

THE MARCELLUS SHALE

Powering America's Future, Thanks to Hydraulic Fracturing

Travis Windle travis@energyindepth.org 202-346-8866

October 14, 2010

Background on Energy In Depth

- Created in late 2008 by the Independent Petroleum Assn. of America (IPAA)
- Based in Washington, D.C.
- Coalition of more than 40 state associations
- Full-scale communications and outreach effort
 - focused in particular on unconventional oil and natural gas

Hydraulic Fracturing

- ✓ For more than 60 Years, 1.1 Million Wells Hydraulically Fractured, 27 States
- ✓ 90 Percent of Oil and Natural Gas Wells Use HF Stimulation Technology
- ✓ All Additives Used in Process Fully Disclosed, Available via DEP
- ✓ What's in Fracturing Fluids?
 - More than 99.5 percent water and sand
 - Other 0.05 percent consists of other commonly used additives
- ✓ Steel and Cement Casing Protect Drinking Water/Ecosystems
 - □ 25 PA Code Chapter 78 recently upgraded to reflect best practices in well casing

What State Regulators Say About Hydraulic Fracturing

OHIO: "After 25 years of investigating citizen complaints of contamination, [our] geologists have not documented a single incident involving contamination of ground water attributed to hydraulic fracturing." (Scott Kell, deputy chief of Ohio DNR, 5/27/09)

PENNSYLVANIA: "There has never been any evidence of fracking ever causing direct contamination of fresh groundwater in Pennsylvania or anywhere else." (PA DEP's Scott Perry, Scranton Times-Tribune, 4/2/10)

ALABAMA: "I can state with authority that there have been no documented cases of drinking water contamination caused by such hydraulic fracturing operations in our state." (Barry H. "Nick" Tew, Jr., Oil & Gas supervisor for Alabama, 5/27/09)

What is Hydraulic Fracturing?

- This technology has been in commercial use since 1949. It's been used more than 1.1 million times nationwide, and has never impacted groundwater
- The use of fluids made up of more than 99.5% water and sand – to create a crack by hydraulic pressure
- The continued injection of fluids into the created crack ("fracture") to make it grow larger
- The placement of small granular sands into the crack to insure the crack remains open after the hydraulic pressure is no longer being applied

Why Frac a Well?

- Increase the rate at which the well is capable of producing oil or natural gas
- "Unconventional formations" and plays -- such as the Marcellus (PA), Barnett (TX), Bakken (ND), the Haynesville (LA), and the Fayetteville (AR) -require hydraulic fracturing to be economic

Disclosure

Drilling for Natural Gas in the Marcellus Shale Formation Frequently Asked Questions

Can drilling companies keep the names of chemicals used at drilling sites a secret?

No. Drilling companies must disclose the names of all chemicals to be stored and used at a drilling site ... as part of the permit application process. These plans contain copies of material safety data sheets for all chemicals ... This information is on file with DEP and is available to landowners, local governments and emergency responders.

Source: Marcellus FAQ fact sheet, PA DEP; accessed on 4/20/10

Chemicals Used by Hydraulic Fracturing Companies in Pennsylvania For Surface and Hydraulic Fracturing Activities

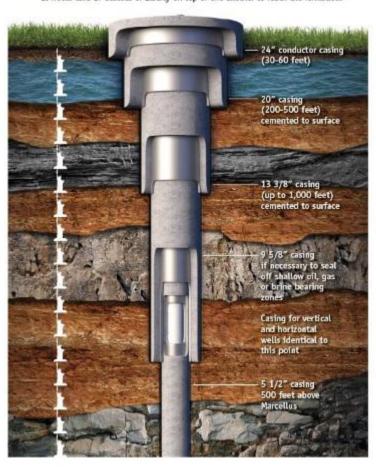
Prepared by the Department of Environmental Protection

Bureau of Oil and Gas Management

Compile

ndustry

1,2,4-Trimethylbenzene	Glycol Ethers (includes 2BE)	
1,3,5 Trimethylbenzene	Guar gum	
2,2-Dibromo-3-Nitrilopropionamide	Hemicellulase Enzyme	
2.2-Dibromo-3-Nitrilopropionamide	Hydrochloric Acid	
2-butoxyethanol	Hydrotreated light distillate	
2-Ethylhexanol	Hydrotreated Light Distilled	
2-methyl-4-isothiazolin-3-one	Iron Oxide	
5-chloro-2-methyl-4-isothiazotin-3-one	Isopropanol	
Acetic Acid	Isopropyl Alcohol	
Acetic Anhydride	Kerosine	
Acie Pensurf	Magnesium Nitrate	
Alchohol Ethoxylated	Mesh Sand (Crystalline Silica)	
Alphatic Acid	Methanol	
Alphatic Alcohol Polyglycol Ether	Mineral Spirits	
Aluminum Oxide	Monoethanolamine	
Ammonia Bifluoride	Naphthalene	
Ammonia Bisulfite	Nitrilotriacetamide	
Ammonium chloride	Oil Mist	
Ammonium Salt	Petroleum Distallate Blend	
Ammonia Persulfate	Petroleum Distillates	
Aromatic Hydrocarbon	Petroleum Naphtha	
Aromatic Ketones	Polyethoxylated Alkanol (1)	
Boric Acid	Polyethoxylated Alkanol (2)	
Boric Oxide	Polyethylene Glycol Mixture	
Butan-1-01	Polysaccharide	
Citric Acid	Potassium Carbonate	
Crystalline Silica: Cristobalite	Potassium Chloride	
Crystalline Silica: Quartz	Potassium Hydroxide	
Dazomet	Prop-2-yn-1-01	
Diatomaceus Earth	Propan-2-01	
Diesel (use discontinued)	Propargyl Alcohol	
Diethylbenzene	Propylene	
Doclecylbenzene Sulfonic Acid	Sodium Ash	
E B Butyl Cellosolve	Sodium Bicarbonate	
Ethane-1,2-diol	Sodium Chloride	
Ethoxlated Alcohol	Sodium Hydroxide	
Ethoxylated Alcohol	Sucrose	
Ethoxylated Octylphenol	Tetramethylammonium Chloride	
Ethylbenzene	Titaniaum Oxide	
Ethylene Glycol	Toluene	
Ethylhexanol	Xylene	
Ferrous Sulfate Heptahydrate		
Formaldehyde		
Glutaraldehyde		



Typical Well – Production Casing

General Casing Design for a Marcellus Shale Well

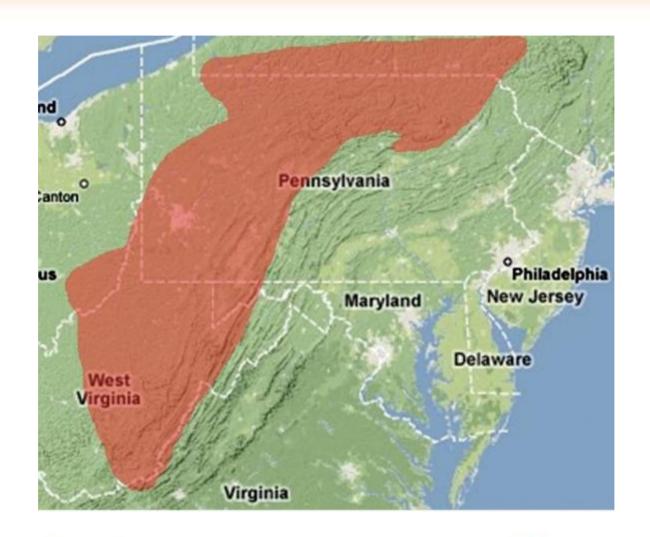
The Marcellus Shale is more than a mile below the Earth's surface.

It would take 17 Statues of Liberty on top of one another to reach the formation.

Purpose

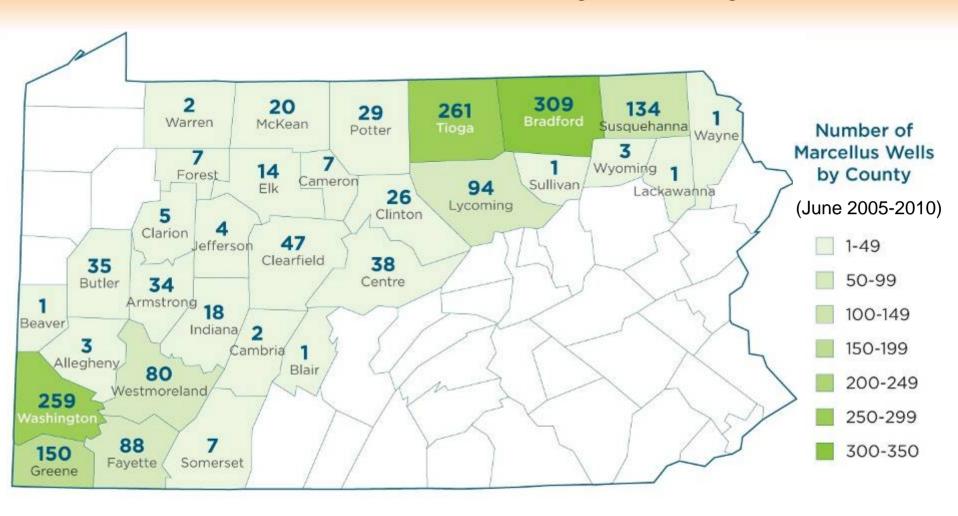
- Provide zonal isolation
- Provide well control
- Well path to productive intervals

Cement Requirements


- Set by State regulations
- Set by BLM regulations
- Operator requirements

Cement

- Protects casing from corrosion
- Provides zonal isolation
- Completion and production
- Support casing in wellbore


Marcellus Map

How the Marcellus compares to the largest oil and gas fields in the world Marcellus reserves could exceed those of the largest oil field in the world (Saudi Arabia) and (Bubble size approximates reserves) be the 2nd largest natural gas field (largest in Qatar/Iran) - Largest Natural Gas Fields - Largest Oil Fields - Marcellus Shale

PA Marcellus Wells Drilled by County

Total: 1,681 Marcellus Wells

PA Economic Impact -- 2010 and Beyond

	2009	2010	2020
Economic Value Added: State/Local Taxes:	\$3.87 billion	\$8.04 billion	\$18.85 billion
	\$ 389 million	\$785 million	\$1.87 billion
Cumulative Employment: Wells Drilled: Output (bcfe/day):	44,098	88,588	211,909
	710	1,743	3,587
	0.3	1.0	13.5
			And the state of t

PA Economic Impact -- Continued

Other Key Report Findings

- In 2008 alone, natural gas companies paid more than
 \$1.8 billion in lease and bonus payments to
 Pennsylvania landowners
- 2020 output levels are seven times the amount of current PA consumption
- •At full development, the Marcellus would be the second largest natural gas field in the world, proving an energy equivalent to 87 billion barrels of oil
- Only one state (Texas) is projected to produce more natural gas than PA by 2020

The Marcellus Multiplier

SITE CONSTRUCTION & PREPARATION

PRODUCTION & SITE COMPLETION

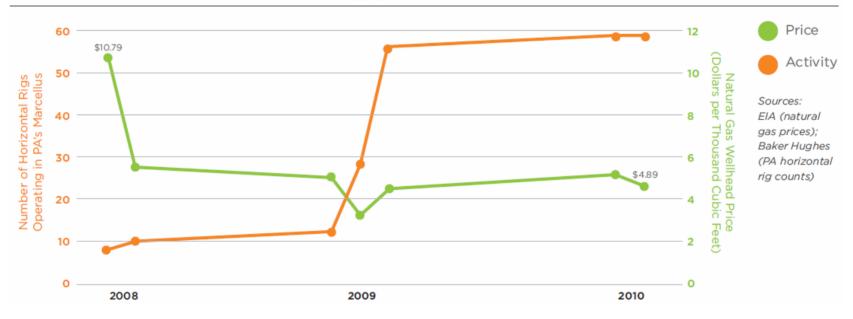
WELL PRODUCTION

PIPING

FAST FACTS

- \$4 million is invested in producing each well
- At 3K/yr., PA can expect to see \$12 billion invested in well site operations alone
- Each mile of Marcellus pipeline represents at least \$1 million investment into PA's economy

TRANSPORTATION & LOGISTICS


WATER MANAGEMENT

Consumer, Community Benefits

Marcellus Shale: More Activity Means More Supply, Which Translates Into Affordable, Stable Natural Gas Prices

- ✓ More Production = Stable Prices
- ✓ New PA Jobs: 44,000 in 2009, 212,000 by 2020
- ✓ PA becoming natural gas independent
- √ \$1.8 Billion to Landowners in 2010
- Cleaner-burning fuel improves air quality
- ✓ Small/Family Business Revitalization

Questions? Comments? Suggestions?

Travis Windle travis@energyindepth.org

EnergyInDepth.org

