeve		AX	N2-32A-	36	X 6	2		PO#		R NAME:	RRC N	ORDER #.	Denie Denie	ACCY -	1010
ADDITIONAL REPORT	COPIES TO:												CULLECT	। মাহা মাহা	L WERT AN	
Authorize 5% surcharge for TRRP report?	S=SOIL W=WATER A=AIR	P=PAINT SL=SLUT OT=OTH	DGE ER	r	ă	IESEP	NATIO	Z		D scot their		10000 1000000			A CARLON CONTRACTOR	
Treld Field Sample I.D.	DHL Lab # Date	T	Matrix	Container Type	# of Containers			UNPRESERVED	Signal Si	1000 1000	10000000000000000000000000000000000000	95 N 2 1 83 46 0 91 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0241024 43014010 440142 440040 440040 440040 6405 640	A L SAORA STA	FIELD NOTE	ر م
E-WW-06-1		6 0851	M	1-60 ml		X	\geq					×	XXX	XW	tall include	
S-WW-02-1	1961 H ZO		3	H-towl	X F	\geq	$ \times$	$\frac{\times}{\times}$				×	XXXX	es X	CA, RE, MO	10
5-MW-02-2	1211	20 M 2	3	Man in	F	\times	\geq	XX				\times	XXX	N.	ns include	
5-MW-04-1	04 4/3/0	0	3	the man		X	×	\times				X	× × ×	XBr	A NIFOR	~
C-4-0 MM-S	05 4136	26 1410		PLANE 2-50		X	\geq	\ge				×	X X X	Ú X	A PA PA	
5-MW-85611-1	1014 20	8 128	N	1-1-1-1-2007-1-2007-1-2009	În	\sim	\times	$\left \times \right \right\rangle$				×	XXX	X	Rrh	
S- WW-03-1	121 CO	1525	3	4-40ml	F	X	\geq					\times	XXX	Xup	Per Colorado	0
Thip black-4-13-26	05 4120		N	2-40mL	X H			X.						N.	V BOSIN (DAF
	*		*					[Ř	N. 2015 - 1	101 2.W
								<u> </u>								>
														š	2-1-0-MW	-73
				- the second										X	S/WSD	
															111 30	The second
				al an											ACK W	A
				We assume the work of the later in the later way we wanted)		
TOTAL																
RELINONSHEBBY: (Sig	jnature) «.	41 m lo	SATE/TIN 6 / 17		NECE IN		(Signa	en al	ADIL CALC	TURN AROUN	D TIME L/	CENING TE	VUSE ONL	÷	HN #:	
RELINQUISHED BY: (Sig	mature)		DATE/IN	AE AI	ECEIVE	Nel:	(Signa	ture)	~	1 DAY I CALL	FIRST	JSTODY SE/	ALS - 3 BRC	OKEN 3	NTACTX NOT	USED
RELINQUISHED BY: (Sit	jnature)		DATE/TIN	AE R	CEIVE	D BY:	(Signa	ture)		NORMAL X		CARRIER BI APC DELIVE	LL #	0		
	JHUC	DISPOSAL	@ \$5.0() each	J Reti	im.						HAND DELN	/ERED	am-yr anzosh vobranzanzanski	yoʻd myyga turni kasil Mino Biyar Parta Cababang a Walawar, go	A DESCRIPTION OF THE DESCRIPTION
A CONTRACT OF A		STATISTICS INCOMENTS AND ADDRESS OF		A PARTY OF THE OWNER	A CONTRACTOR OF THE OWNER OF THE	And and a second distance										

Sample Receipt Checklist

Client Name TRC Environmental Corp.		Date Rece	eived: 4/14/2006
Work Order Number 0604091		Received t	Dy MLW
Checklist completed by: MAL W& 4. Signature D	1 <i>4 . C</i> ate	Reviewed I	by (TD) 04/14/06 Initials Date
Carrier nam	le		
Shipping container/cooler in good condition?	Yes 🗹	No	Not Present
Custody seals intact on shippping container/cooler?	Yes	No	Not Present
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present
Chain of custody present?	Yes 🗹	No	
Chain of custody signed when relinquished and received?	Yes 🖌	No 🗌	
Chain of custody agrees with sample labels?	Yes 🗹	No	
Samples in proper container/bottle?	Yes 🔽	No	
Sample containers intact?	Yes 🔽	No	
Sufficient sample volume for indicated test?	Yes 🗸	No	
All samples received within holding time?	Yes 🔽	No	
Container/Temp Blank temperature in compliance?	Yes 🗹	No	
Water - VOA vials have zero headspace?	Yes 🖌	No	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🔽	No	Not Applicable
Adjusted? レク		Checked by _//;	9 Lul

Any No response must be detailed in the comments section below.

Client contacted TRU	Date contacted: <u>04/14</u>	0 j Person co	ntacted <u>S. Millo</u>	
Contacted by: J. Duport	Regarding: O Govley M	is-delivery Dough	ZD;	W/n + 1/2/Million
Comments: @ Feo Ex delive	red cooler to wrong	location. Goler a	uns opened. Co	oc has been
Signed from the wrong	1 location	~~~~~		• •
@ Some of the S-MW.	of-2 samples as	e labled as 5-m	w-oz-z. Tin	e is correct
Corrective Action (1) Will Aste	success rarrytro. 7	RC has info from	the other lab.	(2) Corrected
the ID on libels as per J	Miller Airective	//	1917-1919-1917-1917-1917-1917-1917-1917	Source **
d ⁴				

5

Laboratory Data Package Signature Page

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix; R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Scott Schroeder – Project Manager Michelle Green – QA Manager John DuPont – General Manager

Signature

5

DHI	LAI	1alytical, Inc.			011111000001-5			****
Lab	orat	ory Review Checklist: Reportable Data						
Projec	rt Nar	ne: RRC West D'Maniel Date: «	+121126		<u></u> ,	·		
Review	wer N	lame: Carlos Castro Laborator	y Work Order: 0604091					
Prep E	Batch	Number(s): See Prep Dates Report Run Batcl	: See Analytical Dates Report	<u></u>				
#	A ²	Description		Yes	No	NA ³	NR^4	ER# ⁵
		CHAIN-OF-CUSTODY (C-O-C)						
		1) Did samples meet the laboratory's standard conditions of sa	mple acceptability upon					
R1	OI	receipt?			\sim			R1-01
		2) Were all departures from standard conditions described in a	n exception report?	1				
R2	OI	SAMPLE AND QUALITY CONTROL (QC) IDENTIFIC.	ATION					lingen i de le state est de la segui de la sectione
		1) Are all field sample ID numbers cross-referenced to the lab	oratory ID numbers?	۷.				
	ļ	2) Are all laboratory ID numbers cross-referenced to the corre	sponding QC data?	\mathbf{r}				
<u>R3</u>	OI	TEST REPORTS						
		1) Were all samples prepared and analyzed within holding tim	es?	`				
		2) Other than those results < MQL, were all other raw values b	bracketed by calibration	v				
		standards?	· · · · · · · · · · · · · · · · · · ·	~				
		(3) Were calculations checked by a peer or supervisor?	nizer 9	•				
		(4) Were all analyte identifications checked by a peer or superv	1SOF /	<u>`</u>				
		(5) Were all regults for soil and adjugant complex reported for all analytes no	detected?	~				
		(0) Were all results for solidal sediment samples reported on a (7) Were $\frac{9}{2}$ maintum (or solida) reported for all soil and sedime	t dry weight basis?			<u>`</u>		
Į		(7) were 76 moisture (or solids) reported for all soli and sedime				$\overline{\mathbf{v}}$		
R4	0	SURROGATE RECOVERY DATA			des Led		in sing	
		1) Were surrogates added prior to extraction?					·····	let en ser
		2) Were surrogate percent recoveries in all samples within the	laboratory OC limits?	Ň.				
R5	OI	TEST REPORTS/SUMMARY FORMS FOR BLANK SAI	WPLES	•	<u>.</u> 1995-1995			
		1) Were appropriate type(s) of blanks analyzed?		~				
1		2) Were blanks analyzed at the appropriate frequency?		V				
		3) Were method blanks taken through the entire analytical pro	cess, including preparation					
	and, if applicable, cleanup procedures?							
L		4) Were blank concentrations < MQL?						
R6	OI LABORATORY CONTROL SAMPLES (LCS)							
		1) Were all COCs included in the LCS?		~				
		2) Was each LCS taken through the entire analytical procedure	e, (prep and cleanup steps)?	V			ļ	
		3) Were LCSs analyzed at the required frequency?		~				
		4) Were LCS (and LCSD, if applicable) %Rs & RPD recovery	within the laboratory QC	v				
	1	Imits?	The second se					
		(5) Does the detectability data document the faboratory's capac	inity to detect the COCs at the	\checkmark				
R7	01	MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICA	FE (MSD) DATA					
		1) Were the project/method specified analytes included in the	MS and MSD?	~				
		2) Were MS/MSD analyzed at the appropriate frequency?		~				
		3) Were MS (and MSD, if applicable) %Rs within the laborate	ory OC limits?		>			27-03
		4) Were MS/MSD RPDs within laboratory QC limits?		>				· · · · · · · · · · · · · · · · · · ·
R8	OI	ANALYTICAL DUPLICATE DATA		99.35	집합니	e se ka	e sag	
		1) Were appropriate analytical duplicates analyzed for each m	atrix?	>				
		2) Were analytical duplicates analyzed at the appropriate frequ	iency?	7				
		3) Were RPDs or relative standard deviations within the laborations	atory QC limits?	~				
R9	OI	METHOD QUANTITATION LIMITS (MQLS)						
		1) Are the MQLs for each method analyte included in the labo	ratory data package?	~				
		2) Do the MQLs correspond to the concentration of the lowest	non-zero calibration	~				
		standard?	0	<u> </u>			j 	ļ
D10	OT	3) Are unadjusted MQLs included in the laboratory data packa	ige?	*		18		anto constante
K10		OTHER PROBLEMS/ANOMALIES	L. (LITTO - JEDG			11		
		(1) Are all known problems/anomalies/special conditions noted	orted date?	<u>\</u>	ļ	~	<u> </u>	
		 Was applicable and available technology used to lower the 	SOL minimize the metric	× 、				
		interference affects on the sample results?	ove minimize the matrix	>				
L	<u> </u>		1×~)		ļ			1

DH	LA	nalytical, Inc.	_					
Lab	Orat of No.	ory Review Checklist (continued): Supporting	g Data					
n n n n		he: Kec west O Baniel Da	te: 4(21(66					
Revie	wer N	ame: Carlos Castro	boratory Work Order: 360 904 J	Ex.r	Nr.	2743	1 104	Inn uš
#'	A [*]	Description		Yes	NO	NA"	NK.	EK#"
<u> S1</u>		INITIAL CALIBRATION (ICAL)						
		1) Were response factors and/or relative response factors i 2) Were percent RSDs or correlation coefficient criteria	for each analyte within OC limits?	~				
ļ		3) Was the number of standards recommended in the meth	nod used for all analytes?	~			;	
	1	4) Were all points generated between the lowest and higher	est standard used to calculate the			1		
[Curve?		×				
		6) Has the initial calibration curve been verified using an	appropriate second source					
		standard?	appropriate second source	\checkmark				
S2	IO	INITIAL AND CONTINUING CALIBRATION VERIFICA	TION (ICCV AND CCV) AND					
		1) Was the CCV analyzed at the method-required frequen	cv?					
		2) Were percent differences for each analyte within the m	ethod-required QC limits?	7				1
	ļ	3) Was the ICAL curve verified for each analyte?		V			ļ	
63	<u> </u>	4) Was the absolute value of the analyte concentration in t	the inorganic CCB < MDL?	~				
33		MASS SPECTRAL TUNING						
ľ		1) Was the appropriate compound for the method used for	tuning?	V.				
51	<u> </u>	2) Were ion abundance data within the method-required Q	QC limits?	\mathbf{V}	lant non			eren er el el fait
04		1) Were IS area counts and retention times within the mot	had required OC limite?		96.			
85	OI	RAW DATA (NELAC SECTION 1 APPENDIX A CI	OSSARY & SECTION 5.12)	~	aint j			
<u> </u>		1) Were the raw data (for example chromatograms spectr	ral data) reviewed by an analyst?	66899		n e is a	aten ing	
		2) Were data associated with manual integrations flagged	on the raw data?					
S6	0	DUAL COLUMN CONFIDMATION	on the faw data:		<u> (</u>			
[1) Did dual column confirmation results meet the method.	required OC2	1000 (A) •				
S 7	0	TENTATIVELY IDENTIFIED COMPOUNDS (TICS)	*				
		1) If TICs were requested, were the mass spectra and TIC	data subject to appropriate					
		checks?				V		
58	1	INTERFERENCE CHECK SAMPLE (ICS) RESULT	S					
l		1) Were percent recoveries within method QC limits?		\mathbf{v}				
S9	Ι	SERIAL DILUTIONS, POST DIGESTION SPIKES, A	AND METHOD OF					
		1) Were percent differences recoveries and the linearity x	within the OC limits specified in	83488 	.96399 		999099	deb na hornegel (
		the method?	whilm the QC mints speethed in		\mathbf{v}			39-01
S10	OI	METHOD DETECTION LIMIT (MDI) STUDIES						
		1) Was a MDL study performed for each reported analyte	?				an ar air	asa - sa atag
S11	OI	DDOELCHENCY TECT DEDODTO	• •					
	+	1) Was the laboratory's performance accortable on the one	licable anoficier ex to etc. an					Nana An Alifiki Alifiki
		evaluation studies?	sheable pronciency tests of	\sim				
S12	OI	STANDARDS DOCUMENTATION					633	
	1	1) Are all standards used in the analyses NIST-traceable o	r obtained from other appropriate				·	
		sources?		\sim				
S13	OI	COMPOUND/ANALYTE IDENTIFICATION PROCI	EDURES			645		
		1) Are the procedures for compound/analyte identification	documented?	~				
S14	OI	DEMONSTRATION OF ANALYST COMPETENCY	(DOC)					
<u> </u>	ļ	1) Was DOC conducted consistent with NELAC Chapter :	5C?	\mathbf{v}				
S15	OI	VERIFICATION/VALIDATION DOCUMENTATION	N FOR METHODS (NELAC)					
		1) Are all the methods used to generate the data document	ed, verified, and validated, where	\mathbf{v}				
G16		applicable?						
510		1) Are the laboratory SOBs operant and on file for each me	ounes (SUPS)		1 	1	panjasij I	hadaa hara harda
j 11	ems iden	tified by the letter "R" should be included in the laboratory data machane submitted to the TCEO i	THOU PERIOTHER!	الله الله الله الله الله الله الله الله	hould b	e retained	and	
m	nade avai	able upon request for the appropriate retention period						

1	$\Omega = \alpha + \alpha + \beta + \alpha + 1 + \alpha + \beta$	A. J. J. J. J. J. J. J. J.		1 12 7.1 5
	O = Organic analyses:	1 = moreable anaivses	ISBA PENERA CREMISTRY	Synch anniteshie
			(and gamera anonna)	, and approaction

3 5

O = organic analyses; 1 = imorganic analyses (and general chemistry, when applicable). NA = Not applicable. 4 NR = Not Reviewed. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

.....

Date: 21-Apr-06

CLIENT:	TRC Environmental Corp
Project:	RRC West O'Daniel
Lab Order:	0604091
Lab Order:	0604091

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method SW8021B - Volatiles by GC Method E300 - Anions Analysis Method E310.1 - Alkalinity Analysis Method E120.1 - Specific Conductivity Method E150.1 - pH of a Water

Exception Report R1-01

The samples were received and log-in performed on 4/14/06. A total of 8 samples were received. The cooler was delivered to the wrong location and subsequently the cooler was opened. The Chain-Of-Custody (COC) was signed for at the wrong location and all information from the other location was released to the client. Some of the sample labels for sample S-MW-04-2 had the sample IDs incorrect (S-MW-02-2). Corrected the sample IDs on all the sample labels as per the client.

Exception Report R7-03

For Anions analysis performed on 4/17/06 the matrix spike duplicate recovery was slightly above control limits for Sulfate. This is flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for this analyte. No further corrective actions were taken and the sample results were not adversely affected.

For Metals analysis performed on 4/19/06 the matrix spike and matrix spike duplicate recoveries were out of control limits for all or most analytes. These are flagged accordingly. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken and the sample results were not adversely affected.

Exception Report S9-01

For Metals analysis performed on 4/19/06 the PDS recovery was out of control limits for a few analytes. These are flagged accordingly in the QC summary report. The serial dilution was within control limit for these analytes therefore no further corrective actions were required.

CASE NARRATIVE

DATA REPORTING

Sample reports include the Sample Quantitation Limit (SQL) and the Reporting Limit (RL) for each analyte. The computer system allows for reporting SQL with 2 significant figures and the RL with 3 significant figures. Because of rounding it may sometime appear that a "J" flagged result is lower than the SQL if the sample result is very near the SQL.

Date:	21-Apr-06
-------	-----------

CLIENT: Project: Lab Order:	TRC Environmental Con RRC West O'Daniel 0604091	p.	Work Order Sample Summary					
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved				
0604091-01	E-MW-06-1		4/13/20068:51:00 AM	4/14/2006				
0604091-02	S-MW-02-1		4/13/2006 11:07:00 AM	4/14/2006				
0604091-03	S-MW-02-2		4/13/2006 11:07:00 AM	4/14/2006				
0604091-04	S-MW-04-1		4/13/2006 2:10:00 PM	4/14/2006				
0604091-05	S-MW-04-2		4/13/2006 2:10:00 PM	4/14/2006				
0604091-06	S-MW-BEG11-1		4/13/2006 3:00:00 PM	4/14/2006				
0604091-07	S-MW-03-1		4/13/2006 3:25:00 PM	4/14/2006				
0604091-08	Trip Blank 4-13-06		4/13/2006	4/14/2006				

-

Sam ple ID

PREP DATES REPORT

Pre p Date

Batch ID

Lab Order:	0604091
Client:	TRC Environmental Corp.

RRC West O'Daniel **Project:**

Client Sample ID

Collection Date

0604091-01A	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947
0604091-01B	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	E150.1	рН	4/14/2006 2:01:00 PM	R25851
0604091-01C	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
0604091-01D	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	E310.1	Alkalinity	4/17/2006 10:53:00 A	R25867
0604091-01E	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
	E-MW-06-1	4/13/2006 8:51:00 AM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604091-02A	S-MW-02-1	1/13/2006 11:07:00 AN	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947
0604091-02B	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	E150.1	рН	4/14/2006 2:02:00 PM	R25851
0604091-02C	S-MW-02-1	1/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-02-1	1/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
0604091-02D	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	E310.1	Alkalinity	4/17/2006 11:02:00 A	R25867
0604091-02E	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-02-1	4/13/2006 11:07:00 AN	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604091-03A	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947
0604091-03B	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	E150.1	рН	4/14/2006 2:03:00 PM	R25851
0604091-03C	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
0604091-03D	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	E310.1	Alkalinity	4/17/2006 11:11:00 A	R25867
0604091-03E	S-MW-02-2	4/13/2006 11:07:00 AN	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
Page 1 o	of 3						

Test Number

Matrix

Test Name

_

Lab Order: 0604091

Client: TRC Environmental Corp.

Project: RRC West O'Daniel

PREP DATES REPORT

Sam ple ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Pre p Date	Batch ID
0604091-03E	S-MW-02-2	↓/13/2006 11:07:00 AN	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-02-2	\$/13/2006 11:07:00 AN	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-02-2	\$/13/2006 11:07:00 AN	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604091-04A	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947
0604091-04B	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	E150.1	pH	4/14/2006 2:04:00 PM	R25851
0604091-04C	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
0604091-04D	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	E310.1	Alkalinity	4/17/2006 11:18:00 A	R25867
0604091-04E	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-04-1	4/13/2006 2:10:00 PM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604091-05A	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947
0604091-05B	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	E150.1	pH	4/14/2006 2:05:00 PM	R25851
0604091-05C	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
0604091-05D	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	E310.1	Alkalinity	4/17/2006 11:24:00 A	R25867
0604091-05E	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
	S-MW-04-2	4/13/2006 2:10:00 PM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604091-06A	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947
0604091-06B	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E150.1	pH	4/14/2006 2:07:00 PM	R25851
0604091-06C	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931

Page 2 of 3

Lab Order:	0604091										
Client: Project:	TRC Environmental Corp. RRC West O'Daniel										
Sample ID	Client Sample ID	Collection Date	Matrix	Test Numl							
0604091-06D	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E310.1							
0604091-06E	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E300							
	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E300							
	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E300							

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name Pre p Date		Batch ID
0604091-06D	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E310.1	Alkalinity	4/17/2006 11:36:00 A	R25867
0604091-06E	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
	S-MW-BEG11-1	4/13/2006 3:00:00 PM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604091-07A	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947
0604091-07B	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	E150.1	pH	4/14/2006 2:08:00 PM	R25851
0604091-07C	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/18/2006 9:27:49 AM	21931
0604091-07D	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	E310.1	Alkalinity	4/17/2006 11:41:00 A	R25867
0604091-07E	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	E300	Anions by IC method - Water	4/14/2006	R25868
	S-MW-03-1	4/13/2006 3:25:00 PM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604091-08A	Trip Blank 4-13-06	4/13/2006	Aqueous	SW 5030B	Purge and Trap Water GC	4/19/2006 10:39:42 A	21947

Lab Order:0604091Client:TRC Environmental Corp.

Project: RRC West O'Daniel

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0604091-01A	E-MW-06-1	Aqueous	SW8021B	Volatile Organics by GC	21947	20	4/19/2006 5:42:57 PM	GC9_060419A
0604091-01B	E-MW-06-1	Aqueous	E150.1	рН	R25851	1	4/14/2006 2:01:00 PM	TITRAT OR_060414 B
0604091-01C	E-MW-06-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	500	4/19/2006 1:48:00 PM	ICP-MS2_060419A
	E-MW-06-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	2500	4/19/2006 2:06:00 PM	ICP-MS2_060419A
	E-MW-06-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	1	4/19/2006 3:53:00 PM	ICP-MS2_060419A
0604091-01D	E-MW-06-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 10:53:00 AM	TITRAT OR_060417 B
0604091-01E	E-MW-06-1	Aqueous	E300	Anions by IC method - Water	R25868	20	4/14/2006 6:51:50 PM	IC_060414A
	E-MW-06-1	Aqueous	E300	Anions by IC method - Water	R25875	1000	4/17/2006 12:12:46 PM	IC_060417A
	E-MW-06-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604091-02A	S-MW-02-1	Aqueous	SW8021B	Volatile Organics by GC	21947	1	4/19/2006 1:29:50 PM	GC9_060419A
0604091-02B	S-MW-02-1	Aqueous	E150.1	рН	R25851	1	4/14/2006 2:02:00 PM	TITRAT OR_060414 B
0604091-02C	S-MW-02-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	500	4/19/2006 1:57:00 PM	ICP-MS2_060419A
	S-MW-02-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	2500	4/19/2006 2:02:00 PM	ICP-MS2_060419A
	S-MW-02-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	10	4/19/2006 3:39:00 PM	ICP-MS2_060419A
	S-MW-02-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	1	4/19/2006 3:57:00 PM	ICP-MS2_060419A
0604091-02D	S-MW-02-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 11:02:00 AM	TITRAT OR_060417 B
0604091-02E	S-MW-02-1	Aqueous	E300	Anions by IC method - Water	R25875	20	4/17/2006 2:41:43 PM	IC_060417A
	S-MW-02-1	Aqueous	E300	Anions by IC method - Water	R25875	1000	4/17/2006 12:26:59 PM	IC_060417A
	S-MW-02-1	Aqueous	E300	Anions by IC method - Water	R25868	10	4/14/2006 5:21:42 PM	IC_060414A
	S-MW-02-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604091-03A	S-MW-02-2	Aqueous	SW8021B	Volatile Organics by GC	21947	1	4/19/2006 1:48:02 PM	GC9_060419A
0604091-03B	S-MW-02-2	Aqueous	E150.1	рН	R25851	1	4/14/2006 2:03:00 PM	TITRAT OR_060414 B
0604091-03C	S-MW-02-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	500	4/19/2006 2:11:00 PM	ICP-MS2_060419A
	S-MW-02-2	Aqueous	SW6020	Trace Metals: ICP -MS - Water	21931	2500	4/19/2006 2:16:00 PM	ICP-MS2_060419A
	S-MW-02-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	10	4/19/2006 3:45:00 PM	ICP-MS2_060419A

Lab Order:	0604091
Client:	TRC Environmental Corp.
Project:	RRC West O'Daniel

ANALYTICAL DATES REPORT

Sam ple ID	Client Sample ID	Matrix	Test Num ber	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0604091-03C	S-MW-02-2	Aqueous	SW6020	Trace Metals: ICP -MS - Water	21931	1	4/19/2006 4:00:00 PM	ICP-MS2_060419A
0604091-03D	S-MW-02-2	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 11:11:00 AM	TITRAT OR_060417 B
0604091-03E	S-MW-02-2	Aqueous	E300	Anions by IC method - Water	R25875	20	4/17/2006 2:55:56 PM	IC_060417A
	S-MW-02-2	Aqueous	E300	Anions by IC method - Water	R25868	10	4/14/2006 5:35:54 PM	IC_060414A
	S-MW-02-2	Aqueous	E300	Anions by IC method - Water	R25875	1000	4/17/2006 12:41:11 PM	IC_060417A
	S-MW-02-2	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604091-04A	S-MW-04-1	Aqueous	SW8021B	Volatile Organics by GC	21947	1	4/19/2006 2:24:35 PM	GC9_060419A
0604091-04B	S-MW-04-1	Aqueous	E150.1	pH	R25851	1	4/14/2006 2:04:00 PM	TITRAT OR_060414 B
0604091-04C	S-MW-04-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	1	4/20/2006 11:07:00 AM	ICP-MS2_060420A
	S-MW-04-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	2500	4/19/2006 2:36:00 PM	ICP-MS2_060419A
	S-MW-04-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	500	4/19/2006 2:48:00 PM	ICP-MS2_060419A
	S-MW-04-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	1	4/19/2006 4:04:00 PM	ICP-MS2_060419A
0604091-04D	S-MW-04-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 11:18:00 AM	TITRAT OR_060417 B
0604091-04E	S-MW-04-1	Aqueous	E300	Anions by IC method - Water	R25868	20	4/14/2006 5:50:07 PM	IC_060414A
	S-MW-04-1	Aqueous	E300	Anions by IC method - Water	R25875	1000	4/17/2006 12:55:23 PM	IC_060417A
	S-MW-04-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604091-05A	S-MW-04-2	Aqueous	SW8021B	Volatile Organics by GC	21947	1	4/19/2006 2:42:53 PM	GC9_060419A
0604091-05B	S-MW-04-2	Aqueous	E150.1	pH	R25851	1	4/14/2006 2:05:00 PM	TITRAT OR_060414 B
0604091-05C	S-MW-04-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	2500	4/19/2006 1:52:00 PM	ICP-MS2_060419A
	S-MW-04-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	1	4/19/2006 4:08:00 PM	ICP-MS2_060419A
	S-MW-04-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	500	4/19/2006 1:38:00 PM	ICP-MS2_060419A
	S-MW-04-2	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21931	1	4/18/2006 4:31:00 PM	ICP-MS2_060418A
0604091-05D	S-MW-04-2	Aque ous	E310.1	Alkalinity	R25867	1	4/17/2006 11:24:00 AM	TITRAT OR_060417 B
0604091-05E	S-MW-04-2	Aqueous	E300	Anions by IC method - Water	R25868	20	4/14/2006 6:21:44 PM	IC_060414A
	S-MW-04-2	Aqueous	E300	Anions by IC method - Water	R25875	1000	4/17/2006 1:09:34 PM	IC_060417A

Page 2 of 3

Run ID

WC_060417B GC9_060419A TITRAT OR_060414 В ICP-MS2_060419A $ICP\text{-}MS2_060420\,A$ ICP-MS2_060419A TITRAT OR_060417 В IC_060414A IC_060417A IC_060417A WC_060417B GC9_060419A TITRAT OR_060414 В ICP-MS2_060419A ICP-MS2_060420A ICP-MS2_060419A ICP-MS2_060420A TITRAT OR_060417 В IC_060414A IC_060414A IC_060417A IC_060417A WC_060417B

GC9_060419A

Lab Order: Client: Project:	0604091 TRC Environmen RRC West O'Dan	tal Corp . iel			ANALY	YTICA	AL DATES RI	EPORT
Sam ple ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run I
0604091-05E	S-MW-04-2	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_0604
0604091-06A	S-MW-BEG11-1	Aqueous	SW8021B	Volatile Organics by GC	21947	1	4/19/2006 3:01:11 PM	GC9_0604
0604091-06B	S-MW-BEG11-1	Aqueous	E150.1	рН	R25851	1	4/14/2006 2:07:00 PM	TITRAT OR_ B
0604091-06C	S-MW-BEG11-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	10	4/19/2006 3:49:00 PM	ICP-MS2_06
	S-MW-BEG11-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	1	4/20/2006 11:10:00 AM	ICP-MS2_06
	S-MW-BEG11-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	500	4/19/2006 2:52:00 PM	ICP-MS2_06
0604091-06D	S-MW-BEG11-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 11:36:00 AM	TITRAT OR_ B
0604091-06E	S-MW-BEG11-1	Aqueous	E300	Anions by IC method - Water	R25868	1	4/14/2006 4:08:14 PM	IC_0604
	S-MW-BEG11-1	Aqueous	E300	Anions by IC method - Water	R25875	1000	4/17/2006 1:23:46 PM	IC_0604
	S-MW-BEG11-1	Aqueous	E300	Anions by IC method - Water	R25875	20	4/17/2006 3:10:08 PM	IC_0604
	S-MW-BEG11-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_0604
0604091-07A	S-MW-03-1	Aqueous	SW8021B	Volatile Organics by GC	21947	1	4/19/2006 3:19:31 PM	GC9_0604
0604091-07B	S-MW-03-1	Aqueous	E150.1	рН	R25851	1	4/14/2006 2:08:00 PM	TITRAT OR_ B
0604091-07C	S-MW-03-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	2500	4/19/2006 2:44:00 PM	ICP-MS2_06
	S-MW-03-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	5	4/20/2006 11:20:00 AM	ICP-MS2_06
	S-MW-03-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	500	4/19/2006 2:56:00 PM	ICP-MS2_06
	S-MW-03-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21931	1	4/20/2006 11:14:00 AM	ICP-MS2_06
0604091-07D	S-MW-03-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 11:41:00 AM	TITRAT OR_ B
0604091-07E	S-MW-03-1	Aqueous	E300	Anions by IC method - Water	R25868	1	4/14/2006 4:22:26 PM	IC_0604
	S-MW-03-1	Aqueous	E300	Anions by IC method - Water	R25868	10	4/14/2006 6:35:55 PM	IC_0604
	S-MW-03-1	Aqueous	E300	Anions by IC method - Water	R25875	1000	4/17/2006 1:37:59 PM	IC_0604
	S-MW-03-1	Aqueous	E300	Anions by IC method - Water	R25875	20	4/17/2006 3:24:21 PM	IC_0604
	S-MW-03-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_0604
0604091-08A	Trip Blank 4-13-06	Aqueous	SW8021B	Volatile Organics by GC	21947	1	4/19/2006 3:37:51 PM	GC9 0604

DHL Analytical					D	ate:	21-Apr-06		
CLIENT:	TRC Environmental C	Corp.			Client	Sample ID:	E-MW	-06-1	
Project:	RRC West O'Daniel					Lab ID:	060409	1-01	
Project No:	46513-0000-00002				Coll	ection Date:	4/13/20	006 8:51:00 AM	
Lab Order:	0604091					Matrix:	AQUE	OUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILEORG	GANICS BY GC		SW 80)21 B				Analyst: KC	
Benzene		494	16.0	40.0		µg/L	20	4/19/2006 5:42:57 PM	
Ethylbenzene		ND	40.0	120		µg/L	20	4/19/2006 5:42:57 PM	
Toluene		ND	40.0	120		µg/L	20	4/19/2006 5:42:57 PM	
Xylenes, Total		ND	60.0	180		µg/L	20	4/19/2006 5:42:57 PM	
Surr: a,a,a-T	rifluorotoluene	109	0	87-113		%REC	20	4/19/2006 5:42:57 PM	
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		141	3.00	10.0		µg/L	1	4/19/2006 3:53:00 PM	
Calcium		2670000	50000	50000		µg/L	500	4/19/2006 1:48:00 PM	
Iron		192	50.0	100		µg/L	1	4/19/2006 3:53:00 PM	
Magnesium		757000	50000	50000		µg/L	500	4/19/2006 1:48:00 PM	
Potass ium		313000	50000	50000		µg/L	500	4/19/2006 1:48:00 PM	
Sodium		18800000	250000	250000		µg/L	2500	4/19/2006 2:06:00 PM	
ANIONS BY IC I	METHOD - WATER		E30	00				Analyst: DEW	
Bromide		85.0	6.00	20.0		mg/L	20	4/14/2006 6:51:50 PM	
Chloride		32600	300	1000		mg/L	1000	4/17/2006 12:12:46 PM	
Nitrate-N		6.51	2.00	10.0	J	mg/L	20	4/14/2006 6:51:50 PM	
Sulfate		3310	1000	3000		mg/L	1000	4/17/2006 12:12:46 PM	
ALKALINITY			E31	0.1				Analyst: JBC	
A Ikalin ity, Bic ar	bonate (As CaCO3)	260	10.0	10.0		mg/L	1	4/17/2006 10:53:00 A M	
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 10:53:00 A M	
A Ikalin ity, Hy dro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 10:53:00 A M	
A lkalinity, Total	(As CaCO3)	260	10.0	10.0		mg/L	1	4/17/2006 10:53:00 A M	
РН			E1 50	0.1				Analyst: JBC	
рН		6.42	0	0		pH Units	1	4/14/2006 2:01:00 PM	
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analyst: JBC	
Specific Condu	ictance	98300	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery out side control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern
		P P P P P P P P P P P P P P P P P P P

DHL Analytical					D	ate:	21-Apr-06		
CLIENT: Project: Project No: Lab Order:	TRC Environmental Co RRC West O'Daniel 46513-0000-00002 0604091	orp.			Client Coll	t Sample ID: Lab ID: ection Date: Matrix:	S-MW 060409 4/13/20 A QUE	-02-1 1-02 006 11:07:00 AM OUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILEORO	GANICS BY GC		SW 80	021 B				Analyst: KC	
Benzene		1.29	0.800	2.00	J	µg/L	1	4/19/2006 1:29:50 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/19/2006 1:29:50 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/19/2006 1:29:50 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/19/2006 1:29:50 PM	
Surr: a,a,a-T	rifluorotoluene	110	0	87-113		%REC	1	4/19/2006 1:29:50 PM	
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		95.9	3.00	10.0		µg/L	1	4/19/2006 3:57:00 PM	
Calcium		3980000	50000	50000		µg/L	500	4/19/2006 1:57:00 PM	
Iron		1970	50.0	100		µg/L	1	4/19/2006 3:57:00 PM	
Magnesium		1210000	50000	50000		µg/L	500	4/19/2006 1:57:00 PM	
Potassium		30700	1000	1000		µg/L	10	4/19/2006 3:39:00 PM	
Sodium		9410000	250000	250000		µg/L	2500	4/19/2006 2:02:00 PM	
ANIONS BY IC I	METHOD - WATER		E30	00				Analyst: DEW	
Bromide		56.5	3.00	10.0		mg/L	10	4/14/2006 5:21:42 PM	
Chloride		23700	300	1000		mg/L	1000	4/17/2006 12:26:59 PM	
Nitrate-N		ND	1.00	5.00		mg/L	10	4/14/2006 5:21:42 PM	
Sulfate		2130	20.0	60.0		mg/L	20	4/17/2006 2:41:43 PM	
ALKALINITY			E310	0.1				Analyst: JBC	
A lkalinity, Bicar	bonate (As CaCO3)	259	10.0	10.0		mg/L	1	4/17/2006 11:02:00 A M	
A Ikalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:02:00 A M	
A Ikalinity, Hydro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:02:00 A M	
A Ikalinity, Total	(As CaCO3)	259	10.0	10.0		mg/L	1	4/17/2006 11:02:00 A M	
PH			E1 50	0.1				Analyst: JBC	
рН		6.45	0	0		pH Units	1	4/14/2006 2:02:00 PM	
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analyst: JBC	
Specific Condu	ctance	73100	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moist ure and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern

DHL Analytical						Date:		21-Apr-06	
CLIENT:	TRC Environmental Co	orp.			Client	Sample ID:	S-MW	-02-2	
Project:	RRC West O'Daniel					Lab ID:	060409	1-03	
Project No:	46513-0000-00002				Coll	ection Date:	4/13/20	006 11:07:00 AM	
Lab Order:	0604091					Matrix:	A QUE	OUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILEOR	GANICS BY GC		SW 80	21 B				Analyst: KC	
Benzene		ND	0.800	2.00		µg/L	1	4/19/2006 1:48:02 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/19/2006 1:48:02 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/19/2006 1:48:02 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/19/2006 1:48:02 PM	
Surr: a,a,a-T	rifluorotoluene	112	0	87-113		%REC	1	4/19/2006 1:48:02 PM	
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		105	3.00	10.0		µg/L	1	4/19/2006 4:00:00 PM	
Calcium		3990000	50000	50000		µg/L	500	4/19/2006 2:11:00 PM	
Iron		5480	50.0	100		µg/L	1	4/19/2006 4:00:00 PM	
Magnesium		1200000	50000	50000		µg/L	500	4/19/2006 2:11:00 PM	
Potassium		30900	1000	1000		µg/L	10	4/19/2006 3:45:00 PM	
Sodium		9440000	250000	250000		µg/L	2500	4/19/2006 2:16:00 PM	
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: DEW	
Bromide		56.7	3.00	10.0		mg/L	10	4/14/2006 5:35:54 PM	
Chloride		24300	300	1000		mg/L	1000	4/17/2006 12:41:11 PM	
Nitrate-N		ND	1.00	5.00		mg/L	10	4/14/2006 5:35:54 PM	
Sulfate		2140	20.0	60.0		mg/L	20	4/17/2006 2:55:56 PM	
ALKALINITY			E31	0.1				Analyst: JBC	
A lkalinity, Bicar	bonate (As CaCO3)	259	10.0	10.0		mg/L	1	4/17/2006 11:11:00 A M	
Alkalinity, Carb	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:11:00 A M	
A lkalin ity, Hy dr	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:11:00 A M	
A lkalinity, Total	(As CaCO3)	259	10.0	10.0		mg/L	1	4/17/2006 11:11:00 A M	
PH			E1 5	0.1				Analyst: JBC	
рН		6.47	0	0		pH Units	1	4/14/2006 2:03:00 PM	
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analyst: JBC	
Specific Condu	ictance	74000	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

Q ualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern

DHL Analytical					D	ate:	21-Apr-06		
CLIENT:	TRC Environmental C	Corp.			Client	Sample ID:	S-MW	-04-1	
Project:	RRC West O'Daniel					Lab ID:	060409	1-04	
Project No:	46513-0000-00002				Coll	ection Date:	4/13/20	006 2:10:00 PM	
Lab Order:	0604091					Matrix:	A QUE	OUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILEORG	GANICS BY GC		SW 80	21 B				Analyst: KC	
Benzene		8.30	0.800	2.00		µg/L	1	4/19/2006 2:24:35 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/19/2006 2:24:35 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/19/2006 2:24:35 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/19/2006 2:24:35 PM	
Surr: a,a,a-T	rifluorotoluene	110	0	87-113		%REC	1	4/19/2006 2:24:35 PM	
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		223	3.00	10.0		µg/L	1	4/20/2006 11:07:00 A M	
Calcium		3230000	50000	50000		µg/L	500	4/19/2006 2:48:00 PM	
Iron		1750	50.0	100		µg/L	1	4/19/2006 4:04:00 PM	
Magnesium		728000	50000	50000		µg/L	500	4/19/2006 2:48:00 PM	
Potass ium		207000	50000	50000		µg/L	500	4/19/2006 2:48:00 PM	
Sodium		14200000	250000	250000		µg/L	2500	4/19/2006 2:36:00 PM	
ANIONS BY IC I	METHOD - WATER		E30	00				Analyst: DEW	
Bromide		69.2	6.00	20.0		mg/L	20	4/14/2006 5:50:07 PM	
Chloride		29600	300	1000		mg/L	1000	4/17/2006 12:55:23 PM	
Nitrate-N		29.4	2.00	10.0		mg/L	20	4/14/2006 5:50:07 PM	
Sulfate		2780	20.0	60.0		mg/L	20	4/14/2006 5:50:07 PM	
ALKALINITY			E310	0.1				Analyst: JBC	
A Ikalin ity, Bic ar	bonate (As CaCO3)	180	10.0	10.0		mg/L	1	4/17/2006 11:18:00 A M	
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:18:00 A M	
A Ikalin ity, Hy dro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:18:00 A M	
A lkalinity, Total	(As CaCO3)	180	10.0	10.0		mg/L	1	4/17/2006 11:18:00 A M	
PH			E1 50	0.1				Analyst: JBC	
рН		6.67	0	0		pH Units	1	4/14/2006 2:04:00 PM	
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analyst: JBC	
Specific Condu	ictance	90500	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

_	Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
		J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
		B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
		DF- Dilution Factor	SQL - Sample Quantitation Limit
		See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern
			4

DHL Anal	ytical				Date:		21-Apr-00		
CLIENT:	TRC Environmental C	Corp.			Client	Sample ID:	S-MW	-04-2	
Project:	RRC West O'Daniel					Lab ID:	060409	1-05	
Project No:	46513-0000-00002				Colle	ction Date:	4/13/20	006 2:10:00 PM	
Lab Order:	0604091					Matrix:	A QUE	OUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORG	GANICS BY GC		SW 80)21 B				Analyst: KC	
Benzene		6.92	0.800	2.00		µg/L	1	4/19/2006 2:42:53 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/19/2006 2:42:53 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/19/2006 2:42:53 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/19/2006 2:42:53 PM	
Surr: a,a,a-T	rifluorotoluene	104	0	87-113		%REC	1	4/19/2006 2:42:53 PM	
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		224	3.00	10.0		µg/L	1	4/18/2006 4:31:00 PM	
Calcium		3250000	50000	50000		µg/L	500	4/19/2006 1:38:00 PM	
Iron		1890	50.0	100		µg/L	1	4/19/2006 4:08:00 PM	
Magnesium		756000	50000	50000		µg/L	500	4/19/2006 1:38:00 PM	
Potass ium		214000	50000	50000		µg/L	500	4/19/2006 1:38:00 PM	
Sodium		16000000	250000	250000		µg/L	2500	4/19/2006 1:52:00 PM	
ANIONS BY IC I	METHOD - WATER		E30	00				Analyst: DEW	
Bromide		74.9	6.00	20.0		mg/L	20	4/14/2006 6:21:44 PM	
Chloride		29600	300	1000		mg/L	1000	4/17/2006 1:09:34 PM	
Nitrate-N		33.7	2.00	10.0		mg/L	20	4/14/2006 6:21:44 PM	
Sulfate		2850	20.0	60.0		mg/L	20	4/14/2006 6:21:44 PM	
ALKALINITY			E310	0.1				Analyst: JBC	
Alkalinity, Bicar	bonate (As CaCO3)	181	10.0	10.0		mg/L	1	4/17/2006 11:24:00 A M	
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:24:00 A M	
A Ikalin ity, Hydro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:24:00 A M	
A lkalinity, Total	(As CaCO3)	181	10.0	10.0		mg/L	1	4/17/2006 11:24:00 A M	
РН			E1 50	0.1				Analyst: JBC	
рН		6.65	0	0		pH Units	1	4/14/2006 2:05:00 PM	
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analvst: JBC	
Specific Condu	ctance	90800	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

Q ualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
J - Analyte detected between SQL and RL		C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moist ure and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern
		μ

DHL Analytical	Date:		21-Apr-06				
CLIENT: TRC Environmental C Project: RRC West O'Daniel	Corp.			Client	Sample ID: Lab ID:	S-MW 060409	-BEG11-1 1-06
Project No: 46513-0000-00002				Coll	ection Date:	4/13/20	06 3:00:00 PM
Lab Order: 0604091				0011	Matrix:	AQUE	OUS
Analyses	Result	SQL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC		SW 80	21 B				Analyst: KC
Benzene	ND	0.800	2.00		µg/L	1	4/19/2006 3:01:11 PM
Ethylbenzene	ND	2.00	6.00		µg/L	1	4/19/2006 3:01:11 PM
Toluene	ND	2.00	6.00		µg/L	1	4/19/2006 3:01:11 PM
Xylenes, Total	ND	3.00	9.00		µg/L	1	4/19/2006 3:01:11 PM
Surr: a,a,a-Trifluorotoluene	111	0	87-113		%REC	1	4/19/2006 3:01:11 PM
TRACE METALS: ICP-MS - WATER		SW 60	020				Analyst: AJR
Barium	96.0	3.00	10.0		µg/L	1	4/20/2006 11:10:00 A M
Calcium	2750000	50000	50000		µg/L	500	4/19/2006 2:52:00 PM
Iron	98.4	50.0	100	J	µg/L	1	4/20/2006 11:10:00 A M
Magnesium	632000	50000	50000		µg/L	500	4/19/2006 2:52:00 PM
Potassium	20300	1000	1000		µg/L	10	4/19/2006 3:49:00 PM
Sodium	2650000	50000	50000		µg/L	500	4/19/2006 2:52:00 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: DEW
Bromide	25.5	0.300	1.00		mg/L	1	4/14/2006 4:08:14 PM
Chloride	10400	300	1000		mg/L	1000	4/17/2006 1:23:46 PM
Nitrate-N	3.92	0.100	0.500		mg/L	1	4/14/2006 4:08:14 PM
Sulfate	1080	20.0	60.0		mg/L	20	4/17/2006 3:10:08 PM
ALKALINITY		E310).1				Analyst: JBC
Alkalinity, Bicarbonate (As CaCO3)	112	10.0	10.0		mg/L	1	4/17/2006 11:36:00 A M
Alkalinity, Carbonate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:36:00 A M
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:36:00 A M
Alkalinity, Total (As CaCO3)	112	10.0	10.0		mg/L	1	4/17/2006 11:36:00 A M
PH		E1 50).1				Analyst: JBC
рН	6.78	0	0		pH Units	1	4/14/2006 2:07:00 PM
SPECIFIC CONDUCTANCE		E1 20).1				Analyst: JBC
Specific Conductance	32600	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern
		4

DHL Ana	lytical				Date		2 I -Ap 1	r-00
CLIENT:	TRC Environmental Co	orp.			Client Sa	mple ID:	S-MW	-03-1
Project:	RRC West O'Daniel					Lab ID:	060409	1-07
Project No:	46513-0000-00002				Collecti	on Date:	4/13/20	006 3:25:00 PM
Lab Order:	0604091					Matrix:	A QUE	OUS
Analyses		Result	SQL	RL	Qual	U nits	DF	Date Analyzed
VOLATILE ORG	GANICS BY GC		SW 80)21 B				Analyst: KC
Benzene		ND	0.800	2.00	μ	g/L	1	4/19/2006 3:19:31 PM
Ethylbenzene		ND	2.00	6.00	μ	g/L	1	4/19/2006 3:19:31 PM
Toluene		ND	2.00	6.00	μ	g/L	1	4/19/2006 3:19:31 PM
Xylenes, Total		ND	3.00	9.00	μ	g/L	1	4/19/2006 3:19:31 PM
Surr: a,a,a-T	rifluorotoluene	109	0	87-113	%	REC	1	4/19/2006 3:19:31 PM
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analyst: AJR
Barium		108	3.00	10.0	μ	g/L	1	4/20/2006 11:14:00 A M
Calcium		3780000	50000	50000	μ	g/L	500	4/19/2006 2:56:00 PM
Iron		550	50.0	100	μ	g/L	1	4/20/2006 11:14:00 A M
Magnesium		1080000	50000	50000	μ	g/L	500	4/19/2006 2:56:00 PM
Potass ium		12300	500	500	μ	g/L	5	4/20/2006 11:20:00 A M
Sodium		9240000	250000	250000	μ	g/L	2500	4/19/2006 2:44:00 PM
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: DEW
Bromide		56.1	3.00	10.0	m	g/L	10	4/14/2006 6:35:55 PM
Chloride		22300	300	1000	rr	g/L	1000	4/17/2006 1:37:59 PM
Nitrate-N		1.24	0.100	0.500	rr	g/L	1	4/14/2006 4:22:26 PM
Sulfate		1930	20.0	60.0	r	ıg/L	20	4/17/2006 3:24:21 PM
ALKALINITY			E31	0.1				Analyst: JBC
A Ikalin ity, Bic ar	bonate (As CaCO3)	123	10.0	10.0	rr	g/L	1	4/17/2006 11:41:00 A M
Alkalinity, Carb	onate (As CaCO3)	ND	10.0	10.0	rr	g/L	1	4/17/2006 11:41:00 A M
A lkalin ity, Hydr	oxide (As CaCO3)	ND	10.0	10.0	rr	g/L	1	4/17/2006 11:41:00 A M
A lkalinity, Total	(As CaCO3)	123	10.0	10.0	rr	g/L	1	4/17/2006 11:41:00 A M
РН			E1 5	0.1				Analyst: JBC
рН		6.61	0	0	р	H Units	1	4/14/2006 2:08:00 PM
SPECIFIC CON	DUCTANCE		E1 2	0.1				Analvst: JBC
Specific Condu	ictance	67000	100	100	μ	mhos/cm	10	4/17/2006 12:00:00 PM

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern
		P

CLIENT:	TRC Environmental Corp.				Client	Sample II): Trip B	lank 4-13-06	
Project:	RRC West O'Daniel					Lab II): 060409	91-08	
Project No:	46513-0000-00002		Collection Date: 4/13/2006						
Lab Order: 0604091						Matrix	K: AQUE	EOUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILEOR	GANICS BY GC		SW 80	21 B				Analyst: KC	
Benzene		ND	0.800	2.00		µg/L	1	4/19/2006 3:37:51 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/19/2006 3:37:51 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/19/2006 3:37:51 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/19/2006 3:37:51 PM	
Surr: a,a,a-T	Frifluorotoluene	111	0	87-113		%REC	1	4/19/2006 3:37:51 PM	

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery out
	J - Analyte detected between SQL and RL	C - Sample Result or Q
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit
	DF- Dilution Factor	SQL - Sample Quantita
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not C

side control limits C discussed in Case Narrative

(MQL adjusted for moist ure and sample size)

ation Limit

Gas or Diesel Range Pattern

Page 8 of 8

CLIENT: TRC Environmental Corp. Work Order: 0604091

ANALYTICAL QC SUMMARY REPORT

Project: R	RC West O'Danie	1				RunI	D: (GC9_06()419A		
Sample ID LCS-2194	7 Batch II): 21947		TestNo	: SW	8021 B		Units:	μg/L		
SampType: LCS	Run ID:	GC9_()60419A	Analys	is Date: 4/19	9/2006 11:1	3:11 A	Prep Date	e: 4/19/2	2006	
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	% RPD R	PDLimit	Qual
Benzene		51.5	2.00	50.00	0	103	81	125			
Toluene		51.4	6.00	50.00	0	103	84	123			
Eth ylbenz ene		50.5	6.00	50.00	0	101	83	119			
Xylenes, Total		154	9.00	150.0	0	103	81	117			
Surr: a,a,a-Trifluorot	oluene	221		200.0		110	87	113			
Sample ID MB-21947	Batch I): 21947		TestNo	: SW	8021 B		Units:	μg/L		
SampType: MBLK	Run ID:	GC9_(060419A	Analys	sis Date: 4/19	9/2006 11:3	1:21 A	Prep Date	e: 4/19/2	2006	
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	% RPD R	PDLimit	Qual
Benzene		ND	2.00								
Toluene		ND	6.00								
Eth ylbenz ene		ND	6.00								
Xylenes, Total		ND	9.00								
Surr: a,a,a-Trifluorot	oluene	214		200.0		107	87	113			
Sample ID 0604091-0	5AMS Batch I): 21947		TestNo	: SW	8021 B		Units:	μg/L		
SampType: MS	Run ID:	GC9_(060419A	Analys	is Date: 4/19	9/2006 12:1	7:00 P	Prep Date	e: 4/19/2	2006	
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	% RPD R	PDLimit	Qual
Benzene		63.2	2.00	50.00	6.921	113	81	125			
Toluene		54.1	6.00	50.00	0	108	84	123			
Eth ylbenz ene		53.3	6.00	50.00	0	107	83	119			
Xylenes, Total		164	9.00	150.0	0	109	81	117			
Surr: a,a,a-Trifluorot	oluene	220		200.0		110	87	113			
Sample ID 0604091-0	5AM SD Batch I	D: 21947		TestNo	: SW	8021 B		Units:	µg/L		
SampType: MSD	Run ID:	GC9_(060419A	Analys	is Date: 4/19	9/2006 12:3	5:10 P	Prep Date	e: 4/19/2	2006	
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Lin	nit HighLimit	% RPD R	PDLimit	Qual
Benzene		63.8	2.00	50.00	6.921	114	81	125	0.949	20	
Toluene		55.2	6.00	50.00	0	110	84	123	2.11	20	
Eth ylbenz ene		54.3	6.00	50.00	0	109	83	119	1.87	20	
Xylenes, Total		167	9.00	150.0	0	111	81	117	1.99	20	
Surr: a,a,a-Trifluorot	oluene	220		200.0		110	87	113	0	0	

Qualifiers:

- В Analyte detected in the associated Method Blank J Analyte detected between MDL and RL
- DF **Dilution Factor**

MDL Method Dection Limit

Page 1 of 18

- ND Not Detected at the Method Detection Limit
- RL Report ing Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Work Order: RRC West O'Daniel **Project:**

0604091

GC9_060419A **RunID:**

Sample ID ICV-060419	Batch ID:	R2591	3	TestNo	D: SW8	8021 B		Units:	µg/l	L	
SampType: ICV	Run ID:	GC9_0	60419A	Analy	sis Date: 4/19	/2006 10:54	4:59 A	Prep Date	e:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Benzene		97.4	2.00	100.0	0	97.4	85	115			
Toluene		99.8	6.00	100.0	0	99.8	85	115			
Ethylbenzene		100	6.00	100.0	0	100	85	115			
Xylenes, Total		303	9.00	300.0	0	101	85	115			
Surr: a,a,a-Trifluorotoluen	9	216		200.0		108	87	113			
Sample ID CCV1-060419	Batch ID:	R2591	3	TestNo	D: SW8	8021 B		Units:	µg/l	L	
SampType: CCV	Run ID:	GC9_0	60419A	Analy	sis Date: 4/19	/2006 2:06:	18 PM	Prep Date	e:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Benzene		54.2	2.00	50.00	0	108	85	115			
Toluene		53.4	6.00	50.00	0	107	85	115			
Eth ylbenz ene		52.6	6.00	50.00	0	105	85	115			
Xylenes, Total		160	9.00	150.0	0	107	85	115			
Surr: a,a,a-Trifluorotoluen	9	216		200.0		108	87	113			
Sample ID CCV2-060419	Batch ID:	R2591	3	TestNo	D: SW8	3021 B		Units:	µg/l	L	
SampType: CCV	Run ID:	GC9_0	60419A	Analy	sis Date: 4/19	/2006 6:01:	05 PM	Prep Date	e:		
Analyte		Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Benzene		53.8	2.00	50.00	0	108	85	115			
Toluene		53.7	6.00	50.00	0	107	85	115			
Ethylbenzene		52.5	6.00	50.00	0	105	85	115			
Xylenes, Total		162	9.00	150.0	0	108	85	115			
Surr: a,a,a-Trifluorotoluen	е	218		200.0		109	87	113			

Qualifiers:

- В Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Report ing Limit

MDL Method Dection Limit

RPD outside accepted control limits

Page 2 of 18

R S Spike Recovery outside control limits

CLIENT: Work Order: Project:	TRC Envir 0604091 RRC West	onmental (O'Daniel	Corp.		AN	ALYTI	CAL (RunII	QC SU	ММА Ср-м S2	RY R 2_06041	EPO 18A	RT
Sample ID 060 SampType: SD	4091-05C SD	Batch ID: Run ID:	21931 ICP-MS2	_060418A	TestNo: Analysis	SW60 Date: 4/18/2)20 2006 4:35:	00 PM	Units: Prep Date	µg/L :: 4/18/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD R	PDLimit	Qual
Barium			221	50.0	0	223.9				1.12	10	
Sample ID 060	4091-05C PDS	Batch ID:	21931		TestNo:	SW60)20		Units:	µg/L		
SampType: PDS	6	Run ID:	ICP-MS2	_060418A	Analysis	Date: 4/18/2	2006 4:58:	00 PM	Prep Date	e: 4/18/2	006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD R	PDLimit	Qual
Barium			403	10.0	200	224	89.5	75	125			

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 3 of 18

CLIENT:TRC Environmental Corp.Work Order:0604091

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

RunID: ICP-MS2_060418A

Sample ID	ICV 1-060418	Batch ID:	R25880		TestNo	swe	6020		Units:	μg/L		
SampType:	ICV	Run ID:	ICP-MS	2_060418A	Analys	is Date: 4/18	8/2006 4:04:	:00 PM	Prep Date	е:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			95.2	10.0	100.0	0	95.2	90	110			
Sample ID	CCV1-060418	Batch ID:	R25880		TestNo	swe	6020		Units:	µg/L		
SampType:	CCV	Run ID:	ICP-MS	2_060418A	Analys	is Date: 4/18	8/2006 5:06:	:00 PM	Prep Date	ə:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			195	10.0	200.0	0	97.6	90	110			

Qualifiers:

В

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

DF Dilution Factor

- MDL Method Dection Limit
 - R RPD outside accepted control limits

Page 4 of 18

S Spike Recovery outside control limits

CLIENT:

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604091

RunID: ICP-MS2_060419A

Sample ID	MB-21931	Batch ID:	21931		TestNo	SW6	6020		Units:	µg/L	-	
SampType:	MBLK	Run ID:	ICP-MS	2_060419A	Analys	sis Date: 4/19 /	/2006 11:3 [,]	1:00 A	Prep Date	e: 4/18	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Barium			ND	10.0								
Calcium			ND	100								
Iron			ND	100								
Magnesium			ND	100								
Potassium			ND	100								
Sodium			ND	100								
Sample ID	LCS-21931	Batch ID:	21931		TestNo	SW6	6020		Units:	µg/L	-	
SampType:	LCS	Run ID:	ICP-MS	2_060419A	Analys	sis Date: 4/19/	/2006 12:07	7:00 P	Prep Date	e: 4/18	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Barium			190	10.0	200.0	0	95.2	80	120			
Calcium			5080	100	5000	0	102	80	120			
Iron			4850	100	5000	0	97.0	80	120			
Magnesium			5100	100	5000	0	102	80	120			
Potassium			4990	100	5000	0	99.9	80	120			
Sodium			5170	100	5000	0	103	80	120			
Sample ID	LCSD-21931	Batch ID:	21931		TestNo	SW6	6020		Units:	µg/L	-	
SampType:	LCSD	Run ID:	ICP-MS	2_060419A	Analys	sis Date: 4/19/	/2006 12:1	1:00 P	Prep Date	e: 4/18	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Barium			189	10.0	200.0	0	94.3	80	120	0.950	15	
Calcium			5100	100	5000	0	102	80	120	0.550	15	
Iron			4900	100	5000	0	97.9	80	120	0.985	15	
Magnesium			5030	100	5000	0	101	80	120	1.38	15	
Potassium			4970	100	5000	0	99.4	80	120	0.442	15	
Sodium			5060	100	5000	0	101	80	120	2.23	15	
Sample ID	0604091-05C SD	Batch ID:	21931		TestNo	SW6	6020		Units:	µg/L	-	
SampType:	SD	Run ID:	ICP-MS	2_060419A	Analys	sis Date: 4/19/	/2006 1:43:	00 PM	Prep Date	e: 4/18	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Calcium			3310000	250000	0	3254000				1.69	10	
Iron			0	250000	0	0				0	10	
Magnesium			789000	250000	0	755500				4.34	10	
Potassium			0	250000	0	213800				0	10	
Sodium		1	15900000	250000	0	15750000				0.948	10	

Qualifiers:

- B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL
- DF Dilution Factor

MDL Method Dection Limit

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

R RPD outside accepted control limitsS Spike Recovery outside control limits

Page 5 of 18

CLIENT: Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604091

RunID: ICP-MS2_060419A

-												
Sample ID	0604091-05C PDS	Batch ID	21931		TestN	o: SW6	020		Units:	µg/L		
SampType:	PDS	Run ID:	ICP-MS	62_060419A	Analy	sis Date: 4/19/	2006 2:20:	00 PM	Prep Date	e: 4/18 /	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Calcium			2740000	50000	5000	3250000	-20.7	75	125			S
Iron			2400000	50000	2500000	0	95.9	75	125			
Magnesium			2570000	50000	5000	756000	72.5	75	125			S
Potassium			2410000	50000	5000	214000	88.0	75	125			
Sodium			3960000	50000	2500000	15800000	-471	75	125			S
Sample ID	0604091-05C M S	Batch ID	21931		TestN	o: SW6	020		Units:	µg/L		
SampType:	MS	Run ID:	ICP-MS	62_060419A	Analy	sis Date: 4/19/	2006 3:00:	00 PM	Prep Date	e: 4/18 /	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			0	5000	200.0	0	0	80	120			s
Calcium			4180000	50000	5000	3254000	18500	80	120			S
Magnesium			788000	50000	5000	755500	640	80	120			S
Potassium			225000	50000	5000	213800	217	80	120			S
Sodium			16300000	50000	5000	15750000	10600	80	120			S
Sample ID	0604091-05C M SD	Batch ID	21931		TestN	o: SW6	020		Units:	µg/L		
SampType:	MSD	Run ID:	ICP-MS	62_060419A	Analy	sis Date: 4/19/	2006 3:04:	00 PM	Prep Date	e: 4/18 /	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			0	5000	200.0	0	0	80	120	0	15	S
Calcium			4200000	50000	5000	3254000	18900	80	120	0.430	15	S
Magnesium			792000	50000	5000	755500	730	80	120	0.570	15	S
Potassium			227000	50000	5000	213800	263	80	120	1.02	15	S
Sodium			16200000	50000	5000	15750000	9800	80	120	0.246	15	S
Sample ID	0604091-05C M S	Batch ID	21931		TestN	o: SW6	020		Units:	µg/L		
SampType:	MS	Run ID:	ICP-MS	62_060419A	Analy	sis Date: 4/19/	2006 4:12:	00 PM	Prep Date	e: 4/18 /	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Iron			6190	100	5000	0	124	80	120			S
Sample ID	0604091-05C M SD	Batch ID	21931		TestN	o: SW6	020		Units:	µg/L		
SampType:	MSD	Run ID:	ICP-MS	62_060419A	Analy	sis Date: 4/19/	2006 4:16:	00 PM	Prep Date	e: 4/18/	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Iron			5980	100	5000	0	120	80	120	3.37	15	

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

DF Dilution Factor

MDL Method Dection Limit

Page 6 of 18

ND Not Detected at the Method Detection Limit

RL Reporting Limit

R RPD outside accepted control limitsS Spike Recovery outside control limits
TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Work Order:0604091Project:RRC West O'Daniel

RunID: ICP-MS2_060419A

Sample ID	ICV 1-060419	Batch ID:	R25897		TestNo	: SW	6020		Units:	µg/L	_	
SampType:	ICV	Run ID:	ICP-MS2	2_060419A	Analys	sis Date: 4/1 9	9/2006 11:19	9:00 A	Prep Date	ə:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			96.3	10.0	100.0	0	96.3	90	110			
Calcium			2690	100	2500	0	108	90	110			
Iron			2580	100	2500	0	103	90	110			
Magnesium			2620	100	2500	0	105	90	110			
Potassium			2560	100	2500	0	102	90	110			
Sodium			2590	100	2500	0	104	90	110			
Sample ID	CCV1-060419	Batch ID:	R25897		TestNo	: SW	6020		Units:	µg/L	_	
SampType:	CCV	Run ID:	ICP-MS2	2_060419A	Analys	sis Date: 4/1 9	9/2006 12:23	3:00 P	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			196	10.0	200.0	0	98.2	90	110			
Calcium			5180	100	5000	0	104	90	110			
Iron			5090	100	5000	0	102	90	110			
Magnesium			5140	100	5000	0	103	90	110			
Potassium			5040	100	5000	0	101	90	110			
Sodium			5200	100	5000	0	104	90	110			
Sample ID	CCV2-060419	Batch ID:	R25897		TestNo	: SW	6020		Units:	µg/L	-	
SampType:	CCV	Run ID:	ICP-MS2	2_060419A	Analys	sis Date: 4/19	9/2006 2:28:	00 PM	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			201	10.0	200.0	0	100	90	110			
Calcium			5180	100	5000	0	104	90	110			
Iron			5190	100	5000	0	104	90	110			
Magnesium			5240	100	5000	0	105	90	110			
Potassium			5120	100	5000	0	102	90	110			
Sodium			5290	100	5000	0	106	90	110			
Sample ID	CCV3-060418	Batch ID:	R25897		TestNo	: SW	6020		Units:	µg/L	-	
SampType:	CCV	Run ID:	ICP-MS2	2_060419A	Analys	sis Date: 4/1 9	9/2006 3:12:	00 PM	Prep Date	э:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			196	10.0	200.0	0	98.0	90	110			
Calcium			5130	100	5000	0	103	90	110			
Iron			5030	100	5000	0	101	90	110			
Magnesium			5190	100	5000	0	104	90	110			
Potassium			5100	100	5000	0	102	90	110			
Sodium			5230	100	5000	0	105	90	110			

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

DF Dilution Factor MDL Method Dection Limit

Analyte detected between MDL and KL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 7 of 18

CLIENT: TRC Environmental Corp. Work Order:

0604091

ANALYTICAL QC SUMMARY REPORT

RRC West O'Daniel **Project:**

RunID: ICP-MS2_060419A

Sample ID	CCV4-060419	Batch ID:	R25897		TestNo	: SV	V6020		Units:	µg/L	_	
SampType:	CCV	Run ID:	ICP-MS	2_060419A	Analys	is Date: 4/ 1	19/2006 4:28:0	00 PM	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			195	10.0	200.0	0	97.4	90	110			•
Iron			4960	100	5000	0	99.3	90	110			
Potassium			5360	100	5000	0	107	90	110			

Qualifiers:

В

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Report ing Limit

DF **Dilution Factor**

- MDL Method Dection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 8 of 18

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604091

RunID: ICP-MS2_060420A

Sample ID	ICV 1-060420	Batch ID:	R25920		TestNo:	SW	6020		Units:	µg/l	L	
SampType:	ICV	Run ID:	ICP-MS	2_060420A	Analysi	s Date: 4/20)/2006 9:37:	00 A M	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			92.4	10.0	100.0	0	92.4	90	110			
Iron			2550	100	2500	0	102	90	110			
Potassium			2530	100	2500	0	101	90	110			
Sample ID	CCV1-060420	Batch ID:	R25920		TestNo:	SW	6020		Units:	µg/l	L	
SampType:	ccv	Run ID:	ICP-MS	2_060420A	Analysi	s Date: 4/20)/2006 10:35	5:00 A	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			195	10.0	200.0	0	97.7	90	110			
Iron			5320	100	5000	0	106	90	110			
Potassium			5210	100	5000	0	104	90	110			
Sample ID	CCV2-060420	Batch ID:	R25920		TestNo:	SW	6020		Units:	µg/l	L	
SampType:	CCV	Run ID:	ICP-MS	2_060420A	Analysi	s Date: 4/20)/2006 11:52	2:00 A	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			189	10.0	200.0	0	94.6	90	110			
Iron			5360	100	5000	0	107	90	110			
Potassium			5400	100	5000	0	108	90	110			

Qualifiers: B

J

- Analyte detected in the associated Method Blank
- DF Dilution Factor
 - ition i actor
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

- MDL Method Dection Limit
 - R RPD outside accepted control limits

Page 9 of 18

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

RRC West O'Daniel **Project:**

0604091

IC_060414A **RunID:**

Sample ID	ICV-060414	Batch ID:	R25868		TestNo:	E300			Units:	mg/L	
SampType:	ICV	Run ID:	IC_06041	4A	Analysi	s Date: 4/14/	2006 1:34:	49 PM	Prep Date:	4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit %	RPD RPDLimit	Qual
Bromide			50.5	1.00	50.00	0	101	90	110		
Nitr ate-N			12.9	0.500	12.50	0	103	90	110		
Sulfate			75.6	3.00	75.00	0	101	90	110		
Sample ID	MB-060414	Batch ID:	R25868		TestNo:	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC_06041	4A	Analysi	s Date: 4/14/	2006 1:53:	24 PM	Prep Date:	4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit %	RPD RPDLimit	Qual
Bromide			ND	1.00							
Nitr ate-N			ND	0.500							
Sulfate			ND	3.00							
Sample ID	LCS-060414	Batch ID:	R25868		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC_06041	4A	Analysi	s Date: 4/14/	2006 2:07:	36 PM	Prep Date:	4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit %	RPD RPDLimit	Qual
Bromide			19.8	1.00	20.00	0	99.2	90	110		
Nitrate-N			5.03	0.500	5.000	0	101	90	110		
Sulfate			29.4	3.00	30.00	0	98.0	90	110		
Sample ID	CCV1-060414	Batch ID:	R25868		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC_06041	4A	Analysi	s Date: 4/14/	2006 4:53:	16 PM	Prep Date:	4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit %	RPD RPDLimit	Qual
Bromide			19.3	1.00	20.00	0	96.4	90	110		
Nitrate-N			4.90	0.500	5.000	0	98.0	90	110		
Sulfate			29.2	3.00	30.00	0	97.5	90	110		
Sample ID	0604091-05E M S	Batch ID:	R25868		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC_06041	4A	Analysi	s Date: 4/14/	2006 7:06:	02 PM	Prep Date:	4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit %	RPD RPDLimit	Qual
Bromide			465	20.0	400.0	59.96	101	90	110		
Nitrate-N			128	10.0	100.0	26.99	101	90	110		
Sulfate			2840	60.0	600.0	2284	93.5	90	110		
Sample ID	0604091-05E M SD	Batch ID:	R25868		TestNo:	E300			Units:	mg/L	
SampType:	MSD	Run ID:	IC_06041	4A	Analysi	s Date: 4/14/	2006 7:20:	15 PM	Prep Date:	4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit %	RPD RPDLimit	Qual

Qualifiers:

- В Analyte detected in the associated Method Blank J
- DF Dilution Factor
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Report ing Limit

MDL Method Dection Limit

Page 10 of 18

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

CLIENT: Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604091

RunID: IC_060414A

Sample ID	0604091-05E M SD	Batch ID:	R25868		TestNo:	E300			Units:	mg/l	_	
SampType:	MSD	Run ID:	IC_06041	4A	Analysis	s Date: 4/14/	2006 7:20:	15 PM	Prep Date	e: 4/14 /	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Bromide			461	20.0	400.0	59.96	100	90	110	0.985	20	
Nitr ate-N			127	10.0	100.0	26.99	100	90	110	0.740	20	
Sulfate			2850	60.0	600.0	2284	94.2	90	110	0.159	20	
Sample ID	CCV2-060414	Batch ID:	R25868		TestNo:	E300			Units:	mg/l	_	
SampType:	CCV	Run ID:	IC_06041	4A	Analysis	s Date: 4/14/	2006 7:34:	28 PM	Prep Date	e: 4/14 /	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Bromide			20.1	1.00	20.00	0	100	90	110			
Nitrate-N			5.03	0.500	5.000	0	101	90	110			
Sulfate			29.9	3.00	30.00	0	99.5	90	110			

Qualifiers:

В

J

- Analyte detected in the associated Method Blank
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

Page 11 of 18

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

0604091

Project:	RRC West	O'Daniel					RunI	D: I	C_06041	7A		
Sample ID	ICV-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L		
SampType:	ICV	Run ID:	IC_060417	Ά	Analysis	s Date: 4/17/2	2006 8:46	:47 A M	Prep Date:	4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Chloride			24.0	1.00	25.00	0	96.0	90	110			
Sulfate			72.3	3.00	75.00	0	96.4	90	110			
Sample ID	MB-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L		
SampType:	MBLK	Run ID:	IC_060417	A	Analysis	s Date: 4/17/2	2006 9:00	:59 A M	Prep Date:	4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Chloride			ND	1.00								
Sulfate			ND	3.00								
Sample ID	LCS-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L		
SampType:	LCS	Run ID:	IC_060417	Ά	Analysis	s Date: 4/17/2	2006 9:15:	:12 AM	Prep Date:	4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Chloride			9.50	1.00	10.00	0	95.0	90	110			
Sulfate			29.0	3.00	30.00	0	96.8	90	110			
Sample ID	LCSD-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L		
SampType:	LCSD	Run ID:	IC_060417	A	Analysis	a Date: 4/17/2	2006 9:29:	:24 A M	Prep Date:	4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Chloride			9.51	1.00	10.00	0	95.1	90	110	0.0652	20	
Sulfate			28.9	3.00	30.00	0	96.5	90	110	0.392	20	
Sample ID	0604098-02EMS	Batch ID:	R25875		TestNo:	E300			Units:	mg/L		
SampType:	MS	Run ID:	IC_060417	A	Analysis	a Date: 4/17/2	2006 11:30	0:08 A	Prep Date:	4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Chloride			11100	500	5000	6031	102	90	110			
Sample ID	0604098-02E M SD	Batch ID:	R25875		TestNo:	E300			Units:	mg/L		
SampType:	MSD	Run ID:	IC_060417	Ά	Analysis	8 Date: 4/17/2	2006 11:44	4:21 A	Prep Date:	4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Chloride			11200	500	5000	6031	103	90	110	0.504	20	

Qualifiers:

- В Analyte detected in the associated Method Blank
- DF Dilution Factor

MDL Method Dection Limit

Page 12 of 18

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Report ing Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

0604091

Project:	RRC West	O'Daniel					RunII): I	C_06041	7A	
Sample ID	CCV1-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC_060417	Α	Analysis	a Date: 4/17/20	006 11:58	3:33 A	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit '	% RPD RPDLimit	Qual
Chloride			9.58	1.00	10.00	0	95.8	90	110		
Sulfate			29.2	3.00	30.00	0	97.2	90	110		
Sample ID	0604091-05EMS	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC_060417	Α	Analysis	a Date: 4/17/20	006 1:52:	12 PM	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit '	% RPD RPDLimit	Qual
Chloride			33600	1000	10000	23700	98.6	90	110		
Sample ID	0604091-05E M SD	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	MSD	Run ID:	IC_060417	Α	Analysis	a Date: 4/17/20	006 2:06:	24 PM	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit '	% RPD RPDLimit	Qual
Chloride			33700	1000	10000	23700	99.6	90	110	0.291 20	
Sample ID	CCV2-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	ccv	Run ID:	IC_060417	Α	Analysis	a Date: 4/17/20	006 2:20:	37 PM	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit '	% RPD RPDLimit	Qual
Chloride			9.62	1.00	10.00	0	96.2	90	110		
Sulfate			29.0	3.00	30.00	0	96.7	90	110		
Sample ID	CCV3-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	ccv	Run ID:	IC_060417	Α	Analysis	a Date: 4/17/20	006 3:38:	33 PM	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit '	% RPD RPDLimit	Qual
Sulfate			28.9	3.00	30.00	0	96.2	90	110		
Sample ID	0604091-07EMS	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC_060417	Α	Analysis	a Date: 4/17/20	006 5:42:	14 PM	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit '	% RPD RPDLimit	Qual
Sulfate			2150	60.0	600.0	1542	101	90	110		
Sample ID	0604091-07E M SD	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	MSD	Run ID:	IC_060417	Α	Analysis	a Date: 4/17/20	006 5:58:	58 PM	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit	% RPD RPDLimit	Qual
Sulfate			2260	60.0	600.0	1542	119	90	110	4.92 20	S

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Report ing Limit MDL Method Dection Limit

Page 13 of 18

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT:TRC Environmental Corp.Work Order:0604091

Project: RRC West O'Daniel

ANALYTICAL QC SUMMARY REPORT

RunID: IC_060417A

Sample ID	CCV4-060417	Batch ID:	R25875		TestNo:		E300		Units:	mg/	L	
SampType:	ccv	Run ID:	IC_060417A		Analysis	Date:	4/17/2006 6:13:	10 PM	Prep Date:	4/17	/2006	
Analyte		F	Result	RL	SPK value	Ref V	al %REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Sulfate			29.0	3.00	30.00	0	96.7	90	110			

Qualifiers:

В

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

Page 14 of 18

S Spike Recovery outside control limits

CLIENT: TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Work Order: 0604091 RRC West O'Daniel **Project:**

TITRATOR_060414B **RunID:**

Sampla ID		Potob ID:	D25954		TeatNo	E150 1			L Inita :	nH Unite	
Sample ID	10 10004 14	Daton ID.	K23031		Testino.	E150.1			Units.	prionits	
SampType:	ICV	Run ID:	TITRATOR_	_060414B	Analysis	Date: 4/14/2	006 1:02:0	00 PM	Prep Date	: 4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD RPDLimit	Qual
рН			9.99	0	10.00	0	99.9	99	101		
Sample ID	0604091-05B DUP	Batch ID:	R25851		TestNo:	E150.1			Units:	pH Units	
SampType:	DUP	Run ID:	TITRATOR_	_060414B	Analysis	Date: 4/14/20	006 2:06:0	00 PM	Prep Date	: 4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD RPDLimit	Qual
рН			6.63	0	0	6.650				0.301 15	
Sample ID	CCV-060414	Batch ID:	R25851		TestNo:	E150.1			Units:	pH Units	
SampType:	CCV	Run ID:	TITRATOR_	_060414B	Analysis	Date: 4/14/20	006 2:09:0	00 PM	Prep Date	: 4/14/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD RPDLimit	Qual
рН			7.01	0	7.000	0	100	97.1	102.9		

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor

Page 15 of 18

J Analyte detected between MDL and RL Not Detected at the Method Detection Limit

ND

RL Report ing Limit MDL Method Dection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order:

TRC Environ mental Corp. 0604091

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

RunID: TITRATOR_060417B

Sample ID	ICV-060417	Batch ID:	R25867		TestNo:	E310.	1		Units:	mg/L		
SampType:	ICV	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17/2	2006 10:23	3:00 A	Prep Date:	4/17/2	006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD R	PDLimit	Qual
Alkalinity, E	Bicarbonate (As CaCO	3)	13.0	10.0	0							
Alkalinity, C	Carbonate (As CaCO3))	87.4	10.0	0							
Alkalinity, H	Hydroxide (As CaCO3)		0	10.0	0							
Alkalinity, 7	Total (As CaCO3)		100	10.0	100.0	0	100	98	102			
Sample ID	LCS-060417	Batch ID:	R25867		TestNo:	E310.	1		Units:	mg/L		
SampType:	LCS	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17/2	2006 10:27	7:00 A	Prep Date:	4/17/2	006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD R	PDLimit	Qual
Alkalinity, T	Fotal (As CaCO3)		51.5	10.0	50.00	0	103	74	129			
Sample ID	0604091-05D DUP	Batch ID:	R25867		TestNo:	E310.	1		Units:	mg/L		
SampType:	DUP	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17/2	2006 11:32	2:00 A	Prep Date:	4/17/2	006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD R	PDLimit	Qual
Alkalinity, E	Bicarbonate (As CaCO	3)	182	10.0	0	181.1				0.368	20	
Alkalinity, C	Carbonate (As CaCO3))	0	10.0	0	0				0	20	
Alkalinity, F	Hydroxide (As CaCO3)		0	10.0	0	0				0	20	
Alkalinity, 7	Total (As CaCO3)		182	10.0	0	181.1				0.368	20	
Sample ID	CCV1-060417	Batch ID:	R25867		TestNo:	E310.	1		Units:	mg/L		
SampType:	CCV	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17/2	2006 11:46	6:00 A	Prep Date:	4/17/2	006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD R	PDLimit	Qual
Alkalinity, E	Bicarbonate (As CaCO	3)	18.9	10.0	0							
Alkalinity, C	Carbonate (As CaCO3))	82.4	10.0	0							
Alkalinity, H	Hydroxide (As CaCO3)		0	10.0	0							
Alkalinity, T	Total (As CaCO3)		101	10.0	100.0	0	101	90	110			
Sample ID	0604098-07D DUP	Batch ID:	R25867		TestNo:	E310.	1		Units:	mg/L		
SampType:	DUP	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17/2	2006 12:30):00 P	Prep Date:	4/17/2	006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD R	PDLimit	Qual
Alkalinity, E	Bicarbonate (As CaCO	3)	84.5	10.0	0	83.95				0.697	20	
Alkalinity, C	Carbonate (As CaCO3))	0	10.0	0	0				0	20	
Alkalinity, H	Hydroxide (As CaCO3)		0	10.0	0	0				0	20	
Alkalinity, 7	Total (As CaCO3)		84.5	10.0	0	83.95				0.697	20	

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

DF Dilution Factor

MDL Method Dection Limit

Page 16 of 18

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

R RPD outside accepted control limitsS Spike Recovery outside control limits

CLIENT: TRC Environmental Corp. Work Order: 0604091

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

RunID: TITRATOR_060417B

Sample ID	CCV2-060417	Batch ID:	R25867		TestN	D: E	310.1		Units:	mg/L	
SampType:	ccv	Run ID:	TITRATOR	2_060417B	Analy	sis Date: 4	/17/2006 12:3	6:00 P	Prep Date	e: 4/17/2006	
Analyte			Result	RL	SPK value	Ref Va	I %REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Alkalinity, Bi	icarbonate (As CaCO3	3)	23.0	10.0	0						
Alkalinity, Ca	arbonate (As CaCO3)		78.1	10.0	0						
Alkalinity, Hy	ydroxide (As CaCO3)		0	10.0	0						
Alkalinity, To	otal (As CaCO3)		101	10.0	100.0	0	101	90	110		

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

MDL Method Dection Limit

RPD outside accepted control limits

Page 17 of 18

S Spike Recovery outside control limits

R

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

0604091

Project:	RRC West	O'Daniel					RunIl	D: V	VC_0604	17B	
Sample ID SampType:	ICV-060417 ICV	Batch ID: Run ID:	CONDW WC_060	·04/17/06 417B	TestNo Analys	E120).1 /2006 12:00	0:00 P	Units: Prep Date:	µm h os/cm 4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual
Specific Co	onductance		12800	10.0	12880	0	99.8	90	110		
Sample ID	LCS-060417	Batch ID:	CONDW	04/17/06	TestNo	E120).1		Units:	µm hos/cm	
SampType:	LCS	Run ID:	WC_060	417B	Analys	is Date: 4/17 /	/2006 12:00	0:00 P	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual
Specific Co	onductance		1360	10.0	1413	0	96.0	93	109		
Sample ID	CCV1-060417	Batch ID:	CONDW	-04/17/06	TestNo	E120).1		Units:	µm hos/cm	
SampType:	ccv	Run ID:	WC_060	417B	Analys	is Date: 4/17 /	/2006 12:00	0:00 P	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual
Specific Co	onductance		12600	10.0	12880	0	98.1	90	110		
Sample ID	0604091-05E DUP	Batch ID:	CONDW	04/17/06	TestNo	E120).1		Units:	µm h os/cm	
SampType:	DUP	Run ID:	WC_060	417B	Analys	is Date: 4/17 /	/2006 12:00	0:00 P	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual
Specific Co	onductance		91400	100	0	90800				0.659 20	
Sample ID	0604098-07E DUP	Batch ID:	CONDW	04/17/06	TestNo	E120).1		Units:	µmhos/cm	
SampType:	DUP	Run ID:	WC_060	417B	Analys	is Date: 4/17 /	/2006 12:00	0:00 P	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual
Specific Co	onductance		47000	100	0	46200				1.72 20	
Sample ID	CCV2-060417	Batch ID:	CONDW	04/17/06	TestNo	E120).1		Units:	µm h os/cm	
SampType:	CCV	Run ID:	WC_060	417B	Analys	is Date: 4/17 /	/2006 12:00	0:00 P	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual
Specific Co	onductance		12500	10.0	12880	0	97.0	90	110		

Qualifiers:

- В Analyte detected in the associated Method Blank
- DF Dilution Factor

MDL Method Dection Limit

Page 18 of 18

Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Report ing Limit

J

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT:	TRC Environmental Corp.
---------	-------------------------

Work Order:0604091Project:RRC West O'Daniel

MQL SUMMARY REPORT

TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Bromide	0.3	1
Chloride	0.3	1
Nitrate-N	0.1	0.5
Sulfate	1	3
TestNo: SW6020	MDL	MQL
Analyte	μg/L	µg/L
Barium	3	10
Calcium	100	100
lron	50	100
Magnesium	100	100
Potassium	100	100
Sodium	100	100
TestNo: SW8021B	MDL	MQL
Analyte	μg/L	µg/L
Benzene	0.8	2
Toluene	2	6
Ethylbenzene	2	6
Xylenes, Total	3	9

April 24, 2006

Steve Miller TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752

TEL: (512) 329-6080 FAX (512) 329-8750

Order No.: 0604098

RE: RRC West O'Daniel

Dear Steve Miller:

DHL Analytical received 8 sample(s) on 4/15/2006 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely.

John DuPont General Manager

This report for TRC Environmental: RRC West O'Daniel (DHL Work Order 0604098) contains the following information:

ſ	ITEM	Page
	Cover Page	1
0	Table of Contents	2
•	Original chain of custody, fedex slip (if used), log-in checklist	3-6
	Laboratory Data Package Signature Page	7
	Laboratory Review Checklist	8-9
•	Case Narrative	10-11
٠	Work Order Sample Summary	12
	Prep Dates Report	13-15
	Analytical Dates Report	16-19
•	Sample Results	20-27
9	QC Summary Report	28-44
•	MQL Summary Report	45
	Total Number of Pages	45

April 24, 2006

Approved:

(A)

John DuPont

			230 Phc	0 Double ne (512) (Creek D 388-822	orive • F 2 • FAX	tound 1 (512)	388-8225	78664				CHAI	° ≥ Z	23 7 7 7	STOD.
CHENT TRC								C.	ATE.)-t-t-t-	<u>%</u>			Ц d	IGE 1	OF
ADDRESS: 505	E. HWIT	T CINH	2.12	re. 250	Aust	X.N	12	<u> </u>	∣ j ‡ Ç Ç		n	DHL WOF	ak order		6040	46
PHONE: 512-32		مر المعين	FAX	27-28	1-8	29		. a.	ROJEC'	LOCATION	OR NAME	R.C.	N CS		NAVIE	*
DAIA REPORTED TO: ADDITIONAL REPORT	COPIES T(S N	I VA-	Art					LIENT F	ROJECT #:	46213	0000-50	MeollE	CTOR:	MATE LEA	(" / Evenen
Authorize 5% surcharge for	S=SOIL W=WATER	P=PA SL=S	INT			RESEP	VATION			0.3001	13.80 1988	130 130 1300		C SOLAND	A CLAN	
TRRP report?	A=AIR	01=0	лтнея		sianie		BAED	<u>ل</u> ان	141	241 C 5105 25105 2001			1 4471 4 43 1 4471 9 643 1 440 644 643 1 60 644 643 1 60 65 7 65 1 60 65 7 65 1 60 65 1 7 65 1 7 7 65 1 7 7 7 7 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NI ON CHICK	CON NORTH	C.M.
Field Sample I.D.	DHL Lab # Dê	Ite	le Matri	x Contain	atrico to #			ST TOND	L SILOSLOS L SILOSLOS L SILOSLOS L SILOSLOS L SILOSLOS	6400 1012			533160 143 160 143 160 143 1643 1643 1643 1643 1643		FIEL	D NOTES
< MW210-1		06 03		HAN DOO		X		X					X	XX	NETH I	while B
- MM-2	11/1 20-	Hoh M	20 N	1404 24		Ń X	X					×	X X	XX	Ca Fe	Ne Ne K
5-WW-53-1	03 411	106 10	36	40m C 2		X	X X	X				~	XX		• • · · ·	
1-20-11M-2	-04 W-		N W	1222		X	Ŕ	X				×	X X		LONS J	velue Br
E-5-47-1	25 W/R	100 122	15 E	4046 22	11	X	X						XX		WITCH	- J Sulfare
5-5-1-1	40	2 3014	10 W	40AL25	247)	X	×	X				×`			* ~	*
55-3-1	S W	2	345	40~LZ		XX	X	X				\leq			NETER'	TO UNE
TRio 21222-1-1-101		- 90%	3	40.41	2	~		\times							1 elezado	KANEK
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	****** *****														BASEN	DAKC
														4	N S	WZ- WYZ
																, Ar
				· · · · · · · · · · · · · · · · · · ·											£	K
TOTAL																
RELINDUSHER BY: N	gnature)	internet of the second s	W/MTE/	TIVE 175	RECEIV	B B B K B K	(Signatu	(e)			ND TIME	LABORATO	NRV USE (9 10 11 14	27
RECINOUISHED BY: (SI	gnature)		DATE/	TIME	RECEIV	ED BY:	(Signatu	(e)			L FIRST	HECEIVING			I NEDINIA.	- NOT USE
	anahire)	ا فر. ا	I IS 10	TIME			Signatu	(e)		2 DAY J		D CARRIER				
	giratury.						2					T HAND DELY	VERY I IVERED			
	40D	IL DISPO.	SAL @ \$5	,00 each	C 10	turn							and the second s	STATUS STATUS STATUS	And the second	and a subsection of the state o

I tom I tom I tom	a Express Package Service Packages up to 1991 lies	A Foolts Priority Overnight Foolts Standard Overnight New humbers serviced Foolts VDay Foolts 20.ay Foolts Express Saver Asserved before Asserved from the new service of the new	FedEx 10ay Freight FedEx 20ay Freight Iken business (arr/integent) Second business car/integent Caller Conference That business day 5 Packaging 6 Forthy Pack	Favorelope Texas Factors Factors Small Part Texas Factors F	No Yes remarked for the second strength of the second strengt	Total Packages Tagal Weight Total Declared Value ¹ Total Charges Total Packages Total Packages Total Charges Tota	8 Sign to Authorize Delivery Without a Signature Sign to Authorize The livery Without a Signature Magnetic to enternative and the transferred many resulting a signature and enternative and the transferred many resulting denom. (HL7) Ref the relative relation of the
	FECT. US Airbill Read B52B 18B1 377C	Company T	Address SSE ((A M 1 M 1 M 1 M 2 M 2 M 2 M 2 M 2 M 2 M 2	2. Your Internal Billing Reference ////////////////////////////////////	Company Recipients 5737 RV31PUCT RECIPIENTS	To request a participage to held it is structfic. If wells, uptimit fields, with next here. State F X and P = 200 CDV C = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	

•

P.O. Box 1160 Beaver, WV 25813 800-255-3950 • 304-255-3900 Quality Environmental Containers PROJECT NAME SAMPLE ID SAMPLE DAT

SAMPLEB BY	SAMPLE TIME
PRESERVATIVE	GRAB
ANALYSIS OULESTED 4	/m/a 1740

P.O. Box 1160 Beaver, WV 258 800-255-3950 Quality Environmental Co	13 304-255-3900 htaine15
RIMPLE ID	MDIE NATE
	SAMPLE TIME
SAMPLED BY	CRAB
RDESERVATIVE	COMPOSITE
ANALY BREE STED 4/14/	x 1740

1911 - 11 A

	Sample	Receipt Check	klist		
Client Name TRC Environmental Corp.			Date Receiv	ed: 4/15/2006	
Work Order Number 0604098			Received by	DEW	
Checklist completed by: <u>Signature</u>	Carrier name	FedEx 1day	Reviewed by	UC. Initials	4(1)(0 (Date
Shipping container/cooler in good condition?		Yes 🖌	No	Not Present	
Custody seals intact on shippping container/con	oler?	Yes 🗹	No	Not Present	
Custody seals intact on sample bottles?		Yes	No	Not Present	
Chain of custody present?		Yes 🖌	No		
Chain of custody signed when relinquished and	received?	Yes 🗸	No		
Chain of custody agrees with sample labels?		Yes 🖌	No		
Samples in proper container/bottle?		Yes 🗸	No		
Sample containers intact?		Yes 🔽	No		
Sufficient sample volume for indicated test?		Yes 🖌	No 🗌		
All samples received within holding time?		Yes 🔽	No 🗌		
Container/Temp Blank temperature in complian	ice?	Yes 🗸	No 🗆 📣	4/15/06	
Water - VOA vials have zero headspace?		Yes 🗹		lo VOA vials submitted	
Water - pH acceptable upon receipt?	10	Yes 🗡	No 🕅 N	Not Applicable	
	Adjusted?	S Cheo	cked by //	18	
Any No response must be detailed in the comm	ents section below.				
Client contacted	Date contacted:		Perso	on contacted	
Contacted by:	Regarding:			9 10000011 10000 10000 10000000 10000 100000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	
Comments: <u>SAmplu</u>	5-5-1-1	the 7	netals	portion,	the pH
was greater	Than 3		n,	<i>v</i> ,	, , , , , , , , , , , , , , , , , , ,
Corrective Action added	HN03	<i></i>			
			gen uter minister en anderen en a		

Laboratory Data Package Signature Page

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Scott Schroeder – Project Manager Michelle Green – QA Manager John DuPont – General Manager

Signature

DH	LA	nalytical, Inc.			CONCUMENT OF CONCEASE	onitik en soorad as	
Lab	ora	tory Review Checklist: Reportable Data					
Proje	ct Na	me: ZRC West O'NGME Date: 4/24/06					
Revie	werN	Name: Carlos Castro Laboratory Work Order: 204053					
Prep	Batch	Number(s): See Prep Dates Report Run Batch: See Analytical Dates Report					
#1	A ²	Description	Ves	ΙNα	INA ³	NR ⁴	ER# ⁵
<u> </u>		CHAIN-OF-CUSTODY (C-O-C)					
L		1) Did samples meet the laboratory's standard conditions of sample accentability upon				l in sinti	
R1	OI	receipt?					21-21
		2) Were all departures from standard conditions described in an exception report?	~		1	1	
R2	OI	SAMPLE AND QUALITY CONTROL (QC) IDENTIFICATION					
		1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	~				
		2) Are all laboratory ID numbers cross-referenced to the corresponding QC data?	~				
<u>R3</u>	OI	TEST REPORTS					
		1) Were all samples prepared and analyzed within holding times?	~			<u> </u>	
		2) Other than those results < MQL, were all other raw values bracketed by calibration					
		standards?		ļ		ļ	
		3) Were calculations checked by a peer or supervisor?	~			ļ	
		4) Were all analyte identifications checked by a peer or supervisor?		<u> </u>			ļ
		5) Were sample quantitation limits reported for all analytes not detected?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		(b) Were all results for soli and sediment samples reported on a dry weight basis?			<u>\</u>		
		(7) Were % molsture (or solids) reported for all soli and sediment samples?					
D ₁	0	SUBDOCATE DECOVEDV DATA			**		
11.4		1) Were surrogates added prior to extraction?		a tinga i		a an la sata	(1990) (1991) (1994)
		2) Were surroughte percept recoveries in all camples within the laboratory OC limits?	Ť				
R5	OI	TEST REPORTS/SUMMARY FORMS FOR BLANK SAMPLES					
1	10.	1) Were appropriate type(s) of blanks analyzed?	~	9 (1944) N		and the second second	Alla (n. n. a Christian)
		2) Were blanks analyzed at the appropriate frequency?	~	+	+		
]		3) Were method blanks taken through the entire analytical process, including preparation					
		and, if applicable, cleanup procedures?	V				
		4) Were blank concentrations < MQL?	V				
R6	OI	LABORATORY CONTROL SAMPLES (LCS)					
		1) Were all COCs included in the LCS?	*				
		2) Was each LCS taken through the entire analytical procedure, (prep and cleanup steps)?	~	<u> </u>	L	ļ	
		3) Were LCSs analyzed at the required frequency?	~	-	ļ	ļ	
ļ		4) Were LCS (and LCSD, if applicable) %Rs & RPD recovery within the laboratory QC					
		limits?		-			ļ
		(5) Does the detectability data document the laboratory's capability to detect the COCs at 1 MDL used to calculate the SOL a?	he 🗸				
D7		MATDIX CRIME (MS) AND MATDIX CRIME DUDI (CATE (MSD) DATA					
<u> </u>		1) Were the project/method specified analytes included in the MS and MSD?	~			-	
		2) Were MS/MSD analyzed at the appropriate frequency?					
		3) Were MS (and MSD, if applicable) %Rs within the laboratory OC limits?					27-02
		4) Were MS/MSD RPDs within laboratory OC limits?	~	·			
R8	OI	ANALYTICAL DUPLICATE DATA					ette terre i stat
		1) Were appropriate analytical duplicates analyzed for each matrix?	s.	1	1	1	
		2) Were analytical duplicates analyzed at the appropriate frequency?	~				
		3) Were RPDs or relative standard deviations within the laboratory QC limits?	\sim	1			
R9	OI	METHOD QUANTITATION LIMITS (MQLS)					
		1) Are the MQLs for each method analyte included in the laboratory data package?	ب ب				
ļ		2) Do the MQLs correspond to the concentration of the lowest non-zero calibration	_		2		
		standard?					<u> </u>
		3) Are unadjusted MQLs included in the laboratory data package?	<u> </u>		<u> </u>	<u> </u>	
<u> R10</u>	101	OTHER PROBLEMS/ANOMALIES			1	1	na nehád
		1) Are all known problems/anomalies/special conditions noted in this LRC and ER?				1	<u> </u>
		 (2) were all necessary corrective actions performed for the reported data? (2) We combined to an element of the second constraints of the second con					
		(5) was applicable and available technology used to lower the SQL minimize the matrix	8				
	1	interference affects off the sample results?		<u> </u>	1]]

DH	LA	nalytical, Inc.				200000-00	
Lab	ora	tory Review Checklist (continued): Supporting Data					
Proje	ct Nai	ne: KIL West O'Daniel Date: 9(24/06					
Revie	ewer l	Jame: Carlos Castro Laboratory Work Order: 0604098	155	100	T	1	Free 15
#1	A. ²	Description	Yes	No	NA [°]	NR*	ER#'
<u>S1</u>	OI	INITIAL CALIBRATION (ICAL)					
	[1) Were response factors and/or relative response factors for each analyte within OC limits?	$\mathbf{\vee}$	ļ	[
		 2) Were percent RSDs or correlation coefficient criteria met? 3) Was the number of standards recommended in the method used for all analytes? 	<u>v</u>				
ŀ		4) Were all points generated between the lowest and highest standard used to calculate the					
		curve?	~				
		5) Are ICAL data available for all instruments used?	<u>\</u>				
		6) Has the initial calibration curve been verified using an appropriate second source	~				
<u>S2</u>	101	INITIAL AND CONTINUING CALIBRATION VERIFICATION (ICCV AND CCV) AND					
		CONTINUING CALIBRATION BLANK (CCB)					
		1) Was the CCV analyzed at the method-required frequency?		ļ		[
	1	2) Were percent differences for each analyte within the method-required QC limits?	× .				
		4) Was the absolute value of the analyte concentration in the inorganic $CCB < MDI$?	Č				
S3	0	i jo no uno uno contrato value or the analyte concontration in the morganice COD (MDD).	1973			1005	86-23 C 236
		MASS SPECTRAL TUNING		-	1		
		 Was the appropriate compound for the method used for tuning? Were ion abundance data within the method required OC limits? 	No.				1
<u>54</u>	0	INTERNAL STANDARDS (IS)					
		1) Were IS area counts and retention times within the method-required OC limits?	~				
S5	OI	RAW DATA (NELAC SECTION 1 APPENDIX A GLOSSARY, & SECTION 5.12)					
		1) Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?				<u>i de subres</u>	<u>entre in el ne succette</u>
		2) Were data associated with manual integrations flagged on the raw data?	V				
S6	0	DUAL COLUMN CONFIRMATION					
		1) Did dual column confirmation results meet the method-required OC?				in an inceasor	, tenieta es insinsios (14
S 7	0	TENTATIVELY IDENTIFIED COMPOUNDS (TICS)					
		1) If TICs were requested, were the mass spectra and TIC data subject to appropriate					
58	1	CHECKS?	Seletae				
		1) Ware recent recoveries within method OC limite?	19532			40.0045	
50	+	(1) were percent recoveries within method QC limits?	V				
59	11	SERIAL DILUTIONS, POST DIGESTION SPIKES, AND METHOD OF					
		1) Were percent differences, recoveries, and the linearity within the QC limits specified in		1			
		the method?		~			59-01
S10	OI	METHOD DETECTION LIMIT (MDL) STUDIES					
		1) Was a MDL study performed for each reported analyte?			ł		
S11	OI	PROFICIENCY TEST DEPODTS					
		1) Was the laboratory's performance accentable on the applicable proficiency tests or	100400	<u></u>]	1 - 1 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
		evaluation studies?	>	ļ			
S12	OI	STANDARDS DOCUMENTATION					
		1) Are all standards used in the analyses NIST-traceable or obtained from other appropriate		 			
		sources?	1				
S13	OI	COMPOUND/ANALYTE IDENTIFICATION PROCEDURES					
		1) Are the procedures for compound/analyte identification documented?	V	1			1
S14	OI	DEMONSTRATION OF ANALYST COMPETENCY (DOC)					
		1) Was DOC conducted consistent with NELAC Chapter 5C?	5	-			
S15	OI	VERIFICATION/VALIDATION DOCUMENTATION FOR METHODS (NELAC)					
		1) Are all the methods used to generate the data documented, verified, and validated where	1				1
		applicable?	6				
S16	OI	LABORATORY STANDARD OPERATING PROCEDURES (SOPS)					
		1) Are the laboratory SOPs current and on file for each method performed?	\checkmark				
1 It	ems ider	tified by the letter "R" should be included in the laboratory data package submitted to the TCEO in the TRRP-required report(s). Items identified by the let	ter "S" s	hould i	e retained	and	

3 5

The made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable). NA = Not applicable. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Date: 24-Apr-06

TRC Environmental Corp
RRC West O'Daniel
0604098

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method SW8021B - Volatiles by GC Method E300 - Anions Analysis Method E310.1 - Alkalinity Analysis Method E120.1 - Specific Conductivity Method E150.1 - pH of a Water

Exception Report R1-01

The samples were received and log-in performed on 4/15/06. A total of 8 samples were received. For sample S-S-1-1 nitric acid was added to the metals fraction.

Exception Report R7-03

For Anions analysis performed on 4/15/06 and 4/17/06 the matrix spike and/or matrix spike duplicate recoveries were out of control limits for Sulfate. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate (4/15/06) was from this work order. The reference sample selected for the matrix spike and matrix spike duplicate (4/17/06) was not from this work order. The LCSs were within control limits for this analyte. No further corrective actions were taken and the sample results were not adversely affected.

For Metals analysis performed on 4/20/06 and 4/21/06 the matrix spikes and matrix spike duplicate recoveries were out of control limits for a few analytes. These are flagged accordingly. The reference sample selected for the matrix spikes and matrix spike duplicates were not from this work order. The LCSs were within control limits for these analytes. No further corrective actions were taken and the sample results were not adversely affected.

Exception Report S9-01

For Metals analysis performed on 4/20/06 the PDS recovery was slightly below control limits for Calcium. This is flagged accordingly in the QC summary report. The serial dilution was within control limit for this analyte therefore no further corrective actions were required.

For Metals analysis performed on 4/20/06 the RPD for the serial dilution was slightly above control limits for Iron. This is flagged accordingly. The PDS was within control limits for this analyte therefore no further corrective actions were required.

DATA REPORTING

Sample reports include the Sample Quantitation Limit (SQL) and the Reporting Limit (RL) for each analyte. The computer system allows for reporting SQL with 2 significant figures and the RL with 3 significant figures. Because of rounding it may sometime appear that a "J" flagged result is lower than the SQL if the sample result is very near the SQL.

Date:	24-Apr-06
-------	-----------

CLIENT: Project: Lab Order:	TRC Environmental Co RRC West O'Daniel 0604098	om.	Work Order Sample Summary					
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved				
0604098-01	S-MW-06-1		4/14/20068:08:00 AM	4/15/2006				
0604098-02	S-MW-07-1		4/14/20069:30:00 AM	4/15/2006				
0604098-03	S-WW-53-1		4/14/2006 10:05:00 AM	4/15/2006				
0604098-04	S-MW-05-1		4/14/2006 11:40:00 AM	4/15/2006				
0604098-05	E-S-55-1		4/14/2006 12:45:00 PM	4/15/2006				
0604098-06	S-S-1-1		4/14/2006 1:10:00 PM	4/15/2006				
0604098-07	S-S-2-1		4/14/2006 1:55:00 PM	4/15/2006				
0604098-08	Trip Blank 4/14/06		4/14/2006	4/15/2006				

_

0604098 Lab Order: Client: TRC Environmental Corp.

Project:

RRC West O'Daniel

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Pre p Date	Batch ID
0604098-01A	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	E150.1	pH	4/17/2006 9:34:00 AM	R25858
0604098-01B	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955
0604098-01C	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
0604098-01D	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	E310.1	Alkalinity	4/17/2006 11:53:00 A	R25867
0604098-01E	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-06-1	4/14/2006 8:08:00 AM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604098-02A	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	E150.1	рН	4/17/2006 9:35:00 AM	R25858
0604098-02B	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955
0604098-02C	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
0604098-02D	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	E310.1	Alkalinity	4/17/2006 11:57:00 A	R25867
0604098-02E	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-MW-07-1	4/14/2006 9:30:00 AM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604098-03A	S-WW-53-1	1/14/2006 10:05:00 AM	Aqueous	E150.1	рН	4/17/2006 9:36:00 AM	R25858
0604098-03B	S-WW-53-1	1/14/2006 10:05:00 AM	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955
0604098-03C	S-WW-53-1	1/14/2006 10:05:00 AM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-WW-53-1	1/14/2006 10:05:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-WW-53-1	4/14/2006 10:05:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
0604098-03D	S-WW-53-1	4/14/2006 10:05:00 AN	Aqueous	E310.1	Alkalinity	4/17/2006 12:01:00 P	R25867
0604098-03E	S-WW-53-1	4/14/2006 10:05:00 AN	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-WW-53-1	1/14/2006 10:05:00 AM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871

Page 1 of 3

_

0604098 Lab Order: Client:

TRC Environmental Corp.

Project: RRC West O'Daniel

PREP DATES REPORT

Sam ple ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Pre p Date	Batch ID
0604098-03E	S-WW-53-1	4/14/2006 10:05:00 AN	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-WW-53-1	1/14/2006 10:05:00 AN	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-WW-53-1	1/14/2006 10:05:00 AN	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604098-04A	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	E150.1	pH	4/17/2006 9:37:00 AM	R25858
0604098-04B	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955
0604098-04C	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
0604098-04D	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	E310.1	Alkalinity	4/17/2006 12:09:00 P	R25867
0604098-04E	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	E300	Anions by IC method - Water	4/16/2006	R25871
	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-MW-05-1	1/14/2006 11:40:00 AN	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604098-05A	E-S-55-1	4/14/2006 12:45:00 PM	Aqueous	E150.1	рН	4/17/2006 9:38:00 AM	R25858
0604098-05B	E-S-55-1	1/14/2006 12:45:00 PM	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955
0604098-05C	E-S-55-1	4/14/2006 12:45:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	E-S-55-1	1/14/2006 12:45:00 PM	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	E-S-55-1	4/14/2006 12:45:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	E-S-55-1	1/14/2006 12:45:00 PM	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
0604098-05D	E-S-55-1	4/14/2006 12:45:00 PM	Aqueous	E310.1	Alkalinity	4/17/2006 12:17:00 P	R25867
0604098-05E	E-S-55-1	1/14/2006 12:45:00 PM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	E-S-55-1	4/14/2006 12:45:00 PM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	E-S-55-1	1/14/2006 12:45:00 PM	Aqueous	E300	Anions by IC method - Water	4/16/2006	R25871
	E-S-55-1	4/14/2006 12:45:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	E-S-55-1	4/14/2006 12:45:00 PM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604098-06A	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	E150.1	рН	4/17/2006 9:39:00 AM	R25858
0604098-06B	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955

Page 2 of 3

Lab Order:0604098Client:TRC Environmental Corp.

Project: RRC West O'Daniel

PREP DATES REPORT

Sam ple ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Pre p Date	Batch ID
0604098-06C	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	SW 3005A	Aq Prep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
0604098-06D	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	E310.1	Alkalinity	4/17/2006 12:22:00 P	R25867
0604098-06E	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/16/2006	R25871
	S-S-1-1	4/14/2006 1:10:00 PM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604098-07A	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	E150.1	рН	4/17/2006 9:41:00 AM	R25858
0604098-07B	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955
0604098-07C	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	SW 3005A	Aq P rep Metals : ICP-MS	4/19/2006 10:15:57 A	21946
0604098-07D	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	E310.1	Alkalinity	4/17/2006 12:26:00 P	R25867
0604098-07E	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	E300	Anions by IC method - Water	4/17/2006	R25875
	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	E300	Anions by IC method - Water	4/15/2006	R25871
	S-S-2-1	4/14/2006 1:55:00 PM	Aqueous	E120.1	Specific Conductance	4/17/2006	CONDW-04/17/06
0604098-08A	Trip Blank 4/14/06	4/14/2006	Aqueous	SW 5030B	Purge and Trap Water GC	4/20/2006 9:12:24 AM	21955

Lab Order:

Client:

Project:

0604098

TRC Environmental Corp. RRC West O'Daniel

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0604098-01A	S-MW-06-1	Aqueous	E150.1	рН	R25858	1	4/17/2006 9:34:00 AM	TITRAT OR_060417 A
0604098-01B	S-MW-06-1	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 11:49:59 AM	GC9_060420A
0604098-01C	S-MW-06-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	1	4/20/2006 3:20:00 PM	ICP-MS_060420A
	S-MW-06-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	2500	4/21/2006 11:00:00 AM	ICP-MS_060421A
	S-MW-06-1	Aqueous	SW6020	Trace Metals: ICP -MS - Water	21946	10	4/21/2006 1:55:00 PM	ICP-MS_060421A
0604098-01D	S-MW-06-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 11:53:00 AM	TITRAT OR_060417 B
0604098-01E	S-MW-06-1	Aqueous	E300	Anions by IC method - Water	R25875	500	4/17/2006 9:43:37 AM	IC_060417A
	S-MW-06-1	Aqueous	E300	Anions by IC method - Water	R25871	10	4/15/2006 2:49:33 PM	IC_060415A
	S-MW-06-1	Aqueous	E300	Anions by IC method - Water	R25871	1	4/15/2006 5:28:56 PM	IC_060415A
	S-MW-06-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604098-02A	S-MW-07-1	Aqueous	E150.1	pH	R25858	1	4/17/2006 9:35:00 AM	TITRAT OR_060417 A
0604098-02B	S-MW-07-1	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 12:08:04 PM	GC9_060420A
0604098-02C	S-MW-07-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	1	4/20/2006 3:24:00 PM	ICP-MS_060420A
	S-MW-07-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	500	4/21/2006 11:16:00 AM	ICP-MS_060421A
	S-MW-07-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	10	4/21/2006 1:59:00 PM	ICP-MS_060421A
0604098-02D	S-MW-07-1	Aqueous	E310.1	Alk alinit y	R25867	1	4/17/2006 11:57:00 AM	TITRAT OR_060417 B
0604098-02E	S-MW-07-1	Aqueous	E300	Anions by IC method - Water	R25875	500	4/17/2006 9:57:49 AM	IC_060417A
	S-MW-07-1	Aqueous	E300	Anions by IC method - Water	R25871	10	4/15/2006 3:03:45 PM	IC_060415A
	S-MW-07-1	Aqueous	E300	Anions by IC method - Water	R25871	1	4/15/2006 5:43:08 PM	IC_060415A
	S-MW-07-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604098-03A	S-WW-53-1	Aqueous	E150.1	pH	R25858	1	4/17/2006 9:36:00 AM	TITRAT OR_060417 A
0604098-03B	S-WW-53-1	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 12:26:04 PM	GC9_060420A
0604098-03C	S-WW-53-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	1	4/20/2006 3:28:00 PM	ICP-MS_060420A
	S-WW-53-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	2500	4/21/2006 11:27:00 AM	ICP-MS_060421A
	S-WW-53-1	Aqueous	SW6020	Trace Metals: ICP -MS - Water	21946	10	4/21/2006 2:03:00 PM	ICP-MS_060421A

Page 1 of 4

_

0604098 Lab Order: Client: TRC Environmental Corp. **Project:**

RRC West O'Daniel

ANALYTICAL DATES REPORT

Sam ple ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0604098-03D	S-WW-53-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 12:01:00 PM	TITRAT OR_060417 B
0604098-03E	S-WW-53-1	Aqueous	E300	Anions by IC method - Water	R25871	1	4/15/2006 5:57:20 PM	IC_060415A
	S-WW-53-1	Aqueous	E300	Anions by IC method - Water	R25871	20	4/15/2006 11:58:12 PM	IC_060415A
	S-WW-53-1	Aqueous	E300	Anions by IC method - Water	R25871	10	4/15/2006 3:17:57 PM	IC_060415A
	S-WW-53-1	Aqueous	E300	Anions by IC method - Water	R25875	500	4/17/2006 10:17:05 AM	IC_060417A
	S-WW-53-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604098-04A	S-MW-05-1	Aqueous	E150.1	рН	R25858	1	4/17/2006 9:37:00 AM	TITRAT OR_060417 A
0604098-04B	S-MW-05-1	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 12:44:07 PM	GC9_060420A
0604098-04C	S-MW-05-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	1	4/20/2006 3:32:00 PM	ICP-MS_060420A
	S-MW-05-1	Aqueous	SW6020	Trace Metals: ICP -MS - Water	21946	2500	4/21/2006 11:32:00 AM	ICP-MS_060421A
	S-MW-05-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	10	4/21/2006 2:08:00 PM	ICP-MS_060421A
0604098-04D	S-MW-05-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 12:09:00 PM	TITRAT OR_060417
0.004.000.045	C MW 05 1		F200		D0 6071	20		B
0604098-04E	S-MW-05-1	Aqueous	E300	Anions by IC method - Water	R25871	20	4/16/2006 12:12:24 AM	IC_060415A
	S-MW-05-1	Aqueous	E300	Anions by IC method - Water	R25875	500	4/17/2006 10:31:17 AM	IC_060417A
	S-MW-05-1	Aqueous	E300	Anions by IC method - Water	R25871	1	4/15/2006 6:11:33 PM	IC_060415A
	S-MW-05-1	Aqueous	E300	Anions by IC method - Water	R25871	10	4/15/2006 3:32:10 PM	IC_060415A
	S-MW-05-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604098-05A	E-S-55-1	Aqueous	E150.1	рН	R25858	1	4/17/2006 9:38:00 AM	TITRAT OR_060417 A
0604098-05B	E-S-55-1	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 3:17:35 PM	GC9_060420A
0604098-05C	E-S-55-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	10	4/21/2006 2:12:00 PM	ICP-MS_060421A
	E-S-55-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	50	4/21/2006 2:38:00 PM	ICP-MS_060421A
	E-S-55-1	Aqueous	SW6020	Trace Metals: ICP -MS - Water	21946	2500	4/21/2006 11:42:00 AM	ICP-MS_060421A
	E-S-55-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	1	4/20/2006 3:37:00 PM	ICP-MS_060420A
0604098-05D	E-S-55-1	Aqueous	E310.1	Alkalinity	R25867	1	4/17/2006 12:17:00 PM	TITRAT OR_060417 B
0604098-05E	E-S-55-1	Aqueous	E300	Anions by IC method - Water	R25871	10	4/15/2006 3:46:22 PM	IC_060415A

Page 2 of 4

=

Lab Order:	0604098
Client:	TRC Environmental Corp.
Project:	RRC West O'Daniel

ANALYTICAL DATES REPORT

Sam ple ID	Client Sample ID	Matrix	Test Num ber	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0604098-05E	E-S-55-1	Aqueous	E300	Anions by IC method - Water	R25871	1	4/15/2006 6:25:45 PM	IC_060415A
	E-S-55-1	Aqueous	E300	Anions by IC method - Water	R25871	20	4/16/2006 12:26:37 AM	IC_060415A
	E-S-55-1	Aqueous	E300	Anions by IC method - Water	R25875	500	4/17/2006 10:47:31 AM	IC_060417A
	E-S-55-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604098-06A	S-S-1-1	Aque o us	E150.1	pH	R25858	1	4/17/2006 9:39:00 AM	TITRAT OR_060417 A
0604098-06B	S-S-1-1	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 1:06:32 PM	GC9_060420A
0604098-06C	S-S-1-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	1	4/20/2006 3:41:00 PM	ICP-MS_060420A
	S-S-1-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	10	4/21/2006 2:16:00 PM	ICP-MS_060421A
	S-S-1-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	2500	4/21/2006 11:57:00 AM	ICP-MS_060421A
0604098-06D	S-S-1-1	Aqueous	E310.1	Alk alinity	R25867	1	4/17/2006 12:22:00 PM	TITRAT OR_060417 B
0604098-06E	S-S-1-1	Aqueous	E300	Anions by IC method - Water	R25871	10	4/15/2006 4:00:35 PM	IC_060415A
	S-S-1-1	Aqueous	E300	Anions by IC method - Water	R25871	1	4/15/2006 6:39:58 PM	IC_060415A
	S-S-1-1	Aqueous	E300	Anions by IC method - Water	R25871	20	4/16/2006 12:40:49 AM	IC_060415A
	S-S-1-1	Aqueous	E300	Anions by IC method - Water	R25875	500	4/17/2006 11:01:4 3 AM	IC_060417A
	S-S-1-1	Aqueous	E120.1	Specific Conductance	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B
0604098-07A	S-S-2-1	Aque ous	E150.1	рН	R25858	1	4/17/2006 9:41:00 AM	TITRAT OR_060417 A
0604098-07B	S-S-2-1	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 1:24:35 PM	GC9_060420A
0604098-07C	S-S-2-1	Aqueous	SW6020	Trace Metals: ICP -MS - Water	21946	2500	4/21/2006 12:01:00 PM	ICP-MS_060421A
	S-S-2-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	21946	10	4/21/2006 2:32:00 PM	ICP-MS_060421A
	S-S-2-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	21946	1	4/20/2006 3:45:00 PM	ICP-MS_060420A
0604098-07D	S-S-2-1	Aque ous	E310.1	Alk alinity	R25867	1	4/17/2006 12:26:00 PM	TITRAT OR_060417 B
0604098-07E	S-S-2-1	Aqueous	E300	Anions by IC method - Water	R25871	10	4/15/2006 4:14:47 PM	IC_060415A
	S-S-2-1	Aqueous	E300	Anions by IC method - Water	R25871	1	4/15/2006 6:54:10 PM	IC_060415A
	S-S-2-1	Aqueous	E300	Anions by IC method - Water	R25875	500	4/17/2006 11:15:56 AM	IC_060417A
	S-S-2-1	Aqueous	E120.1	Specific Conductan ce	CONDW-04/17/06	10	4/17/2006 12:00:00 PM	WC_060417B

Lab Order: Client: Project:	0604098 TRC Environmen RRC West O'Dar	ntal Corp. niel			ANALYTICAL DAT			
Sample ID	Client Sample ID	Matrix	Test Num ber	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0604098-08A	Trip Blank 4/14/06	Aqueous	SW8021B	Volatile Organics by GC	21955	1	4/20/2006 11:31:5 3 AM	GC9_060420A

DHL Ana	OHL Analytical			D	ate:	24-Apr-06		
CLIENT:	TRC Environmental Co	orp.			Client	Sample ID:	S-MW	-06-1
Project:	RRC West O'Daniel					Lab ID:	060409	8-01
Project No:	46513-0000-00002				Coll	ection Date:	4/14/20	006 8:08:00 AM
Lab Order:	0604098					Matrix:	A QUE	OUS
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed
VOLATILEORG	GANICS BY GC		SW 80	21 B				Analyst: KC
Benzene		ND	0.800	2.00		µg/L	1	4/20/2006 11:49:59 A M
Toluene		ND	2.00	6.00		µg/L	1	4/20/2006 11:49:59 A M
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/20/2006 11:49:59 A M
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/20/2006 11:49:59 A M
Surr: a,a,a-T	rifluorotoluene	108	0	87-113		%REC	1	4/20/2006 11:49:59 A M
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analvst: AJR
Barium		521	3.00	10.0		µg/L	1	4/20/2006 3:20:00 PM
Calcium		3810000	250000	250000		µg/L	2500	4/21/2006 11:00:00 A M
Iron		5060	50.0	100		µg/L	1	4/20/2006 3:20:00 PM
Magnesium		975000	250000	250000		µg/L	2500	4/21/2006 11:00:00 A M
Potass ium		34900	1000	1000		µg/L	10	4/21/2006 1:55:00 PM
Sodium		6060000	250000	250000		µg/L	2500	4/21/2006 11:00:00 A M
ANIONS BY IC I	METHOD - WATER		E30)0				Analvst: DEW
Bromide		43.6	3.00	10.0		mg/L	10	4/15/2006 2:49:33 PM
Chloride		17600	150	500		mg/L	500	4/17/2006 9:43:37 AM
Nitrate-N		1.27	0.100	0.500		mg/L	1	4/15/2006 5:28:56 PM
Sulfate		1380	10.0	30.0		mg/L	10	4/15/2006 2:49:33 PM
ALKALINITY			E310	0.1				Analyst: JBC
A lkalinity, Bicar	bonate (As CaCO3)	188	10.0	10.0		mg/L	1	4/17/2006 11:53:00 A M
A Ikalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:53:00 A M
A lkalinity, Hydro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:53:00 A M
A lkalinity, Total	(As CaCO3)	188	10.0	10.0		mg/L	1	4/17/2006 11:53:00 A M
РН			E1 50	0.1				Analyst: JBC
рН		6.39	0	0		pH Units	1	4/17/2006 9:34:00 A M
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analyst: JBC
Specific Condu	ctance	55800	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery out side control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	OHL Analytical						24-Apr-06		
CLIENT: Project:	TRC Environmental C RRC West O'Daniel	orp.			Client	Sample ID: Lab ID:	S-MW 060409	7-07-1 98-02	
Project No:	46513-0000-00002				Colle	ection Date:	4/14/2	006 9:30:00 AM	
Lab Order:	0604098					Matrix:	AQUE	EOUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILEORG	GANICS BY GC		SW 80	21 B				Analyst: KC	
Benzene		ND	0.800	2.00		µg/L	1	4/20/2006 12:08:04 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/20/2006 12:08:04 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/20/2006 12:08:04 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/20/2006 12:08:04 PM	
Surr: a,a,a-T	rifluorotoluene	108	0	87-113		%REC	1	4/20/2006 12:08:04 PM	
TRACE METALS	S: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		373	3.00	10.0		µg/L	1	4/20/2006 3:24:00 PM	
Calcium		1670000	50000	50000		µg/L	500	4/21/2006 11:16:00 A M	
Iron		833	50.0	100		µg/L	1	4/20/2006 3:24:00 PM	
Magnesium		746000	50000	50000		µg/L	500	4/21/2006 11:16:00 A M	
Potass ium		37600	1000	1000		µg/L	10	4/21/2006 1:59:00 PM	
Sodium		1950000	50000	50000		µg/L	500	4/21/2006 11:16:00 A M	
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: DEW	
Bromide		20.1	0.300	1.00		mg/L	1	4/15/2006 5:43:08 PM	
Chloride		7540	150	500		mg/L	500	4/17/2006 9:57:49 A M	
Nitrate-N		ND	0.100	0.500		mg/L	1	4/15/2006 5:43:08 PM	
Sulfate		480	10.0	30.0		mg/L	10	4/15/2006 3:03:45 PM	
ALKALINITY			E310	0.1				Analyst: JBC	
Alkalinity, Bicar	bonate (As CaCO3)	119	10.0	10.0		mg/L	1	4/17/2006 11:57:00 A M	
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:57:00 A M	
A lkalin ity, Hy dro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 11:57:00 A M	
A lkalinity, Total	(As CaCO3)	119	10.0	10.0		mg/L	1	4/17/2006 11:57:00 A M	
РН			E1 50	0.1				Analyst: JBC	
рН		6.73	0	0		pH Units	1	4/17/2006 9:35:00 A M	
SPECIFIC CON	DUCTANCE		E1 20	D.1				Analyst: JBC	
Specific Condu	ctance	24400	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits				
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative				
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)				
	DF- Dilution Factor	SQL - Sample Quantitation Limit				
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern				
		4				

Page 2 of 8

DHL Analytical						Date:		24-Apr-06	
CLIENT: Project:	TRC Environmental C	orp.			Client	Sample ID:	S-WW	-53-1	
Project.	46512 0000 00002				Call				
Project No:	40515-0000-00002				Coll	ection Date:	4/14/20	006 10:05:00 AM	
Lab Order:	0604098					Matrix:	AQUE	OUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORG	ANICS BY GC		SW 80	21 B				Analyst: KC	
Benzene		ND	0.800	2.00		µg/L	1	4/20/2006 12:26:04 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/20/2006 12:26:04 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/20/2006 12:26:04 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/20/2006 12:26:04 PM	
Surr: a,a,a-Tri	ifluorotoluene	108	0	87-113		%REC	1	4/20/2006 12:26:04 PM	
TRACE METALS	: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		199	3.00	10.0		µg/L	1	4/20/2006 3:28:00 PM	
Calcium		3560000	250000	250000		µg/L	2500	4/21/2006 11:27:00 A M	
Iron		9930	50.0	100		µg/L	1	4/20/2006 3:28:00 PM	
Magnesium		1280000	250000	250000		µg/L	2500	4/21/2006 11:27:00 A M	
Potassium		56500	1000	1000		µg/L	10	4/21/2006 2:03:00 PM	
Sodium		8890000	250000	250000		µg/L	2500	4/21/2006 11:27:00 A M	
ANIONS BY IC METHOD - WATER			E30	00				Analyst: DEW	
Bromide		54.7	3.00	10.0		mg/L	10	4/15/2006 3:17:57 PM	
Chloride		21000	150	500		mg/L	500	4/17/2006 10:17:05 A M	
Nitrate-N		19.8	0.100	0.500		mg/L	1	4/15/2006 5:57:20 PM	
Sulfate		2090	20.0	60.0		mg/L	20	4/15/2006 11:58:12 PM	
ALKALINITY		E310.1					Analyst: JBC		
A lkalinity, Bicarb	onate (As CaCO3)	70.5	10.0	10.0		mg/L	1	4/17/2006 12:01:00 PM	
Alkalinity, Carbo	nate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:01:00 PM	
A lkalinity, Hydro	xide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:01:00 PM	
Alkalinity, Total (As CaCO3)	70.5	10.0	10.0		mg/L	1	4/17/2006 12:01:00 PM	
РН			E1 50	0.1				Analyst: JBC	
pН		6.45	0	0		pH Units	1	4/17/2006 9:36:00 A M	
SPECIFIC COND	UCTANCE		E1 20	0.1				Analyst: JBC	
Specific Conduc	tance	67400	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits					
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative					
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moist ure and sample s					
	DF- Dilution Factor	SQL - Sample Quantitation Limit					
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern					

DHL Analytical						Date:		24-Apr-06	
CLIENT: Project: Project No:	TRC Environmental C RRC West O'Daniel 46513-0000-00002	orp.			Client Colle	Sample ID: Lab ID: ection Date:	S-MW 060409 4/14/20	-05-1 8-04 106 11:40:00 AM	
Lab Order:	0604098	Matrix: A QUEOUS						OUS	
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORG	ANICS BY GC		SW 80)21 B				Analyst: KC	
Benzene		ND	0.800	2.00		µg/L	1	4/20/2006 12:44:07 PM	
Toluene		ND	2.00	6.00		µg/L	1	4/20/2006 12:44:07 PM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/20/2006 12:44:07 PM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/20/2006 12:44:07 PM	
Surr: a,a,a-Tri	ifluorotoluene	110	0	87-113		%REC	1	4/20/2006 12:44:07 PM	
TRACE METALS	: ICP-MS - WATER		SW 6	020				Analyst: AJR	
Barium		497	3.00	10.0		µg/L	1	4/20/2006 3:32:00 PM	
Calcium		2930000	250000	250000		µg/L	2500	4/21/2006 11:32:00 A M	
Iron		5500	50.0	100		µg/L	1	4/20/2006 3:32:00 PM	
Magnesium		730000	250000	250000		µg/L	2500	4/21/2006 11:32:00 A M	
Potass ium		22300	1000	1000		µg/L	10	4/21/2006 2:08:00 PM	
Sodium		9130000	250000	250000		µg/L	2500	4/21/2006 11:32:00 A M	
ANIONS BY IC M	IETHOD - WATER		E30	00				Analyst: DEW	
Bromide		44.3	3.00	10.0		mg/L	10	4/15/2006 3:32:10 PM	
Chloride		17100	150	500		mg/L	500	4/17/2006 10:31:17 A M	
Nitrate-N		ND	0.100	0.500		mg/L	1	4/15/2006 6:11:33 PM	
Sulfate		1710	20.0	60.0		mg/L	20	4/16/2006 12:12:24 A M	
ALKALINITY			E310	0.1				Analyst: JBC	
A lkalinity, Bicarb	onate (As CaCO3)	264	10.0	10.0		mg/L	1	4/17/2006 12:09:00 PM	
A Ikalinity, Carbo	nate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:09:00 PM	
A lkalinity, Hydro:	xide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:09:00 PM	
A lkalinity, Total (As CaCO3)	264	10.0	10.0		mg/L	1	4/17/2006 12:09:00 PM	
РН			E1 50	0.1				Analyst: JBC	
рН		6.71	0	0		pH Units	1	4/17/2006 9:37:00 A M	
SPECIFIC COND	UCTANCE		E1 20	0.1				Analyst: JBC	
Specific Conduc	tance	56800	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM	

-						
Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits				
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative				
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)				
	DF- Dilution Factor	SQL - Sample Quantitation Limit				
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern				

Page 4 of 8
DHL Analy	tical				Date: 2		24-Apr	r-06
CLIENT: Project:	TRC Environmental C RRC West O'Daniel	Corp.			Client	Sample ID: Lab ID:	E-S-55- 060409	-1 8-05
Project No:	46513-0000-00002				Coll	ection Date:	4/14/20	006 12:45:00 PM
Lab Order:	0604098				Corr	Matrix:	A QUE	OUS
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGA	NICS BY GC		SW 80	21 B				Analyst: KC
Benzene		15.1	0.800	2.00		µg/L	1	4/20/2006 3:17:35 PM
Toluene		14.2	2.00	6.00		µg/L	1	4/20/2006 3:17:35 PM
Ethylbenzene		16.6	2.00	6.00		µg/L	1	4/20/2006 3:17:35 PM
Xylenes, Total		9.57	3.00	9.00		µg/L	1	4/20/2006 3:17:35 PM
Surr: a,a,a-Trif	fluorotoluene	110	0	87-113		%REC	1	4/20/2006 3:17:35 PM
TRACE METALS:	ICP-MS - WATER		SW 6	020				Analyst: AJR
Barium		108	30.0	100		µg/L	10	4/21/2006 2:12:00 PM
Calcium		2320000	250000	250000		µg/L	2500	4/21/2006 11:42:00 A M
Iron		707	50.0	100		µg/L	1	4/20/2006 3:37:00 PM
Magnesium		759000	250000	250000		µg/L	2500	4/21/2006 11:42:00 A M
Potassium		106000	5000	5000		µg/L	50	4/21/2006 2:38:00 PM
Sodium		15300000	250000	250000		µg/L	2500	4/21/2006 11:42:00 A M
ANIONS BY IC M	ETHOD - WATER		E30	00				Analyst: DEW
Bromide		62.3	3.00	10.0		mg/L	10	4/15/2006 3:46:22 PM
Chloride		22500	150	500		mg/L	500	4/17/2006 10:47:31 A M
Nitrate-N		ND	0.100	0.500		mg/L	1	4/15/2006 6:25:45 PM
Sulfate		2210	20.0	60.0		mg/L	20	4/16/2006 12:26:37 AM
ALKALINITY			E310	0.1				Analyst: JBC
A Ikalin ity, Bic arbo	onate (As CaCO3)	287	10.0	10.0		mg/L	1	4/17/2006 12:17:00 PM
Alkalinity, Carbon	nate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:17:00 PM
A lkalin ity, Hy drox	(ide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:17:00 PM
Alkalinity, Total (A	As CaCO3)	287	10.0	10.0		mg/L	1	4/17/2006 12:17:00 PM
РН			E1 50	0.1				Analyst: JBC
рН		6.75	0	0		pH Units	1	4/17/2006 9:38:00 A M
SPECIFIC CONDU	UCTANCE		E1 20	D.1				Analvst: JBC
Specific Conduct	ance	77400	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery out side control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical				D	ate:	24-Apr	06
CLIENT: Project:	TRC Environmental C RRC West O'Daniel	orp.			Client	Sample ID: Lab ID:	S-S-1-1 060409	8-06
Project No:	46513-0000-00002				Colle	ection Date:	4/14/20	06 1:10:00 PM
Lab Order:	0604098					Matrix:	AQUE	OUS
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed
VOLATILEORG	GANICS BY GC		SW 80)21 B				Analyst: KC
Benzene		ND	0.800	2.00		µg/L	1	4/20/2006 1:06:32 PM
Toluene		ND	2.00	6.00		µg/L	1	4/20/2006 1:06:32 PM
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/20/2006 1:06:32 PM
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/20/2006 1:06:32 PM
Surr: a,a,a-T	rifluorotoluene	107	0	87-113		%REC	1	4/20/2006 1:06:32 PM
TRACE METAL	S: ICP-MS - WATER		SW 6	020				Analyst: AJR
Barium		205	30.0	100		µg/L	10	4/21/2006 2:16:00 PM
Calcium		3590000	250000	250000		µg/L	2500	4/21/2006 11:57:00 A M
Iron		3050	50.0	100		µg/L	1	4/20/2006 3:41:00 PM
Magnesium		1070000	250000	250000		µg/L	2500	4/21/2006 11:57:00 A M
Potass ium		34900	1000	1000		µg/L	10	4/21/2006 2:16:00 PM
Sodium		9780000	250000	250000		µg/L	2500	4/21/2006 11:57:00 A M
ANIONS BY IC I	METHOD - WATER		E30	00				Analyst: DEW
Bromide		52.0	3.00	10.0		mg/L	10	4/15/2006 4:00:35 PM
Chloride		20200	150	500		mg/L	500	4/17/2006 11:01:43 AM
Nitrate-N		ND	0.100	0.500		mg/L	1	4/15/2006 6:39:58 PM
Sulfate		1830	20.0	60.0		mg/L	20	4/16/2006 12:40:49 A M
ALKALINITY			E310	0.1				Analyst: JBC
A Ikalin ity, Bic ar	bonate (As CaCO3)	111	10.0	10.0		mg/L	1	4/17/2006 12:22:00 PM
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:22:00 PM
A lkalinity, Hydro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:22:00 PM
A lkalinity, Total	(As CaCO3)	111	10.0	10.0		mg/L	1	4/17/2006 12:22:00 PM
PH			E1 50	0.1				Analyst: JBC
рН		7.23	0	0		pH Units	1	4/17/2006 9:39:00 A M
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analyst: JBC
Specific Condu	ictance	63400	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - T PH pattern not Gas or Diesel Range Pattern

Page 6 of 8

DHL Ana	ytical				D	Date:		r-06
CLIENT:	TRC Environmental C	orp.			Client	Sample ID:	S-S-2-1	
Project:	RRC West O'Daniel					Lab ID:	060409	8-07
Project No:	46513-0000-00002				Coll	ection Date:	4/14/20	006 1:55:00 PM
Lab Order:	0604098					Matrix:	A QUE	OUS
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORG	GANICS BY GC		SW 80)21 B				Analyst: KC
Benzene		ND	0.800	2.00		µg/L	1	4/20/2006 1:24:35 PM
Toluene		ND	2.00	6.00		µg/L	1	4/20/2006 1:24:35 PM
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/20/2006 1:24:35 PM
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/20/2006 1:24:35 PM
Surr: a,a,a-T	rifluorotoluene	109	0	87-113		%REC	1	4/20/2006 1:24:35 PM
TRACE METALS	S: ICP-MS - WATER		SW 6	020				Analyst: AJR
Barium		216	30.0	100		µg/L	10	4/21/2006 2:32:00 PM
Calcium		3240000	250000	250000		µg/L	2500	4/21/2006 12:01:00 PM
Iron		1790	50.0	100		µg/L	1	4/20/2006 3:45:00 PM
Magnesium		1050000	250000	250000		µg/L	2500	4/21/2006 12:01:00 PM
Potassium		14600	1000	1000		µg/L	10	4/21/2006 2:32:00 PM
Sodium		5400000	250000	250000		µg/L	2500	4/21/2006 12:01:00 PM
ANIONS BY IC I	METHOD - WATER		E30)0				Analyst: DEW
Bromide		37.8	3.00	10.0		mg/L	10	4/15/2006 4:14:47 PM
Chloride		14800	150	500		mg/L	500	4/17/2006 11:15:56 A M
Nitrate-N		ND	0.100	0.500		mg/L	1	4/15/2006 6:54:10 PM
Sulfate		1060	10.0	30.0		mg/L	10	4/15/2006 4:14:47 PM
ALKALINITY			E310	0.1				Analyst: JBC
A Ikalinity, Bicar	bonate (As CaCO3)	83.9	10.0	10.0		mg/L	1	4/17/2006 12:26:00 PM
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:26:00 PM
A Ikalinity, Hydro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/17/2006 12:26:00 PM
A Ikalinity, Total	(As CaCO3)	83.9	10.0	10.0		mg/L	1	4/17/2006 12:26:00 PM
РН			E1 5	0.1				Analyst: JBC
pН		7.13	0	0		pH Units	1	4/17/2006 9:41:00 A M
SPECIFIC CON	DUCTANCE		E1 20	0.1				Analyst: JBC
Specific Condu	ctance	46200	100	100		µmhos/cm	10	4/17/2006 12:00:00 PM

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery out side control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjust ed for moist ure and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - T PH pattern not Gas or Diesel Range Pattern

Page 7 of 8

TRC Environmental Corp.				Client	Sample ID:	Trip B	lank 4/14/06
RRC West O'Daniel					Lab ID:	060409	98-08
46513-0000-00002		Collection Date: 4/14/2006					
0604098					Matrix:	A QUE	EOUS
Analyses		SQL	RL	Qual	Units	DF	Date Analyzed
NICS BY GC		SW 80	21 B				Analyst: KC
	ND	0.800	2.00		µg/L	1	4/20/2006 11:31:53 AM
	ND	2.00	6.00		µg/L	1	4/20/2006 11:31:53 A M
	ND	2.00	6.00		µg/L	1	4/20/2006 11:31:53 A M
Xylenes, Total		3.00	9.00		µg/L	1	4/20/2006 11:31:53 A M
Surr: a,a,a-Trifluorotoluene		0	87-113		%REC	1	4/20/2006 11:31:53 A M
	TRC Environmental Corp. RRC West O'Daniel 46513-0000-00002 0604098	TRC Environmental Corp. RRC West O'Daniel 46513-0000-00002 0604098 Result NICS BY GC ND ND ND ND ND 107	TRC Environmental Corp. RRC West O'Daniel 46513-0000-00002 0604098 Result SQL NICS BY GC SW 80 ND 0.800 ND 2.00 ND 3.00 Jorotoluene 107 0	TRC Environmental Corp. RRC West O'Daniel 46513-0000-00002 0604098 Result SQL RL NICS BY GC SW 8021 B ND 0.800 2.00 ND 2.00 6.00 ND 3.00 9.00 Jorotoluene 107 0 87-113	TRC Environmental Corp. Client RRC West O'Daniel 46513-0000-00002 Colle 0604098 Result SQL RL Qual NICS BY GC SW 8021 B ND 0.800 2.00 ND 0.800 2.00 ND 2.00 6.00 ND 3.00 9.00 9.00 107 0 87-113	TRC Environmental Corp. Client Sample ID: RRC West O'Daniel Lab ID: 46513-0000-00002 Collection Date: 0604098 Matrix: Result SQL RL Qual Units NICS BY GC SW 8021 B ND 0.800 2.00 µg/L ND 0.800 2.00 µg/L ND 2.00 6.00 µg/L ND 3.00 9.00 µg/L uorotoluene 107 0 87-113 %REC	TRC Environmental Corp. Client Sample ID: Trip B RRC West O'Daniel Lab ID: 060409 46513-0000-00002 Collection Date: 4/14/2 0604098 Matrix: A QUE Result SQL RL Qual Units DF NICS BY GC SW 8021 B ND 0.800 2.00 µg/L 1 ND 0.800 2.00 6.00 µg/L 1 ND 3.00 9.00 µg/L 1 Uorotoluene 107 0 87-113 %REC 1

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moist ure and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	See Final Page of Report for MQLs and MDLs	E - TPH pattern not Gas or Diesel Range Pattern

Page 8 of 8

CLIENT: TRC Environmental Corp. Work Order: 0604098

ANALYTICAL QC SUMMARY REPORT

RRC West O'Daniel

Project:	RRC West	t O'Daniel					RunIl	D: (GC9_060	420A		
Sample ID	LCS-21955	Batch ID:	21955		TestNo	: SW	8021 B		Units:	µg/L		
SampType:	LCS	Run ID:	GC9_0	60420 A	Analys	is Date: 4/20	0/2006 10:24	4:35 A	Prep Date	e: 4/20 /	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	it HighLimit	% RPD	RPDLimit	Qual
Benzene			53.3	2.00	50.00	0	107	81	125			
Toluene			53.3	6.00	50.00	0	107	84	123			
Eth ylbenz ei	ne		52.4	6.00	50.00	0	105	83	119			
Xylenes, To	otal		161	9.00	150.0	0	107	81	117			
Surr: a,a	,a-Trifluorotoluene		221		200.0		111	87	113			
Sample ID	MB-21955	Batch ID:	21955		TestNo	: SW	8021 B		Units:	µg/L		
SampType:	MBLK	Run ID:	GC9_0	60420 A	Analys	is Date: 4/20	0/2006 10:42	2:42 A	Prep Date	e: 4/20 /	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	it HighLimit	% RPD	RPDLimit	Qual
Benzene			ND	2.00								
Toluene			ND	6.00								
Eth ylbenz ei	ne		ND	6.00								
Xylenes, To	otal		ND	9.00								
Surr: a,a	,a-Trifluorotoluene		214		200.0		107	87	113			
Sample ID	0604098-01BM SD	Batch ID:	21955		TestNo	: SW	8021 B		Units:	µg/L		
SampType:	MSD	Run ID:	GC9_0	60420 A	Analys	is Date: 4/20)/2006 2:59:	30 PM	Prep Date	e: 4/20 /	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	it HighLimit	% RPD	RPDLimit	Qual
Benzene			52.1	2.00	50.00	0	104	81	125	1.88	20	
Toluene			52.3	6.00	50.00	0	105	84	123	2.80	20	
Eth ylbenz ei	ne		51.0	6.00	50.00	0	102	83	119	3.57	20	
Xylenes, To	otal		156	9.00	150.0	0	104	81	117	4.10	20	
Surr: a,a	,a-Trifluorotoluene		221		200.0		111	87	113	0	0	
Sample ID	0604098-01BM S	Batch ID:	21955		TestNo	: SW	8021 B		Units:	µg/L		
SampType:	MS	Run ID:	GC9_0	60420 A	Analys	is Date: 4/20)/2006 3:52:	20 PM	Prep Date	e: 4/20 /	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Lin	it HighLimit	% RPD	RPDLimit	Qual
Benzene			53.1	2.00	50.00	0	106	81	125			
Toluene			53.8	6.00	50.00	0	108	84	123			
Ethylbenzer	ne		52.8	6.00	50.00	0	106	83	119			
Xylenes, To	otal		162	9.00	150.0	0	108	81	117			
Surr: a,a	,a-Trifluorotoluene		218		200.0		109	87	113			

Qualifiers:

- В Analyte detected in the associated Method Blank J Analyte detected between MDL and RL
- DF **Dilution Factor**

MDL Method Dection Limit

Page 1 of 17

ND Not Detected at the Method Detection Limit

RL Report ing Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604098

RunID: GC9_060420A

Sample ID	ICV-060420	Batch ID:	R2592	8	TestNo	SW	3021 B		Units	ua/l		
SampType:		Run ID:	GC9 0	60420 A	Analysi	is Date: 4/20	/2006 10·06	5·23 A	Pren Date	мал	-	
Camp Type:		ran b.	000_0		, mary e	o Dato. 1 /20			Trop Date			
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Benzene			103	2.00	100.0	0	103	85	115			
Toluene			105	6.00	100.0	0	105	85	115			
Eth ylbenz er	ne		104	6.00	100.0	0	104	85	115			
Xylenes, To	otal		315	9.00	300.0	0	105	85	115			
Surr: a,a,	a-Trifluorotoluene		218		200.0		109	87	113			
Sample ID	CCV1-060420	Batch ID:	R2592	8	TestNo:	SW	3021 B		Units:	µg/l	_	
SampType:	ccv	Run ID:	GC9_0	60420 A	Analysi	is Date: 4/20	/2006 2:00:	45 PM	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Benzene			52.8	2.00	50.00	0	106	85	115			
Toluene			52.4	6.00	50.00	0	105	85	115			
Eth ylbenz er	ne		51.6	6.00	50.00	0	103	85	115			
Xylenes, To	otal		157	9.00	150.0	0	105	85	115			
Surr: a,a,	a-Trifluorotoluene		221		200.0		111	87	113			
Sample ID	CCV2-060420	Batch ID:	R2592	8	TestNo:	SW	3021 B		Units:	µg/l	_	
SampType:	CCV	Run ID:	GC9_0	60420A	Analysi	is Date: 4/20	/2006 4:10:	20 PM	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Benzene			52.5	2.00	50.00	0	105	85	115			
Toluene			52.8	6.00	50.00	0	106	85	115			
Eth ylbenz er	ne		51.4	6.00	50.00	0	103	85	115			
Xylenes, To	otal		158	9.00	150.0	0	105	85	115			
Surr: a,a,	a-Trifluorotoluene		218		200.0		109	87	113			

Qualifiers:

B Analyte detected in the associated Method Blank

DF Dilution Factor

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J

MDL Method Dection Limit

R RPD outside accepted control limits

Page 2 of 17

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604098

RunID: ICP-MS_060420A

Sample ID	MB-21946	Batch ID:	21946		TestNo:	SW	/6020		Units:	µg/L		
SampType:	MBLK	Run ID:	ICP-M	S_060420A	Analysi	s Date: 4/2	0/2006 12:56	:00 P	Prep Date:	4/19/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit	% RPD	RPDLimit	Qual
Barium			ND	10.0								
Calcium			ND	100								
Iron			ND	100								
Potassium			ND	100								
Sample ID	0604110-02A SD	Batch ID:	21946		TestNo:	SW	/6020		Units:	µg/L		
SampType:	SD	Run ID:	ICP-M	S_060420A	Analysi	s Date: 4/2	0/2006 1:04:0	00 PM	Prep Date:	4/19/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			4.47	50.0	0	4.692				4.79	10	
Calcium			232000	500	0	225400				3.08	10	
Iron			882	500	0	758.5				15.1	10	R
Potassium			5560	500	0	5587				0.484	10	
Sample ID	LCS-21946	Batch ID:	21946		TestNo:	SW	/6020		Units:	µg/L		
SampType:	LCS	Run ID:	ICP-M	S_060420A	Analysi	s Date: 4/2	0/2006 1:17:0	00 PM	Prep Date:	4/19/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			188	10.0	200.0	0	94.2	80	120			
Calcium			4960	100	5000	0	99.2	80	120			
Iron			4720	100	5000	0	94.5	80	120			
Potassium			4860	100	5000	0	97.2	80	120			
Sample ID	LCSD-21946	Batch ID:	21946		TestNo:	SM	/6020		Units:	µg/L		
SampType:	LCSD	Run ID:	ICP-M	S_060420A	Analysi	s Date: 4/2	0/2006 1:21:0	00 PM	Prep Date:	4/19/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Barium			185	10.0	200.0	0	92.6	80	120	1.77	15	
Calcium			4860	100	5000	0	97.2	80	120	2.06	15	
Iron			4660	100	5000	0	93.1	80	120	1.45	15	
Potassium			4700	100	5000	0	94.1	80	120	3.24	15	
Sample ID	0604110-02A M S	Batch ID:	21946		TestNo:	SW	/6020		Units:	µg/L		
SampType:	MS	Run ID:	ICP-M	S_060420A	Analysi	s Date: 4/2	0/2006 1:25:0	00 PM	Prep Date:	4/19/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	tHighLimit	% RPD	RPDLimit	Qual
Barium			200	10.0	200.0	4.692	97.9	80	120			
Calcium			230000	100	5000	225400	102	80	120			
Iron			5160	100	5000	758.5	88.1	80	120			
Potassium			10100	100	5000	5587	89.7	80	120			

Qualifiers: B Analy

J

Analyte detected in the associated Method Blank Analyte detected between MDL and RL DF Dilution Factor MDL Method Dection Limit

Page 3 of 17

ND Not Detected at the Method Detection Limit

RL Reporting Limit

R RPD outside accepted control limitsS Spike Recovery outside control limits

CLIENT: Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

RRC West O'Daniel **Project:**

0604098

ICP-MS_060420A **RunID:**

Sample ID	0604110-02A M SD	Batch ID:	21946		TestNo	: SW	/6020		Units:	μg/L	-	
SampType:	MSD	Run ID:	ICP-MS	6_060420A	Analys	sis Date: 4/2	0/2006 1:29:	00 PM	Prep Date	e: 4/19	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			199	10.0	200.0	4.692	97.0	80	120	0.902	15	
Calcium			229000	100	5000	225400	78.0	80	120	0.522	15	S
Iron			5010	100	5000	758.5	85.0	80	120	3.09	15	
Potassium			10200	100	5000	5587	93.3	80	120	1.77	15	
Sample ID	0604110-02A PDS	Batch ID:	21946		TestNo	: SW	/6020		Units:	µg/L		
SampType:	PDS	Run ID:	ICP-MS	6_060420A	Analys	sis Date: 4/2	0/2006 1:33:	00 PM	Prep Date	e: 4/19	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			198	10.0	200	4.69	96.7	75	125			
Calcium			229000	100	5000	225000	68.0	75	125			S
Iron			5010	100	5000	758	85.0	75	125			
Potassium			10700	100	5000	5590	102	75	125			

Qualifiers:

В

Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL Not Detected at the Method Detection Limit
- ND
- RL Report ing Limit

DF Dilution Factor

MDL Method Dection Limit

RPD outside accepted control limits

Page 4 of 17

S Spike Recovery outside control limits

R

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604098

RunID: ICP-MS_060420A

Sample ID	ICV 1-060420	Batch ID:	R25926		TestNo:	SM	/6020		Units:	µg/L	-	
SampType:	ICV	Run ID:	ICP-MS	_060420A	Analysi	s Date: 4/2	20/2006 12:32	:00 P	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			96.8	10.0	100.0	0	96.8	90	110			
Calcium			2600	100	2500	0	104	90	110			
Iron			2750	100	2500	0	110	90	110			
Potassium			2400	100	2500	0	96.2	90	110			
Sample ID	CCV1-060420	Batch ID:	R25926		TestNo:	SM	/6020		Units:	µg/L	-	
SampType:	CCV	Run ID:	ICP-MS	_060420A	Analysi	s Date: 4/2	0/2006 2:33:0	0 PM	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			200	10.0	200.0	0	99.8	90	110			
Calcium			5140	100	5000	0	103	90	110			
Iron			4960	100	5000	0	99.2	90	110			
Potassium			5320	100	5000	0	106	90	110			
Sample ID	CCV2-060420	Batch ID:	R25926		TestNo:	SM	/6020		Units:	µg/L		
SampType:	CCV	Run ID:	ICP-MS	_060420A	Analysi	s Date: 4/2	20/2006 4:04:0	0 PM	Prep Date	ə:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Barium			191	10.0	200.0	0	95.6	90	110			
Iron			4980	100	5000	0	99.6	90	110			

Qualifiers:

- B Analyte detected in the associated Method Blank
- DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

- MDL Method Dection Limit
 - R RPD outside accepted control limits

Page 5 of 17

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp. 0604098

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

RunID: ICP-MS_060421A

Sample ID	MB-21946	Batch ID:	21946		TestNo:	SW6	6020		Units:	μg/L		
SampType:	MBLK	Run ID:	ICP-MS	6_060421A	Analysi	s Date: 4/21	/2006 10:41	:00 A	Prep Date	: 4/19/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	%RPD R	PDLimit	Qual
Magnesium			ND	100								
Sodium			ND	100								
Sample ID	0604110-02A SD	Batch ID:	21946		TestNo:	SW6	6020		Units:	μg/L		
SampType:	SD	Run ID:	ICP-MS	6_060421A	Analysi	s Date: 4/21	/2006 10:52	2:00 A	Prep Date	: 4/19/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD R	PDLimit	Qual
Magnesium			173000	250000	0	165200				4.82	10	
Sodium			801000	250000	0	822500				2.68	10	
Sample ID	LCS-21946	Batch ID:	21946		TestNo:	SW6	6020		Units:	µg/L		
SampType:	LCS	Run ID:	ICP-MS	6_060421A	Analysi	s Date: 4/21	/2006 12:51	:00 P	Prep Date	: 4/19/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD R	PDLimit	Qual
Magnesium			5280	100	5000	0	106	80	120			
Sodium			5240	100	5000	0	105	80	120			
Sample ID	LCSD-21946	Batch ID:	21946		TestNo:	SW6	6020		Units:	μg/L		
SampType:	LCSD	Run ID:	ICP-MS	6_060421A	Analysi	s Date: 4/21	/2006 12:55	5:00 P	Prep Date	: 4/19/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD R	PDLimit	Qual
Magnesium			5280	100	5000	0	106	80	120	0.114	15	
Sodium			5340	100	5000	0	107	80	120	1.81	15	
Sample ID	0604110-02A M S	Batch ID:	21946		TestNo:	SW6	6020		Units:	μg/L		
SampType:	MS	Run ID:	ICP-MS	6_060421A	Analysi	s Date: 4/21	/2006 12:59	:00 P	Prep Date	: 4/19/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD R	PDLimit	Qual
Magnesium			202000	50000	5000	165200	732	80	120			S
Sodium			952000	50000	5000	822500	2600	80	120			S
Sample ID	0604110-02A PDS	Batch ID:	21946		TestNo:	SW6	6020		Units:	µg/L		
SampType:	PDS	Run ID:	ICP-MS	6_060421A	Analysi	s Date: 4/21	/2006 1:07:	00 PM	Prep Date	: 4/19/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD R	PDLimit	Qual
Magnesium			2820000	50000	2500000	165000	106	75	125			
Sodium			3440000	50000	2500000	822000	105	75	125			

Qualifiers:

- B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL
- DF Dilution Factor

MDL Method Dection Limit

Page 6 of 17

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

- R RPD outside accepted control limitsS Spike Recovery outside control limits
- 33

CLIENT: TRC Environmental Corp. Work Order: 0604098

Work Order: 0604098

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

RunID: ICP-MS_060421A

Sample ID	0604110-02A M SD	Batch ID:	21946		TestNo:	SI	W6020		Units:	µg/L	-	
SampType:	MSD	Run ID:	ICP-MS_	_060421A	Analysi	s Date: 4/	21/2006 1:11:0	0 PM	Prep Date	e: 4/19	/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	HighLimit	% RPD	RPDLimit	Qual
Magnesium		1	194000	50000	5000	165200	573	80	120	4.02	15	S
Sodium		8	372000	50000	5000	822500	980	80	120	8.88	15	S

Qualifiers:

В

Analyte detected in the associated Method Blank

DF Dilution Factor

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

- MDL Method Dection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 7 of 17

34

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

0604098

RunID: ICP-MS_060421A

Sample ID	ICV 1-060421	Batch ID:	R25940		TestNo	: SV	N6020		Units:	µg/L	-	
SampType:	ICV	Run ID:	ICP-MS	6_060421A	Analys	sis Date: 4/2	21/2006 10:25	5:00 A	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Barium			96.8	10.0	100.0	0	96.8	90	110			
Calcium			2590	100	2500	0	104	90	110			
Magnesium			2600	100	2500	0	104	90	110			
Potassium			2600	100	2500	0	104	90	110			
Sodium			2520	100	2500	0	101	90	110			
Sample ID	CCV1-060421	Batch ID:	R25940		TestNo	: SV	V6020		Units:	µg/L	-	
SampType:	CCV	Run ID:	ICP-MS	6_060421A	Analys	is Date: 4/2	21/2006 12:31	I:00 P	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Calcium			4900	100	5000	0	97.9	90	110			
Magnesium			5230	100	5000	0	105	90	110			
Sodium			5290	100	5000	0	106	90	110			
Sample ID	CCV2-060421	Batch ID:	R25940		TestNo	: SV	N6020		Units:	µg/L	-	
SampType:	CCV	Run ID:	ICP-MS	6_060421A	Analys	is Date: 4/2	21/2006 1:19:	00 PM	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Barium			196	10.0	200.0	0	98.0	90	110			
Magnesium			5240	100	5000	0	105	90	110			
Potassium			4840	100	5000	0	96.8	90	110			
Sodium			5340	100	5000	0	107	90	110			
Sample ID	CCV3-060421	Batch ID:	R25940		TestNo	: SV	N6020		Units:	µg/L	-	
SampType:	CCV	Run ID:	ICP-MS	6_060421A	Analys	is Date: 4/2	21/2006 2:54:	00 PM	Prep Date	e:		
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
Barium			197	10.0	200.0	0	98.7	90	110			
Potassium			5070	100	5000	0	101	90	110			

Qualifiers:

- B Analyte detected in the associated Method Blank
- DF Dilution Factor

Page 8 of 17

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

- MDL Method Dection Limit
 - R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project. **RRC** West O'Daniel

0604098

Project:	RRC West	O'Daniel					RunII): I	C_06041	5A	
Sample ID	ICV-060415	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	ICV	Run ID:	IC_06041	5A	Analysis	8 Date: 4/15/2	006 1:49:	37 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit '	% RPD RPDLimit	Qual
Bromide			50.3	1.00	50.00	0	101	90	110		
Nitrate-N			12.7	0.500	12.50	0	101	90	110		
Sulfate			75.3	3.00	75.00	0	100	90	110		
Sample ID	MB-060415	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC_06041	5A	Analysis	s Date: 4/15/2	006 2:06:	55 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit '	% RPD RPDLimit	Qual
Bromide			ND	1.00							
Nitrate-N			ND	0.500							
Sulfate			ND	3.00							
Sample ID	LCS-060415	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC_06041	5A	Analysis	s Date: 4/15/2	006 2:21:	07 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit '	% RPD RPDLimit	Qual
Bromide			19.8	1.00	20.00	0	99.1	90	110		
Nitr ate-N			4.96	0.500	5.000	0	99.1	90	110		
Sulfate			29.5	3.00	30.00	0	98.4	90	110		
Sample ID	LCSD-060415	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC_06041	5A	Analysis	8 Date: 4/15/2	006 2:35:	20 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit '	% RPD RPDLimit	Qual
Bromide			19.8	1.00	20.00	0	99.1	90	110	0 20	
Nitrate-N			5.00	0.500	5.000	0	100	90	110	0.892 20	
Sulfate			29.5	3.00	30.00	0	98.3	90	110	0.0915 20	
Sample ID	0604098-07EMS	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC_06041	5A	Analysis	B Date: 4/15/20	006 4:32:	05 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit '	% RPD RPDLimit	Qual
Bromide			215	10.0	200.0	30.25	92.4	90	110		
Nitrate-N			49.8	5.00	50.00	0	99.6	90	110		
Sulfate			690	30.0	300.0	851.3	-53.8	90	110		S
Sample ID	0604098-07E M SD	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	MSD	Run ID:	IC_06041	5A	Analysis	B Date: 4/15/20	006 4:46:	18 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit '	% RPD RPDLimit	Qual

Qualifiers:

В Analyte detected in the associated Method Blank J Analyte detected between MDL and RL

DF Dilution Factor MDL Method Dection Limit

Page 9 of 17

ND Not Detected at the Method Detection Limit

RL Report ing Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

RRC West O'Daniel **Project:**

0604098

IC_060415A **RunID:**

0604098-07E M SD	Batch ID:	R25871		TestNo	: E300)		Units:	mg/l	L	
MSD	Run ID:	IC_06041	5A	Analys	is Date: 4/15/	/2006 4:46:	18 PM	Prep Date	e: 4/15/	/2006	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
		216	10.0	200.0	30.25	92.8	90	110	0.367	20	
		49.7	5.00	50.00	0	99.4	90	110	0.195	20	
		692	30.0	300.0	851.3	-53.2	90	110	0.260	20	S
CCV1-060415	Batch ID:	R25871		TestNo	: E300)		Units:	mg/l	L	
CCV	Run ID:	IC_06041	5A	Analys	is Date: 4/15/	/2006 5:14:	43 PM	Prep Date	e: 4/15/	/2006	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
		19.9	1.00	20.00	0	99.4	90	110			
		4.99	0.500	5.000	0	99.8	90	110			
		29.6	3.00	30.00	0	98.8	90	110			
0604098-02E M S	Batch ID:	R25871		TestNo	: E300)		Units:	mg/l	L	
MS	Run ID:	IC_06041	5A	Analys	is Date: 4/15/	/2006 7:10:	03 PM	Prep Date	e: 4/15/	/2006	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
		37.6	1.00	20.00	16.09	107	90	110			
		5.07	0.500	5.000	0	101	90	110			
0604098-02E M SD	Batch ID:	R25871		TestNo	: E300)		Units:	mg/l	L	
MSD	Run ID:	IC_06041	5A	Analys	is Date: 4/15/	/2006 7:24:	15 PM	Prep Date	e: 4/15 /	/2006	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
		36.5	1.00	20.00	16.09	102	90	110	2.78	20	
		5.07	0.500	5.000	0	101	90	110	0.0769	20	
CCV2-060415	Batch ID:	R25871		TestNo	: E300)		Units:	mg/l	L	
CCV	Run ID:	IC_06041	5A	Analys	is Date: 4/15/	/2006 7:52:	40 PM	Prep Date	e: 4/15 /	/2006	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
		19.6	1.00	20.00	0	98.1	90	110			
		4.90	0.500	5.000	0	98.0	90	110			
		29.2	3.00	30.00	0	97.4	90	110			
ICV-060415B	Batch ID:	R25871		TestNo	: E300)		Units:	mg/l	L	
ICV	Run ID:	IC_06041	5A	Analys	is Date: 4/15/	/2006 8:10:	50 PM	Prep Date	e: 4/15/	/2006	
		Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD	RPDLimit	Qual
		Result 12.5	RL 0.500	SPK value 12.50	Ref Val 0	%REC 100	Low Limit 90	t HighLimit 110	% RPD	RPDLimit	Qual
	0604098-07E M SD M SD CC V1-060415 CC V 0604098-02E M S M S 0604098-02E M SD M SD 0604098-02E M SD M SD CC V2-060415 CC V	0604098-07E M SD Batch ID: MSD Run ID: CCV1-060415 Batch ID: CCV Run ID: 0604098-02E M S Batch ID: MSD Batch ID: MS Batch ID: MS Batch ID: MS Batch ID: MSD Batch ID: MS Batch ID:	0604098-07E M SD Batch ID: R25871 MSD Run ID: IC_06041 MSD Result 216 49.7 692 49.7 CCV1-060415 Batch ID: R25871 CCV Run ID: IC_06041 CCV1-060415 Batch ID: R25871 CCV Run ID: 19.9 4.99 29.6 99 0604098-02E M S Batch ID: R25871 MS Run ID: IC_06041 MS Batch ID: R25871 MS Run ID: IC_06041 MSD Batch ID: R25871 MSD Run ID: IC_06041 MSD Batch ID: R25871 MSD Run ID: IC_06041 CCV2-060415 Batch ID: R25871 MSD Run ID: IC_06041 ICV-060415B Batch ID: R25871 I9.6 4.90 29.2 ICV-060415B Batch ID: R25871	060 4098- 07E M SD Batch ID: R25871 MSD Run ID: IC_060415A Run ID: 216 10.0 49.7 5.00 692 30.0 CCV1-060415 Batch ID: R25871 IC CCV1-060415 Batch ID: R25871 Run ID: IC_060415A GCV1-060415 Batch ID: Result RL MSD Run ID: 19.9 1.00 4.99 0.500 29.6 3.00 0604098-02E M SD Batch ID: R25871 RL MS Batch ID: R25871 RL MSD Batch ID: R25871 RL GCV2-060415 Batch ID: R25871 RL MSD Run ID: 1C_060415A S00 CCV2-060415 Batch ID: R25871 RL	0604098-07E MSD Batch ID: R25871 TestNo MSD Run ID: IC_060415A Analys Run ID: IC_060415A RL SPK value 216 10.0 200.0 49.7 5.00 50.00 692 30.0 300.0 300.0 300.0 CC V1-060415 Batch ID: R25871 TestNo CC V Run ID: IC_060415A Analys CC V Run ID: R25871 TestNo CC V Run ID: R25871 TestNo MSD Batch ID: <thr25871< th=""> TestNo</thr25871<>	0604098-07E MSD Batch ID: R25871 TestNo: E300 MSD Run ID: IC_060415A Analysis Date: 4/15 Result RL SPK value Ref Val 216 10.0 200.0 30.25 49.7 5.00 50.00 0 692 30.0 300.0 851.3 CCV1-060415 Batch ID: R25871 TestNo: E300 CCV Run ID: IC_060415A Analysis Date: 4/15 CCV Run ID: IC_060415A Analysis Date: 4/15 MSD Batch ID: R25871 TestNo: E300 MSD Run ID: IC_060415A Analysis Date: 4/15 MSD Batch ID: R25871 TestNo: E300 MSD Run ID: IC_060415A Analysis Date: 4/15 MSD Run ID: IC_060415A Analysis Date: 4/15 MSD Run ID: IC_060415A Analysis Date: 4/15 MSD Run ID: IC_060415A Analysis Date: 4/15 <	O604098-07E M SD Batch ID: R25871 TestNo: E300 MSD Run ID: IC_060415A Analysis Date: 4/15/2006 4:46: Run ID: Result RL SPK value Ref Val %REC 216 10.0 200.0 30.25 92.8 49.7 5.00 50.00 0 99.4 692 30.0 300.0 851.3 -53.2 53.2 CCV1-060415 Batch ID: R25871 TestNo: E300 53.2 CCV Run ID: IC_060415A Analysis Date: 4/15/2006 51.4 51.4 CCV Run ID: IC_060415A Analysis Date: 4/15/2006 71.0 5.000 0 99.4 4.99 0.500 5.000 0 99.8 29.6 3.00 30.00 98.8 0604098-02E M S Batch ID: R25871 TestNo: E300 MSD MSD Run ID: IC_060415A Analysis Date: 4/15/2006 7:24: MSC 36.5 1.00 20.00 101 06040	0604098-07E M SD Batch ID: R25871 TestNo: E300 MSD Run ID: IC_060415A Analysis Date: 4/15/2006 4:46:18 PM Result RL SPK value Ref Val %REC Low Limit 216 10.0 200.0 30.25 92.8 90 692 30.0 300.0 851.3 -53.2 90 CCV1-060415 Batch ID: R25871 TestNo: E300 200.0 39.4 90 CCV Run ID: IC_060415A Analysis Date: 4/15/2006 5:14:43 PM 200.0 99.4 90 COV Run ID: IC_060415A Analysis Date: 4/15/2006 7:10:03 PM 4.99 MSD Run ID: R25871 TestNo: E300 30.00 98.8 90 0604098-02E M SD Batch ID: R25871 TestNo: E300 101 90 MSD Run ID: IC_060415A Analysis Date: 4/15/2006 7:24:15 PM 102 90 5.07 0.500 0 101 90 102<	0604098-07E M SD Batch ID: R25971 TestNo: E300 Units: MSD Run ID: IC_060415A Analysis Date: 4/15/2006 4:46:18 PM Prep Date 216 10.0 200.0 30.25 92.8 90 110 49.7 5.00 50.00 0 99.4 90 110 692 30.0 300.0 851.3 -53.2 90 110 CCV1-060415 Batch ID: R25871 TestNo: E300 Units: CCV Run ID: IC_060415A Analysis Date: 4/15/2006 5:14:43 PM Prep Date CV Run ID: IC_060415A Analysis Date: 4/15/2006 5:14:43 PM Prep Date MS Batch ID: R25871 TestNo: E300 Units: MS Run ID: IC_060415A Analysis Date: 4/15/2006 7:10:03 PM Prep Date MS Run ID: IC_060415A Analysis Date: 4/15/2006 7:10:03 PM Prep Date MS Run ID: IC_060415A Analysis Date: 4/15/2006 7:24:15 PM Prep Date	0604098-07E M SD Batch ID: R25871 TestNo: E300 Units: mg// MSD Run ID: IC_060415A Analysis Date: 4/15/2006 4:46:18 PM Prep Date: 4/15 MSD Run ID: IC_060415A SPK value Ref Val %REC Low Limit HighLimit % RPD 216 10.0 200.0 30.25 92.8 90 110 0.367 49.7 5.00 602 30.0 851.3 -53.2 90 110 0.260 CCV1-060415 Batch ID: R25871 TestNo: E300 Units: mg// CCV Run ID: IC_060415A Analysis Date: 4/15/2006 5:14:43 PM Prep Date: 4/15 CCV Run ID: IC_060415A Analysis Date: 4/15/2006 7:10:3 PM Prep Date: 4/15 G004098-02E MS Batch ID: R25871 TestNo: E300 Units: mg// MSD Run ID: IC_060415A Analysis Date: 4/15/2006 7:10:3 PM Prep Date: 4/15 MSD <t< td=""><td>0604098-07E M SD Batch ID: R25871 TestNo: E300 Units: mg/L MSD Run ID: IC_060415A Analysis Date: 4/15/2006 4:46:18 PM Prep Date: 4/15/2006 216 10.0 200.0 30.25 92.8 90 110 0.367 20 49.7 5.00 50.00 0 99.4 90 110 0.367 20 49.7 5.00 300.0 851.3 -53.2 90 110 0.260 20 CCV1-060415 Batch ID: R25871 TestNo: E300 Units:<mg l<="" td=""> mg/L CCV Run ID: IC_060415A Analysis Date: 4/15/2006 5:14:43 PM Prep Date: 4/15/2006 4.99 0.500 5.000 0 99.4 90 110 20 4.99 0.500 5.000 0 99.4 90 110 20 4.99 0.500 5.000 0 99.4 90 110 20 4.99</mg></td></t<>	0604098-07E M SD Batch ID: R25871 TestNo: E300 Units: mg/L MSD Run ID: IC_060415A Analysis Date: 4/15/2006 4:46:18 PM Prep Date: 4/15/2006 216 10.0 200.0 30.25 92.8 90 110 0.367 20 49.7 5.00 50.00 0 99.4 90 110 0.367 20 49.7 5.00 300.0 851.3 -53.2 90 110 0.260 20 CCV1-060415 Batch ID: R25871 TestNo: E300 Units: <mg l<="" td=""> mg/L CCV Run ID: IC_060415A Analysis Date: 4/15/2006 5:14:43 PM Prep Date: 4/15/2006 4.99 0.500 5.000 0 99.4 90 110 20 4.99 0.500 5.000 0 99.4 90 110 20 4.99 0.500 5.000 0 99.4 90 110 20 4.99</mg>

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Report ing Limit

MDL Method Dection Limit

Page 10 of 17

R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order:

TRC Environmental Corp. 0604098

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

RunID: IC_060415A

Sample ID	MB-060415B	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC_06041	5A	Analysis	s Date: 4/15/2	006 8:25:	03 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLim	nit Qual
Nitrate-N Sulfate			ND ND	0.500 3.00							
Sample ID	LCS-060415B	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC_06041	5A	Analysis	s Date: 4/15/2	006 8:39:	16 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit 9	% RPD RPDLim	nit Qual
Nitrate-N Sulfate			5.02 30.0	0.500 3.00	5.000 30.00	0 0	100 99.9	90 90	110 110		
Sample ID	LCSD-060415B	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC_06041	5A	Analysis	s Date: 4/15/2	006 8:53:	28 PM	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLim	nit Qual
Nitrate-N			5.02	0.500	5.000	0	100	90	110	0.0677 20	
Sulfate			29.9	3.00	30.00	0	99.7	90	110	0.192 20	
Sample ID	CCV1-060415	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC_06041	5A	Analysis	s Date: 4/15/2	006 11:29	9:46 P	Prep Date:	4/15/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLim	nit Qual
Nitrate-N			4.92	0.500	5.000	0	98.4	90	110		
Sulfate			29.2	3.00	30.00	0	97.2	90	110		
Sample ID	0604098-03EMS	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC_06041	5A	Analysis	s Date: 4/16/2	006 12:55	5:02 A	Prep Date:	4/16/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	tHighLimit	% RPD RPDLim	nit Qual
Sulfate			2300	60.0	600.0	1675	104	90	110		
Sample ID	0604098-03E M SD	Batch ID:	R25871		TestNo:	E300			Units:	mg/L	
SampType:	MSD	Run ID:	IC_06041	5A	Analysis	s Date: 4/16/2	006 1:09:	14 A M	Prep Date:	4/16/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLim	nit Qual
Sulfate			2300	60.0	600.0	1675	104	90	110	0.0953 20	

Qualifiers:

- B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL
- DF Dilution Factor

MDL Method Dection Limit

Page 11 of 17

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

- R RPD outside accepted control limitsS Spike Recovery outside control limits
- 38

CLIENT: TRC Environmental Corp. Work Order: 0604098

Project: RRC West O'Daniel

ANALYTICAL QC SUMMARY REPORT

RunID: IC_060415A

Sample ID	CCV2-060415B	Batch ID:	R25871		TestNo:	E	300		Units:	mg/L	
SampType:	CCV	Run ID:	IC_060415/	A	Analysis	Date: 4	/16/2006 1:51:5	2 A M	Prep Date	e: 4/16/2006	
Analyte			Result	RL	SPK value	Ref Va	al %REC	Low Limit	HighLimit	% RPD RPDLimit	Qual
Nitrate-N			5.01	0.500	5.000	0	100	90	110		
Sulfate			29.8	3.00	30.00	0	99.3	90	110		

Qualifiers:

В

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

Page 12 of 17

S Spike Recovery outside control limits

CLIENT: Work Order:

TRC Environmental Corp. 0604098

ANALYTICAL QC SUMMARY REPORT

Project:	RRC West	O'Daniel					RunII	D: I	C_06041	.7A	
Sample ID	ICV-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	ICV	Run ID:	IC_060417/	A	Analysis	a Date: 4/17/2	2006 8:46:	47 A M	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Chloride			24.0	1.00	25.00	0	96.0	90	110		
Sample ID	MB-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC_060417/	A	Analysis	a Date: 4/17/2	2006 9:00:	59 A M	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Chloride			ND	1.00							
Sample ID	LCS-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC_060417/	A	Analysis	Bate: 4/17/2	2006 9:15:	12 A M	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Chloride			9.50	1.00	10.00	0	95.0	90	110		
Sample ID	LCSD-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC_060417/	A	Analysis	B Date: 4/17/2	2006 9:29:	24 A M	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Chloride			9.51	1.00	10.00	0	95.1	90	110	0.0652 20	
Sample ID	0604098-02E M S	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC_060417/	A	Analysis	a Date: 4/17/2	2006 11:30):08 A	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Chloride			11100	500	5000	6031	102	90	110		
Sample ID	0604098-02E M SD	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	MSD	Run ID:	IC_060417/	A	Analysis	a Date: 4/17/2	2006 11:44	4:21 A	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Chloride			11200	500	5000	6031	103	90	110	0.504 20	
Sample ID	CCV1-060417	Batch ID:	R25875		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC_060417/	A	Analysis	a Date: 4/17/2	2006 11:58	3:33 A	Prep Date:	4/17/2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Chloride			9.58	1.00	10.00	0	95.8	90	110		

Qualifiers:

В Analyte detected in the associated Method Blank J Analyte detected between MDL and RL

DF Dilution Factor

MDL Method Dection Limit

Page 13 of 17

ND Not Detected at the Method Detection Limit

RL Report ing Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: Work Ord Project:	TRC ler: 0604 RRC	CEnvironmer 1098 CWest O'Dar	ntal Corp. niel		AN	ALYTIC	CAL (RunIl	QC SU	J MMA TITRATO	RY REPO OR_060417A	RT
Sample ID SampType:	ICV-060417 ICV	Batcl Run I	n ID: R25 D: TITI	858 RATOR_060417 <i>F</i>	TestNo: A Analysis	E150.1 Date: 4/17/20)06 9:10:	00 A M	Units: Prep Date	pH Units : 4/17/2006	
Analyte			Resul	t RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual
рН			9.99	0	10.00	0	99.9	99	101		
Sample ID	0604098-01A	DUP Batch	n ID: R25	858	TestNo:	E150.1			Units:	pH Units	
SampType:	DUP	Run I	D: TITI	RATOR_060417#	A Analysis	Date: 4/17/20	006 9:42:	00 A M	Prep Date	: 4/17/2006	
Analyte			Resul	t RL	SPK value	Ref Val	%REC	Low Lim	it HighLimit	% RPD RPDLimit	Qual

0

6.390

0

6.70

Qualifiers:

В

pН

Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

MDL Method Dection Limit

Page 14 of 17

4.74

15

R RPD outside accepted control limits

S Spike Recovery outside control limits

TRC Environmental Corp. 0604098

ANALYTICAL QC SUMMARY REPORT

Work Order: RRC West O'Daniel **Project:**

Sample ID	ICV-060417	Batch ID:	R25867		TestNo:	E310).1		Units:	mg/L	-	
SampType:	ICV	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17	/2006 10:23	3:00 A	Prep Date	e: 4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Alkalinity, B	Bicarbonate (As CaCO	3)	13.0	10.0	0							
Alkalinity, C	Carbonate (As CaCO3))	87.4	10.0	0							
Alkalinity, H	łydroxide (As CaCO3)		0	10.0	0							
Alkalinity, T	otal (As CaCO3)		100	10.0	100.0	0	100	98	102			
Sample ID	LCS-060417	Batch ID:	R25867		TestNo:	E310).1		Units:	mg/L	-	
SampType:	LCS	Run ID:	TITRATOR	_060417B	Analysis	8 Date: 4/17	/2006 10:27	7:00 A	Prep Date	e: 4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Alkalinity, T	otal (As CaCO3)		51.5	10.0	50.00	0	103	74	129			
Sample ID	0604091-05D DUP	Batch ID:	R25867		TestNo:	E310).1		Units:	mg/L	-	
SampType:	DUP	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17	/2006 11:32	2:00 A	Prep Date	e: 4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Alkalinity, B	Bicarbonate (As CaCO	3)	182	10.0	0	181.1				0.368	20	
Alkalinity, C	Carbonate (As CaCO3)		0	10.0	0	0				0	20	
Alkalinity, H	łydroxide (As CaCO3)		0	10.0	0	0				0	20	
Alkalinity, T	otal (As CaCO3)		182	10.0	0	181.1				0.368	20	
Sample ID	CCV1-060417	Batch ID:	R25867		TestNo:	E310).1		Units:	mg/L	-	
SampType:	CCV	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17	/2006 11:46	6:00 A	Prep Date	e: 4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Alkalinity, B	Bicarbonate (As CaCO	3)	18.9	10.0	0							
Alkalinity, C	Carbonate (As CaCO3))	82.4	10.0	0							
Alkalinity, H	łydroxide (As CaCO3)		0	10.0	0							
Alkalinity, T	otal (As CaCO3)		101	10.0	100.0	0	101	90	110			
Sample ID	0604098-07D DUP	Batch ID:	R25867		TestNo:	E310).1		Units:	mg/L	-	
SampType:	DUP	Run ID:	TITRATOR	_060417B	Analysis	s Date: 4/17	/2006 12:30):00 P	Prep Date	e: 4/17/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD	RPDLimit	Qual
Alkalinity, B	Bicarbonate (As CaCO	3)	84.5	10.0	0	83.95				0.697	20	
Alkalinity, C	Carbonate (As CaCO3))	0	10.0	0	0				0	20	
Alkalinity, H	lydroxide (As CaCO3)		0	10.0	0	0				0	20	
Alkalinity, T	otal (As CaCO3)		84.5	10.0	0	83.95				0.697	20	

Qualifiers:

В Analyte detected in the associated Method Blank J Analyte detected between MDL and RL

DF Dilution Factor

MDL Method Dection Limit

Page 15 of 17

ND Not Detected at the Method Detection Limit

RL Report ing Limit

RPD outside accepted control limits S Spike Recovery outside control limits

R

CLIENT: TRC Environmental Corp. Work Order: 0604098

ANALYTICAL QC SUMMARY REPORT

Project: RRC West O'Daniel

RunID: TITRATOR_060417B

Sample ID	CCV2-060417	Batch ID:	R25867		TestN	D: E	310.1		Units:	mg/L	
SampType:	ccv	Run ID:	TITRATOR	2_060417B	Analy	sis Date: 4	/17/2006 12:3	6:00 P	Prep Date	e: 4/17/2006	
Analyte			Result	RL	SPK value	Ref Va	I %REC	Low Limit	t HighLimit	% RPD RPDLimit	Qual
Alkalinity, Bi	icarbonate (As CaCO3	3)	23.0	10.0	0						
Alkalinity, Ca	arbonate (As CaCO3)		78.1	10.0	0						
Alkalinity, Hy	ydroxide (As CaCO3)		0	10.0	0						
Alkalinity, To	otal (As CaCO3)		101	10.0	100.0	0	101	90	110		

Qualifiers:

В

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

Page 16 of 17

43

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

0604098

Project:	RRC West	O'Daniel					RunIl	D: V	VC_0604	17B		
Sample ID SampType:	ICV -060417 ICV	Batch ID: Run ID:	CONDW WC_06	/-04/17/06 0417B	TestNo: Analysi	E120 s Date: 4/17).1 /2006 12:00	0:00 P	Units: Prep Date	µm h c : 4/17/2	os/cm 2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Specific Co	onductance		12800	10.0	12880	0	99.8	90	110			
Sample ID	LCS-060417	Batch ID:	CONDW	/-04/17/06	TestNo:	E120).1		Units:	µm h c	os/cm	
SampType:	LCS	Run ID:	WC_06	0417B	Analysi	s Date: 4/17	/2006 12:00	0:00 P	Prep Date	: 4/17/2	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Specific Co	onductance		1360	10.0	1413	0	96.0	93	109			
Sample ID SampType:	CCV1-060417 CCV	Batch ID: Run ID:	CONDW WC_06	/-04/17/06 0417B	TestNo: Analysi	E120 s Date: 4/17).1 /2006 12:00	0:00 P	Units: Prep Date	µm h c : 4/17/2	os/cm 2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Specific Co	onductance		12600	10.0	12880	0	98.1	90	110			
Sample ID SampType:	0604091-05E DUP DUP	Batch ID: Run ID:	CONDW WC_06	/-04/17/06 0417B	TestNo: Analysi	E120 s Date: 4/17).1 /2006 12:00	0:00 P	Units: Prep Date	µm h c : 4/17/2	os/cm 2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Specific Co	onductance		91400	100	0	90800				0.659	20	
Sample ID SampType:	0604098-07E DUP DUP	Batch ID: Run ID:	CONDW WC_06	/-04/17/06 0417B	TestNo: Analysi	E120 s Date: 4/17/).1 /2006 12:00	0:00 P	Units: Prep Date	µm h c : 4/17/2	os/cm 2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Specific Co	onductance		47000	100	0	46200				1.72	20	
Sample ID SampType:	CCV2-060417 CCV	Batch ID: Run ID:	CONDW WC_06	/-04/17/06 0417B	TestNo: Analysi	E120 s Date: 4/17/).1 /2006 12:00	0:00 P	Units: Prep Date	µm h c : 4/17/2	os/cm 2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	Low Limi	t HighLimit	% RPD F	RPDLimit	Qual
Specific Co	onductance		12500	10.0	12880	0	97.0	90	110			

Qualifiers:

- В Analyte detected in the associated Method Blank
- DF Dilution Factor

MDL Method Dection Limit

Page 17 of 17

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Report ing Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: TRC Environmental Corp.

Work Order:0604098Project:RRC West O'Daniel

MQL	SUMMARY	REPORT

Date: 24-Apr-06

TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Bromide	0.3	1
Chloride	0.3	1
Nitrate-N	0.1	0.5
Sulfate	1	3
TestNo: SW6020	MDL	MQL
Analyte	µg/L	µg/L
Barium	3	10
Calcium	100	100
Iron	50	100
Magnesium	100	100
Potassium	100	100
Sodium	100	100
TestNo: SW8021B	MDL	MQL
Analyte	µg/L	µg/L
Benzene	0.8	2
Toluene	2	6
Ethylbenzene	2	6
Xylenes, Total	3	9

May 03, 2006

Steve Miller TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752

TEL: (512) 329-6080 FAX (512) 329-8750

Order No.: 0604152

RE: RRC-West O'Daniel

Dear Steve Miller:

DHL Analytical received 2 sample(s) on 4/22/2006 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely.

John DuPont General Manager

and the second se

TABLE OF CONTENTS

This report for TRC Environmental: RRC-West Daniel (DHL Work Order 0604152) contains the following information:

ITEM	Page
Cover Page	1
Table of Contents	2
• Original chain of custody, fedex slip (if used), log-in checklist	3-4
Laboratory Data Package Signature Page	5
Laboratory Review Checklist	6-7
Case Narrative	8
Work Order Sample Summary	9
Prep Dates Report	10
Analytical Dates Report	11
Sample Results	12-13
QC Summary Report	14-28
MQL Summary Report	29
Total Number of Pages	29

May 3, 2006

Approved: a John DuPont

6) (ma

Sample Receipt Uneckil

Hand Delivered

Client Name TRC Environmental Corp.

Work Order Number 0604152

Date Received:

4/21/2006

Received by DEW

Checklist completed by: Marks MP

4-24-6 Date

Carrier name

Reviewed by

04/24/05 Date

No Yes 🗸 Shipping container/cooler in good condition? Not Present Yes 🗹 No 🗌 Custody seals intact on shippping container/cooler? Not Present No Custody seals intact on sample bottles? Yes Not Present Yes 🗸 No Chain of custody present? No 🗌 Yes 🖌 Chain of custody signed when relinquished and received? No Chain of custody agrees with sample labels? Yes 🗸 No Samples in proper container/bottle? Yes 🖌 Yes 🔽 No 🗔 Sample containers intact? Sufficient sample volume for indicated test? Yes 🖌 No 🗌 No 🗌 Yes 🗹 All samples received within holding time? Yes 🖌 Container/Temp Blank temperature in compliance? No 🗌 Yes 🖌 No 🗌 No VOA vials submitted Water - VOA vials have zero headspace? Water - pH acceptable upon receipt? Yes 🔽 No 🗌 Not Applicable Adjusted? NO

Checked by

۱ny	/ N	o r	esp	ons	e m	ust	be	det	taile	ed ir	h the	e co	omr	nen	ts s	sect	ion	bel	ow.	
_					\							. Torabba								

Client contacted	Date contacted:	Person contacted	
Contacted by:	Regarding:		
Comments:	n		
Corrective Action			
·			

Laboratory Data Package Signature Page

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %Rs and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Scott Schroeder – Project Manager Michelle Green – QA Manager John DuPont – General Manager

lignature

Proje	ct Na	me: RRC- Wlast Al Duried Date:	5-3-16							
Pavie	or i the	Jame: Michelle Green	ntony Work Ordon 060(1152							
n n	wer i	Name: Michelle Oreen	alory work Order: 0009132	<u> と</u>						
Prep	Batch	Number(s): See Prep Dates Report [Run E	Batch: See Analytical Dates Report	17.5		12813		i		
#'	A ²	Description		Yes	No	NA"	INR"	ER#"		
		CHAIN-OF-CUSTODY (C-O-C)								
R1	OI	OI 1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?						RI		
		2) Were all departures from standard conditions described	in an exception report?							
<u>R2</u>	OI	SAMPLE AND QUALITY CONTROL (QC) IDENTIF	TICATION							
		1) Are all field sample ID numbers cross-referenced to the	laboratory ID numbers?	V						
		2) Are all laboratory ID numbers cross-referenced to the co	orresponding QC data?	1	atoritation			<u> </u>		
<u>R3</u>	OI	TEST REPORTS	1000 (100 (100 (100 (100 (100 (100 (100							
		1) Were all samples prepared and analyzed within holding	14	ľ	<u> </u>	<u> </u>	<u> </u>			
		2) Other than those results < MQL, were all other raw valu standards?	es bracketed by calibration	V						
		3) Were calculations checked by a peer or supervisor?								
	ŀ .	4) Were all analyte identifications checked by a peer or sup	pervisor?	12			L			
		5) Were sample quantitation limits reported for all analytes	s not detected?		[
		6) Were all results for soil and sediment samples reported	on a dry weight basis?		<u> </u>	~	<u> </u>	ļ		
		7) Were % moisture (or solids) reported for all soil and sec	liment samples?		ļ	1	<u> </u>	ļ		
		8) If required for the project, TICs reported?		-			1			
R4	0	SURROGATE RECOVERY DATA	0.055646		6.000469					
		1) Were surrogates added prior to extraction?		~	L			ļ		
		2) Were surrogate percent recoveries in all samples within	the laboratory QC limits?							
<u>R5</u>	101	TEST REPORTS/SUMMARY FORMS FOR BLANK								
		1) Were appropriate type(s) of blanks analyzed?				<u> </u>				
		2) Were blanks analyzed at the appropriate frequency?	·····							
		3) Were method blanks taken through the entire analytical	process, including preparation		- .					
		and, if applicable, cleanup procedures? (4) Were black concentrations $\leq MOL^2$		+						
	ΟΙ	ABORATORY CONTROL SAMPLES (LCS)								
110		1) Were all COCs included in the LCS?	······································	0020-0025	1	100000000	e costascine)			
		2) Was each LCS taken through the entire analytical proce	dure (prep and cleanup steps)?	1			1			
		3) Were LCSs analyzed at the required frequency?	dard, (prop and creating support.	12			<u> </u>	<u> </u>		
		4) Were LCS (and LCSD, if applicable) %Rs & RPD recov	very within the laboratory OC	+		·				
	ļ	limits?		~						
		5) Does the detectability data document the laboratory's ca	pability to detect the COCs at the	<u> </u>	ŀ			<u> </u>		
	1	MDL used to calculate the SQLs?	-	1	<u> </u>	ļ				
<u>R7</u>	OI	MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLIC	CATE (MSD) DATA							
		1) Were the project/method specified analytes included in t	the MS and MSD?	1	-	ļ				
		2) Were MS/MSD analyzed at the appropriate frequency?		1-	[ļ	<u> </u>			
	· ·	3) Were MS (and MSD, if applicable) %Rs within the labo	ratory QC limits?	+	1	1		<u> K7-</u>		
.		4) Were MS/MSD RPDs within laboratory QC limits?		10000000			 			
<u>K8</u>		ANALYTICAL DUPLICATE DATA								
		1) were appropriate analytical duplicates analyzed for each	n matrix?			- 				
		(2) Were analytical duplicates analyzed at the appropriate fr	handone OC limite?		-			<u> </u>		
DO		(3) WEIE KEDS OF RELATIVE STANDARD DEVIATIONS WITHIN the lat	poratory QC limits?		Unger		line and the second			
<u>x(9</u>		IVIET TOU QUANTITATION LIMITS (MQLS)	aboratory data nachaza?							
		2) Do the MOL s correspond to the concentration of the low	aboratory data package?				+	<u> </u>		
		standard?	vest non-zero canoranon	1	ľ					
		3) Are unadjusted MOLs included in the laboratory data no	uckage?				1			
R10	σ	OTHER PROBLEMS ANOMALIES								
	<u> </u>	1) Are all known problems/anomalies/special conditions pr	oted in this LRC and FR?	L/	raatiotet F	1	-series, ej	10-14 CT 10-		
		2) Were all necessary corrective actions performed for the	reported data?			1	+			
		3) Was applicable and available technology used to lower t	the SOL minimize the matrix	1.	r		+			
	1		and a Lan arresterrent were terrester				1	1		

DH	LA	alytical, Inc.						
	orat	Corv Review Checklist (continued): Supportin	g Data	····.				
Proje	CE IN ai	me: KAC- West () Hangel D	ate: 3-3-06					
Revie	wer r	Name: Michelle Green	aboratory Work Order: 0004132	-	133	INTA 3	NID 4	[mmu5
#'	A ²	Description	Y es	NO	NA-	NK	BR#	
<u>S1</u>	OI	INITIAL CALIBRATION (ICAL)						
		1) Were response factors and/or relative response factors	4	[
	2) Were percent RSDs or correlation coefficient criteria met?							
		4) Were all points generated between the lowest and high	nest standard used to calculate the	+	L	<u> </u>	1	
	curve?							·
		5) Are ICAL data available for all instruments used?		~	1		ļ	
		(b) Has the initial calibration curve been verified using an	appropriate second source	V	ł			
S2	OI	INITIAL AND CONTINUING CALIBRATION VERIFIC.						
		1) Was the CCV analyzed at the method-required frequent	nev?	~	1	1	1	<u>aparan, kining di 2009</u>
		2) Were percent differences for each analyte within the n	nethod-required QC limits?	~				
		3) Was the ICAL curve verified for each analyte?		1	_			
0.0	<u> </u>	4) Was the absolute value of the analyte concentration in	the inorganic CCB < MDL?		1			
83	0	MASS SPECTRAL TUNING						
		1) Was the appropriate compound for the method used for	-	Ţ	<u> </u>			
~ .		2) Were ion abundance data within the method-required	QC limits?	~	1			
<u>S4</u>	0	INTERNAL STANDARDS (IS)					1	
~		1) Were IS area counts and retention times within the me				1		
<u>\$5</u>		RAW DATA (NELAC SECTION 1 APPENDIX A GI	LOSSARY, & SECTION 5.12)	10097-023 11047-033				
		1) Were the raw data (for example, chromatograms, spec	tral data) reviewed by an analyst?		<u>]</u>	ļ		
<u> </u>	0	2) Were data associated with manual integrations flagged	l on the raw data?			1.51.7174		S data data data data data data data dat
30		DUAL COLUMN CONFIRMATION	· · · · · · · · · · · · · · · · · · ·				732502	
0.8		1) Did dual column confirmation results meet the method	I-required QC?	rease/ de				
<u>87</u>	10	TENTATIVELY IDENTIFIED COMPOUNDS (TIC:	<u>6)</u>	0.000	nesi (
		(1) If TICs were requested, were the mass spectra and TIC	data subject to appropriate				+	
<u>S8</u>	1	INTERFERENCE CHECK SAMPLE (ICS) RESULT	rs	- 5554 (4)				
1		1) Were percent recoveries within method OC limits?			100338 -	i sannas		
50		SEDIAL DILLITIONS BOST DICESTION SPIKES	AND METHOD OF					
67	1	STANDARD ADDITIONS	AND METHOD OF					
		1) Were percent differences, recoveries, and the linearity the method?	within the QC limits specified in		~			59-01
S10	OI	METHOD DETECTION LIMIT (MDI) STUDIES						
	-	1) Was a MDL study performed for each reported analyte	s?					
S11	OI	BROELOUENCY PECE DEDODDO						
		1) We the 11 output of a first state of a st	1. 11. 0	35,00				
	-	(1) was the laboratory's performance acceptable on the ap	plicable proficiency tests or	V	1		:	
S12	OI	STANDARDS DOCUMENTATION						
		1) Are all standards used in the analyses NIST-traceable sources?	or obtained from other appropriate	~	1			
S13	IOI	COMPOUND/ANALYTE IDENTIFICATION PROC	EDURES	Citics.				
	+	1) Are the procedures for compound/analyte identification	n documented?					
S14	OI	DEMONSTRATION OF ANALYST COMPETENCY	/ (DOC)					
	+	1) Was DOC conducted consistent with NELAC Chapter	5C?			r an sea I		1
S15	OI	VERIFICATION/VALIDATION DOCUMENTATIO						
		1) Are all the methods used to generate the data documen	ted, verified, and validated, where					
C14	101	applicable?	NUDEC (COPO)	1	Lineatar	 	 	
510		LABOKATOKY STANDARD OPERATING PROCE	JUKES (SUPS)				<u>pakay</u>	pine kalikiti
		1) Are the laboratory SOPs current and on file for each m	letnod performed?					

2 3 5

Made available upon request for the appropriate retention period. O = organic analyses; 1 = inorganic analyses (and general chemistry, when applicable). NA = Not applicable. 4 NR = Not Keviewed. ER# = Exception Report identification number (an Exception Report should be completed for an itempt "NR" or "No" is checked).

CLIENT:	TRC Environmental Corp.
Project:	RRC-West O'Daniel
Lab Order:	0604152

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method SW8021B - Volatile Organics by GC EPA Method 300 - Anions by IC EPA Method 310.1 - Alkalinity Analysis EPA Method 120.1 - Specific Conductivity EPA Method 150.1 - pH of a Water

Exception Report R1-01

The samples were received and log-in performed on 4/15/06. A total of 8 samples were received. The samples arrived in good condition and were properly packaged.

Exception Report R7-03

For Metals analysis the recovery for the matrix spikes and matrix spike duplicate recoveries were below control limits for Calcium, Magnesium and Sodium. These are flagged accordingly. The reference sample selected for the matrix spikes and matrix spike duplicates was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken and the sample results were not adversely affected.

Exception Report S9-01

For Metals analysis recovery for the PDS was below control limits for Calcium and Magnesium. The serial dilution was within control limit for these analytes therefore no further corrective actions were taken.

DATA REPORTING

Sample reports include the Sample Quantitation Limit (SQL) and the Reporting Limit (RL) for each analyte. The computer system allows for reporting SQL with 2 significant figures and the RL with 3 significant figures. Because of rounding it may sometime appear that a "J" flagged result is lower than the SQL if the sample result is very near the SQL.

CLIENT:TRC Environmental Corp.Project:RRC-West O'DanielWork Order Sample SummaryLab Order:0604152

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
0604152-01	E-S-56-1		4/21/2006 3:10:00 PM	4/22/2006
0604152-02	TB-4-21-06-1		4/21/2006	4/22/2006

04-May-06

Lab Order: Client: Project:	0604152 TRC Environme RRC-West O'Da	ntal Corp. aniel			PREP	DATES REPOR	Esser
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
0604152-01A	Ė-S-56-1	4/21/2006 3:10:00 PM	Aqueous	E300	Anions by IC method - Water	- 🕅 4/25/2006	R25970
	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/22/2006	R25960
	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/22/2006	R25960
	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	E300	Anions by IC method - Water	4/22/2006	R25960
	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	E120.1	Specific Conductance	4/25/2006	CONDW-04/25/06
0604152-01B	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	E150.1	ЬН	4/24/2006	PH_W-04/24/06
0604152-01C	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	4/27/2006 10:07:16 A	22030
	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	4/27/2006 10:07:16 A	22030
	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	4/27/2006 10:07:16 A	22030
	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	4/27/2006 10:07:16 A	22030
0604152-01D	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	SW5030B	Purge and Trap Water GC	4/29/2006 7:13:07 PM	22064
0604152-01E	E-S-56-1	4/21/2006 3:10:00 PM	Aqueous	E310.1	Alkalinity	4/26/2006 10:17:00 A	R25990
0604152-02A	TB-4-21-06-1	4/21/2006	Trip Blank	SW 5030B	Purge and Trap Water GC	4/29/2006 7:13:07 PM	22064

10

04-May-06

ATTAC T ATTAC								
Lab Order: Client: Project:	0604152 TRC Environmenta RRC-West O'Dania	al Corp. el			ANALI		AL DATES RE	PORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
0604152-01A	E-S-56-1	Aqueous	E300	Anions by IC method - Water	R25970	500	4/25/2006 10:35:10 AM	IC_060425A
	E-S-56-1	Aqueous	E300	Anions by IC method - Water	R25960	20	4/22/2006 4:25:29 PM	IC_060422A
	E-S-56-1	Aqueous	E300	Anions by IC method - Water	R25960	10	4/22/2006 2:54:59 PM	IC_060422A
	E-S-56-1	Aqueous	E300	Anions by IC method - Water	R25960	****	4/22/2006 2:24:07 PM	IC_060422A
	E-S-56-1	Aqueous	E120.1	Specific Conductan ce	CONDW-04/25/06	10	4/25/2006 3:50:00 PM	WC_060425A
0604152-01B	E-S-56-1	Aqueous	E150.1	рН	PH_W-04/24/06	*****	4/24/2006 11:45:00 AM	PH_060424A
0604152-01C	E-S-56-1	Aqueous	SW 6020	Trace Metals: ICP-MS- Water	22030	100	5/3/2006 1:43:00 PM	ICP-MS2_060503A
	E-S-56-1	Aqueous	SW 6020	Trace Metals: ICP-MS- Water	22030	2000	5/2/2006 5:25:00 PM	ICP-MS2_060502B
	E-S-56-1	Aqueous	SW 6020	Trace Metals: ICP-MS- Water	22030	1000	5/2/2006 5:19:00 PM	ICP-MS2_060502B
	E-S-56-1	Aqueous	SW6020	Trace Metals: ICP - MS - Water	22030	Ţ	5/1/2006 3:00:00 PM	ICP-MS_060501A
0604152-01D	E-S-56-1	Aqueous	SW8021B	Volatile Organics by GC	22064	I	4/30/2006 11:27:09 PM	$GC9_{060430A}$
0604152-01E	E~S-56-1	Aqueous	E310.1	Alkalinity	R25990		4/26/2006 10:17:00 AM	TITRATOR_060426
0604152-02A	TB-4-21-06-1	Trip Blank	SW8021B	Volatile Organics by GC	22064	Ţ	5/1/2006 12:21:08 AM	$GC9_{060430A}$

-

DHL Anal	ytical			D	Date:		<i>v-06</i>	
CLIENT:	TRC Environmental C	orp.			Client	Sample ID:	E-S-56-	1
Project:	RRC-West O'Daniel					Lab ID:	060415	2-01
Project No:	46513-0000-00002				Colle	ection Date:	4/21/20	06 3:10:00 PM
Lab Order:	0604152					Matrix:	AQUE	OUS
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORG	ANICS BY GC		SW80	21B				Analyst: KC
Benzene		ND	0.800	2.00		µg/L	1	4/30/2006 11:27:09 PM
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/30/2006 11:27:09 PM
Toluene		ND	2.00	6.00		µg/L	1	4/30/2006 11:27:09 PM
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/30/2006 11:27:09 PM
Surr: a,a,a-Ti	rifluorotoluene	111	0	87-113		%REC	1	4/30/2006 11:27:09 PM
TRACE METALS	S: ICP-MS - WATER		SW6)20				Analyst: AJR
Barium		77.9	3.00	10.0		µg/L	1	5/1/2006 3:00:00 PM
Calcium		1850000	100000	100000		µg/L	1000	5/2/2006 5:19:00 PM
ron		64.2	50.0	100	J	µg/L	1	5/1/2006 3:00:00 PM
Magnesium		491000	100000	100000		µg/L	1000	5/2/2006 5:19:00 PM
Magnesium		447000	10000	10000		µg/L	100	5/3/2006 1:43:00 PM
Potassium		172000	10000	10000		µg/L	100	5/3/2006 1:43:00 PM
Potassium		194000	100000	100000		µg/L	1000	5/2/2006 5:19:00 PM
Sodium		11600000	200000	200000		µg/L	2000	5/2/2006 5:25:00 PM
ANIONS BY IC	METHOD - WATER		E30	0				Analyst: DEW
Bromide		57.1	3.00	10.0		mg/L	10	4/22/2006 2:54:59 PM
Chloride		22600	150	500		mg/L	500	4/25/2006 10:35:10 AM
Nitrate-N		14.0	1.00	5.00		mg/L	10	4/22/2006 2:54:59 PM
Sulfate		2190	20.0	60.0		mg/L	20	4/22/2006 4:25:29 PM
ALKALINITY			E310).1				Analyst: JBC
Alkalinity, Bicar	bonate (As CaCO3)	135	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
Alkalinity, Total	(As CaCO3)	135	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
PH			E150).1				Analyst: JBC
pН		7.15	0	0		pH Units	1	4/24/2006 11:45:00 AM
SPECIFIC CON	DUCTANCE		E12().1				Analyst: JBC
Specific Condu	ctance	81000	100	100		µmhos/cm	10	4/25/2006 3:50:00 PM

Qualifiers	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit

See Final Page of Report for MQLs and MDLs

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	ytical				Date:	04-Ma	ау-06
CLIENT:	TRC Environmental Corp.				Client Sample ID): TB-4-2	21-06-1
Project:	RRC-West O'Daniel				Lab ID	66041	52-02
Project No:	46513-0000-00002				Collection Date	e: 4/21/2	006
Lab Order: 0604152					Matrix	: TRIP	BLANK
Analyses		Result	SQL	RL	Qual Units	DF	Date Analyzed
VOLATILE ORC	GANICS BY GC		SW80	21B			Analyst: KC
Benzene		ND	0.800	2.00	µg/L	1	5/1/2006 12:21:08 AM
Ethylbenzene		ND	2.00	6.00	µg/L	1	5/1/2006 12:21:08 AM
Toluene		ND	2.00	6.00	µg/L	1	5/1/2006 12:21:08 AM
Xylenes, Total		ND	3.00	9.00	µg/L	1	5/1/2006 12:21:08 AM
Surr: a,a,a-T	rifluorotoluene	107	0	87-113	%REC	1	5/1/2006 12:21:08 AM

Qualifiers ND - Not Detected at the SQL

J - Analyte detected between SQL and RLB - Analyte detected in the associated Method BlankDF- Dilution Factor

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SQL - Sample Quantitation Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 2

CLIENT: Work Order:	TRC Envi 0604152	ironmental	Corp.		AN	ALYT	TICAL Q)C SI	U MMA F	RY R	EPORT
Project:	RRC-Wes	t O'Daniel					RunID): (GC9_0604	30A	
Sample ID: LCS-2	2064	Batch ID:	22064		TestNo:	SW	/8021B	******	Units:	µg/L	
SampType: LCS		Run ID:	GC9_06	0430A	Analysis	s Date: 4/30	0/2006 10:51	:06 PM	Prep Date:	4/29/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	6RPD R	PDLimit Qual
Benzene			48.5	2.00	50.00	0	96.9	81	125		
Toluene			49.5	6.00	50.00	0	99.0	84	123		
Ethylbenzene			48.1	6.00	50.00	0	96.1	83	119		
Xylenes, Total			145	9.00	150.0	0	97.0	81	117		
Surr: a,a,a-Trifluo	protoluene		214		200.0		107	87	113		
Sample ID: MB-22	064	Batch 1D:	22064		TestNo:	SW	/8021B		Units:	µg/L	
SampType: MBLK		Run ID:	GC9_06	0430A	Analysis	5 Date: 4/3	0/2006 11:09	:09 PM	Prep Date:	4/29/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Benzene			ND	2.00							
Toluene			ND	6.00							
Ethvlbenzene			ND	6.00							
Xvlenes Total			ND	9.00							
Surr: a,a,a-Trifluo	orotoluene		220		200.0		110	87	113		
Sample ID: 06041	52-01DMS	Batch ID:	22064		TestNo:	SW	/8021B		Units:	µg/L	
SampType: MS		Run ID:	GC9_06	0430A	Analysi	s Date: 4/3	0/2006 11:45	:07 PM	Prep Date:	4/29/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD R	PDLimit Qual
Benzene			52.7	2.00	50.00	0	105	81	125		
Toluene			53.4	6.00	50.00	0	107	84	123		
Ethylbenzene			51.9	6.00	50.00	0	104	83	119		
Xvlenes. Total			158	9.00	150.0	0	105	81	117		
Surr: a,a,a-Trifluo	orotoluene		221		200.0		110	87	113		
Sample ID: 06041	52-01DMSD	Batch ID:	22064		TestNo:	SW	/8021B		Units:	µg/L	
SampType: MSD		Run ID:	GC9_06	60430A	Analysis	s Date: 5/1 /	/2006 12:03:0)7 AM	Prep Date:	4/29/2	006
Analyte	an 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD R	PDLimit Qual
Benzene			52.9	2.00	50.00	0	106	81	125	0.348	20
Toluene			53.3	6.00	50.00	0	107	84	123	0.251	20
Ethylbenzene			52.0	6.00	50.00	0	104	83	119	0.191	20
Xvlenes, Total			159	9.00	150.0	0	106	81	117	0.819	20
Surr: a.a.a-Triflue	orotoluene		223		200.0	-	112	87	113	0	0
مريبي مرميله بالمح							, . <u> </u>	÷.		-	-

Date: 03-May-06

·····	, , , , , , , , , , , , , , , , ,				
Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Dection Limit	Page 1 of 15
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	-
	RL	Reporting Limit	S	Spike Recovery outside control limits	
CLIENT: TRC Enviro

Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC-West O'Daniel

0604152

RunID: GC9_060430A

Sample ID: ICV-060430	Batch ID:	R2605	57	TestNo:	sw	8021B	· · ·	Units:	μg/L	
SampType: ICV	Run ID:	GC9_	060430A	Analysis	Date: 4/30)/2006 10:32	:59 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit (Qual
Benzene		96.8	2.00	100.0	0	96.8	85	115		
Toluene		101	6.00	100.0	0	101	85	115		
Ethylbenzene		99.6	6.00	100.0	0	99.6	85	115		
Xylenes, Total		299	9.00	300.0	0	99.8	85	115		
Surr: a,a,a-Trifluorotoluene		212		200.0		106	87	113		
Sample ID: CCV1-060430	Batch ID:	R2605	57	TestNo:	SW	8021B		Units:	hð\r	
SampType: CCV	Run ID:	GC9_	060430A	Analysis	Date: 5/1/	2006 1:51:4	0 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit (Qual
Benzene		50.5	2.00	50.00	0	101	85	115		
Toluene		51.0	6.00	50.00	0	102	85	115		
Ethylbenzene		49.4	6.00	50.00	0	98.7	85	115		
Xylenes, Total		149	9.00	150.0	0	99.3	85	115		
Surr: a,a,a-Trifluorotoluene		220		200.0		110	87	113		

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 2 of 15

CLIENT:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Work Order: 0604152 RRC-West O'Daniel **Project:**

RunID: ICP-MS_060501A

Sample ID:	MB-22030	Batch ID:	22030		TestNo	: SW6	020		Units:	μg/L	
SampType:	MBLK	Run ID:	ICP-MS	_060501A	Analys	is Date: 5/1/2	2006 2:47:0	0 PM	Prep Date:	4/27/	2006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Barium			ND	10.0							
Calcium			ND	100							
Iron			ND	100							
Magnesium			ND	100							
Potassium			ND	100							
Sodium			ND	100							
Sample ID:	0604173-02A SD	Batch ID:	22030		TestNo	swe	6020		Units:	μg/L	
SampType:	SD	Run ID:	ICP-MS	_060501A	Analys	is Date: 5/1/2	2006 3:04:0	0 PM	Prep Date:	4/27/	2006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Barium			0	50.0	0	4.156				0	10
Calcium			228000	500	0	223200				2.19	10
Iron			553	500	0	536.4				3.05	10
Magnesium			155000	500	0	157200				1.15	10
Potassium			5520	500	0	5097				7.97	10
Sample ID:	LCS-22030	Batch ID:	22030		TestNo	s: swe	6020		Units:	µg/L	
SampType:	LCS	Run ID:	ICP-MS	_060501A	Analys	is Date: 5/1/ 2	2006 3:29:0	0 PM	Prep Date:	4/27/	2006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	iit HighLimit	%RPD	RPDLimit Qual
Barium			186	10.0	200.0	0	92.8	80	120		
Calcium			4940	100	5000	0	98.9	80	120		
Iron			4600	100	5000	0	92.1	80	120		
Magnesium			4920	100	5000	0	98.3	80	120		
Potassium			4840	100	5000	0	96.9	80	120		
Sodium			5740	100	5000	0	115	80	120		
Sample ID:	LCSD-22030	Batch ID:	22030		TestNo	: SW6	5020		Units:	µg/L	
SampType:	LCSD	Run ID:	ICP-MS	_060501A	Analys	is Date: 5/1/ 2	2006 3:33:0	0 PM	Prep Date:	4/27/	2006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD	RPDLimit Qual
Barium			184	10.0	200.0	0	92.2	80	120	0.541	15
Calcium			4930	100	5000	0	98.5	80	120	0.365	15
Iron			4530	100	5000	0	90.7	80	120	1.51	15
Magnesium			4910	100	5000	0	98.2	80	120	0.102	15
Potassium			4850	100	5000	0	97.0	80	120	0.186	15
o			6670	100	5000	0	144	90	100	2 1 4	15

Qualifiers:

Analyte detected in the associated Method Blank в J

Analyte detected between MDL and RL

Not Detected at the Method Detection Limit ND

Reporting Limit RL

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits Page 3 of 15

CLIENT: Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Project: RRC-West O'Daniel

0604152

RunID: ICP-MS_060501A

Sample ID:	0604173-02A MS	Batch ID:	22030		TestNo	SW	6020		Units:	μg/L		
SampType:	MS	Run ID:	ICP-MS_	_060501A	Analysi	s Date: 5/1 /	2006 3:37:00	PM	Prep Date:	4/27/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	t Qual
Barium			194	10.0	200.0	4.156	94.9	80	120			
Calcium			225000	100	5000	223200	34.0	80	120			S
Iron			4740	100	5000	536.4	84.1	80	120			
Magnesium			151000	100	5000	157200	-118	80	120			S
Potassium			9590	100	5000	5097	89.8	80	120			
Sodium			0	100	5000	0	0	80	120			S
Sample ID:	0604173-02A MSD	Batch ID:	22030		TestNo	sw	6020		Units:	μg/L		
SampType:	MSD	Run ID:	ICP-MS	_060501A	Analysi	s Date: 5/1 /	2006 3:41:00	PM	Prep Date:	4/27/	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	t Qual
Barium			195	10.0	200.0	4.156	95.4	80	120	0.566	15	
Calcium			229000	100	5000	223200	116	80	120	1.81	15	
Iron			4800	100	5000	536.4	85.3	80	120	1.34	15	
Magnesium			152000	100	5000	157200	-108	80	120	0.330	15	S
Potassium			9560	100	5000	5097	89.2	80	120	0.303	15	
Sodium			0	100	5000	0	0	80	120	0	15	S
Sample ID:	0604173-02A PDS	Batch ID:	22030		TestNo	: SW	6020		Units:	μg/L		
SampType:	PDS	Run ID:	ICP-MS	_060501A	Analysi	s Date: 5/1 /	2006 3:45:00	PM	Prep Date	4/27	2006	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	t Qual
Barium			192	10.0	200	4.16	94.1	75	125			
Calcium			219000	100	5000	223000	-78.0	75	125			S
Iron			4750	100	5000	536	84.3	75	125			
Magnesium			146000	100	5000	157000	-220	75	125			S
Potassium			9260	100	5000	5100	83.2	75	125			

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Dection Limit	Page 4 of 15
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	-
	RL	Reporting Limit	S	Spike Recovery outside control limits	

CLIENT: Work Order:

Project:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

RRC-West O'Daniel

0604152

RunID: ICP-MS_060501A

Sample ID:	ICV1-060501	Batch ID:	R26047		TestNo	SW	6020		Units:	μg/L	
SampType:	ICV	Run ID:	ICP-MS_	060501A	Analysi	s Date: 5/1 /	2006 10:06:0	0 AM	Prep Date	:	
Analyte	annun angen (1999), 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Barium			97.5	10.0	100.0	0	97.5	90	110		
Calcium			2680	100	2500	0	107	90	110		
Iron			2610	100	2500	0	104	90	110		
Magnesium			2670	100	2500	0	107	90	110		
Potassium			2550	100	2500	0	102	90	110		
Sodium			2660	100	2500	0	106	90	110		
Sample ID:	CCV3-060501	Batch ID:	R26047		TestNo	sw	6020		Units:	μg/L	
SampType:	ccv	Run ID:	ICP-MS_	060501A	Analysi	s Date: 5/1/	2006 1:36:00	PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Barium			192	10.0	200.0	0	96.0	90	110		
Calcium			5040	100	5000	0	101	90	110		
Iron			4670	100	5000	0	93.4	90	110		
Magnesium			5130	100	5000	0	103	90	110		
Potassium			4940	100	5000	0	98.7	90	110		
Sodium			5230	100	5000	0	105	90	110		
Sample ID:	CCV4-060501	Batch ID:	R26047		TestNo	: sw	6020		Units:	μg/L	· · · · · ·
SampType:	ccv	Run ID:	ICP-MS_	060501A	Analysi	s Date: 5/1 /	2006 3:57:00	PM	Prep Date	ć.	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Barium			189	10.0	200.0	0	94.6	90	110		
Calcium			5040	100	5000	0	101	90	110		
Iron			4680	100	5000	0	93.6	90	110		
Magnesium			4820	100	5000	0	96.4	90	110		
Potassium			4870	100	5000	0	97.4	90	110		
Sodium			5360	100	5000	0	107	90	110		

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 5 of 15

CLIENT: Work Order: Project:	TRC Envi 0604152 RRC-Wes	ronmenta t O'Danie	l Corp. l		ANALYTICAL QC SUMMARY REPORT RunID: ICP-MS2_060502A								
Sample ID: 060 SampType: SD	04173-02A SD	Batch ID: Run ID:	22030 ICP-MS2	_060502A	TestNo: Analysis	SW6 Date: 5/2/2	020 006 12:57:0	0 PM	Units: Prep Date:	µg/L 4/27/20()6		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RP	DLimit Qual		
Sodium			870000	50000	0	900300			******	3.42	10		
Sample ID: 060 SampType: PD:	04173-02A PDS S	Batch ID: Run ID:	22030 ICP-MS2	_060502A	TestNo: Analysis	SW6 Date: 5/2/2	020 006 1:26:00	РМ	Units: Prep Date:	μg/L 4/27/20)6		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD RP	DLimit Qual		
Sodium			1400000	10000	500000	900000	98.9	75	125				

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 6 of 15

CLIENT: Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

RRC-West O'Daniel Project:

0604152

RunID: ICP-MS2_060502A

Sample ID:	ICV1-060502	Batch ID:	R26072	· · · · · · · · · · · · · · · · · · ·	TestNo	: SW6	020		Units:	μg/L	
SampType:	ICV	Run ID:	ICP-MS2	_060502A	Analysi	s Date: 5/2/2	2006 12:32:	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium			2650	100	2500	0	106	90	110		
Iron			2610	100	2500	0	104	90	110		
Magnesium			2630	100	2500	0	105	90	110		
Potassium			2540	100	2500	0	102	90	110		
Sodium			2560	100	2500	0	102	90	110		
Sample ID:	CCV1-060502	Batch ID:	R26072		TestNo	: SW6	020		Units:	µg/L	
1											
SampType:	CCV	Run ID:	ICP-MS2	_060502A	Analys	is Date: 5/2/2	2006 1:33:0	0 PM	Prep Date	1	
SampType: Analyte	CCV	Run ID:	ICP-MS2 Result	2_060502A RL	Analys SPK value	is Date: 5/2/2 Ref Val	2006 1:33:0 %REC	0 PM LowLimit	Prep Date HighLimit	: %RPD	RPDLimit Qual
SampType: Analyte Calcium	CCV	Run ID:	ICP-MS2 Result 5120	RL 100	Analys SPK value 5000	is Date: 5/2/2 Ref Val	2006 1:33:0 %REC 102	0 PM LowLimit 90	Prep Date HighLimit 110	%RPD	RPDLimit Qual
SampType: Analyte Calcium Iron	CCV	Run ID:	ICP-MS2 Result 5120 5240	RL 100 100	Analys SPK value 5000 5000	is Date: 5/2/2 Ref Val 0 0	2006 1:33:0 %REC 102 105	0 PM LowLimit 90 90	Prep Date HighLimit 110 110	%RPD	RPDLimit Qual
SampType: Analyte Calcium Iron Magnesium	CCV	Run ID:	ICP-MS2 Result 5120 5240 5200	2_060502A RL 100 100 100	Analys SPK value 5000 5000 5000	is Date: 5/2/2 Ref Val 0 0 0	2006 1:33:0 %REC 102 105 104	0 PM LowLimit 90 90 90	Prep Date HighLimit 110 110 110	%RPD	RPDLimit Qual
SampType: Analyte Calcium Iron Magnesium Potassium	CCV	Run ID:	ICP-MS2 Result 5120 5240 5200 5080	2_060502A RL 100 100 100 100	Analys SPK value 5000 5000 5000 5000	is Date: 5/2/2 Ref Val 0 0 0 0	2006 1:33:0 %REC 102 105 104 102	0 PM LowLimit 90 90 90 90	Prep Date HighLimit 110 110 110 110	%RPD	RPDLimit Qual

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

Not Detected at the Method Detection Limit ND

Reporting Limit RL

DF Dilution Factor

MDL Method Dection Limit

RPD outside accepted control limits R S

Spike Recovery outside control limits

20

Page 7 of 15

CLIENT: Work Order:

TRC Environmental Corp.

ANALYTICAL QC SUMMARY REPORT

Work Order:0604152Project:RRC-West O'Daniel

RunID: ICP-MS2_060503A

Sample ID:	ICV2-060502	Batch ID:	R26081		TestNo	SW	5020		Units:	µg/L	"
SampType:	ICV	Run ID:	ICP-MS2	_060503A	Analysi	s Date: 5/2/2	2006 4:01:0	0 PM	Prep Date	E.	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Barium	P		98.2	10.0	100.0	0	98.2	90	110		
Calcium			2680	100	2500	0	107	90	110		
Iron			2550	100	2500	0	102	90	110		
Magnesium			2520	100	2500	0	101	90	110		
Potassium			2480	100	2500	0	99.2	90	110		
Sodium			2490	100	2500	0	99.6	90	110		
Sample ID:	CCV2-060502	Batch ID:	R26081		TestNo	: SW(6020		Units:	μg/L	-
SampType:	ccv	Run ID:	ICP-MS2	_060503A	Analysi	s Date: 5/2/ 2	2006 4:52:0	0 PM	Prep Date	; ;	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Barium			204	10.0	200.0	0	102	90	110		
Calcium			5140	100	5000	0	103	90	110		
Iron			5040	100	5000	0	101	90	110		
Magnesium			5050	100	5000	0	101	90	110		
Potassium			5000	100	5000	0	100	90	110		
Sodium			5070	100	5000	0	101	90	110		
Sample ID:	CCV3-060502	Batch ID:	R26081		TestNo	sw(6020		Units:	μg/L	"
SampType:	ccv	Run ID:	ICP-MS2	_060503A	Analysi	s Date: 5/2/ 2	2006 6:16:0	0 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium			5070	100	5000	0	101	90	110		*******
Iron			4990	100	5000	0	99.8	90	110		
Magnesium			5050	100	5000	0	101	90	110		
Potassium			5060	100	5000	0	101	90	110		
Sodium			5070	100	5000	0	101	90	110		

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 8 of 15

CLIENT: TRC Enviro

Work Order:

Project:

TRC Environmental Corp. 0604152

ANALYTICAL QC SUMMARY REPORT

RRC-West O'Daniel

RunID:	IC_060422A
--------	------------

							·				
Sample ID:	ICV-060422	Batch ID:	R2596	0	TestN	lo: E300			Units:	mg/L	
SampType:	ICV	Run ID:	IC_060	422A	Analy	sis Date: 4/22/	2006 1:22:	57 PM	Prep Date	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PDLimit Qual
Bromide			47.2	1.00	50.00	0	94.5	90	110		
Nitrate-N			12.0	0.500	12.50	0	96.0	90	110		
Sulfate			70.3	3.00	75.00	0	93.7	90	110		
Sample ID:	MB-060422	Batch ID:	R2596	0	TestN	lo: E300			Units:	mg/L	
SampType:	MBLK	Run ID:	IC_060	422A	Analy	sis Date: 4/22/	2006 1:41:	30 PM	Prep Date	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PDLimit Qual
Bromide			ND	1.00							
Nitrate-N			ND	0.500							
Sulfate			ND	3.00							
Sample ID:	LCS-060422	Batch ID:	R2596	0	TestN	lo: E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC_060)422A	Analy	sis Date: 4/22/	2006 1:55:	42 PM	Prep Date	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PDLimit Qual
Bromide			18.8	1.00	20.00	0	94.2	90	110		
Nitrate-N			4.75	0.500	5.000	0	95.1	90	110		
Sulfate			27.9	3.00	30.00	0	93.0	90	110		
Sample ID:	LCSD-060422	Batch ID:	R2596	0	TestN	lo: E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC_060)422A	Analy	sis Date: 4/22/	2006 2:09:	55 PM	Prep Date	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PDLimit Qual
Bromide			18.8	1.00	20.00	0	94.1	90	110	0.186	20
Nitrate-N			4.73	0.500	5.000	0	94.6	90	110	0.550	20
Sulfate			27.7	3.00	30.00	0	92.4	90	110	0.569	20
Sample ID:	0604152-01A MS	Batch ID:	R2596	0	TestN	lo: E300	1		Units:	mg/L	
SampType:	MS	Run ID:	IC_060)422A	Analy	sis Date: 4/22/	2006 3:28:	39 PM	Prep Date	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PDLimit Qual
Bromide			239	10.0	200.0	45.66	96.8	90	110		
Nitrate-N			59.3	5.00	50.00	11.19	96.2	90	110		
Sample ID:	0604152-01A MSD	Batch ID:	R2596	0	TestN	lo: E300	ł		Units:	mg/L	
SampType:	MSD	Run ID:	IC_060)422A	Analy	/sis Date: 4/22/	2006 3:42:	51 PM	Prep Date	: 4/22/2	006
Analyte			Result	RL	SPK value	Ref Vai	%REC	LowLimit	HighLimit	%RPD R	PDLimit Qual
Bromide			239	10.0	200.0	45.66	96.7	90	110	0.0757	20
Qualifiers:	B Analyte det	ected in the a	associated	Method Blank	DF	Dilution Factor	ſ				
	J Analyte det	ected betwee	en MDL an	d RL	MDL	Method Dectio	n Limit			Pa	age 9 of 15
	ND Not Detecte	d at the Met	hod Detect	ion Limit	R	RPD outside ac	ccepted cont	trol limits			
	RL Reporting L	imit			S	Spike Recovery	y outside co	ntrol limits			

CLIENT: Work Ord	TRC Er der: 060415	vironmental 2	Corp.		AN	ALYT	ICAL (QC SI		RY RJ	EPORT
Project:	RRC-W	est O'Danie	1				RunII	ן: 	IC_060422	:A	
Sample ID:	0604152-01A MS	D Batch ID:	R2596	0	TestNo	: E30	0		Units:	mg/L	
SampType:	MSD	Run ID:	IC_06	0422A	Analysi	s Date: 4/22	/2006 3:42:	51 PM	Prep Date:	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Nitrate-N			59.1	5.00	50.00	11.19	95.8	90	110	0.285	20
Sample ID:	CCV1-060422	Batch ID:	R2596	0	TestNo	: E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC_06	0422A	Analysi	s Date: 4/22	/2006 4:11:	16 PM	Prep Date:	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Bromide			18.7	1.00	20.00	0	93.6	90	110		
Nitrate-N			4.70	0.500	5.000	0	94.0	90	110		
Sulfate			27.7	3.00	30.00	0	92.3	90	110		
Sample ID:	0604152-01A MS	Batch ID:	R2596	0	TestNo	: E30	0		Units:	mg/L	
SampType:	MS	Run ID:	IC_06	0422A	Analysi	s Date: 4/22	2/2006 4:39:	42 PM	Prep Date:	4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	it HighLimit	%RPD R	PDLimit Qual
Sulfate			2300	60.0	600.0	1752	90.7	90	110		
Sample ID:	0604152-01A MS	D Batch ID:	R2596	0	TestNo	: E30	0		Units:	mg/L	
SampType:	MSD	Run ID:	IC_06	0422A	Analysi	is Date: 4/22	2/2006 4:53:	54 PM	Prep Date	: 4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD F	PDLimit Qual
Sulfate		<u> </u>	2300	60.0	600.0	1752	91.4	90	110	0.160	20
Sample ID:	CCV2-060422	Batch ID:	R2596	60	TestNo	E30	0		Units:	mg/L	
SampType:	ccv	Run ID:	IC_06	0422A	Analys	is Date: 4/22	2/2006 5:22:	19 PM	Prep Date	: 4/22/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD F	PDLimit Qual
Bromide			18.8	1.00	20.00	0	94.1	90	110	******	
Nitrate-N			4.72	0.500	5.000	0	94.4	90	110		
Sulfate			27.8	3.00	30.00	0	92.8	90	110		

Qualifiers	:
------------	---

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 10 of 15

TRC Environmental Corp. **CLIENT:** Work Order: 0604152

ANALYTICAL QC SUMMARY REPORT

Project:	RRC-West	O'Daniel					RunII	D:	IC_060425	A	
Sample ID: SampType:	ICV-060425 ICV	Batch ID: Run ID:	R25970 IC_060425A	1	TestNo: Analysis	E300 Date: 4/25/2	2006 8:20:	36 AM	Units: Prep Date:	mg/L 4/25/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD R	PDLimit Qual
Chloride Sulfate			22.8 69.0	1.00 3.00	25.00 75.00	0 0	91.1 92.0	90 90	110 110		nan an
Sample ID: SampType:	MB-060425 MBLK	Batch ID: Run ID:	R25970 IC_0604254	<u> </u>	TestNo: Analysis	E300 Date: 4/25/2	2006 8:41:	30 AM	Units: Prep Date:	mg/L 4/25/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD R	PDLimit Qual
Chloride Sulfate			ND ND	1.00 3.00							
Sample ID:	LCS-060425	Batch ID:	R25970		TestNo:	E300			Units:	mg/L	
SampType:	LCS	Run ID:	IC_0604254	4	Analysis	Date: 4/25/2	2006 8:55:	43 AM	Prep Date:	4/25/2	006
Analyte	n ₂₀ -5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Result	RL	SPK value	Ref Val	%REC	LowLir	nit HighLimit	%RPD R	PDLimit Qual
Chloride Sulfate	анирий и мен н. н. н.		9.06 27.8	1.00 3.00	10.00 30.00	0 0	90.7 92.6	90 90	110 110		
Sample ID:	LCSD-060425	Batch ID:	R25970		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC_0604254	4	Analysis	3 Date: 4/25/2	2006 9:09:	:55 AM	Prep Date:	4/25/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLir	nit HighLimit	%RPD R	PDLimit Qual
Chloride Sulfate			9.06 27.9	1.00 3.00	10.00 30.00	0 0	90.6 93.0	90 90	110 110	0.110 0.413	20 20
Sample ID: SampType:	CCV1-060425 CCV	Batch ID: Run ID:	R25970	4	TestNo: Analysis	E300 5 Date: 4/25/2	2006 1:20:	:50 PM	Units: Prep Date:	mg/L 4/25/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLir	nit HighLimit	%RPD R	PDLimit Qual
Chloride Sulfate			9.27 28.5	1.00 3.00	10.00 30.00	0 0	92.7 95.1	90 90	110 110		
Sample ID:	0604156-01A MS	Batch ID:	R25970		TestNo:	E300			Units:	mg/L	
SampType:	MS	Run ID:	IC_0604254	4	Analysis	a Date: 4/25/ 2	2006 1:38:	:39 PM	Prep Date:	4/25/2	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD R	PDLimit Qual
Chloride			309	10.0	100.0	206.7	102	90	110		

	, .				
Qualifiers:	в	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Dection Limit	Page 11 of 15
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	-
	RL	Reporting Limit	S	Spike Recovery outside control limits	

CLIENT:	TRC Environmental Corp.	ANALVTICALO
Work Order:	0604152	ANALITICAL
Project:	RRC-West O'Daniel	RunID

ANALYTICAL QC SUMMARY REPORT

RunID: IC_060425A

Sample ID:	0604156-01A MSD	Batch ID:	R25970		TestNo	E300)		Units:	mg/L	
SampType:	MSD	Run ID:	IC_060425	5A	Analysi	s Date: 4/25 /	/2006 1:52:	52 PM	Prep Date	4/25/20	06
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	PDLimit Qual
Chloride	***************************************		309	10.0	100.0	206.7	102	90	110	0.0240	20
Sample ID:	0604168-02E MS	Batch ID:	R25970		TestNo	E300)		Units:	mg/L	
SampType:	MS	Run ID:	IC_060425	5A	Analysi	s Date: 4/25 /	/2006 3:32:	19 PM	Prep Date	4/25/20	06
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	PDLimit Qual
Chloride			173	10.0	100.0	83.47	89.8	90	110		
Sulfate			574	30.0	300.0	297.0	92.4	90	110		
Sample ID:	0604168-02E MSD	Batch ID:	R25970		TestNo	E300	0		Units:	mg/L	
SampType:	MSD	Run ID:	IC_060425	5A	Analysi	s Date: 4/25	/2006 3:46:	32 PM	Prep Date	: 4/25/20	06
Analyte	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	PDLimit Qual
Chloride			174	10.0	100.0	83.47	90.4	90	110	0.364	20
Sulfate			576	30.0	300.0	297.0	92.9	90	110	0.245	20
Sample ID:	CCV2-060425	Batch ID:	R25970		TestNo	E300	0		Units:	mg/L	
SampType:	ccv	Run ID:	IC_060428	5A	Analysi	s Date: 4/25	/2006 4:14:	57 PM	Prep Date	: 4/25/20	06
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Chloride	***************************************		9.08	1.00	10.00	0	90.8	90	110		,
Sulfate			27.8	3.00	30.00	0	92.6	90	110		
Sample ID:	CCV3-060425	Batch ID:	R25970		TestNo	: E300	0		Units:	mg/L	
SampType:	ccv	Run ID:	IC_06042	5A	Analysi	s Date: 4/25	/2006 6:24:	59 PM	Prep Date	: 4/25/20	006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RI	PDLimit Qual
Chloride			9.09	1.00	10.00	0	90.9	90	110		
Sulfate			28.0	3.00	30.00	0	93.4	90	110		

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 12 of 15

CLIENT: Work Order: Project:	TRC Envi 0604152 RRC-West	ronmental t O'Daniel	Corp.		AN	ALYT	ICAL (RunII	QC SU D: P	MMAI H_060424	AY REPORT
Sample ID: ICV		Batch ID:	PH_W-04	/24/06	TestNo:	E15	0.1		Units:	pH Units
SampType: ICV		Run ID:	PH_0604	24A	Analysi	s Date: 4/24	/2006 11:45	:00 AM	Prep Date:	4/24/2006
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit (%RPD RPDLimit Qual
рН			10.0	0	10.00	0	100	99	101	
Sample ID: 06041	52-01B DUP	Batch ID:	PH_W-04	/24/06	TestNo:	E150	0.1		Units:	pH Units
SampType: DUP		Run ID:	PH_0604	24A	Analysis	s Date: 4/24	/2006 11:45	:00 AM	Prep Date:	4/24/2006
Analyte	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit '	%RPD RPDLimit Qual
рН			7.11	0	0	7.153				0.659 15
Sample ID: CCV-)60424	Batch ID:	PH_W-04	/24/06	TestNo:	E15	0.1		Units:	pH Units
SampType: CCV		Run ID:	PH_0604	24A	Analysi	s Date: 4/24	/2006 11:45	:00 AM	Prep Date:	4/24/2006
Analyte		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit (%RPD RPDLimit Qual
pН			7.06	0	7.000	0	101	97.1	102.9	

Qualifiers:

B Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

DF Dilution Factor

MDL Method Dection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

Page 13 of 15

CLIENT: Work Order:

Project:

TRC Environmental Corp.

RRC-West O'Daniel

0604152

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_060426A

Sample ID: ICV-060426	Batch ID:	R25990		TestNo:	E31	D.1		Units:	mg/L	
SampType: ICV	Run ID:	TITRATOR	R_060426A	Analysi	s Date: 4/26	/2006 9:57:0	00 AM	Prep Date:	4/26/2	2006
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit '	%RPD F	RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	16.2	10.0	0						
Alkalinity, Carbonate (As CaCO3)		85.4	10.0	0						
Alkalinity, Hydroxide (As CaCO3)		0	10.0	0						
Alkalinity, Total (As CaCO3)	000.000.000.000.000.000.000.000.000.00	102	10.0	100.0	0	102	98	102		
Sample ID: LCS-060426	Batch ID:	R25990		TestNo	E31	0.1		Units:	mg/L	
SampType: L CS	Run ID:	TITRATOP	R_060426A	Analysi	s Date: 4/26	/2006 10:10	:00 AM	Prep Date:	4/26/2	2006
Analyte		Result	RL	SPK value	Ref Vai	%REC	LowLimit	HighLimit	%RPD F	RPDLimit Qual
Alkalinity, Total (As CaCO3)		50.8	10.0	50.00	0	102	74	129		
Sample ID: 0604152-01E DUP	Batch ID:	R25990		TestNo	E31	0.1		Units:	mg/L	
SampType: DUP	Run ID:	TITRATOF	R_060426A	Analysi	s Date: 4/26	/2006 10:22	:00 AM	Prep Date:	4/26/2	2006
Analyte	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD F	RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	135	10.0	0	134.9				0.400	20
Alkalinity, Carbonate (As CaCO3))	0	10.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3)		0	10.0	0	0				0	20
Alkalinity, Total (As CaCO3)		135	10.0	0	134.9				0.400	20
Sample ID: CCV-060426	Batch ID:	R25990		TestNo	E31	0.1		Units:	mg/L	
SampType: CCV	Run ID:	TITRATOF	R_060426A	Analysi	s Date: 4/26	/2006 11:03	:00 AM	Prep Date:	4/26/2	2006
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD F	RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	21.3	10.0	0						
Alkalinity, Carbonate (As CaCO3))	79.8	10.0	0						
Alkalinity, Hydroxide (As CaCO3)		0	10.0	0						
Alkalinity, Total (As CaCO3)		101	10.0	100.0	0	101	90	110		

Qualifiers:	в	Aı
	J	Aı

nalyte detected in the associated Method Blank

- Analyte detected between MDL and RL J
- Not Detected at the Method Detection Limit ND

RL Reporting Limit DF Dilution Factor

MDL Method Dection Limit

RPD outside accepted control limits R S

Spike Recovery outside control limits

Page 14 of 15

TRC Er	vironmental Corp.	
--------	-------------------	--

ANALYTICAL QC SUMMARY REPORT

Work Order:0604152Project:RRC-West O'Daniel

CLIENT:

RunID: WC_060425A

Page 15 of 15

			· · ·						
Sample ID: ICV-060425	Batch ID:	CONDV	1-04/25/06	TestNo:	E12	0.1		Units:	µmhos/cm
SampType: ICV	Run ID:	WC_06	0425A	Analysi	s Date: 4/25	/2006 3:50:	00 PM	Prep Date:	4/25/2006
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Specific Conductance		12900	10.0	12880	0	100	90	110	
Sample ID: LCS-060425	Batch ID:	CONDV	/-04/25/06	TestNo	E12	0.1		Units:	µmhos/cm
SampType: LCS	Run ID:	WC_06	0425A	Analysi	s Date: 4/25	5/2006 3:50:	00 PM	Prep Date	4/25/2006
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Specific Conductance		1400	10.0	1413	0	99.1	93	109	
Sample ID: 0604152-01A DUP	Batch ID:	CONDV	/-04/25/06	TestNo	E12	0.1	<u> </u>	Units:	µmhos/cm
SampType: DUP	Run ID:	WC_06	0425A	Analysi	s Date: 4/25	5/2006 3:50:	00 PM	Prep Date	4/25/2006
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Specific Conductance		79800	100	0	81000				1.49 20
Sample ID: CCV-060425	Batch ID:	CONDV	/-04/25/06	TestNo	E12	0.1		Units:	µmhos/cm
SampType: CCV	Run ID:	WC_06	0425A	Analysi	s Date: 4/25	5/2006 3:50:	00 PM	Prep Date	4/25/2006
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Specific Conductance		12800	10.0	12880	0	99.1	90	110	

Qualifiers:	в	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Dection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits

DHL Analytical

Date: ()3-May-06
---------	-----------

CLIENT: Work Order: Project:	TRC Environmental Cor 0604152 RRC-West O'Daniel).	MQL SUMMARY REPO
TestNo: F300	MD	MQI	
Analyte	ma/L	mal	
Bromide		1	
Chloride	0.3	4	
Nitrate-N	0.3	0.5	
Sulfate	1	3	
TestNo: SW6020	MDL	MQL	
Analyte	µg/L	μg/L	
Barium	3	10	
Calcium	100	100	
Iron	50	100	
Magnesium	100	100	
Potassium	100	100	
Sodium	100	100	
TestNo: SW8021	B MDL	MQL	
Analyte	μg/L	μg/L	
Benzene	0.8	2	
Toluene	2	6	
Ethylbenzene	2	6	
Xylenes, Total	3	9	

August 2, 2006

Steve Miller TRC Environmental Corp. 505 East Hutland Drive Suite 250 Austin, Texas 78752

TEL: (512) 329-6080 FAX: (512) 329-8750

RE: RRC-West O'Daniel Amendment Number 1 for Work Order 0604152

Dear Steve,

DHL Analytical received 2 samples on 4/22/06 for the analyses presented in the following REVISED Data report. The duplicate results for the metals analyses for sample E-S-56-1 were corrected. Please replace these pages in the revised data package.

There is a total of 3 pages in Amendment Number 1.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these test results, please feel free to call. Thank you for using DHL Analytical.

Sincerel

John DuPont General Manager

DHL Analytical				Date:		02-Aug-06		
CLIENT:	TRC Environmental C	Corp.			Client	Sample ID:	E-S-56	-1
Project:	RRC-West O'Daniel					Lab ID:	060415	52-01
Project No:	46513-0000-00002				Colle	ction Date:	4/21/20	006 3:10:00 PM
Lab Order:	0604152					Matrix:	AQUE	OUS
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed
VOLATILE OR	GANICS BY GC		SW80	21B				Analyst: KC
Benzene		ND	0.800	2.00		µg/L	1	4/30/2006 11:27:09 PM
Ethylbenzene		ND	2.00	6.00		µg/L	1	4/30/2006 11:27:09 PM
Toluene		ND	2.00	6.00		µg/L	1	4/30/2006 11:27:09 PM
Xylenes, Total		ND	3.00	9.00		µg/L	1	4/30/2006 11:27:09 PM
Surr: a,a,a-Ti	rifluorotoluene	111	0	87-113		%REC	1	4/30/2006 11:27:09 PM
TRACE METAL	S: ICP-MS - WATER		SW6	020				Analyst: AJR
Barium		77.9	3.00	10.0		µg/L	1	5/1/2006 3:00:00 PM
Calcium		1850000	100000	100000		µg/L	1000	5/2/2006 5:19:00 PM
Iron		64.2	50.0	100	ł.	µg/L	1	5/1/2006 3:00:00 PM
Magnesium		447000	10000	10000		µg/L	100	5/3/2006 1:43:00 PM
Potassium		172000	10000	10000		µg/L	100	5/3/2006 1:43:00 PM
Sodium		11600000	200000	200000		µg/L	2000	5/2/2006 5:25:00 PM
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: DEW
Bromide		57.1	3.00	10.0		mg/L	10	4/22/2006 2:54:59 PM
Chloride		22600	150	500		mg/L	500	4/25/2006 10:35:10 AM
Nitrate-N		14.0	1.00	5.00		mg/L	10	4/22/2006 2:54:59 PM
Sulfate		2190	20.0	60.0		mg/L	20	4/22/2006 4:25:29 PM
ALKALINITY			E310	0.1				Analyst: JBC
Alkalinity, Bicar	bonate (As CaCO3)	135	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
Alkalinity, Carbo	onate (As CaCO3)	ND	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
Alkalinity, Hydro	oxide (As CaCO3)	ND	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
Alkalinity, Total	(As CaCO3)	135	10.0	10.0		mg/L	1	4/26/2006 10:17:00 AM
РН			E150	D.1				Analyst: JBC
рН		7.15	0	0		pH Units	1	4/24/2006 11:45:00 AM
SPECIFIC CON	IDUCTANCE		E120	D.1				Analyst: JBC
Specific Condu	ctance	81000	100	100		µmhos/cm	10	4/25/2006 3:50:00 PM

Qualifiers:	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	N - Parameter not NELAC certified	E - TPH pattern not Gas or Diesel Range Pattern
	See Final Page of Report for MQLs and MDLs	

DHL Analytical					Date:		02-Au	02-Aug-06	
CLIENT:	TRC Environmental Cor	p.	Client Sample ID:			: TB-4-	TB-4-21-06-1		
Project:	RRC-West O'Daniel		Lab ID: 0604152-02			52-02			
Project No:	46513-0000-00002		Collection Date: 4/21/2006			:006			
Lab Order:	0604152		Matrix: TRIP BLANK			BLANK			
Analyses		Result	SQL	RL	Qual	Units	DF	Date Analyzed	
VOLATILE OR	GANICS BY GC		SW80	21B				Analyst: KC	
Benzene		ND	0.800	2.00		µg/L	1	5/1/2006 12:21:08 AM	
Ethylbenzene		ND	2.00	6.00		µg/L	1	5/1/2006 12:21:08 AM	
Toluene		ND	2.00	6.00		µg/L	1	5/1/2006 12:21:08 AM	
Xylenes, Total		ND	3.00	9.00		µg/L	1	5/1/2006 12:21:08 AM	
Surr: a,a,a-Ti	rifluorotoluene	107	0	87-113		%REC	1	5/1/2006 12:21:08 AM	

Qualifiers:	ND - Not Detected at the SQL	S - Spike Recovery outside control limits
	J - Analyte detected between SQL and RL	C - Sample Result or QC discussed in Case Narrative
	B - Analyte detected in the associated Method Blank	RL - Reporting Limit (MQL adjusted for moisture and sample size)
	DF- Dilution Factor	SQL - Sample Quantitation Limit
	N - Parameter not NELAC certified	E - TPH pattern not Gas or Diesel Range Pattern
	See Final Page of Report for MQLs and MDLs	

APPENDIX F

ANALYTICAL DATA REVIEW/VALIDATION CHECKLISTS

Background

Thirteen water samples, two field duplicate samples, and three trip blanks were collected on April 13, 14, and 21, 2006 at the West O'Daniel Seep site in Howard County, Texas. These samples were submitted to DHL Analytical in Round Rock, Texas for analyses by the following methods:

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by SW846 Method 8021B
- Barium, calcium, iron, magnesium, potassium, and sodium by SW846 Method 6020
- Bromide, chloride, nitrate-N, sulfate (Anions) by USEPA Method 300.0
- Alkalinity by USEPA Method 310.1
- pH by USEPA Method 150.1
- Specific conductance by USEPA Method 120.1

TRC Quality Assurance (QA) staff reviewed resultant data on July 31 and August 1, 2006. Three separate data packages were reviewed to generate this document. Sample identifiers cross-referenced to laboratory identifications are presented in Table 1. Data were reviewed for compliance with the criteria presented in *Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan* (Railroad Commission of Texas, September 9, 2005) (the QAPP). Items reviewed during the data validation process included the following:

- Sample integrity
- Sensitivity
- Blank analyses
- Spike recoveries
- Duplicate recoveries
- Completeness

The following is a discussion of the QC analyses performed with the site samples and any potential data limitations associated with the results of analyses.

Sample Preservation and Holding Times

Maximum holding times and sample preservation guidelines are established for each method to reduce the chance of generating results that are not representative of the original sample due to changes in analyte concentration. Adequate sample preservation is documented on chain-of-custody records. All sample preparation and analytical steps

were performed within specified holding times. No data interpretation issues are indicated.

Sensitivity

Reporting limits for several analytes are greater than QAPP-specified concentrations. In each instance, the sample required dilution to get a target analyte concentration within the upper half of the calibrated concentration range. All reporting limits associated with non-detected results are at or below QAPP-specified values. No data interpretation issues are indicated for sensitivity.

Blank Analyses

Blanks are analyzed to help ensure that reported concentrations of analytes of interest are not biased high due to contributions from sources outside the media (or the site) being investigated. The blanks analyzed as part of this event were laboratory method blanks and trip blanks.

Laboratory Method Blank—An aliquot of reagent water taken through the analytical process as though it were an actual sample. The purpose of method blank analyses is to monitor for laboratory sources of contamination.

Target analytes were not detected in the method blanks indicating that laboratory efforts to control internal sources of contamination were successful.

Trip Blanks— Aliquots of reagent water that are prepared in the laboratory, shipped to the site, and shipped back to the laboratory with the investigation or field samples. Trip blank results are used to assess potential cross contamination between samples during shipping and storage or contamination from outside sources present during sample collection or shipping. Trip blanks are usually only analyzed by volatile organics methods.

Target analytes were not detected in reported trip blank indicating that field samples were not contaminated with BTEX compounds during shipment and/or storage,

Spike Recoveries

Spiked samples are samples into which known amounts of analytes of interest have been added. Spike recoveries can be used to assess measurement accuracy. Laboratory control sample (LCS), matrix spike (MS), and surrogate spike analyses were included in the QC effort associated with the samples collected as part of this event.

Laboratory Control Samples—Target analytes are spiked at known concentrations into analyte-free water and processed (prepared and analyzed) with the project samples. This type of spiked sample is analyzed to assess the preparatory and analytical control of the laboratory in the absence of matrix effects.

All LCS recoveries fall within QAPP-defined limits indicating that measurement control was adequate at the time of sample analyses.

Matrix Spikes—A matrix spike (MS) sample is a field sample that is spiked at known concentrations with target analytes. Both spiked and un-spiked aliquots of this sample are analyzed. This type of spiked sample is analyzed to assess matrix effects for the specific sites associated with the investigation as well as on the preparatory and analytical procedures.

Sample S-MW-04-2 was analyzed as an MS/MSD pair for BTEX compounds, bromide, nitrate-N, sulfate, and chloride. Reported recoveries associated with these analyses are within QAPP-specified limits. These results are indicative of minimal matrix interferences with the accuracy of the listed target analytes in this sample.

Sample S-MW-04-2 was also analyzed as an MS/MSD pair for metals. Recoveries of calcium, magnesium, potassium, and sodium are greater than QAPP-specified control limits; however, the concentrations of these metals in the un-spiked sample are more than forty times the spiking concentration. No interpretation issues are indicated for calcium, magnesium, potassium, and sodium. Recoveries of barium are zero percent; however, the spiking concentrations). Therefore, no data interpretation issues are indicated for barium.

Sample S-MW-03-1 was analyzed as an MS/MSD pair for sulfate. Recovery in the MS is within QAPP-specified limits, but recovery in the associated MSD is greater than acceptance criteria. No data interpretation issues are indicated since at least one recovery is within control limits.

Sample S-MW-06-1 was analyzed as an MS/MSD pair for BTEX compounds. Reported recoveries associated with these analyses are within QAPP-specified limits. These results are indicative of minimal matrix interferences with the accuracy of the listed target analytes in this sample.

Sample S-S-2-1 was analyzed as an MS/MSD pair for bromide, nitrate-N, and sulfate. Recoveries of bromide and nitrate-N are within QAPP-specified limits and are not indicative of matrix interferences. Recoveries of sulfate are extremely low (-53.8% and – 53.2%) and are indicative of a very low bias in reported sulfate results in this sample. Since associated LCS recoveries are within limits, the low sulfate recoveries are likely due to matrix interferences. The extremely low bias should exclude the use of the reported sulfate result from being used for decision-making purposes.

Sample S-WW-53-1 was analyzed as an MS/MSD pair for sulfate. Reported recoveries associated with these analyses are within QAPP-specified limits. These results are indicative of minimal matrix interferences with the accuracy of the listed target analytes in this sample.

Sample S-MW-07-1 was analyzed as an MS/MSD pair for chloride, bromide, and nitrate-N. Reported recoveries associated with these analyses are within QAPP-specified limits. These results are indicative of minimal matrix interferences with the accuracy of the listed target analytes in this sample.

Sample E-S-56-1 was analyzed as an MS/MSD pair for BTEX compounds, bromide, nitrate-N, and sulfate. Reported recoveries associated with these analyses are within QAPP-specified limits. These results are indicative of minimal matrix interferences with the accuracy of the listed target analytes in this sample.

Surrogate Spikes—Surrogate spike compounds are added to each sample (including QC samples) analyzed for volatile organics. Surrogate spike recoveries provide sample-specific information regarding extraction and analysis efficiency. Surrogate spikes are compounds that are chemically similar to the target analytes but are not expected to be found in environmental media. Acceptance criteria for surrogate recoveries are those limits specified by the laboratory. Surrogate recoveries are reported in association with BTEX analyses only.

All field sample surrogate recoveries fall within laboratory-derived acceptance criteria indicating that extraction and analysis efficiency was adequate for these samples.

Duplicate Sample Analyses

Measurement precision can be estimated by calculating the relative percent difference (RPD) between recoveries of the corresponding duplicate samples. The analysis of duplicate LCS analyses, duplicate MS analyses, laboratory duplicates, and field duplicates were included in the QC effort associated with the samples collected in this event as well as field duplicate analyses.

Laboratory Control Sample Duplicates—A laboratory control sample duplicate is a second laboratory-spiked aliquot of a blank matrix. LCS/LCSD pairs provide an indication of measurement variability in sample preparation and analysis in the absence of potential matrix effects. LCS/LCSD pairs are reported in association with metals analytical batches 21931, 21946, and 22030 as well as anion analytical batches R25875, R25871, R25960, and R25970.

All reported RPD values fall within laboratory-specified limits indicating adequate precision in the absence of potential matrix interferences.

Matrix Spike Duplicates—A matrix spike duplicate is a second spiked aliquot of a single field sample. The matrix spike/matrix spike duplicate (MS/MSD) pairs provide an indication of measurement variability in sample preparation and analysis given the presence of matrix effects.

All reported RPD values for MS/MSD pairs are within laboratory-derived limits indicating adequate precision in the presence of potential matrix interferences.

Laboratory Duplicates—A laboratory duplicate is a duplicate analysis of a field sample initiated in the laboratory to satisfy a method, procedural, or policy requirement. The client does not request laboratory duplicate analyses and a separate sample is not collected. Laboratory duplicate pairs provide an added indication of measurement variability in sample preparation and analysis as well as sample collection procedures given the presence of potential matrix effects. Acceptance criteria are those in the QAPP for MS/MSD analyses

Sample S-MW-04-2 was analyzed as laboratory duplicates for pH, alkalinity, and specific conductance. Reported RPD values are within QAPP-specified limits indicating adequate precision in the presence of potential matrix interferences.

Sample S-MW-06-1 was analyzed as a laboratory duplicate for pH. The reported RPD value is within QAPP-specified limits indicating adequate precision in the presence of potential matrix interferences.

Sample S-S-2-1 was analyzed as a laboratory duplicate for alkalinity and specific conductance. Reported RPD values are within QAPP-specified limits indicating adequate precision in the presence of potential matrix interferences.

Sample E-S-56-1 was analyzed as a laboratory duplicate for pH, alkalinity, and specific conductance. The reported RPD value is within QAPP-specified limits indicating adequate precision in the presence of potential matrix interferences.

Field Duplicates—A field duplicate is a second field sample taken as close in space and time as another sample. Field duplicate pairs provide an indication of measurement variability in sample preparation and analysis as well as sample collection procedures given the presence of potential matrix effects.

Sample S-MW-02-2 was collected as a field duplicate of sample S-MW-02-1. Calculated RPD values are presented in Table 2. The RPD value for iron is greater than expected and is indicative of excessive variability in reported results.

Sample S-MW-04-2 was collected as field duplicate of sample S-MW-04-1. Calculated RPD values are presented in Table 3. All calculated RPD values are within QAPP-specified limits indicating adequate precision in the presence of potential matrix interferences for this sample.

Completeness

All submitted samples were analyzed for all requested analytes. The total number of requested analytical results is 312. One analytical result is rejected (i.e., the sulfate result in sample S-S-2-1 is rejected based on MS/MSD recoveries). Therefore, completeness for the field effort is calculated to be 100% while completeness for the laboratory effort is calculated as 99.7%. The QAPP-specified field completeness objective of 90% is met as well as the laboratory completeness objective of 95%.

Other Issues

Federal Express delivered samples associated with DHL work order 0604091 to the incorrect laboratory. The other laboratory opened the coolers prior to discovering the mistake. Once the delivery error was realized, samples were re-packaged and arrangements were made to get the shipment to the proper laboratory. The laboratory documented that sample integrity had not been compromised. The situation is documented in a Corrective Action Report (CAR) included in Attachment A of this evaluation.

DHL discovered that some containers for work order 0604091 were incorrectly labeled based on matching label information with chain-of-custody information as well as noticing the way samples were segregated in the cooler. DHL personnel contacted TRC personnel to confirm correct sample identities. It was confirmed by the TRC sample collection team that sample times should be used as the primary sample identifier. This issue is documented in a CAR included in Attachment A of this evaluation.

Conclusions

QC data associated with laboratory measurements indicate that measurement data are defensible and that measurement data reliability is generally within expected limits of sampling and analytical error given the data interpretation issues identified in this evaluation.

The data user is advised that, based on MS/MSD recoveries, the reported concentration of sulfate in sample S-S-2-1 includes an extreme low bias and should not be used for decision-making purposes. It should also be noted that the low sulfate bias is likely only to apply to sample S-S-2-1 since other samples in this project were analyzed as MS/MSD pairs for sulfate and exhibit compliant recoveries.

	Collection		
Sample Identifier	Date	Matrix	Lab Identifier
E-MW-06-1	4/13/06	Aqueous	0604091-01
S-MW-02-1	4/13/06	Aqueous	0604091-02
S-MW-02-2	4/13/06	Aqueous	0604091-03
S-MW-04-1	4/13/06	Aqueous	0604091-04
S-MW-04-2	4/13/06	Aqueous	0604091-05
S-MW-BEG11-1	4/13/06	Aqueous	0604091-06
S-MW-03-1	4/13/06	Aqueous	0604091-07
Trip Blank 4-13-06	4/13/06	Aqueous	0604091-08
S-MW-06-1	4/14/06	Aqueous	0604098-01
S-MW-07-1	4/14/06	Aqueous	0604098-02
S-WW-53-1	4/14/06	Aqueous	0604098-03
S-MW-05-1	4/14/06	Aqueous	0604098-04
E-S-55-1	4/14/06	Aqueous	0604098-05
S-S-1-1	4/14/06	Aqueous	0604098-06
S-S-2-1	4/14/06	Aqueous	0604098-07
Trip Blank 4/14/06	4/14/06	Aqueous	0604098-08
E-S-56-1	4/21/06	Aqueous	0604152-01
TB-4-21-06-1	4/21/06	Aqueous	0604152-02

Table 1: Cross-Reference of Field Sample Identifications and Laboratory Identifications

	Res	ults		
Analyte	S-MW-02-1	S-MW-02-2	Units	RPD
Benzene	1.29	ND	μg/L	NC
Ethylbenzene	ND	ND	μg/L	NC
Toluene	ND	ND	μg/L	NC
Xylenes, total	ND	ND	μg/L	NC
Barium	95.9	105	μg/L	9
Calcium	3980000	3990000	μg/L	0.25
Iron	1970	5480	μg/L	94
Magnesium	1210000	1200000	μg/L	0.83
Potassium	30700	30900	μg/L	0.65
Sodium	9410000	9440000	μg/L	0.32
Bromide	56.5	56.7	mg/L	0.35
Chloride	23700	24300	mg/L	2
Nitrate-N	ND	ND	mg/L	NC
Sulfate	2130	2140	mg/L	0.47
Alkalinity, Bicarbonate	259	259	mg/L	0
Alkalinity, Carbonate	ND	ND	mg/L	NC
Alkalinity, Hydroxide	ND	ND	mg/L	NC
Alkalinity, Total	259	259	mg/L	0
pН	6.45	6.47	pH Units	0.31
Specific Conductance	73100	74000	µmhos/cm	1

Table 2: Calculated RPD Values for Field Duplicate Analyses of Sample S-MW-02-1

Bold font indicates an RPD value that is greater than expected (RPD > 30%).

NC Not Calculated

ND Not detected

RPD Relative Percent Difference

	Res	ults		
Analyte	S-MW-04-1	S-MW-04-2	Units	RPD
Benzene	8.30	6.92	μg/L	18
Ethylbenzene	ND	ND	μg/L	NC
Toluene	ND	ND	μg/L	NC
Xylenes, total	ND	ND	μg/L	NC
Barium	223	224	μg/L	0.45
Calcium	3230000	3250000	μg/L	0.62
Iron	1750	1890	μg/L	8
Magnesium	728000	756000	μg/L	4
Potassium	207000	214000	μg/L	3
Sodium	14200000	1600000	μg/L	12
Bromide	69.2	74.9	mg/L	8
Chloride	29600	29600	mg/L	0
Nitrate-N	29.4	33.7	mg/L	14
Sulfate	2780	2850	mg/L	2
Alkalinity, Bicarbonate	180	181	mg/L	0.55
Alkalinity, Carbonate	ND	ND	mg/L	NC
Alkalinity, Hydroxide	ND	ND	mg/L	NC
Alkalinity, Total	180	181	mg/L	0.55
pН	6.67	6.65	pH Units	0.30
Specific Conductance	90500	90800	µmhos/cm	0.33

Table 3: Calculated RPD Values for Field Duplicate Analyses of Sample S-MW-04-1

Bold font indicates an RPD value that is greater than expected (RPD > 30%).

NC Not Calculated

ND Not detected

RPD Relative Percent Difference

Attachment A

West O'Daniel Seep Data Evaluation

Review Checklists/Corrective Action Reports

Analytical Data Review / Validation Checklist

Date of Review:	7/31/2006	Work Order:	0604091			
Reviewed By:	Steve Miller	Analytical Method:	8021B-6020-300.0-310.1-150.1-120.1			
Client/Project:	RRC-West O'Daniel Seep	Matrix:	Aqueous			
Data From: DHL Analytical						
Reviewer's Signature/Date:						

	Question	Answer	Comment
1.	Did samples arrive at the laboratory appropriately preserved?	Yes	
2.	Were hold times met?	Yes	
3.	Are results reported for all target analytes, with no additional analytes?	Yes	
4.	Was the analytical method followed?	Yes	
5.	Do reported detection limits (or reporting limits) agree with project specifications (QAPP or Work Plan)?	No	Several RLs high. These are all due to dilutions for high concentrations. NDs OK. No interpretation issues indicated.
6.	Are results reported for all samples submitted for analysis?	Yes	
7.	Were initial and continuing instrument calibration analyses performed? and reported?	Yes	
8.	Are results provided for a method blank for each analytical batch?	Yes	
9.	Are results provided for a LCS/LCSD pair for each analytical batch?	Yes	
10.	Are results provided for a MS/MSD pair for every batch - or are results provided for every 20 field samples?	Yes	
11.	Are field duplicate results provided at the project-specified (QAPP or Work Plan) frequency?	Yes	High RPD for iron in S-MW-02- 1.
12.	Organic Analyses Only: For each field sample (field and QC), are surrogate spike results provided?	Yes	
13.	Do method blanks show no detectable cocentrations of target analytes?	Yes	
14.	Are LCS/LCSD recoveries and RPDs within limits?	Yes	
15.	Are MS/MSD recoveries and RPDs within limits?	No	Several metals out in S-MW- 04-2. More than 40 times spiking concentration or spiked at less than RL. No interpretation issues indicated.
16.	Are surrogate recoveries within limits?	Yes	
17.	The laboratory did not issue any CARs?	Yes	Cooler delivered to wrong lab. Some samples labeled incorrectly. See attached CARs.
18.	The analyst did not describe any analytical anomalies?	Yes	
19.	No other potential data quality issues were identified?	Yes	

Corrective Action Report

Site:					
West O'Daniel					
Nonconforming Activity/Item: FedEx delivered cooler containing samples to STL-Austin, not DHL. Cooler was properly addressed. Cooler was opened by STL personnel who then noticed the delivery error. DHL personnel were notified and ultimately picked up the cooler.					
Root Cause(s):					
FedEx error.					
Potential Impact(s):					
Chain-of-custody might be broken.					
First Departed Du	Deter				
FIRST Reported By: Departed by John Dynamt (DIII.) to Stave Millor (TDC)					
[Reported by John Dupont (DHL) to Steve Miller (TRC)	4/14/00				

Action(s) to Prevent Recurrence				
Action	Responsible Individual(s)	Timetable		

Documentation Requirement(s): Statement by STL that sample integrity was not compromised between the time the cooler was opened and pick up by DHL.

Further Comments:

See attached documentation.

Miller, Steve

From: Sent: To: Cc: Subject: Voigt, Linda [LVoigt@stl-inc.com] Friday, April 14, 2006 1:40 PM Miller, Steve Laster, Richard; Voigt, Linda TRC Misdirected Shipment to DHL

_0414142118_001. pdf

Hi Steve,

As discussed there was a misdirected sample shipment that was received at STL Austin today. Please note that that the integrity of these samples was not compromised while at STL Austin. I have attached our COC addendum to document this. The samples were pickup up by DHL. If you need other information regarding sample integrity please check DHL.

Thanks, Linda

Linda Voigt

Customer Service Manager

STL Austin

Phone: 512-310-5202

Cell: 512-576-9276

Leaders in Environmental Testing

<<_0414142118_001.pdf>>

Confidentiality Notice: The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.

	Page 1 of 2
SPRENER SIL	CHAIN-OF-CUSTODY ADDENDUM
1	Lot No:
RECEIVED BY: USA	COC NUMBER:
DATE/TIME RECEIVED: 4/14/04 0900	QUOTE/PROFILE:
UNPACKED DATE/TIME: 1/14/0200230	
CLIENT/PROJECT: TRC	SAMPLES LOGGED IN: LOG-IN REVIEWED:
Number of Shipping Containers Received with Chain of Custody	
VOC AIR / FILTER SAMPLES YES SEE SECTION	IS 1.0, 2.0, & 6.0
1.0 CONTAINERS EXAMINED UPON RECEIPT:	
Container Sealed: TE8 NO Custody Seal Si	igned/Dated:
Custody Seal Present: YES NO Containers check	ked for radioactivity: YES NO
If seal not intact or Geiger counter reading >0.5 mR/hr, list air bill number	of that container(s):
2.0 VOC CANISTERS EXAMINED UPON RECEIPT:	
Canister Valves Closed:	red Match Chain:
Canister Valves Capped: YES NO Other Equipment	
Valve Cap Tightened Properly: YES NO See Additional	Comments (Section 5.0 and / or 7.0)
Packing Material Used: (circle) Chain-of-Custor	ly form properly maintained:
None / Absorbent / Paper / Bubble Wrap Can Size:]6L []15L Other
3.0 SAMPLE TEMPERATURE UPON RECEIPT BY: Temperature of the container(s):	IR THERMOMETER #:
Circle selection: TB = Temp. Blank and/or SC = Sample Container [au	cceptable tolerance $4.0^{\circ}C \pm 2.0^{\circ}$; (NC, WI: 1-4.4°C)]
	IB IB IB IB
sc A 3 sc sc sc sc sc	sc sc sc sc
If temperature is outside acceptable tolerance, Project Manager was notified	I (PM). Date: Time:
Samples received do not require cooling OK to	analyze samples: $\Box YES \Box NO$
PRESERVATION OF SAMPLES REQUIRED: NA YES	VERIFIED BY:
Base samples are>pH 12: YES NO Acid preserved a	ue <ph 2:="" jtes="" no<="" td=""></ph>
Cyanide samples checked Sulfide samples	
for sumdes:IES to be preserved v	with zinc acetate: YES NO
per specification (N.C.) YES Free chlorine pre	esent: TYES TNO
If sample preservation is outside acceptable tolerance, Project Manager was	notified (PM)
Date: Time: See pH adjustme	nt form
VOLATILE SAMPLES FILLED COMPLETELY, IF NOT, LIST ID A BUBBLES EXCEEDING 6MM IN DIAMETER:	ND HEADSPACE OF VOA's CONTAINING
Sample ID mm Headspace Sample	ID mm Headspace

.

4.0 CONDITION OF BOTTLES/CONTAINERS	VERIFIED BY:
/	
Samples received match COC:	Bottles received intact:
See additional discrepancies/comments section: YES NO	Samples received from USDA restricted area: YES NO
Chain-of-Custody form properly maintained: YES NO	VOA trip blanks included: & UDW YES NO N/A

5.0 ADDITIONAL DISCREPANCIES

Appears on COC		Appears on Label		
Sample ID	Date/Time	Sample ID	Date/Time	Comments
S-MW-04-2	uliólas UTI	S-MW-02-2	4115106	10 percor
			_	0 4
		· · · · · · · · · · · · · · · · · · ·		
		11		

6.0 SHIPPING DOCUMENTATION:			
Air/freight bill is available and attached to COC:	YES 🗌 NO Air bil] #:	
Hand-delivered Carrier:		Date:	Time:
7.0 OTHER COMMENTS:			
			nakhara kara sa ana sa kara sa da khaki Pila
CORRECTIVE ACTION:			
Client's Name:	Informed verbally on:		By:
Sample(s) processed "as is" comments:			Dy
Samples(s) on hold until:	I	f released, notify:	
REVIEW: Project Management:			, Date:
SIGNED ORIGI	NAL MUST BE RETAINED	IN THE PROJECT	r file

Corrective Action Report

Sito			
one.			
West O'Daniel			
Nonconforming Activity/Item: Samples for several "S-MW-04-2" containers labeled as "S-MW-02-2". All label suspect times match "S-MW-04-2". Determined at the laboratory by matching samples listed on chain-of-custody forms with actual containers. Also, samples segregated in zip-lock bags by location.			
Root Cause(s): Improper information written on label by field personnel.			
Potential Impact(s): Results for incorrectly labeled samples could be erroneously reported by the laboratory. Data end user could make decisions based on improperly located data.			
First Reported By:	Date:		
Reported by John Dupont (DHL) to Steve Miller (TRC)	4/14/06		

Action(s) to Prevent Recurrence			
Action	Responsible Individual(s)	Timetable	
Discuss with sampling team.	Arsin Sahba	Prior to next sampling event	
If present, second person should check sample labels prior to shipping.	Collection Team	All future events	

Documentation Requirement(s):

Written documentation (email) from Arsin Sahba (TRC) that labelling discussed with collection team.

Field logbook should indicate through signature that a second person, if available, checked sample labels.

Further Comments:

Steve Miller (TRC) contacted Matt Webre (TRC) immediately (4/14/06) and confirmed that collection times should be used to identify samples. Forwarded this information on to John Dupont (DHL).

Analytical Data Review / Validation Checklist

Date of Review:	8/1/2006	Work Order:	0604098	
Reviewed By:	Steve Miller	Analytical Method:	8021B-6020-300.0-310.1-150.1-120.1	
Client/Project:	RRC-West O'Daniel Seep	Matrix:	Aqueous	
Data From:	DHL Analytical			
Reviewer's Signature/Date:				

	Question	Answer	Comment
1.	Did samples arrive at the laboratory appropriately preserved?	Yes	
2.	Were hold times met?	Yes	
3.	Are results reported for all target analytes, with no additional analytes?	Yes	
4.	Was the analytical method followed?	Yes	
5.	Do reported detection limits (or reporting limits) agree with project specifications (QAPP or Work Plan)?	No	Several RLs high. These are all due to dilutions due to high concentrations. NDs OK. No interpretation issues.
6.	Are results reported for all samples submitted for analysis?	Yes	
7.	Were initial and continuing instrument calibration analyses performed? and reported?	Yes	
8.	Are results provided for a method blank for each analytical batch?	Yes	
9.	Are results provided for a LCS/LCSD pair for each analytical batch?	Yes	
10.	Are results provided for a MS/MSD pair for every batch - or are results provided for every 20 field samples?	Yes	
11.	Are field duplicate results provided at the project-specified (QAPP or Work Plan) frequency?	Not Applicable	Field duplicate not reported in this work order.
12.	Organic Analyses Only: For each field sample (field and QC), are surrogate spike results provided?	Yes	
13.	Do method blanks show no detectable cocentrations of target analytes?	Yes	
14.	Are LCS/LCSD recoveries and RPDs within limits?	Yes	
15.	Are MS/MSD recoveries and RPDs within limits?	No	Very low sulfate %Rs in sample S-S-2-1.
16.	Are surrogate recoveries within limits?	Yes	
17.	The laboratory did not issue any CARs?	Yes	
18.	The analyst did not describe any analytical anomalies?	Yes	
19.	No other potential data quality issues were identified?	Yes	
Analytical Data Review / Validation Checklist

Date of Review:	8/1/2006	Work Order:	0604152			
Reviewed By:	Steve Miller	Analytical Method:	8021B-6020-300.0-310.1-150.1-120.1			
Client/Project:	RRC-West O'Daniel Seep	Matrix:	Aqueous			
Data From:	DHL Analytical					
Reviewer's Signature/Date:						

	Question	Answer	Comment
1.	Did samples arrive at the laboratory appropriately preserved?	Yes	
2.	Were hold times met?	Yes	
3.	Are results reported for all target analytes, with no additional analytes?	Yes	
4.	Was the analytical method followed?	Yes	
5.	Do reported detection limits (or reporting limits) agree with project specifications (QAPP or Work Plan)?	No	Several RLs high. These are all due to dilutions due to high concentrations. All NDs OK. No interpretation issues.
6.	Are results reported for all samples submitted for analysis?	Yes	
7.	Were initial and continuing instrument calibration analyses performed? and reported?	Yes	
8.	Are results provided for a method blank for each analytical batch?	Yes	
9.	Are results provided for a LCS/LCSD pair for each analytical batch?	Yes	
10.	Are results provided for a MS/MSD pair for every batch - or are results provided for every 20 field samples?	Yes	
11.	Are field duplicate results provided at the project-specified (QAPP or Work Plan) frequency?	Not Applicable	Field duplicate not reported in this work order.
12.	Organic Analyses Only: For each field sample (field and QC), are surrogate spike results provided?	Yes	
13.	Do method blanks show no detectable cocentrations of target analytes?	Yes	
14.	Are LCS/LCSD recoveries and RPDs within limits?	Yes	
15.	Are MS/MSD recoveries and RPDs within limits?	Yes	
16.	Are surrogate recoveries within limits?	Yes	
17.	The laboratory did not issue any CARs?	Yes	
18.	The analyst did not describe any analytical anomalies?	Yes	
19.	No other potential data quality issues were identified?	Yes	