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Horizontal drilling and hydraulic fracturing have enhanced energy
production but raised concerns about drinkingwater contamination
and other environmental impacts. Identifying the sources and
mechanisms of contamination can help improve the environmental
and economic sustainability of shale gas extraction. We analyzed
113 and 20 samples from drinking water wells overlying the
Marcellus and Barnett Shales, respectively, examining hydrocarbon
abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and
providing, to our knowledge, the first comprehensive analyses of
noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater
near shale-gas wells. We addressed two questions. (i) Are elevated
levels of hydrocarbon gas in drinking water aquifers near gas wells
natural or anthropogenic? (ii) If fugitive gas contamination exists,
what mechanisms cause it? Against a backdrop of naturally occur-
ring salt- and gas-rich groundwater, we identified eight discrete
clusters of fugitive gas contamination, seven in Pennsylvania and
one in Texas, that showed increased contamination through time.
Where fugitive gas contamination occurred, the relative propor-
tions of thermogenic hydrocarbon gas (e.g., CH4,

4He) were signifi-
cantly higher (P < 0.01) and the proportions of atmospheric gases
(air-saturated water; e.g., N2,

36Ar) were significantly lower (P < 0.01)
relative to background groundwater. Noble gas isotope and hydro-
carbon data link four contamination clusters to gas leakage from
intermediate-depth strata through failures of annulus cement:
three to target production gases that seem to implicate faulty pro-
duction casings and one to an underground gas well failure. Noble
gas data appear to rule out gas contamination by upward migra-
tion from depth through overlying geological strata triggered by
horizontal drilling or hydraulic fracturing.

noble gas geochemistry | groundwater contamination | methane

Rising demands for domestic energy resources, mandates for
cleaner burning fuels, and efforts to reduce greenhouse gas

emissions are driving an energy transformation from coal toward
hydrocarbon gases produced from unconventional resources (1,
2). Horizontal drilling and hydraulic fracturing have substantially
increased hydrocarbon recovery from black shales and other
unconventional resources (1, 2) (Fig. S1) to the extent that shale
gas now accounts for more than one third of the total natural
gas production in the United States (3).
Public and political support for unconventional energy ex-

traction is tempered by environmental concerns (4, 5), including
the potential for compromised drinking water quality near shale
gas development (6, 7). The presence of elevated methane and
aliphatic hydrocarbons (ethane, propane, etc.) in drinking water,
for instance, remains controversial and requires distinguishing
between natural and anthropogenic sources (6–12). Some studies
have suggested that shale gas development results in fugitive gas
contamination in a subset of wells near drill sites (6, 7), whereas
others have suggested that the distribution of hydrocarbon gases
in aquifers overlying the Marcellus Shale is natural and unrelated

to shale gas development (8, 9, 13). This study addresses two critical
questions: (i) are elevated levels of hydrocarbon gas in drinking
water aquifers near gas wells derived from natural or anthropo-
genic sources and (ii) if fugitive gas contamination exists, what
mechanisms cause it?
Previous efforts to resolve these questions identify the genetic

fingerprint of hydrocarbon gases using the molecular (e.g., [C2H6
plus heavier aliphatic hydrocarbons]/[CH4]; abbreviated as
C2H6

+/CH4) and stable isotopic [e.g., δ13C-CH4, δ2H-CH4, or
Δ13C=(δ13C-CH4-δ13C-C2H6)] compositions of hydrocarbon gases
(6–9, 13) (SI Text). These techniques resolve thermogenic and
biogenic hydrocarbon contributions and differentiate between hy-
drocarbon sources of differing thermal maturity [e.g., Middle-
Devonian (Marcellus)-produced gases vs. Upper Devonian (UD)
gas pockets at intermediate depths]. However, microbial activity
and oxidation can alter the original geochemical signature (14) and
obscure the sources or mechanisms of fluid migration (8, 9).
Noble gas elemental and isotopic tracers constitute an appropri-

ate complement to hydrocarbon geochemistry. Their nonreactive
nature (i.e., unaffected by chemical reactions or microbial ac-
tivity) (14) and well-characterized isotopic compositions in the
crust, hydrosphere, and atmosphere (SI Text) make noble gases
ideal tracers of crustal fluid processes (14–17). In most aquifers,
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the noble gas isotopic composition reflects a binary mixture of
two sources (i) air-saturated water (ASW), containing 20Ne, 36Ar,
and 84Kr (and N2) derived from solubility equilibrium with the at-
mosphere during groundwater recharge; and (ii) crustal rocks that
release radiogenic noble gases such as 4He* and 21Ne* (sourced
from 235; 238U + 232Th decay) and 40Ar* (sourced from 40K decay,
where * indicates a radiogenic component) (18). Once noble gases
incorporate into crustal fluids, they fractionate only by well-con-
strained physical mechanisms (e.g., diffusion, phase partitioning)
(16, 18). Therefore, when paired with hydrocarbon composition
and inorganic water chemistry, noble gases can help differentiate
between natural geological migration of hydrocarbon gases and
anthropogenic contamination. We also posit that noble gas geo-
chemistry can be used to determine the mechanisms by which
anthropogenic gas contamination occur.
We envision seven scenarios that, alone or together, can ac-

count for the elevated hydrocarbon levels in shallow aquifers
(Fig. 1): (i) in situ microbial methane production; (ii) natural
in situ presence or tectonically driven migration over geological
time of gas-rich brine from an underlying production formation
(e.g., Marcellus or Barnett Fm.) or gas-bearing formation of in-
termediate depth (e.g., Lock Haven/Catskill Fm. or Strawn Fm.);
(iii) exsolution of hydrocarbon gas already present in shallow
aquifers following scenario 1 or 2, driven by vibrations or water
level fluctuations due to drilling activities; (iv) leakage from the
target or intermediate-depth formations through a poorly cemen-
ted well annulus; (v) leakage from the target formation through
faulty well casings (e.g., poorly joined or corroded casings); (vi)
migration of hydrocarbon gas from the target or overlying for-
mations along natural deformation features (e.g., faults, joints, or
fractures) or those initiated by drilling (e.g., faults or fractures
created, reopened, or intersected by drilling or hydraulic fractur-
ing activities); and (vii) migration of target or intermediate-depth
gases through abandoned or legacy wells. In our study areas, other
scenarios such as coal bed methane or leakage from pipelines or
compressors into aquifers are unlikely (Figs. S2 and S3).
Here, we examine the noble gas (e.g., 4He, 20Ne, and 36Ar),

hydrocarbon (e.g., δ13C-CH4, CH4, and C2H6), and chloride (Cl
−)

content of 113 domestic groundwater wells and one natural
methane seep overlying the Marcellus study area (MSA) ∼800–
2,200 m underground in northeastern Pennsylvania and south-
eastern NewYork and 20 groundwater wells overlying the Barnett
study area (BSA) ∼1,950–2,500 m underground in east-central
Texas (SI Text and Figs. S2 and S3). Sample collection and anal-
yses are reported briefly in Materials and Methods and in more
detail in SI Text (7, 19–21). The typical depth of drinking water
wells in the MSA is 35–90 m, sourced from either fractured

sandstone of the Lock Haven and Catskill Formations or outwash
alluvium aquifers. The typical depth to drinking water there is
60–75 m, sourced from the Upper Trinity limestone. More
geological information is included in SI Text. To augment our
previous studies (6, 7) that examined the relationship between
methane and proximity to gas wells, in this study we intentionally
targeted a subset of water wells known to have elevated CH4
concentrations and surroundingwater wells both near and far from
drill sites. The reason for this approach was to distinguish among
the mechanisms causing high gas concentrations naturally from
those potentially associated with shale-gas development (Fig. 1).

Results and Discussion
The occurrence, distribution, and composition of hydrocarbons
in the Earth’s crust result from the interplay between tectonic
and hydrologic cycles (14, 17). The remnants of these processes
generate inorganic, hydrocarbon, and noble gas compositions
with distinctive geochemical fingerprints (e.g., C2H6

+/CH4, δ13C-CH4,
4He/CH4,

20Ne/36Ar, and Cl−) that can help to distinguish hydro-
carbons that migrated naturally from those that migrated as anthro-
pogenic fugitive gases associated with shale-gas development. Our
data show that in the aquifers overlying the MSA, the CH4 levels
in groundwater samples observed >1 km from shale gas wells
co-occurs with elevated concentrations of natural crustal brine
components (e.g., Cl− and 4He) (triangles in Fig. 2 A and B).
Conversely, the composition of groundwater sampled<1 km from
drill sites in theMSA shows clear evidence of two populations: (i)
wells with compositions statistically indistinguishable from those
collected >1 km from drill sites (circles in Fig. 2A and B) and (ii)
wells with low salt (Cl−) concentrations but that are supersaturated
with respect to methane and have distinct noble gas compositions
(green-rimmed circles in Fig. 2 A and B).
Similar to the results for methane, the noble gas compositions

from groundwater samples in theMSA>1 km from shale gas wells
(triangles), including the gas-rich saline spring at Salt Springs State
Park north of Montrose, PA (square, Fig. 2A), and some samples
<1 km from drill sites (circles, Fig. 2A) all had similar diagnostic
noble gas compositions (Fig. 2 A and B). These samples have
CH4/

36Ar at or below CH4 saturation [p(CH4) ≤ 1 atm, i.e., below
the “bubble point”; SI Text] and show a corresponding increase in
the ratio of thermogenic gas components to ASW (i.e., CH4/

36Ar
vs. [Cl−], r2 = 0.72, P < 0.01; and 4He/20Ne vs. [Cl−], r2 = 0.59,
P < 0.01; Fig. 2 A and B). In fact, the regression of CH4/

36Ar vs.
[Cl−] for all samples >1 km from gas wells (Fig. 2A) is in-
distinguishable from a regression of the subset of points <1 km
from drill sites, suggesting one continuous population (P= 0.31,
Chow test); we define these samples as the “normal trend” for
brevity. These data suggest that the natural salt- and gas-rich waters
in the MSA have a groundwater chemistry derived from a deep gas-
rich brine that migrated over geological time (typified by the Salt
Spring) and then mixed with meteoric water of ASW composition
([Cl−] = <10 mg/L; CH4/

36Ar = ∼0; 4He/20Ne = ∼0.3). The co-
existence of elevated CH4, Cl

−, and 4He is consistent with previous
observations for brine migration that represents a natural hydro-
carbon gas source in scenario 2 (Fig. 1) (20).
A subset of samples collected <1 km from drill sites, however,

shows different relationships for CH4/
36Ar and 4He/20Ne vs. Cl−;

we define this subset as the “anomalous subset” for brevity.
These samples show significantly higher levels of thermogenic
gases (P < 0.01) relative to ASW gases (i.e., elevated CH4/

36Ar
and 4He/20Ne) independent of [Cl−] (green-rimmed circles in Fig.
2 A and B). Because CH4 and

36Ar and 4He and 20Ne pairs have
similar gas/liquid partition coefficient (1/solubility) ratios (SI
Text), a lack of correlation between Cl− concentrations and either
CH4/

36Ar or 4He/20Ne (P = 0.864 and 0.698, respectively) sug-
gests that the anomalous subset (Fig. 2) represents a thermogenic
hydrocarbon gas that has separated from the brine-meteoric
water mixture and migrated in the gas phase.

Fig. 1. A diagram of seven scenarios that may account for the presence of
elevated hydrocarbon gas levels in shallow aquifers (see discussion in text).
The figure is a conceptualized stratigraphic section and is not drawn to scale.
Additional scenarios (e.g., coal bedmethane and natural gas pipelines leaking
into aquifers) are unlikely in our specific study areas (Figs. S2 and S3).
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To test this geochemical framework in another shale gas basin,
we compared the MSA data to those from the BSA, where the
source of elevated CH4 concentrations reported in domestic water
wells has been controversial (Fig. S3). Our initial sampling in
December 2012 revealed that 9 of 12 BSA groundwater samples
were similar to the normal trend samples from the MSA. For in-
stance, [CH4] and the ratios of thermogenic gas to meteoric water
[i.e., CH4/

36Ar (r2 = 0.59; P < 0.01) and 4He/20Ne (r2 = 0.48; P <
0.01)] increased with [Cl−] (triangles and circles in Fig. 2 C andD).
In contrast, three domestic wells showed identical trends to the
anomalous subset of samples near gas wells in the MSA, with
CH4/

36Ar substantially above saturation and elevated 4He/20Ne,
even at low [Cl−] (green-rimmed circles in Fig. 2 C and D).
To confirm these results, we resampled 12 domestic water

wells from the BSA during both August and November of 2013.
The two 2013 sampling campaigns each included four additional
domestic wells (8 new; 20 in total). None of the new samples
showed evidence of contamination. Ten of the initial 12 samples,
including the three anomalous water wells, showed similar results
for the 2012 analyses (green-rimmed circles in Fig. 2 C andD and
SI Text). However, by the time of our August 2013 sampling, two
of the initial samples that were originally consistent with the
normal trend showed increased hydrocarbon gas concentra-
tions that coincided with greater CH4/

36Ar and 4He/20Ne, con-
sistent with a transition to the anomalous subset over time (Fig. 2
C and D and SI Text). One water well showed order-of-magnitude
increases of both CH4/

36Ar (24,782–722,534) and 4He/20Ne
(267–26,324), whereas the other showed similar trends in CH4/

36

Ar (750–81,163) and 4He/20Ne (42–569) during the same period
(Fig. 2 C and D and SI Text). Because the [Cl−] did not change in
either well, we suggest that thermogenic hydrocarbon gas mi-
grated into these wells in the gas phase unaccompanied by brine
between December 2012 and August 2013.
The concentrations of dissolved ASW gases (i.e., 20Ne, 36Ar,

and N2) can further constrain the interactions that occur between
hydrocarbon gas and water (16, 22–25). In the MSA, all normal
trend samples both >1 km and <1 km from drill sites had 36Ar
and N2 that varied within ∼15% of the temperature-dependent
ASW solubility line (cyan line in Fig. 3 A–C) (25–28). Although
some background ground waters showed minor excess air en-
trainment common in pumped groundwater globally (SI Text)
(23, 29), these ranges reflect equilibration between the atmo-
sphere andmeteoric water during groundwater recharge (26, 27).
In contrast, the anomalous subset of wells in the MSA (green-
rimmed circles in Fig. 3 A and B) that have elevated methane and
that departed from the brine-meteoric water mixing line were
stripped of ASW gases compared with the expected solubility
equilibriums (P < 0.001; Fig. 3 A and B).
Consistent with the results from the MSA, our data suggest

that 5 water wells in the BSA display evidence of gas-phase mi-
gration associated with hydrocarbon gas extraction, whereas the
remaining 15 samples appear to have acquired methane naturally.
The initial December 2012 sampling identified three anomalous
samples in Texas with supersaturated CH4 that departed from the
brine-meteoric water mixing line (Fig. 2 C and D). Each of these
samples also showed significant depletions (i.e., stripping) of all

Fig. 2. The ratios of CH4/
36Ar [ratios are in units (cm3 STP/L)/(cm3 STP/L);

A and C] and 4He/20Ne (B and D) vs. Cl− of domestic groundwater wells. The
samples were collected in the Marcellus (MSA) (Left) and Barnett (BSA)
(Right) study areas at distances >1 km (triangles) and <1 km (circles) from
unconventional drill sites. [CH4] is shown using grayscale intensity [0–60+

cm3 ([CH4]) STP/L]. The dashed lines in the MSA are the regressions of all
points collected >1 km from drill sites. In the MSA, all samples >1 km from
drill sites had [CH4] at or below saturation and showed significant correla-
tions between Cl− and CH4/

36Ar (r2 = 0.72; P < 0.01) or 4He/20Ne (r2 = 0.59; P <
0.01) defined as the normal trend. For samples <1 km from drill sites, one
subset was consistent with the “normal trend” (P = 0.31), whereas the other
anomalous subset had supersaturated [CH4] and high CH4/

36Ar and 4He/20Ne,
even at low [Cl−] (green-rimmed circles in A and B). The natural Salt Spring in
Montrose, PA, is shown as a square in all MSA figures, and samples targeted
for microbial-sourced gases are distinguished by diamonds. In the BSA, 15
samples had [CH4] at or below saturation and significant correlations be-
tween Cl− and CH4/

36Ar (r2 = 0.59; P < 0.01) or 4He/20Ne (r2 = 0.48; P < 0.01)
(dashed lines in C and D). Five samples, including two that changed between
the first and second sampling periods (Fig. S6), had substantially higher
CH4/

36Ar and 4He/20Ne independent of [Cl−]. The anomalous subset of samples
from both locations with elevated CH4 that do not fall along the normal trend
(>1 km) regression lines are consistent with a flux of gas-phase thermogenic
hydrocarbon gas into shallow aquifers.

Fig. 3. 20Ne (Top), N2 (Middle), and CH4 (Bottom) vs. 36Ar in the MSA (Left)
and BSA (Right) at distances >1 km (triangles) and <1 km (circles) from drill
sites. All normal trend samples have 36Ar and N2 within 15% of the tem-
perature-dependent ASW solubility line (cyan lines). Conversely, a subset of
wells with elevated [CH4] <1 km from drill sites (green-rimmed circles) shows
significantly stripped ASW gases (20Ne, 36Ar, N2), which result from extensive
partitioning of dissolved ASW gases into a large volume of migrating gas-
phase hydrocarbons (i.e., a fugitive gas). Note that domestic wells labeled
previously elevated CH4 were vented to remove methane from the water
before our sampling. Consistent with the MSA, most BSA samples (15 of 20)
also have normal ASW composition, but five anomalous samples, including
the two that displayed pronounced changes between the initial and later
sampling events (Fig. S7), have significantly stripped ASW gas composition
(green-rimmed circles).
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ASW components (36Ar and N2) (green-rimmed circles in Fig. 3
D–F). Data from our second and third sampling campaigns in
August and November of 2013 reinforced these trends. The three
original anomalous samples remained stripped of their ASW
components, but the two previously normal wells that displayed
increased CH4 through time also became depleted of ASW gases
(i.e., stripped) by August 2013 and remained stripped in the
November sampling (Fig. S7).
Stripped groundwater with 36Ar and N2 levels significantly

below atmospheric solubility, similar to those that we observed in
the anomalous subset of methane-rich samples from both the
MSA and BSA, requires exceptional hydrogeological conditions.
Gas-phase migration of CH4 (or CO2) can lead to the exsolution
of ASW into the gas phase (14, 16, 23). However, these processes
have been observed only in hydrogeological settings where tec-
tonic (e.g., geothermal springs) ormicrobial (e.g., methanogenesis
in rice paddies, landfills) processes drive large volumes of gas-
phase migration or displace the ASW gases in the vadose zone
before recharge (22, 30). Even the naturally discharging gas-rich
Salt Spring in Pennsylvania has p(CH4) = ∼1 atm and normal
ASW compositions, with minor bubble nucleation only occurring
near the surface as hydrostatic pressure decreases (SI Text).
Stripped ASW compositions in a subset of groundwater sam-

ples occurred exclusively <1 km from drill sites in the MSA and
BSA and indicate a rapid introduction of high pressure [i.e.,
p(CH4) » 1 atm] gas-phase hydrocarbons into shallow aquifers
at a rate that exceeds groundwater flow. There are no apparent
tectonic or hydrologic mechanisms to drive the migration of hy-
drocarbon gas at sufficient rates to strip ASWgases within shallow
aquifers (<100 m) in either study area. Moreover, in both study
areas, samples with stripped ASW composition contain elevated
levels of aliphatic hydrocarbons (C2H6, C3H8; P < 0.01) and heavy
stable isotopic compositions (i.e., δ13C-CH4 = >−55‰) (6-9, 13)
(P < 0.01; Fig. 4B and Fig. S5), which preclude microbial pro-
duction as the source for elevated methane in shallow aquifers
(scenario 1) (6, 7). Note that three wells targeted for elevated
microbial methane levels in the MSA (e.g., landfills; diamond
symbols in Figs. 2–4) were easily distinguished by diagnostic noble
gas (e.g., low 4He/20Ne and 4He/CH4) and hydrocarbon isotopic
tracers (δ13C-CH4; Figs. 2B and 4B), but still retained normal
ASW gas levels (Fig. 3 A–C and Fig. S4). More importantly, in the
MSA, the hydrocarbon composition of the anomalous subset of
samples is consistent with either Marcellus-produced gases (black
box in Fig. 4A andB and SI Text) or overlying UD-produced gases
(pink box in Fig. 4 A and B and SI Text; scenario 2), whereas BSA
samples require further consideration as discussed below. The
combined evidence of noble gas and hydrocarbon molecular
(C2H6

+/CH4) and stable isotopic (δ13C-CH4) compositions for the
majority of anomalous subset samples is consistent with contam-
ination by fugitive gas migration.
By constraining the mechanisms that cause elevated hydro-

carbon concentrations in drinking water near natural gas wells,
we can further distinguish the presence of fugitive gas contami-
nation. Gas-rich groundwater (>1 cm3 STP/L methane) samples
that fall along the normal trends for hydrocarbon levels, salts,
and ASW gases (36Ar and N2) in the MSA have 20Ne/36Ar
far above ASW equilibrium (∼0.156) and 4He/CH4 well above
any known thermogenic hydrocarbon gas sources in the study
area (Fig. 4A). We suggest that the enriched 20Ne/36Ar and ex-
cess 4He and 20Ne in these samples are remnants of relatively
low Vgas/Vwater conditions during the geological migration of gas-
rich brine from Marcellus source rocks to conventional UD hy-
drocarbon traps and eventually shallow aquifers as described by
scenario 2 (Fig. 1).
We hypothesize that the geological migration of hydrocarbons

by scenario 2 occurred in three successive steps. First, hydro-
carbon maturation in the Marcellus source rocks produced suf-
ficient methane to generate a free gas phase, which caused the

naturally present trace gases to partition from the formational
brine into the gas phase. As trace gases partition between the brine
and gas phases, the degree of fractionation between trace com-
ponents such as 20Ne and 36Ar (or other trace gases) is a function
of the respective partition coefficients between gas and water and
the relative volumes of gas and water (Vgas/Vwater; SI Text) (18).
Because Ne and He have higher partition coefficients (i.e., lower
solubilities in the fluid) than Ar or CH4, this initial stage of rela-
tively low Vgas/Vwater gas-phase separation causes the enrichment
of 20Ne and 4He in the migrating gas phase, whereas the residual
Marcellus fluid becomes relatively depleted in 20Ne/36Ar below
ASW (0.10–0.12, as reported in ref. 19). In the second stage, the
buoyant migration of relatively He- and Ne-enriched hydrocarbon
gas into overlying formations further increases the concentration
of less soluble trace gases (i.e., 4He and 20Ne) with respect to more
soluble gases (i.e., 36Ar and CH4) that will preferentially redis-
solve into the water-saturated crust. This redissolution process
would yield elevated 20Ne/36Ar and 4He/CH4 in the hydrocarbon
gases emplaced in the overlying UD reservoirs, which is sup-
ported by the observed 20Ne/36Ar composition of UD-produced
gases (up to 1.4) in the northern Appalachian Basin (Fig. 4A) as
reported in ref. 19. The final stage likely occurs at present, when
hydrocarbon gases that previously migrated into UD traps (e.g., in

Fig. 4. 4He/CH4 vs. 20Ne/36Ar (Upper Left) and 4He/CH4 vs. δ13C-CH4 (Lower
Left) and C2H6

+/CH4 vs. δ13C-CH4 (Upper Right) and 4He/40Ar* vs. 4He/20Ne
(Lower Right) of produced gases and groundwater in the MSA (Left) and
BSA (Right) at distances >1 km (triangles) and <1 km (circles) from drill sites.
Normal trend groundwater samples in the MSA display 4He/CH4 and

20Ne/36 Ar
values that increase with [CH4] and that are significantly higher than
Marcellus-produced gases. These data suggest natural geological migration
of gas under relatively low Vgas/Vwater conditions (scenario 2). Samples <1 km
from drill sites with evidence for fugitive gas migration (green-rimmed circles)
plot along a trend between Marcellus (black box) and Upper Devonian-pro-
duced gases (pink hatched box) consistent with Scenarios 4 (annulus) or 5
(production casing) (B). A cluster of groundwaters near a gas well that expe-
rienced an underground blowout (circled in A and B) displays significant
stripping and enrichments in both 4He/CH4 and 20Ne/36Ar, consistent with
modeled solubility fractionation vectors (red dashed lines) for gas migration
through the water-saturated crust (e.g., along faults or fractures) (scenario 6),
but likely results from a well packer failure at depth (scenario 5). The Strawn-
and Barnett-produced gases include data reported in ref. 8 and collected as
part of the present study (Table S2). The molecular ratio of aliphatic hydro-
carbons (C2H6

+/CH4) (C) and noble gases (4He/40Ar* and 4He/20Ne) (D) in sam-
ples with evidence of fugitive gas contamination (green-rimmed circles) are
significantly greater than other natural groundwaters in the area. The simi-
larity between the C2H6

+/CH4,
4He/40Ar*, and 4He/20Ne composition of the five

impacted wells, including the two that changed between the first and second
samplings (Fig. S8), and Strawn-produced gases, suggests an intermediate
depth Strawn gas (scenario 4) as the most likely cause for the fugitive gas
contamination observed in Texas.
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the Lock Haven/Catskill) diffuse into and equilibrate with
overlying shallow aquifers.
In contrast to the normal trend samples that show extensive

fractionation following a complex history of geological migra-
tion, all samples from the anomalous subset are located <1 km
from drill sites in Pennsylvania and have noble gas compositions
that are inconsistent with the geological migration of hydrocar-
bon gas through the water-saturated crust (scenario 2). Instead,
the anomalous subset of samples has significantly lower 20Ne/36Ar
(P < 0.01) and 4He/CH4 (P < 0.01) than background samples (Fig.
4A). These data likely suggest that hydrocarbon gases were
emplaced into the shallow aquifer without significant fractionation
of ASW 20Ne/36Ar during transport through the water-saturated
crust (green-rimmed circles in Figs. 3 A–C and 4A). Consequently,
for the anomalous subset of groundwater samples with stripped
ASW compositions, five possible mechanisms for gas migration
to shallow aquifers remain plausible (scenarios 3–7; Fig. 1), all
of which implicate an anthropogenic mechanism related to gas
drilling and extraction. Distinguishing among these mechanisms
will further clarify the environmental implications of fugitive gas
contamination and lead to engineering solutions.
Elevated CH4 levels may result from the exsolution of hydro-

carbon gas already present in shallow aquifers during drilling
(scenario 3). This mechanism would release hydrocarbon gases
that previously migrated into shallow aquifers by scenario 2 that
later phase separated from brine-rich groundwater during drilling.
However, this process would release hydrocarbon gases from
shallow aquifers without altering the CH4/

36Ar or 4He/20Ne in
either the migrated gas or the residual fluid because of the similar
partition coefficients between the respective gases (SI Text). Be-
cause none of the data (specifically highly elevated CH4/

36Ar,
4He/20Ne, and δ13C-CH4) from the anomalous subset of samples
are consistent with scenario 2 in theMSA or BSA, we suggest that
scenario 3 is unlikely.
Gas-phase leakage through scenarios 4 (well annulus), 5 (faulty

casing), and 7 (legacy/abandoned wells) would transmit thermo-
genic gases from depth to the shallow aquifers with minimal
interactions between the deep, pressurized gas-phase and static
water present in stratigraphic units in the crust. As a result, the
hydrocarbon gas released by these mechanisms would have high
ratios of thermogenic to ASW components (i.e., high CH4/

36Ar
and 4He/20Ne), stripped ASW compositions and would undergo
minimal fractionation of hydrocarbon gas during transport from
each of the respective production intervals (e.g.,Marcellus orUD
formations) to shallow aquifers. As a result, the gases released
through scenarios 4, 5, or 7 should also retain the composition
of the gas-rich reservoir formation (i.e., 4He/CH4,

20Ne/36Ar,
C2H6

+/CH4, and δ13C-CH4).
The majority of anomalous subset samples (i.e., green-rimmed

samples) in the MSA display minimal fractionation of gas com-
positions (e.g., low 20Ne/36Ar and 4He/CH4). These data are
consistent with the anthropogenic release of a fugitive hydrocar-
bon gas by either scenario 4, 5, or 7 depending on location, al-
though scenario 7 is unlikely based on the lack of legacy wells in
the research area (Fig. S2). Importantly, all of these data are in-
consistent with scenario 6 (direct migration of gases upward
through the overlying strata following horizontal drilling or hy-
draulic fracturing) because in this scenario, gas/liquid partitioning
would significantly fractionate the diagnostic gas isotope ratios
during migration through the water-saturated crust.
In the MSA and other basins, the molecular and isotopic fin-

gerprints of the hydrocarbon gases can distinguish between sce-
narios 4 (annulus leakage) and 5 (faulty casing leakage) (31, 32).
For example, UD-produced gases typically have lower δ13C-CH4
(−38‰ to−44‰), normalΔ13C1–2=<0, and low ethane (C2H6

+/
CH4=<0.01) (6, 7, 9) (pink box in Fig. 4B and SI Text). In contrast,
Marcellus-produced gases have heavier δ13C-CH4 values (−29‰
to−35‰), reversed stable isotopic composition (i.e.,Δ13C1–2=>0),

and a higher proportion of aliphatic hydrocarbons (C2H6
+/CH4 >

0.015; black box in Fig. 4B and SI Text) (7, 9, 13). By comparing
4He/CH4 vs. δ13C-CH4 (Fig. 4B), C2H6

+/CH4 vs. δ13C-CH4, or
δ13C-CH4 vs. Δ13C1–2 (Fig. S5), we find evidence for both sce-
narios 4 and 5 in different locations in theMSA. Three clusters of
groundwater wells with noble gas evidence for fugitive gas con-
tamination have molecular and isotopic fingerprints that are con-
sistent with these UD sources, whereas four clusters are consistent
with a Marcellus composition (black box in Fig. 4 A and B).
Similarly, in the BSA, the compositions of the five anomalous

samples and the distance to legacy wells (Fig. S3) also preclude
scenarios 1, 2, 3, 6, and 7. However, because the isotopic com-
position (δ13C-CH4) of both the Barnett Fm. and overlying Strawn
Fm. are similar, routine analyses of hydrocarbon stable isotope
compositions do not easily distinguish between scenarios 4 and 5
in this setting (8). Here, additional fingerprinting techniques
[such as noble gases (19) or the molecular composition of
hydrocarbons] provide a complementary approach.
Noble gases are useful tracers because the ASW compositions

(36Ar, 20Ne) are consistent globally and the crustal components
(e.g., 4He and 40Ar) are resolvable and unaffected by oxidation
or microbial activity. The radiogenic gases (i.e., 4He and 40Ar)
form by the time-integrated decay of U + Th and K in the crust and
are released from different lithologies as a function of tempera-
ture (SI Text) (19). As a result, the 4He/40Ar* ratio is a marker
for the thermal maturity of thermogenic hydrocarbon gases (19).
The similarity between C2H6

+/CH4 vs. δ13C-CH4 and
4He/40Ar* vs.

4He/20Ne in the Strawn-produced gases and the anomalous subset of
five groundwater samples in the BSA suggests that contamination
likely results from the release of annulus-conducted gas sourced
from the Strawn Fm. (scenario 4) rather than from the Barnett
Shale (scenarios 5 or 6; Fig. 4 C and D).
Unlike the seven discrete clusters of groundwater contami-

nation discussed thus far, an eighth cluster of four groundwater
samples (three water wells and one ephemeral spring) in the
MSA displayed evidence of stripping and significantly elevated
4He/CH4 and

20Ne/36Ar (green-rimmed circles in the oval in Fig.
4A). These are the only samples consistent with significant frac-
tionation during the migration of hydrocarbon gas from depth,
through water-saturated strata in the crust, and finally into the
shallow aquifer (scenario 6). We propose that the composition of
these samples reflects a mixture between (i) residual water pre-
viously depleted in ASW components by a large flux of migrating
gas similar to the mechanism observed for other stripped samples
(green-filled circles) and (ii) a hydrocarbon gas that redissolved
into groundwater within shallow aquifers following extensive frac-
tionation during transport through water-saturated strata in the
crust. A natural gas production well near this sampling location
experienced an “underground mechanical well failure” before our
sampling (12, 33). Although our noble gas and hydrocarbon data
cannot eliminate scenario 6 alone, the PADEP reports suggest that
our data likely record a casing well packer failure at depth (33),
consistent with scenario 5, which permitted extensive fractionation
of gas components during transport through the water-saturated
crust. Thus, we find no unequivocal evidence for large-scale vertical
migration of hydrocarbon gas from depth attributable to horizontal
drilling or hydraulic fracturing (scenario 6).
In summary, our data demonstrate eight discrete clusters of

groundwater wells (seven overlying the Marcellus and one over-
lying the Barnett) near shale gas drill sites that exhibit evidence for
fugitive gas contamination. Three clusters of groundwater wells in
theMSA are consistent with hydrocarbon gas contamination from
intermediate-depth UD sources and one cluster in the BSA is
likely derived from an intermediate-depth Strawn source. The
most likely cause for these four cases of fugitive gas contamination
is the release of intermediate-depth hydrocarbon gas along the
well annulus, probably as a result of poor cementation (i.e., sce-
nario 4). Three of the remaining four groundwater well clusters
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in the MSA are consistent with the release of Marcellus-like hy-
drocarbon gas, presumably through poorly constructed wells
(e.g., improper, faulty, or failing production casings), whereas the
fourth cluster, with modified Marcellus-like production gases, sur-
rounds the natural gas well that experienced a documented un-
derground well failure.
In general, our data suggest that where fugitive gas contami-

nation occurs, well integrity problems are most likely associated
with casing or cementing issues. In contrast, our data do not sug-
gest that horizontal drilling or hydraulic fracturing has provided
a conduit to connect deep Marcellus or Barnett Formations di-
rectly to surface aquifers. Well integrity has been recognized for
decades as an important factor in environmental stewardship for
conventional oil and gas production (34, 35). Future work should
evaluate whether the large volumes of water and high pressures
required for horizontal drilling and hydraulic fracturing influence
well integrity. In our opinion, optimizing well integrity is a critical,
feasible, and cost-effective way to reduce problems with drinking
water contamination and to alleviate public concerns accompa-
nying shale gas extraction.

Methods
All water samples in the MSA (n = 114) and the BSA (n = 20) were analyzed
for their major gas abundance (e.g., CH4, C2H6, C3H8, N2), stable isotopic com-
position (e.g., δ13C-CH4, δ13C-C2H6), chloride content, and noble gas elemental

and isotopic compositions of He, Ne, and Ar, following standard methods
reported previously (7, 19–21) (SI Text). The analytical errors in all data plots
reported here are smaller than the symbols.

Before sampling, water wells were pumped to remove stagnant water
until stable values for pH, electrical conductance, and temperature were
obtained. Water samples were collected before any treatment systems fol-
lowing standard methods (20).

A more complete review of noble gas background material and numerical
modeling is included in SI Text. Briefly, the anticipated fractionation-driven
changes in gas composition are calculated bymodifying previously developed
GGS-R fractionation models (16). All Bunsen solubility constants (β) are cal-
culated as a function of salinity and temperatures ranging between 15 °C
and 200 °C to represent present ambient groundwater temperatures and
hypothetical temperatures for the migration of a geological brine. Partition
coefficients (α = βX/βY) were calculated as a function of temperature and sa-
linity according to refs. 26, 27, and 36.
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