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1) Summary 

Labyrinth Consulting Services, Inc. was contracted on March 26, 2014 by the League of Women Voters 

of New York State to provide a resource assessment of potential commercially producible natural gas 

volumes from the Marcellus Shale in the State of New York, which currently has a de facto moratorium 

on hydraulic fracturing.   An analysis of production performance trends based on data from wells in 

Pennsylvania indicates that the Marcellus Shale in New York is not commercially viable at current gas 

prices near $4.00-4.50/MMBtu (Million British Thermal Units).  Assuming the de facto moratorium on 

hydraulic fracturing is lifted, contingent resource volumes of natural gas from the Marcellus Formation in 

New York State are estimated to range from 0.8 to 2.4 trillion cubic feet of gas (Tcf) if natural gas prices 

rise to $6.00/MMBtu (gas price referenced to Henry Hub point of sale
1
), depending on the range of 

uncertainty in area accessible to development.  If gas prices rise to $8.00/MMBtu, the resource estimate 

ranges from 2.0 to 9.1 Tcf, also depending on uncertainty about access to development. Currently, 

NYMEX futures prices for natural gas average $4.31/MMBtu (as of April 9, 2014) for the four-year 

period from 2015 to 2018, reflecting the market’s expectations of stable gas prices at current levels.  

Substantial unforeseen changes in the natural gas supply/demand balance would need to occur for long-

term gas prices to increase to $6.00 and $8.00/MMBtu.  These gas volumes are likely to be dry gas based 

on analogous production from northeastern Pennsylvania.  

These resource assessments are based on reasonable assumptions for commercially viable acreage 

accessible to hydraulically-fractured development wells, ultimate recovery per well and final well 

spacing.  This analysis is based entirely on publicly available information, focusing on Marcellus 

production performance trends in Pennsylvania and published geologic information. Proprietary data may 

exist that would lead to significantly different conclusions.   

Substantial uncertainty exists in forecasting access and gas prices as well as extrapolating production 

performance into New York given the lack of well control or production within the state. Labyrinth 

believes that estimates reflected in these forward-looking statements are reasonable.  However, such 

statements involve risks and uncertainties, and no assurance can be given that actual results will be 

consistent with these forward-looking statements.  Labyrinth shall assume no liability whatsoever for the 

use or reliance thereupon by the League of Women Voters of New York State.  Labyrinth’s compensation 

for preparing this report was at Labyrinth’s normal hourly rates for such geotechnical due diligence.  

Labyrinth’s consultants have no financial stake in leases or companies related to the Marcellus play. 

2) Introduction 

Existing assessments of natural gas resource volumes recoverable from the Marcellus Shale span a wide 

range of values as follows: 

 Engelder (2009) estimated a median (P50) technically recoverable resource volume of 489 Tcf 

for the entire Marcellus, with 71.9 Tcf of that volume in New York State. 

 The United States Geological Society (USGS) provided an estimate in 2011 of 84.2 Tcf of 

undiscovered technically recoverable resource for the entire Marcellus play. 

                                                           
1
 For additional information on Henry Hub pricing, (http://en.wikipedia.org/wiki/Henry_Hub) 
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 The EIA provided an estimate in 2011 of 410 Tcf of undeveloped technically recoverable 

reserves, and one year later reduced that estimate to 141 Tcf for unproved technically recoverable 

resource, a reduction of -65%.  These estimates were for the entire Marcellus play. 

Each of these studies addresses technically recoverable but not necessarily economically recoverable 

resource volumes.  The USGS definition of technically and economically recoverable resources is 

provided below: 

“The (USGS) uses the terms technically and economically recoverable resources when making its 

petroleum resource assessments. Technically recoverable resources (TRR) represent that 

proportion of assessed in-place petroleum that may be recoverable using current recovery 

technology, without regard to cost. Economically recoverable resources are technically 

recoverable petroleum for which the costs of discovery, development, production, and transport, 

including a return to capital, can be recovered at a given market price.” 

The EIA has a similar definition of technically recoverable resource that does not consider economic 

viability as follows: 

“Undiscovered technically recoverable resources (UTRR). Oil and gas that may be produced as a 

consequence of natural pressure, artificial lift, pressure maintenance, or other secondary recovery 

methods, but without any consideration of economic viability.” 

Despite these definitions, widespread misunderstanding and confusion exist about the distinction between 

resources and reserves.  The public, press and policy makers mistakenly believe that oil and gas companies 

will drill and develop TRR when, in fact, they will only develop the small subset of those resources that 

can be booked as commercially producible, in other words, reserves. 

 

Figure 1.  Relative Magnitude of Resources, Technically Recoverable Resources, Probable Resources, 

Reserves and Supply.  Modified from Medlock (2010). 
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Furthermore, TRR are subdivided into speculative, possible and probable categories.  Only probable TRR 

have been tested by drilling and are, therefore, known to be, in fact, technically recoverable.  This 

category is generally about 25% of TRR, and perhaps 50% of probable TRR may become reserves.  In 

other words, only about 12.5% of TRR are likely to become reserves. 

This relationship underlies the common misperception that the United States has 100 years of natural gas 

supply.  In fact, the entire TRR of the U.S. (Potential Gas Committee estimate) yields only 92 years of 

supply at current natural gas consumption.   

 
Figure 2.  The Myth of 100 years of Natural Gas Supply based on the Potential Gas Committee’s current 

estimate of U.S. technically recoverable gas resources.  Source:  Report of the Potential Gas Committee 

(December 31, 2012) 

The Potential Gas Committee (PGC) estimates total U.S. TRR to be 2,384 Tcf in its most recent 

evaluation.  Their probable component of TRR is 723 Tcf or 28 years of potential supply.  This volume 

results in approximately 14 years of reserves and includes conventional and coal-bed methane sources in 

addition to shale gas.  After including already proved reserves of 305 Tcf, total potential supply is for 

approximately 26 years. 

Economic viability is the critical factor in determining whether a resource is eventually developed.  

Hence, this study will not consider technically recoverable volumes but instead will follow definitions of 

resources as defined by the industry-standard Petroleum Resource Management System (PRMS), which 

was sponsored in 2007 by the Society of Petroleum Engineers (SPE), American Association of Petroleum 

Geologists (AAPG), World Petroleum Council (WPC), Society of Petroleum Evaluation Engineers 

(SPEE), and Society of Exploration Geophysicists (SEG).  These guidelines were enhanced in 2011 in 

part to address resource evaluation of shale gas plays.  The following figure from the PRMS shows the 

progression from undiscovered Prospective Resources to discovered Contingent Resources to Proved, 

Probable and Possible Reserves.  Although the chance of commerciality increases with this progression, 

commerciality is considered at each stage in determining project maturity. The following figure shows the 

classifications of reserves and resources as defined by the PRMS. 

PGC Resource Assessments, 1990-2012 

Data source: Potential Gas Committee (2013) 

Total Potential Gas Resources (Mean Values) 

Technically*Recoverable*Resources*(TRR) Tcf

Years*of*Technically*Recoverable*Resources 92

Potential*Reserves Tcf

Total&Potential&Reserves

Years*of*Reserves*(Total*÷*2013*Consumption) 26

SUMMARY*OF*POTENTIAL*GAS*COMMITTEE*2012*REPORT
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Figure 3: PRMS Classification of Reserves and Resources 

Figure 4 from the PRMS adds detail on project maturity sub-categories. 

   
Figure 4: Sub-Classes of PRMS Classification System 

The primary method used in this study to estimate the resource potential in New York State was to 

evaluate the actual production performance of Marcellus wells in Pennsylvania and extrapolate these 

production performance trends across the border into New York. Geologic trends such as depth, 



7 | P a g e  
 

thickness, organic content and thermal maturity were also considered in extrapolating these performance 

trends. 

Finally, natural gas pricing is a critical factor for evaluating commercially recoverable resources.  The 

Henry Hub pipeline in Louisiana is the pricing point for natural gas futures on the New York Mercantile 

Exchange and provides the reference for most spot prices in the United States.   

 

Figure 5: Henry Hub Daily Natural Gas Prices Since 1997.  Source:  EIA. 

Natural gas prices have averaged $4.70/MMBtu since January 1997 but have fluctuated between $1.05 

and $18.48/MMBtu.  The variance in price is related to the balance of supply, demand and the 

comparative inventory of volumes in underground storage.  Historic price anomalies are most commonly 

related to weather but are also affected by oil and gas industry drilling activity or rig count levels.  During 

the last several months, gas prices have been relatively high because of extremely cold weather.  The U.S. 

Energy Information Administration predicts that prices will average $4.44/MMBtu in 2014 and 

$4.11/MMBtu in 2015. 

3) Pennsylvania Production Performance Data 

Since mid-2010, the Pennsylvania Department of Environmental Protection has publicly released total gas 

and condensate production volumes and days on-line for each semi-annual period. Based on the most 

recent data through the end of 2013, a total of 4,364 Marcellus horizontal wells in Pennsylvania have 

produced 6.1 Tcf of natural gas, averaging a rate of 9.2 Bcfd (billion cubic feet of gas per day) in the 2
nd

 

half of 2013, with 48% of the state’s cumulative production from Bradford and Susquehanna counties.  

Unfortunately, Pennsylvania’s six-month reporting periods provide lower resolution rate data compared to 

most other states for analyzing production decline trends, the primary tool used in evaluating reserves in 

shale gas plays.  The PRMS guidelines (2011) state the following: 
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“The most common way to assign Proved Reserves and Developed Producing Reserves in shale 

gas reservoirs is through the use of decline-curve analysis. (pg 158)” 

Most hydrocarbon-producing states release production data on a monthly basis for severance tax 

purposes, providing detailed rate histories for analyzing decline trends.  With Pennsylvania’s semi-annual 

reporting, standard decline-curve analysis is a less reliable tool for quantifying well performance.   

Lacking monthly production data, this analysis focuses instead on the cumulative production and days on- 

line for each well.  Relative performance can be estimated using an arbitrary type well to compare the 

performance of wells with differing production lives.  The type well serves simply as a comparison 

benchmark.  For the purposes of this study, the type well is assumed to have an estimated ultimate 

recovery (EUR) of 4.2 Bcf, and is described using the hyperbolic equation as described by Arps (1945) 

with an initial rate of 4.5 MMscfd, a decline exponent of 1.45 and an exponential b-factor of 1.0.  Each 

well is assigned a relative performance indicator (PI) based on the following equation: 

PI = Cumulative Production well (days on line)/Cumulative Production type well (same duration) - 1 

For example, a well that has produced twice as much cumulative volume of gas as the type well after 365 

days on-line will have a PI value of 1.  A well that has produced only one-half of the type well after a 

certain period will have a PI value of -0.5.   

Figure 6 shows a contour map of PI values for 4,364 wells in Pennsylvania; areas shaded yellow to red 

are outperforming the type well and blue-shaded areas are underperforming the type well.   The contour 

values represent an average PI value over a radius of 20,000 ft, effectively smoothing well-to-well 

variability. Two main core areas shaded in yellow to red are evident in the figure, one in northeastern 

Pennsylvania (southwestern Susquehanna, southeastern Bradford and northwestern Wyoming counties) 

and another in southwestern Pennsylvania (Green and Washington counties).  The northeastern core area, 

which is dry gas production, is most relevant to assessing commercially viable resource in New York 

State.   
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Figure 6  Marcellus Performance Indicator Map Based on production data through 2013 (Pennsylvania 

Department of Environmental Protection, March 2014).  Yellow and red color-filled contours represent 

wells that out-performed our 4.2 Bcf type curve. 

 

Figure 7 shows a more detailed view of the contour map of PI along with individual values of PI for each 

well to demonstrate how the outline of the core area is controlled by well data.  In Susquehanna and 

Wyoming counties, the northern, northeastern and southeastern edges of the yellow to red area are 

defined by several wells with negative PI values.  Well control is lacking along part of the eastern edge of 

the outperforming area.  The geologic control to support this boundary between outperforming and 

underperforming production will be discussed in Section 3.1.  The most positive evidence for potentially 

outperforming areas in New York State is a ridge of over-performance in the northeast quadrant of 

Bradford County that appears to trend WSW-ENE into Tioga and potentially Broome counties in New 

York.  Farther west in Bradford and Tioga (PA) counties, the core area is surrounded by under-

performing wells. 
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Figure 7: Contour Map of PI Focusing on Core Area in Northeast Pennsylvania 

 

The eastern limit of over-performing wells in Susquehanna County appears to be corroborated by Figure 

8, which shows acreage recently released by Chesapeake Energy, the most active driller in northeast 

Pennsylvania.  Chesapeake released a substantial number of leases in northeastern and eastern 

Susquehanna County that lie in the blue shaded PI contours indicating poor well performance. 
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Figure 8: Acreage Released By Chesapeake (October 2013 Investor Presentation) 

 

3.1) Geologic Control of Production Performance 

The Marcellus Shale in Pennsylvania and adjacent New York consists of two organic-rich shale intervals, 

the Union Springs and Oatka Creek members, separated by the Cherry Valley Limestone (also called the 

Purcell Member), as shown in Figure 9.   

Figure 9.  A stratigraphic column (left) showing Middle Devonian stratigraphy in Pennsylvania and New 

York (from Wang and Carr, 2013), and a well log section (right) showing well logs over the Marcellus 

Shale members and underlying Onandaga Limestone (from Smith and Leone, 2011). 
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Most natural gas production in northeastern Pennsylvania is from the Union Springs Member.  The Union 

Springs Member was deposited in a trough with greatest thickness in Susquehanna, Bradford, Tioga (PA), 

Lycoming, and Wyoming counties, as shown in Figure 10.  The Union Springs thins in all directions 

away from this trough and is 20-feet thick or less in Chemung, Tioga and Broome counties in New York. 

This geographic distribution limits the producing potential of the Marcellus Shale in New York.  The 

overlying Oatka Creek Member has a similar geographic distribution and likewise limits the producing 

potential of the Marcellus in New York (Figure 12). 

Figure 10.  Distribution and Thickness of the Union Springs Shale Member of the Marcellus Shale (after 

Wang and Carr, 2013). 
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Figure 11 overlays the thickness of the Union Springs Shale Member with the PI contours, demonstrating 

that in the northeastern core area of the Marcellus Shale play in Pennsylvania, better well performance is 

highly correlated with the thickness of the Union Springs Shale.   

 

Figure 11.  Isopach Contours of the Union Springs Member of the Marcellus Shale Superimposed on 

Marcellus Natural Gas Production (PI).   
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Figure 12 shows that production performance in northeastern Pennsylvania also appears to correspond to 

the thickness of the Oatka Creek Shale Member. 

Figure 12.  Isopach contours of the Oatka Creek Member of the Marcellus Shale after Wang and Carr 

(2013) Superimposed on Marcellus Natural Gas Production (PI).   
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Moreover, the thickness of the total Marcellus Shale interval is greatest in northeastern Pennsylvania and 

thins dramatically into New York, further limiting the production potential of New York. 

Figure 13. Distribution and thickness of the Marcellus Shale (after Wang and Carr, 2013). 
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Depth to the Marcellus Shale is also a factor in estimating the gas production potential in New York 

because depth correlates with sufficient reservoir pressure necessary to commercially produce natural gas.  

Figure 14 shows that most production to date in Pennsylvania is from reservoirs at least 4000 feet below 

the surface.  It also shows that comparable depths in New York are limited only to the southern tier of 

counties further limiting the productive potential of the Marcellus Shale in New York. 

Figure 14: Marcellus Shale Drilling Depth (feet) after Wrightstone (2009). 

 

4) Estimating Volumetric Resource Potential in New York State 

Estimates for Contingent Resource volumes are based on the following formula: 

Contingent Resource Volume (Bcf) =  Commercially Viable Area (acres) 

       * Fraction of Area Accessible for Development 

       * EUR/well (Bcf/well) 

       / spacing of wells (acres/well) 

4.1) Commercially Viable Area 

Commercially viable areas of horizontally drilled, fracture-stimulated wells in the Marcellus Shale is 

determined based on correlating results from decline-curve analysis to the PI index and evaluating 

threshold production volumes necessary to provide an economic return to the investor.  Decline-curve 

analysis of various groups of wells provides estimates of EUR/well that can be correlated to the PI values 
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of those same wells.  Economic analysis of revenues and costs from an individual well are then used to 

determine the threshold EUR/well required to provide a minimum investment return for a range of gas 

prices.  These threshold volumes are then correlated to PI values that outline the boundary of potentially 

commercial resource areas in New York.  

 4.1.1) Decline Curve Analysis 

As mentioned earlier, “The most common way to assign Proved Reserves and Developed Producing 

Reserves in shale gas reservoirs is through the use of decline-curve analysis.” (PRMS Guidelines (2011) 

pg 158).  The use of trends in analogue EUR/well values provides the best means of extrapolating 

production performance trends into undeveloped and untested areas.   

Normalized production decline curves were calculated based on semi-annual rates for each of the 

reporting periods for all wells completed in the 2
nd

 half of 2010 grouped by the following counties - 

Bradford, Susquehanna, Greene, Tioga and Washington counties.  Decline trends were also calculated for 

the core area in southwestern Susquehanna and southeastern Bradford counties to include the top- 

performing areas in the data base.  In addition, decline curve-analysis was performed on normalized rates 

for groups of Marcellus wells located in West Virginia, which provides monthly production data.  

Although geographically distant from the New York area being evaluated, this monthly data provided 

important calibration for the b-exponent used in matching the decline trends for Pennsylvania data.  

Estimated ultimate recovery (EUR), which is the sum of cumulative production and remaining reserves, 

was estimated using industry-standard decline-curve analysis as described in Fetkovitch (1980).  The 

decline curve-analysis plots and results are provided in Appendix B.   

Table 1: Decline Curve Analysis Results and PI for Various Groups of Wells 

 

The correlation between EUR/well and PI is shown in Figure 15.   

  

Group of Wells PI EUR, Bcf

Antero Operated, Harrison Cty, WV 2010 61% 5.3

Antero Operated, Harrison Cty, WV 2011 125% 7.5

EQT Operated, Dodderidge Cty, WV 2009 -24% 2.6

EQT Operated, Dodderidge Cty, WV 2010 17% 4.5

Susquehanna Cty 2H 2010 176% 7.4

Bradford Cty 2H 2010 87% 8.3

Washington Cty 2H 2010 -14% 4.3

Tioga Cty 2H 2010 30% 4.4

Greene Cty 2H 2010 30% 4.1

Core Bradford&Susquehanna 1H 2011 210% 8.9

Core Bradford&Susquehanna 2H 2011 300% 10.5
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Figure 15: Correlation of EUR to PI 

 

4.1.2) Economics 

Conventional discounted cash-flow analysis was performed to determine commercially viable threshold 

values of EUR/well for outlining which parts of the Marcellus play are economic at various gas prices.  

The assumptions used in this analysis for well drilling and completion costs, expenses, sales volumes, 

prices, timing and taxes are provided in Table 2. 

Table 2: Assumptions Used in Determining Threshold EUR/well Values 

 

Total non-capital expenses for shales gas companies are estimated at $2.00/Mcf including all operating, 

gathering, transporting, marketing, general and administrative expense plus production taxes.  It also 

includes the difference between the reported realized gas price versus the posted average Henry Hub spot 

gas price for the same reporting period.  An analysis of costs reported by the largest shale gas companies 
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shows an average total non-capital expense exceeding $2.00/Mcf as shown in the Figure 16.  Drilling and 

completing wells and operating, transporting and marketing production from these shale gas wells are the 

main business of these companies.  Hence, the full costs of running their business such as general and 

administrative costs are included as part of their ongoing business in determining commercial threshold 

volumes in terms of EUR/well.    

 
Figure 16: Expense Deductions Reported by Shale Gas Producers (Based on 3Q 2013 SEC Submissions) 

 

The results of the discounted cash-flow analysis indicate that at $4.00/MMBtu (Henry Hub spot price), 

the minimum EUR/well for commercial development is 8.4 Bcf.  At a higher gas price of $6.00/MMBtu, 

the minimum commercial EUR/well is 3.9 Bcf, and at $8.00/MMBtu, the minimum commercial 

EUR/well is 2.6 Bcf.  Using the correlation in Figure 15, the threshold PI values are 2.1, -0.1 and -0.5 at 

gas prices of $4.00/MMBtu, $6.00/MMBtu and $8.00/MMBtu respectively. 

4.1.3) Estimates of Commercially Viable Areas 

With these threshold PI values, the contour map in Figure 17 shows our “best estimate” of the outlines of 

commercially viable areas of the Marcellus in New York for $6.00 and $8.00/MMBtu gas prices.  Figure 

16 includes contour values of PI with yellow-to-red shaded areas averaging a PI greater than zero.  With 

the threshold PI for the $6.00/MMBtu case estimated at -0.1, the yellow-to-red shaded areas of 

Pennsylvania represent areas that are commercially viable at $6.00/MMBtu.  The contouring projected 

into New York is extrapolated and has no data control, so these contours by themselves do not provide a 

reliable basis for estimating the viable area.  
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Figure 17: Best Estimates for Commercially Viable Areas in New York 

 

At $4.00/MMBtu, only a small core area contained entirely inside Pennsylvania is commercially viable 

(approximately 300,000 acres), and no area of New York is considered commercially viable at these 

current gas prices.  This conclusion may be considered controversial because large amounts of capital are 

being spent to develop the Marcellus formation in many counties in Pennsylvania.  Some might take that 

as evidence of a much larger commercially viable area.  We contend that analysis of actual production 

performance and economic analysis of threshold volumes is a more appropriate basis on which to 

establish commercially viable areas.  

The commercially viable area at $6.00/MMBtu is estimated to be approximately 480,000 acres in New 

York and includes southeastern Tioga and southwestern Broome Counties.  This area is based on an 

assumption that the trend of over-performing wells in northeastern Bradford counties extends along a 

WSW-ENE trend into Broome County.  This trend is also supported by the 20-ft thickness contour of the 

Union Springs Shale, which also trends WSW-ENE.  These contours do not include all of the 20 ft 

contour of the Union Spring thickness because substantial areas within the 20-ft contour are 

underperforming in Pennsylvania.  The prospective area is bounded to the west by underperforming wells 

in north-central Bradford County and to the east by underperforming wells in north-central Susquehanna 

County.   

The commercially viable area at $8.00/MMBtu in New York is estimated at approximately 1,000,000 

acres and extends west, north and east from the $6.00/MMBtu area.  The northern extent of potentially 

commercial production is probably constrained by the two key trends – the Union Springs Shale both 
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thins and is shallower toward the northeast.  With no well control in New York to define the PI 

contouring, however, the extent of this area is uncertain.  Our intent in drawing the outline for the “best 

estimate” is to have a balance of upside as well as downside potential based on the data available.  In both 

the $6.00 and $8.00/MMBtu cases, the commercially viable core area is not projected to extend into 

Delaware and Sullivan counties in New York. 

4.2) Fraction of Area Accessible to Development 

Proposed regulations for shale gas development have been in a state of flux for some time. There is 

currently no government study which definitively shows the area that can potentially be developed in 

New York; however, because access to development is a key component of estimating reserves, we will 

present three possible scenarios.  There is the study by Blohm et al (2012) which provides rough 

estimates of the fraction of land area that might be available under the proposed regulations for gas 

development if the state-wide de facto moratorium is lifted. Blohm et al estimate that 83% of New York 

State is likely to be off limits to drilling compared to only 32% of Pennsylvania. This study provides 

estimates of excluded areas by county, yet it should be noted that Blohm  assumes that the "fairway" of 

shale gas development in New York State extends over all of the counties in the Southern Tier; when 

industry reports indicate potential in no more than 6 counties, namely Chemung, Tioga, Broome, 

Chenango, Delaware and Sullivan County.  The effect, on the one hand, is to apply their methodology to 

areas that have no demonstrable potential to arrive at the gross assumption of 83% as the excluded area. 

On the other hand, the Blohm methodology assumes that population density is uniformly distributed over 

each county, which is by no means the case. For example, the authors assume that the population of 

Broome County, which includes the Binghamton metro area, is uniformly dispersed over the county for 

purposes of calculating the impact of setbacks from housing. This methodology has the effect of 

eliminating all access in Broome County, even though Broome is the one county with clear shale gas 

potential. 

Subsequent to the Blohm study, Acton and Wunder estimated the impact of the proposed regulations 

using GIS data for the fairway areas.  Acton and Wunder mapped setbacks from data on housing and 

housing clusters, streams, rivers and other topographical features. They estimated that the regulations 

would remove an average of 39% of the fairway, from a high of 47% in Broome County, to a low of 24% 

in Chenango County.  Table 3 shows the assumptions used in this study for setback regulations in New 

York, and Figure 18 shows these setbacks applied to Broome County. 
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Table 3: New York Setback Regulations 

 

Figure 18: Broome County Setback Exclusions 

 

Three access scenarios described as follows are used in estimating resource volume: 

Scenario 1:  Based on exclusion estimates for each county by Blohm (2012), 76%, 72% and 

100% of Chemung, Tioga and Broome Counties, respectively, are excluded from gas 

development, 

Scenario 2: Based on Acton and Wunder but modified for edge effects and topography, 75% of 

county areas are excluded from gas development, and 
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Scenario 3: Based directly on Acton and Wunder, 39% of Chemung and Tioga Counties and 47% 

of Broome County are excluded from gas development. 

4.3) EUR/Well 

The EUR/well is simply an estimate of the average value likely to occur within the commercially viable 

boundaries.  Higher gas prices result in a lower threshold, so the expected average EUR/well will 

decrease as the developed area expands into lower quality resource.  The average EUR/well is estimated 

to be in the range of 5 Bcf for the $6.00/MMBtu scenario, and 4 Bcf for the $8.00/MMBtu scenario. 

4.4) Final Well Spacing 

With an estimate for the commercially viable area and the fraction of that area accessible for development, 

final well spacing determines the number of wells to be drilled.  Final well spacing is a complex 

engineering and geologic optimization issue requiring substantial analysis by each operator.  As wells are 

drilled closer to each other, the potential for interference increases, potentially reducing EUR/well and, 

therefore, degrading the economic potential of these areas.   

The Union Springs Shale Member is believed to be extensively naturally fractured, which may be the 

primary reason why the core area of the Marcellus formation is the best performing shale gas play in the 

country.  Parts of the Marcellus core area may have average EUR/well values exceeding 10 Bcf, compared 

to less than 5 Bcf in the Haynesville play and less than 2 Bcf in the Barnett play.  These natural fracture 

networks may also enable these wells to drain larger areas, hence enabling the higher EUR/well.  

Therefore, the estimated final optimum well spacing for the Marcellus may be in the range of 120 

acres/well, which is higher than that estimated for other shale plays.  The optimum final well spacing can 

only be determined by careful monitoring of pilot tests of multiple wells spaced at various distances, and 

such data is typically proprietary.   

 4.5) New York State Resource Volumes  

Based on assumptions for commercially viable area, access, EUR/well and well spacing discussed above, 

total contingent resource potential for potential Marcellus wells in New York is as follows: 

1) Zero at current gas prices, regardless of which access scenario is assumed, 

2) 0.8 Tcf at $6.00/MMBtu and 2.0 Tcf at $8.00/MMBtu assuming access Scenario 1 based on 

estimates by Blohm (2012), 

3) 1.0 Tcf at $6.00/MMBtu and 4.0 Tcf at $8.00/MMBtu assuming access Scenario 2 based on Acton 

and Wunder but modified for edge effect and topography, 

4) 2.4 Tcf at $6.00/MMBtu and 9.1 Tcf at $8.00/MMBtu assuming access Scenario 3 based on Acton 

and Wunder without adjustment. 

These resource volumes are classified as “2C” Contingent Resource Volumes based on the PRMS (2007) 

guidelines.  The following table provides assumptions and resource volumes by county. 
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Table 4: Marcellus Resource Estimates for New York State  

 

Considerable uncertainty exists in this resource assessment.  This study is based entirely on publicly 

available information, and proprietary information may exist that would lead to significantly different 

findings.  Access restrictions to development are perhaps the most important uncertainty affecting the 

potential range of final outcomes.  In addition, the lack of well control in New York limits the reliability of 

extending actual production performance trends into the state.   
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Appendix A: PRMS Definitions of Reserves (2007) 
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Appendix B: Decline Curve Analysis Results for Marcellus Wells 
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Decline Curve Analysis of West Virginia Wells Using Public Data for Monthly Production 

(Grouped by operator, year of completion and county) 
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5. Industrial Energy Consumers of America Quarterly Meeting, Assessing The Business 
Performance of U.S. Shale Plays (Arlington, March 11, 2014). 

6. Total Strategy Committee, Assessing The Business Performance of U.S. Shale Plays 
(Houston, March 10, 2014). 

7. GLG New York Client Seminar:  Assessing the Quality of Shale Play Reserves and Operator 
Performance (New York, February 26, 2014). 
 

8. Lafayette Geological Society:  Reflections on A Decade of Shale Plays (Lafayette, February 
19, 2014). 
 

9. Coleman Research Group:  Update on Shale Depletion Rates, Estimated Ultimate Recovery & 
North American Energy Independence (New York, January 31, 2014). 
 

10. International Association for Energy Economics Annual Meeting:  Panel Discussion on Shale 
Gas with Adam Sieminski, EIA Administrator (Philadelphia, January 3, 2014). 
 

11. Shreveport Geological Society:  Reflections on A Decade of Shale Plays (Shreveport, 
December 17, 2013). 

 

12. Macquarie Capital (USA) Key Client Meeting:  Reflections on A Decade of Shale Plays 
(Houston, December 12-13, 2013). 

 

13. Kinnear Financial Limited Autumn Investment Conference:  Shale: what happens if the 
capital goes away? (Southampton, Bermuda, November 22, 2013). 

 

14. GLG Research Client Seminar:  Shale: what happens if the capital goes away? (Hong Kong, 
November 18, 2013). 
 

15. Houston Geological Society Joint International & North American Dinner:  Reflections on A 
Decade of Shale Plays (Houston, September 30, 2013). 
 

16. American Association of Appraisers Houston 2013 Energy Valuation Conference:  Let’s Be 
Honest About Shale Gas (Houston, April 25, 2013). 
 

17. AMGP-IMP Conferencia Tecnológica Temática para la Exploración y Explotación de Aceite y 
Gas en Lutitas:  Shale Gas en EEUU:  Seamos Sinceros Sobre Shale Gas (Mexico City, April 4, 
2013). 

 

18. Indiana State Legislature Testimony:  Let’s Be Honest About Shale Gas (Indianapolis, March 
27, 2013). 

 

19. Corpus Christi SIPES, :  Let’s Be Honest About Shale Gas (Corpus Christi, TX, March 26, 
2013). 
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20. The Energy Authority Energy Symposium 2013:  Let’s Be Honest About Shale Gas 
(Jacksonville, FL, March 14, 2013). 

 

21. University of Texas School of Law Renewable Energy Institute:  After The Gold Rush:  A 
Different Perspective on Future Gas Supply and Price (Austin, TX, January 29, 2013). 
 

22. Association for the Study of Peak Oil 2012 Conference:  Oil-Prone Shale Plays:  The Illusion 
of Energy Independence (Austin, November 30, 2012). 
 

23. Houston SIPES Continuing Education Seminar:  Oil-Prone Shale Plays:  The Illusion of 
Energy Independence (Houston, October 19, 2012). 

 

24. Austin SIPES:  After The Gold Rush:  A Perspective on Future U.S. Natural Gas Supply and 
Price (Austin, October 4, 2012). 
 

25. American Public Power Association:  Will Natural Gas Be There When We Need It (and at 
What Price)? (Seattle, June 19, 2012). 
 

26. South Texas Money Management Seventh Annual Energy Symposium:  After The Gold Rush:  
A Perspective on Future U.S. Natural Gas Supply and Price (San Antonio, May 16, 2012). 

 

27. Society of Professional Evaluation Engineers:  A Perspective on Future U.S. Natural Gas 
Supply and Price (Midland, May 8, 2012). 

 

28. Accenture Upstream Major Capital Projects Supply Chain Forum:  A Perspective on Future 
U.S. Natural Gas Supply and Price (Houston, April 25, 2012). 

 

29. West Texas Geological Society:  U.S. Shale Oil:  Expectation and Experience (Midland, April 
10, 2012). 

 

30. Middlefield Investment Conference:  U.S. Shale Oil (Toronto, March 21-22, 2012). 
 

31. Kinnear Financial Spring Investment Conference:  U.S. Shale Oil (Banff, March 17, 2012). 
 

32. The Energy Authority:  Shale Panel Discussion with Jen Snyder, Wood Mackenzie 
(Jacksonville, FL March 15 and February 21, 2012). 

 

33. South Texas Geological Society Luncheon Meeting:  U.S. Shale Oil (San Antonio, March 14, 
2012). 
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34. Large Public Power Council:  A Perspective on Future U.S. Natural Gas Supply and Price (San 
Juan, PR, February 12, 2012). 

 

35. Houston Geological Society:  U.S. Shale Gas:  Magical Thinking (Houston, TX, January 25, 
2012). 

 

36. Society of Petroleum Evaluation Engineers (SPEE) Dallas Chapter:  U.S. Shale Gas:  Magical 
Thinking (Dallas, TX, January 19, 2012). 

 

37. Alaska Alliance:  U.S. Shale Gas:  Magical Thinking (Anchorage, AK, January 6, 2012). 
 

38. BP Energy Company, North American Gas & Power:  U.S. Shale Gas:  Magical Thinking 
(Houston, TX, December 14, 2011). 

 

39. Gerson Lehrman Shale Gas Panel Discussion (San Francisco, December 7, 2011). 
 

40. Energy Utility Consultants, Inc. Conference Panel Discussion: The Future of Fossil-Fired 
Plants: Risks and Opportunities in Light of Regulatory and Economic Uncertainty (Arlington, 
VA, December 5, 2011). 

 

41. National Association of Regulatory Utility Commissioners Annual Meeting:  The Great 
Frontier panel discussion (St. Louis, November 14, 2011). 

 

42. American Public Power Association Annual Member CEO Meeting:  Shale Gas—Magical 
Thinking (Washington, D.C., October 26, 2011). 

 

43. Corpus Christi Society of Independent Earth Scientists:  Shale Gas—Magical Thinking 
(Corpus Christi, October 25, 2011. 

 

44. Kinnear Financial Limited Fall Investment Conference:  Shale Gas—Magical Thinking 
(Southampton, Bermuda, October 21, 2011). 

 

45. Gerson Lehrman Shale Gas Panel Discussion (New York, October 18, 2011). 
 

46. Middlefield Investment Conference:  Shale Gas—The Eye of the Storm (Calgary, July 14, 
2011). 

 

47. Natural Resources Partnership:  Shale Gas—A View from the Bottom of the Resource 
Pyramid (Houston, TX, May 26, 2011). 


