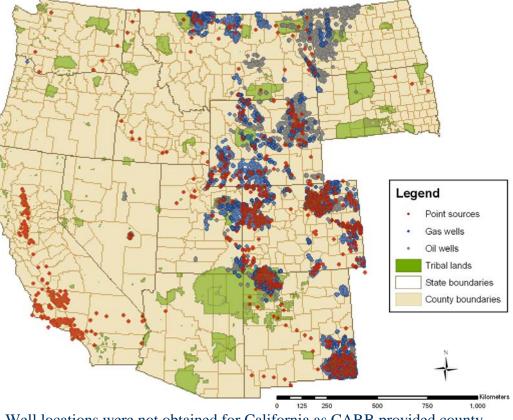
Oil and Gas Emission Inventories for the Western States

James Russell Alison Pollack Greg Yarwood ENVIRON International Corporation

Today's Presentation


- Background
- 2002 Inventory Methodology
- 2018 Inventory Methodology
- Oil and Gas Controls
- Additional Projects

Project Goals

- Evaluate existing inventories
- Develop consistent oil and gas inventory methodology
- Update the baseline (2002) inventory
- Project emissions for future year (2018) inventory

Previous Inventory Coverage, Point

- Facilities extracted:
 - Compressor stations
 - Gas plants
 - Storage tanks
 - Other smaller sources depending upon inventory thresholds
- Inventory thresholds from 1 tpy to 100 tpy
- Irregularities

Well locations were not obtained for California as CARB provided countylevel emissions estimates

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Previous Inventory Coverage, Area

- Covered
 - California and Wyoming
 - Colorado and Alaska point source inventories include most sources
- Not covered
 - New Mexico, Montana, Utah, etc...
 - Sources such as drill rigs and pump engines are not included in the existing 2002 inventories

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Base Year (2002) Inventory Procedure

- Adopt point source emissions from existing state inventories
- Estimate area source emissions for:
 - Important NOx sources
 - Drill rig engines
 - Natural gas compressor engines
 - CBM pump engines
 - Minor NOx and VOC wellhead processes
- Incorporate emission controls
- Reconcile point and area inventories

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Drill Rig Engines Data Collection

- Drilling companies contacted
- Oil and gas commission data
 - Well depth
 - Spud date date drilling begins
 - Completion date date well preparation is finalized
- WYDEQ survey of drilling emissions in Jonah-Pinedale
 - 13.5 tons NOx/well
 - 3.3 tons SO2/well

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Drill Rig Engines Emissions Calculation

1. Adjust emission factor based on the characteristics of a formation $EF_A = EF_J x (D_A / D_J) x (T_A / T_J)$

where:

 $EF_A =$ The emission factor for another formation

 $EF_J =$ The Jonah-Pinedale emission factor

 D_A = The average depth of wells drilled in another area

- Dj = The average depth of wells drilled in Jonah-Pinedale
- T_A = The duration of drilling in another area
- T_i = The duration of drilling in Jonah-Pinedale

2. Estimate emissions using formation-specific emission factors $E = EF \times W$

where:

E = The 2002emission for a given formation

EF = The formation specific emission factor

W = The number of wells drilled in the formation in 2002.

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Natural Gas Compressor Engines Data Collection

- Compressor operators contacted
- Oil and gas commission data
- Existing inventories
 - Colorado 2002 point source inventory (2004)
 - New Mexico Oil and Gas Association inventory (2003)
 - BLM environmental impact statements

- 2002 East Texas inventory (2005)

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Natural Gas Compressor Engines Emissions Calculation

- Emission factor: 2.3x10-5 tons NOx/MCF, derived from NMOGA inventory
- Activity data: Gas production obtained from oil and gas commissions

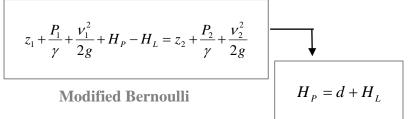
Emission CalculationE = P x EFWhere:E = 2002 NOx emissionP = 2002 gas production (MCF) $EF = Emission factor, 2.3x10^{-5} tons NOx / MCF$

Background

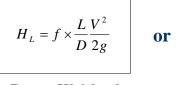
2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

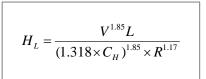
CBM Pump Engines Data Collection

- Wyoming Generator databases
- Field power supply
- Pertinent oil and gas commission data
 - Well depth
 - Water produced



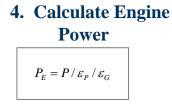
2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls


CBM Pump Engines 1: Estimate Engine Activity


- First estimate used scaling of WY activity
- Improved estimate uses engineering calculations and water production
- Assumptions
 - Pump operation
 - Well design

1. Energy in System

2. Calculate Frictional Losses



Hazen-Williams equation

Darcy-Weisbach

3. Calculate Pump Power

 $P = H_P \times Q \times \gamma / 550$

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

CBM Pump Engines 2: Estimate Engine Emissions

$$E = \sum_{w} EF * (A_{w} * H_{A} + 0.1 * A_{w} * H_{I})$$

Where:

E = 2002 county NOx emission

EF = Emission factor, see table below (g/hp-hr)

 A_w = Engine power for pumping at county well w (hp)

 H_A = Hours of pumping (4,380 hr)

 H_{I} = Hours of idling (4,380 hr)

States	Engine EF	Source
Colorado & New Mexico	12 g/hp-hr	NONROAD 2004
Wyoming	6.1 g/hp-hr*	WY DEQ

*Natural gas engines in Wyoming are controlled

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Minor NOx & VOC Wellhead Processes Data Collection

- WYDEQ emission factors
 - Glycol dehydrators
 - Completions, flaring & venting
 - Heaters
 - Tanks
 - Pneumatic devices
- State control requirements
- Alternative local emission factors
- Oil and gas commission production data

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Minor NOx & VOC Wellhead Processes Emissions Calculations

- Divided production between oil wells and gas wells based on OGC data
- Estimated emissions at oil wells by combining production with WYDEQ oil well emission factors*
- Estimated emissions at gas wells by combining production with WYDEQ gas well emission factors*

*If provided, alternate local factors were used

Calculation of Wellhead Emissions for Individual Wells

Gas Well

 $E = SUM_i(P_g \ x \ EF_{g,i}) + SUM_j(Pc \ x \ EF_{c,j}) + SUM(EF_w)$

Where:

- E = The 2002 emission
- $P_g = 2002$ gas production
- EF_{g,i}= Emission factor for gas process i
- $P_c = 2002$ condensate production
- $EF_{c,j}$ = Emission factor for condensate process j
- $EF_w =$ Per well emission factor

Oil Well

 $E = SUM_i(P_o \ x \ EF_{g,i}) + SUM(EF_w)$

Where:

- E = The 2002 emission
- $P_o = 2002$ oil production
- $EF_{o,i} {=} \ Emission \ factor \ for \ oil \ process \ i$
- $EF_w =$ Per well emission factor

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Point vs. Area Reconciliation

States	Inventory Thresholds	Reconciliation
Alaska	PTE 100 TPY	Smaller equipment grouped in large facilities
Nevada	5 TPY	No compressor engines include in State's inventory => no reconciliation required
Colorado	2 TPY actual emissions	Removed compressor, condensate tank and dehydrator emissions from area source inventory
North Dakota & Oregon	PTE 100 TPY	Gathered additional data from states to include sources with a PTE between 25 and 100 TPY
South Dakota & Utah	PTE 100 TPY	Created scaling factor based on NM point inventory and gas production
Other States	PTE 25 TPY	No reconciliation required.

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

2002 Oil and Gas Emissions

VOC Emissions (tpy)

				Area	Point	
			Condensate	Source	Source	
	Oil Wells	Gas Wells	Tanks	Total	Total	Total
WRAP Total	36,550	215,662	103,792	374,715	93,371	468,087

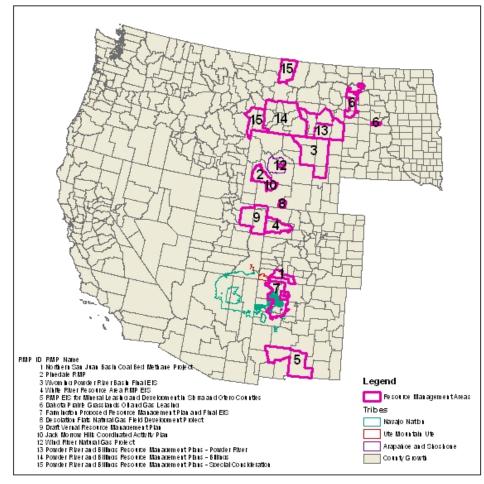
NOx Emissions (tpy)

				CBM	Area	Point	
	Compressor	Drill		Pump	Source	Source	
	Engines	Rigs	Wellhead	Engines	Total	Total	Total
WRAP Total	54,828	21,536	42,800	3,141	130,376	181,191	311,566

Change in 2002 Oil and Gas NOx Emissions

				Oil and	d Gas in P	revious	Change in Oil and		
	WRAP Oil	and Gas	Inventory	Inventory			Gas Emissions		
	Area	Point	Total	Area	Area Point Total		Total	Percent	
WRAP Total	130,376	181,191	311,566	14,479	181,191	195,670	115,897	59%	

Background


2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Future Year (2018) Inventory Procedure

- Grow county and tribal level emissions based on estimated growth in oil and gas production
- Sources of data
 - Local, Bureau of Land Management
 - Regional, Energy Information Administration
- Adjust for post-2002 on-the-books controls
- Special cases

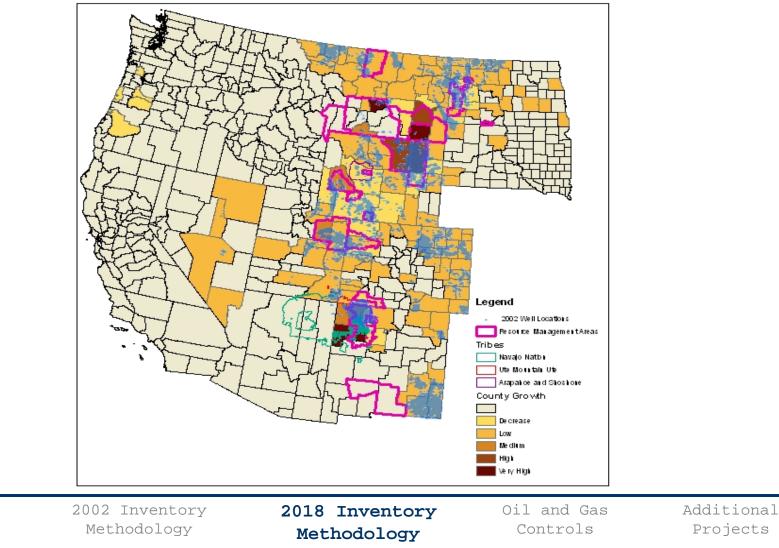
Background	2002 Inventory	2018 Inventory	Oil and Gas	Additional
	Methodology	Methodology	Controls	Projects

Resource Management Areas

$$G = \frac{\left(W_{02} + W_{f} - W_{P}\right)}{W_{02}}$$

where:

(


 $\label{eq:G} \begin{array}{l} G = the \; 2002 \; to \; 2018 \; growth \; factor \\ W_{02} = the \; wells \; (oil/gas/CBM) \; active \; in \; 2002 \\ W_f = the \; wells \; (oil/gas/CBM) \; forecast \; to \; be \\ \; added \; by \; 2018 \\ W_P = the \; wells \; (oil/gas/CBM) \; estimated \; to \; be \\ \; plugged \; and \; abandoned \; by \; 2018 \end{array}$

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Background

Resulting Areas of Growth

2018 Oil and Gas Emissions

VOC Emissions (tpy)

			Condensate	Area Source	Point Source	
	Oil Wells	Gas Wells	Tanks	Total	Total	Total
WRAP Total	43,248	648,762	194,895	886,904	100,811	987,715

Change in VOC Emissions, 2002 to 2018

			Condensate	Area Source	Point Source	
	Oil Wells	Gas Wells	Tanks	Total	Total	Total
WRAP Total	18%	201%	88%	137%	8%	111%

NOx Emissions (tpy)

	Compressor			CBM Pump	Area Source	Point Source	
	Engines	Drill Rigs	Wellhead	Engines	Total	Total	Total
WRAP Total	166,009	27,082	84,932	1,348	279,370	126,536	405,907

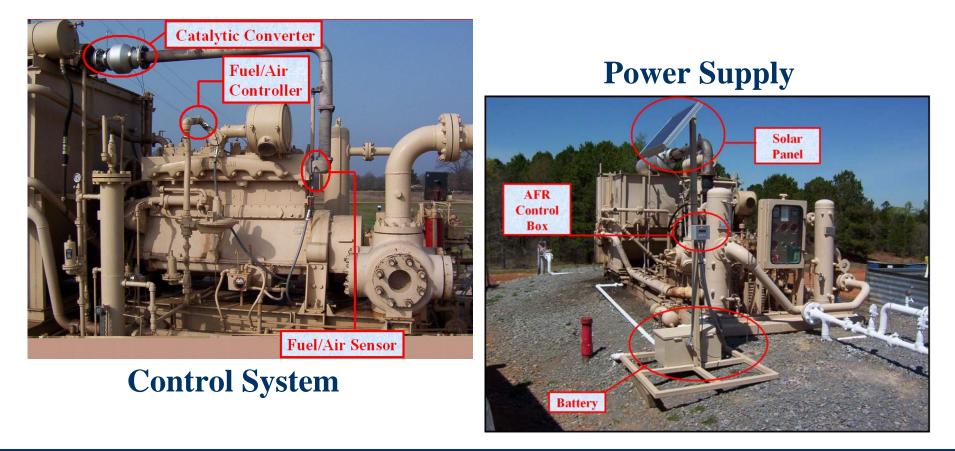
Change in NOx Emissions, 2002 to 2018

	WRAP Total	Compressor Engines 203%	Drill Rigs 26%	Wellhead 98%	Engines	Total	Point Source Total -30%	Total 30%	
Backgr	round	2002 Inven Methodolo	-		Inventory odology		and Gas ntrols		tional jects

Controls Included in WRAP Inventory

Process	Control	2002	Post 2002
Compressors	emission limits of 1-2 g/bhp-hr	Wyoming, Utah	Federal emission standards, Colorado*
Drill rigs			Federal emission standards
Pump Engines	emission limits on gas engines of 1-2 g/bhp-hr	Wyoming	Federal emission standards
	use line power	Montana, Utah	
Condensate Tanks	control with 98% efficiency using combustion, vapor recovery, etc	Montana, North Dakota, Wyoming	Colorado*
Glycol Dehydrators	control with 90% efficiency		Colorado*
Completion: Flaring & Venting	control with flare or vapor recovery (50 – 90% effective)	All states	

*Will apply only in nonattainment areas


Background

2018 Inventory Methodology Oil and Gas Controls

Additional Control Information

- Controls under development
 - Montana, proposed 25 tpy site cap
 - Utah, reporting and control requirements
 - Wyoming considering drill rig requirements
- EPA Natural Gas Star Program
 - Industry developed strategies to control emissions from many oil and gas processes
 - http://www.epa.gov/gasstar/index.htm
- Northeast Texas compressor control demonstration

Compressor Engine Control Option System Design

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Cost Effectiveness

Emissions Reductions Achieved

Engine	70640	74236	70024	75558	72386
Before (g NOx/hp-hr)	11.6	13.0	13.3	12.7	12.4
After (g NOx/hp-hr)	0.3	0.5	0.5	0.4	0.5
NOx Control Efficiency	97%	96%	96%	97%	96%

- Annual emission reduction = 12.3 tons NOx
- Annualized costs = \$2,250
- \$2,250 / 12.3 tons NOx = **\$183 / ton NOx***

*Assumes 3%	discount	rate and	five year	· project life
-------------	----------	----------	-----------	----------------

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Additional Projects

- Northwest New Mexico area source inventory
 - Cover additional processes
 - Obtain improved activity data and emission factors
 - Estimate SO2 emissions from additional sources
- Upcoming four corners PSD increment analysis expected to establish historical inventories

Background

2002 Inventory Methodology 2018 Inventory Methodology Oil and Gas Controls

Additional Information

- WRAP oil and gas inventory documentation: http://www.wrapair.org/forums/ssjf/documents/eictts/oilgas.html
- WRAP emissions database: http://www.wrapedms.org
- Contacts: jrussell@environcorp.com or apollack@environcorp.com

Background