Featured Research

from universities, journals, and other organizations

A 'Star Wars' laser bullet -- this is what it really looks like

Date:
October 22, 2014
Source:
Institute of Physical Chemistry of the Polish Academy of Sciences
Summary:
Action-packed science-fiction movies often feature colourful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings?

A light pulse fired from a 10 TW laser, dispersing into water vapor. The blue glow is laser light. The source of the other colors is mainly plasma fiber (filament) arising as a result of ionized matter, located in the air in the path of the light pulse. The laser with parametric amplifier NOPCPA was designed and constructed at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the Faculty of Physics at the University of Warsaw.
Credit: IPC PAS

Action-packed science-fiction movies often feature colourful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? The answers lie in a film made at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences in cooperation with the Faculty of Physics at the University of Warsaw.

Tests of a new compact high-power laser have given researchers at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the Faculty of Physics, University of Warsaw (IPC PAS and FUW) the opportunity to film the passage of an ultrashort laser pulse through the air. The film shows the journey of a light projectile at an extremely slow rate, similar to that watched on cinema screens by science-fiction aficionados.

"If you wanted to film a single light impulse to move as slowly on film as in our recording, you would have to use a camera operating at a speed of a billion frames per second," says Dr. Yuriy Stepanenko, leading the team responsible for the construction of the laser.

Cameras recording billions of frames per second in one sequence do not exist. In order to film the travelling laser pulse, researchers from the Laser Centre of IPC PAS and FUW used an earlier known trick. A suitably adapted camera was synchronised with a laser generating laser pulses at a rate of approx. 10 shots per second. It was done in such a way that with every subsequent pulse the camera recorded an image minimally delayed than previous one.

"In fact, a different laser pulse can be seen in every frame of our film," explains Dr. Paweł Wnuk, (LC of IPC PAS and FUW) and adds: "Luckily, the physics always stays the same. So, on the film one can observe all the effects associated with the movement of the laser pulse in space, in particular, the changes in ambient light depending on the position of the pulse and the formation of flares on the walls when the light passes through the dispersing cloud of condensed water vapour."

The laser pulse, lasting a dozen or so femtoseconds (millionths of a billionth of a second), was generated by a laser constructed at the Laser Centre of IPC PAS and FUW. It was so powerful that it almost immediately ionised the atoms it encountered. As a result, a plasma fibre -- filament -- was formed alongside the pulse. By appropriately selecting the operating parameters of the laser, to permit a balance of the complex interactions between the pulse's electromagnetic field and the plasma filament, the laser light beam did not disperse in the air, conversely, it underwent self-focusing. This meant that the pulse could effectively move a much greater distance than low-power pulses, whilst maintaining its original parameters.

"It is worth noting that although the light we are shooting from the laser is in the near infrared range, a laser beam like this travelling through the air changes colour to white. This happens since the interaction of the pulse with the plasma generates light of many different wavelengths. Received simultaneously, these waves give the impression of white," adds Dr. Stepanenko.

The ability of the light pulses from the new laser to penetrate the atmosphere over long distances is a feature that the Warsaw researchers made use of when demonstrating LIDAR, a device that can be used for the remote testing of atmospheric pollution. The fact that the pulses generate white light during passage is an important advantage in this context. Light at different wavelengths interacting with the atoms and molecules in the air is able to provide a far greater wealth of information. This means that LIDAR constructed using the new laser will be able to detect a larger number of elements and compounds polluting the atmosphere.

Photos and films of the ballistic laser pulse and plasma filaments were shot during testing of the compact laser generating femtosecond pulses with a power of over 10 terawatts, constructed at the Laser Centre of IPC PAS and FUW. The innovative device uses the direct transfer of energy from the pump laser beam to the reinforced beam. Due to the effects of nonlinear optics the light is amplified hundreds of millions of times on a distance of just a few centimetres with over 30% efficiency, which is outstanding among devices of this class. The multi-pass optical parametric amplifier NOPCPA (Noncollinear Optical Parametric Chirped Pulse Amplifier) used in the laser was designed in-house and Prof. Czesław Radzewicz and his team have been developing it in the Laser Centre of IPC and FUW since 2005.


Story Source:

The above story is based on materials provided by Institute of Physical Chemistry of the Polish Academy of Sciences. Note: Materials may be edited for content and length.


Cite This Page:

Institute of Physical Chemistry of the Polish Academy of Sciences. "A 'Star Wars' laser bullet -- this is what it really looks like." ScienceDaily. ScienceDaily, 22 October 2014. <www.sciencedaily.com/releases/2014/10/141022103556.htm>.
Institute of Physical Chemistry of the Polish Academy of Sciences. (2014, October 22). A 'Star Wars' laser bullet -- this is what it really looks like. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/10/141022103556.htm
Institute of Physical Chemistry of the Polish Academy of Sciences. "A 'Star Wars' laser bullet -- this is what it really looks like." ScienceDaily. www.sciencedaily.com/releases/2014/10/141022103556.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins