Water Resources Data Wisconsin Water Year 2003 Water-Data Report WI-03-1 ## **CALENDAR FOR WATER YEAR 2003** ## 2002 | | | OC | тові | ER | | | | | NO | VEMI | BER | | | | | DE | СЕМ | BER | | | |----|----|----|-------|----|----|----|----|----|-----|------|-----|----|----|----|----|-----|------|-----|----|----| | S | M | T | W | Τ | F | S | S | М | Τ | W | Τ | F | S | S | М | Т | W | Т | F | S | | | | 1 | 2 | 3 | 4 | 5 | | | | | | 1 | 2 | 1 | 2 | 3 | 4 | 5 | 7 | 7 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | | 10 | 11 | 12 | 13 | 14 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | 27 | 28 | 29 | 30 | 31 | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 29 | 30 | 31 | 2003 | 3 | | | | | | | | | | | | | JA | NUA | RY | | | | | FEI | BRUA | RY | | | | | N | /ARC | Н | | | | S | M | T | W | T | F | S | S | М | T | W | T | F | S | S | М | Т | W | Τ | F | S | | | | | 1 | 2 | 3 | 4 | | | | | | | 1 | | | | | | | 1 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 26 | 27 | 28 | 29 | 30 | 31 | | 23 | 24 | 25 | 26 | 27 | 28 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | | | | | | | | | | | | | | | 30 | 31 | | | | | | | | | ļ | APRIL | - | | | | | I | MAY | | | | | | J | UNE | | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | М | T | W | T | F | S | | | | 1 | 2 | 3 | 4 | 5 | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | 27 | 28 | 29 | 30 | | | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 29 | 30 | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | JULY | | | | | | | JGUS | | | | | | SEP | | | | | | S | M | T | W | Τ | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | 1 | 2 | 3 | 4 | 5 | | | | | | 1 | 2 | | 1 | 2 | 3 | 4 | 5 | 6 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | 27 | 28 | 29 | 30 | 31 | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 28 | 29 | 30 | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | ## **Conversion Factors** | Multiply | Ву | To obtain | |--|---|---| | | Length | | | in als (in) | 2.54×10^{1} | :11: | | inch (in.) | 2.54×10^{-2} | millimeter (mm) | | £4 (£4) | 2.34×10^{-1} 3.048×10^{-1} | meter | | foot (ft) | 3.048x10 ⁻¹
1.609x10 ⁰ | meter (m) | | mile (mi) | 1.609X10° | kilometer (km) | | | Area | | | acre | 4.047×10^3 | square meter (m ²) | | | 4.047×10^{-1} | square hectometer (hm ²) | | | 4.047×10^{-3} | square kilometer (km²) | | square mile (mi ²) | 2.590×10^{0} | square kilometer (km ²) | | | Volume | | | | Volumo | | | gallon (gal) | 3.785×10^{0} | liter (L) | | | 3.785×10^{-3} | cubic meter (m ³) | | | 3.785×10^{0} | cubic decimeter (dm ³) | | million gallons (Mgal) | 3.785×10^3 | cubic meter (m ³) | | | 3.785×10^{-3} | cubic hectometer (hm ³) | | cubic foot (ft ³) | 2.832x10 ⁻² | cubic meter (m ³) | | | 2.832×10^{1} | cubic decimeter (dm ³) | | cubic-foot-per-second-per-day | | | | $[(ft^3/s/d]$ | 2.447×10^3 | cubic meter (m ³) | | | 2.447×10^{-3} | cubic hectometer (hm ³) | | acre-foot (acre-ft) | 1.223×10^3 | cubic meter (m ³) | | | 1.223×10^{-3} | cubic hectometer (hm ³) | | | 1.223x10 ⁻⁶ | cubic kilometer (km ³) | | | Flow rate | | | aubia faat par sagand (ft ³ /a) | 2.832×10^{1} | litar (I /a) | | cubic foot per second (ft ³ /s) | 2.832×10^{-2} 2.832×10^{-2} | liter (L/s)
cubic meter per second (m ³ /s) | | | 2.832×10^{1} 2.832×10^{1} | cubic decimeter per second (dm ³ /s) | | | 6.309×10^{-2} | | | gallon per minute (gal/min) | 6.309×10^{-5} | liter per second (L/s) | | | 6.309×10^{-2} | cubic meter per second (m ³ /s) | | :II: | 6.309×10^{-2} 4.381×10^{-2} | cubic decimeter per second (dm ³ /s)
cubic meter per second | | million gallons per day (Mgal/d) | 4.381×10^{-1} 4.381×10^{1} | cubic decimeter per second (dm ³ /s) | | | | • | | | Mass | | | ton, short (2,000 lb) | 9.072x10 ⁻¹ | megagram (Mg) or metric ton | Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: ## U. S. DEPARTMENT OF THE INTERIOR GALE A NORTON, Secretary ## U. S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director #### Prepared in cooperation with Bad River Band of Lake Superior Chippewa Indians Bayfield County Black River Falls Municipal Utilities City of Barron City of Beaver Dam City of Delafield City of Fond du Lac City of Hillsboro City of Madison City of Middleton City of Muskego City of Peshtigo City of Sparta City of Thorp City of Waupun Dane County Department of Agriculture, Trade and Consumer Protection Federal Energy Regulatory Commission Licensees Fontana/Walworth Water Pollution Control Commission Geneva Lake Environmental Agency Green Bay Metropolitan Sewerage District Green Lake Sanitary District Illinois Department of Transportation Kickapoo Valley Reserve Lac Courte Oreilles Tribe Lac du Flambeau Band of Lake Superior Chippewa Little Muskego Lake District Little St. Germain Lake District Madison Metropolitan Sewerage District Menominee Indian Tribe of Wisconsin Milwaukee County Oneida Indian Tribe of Wisconsin Price County Rock County Public Works Department Sokaogon Chippewa Community, Mole Lake Bank Southeastern Wisconsin Regional Planning Commission Stockbridge/Munsee Indian Tribe The University of Wisconsin-Extension, Geological and Natural History Survey Town of Delavan U.S. Army Corps of Engineers U.S. Department of Agriculture - Dairy Forage Research Center Village of Wittenberg Walworth County Metropolitan Sewerage District Wisconsin Department of Natural Resources Wisconsin Department of Transportation Wisconsin Historical Society, Wade House Historic Site For additional information write to: District Chief, Water Resources Division U.S. Geological Survey 8505 Research Way Middleton, Wisconsin 53562 #### **PREFACE** This volume of the annual hydrologic data report of Wisconsin is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report is the culmination of a concerted effort by a number of people who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Most of the data were collected, computed and processed from area field offices. Technicians-in-charge of the field offices are: Thomas J. Popowski, Rice Lake, northwest Jeffrey J. Hanig, Merrill, northeast Josef Habale, Middleton, southwest The data were collected, computed, and processed by the following personnel: | S. R. Corsi | P.R. Homant | S. A. March | J. G. Schuler | |---------------|--------------|----------------|-----------------| | B.M. Esser | D.E. Housner | P.C. Reneau | J.J. Steuer | | G. L. Goddard | R.T. Jirik | K. D. Richards | T.D. Stuntebeck | | D. J. Graczyk | K. R. Koenig | W. J. Rose | J. F. Walker | | H. L. Hanson | B. N. Lenz | T. D. Rutter | T. A. Wittwer | | T.L. Hanson | | | | Additional assistance in data processing and preparation of the report was provided by R. B. Bodoh, M. M. Greenwood, G. W. Gill, H. R. House. This report was prepared under the general supervision of Warren A. Gebert, District Chief; Herbert S. Garn, Supervisory Hydrologist; Peter E. Hughes, Supervisory Hydrologist; and James T. Krohelski, Supervisory Hydrologist. ## REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | | | * ' ' | · · · · · · · · · · · · · · · · · · · |
--|--|---|---| | 1. AGENCY USE ONLY (Leave blank) | ATES COVERED 02 to Sept. 30, 2003 | | | | 4. TITLE AND SUBTITLE | l e | 5 | . FUNDING NUMBERS | | Water Resources Data - Wisc | eonsin, Water year 2003 | | | | 6. AUTHOR(S) | | | | | R.J. Waschbusch, D.L. Olson | , B.R. Ellefson, and P.A. St | ark | | | 7. PERFORMING ORGANIZATION NAME | (S) AND ADDRESS(ES) | 8 | . PERFORMING ORGANIZATION | | U.S. Geological Survey | | | REPORT NUMBER | | Water Resources Division | | | USGS-WDR-WI-03-1 | | 8505 Research Way | | | | | Middleton, WI 53562 | | | | | 9. SPONSORING / MONITORING AGENC | Y NAME(S) AND ADDRESS(ES) | 1 | 0. SPONSORING / MONITORING
AGENCY REPORT NUMBER | | U.S. Geological Survey | | | | | Water Resources Division | | | USGS-WDR-WI-03-1 | | 8505 Research Way
Middleton, WI 53562 | | | | | Wilderton, WT 55502 | | | | | 11. SUPPLEMENTARY NOTES | | · | | | Prepared in cooperation with | the State of Wisconsin and | other agencies. | | | 12a. DISTRIBUTION / AVAILABILITY STA | TEMENT | 1 | 2b. DISTRIBUTION CODE | | | | | | | No restriction on distribution | | | | | Technical Information Service | e, Springfield, Virginia 221 | 161. | | | | | | | | 13. ABSTRACT (Maximum 200 words) | | | | | record stations, and miscellar characteristics of surface wa | neous sites, records of precipiter. In addition, water lev | pitation, and records of cherels in observation wells a | aflow at gaging stations, partial-
emical, biological, and physical
are reported. These data were
as and other Federal agencies in | | | | | | | 14. SUBJECT TERMS | #G C := | 1 | 15. NUMBER OF PAGES | | *Wisconsin, *Hydrologic dat | | <u> </u> | | | rate, Gaging stations, Lakes, | Chemicai analyses, Sedimei | ii, water ieveis | 16. PRICE CODE Unclassified | | 17. SECURITY CLASSIFICATION OF REPORT | 18. SECURITY CLASSIFICATION
OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | | | i | | i | | ### CONTENTS | | Pag | |---|-----| | Preface | III | | Illustrations | | | Surface-water stations, in downstream order, for which records are published in this volume | VII | | Ground-water wells, by county, for which records are published in this volume | XII | | Discontinued surface-water discharge stations | XIV | | Discontinued surface-water-quality stations | XIX | | Introduction | 1 | | Cooperation | 1 | | Summary of hydrologic conditions | 2 | | Streamflow | 2 | | Water quality | 7 | | Ground-water levels | 7 | | Special networks and programs | 7 | | Explanation of the records | 8 | | Station identification numbers | 8 | | Downstream order and station number | 8 | | Numbering system for ground-water, lake, and precipitation data sites | 8 | | Records of stage and water discharge | 8 | | Data collection and computation | 9 | | Data presentation | 9 | | Station manuscripts | 9 | | Data table of daily mean values | 10 | | Statistics of monthly mean data | 10 | | Summary statistics | 10 | | Identifying estimated daily discharge | 11 | | Accuracy of the records | 11 | | Other records available | 12 | | Records of surface-water quality | 12 | | Classification and arrangement of records | 12 | | On-site measurements and sample collection | 12 | | Transport of suspended and dissolved materials | 12 | | Laboratory measurements | 13 | | Dissolved trace-element concentrations | 13 | | Sampling methods codes | 13 | | Collecting and analyzing agencies | 13 | | Data presentation | 14 | | Remark codes | 14 | | Records of ground-water levels | | | Data collection and computation | 15 | | Data presentation | 15 | | Access to U.S. Geological Survey water data | | | Definition of terms | | | Techniques of water-resources investigations of the U.S. Geological Survey | | | Surface-water records | | | Gaging station records | | ## Page Water-quality analyses at miscellaneous sites 439 Ground-water levels 531 **ILLUSTRATIONS** Figure 1. 2003 runoff as percent of long-term average runoff 2. Comparison of annual discharge at representative gaging stations to their long-term average discharge for water years 1916-03..... 3. Comparison of discharge at representative gaging stations during 2003 water year with discharge for 1916-03..... **CONTENTS** [Letters after station names designate type of data: (c) chemical, (d) discharge, (g) gage height, (m) microbiological, (pr) precipitation, (r) radiochemical, (sd) secchi-depth, (s) sediment, (t) water temperature] | | Station
Number | Page | |--|-------------------|------| | LAWRENCE RIVER BASIN | | | | STREAMS TRIBUTARY TO LAKE SUPERIOR | | | | Lake Superior basin location map | | 36 | | Nemadji River near South Superior (d) | | 37 | | Bois Brule River at Brule (d) | | 38 | | Whittlesey Creek near Ashland (d) | | 39 | | Bois Brule: | | | | North Fish Creek ner Moquah (d) | 040263491 | 40 | | Bad River near Odanah (d) | | 4 | | White River near Ashland (d) | | 43 | | Montreal River at Saxon Falls near Saxon (d) | | 44 | | Middle Branch Ontonagon River: | | | | West Branch Ontonagon River: | | | | Cisco Branch Ontonagon River at Cisco Lake Outlet, MI (d) | 04037500 | 45 | | STREAMS TRIBUTARY TO LAKE MICHIGAN | | | | Menominee-Oconto-Peshtigo River basin location map | | 46 | | Brule River near Florence (d) | | 47 | | Brule River near Commonwealth (d) | | 48 | | Menominee River at Twin Falls near Iron Mountain, MI (d) | | 49 | | Pine River: | 0 1003300 | •- | | Popple River near Fence (c,d,s,t) | 04063700 | 5(| | Pine River near Florence (d) | | 57 | | Menominee River at Niagara (d) | | 58 | | Menominee River near Vulcan, MI (d) | | 59 | | Menominee River below Pemene Creek near Pembine (d) | | 60 | | Menominee River near Banat, MI (d) | | 6. | | Pike River at Amberg (d) | | 62 | | Menominee River at Koss, MI (d) | | 64 | | Menominee River near McAllister (d) | | 65 | | Peshtigo River near Wabeno (d) | | 67 | | Peshtigo River at Porterfield (d). | | 68 | | Peshtigo River at Peshtigo (d) | | 69 | | Oconto River near Gillett (d) | | 70 | | Oconto River near Oconto (d) | | 7. | | Duck Creek near Howard (c,d,t) | | 72 | | Fox-Wolf River basin location map | | 7 | | Fox River at Princeton (d) | | 78 | | Puchyan River: | 0 1073303 | , , | | White Creek at Spring Grove Road near Green Lake (c,d,s) | 04073462 | 79 | | Green Lake Inlet at County Trunk Highway A near Green Lake (c,d,s) | | 83 | | Puchyan River downstream North Lawson Drive near Green Lake (d) | | 87 | | Fox River at Berlin (d) | | 88 | | Wolf River: | 0 1073300 | 00 | | Swamp Creek, above Rice Lake, at Mole Lake (d) | 04074538 | 89 | | Swamp Creek, below Rice Lake, at Mole Lake (d) | | 9(| | Wolf River at Langlade (d) | | 9: | | Evergreen River near Langlade (d) | | 92 | | Evergreen Kiver near Langrade (u) | | 9. | | Ped Piver at Morgan Poad near Morgan (d) | | 9 | | Red River at Morgan Road near Morgan (d) | | 94 | [Letters after station names designate type of data: (c) chemical, (d) discharge, (g) gage height, (m) microbiological, (pr) precipitation, (r) radiochemical, (sd) secchi-depth), (s) sediment, (t) water temperature] | | Station | | |--|------------|----------| | | Number | Page | | Wolf River at New London (d) | 04070000 | 98 | | Fox River at Oshkosh (d) | | 98
99 | | | | | | Lake Winnebago at Oshkosh (g) | | 100 | | Lake Winnebago near Stockbridge (g) | | 101 | | Fox River at Appleton (d) | | 102 | | Fox River at Rapide Croche Dam, near Wrightstown (d) | | 103 | | Fox River, Oil Tank Depot, at Green Bay (d) | | 104 | | Lake Michigan basin location map | | 105 | | Kewaunee River near Kewaunee (d) | | 106 | | South Branch Manitowoc River (head of Manitowoc River) at Hayton (d) | | 108 | | Manitowoc River at Manitowoc (d) | 04085427 | 109 | | Sheboygan River: | | | | Mullet River at Greenbush (c,d,t) | | 110 | | Sheboygan River at Sheboygan (d) | 04086000 | 115 | | Milwaukee River: | | | | Cedar Creek near Cedarburg (d) | 04086500 | 117 | | Milwaukee River near Cedarburg (d) | 04086600 | 118 | | Lincoln Creek at Milwaukee c,d,t) | 040869416 | 119 | | Milwaukee River at Milwaukee (c,d,s,t) | 04087000 | 122 | | Menomonee River at Menomonee Falls (d) | | 132 | | Underwood Creek at Wauwatosa (d) | | 133 | | Menomonee River at Wauwatosa (d) | | 135 | | Kinnickinnic River: | | | | Wilson Park Creek at GMIA Infall at Milwaukee (c,d,t) | 040871473 | 136 | | Wilson Park Creek at GMIA Outfall #7 at Milwaukee (c,t) | | 140 | | Holmes Creek: | | | | Holmes Avenue Creek Tributary at GMIA Outfall 1 at Milwaukee (c,d,t) | 040871476 | 145 | | Wilson Park Creek at St. Lukes Hospital at Milwaukee (c,d,t) | | 149 | | Kinnickinnic River at South 11th Street at Milwaukee (d) | | 156 | | Milwaukee River at Mouth at Milwaukee (d) | | 157 | | Oak Creek at South Milwaukee (d) | | 159 | | Root River near Franklin (d) | | 160 | | Root River Canal near Franklin (d) | | 162 | | Root River at Racine (d) | | 163 | | Pike River near Racine (d) | | 164 | | UPPER MISSISSIPPI RIVER BASIN | 04087237 | 104 | | | | | | ST. CROIX RIVER BASIN | | 166 | | St. Croix River Basin location map | | 166 | | St. Croix River: | 0.5333.500 | 4.65 | | Namekagon River near Trego (d) | | 167 | | St. Croix River near Danbury (d,t) | | 168 | | St. Croix River at St. Croix Falls (c,d,t) | | 172 | | Apple River near Somerset (d). | | 175 | | Kinnickinnic River near River Falls (d) | 05342000 | 176 | | CHIPPEWA RIVER BASIN | | | | Chippewa River basin location map | | 177 | | Chippewa River at Bishops Bridge, near Winter (d) | 05356000 | 178 | | Couderay River: | | | |
Grindstone Creek at County Trunk Highway E near Reserve (d) | 05356078 | 179 | | | | | [Letters after station names designate type of data: (c) chemical, (d) discharge, (g) gage height, (m) microbiological, (pr) precipitation, (r) radiochemical, (sd) secchi-depth, (s) sediment, (t) water temperature] | | Station | | |--|-----------------|------| | | Number | Page | | Chippewa River near Bruce (d) | 05356500 | 180 | | Manitowish River (head of Flambeau River): | | | | Allequash Creek at CTH M near Boulder Junction (d) | 05357215 | 181 | | Stevenson Creek at County Trunk Highway M near Boulder Junction (d) | | 182 | | Trout River at Trout Lake near Boulder Junction (d) | | 183 | | Trout River at CTH H near Boulder Junction (d) | | 184 | | Bear River near Manitowish Waters (d) | | 185 | | Flambeau River: | | | | Butternut Creek at Cutoff Road near Butternut (c,d) | 05358170 | 186 | | Spiller Creek at County Highway B near Butternut (c,d) | | 189 | | Butternut Creek at County Highway B near Park Falls (c,d) | | 192 | | Flambeau River near Bruce (d) | | 195 | | Jump River at Sheldon (d). | | 196 | | Chippewa River at Chippewa Falls (d) | | 198 | | Eau Claire River: | | 170 | | North Fork Eau Claire River near Thorp (d) | 05365707 | 199 | | Red Cedar River: | | 1// | | Yellow River at Barron (d,t) | 053674464 | 200 | | Hay River at Wheeler (d) | | 200 | | Red Cedar River at Menomonie (d) | | 203 | | · · · | | 204 | | Chippewa River at Durand (d) | | 203 | | Eau Galle River near Woodville (d) | | 208 | | Eau Galle River at Spring Valley (d) | | 208 | | Trempealeau-Black River basin location map | | 210 | | Waumandee Creek: | | | | Eagle Creek Rain Gage E3-1006, Losinski Farm, near Fountain City (pr) | 441459091392800 | 211 | | Eagle Creek Rain Gage E2-1005, Schaffner Farm, near Fountain City (pr) | | 212 | | Joos Valley Creek Rain Gage J3-1003, Hansen Farm, near Arcadia (pr) | | 213 | | Joos Valley Creek Rain Gage J2-1002, Slaby Farm, near Fountain City (pr) | | 214 | | Joos Valley Creek near Fountain City (c,d,pr,s) | | 215 | | Eagle Creek at County Highway G near Fountain City (c,d,pr,s) | | 221 | | ssissippi River at Winona, MN (d) | | 228 | | Trempealeau River: | | 220 | | Traverse Valley Creek, North Tributary, near Independence (c,d,pr,s,t) | 053703305 | 230 | | Traverse Valley Creek, South Tributary, near Independence (c,d,pr,s,t) | | 236 | | Traverse Valley Creek, South Tributary, hear Independence (c,d,pr,s,t) | | 243 | | | | | | Traverse Valley Creek Tributary, Rain Gage #2, near Independence (pr) | | 244 | | Trempealeau River at Arcadia (d) | | 245 | | Trempealeau River at Dodge (d) | | 246 | | | 05201000 | 247 | | Black River at Neillsville (d) | | 247 | | Black River near Galesville (d) | 05382000 | 248 | | LA CROSSE RIVER BASIN | 05202225 | 2.40 | | La Crosse River at Sparta (d) | | 249 | | La Crosse River near La Crosse (d) | | 250 | | ssissippi River at McGregor, IA (c,d) | 05389500 | 251 | | WISCONSIN RIVER BASIN | | 250 | | Upper Wisconsin River basin location map | | 258 | [Letters after station names designate type of data: (c) chemical, (d) discharge, (g) gage height, (m) microbiological, (pr) precipitation, (r) radiochemical, (sd) secchi-depth), (s) sediment, (t) water temperature] | | Station | |--|--------------------| | Wisconsin River at Rainbow Lake, near Lake Tomahawk (d) | Number
05391000 | | Spirit River at Spirit Falls (d) | | | Central Wisconsin River basin location map | | | Prairie River near Merrill (d,t) | | | Wisconsin River at Merrill (d) | | | | | | Eau Claire River at Kelly (d) | | | Wisconsin River at Rothschild (d) | | | Big Eau Pleine River near Stratford (d) | | | Wisconsin River at Wisconsin Rapids (d) | | | Tenmile Creek near Nekoosa (d) | | | Yellow River at Babcock (d) | | | Wisconsin River near Wisconsin Dells (d) | | | Lower Wisconsin River basin location map | | | Baraboo River: | | | South Branch Baraboo River at Hillsboro (d) | | | Devils Lake near Baraboo (g,pr) | 05404500 | | Baraboo River near Baraboo (d) | 05405000 | | Lake Wisconsin Tributary #3 near Prairie du Sac (c,d,pr) | 05405855 | | Lake Wisconsin Tributary #2 near Prairie du Sac (c,d,pr) | 05405857 | | Lake Wisconsin Tributary #1 near Prairie du Sac (c,d,pr) | 05405859 | | Elvers Creek (head of Blue Mounds Creek): | | | Brewery Creek: | | | Black Earth Creek Tributary, at CTH KP, at Cross Plains (d,pr,t) | 054064775 | | Black Earth Creek Tributary at Cross Plains (d,pr,t) | | | Black Earth Creek at Black Earth (d) | | | Wisconsin River at Muscoda (d) | | | Fennimore Fork at Homer Road near Castle Rock (d) | | | Kickapoo River at Ontario (d) | | | Kickapoo River at La Farge (d) | | | Kickapoo River at Steuben (d) | | | ervoirs in the Wisconsin River basin. | | | GRANT RIVER BASIN | | | Grant-Platte River basin location map | | | Grant River at Burton (d,s) | | | PLATTE RIVER BASIN | 03413300 | | | 05414000 | | Platte River near Rockville (d) | 03414000 | | GALENA RIVER BASIN | 05414050 | | Galena River, U.W. Platteville Farms, near Platteville (d) | 05414850 | | ROCK RIVER BASIN | | | Pecatonica-Rock-Fox River basin location map | | | Rock River: | | | South Branch Rock River at Waupun (d) | | | Rock River at Horicon (d) | | | Rock River at Watertown (d) | 05425500 | | Crawfish River: | | | Beaverdam River at Beaver Dam (d) | 05425912 | | Crawfish River at Milford (d) | 05426000 | | Bark River at Nagawicka Road at Delafield (c,d,s) | 05426067 | | Bark River at Delafield (c,d,s) | | | Nagawicka Lake at Delafield (g,pr) | | | Bark River near Rome (d) | | [Letters after station names designate type of data: (c) chemical, (d) discharge, (g) gage height, (m) microbiological, (pr) precipitation, (r) radiochemical, (sd) secchi-depth, (s) sediment, (t) water temperature] | | Station | | |---|-----------------|------| | | Number | Page | | Rock River at Robert Street at Ft. Atkinson (d) | 05427085 | 328 | | Lake Koshkonong near Newville (g) | | 329 | | Rock River at Indianford (d) | | 330 | | Yahara River at Windsor (c,d,s) | | 331 | | Yahara River at State Highway 113 at Madison (c,d,s,t) | | 336 | | Pheasant Branch at Middleton (c,d,s) | | 342 | | Pheasant Branch Tributary at Middleton (d) | | 347 | | Spring Harbor Storm Sewer at Madison (c,d,s) | | 348 | | Lake Mendota at Madison (g) | | 352 | | Lake Monona at Madison (g) | | 353 | | Kroncke Drive Storm Sewer at Madison (d,pr) | | 354 | | Knox Lane Storm Sewer at Madison (d) | | 356 | | Piping Rock Road Storm Sewer at Madison (d,pr) | | 357 | | Yahara River at McFarland (d) | | 359 | | Badfish Creek near Cooksville (d) | | 360 | | Yahara River near Fulton (d) | | 361 | | Rock River at Afton (d) | | 362 | | Turtle Creek: | | | | Jackson Creek: | | | | Jackson Creek Tributary near Elkhorn (c,d,s) | 054310157 | 363 | | Jackson Creek at Mound Road near Elkhorn (c,d,pr,s,t). | | 368 | | Delavan Lake Inlet at State Highway 50 at Lake Lawn (c,d) | | 376 | | Delavan Lake at Center near Delavan Lake (c) | | 380 | | Delavan Lake at SW end near Delavan Lake (sd). | | 385 | | Delavan Lake at North end near Lake Lawn (sd) | | 385 | | Delavan Lake near Delavan (g) | | 386 | | Delavan Lake Outlet at Borg Road near Delavan (c,d) | | 387 | | Turtle Creek at Delavan (d) | | 390 | | Turtle Creek at Carvers Rock Road near Clinton (d) | | 391 | | Pecatonica River at Darlington (d) | | 392 | | East Branch Pecatonica River near Blanchardville (d) | | 393 | | Pecatonica River at Martintown (d) | 05434500 | 394 | | Sugar River: | | | | Badger Mill Creek at Verona (c,d,t) | 05435943 | 395 | | Sugar River near Brodhead (d) | | 400 | | Rock River at Rockton, IL (d) | | 401 | | Kishwaukee River: | | | | Piscasaw Creek near Walworth (d) | 05438283 | 403 | | <u>ILLINOIS RIVER BASIN</u> | | | | Kankakee River (head of Illinois River): | | | | Des Plaines River at Russell, IL (d) | 05527800 | 404 | | Fox River at Waukesha (d) | 05543830 | 405 | | Mukwonago River at Mukwonago (d) | 05544200 | 406 | | Jewel Creek at Muskego (c,d,s) | 05544371 | 407 | | Muskego (Big Muskego) Lake Outlet near Wind Lake (d) | | 411 | | White River: | | | | Geneva Lake at Lake Geneva (g) | 423525088260400 | 412 | | White River at Center Street at Lake Geneva (c,d) | | 413 | | Fox River near New Munster (d) | 05545750 | 416 | | | | | | | | Page | |--|--------------------------------|------| | ADAMS COUNTY
Well 435759089490001 | Local number AD-17/06E/08-0076 | 531 | | BROWN COUNTY
Well 443228088003101 | Local number BN-24/20E/24-0076 | 531 | | BURNETT COUNTY
Well 455224092215601 | Local number BT-39/16W/17-0002 | 532 | | DANE COUNTY
Well 430456089190601 | Local number DN-07/10E/09-0105 | 532 | | DODGE COUNTY
Well 432407088552701 | Local number DG-11/13E/23-0081 | 533 | | DOOR COUNTY
Well 451518087042601 | Local number DR-32/28E/15-0317 | 533 | | DOUGLAS COUNTY
Well 461921091484201 | Local number DS-44/12W/01-0327 | 533 | | GRANT COUNTY
Well 425551090391301 | Local number GR-05/02W/06-0005 | 534 | | GREEN COUNTY
Well 424427089494701 | Local number GN-03/06E/18-0002 | 543 | | IOWA COUNTY
Well 425644090101901 | Local number IW-06/03E/32-0032 | 535 | | JACKSON COUNTY
Well 441810090484001 | Local number JA-21/04W/13-0038 | 535 | | KENOSHA COUNTY
Well 423214087503801 | Local number KE-01/22E/13-0046 | 536 | | | Local number LF-01/02E/33-0057 | | | MANITOWOC COUNTY
Well 440430087420401 | Local number MN-19/23E/35-0028 | 538 | | MARATHON COUNTY
Well 444709089265301 | Local number MR-27/09E/31-0028 | 538 | | MARINETTE COUNTY
Well 453816087590101 | Local number MT-37/20E/34-0007 | 539 | | | Local number MQ-16/08E/12-0009 | | | MILWAUKEE COUNTY
Well 425613088014301 | Local number ML-06/21E/32-0148 | 541 | | | Local number MO-15/04W/34-0002 | | |
GROUND-WATER | R WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME | xiii | |--|--|------| | OCONTO COUNTY
Well 450819088263901 | Local number OC-31/16E/25-0179 | 542 | | ONEIDA COUNTY
Well 453720089215401 | Local number ON-36/09E/09-0024 | 543 | | POLK COUNTY
Well 452352092332001 | Local number PK-34/18W/26-0093 | 543 | | PORTAGE COUNTY
Well 442810089194501 | Local number PT-23/10E/18-0276 | 544 | | PRICE COUNTY
Well 453311090065301 | Local number PR-35/03E/04-0065 | 544 | | RACINE COUNTY
Well 424119088081801 | Local number RA-03/20E/28-0062 | 545 | | RICHLAND COUNTY
Well 431840090203201 | Local number RI-10/01E/26-0023 | 545 | | SAUK COUNTY
Well 432100089440001 | Local number SK-10/06E/02-0003 | 546 | | SAWYER COUNTY
Well 455841091235301 | Local number SW-40/08W/05-231 | 546 | | TAYLOR COUNTY
Well 450947090483902 | Local number TA-31/04W/13-0001 | 547 | | | Local number TR-19/08W/35-0001 | | | VILAS COUNTY
Well 455517089144001 | Local number VI-40/10E/28-0033 | 548 | | WALWORTH COUNTY
Well 423532088254601 | Local number WW-02/17E/36-0037 | 548 | | WAUKESHA COUNTY
Well 425535088131701 | Local number WK-05/19E/02-0031 | 549 | | WAUPACA COUNTY
Well 441545088522901 | Local number WP-21/13E/25-0002 | 549 | | WAUSHARA COUNTY
Well 440713089320801 | Local number WS-19/08E/15-0008 | 550 | | WINNEBAGO COUNTY
Well 440122088324601 | Local number WI-18/16E/23-0006 | 550 | The following continuous-record surface-water discharge stations in Wisconsin have been discontinued. Daily streamflow records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Some of the discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report. . | Station name | Station number | Drainage area (mi²) | Period of record | | | | | | |--|--------------------------|---------------------|--------------------|--|--|--|--|--| | STREAMS TRIBUTARY TO LAKE SUPERIOR | | | | | | | | | | Tower Avenue at Superior, WI | 04024080 | 0.034 | 1993–95 | | | | | | | Little Balsam Creek at Patzau, WI | 04024314 | 4.89 | 1976–78 | | | | | | | Little Balsam Creek near Patzau, WI | 04024315 | 5.05 | 1976–78 | | | | | | | Little Balsam Creek Tributary near Patzau, WI | 04024318 | 0.60 | 1976–78 | | | | | | | Little Balsam Creek near Foxboro, WI | 04024320 | 6.27 | 1977–78 | | | | | | | Amnicon River near Poplar (Amnicon Falls), WI | 04025000 | 110 | 1914–16 | | | | | | | Bois Brule (Brule) River near Brule, WI | 04026000 | 160 | 1914–17 | | | | | | | Sioux River near Washburn, WI | 04026300* | 33.9 | 1965–66 | | | | | | | Pine Creek at Moquah, WI | 04026347 | 6.20 | 1976–78 | | | | | | | Pine Creek Tributary at Moquah, WI | 04026348 | 0.48 | 1976–78 | | | | | | | Pine Creek near Moquah, WI | 04026349 | 19.9 | 1976–78 | | | | | | | Bad River near Mellen, WI | 04026450* | 82.0 | 1971–75 | | | | | | | Bad River at Mellen, WI | 04026500 | 98.3 | 1948–55 | | | | | | | Alder Creek near Upson, WI | 04026870 | 22.2 | 1972–77 | | | | | | | Montreal River near Kimball, WI | 04028500 | 100 | 1924–26 | | | | | | | West Fork Montreal River at Gile, WI | 04029000 | 75.0 | 1918–26, 1943–47 | | | | | | | West Fork Montreal River near Kimball, WI | 04029500 | 86.2 | 1924–26 | | | | | | | | RIBUTARY TO LAKE MICHIGA | | | | | | | | | North Branch Pine River at Windsor Dam nr Alvin, WI | 04063640* | 27.8 | 1967–68 | | | | | | | Pine River near Florence, WI | 04064000 | 510 | 1914–23 | | | | | | | Menominee River, at Mouth, at Marinette, WI | 04067651 | 4,070 | 1988–90, 1994–95 | | | | | | | Peshtigo River at High Falls near Crivitz, WI | 04068000 | 537 | 1912–57 | | | | | | | Pensaukee River near Krakow, WI | 04071795 | 35.8 | 1993–95 | | | | | | | Pensaukee River near Pensaukee, WI | 04071858 | 134 | 1973-96 | | | | | | | Suamico River at Suamico, WI | 04072000 | 60.7 | 1951–52 | | | | | | | Lawrence Creek near Westfield, WI | 04072750 | 13.4 | 1968–73 | | | | | | | Grand River near Kingston, WI | 04073050 | 73.5 | 1968–75 | | | | | | | West Branch White River near Wautoma, WI | 04073405 | 38.9 | 1964–65 | | | | | | | Silver Creek at South Koro Road near Ripon, WI | 040734644 | 36.2 | 1987-96 | | | | | | | Wolf River near White Lake, WI | 04075000 | 485 | 1935–38 | | | | | | | Evergreen Creek near Langlade, WI | 04075200* | 8.09 | 1964–73 | | | | | | | Wolf River above West Branch Wolf River, WI | 04075500 | 616 | 1928–62 | | | | | | | West Branch Wolf River at Neopit, WI | 04076000 | 93.2 | 1911–17 | | | | | | | West Branch Wolf River near Keshena, WI | 04076500 | 163 | 1911–17 | | | | | | | Wolf River near Shawano, WI | 04077400 | 816 | 1907–09, 1910–2001 | | | | | | | • | 04079602 | 22.6 | 1974–79 | | | | | | | Little Wolf River near Galloway, WI | | | | | | | | | | Spaulding Creek near Big Falls, WI | 04079700* | 5.57 | 1964–66 | | | | | | | Little Wolf River at Royalton, WI | 04080000
04080798 | 507 | 1914–70, 1983–85 | | | | | | | Tomorrow River near Nelsonville, WI | | 44.0 | 1993–95 | | | | | | | Emmons Creek near Rural, WI | 04080950 | 25.1 | 1968–74 | | | | | | | Storm Sewer to Mirror Lake at Waupaca, WI | 04080976 | 0.04 | 1971–74 | | | | | | | Waupaca River near Waupaca, WI | 04081000 | 265 | 1916–66, 1983–85 | | | | | | | Daggets Creek at Butte Des Morts, WI | 04081800 | 10.6 | 1977 | | | | | | | West Branch Fond du Lac River at Fond du Lac, WI | 04083000 | 83.1 | 1939–54 | | | | | | | Parsons Creek, Upstream Site, near Fond du Lac, WI | 04083420 | 5.3 | 1997–2001 | | | | | | | Parsons Creek, Downstream Site, near Fond du Lac, WI | 04083425 | 5.7 | 1997–2001 | | | | | | | East Branch Fond du Lac River near Fond du Lac, WI | 04083500 | 78.4 | 1939–54 | | | | | | | Brothertown Creek at Brothertown, WI | 04084200 | 5.10 | 1976–77 | | | | | | | East River at Midway Road near De Pere, WI | 04085109 | 47.0 | 1993–95 | | | | | | | Bower Creek, at County MM, near De Pere, WI | 04085119 | 14.8 | 1991–95,1996–97 | | | | | | | Station name | Station number | Drainage area (mi ²) | Period of record | |--|-----------------------------------|----------------------------------|-------------------------------| | STREAMS TRIBUTARY TO | O LAKE MICHIGANCOI | NTINUED | | | East Twin River at Mishicot, WI | 04085281 | 110 | 1972-96 | | Otter Creek, at Willow Road, near Plymouth, WI | 040857005 | 9.5 | 1991-2002 | | Onion River at Hingham, WI | 04085813 | 37.2 | 1979-80 | | Onion River near Sheboygan Falls, WI | 04085845 | 94.1 | 1979-82 | | Milwaukee River at Kewaskum, WI | 04086150 | 138 | 1968-81 | | East Branch Milwaukee River near New Fane, WI | 04086200 | 54.1 | 1968-81 | | North Branch Milwaukee River near Random Lake, WI | 040863075 | 51.4 | 1993-95 | | North Branch Milwaukee River near Fillmore, WI | 04086340 | 148 | 1968-81 | | Milwaukee River at Waubeka, WI | 04086360 | 432 | 1968-81, 1994 | | Mud Lake Outlet near Decker Corner, WI | 04086488 | 7.36 | 1983–84 | | Lincoln Creek, at 47th Street, at Milwaukee, WI | 040869415 | 9.56 | 1993–1995, 1997 ¹ | | Milwaukee River above North Ave Dam at Milwaukee, WI | 04087010 | 702 | 1982–84 | | Menomonee River at Germantown, WI | 04087018 | 19.0 | 1975–77 | | Jefferson Park Drainageway at Germantown, WI | 04087019 | 1.82 | 1976–78 | | Menomonee River at Butler, WI | 04087040 | 60.6 | 1975–79 | | Little Menomonee River near Freistadt, WI | 04087050 | 8.0 | 1975–79 | | Noyes Creek at Milwaukee, WI | 04087060 | 1.94 | 1975–80, 1990 | | Little Menomonee River at Milwaukee, WI | 04087070 | 19.7 | 1975–80, 1990 | | | | 10.3 | 1975–77 | | Honey Creek at Wauwatosa, WI | 04087119 | 1.94 | 1975–81
1975–79 | | Schoonmaker Creek at Wauwatosa, WI | 04087125 | | | | Hawley Road Storm Sewer at Milwaukee, WI | 04087130 | 1.83 | 1975–77 | | Menomonee River at Milwaukee, WI | 04087138 | 134 | 1982–84 | | Kinnickinnic River at Milwaukee, WI | 04087160 | 20.4 | 1976–83 | | Milwaukee River at Mouth at Milwaukee, WI | 04087170 | 872 | 1994–96 | | ST. CRO | DIX RIVER BASIN | | | | Namekagon River at Leonards, WI | 05331833 | 126 | 1996-2001 | | Namekagon River at Trego, WI | 05332000 | 433 | 1914–27 | | Loon Creek near Danbury, WI | 05335010 | 17.6 | 1970–71 | | Bashaw Brook near Shell Lake, WI | 05335380 | 26.6 | 1964–66 | | Clam River near Webster, WI | 05335500 | 361 | 1941-42 | | St. Croix River near Grantsburg, WI | 05336000 | 2,980 | 1923-70 | | Wood River near Grantsburg, WI | 05339000 | 185 | 1939-40 | | Rice Creek near Balsam Lake, WI | 05341375 | 12.5 | 1988-89 | | Balsam Branch at Balsam Lake, WI | 05341402 | 52.8 | 1988–90 | | Deer Lake Tributary #1, Upstream Site, near Centuria, WI | 05341404 | 0.04 | 1998-99,2000-01 | | Deer Lake Tributary #1, Downstram Site, near Centuria, WI | 05341405 | 0.38 | 1998–2001 | | | WA RIVER BASIN | 0.50 | 1990 2001 | | | | 47.4 | 1012 16 | | West Fork Chippewa River at Lessards, nr Winter, WI | 05355500 | 474 | 1912–16 | | Couderay River near Couderay, WI | 05356121 | 169 | 1981–83 | | Flambeau River at Flambeau Flowage (Flambeau
Reservoir), WI | 05357500 | 622 | 1927–61 | | Flambeau River near Butternut, WI | 05358000 | 688 | 1914–39 | | Pine Creek near Oxbo, WI | 05358300 | 38.9 | 1971–75 | | Flambeau River at Babbs Island near Winter, WI | 05358500 | 967 | 1929-75 | | South Fork Flambeau River near Phillips, WI | 05359500 | 609 | 1929-75 | | Price Creek near Phillips, WI | 05359600* | 16.9 | 1964–66 | | Flambeau River near (at) Ladysmith, WI | 05360000 | 1,790 | 1903–06, 1914–61 | |
Chippewa River near Holcombe, WI | 05361000 | 3,720 | 1944–49 | | South Fork Jump River near Ogema, WI | 05361500 | 327 | 1944–54 | | Chippewa River at Holcombe, WI | 05362500 | 4,680 | 1943–49 | | | 05363000 | 81.5 | 1944–45 | | Hisher River at (near) Holcombe WI | 05505000 | | | | Fisher River at (near) Holcombe, WI | 05363500 | 7/2 1 | 10/1/1 /15 | | O'Neil Creek near Chippewa Falls, WI | 05363500 | 78.1
86.7 | 1944–45
1962–63 | | | 05363500
05363700
05364000* | 78.1
86.7
364 | 1944–45
1962–63
1943–61 | | Station name | Station number | Drainage area (mi ²) | Period of record | |--|---------------------|----------------------------------|--------------------| | CHIPPEWA R | IVER BASINCONTINUED | | | | Duncan Creek Tributary near Tilden, WI | 05364850 | 4.17 | 1987–89 | | Duncan Creek at Chippewa Falls, WI | 05365000 | 117 | 1943–55 | | Eau Claire River near Augusta, WI | 05366000 | 509 | 1914–26 | | Bridge Creek at Augusta, WI | 05366300 | 35.0 | 1980 | | Eau Claire River near Fall Creek, WI | 05366500* | 760 | 1943–55 | | Chippewa River at (near) Eau Claire, WI | 05367000 | 6,620 | 1903–09, 1944–54 | | Red Cedar River at Cty Trunk Highway D at Birchwood, WI | 06367102 | 70.8 | 2000–01 | | Sucker Creek at Loch Lamond Blvd near Birchwood, WI | 05367154 | 12.3 | 2000-01 | | Hemlock Creek at Cty Trunk Highway F near Mikana, WI | 05367190 | 20.4 | 2000-01 | | Red Cedar River at Red Cedar Lake Outlet at Mikana, WI | 05367202 | 151 | 2000–01 | | Red Cedar River near Cameron, WI | 05367425 | 442 | 1966–70 | | | 05367425 | 442 | 1971–73 | | Red Cedar River near Canteron, WI | | | | | Red Cedar River near Colfax, WI | 05367500 | 1,100 | 1914–61, 1990 | | Eau Galle River at Low-Water Bridge at Spring Valley, WI | 05369945 | 47.9 | 1982–83, 1986–96 | | French Creek near Spring Valley, WI | 05369955 | 6.03 | 1981–83 | | Lousy Creek near Spring Valley, WI | 05369970 | 5.97 | 1981–83 | | Lohn Creek near Spring Valley, WI | 05369985 | 2.53 | 1981–83 | | Eau Galle River at Elmwood, WI | 05370500 | 91.6 | 1943–54 | | | ALO RIVER BASIN | | | | Buffalo River near Tell, WI | 05372000 | 406 | 1933–51 | | WAUMA | NDEE CREEK BASIN | | | | Joos Valley Creek near Fountain City, WI | 05378183 | 5.89 | 1990-96 | | Eagle Creek, at County Highway G, near Fountain City, WI | 05378185 | 14.3 | 1990-96 | | TREMPE | ALEAU RIVER BASIN | | | | Bruce Valley Creek near Pleasantville, WI | 05379288 | 10.1 | 1980 | | Elk Creek near Independence, WI | 05379305 | 108 | 1980 | | Frempealeau River near Trempealeau, WI | 05380000 | 719 | 1932–34 | | | CK RIVER BASIN | 71) | 1,52 51 | | | | 40.1 | 1004 07 | | Black River at Medford, WI | 05380806 | 48.1 | 1984–87 | | Poplar River near Owen, WI | 05380900* | 155 | 1964–66 | | LA CR | OSSE RIVER BASIN | | | | Little LaCrosse River near Leon, WI | 05382500 | 76.9 | 1934–61, 1979–81 | | LaCrosse River near West Salem, WI | 05383000 | 396 | 1914–70 | | coc | ON CREEK BASIN | | | | Spring Coulee Creek near Coon Valley, WI | 05386490 | 9.01 | 1979–81 | | Coon Creek at Coon Valley, WI | 05386500 | 77.2 | 1934-40, 1978-81 | | Coon Creek near Stoddard, WI | 05386999 | 120 | 1934–40, 1979–81 | | BAD | AXE RIVER BASIN | | | | North Fork Bad Axe River near Genoa, WI | 05387100* | 80.8 | 1964–66 | | WISCO | ONSIN RIVER BASIN | | | | Wisconsin River at Conover, WI | 05390180 | 177 | 1967–71 | | Pelican River near Rhinelander, WI | 05391226 | 101 | 1976–79 | | Wisconsin River at Whirlpool Rapids, nr Rhinelander, WI | 05391220 | 1,220 | 1976–79 | | Bearskin Creek near Harshaw, WI | 05392350* | 31.1 | 1964–66 | | Formahawk River near Bradley, WI | 05392400 | 422 | 1915–27, 1929 | | Fomahawk River at Bradley, WI | 05393000 | 544 | 1930–73 | | New Wood River near Merrill, WI | 05394000 | 82.2 | 1950–75
1953–61 | | | 05394000 | 82.2
303 | 1935–61
1925–57 | | Rib River at Rib Falls, WI | | | | | Little Rib River near Wausau, WI | 05396500 | 79.1 | 1914–16 | | | | | | | Station name | Station number | Drainage area (mi ²) | Period of record | |--|--------------------|----------------------------------|--------------------| | WISCONSIN RI | VER BASINCONTINUED |) | | | East Branch Eau Claire River near Antigo, WI | 05397000 | 81.5 | 1949–55 | | Eau Claire River near Antigo, WI | 05397110 | 185 | 1975-81 | | Bull Junior Creek (Bull Creek Junior) nr Rothschild, WI | 05398500 | 27.4 | 1944-52 | | Big Eau Pleine River near Colby, WI | 05399000 | 78.1 | 1941–54 | | Hamann Creek near Stratford, WI | 05399431 | 11.3 | 1977–79 | | Wisconsin River at Knowlton, WI | 05400000 | 4,530 | 1921–42 | | Plover River near Stevens Point, WI | 05400500 | 145 | 1914-20, 1944-52 | | Little Plover River near Arnott, WI | 05400600 | 2.24 | 1959–75 | | Little Plover River at Plover, WI | 05400650 | 19.0 | 1959–87 | | Fourmile Creek near Kellner, WI | 05400870 | 75.0 | 1964–67 | | Buena Vista Creek near Kellner, WI | 05400853 | 53.1 | 1964-67 | | Tenmile Creek Ditch 5 near Bancroft, WI | 05401020 | 9.73 | 1964-73 | | Fourteenmile Creek near New Rome, WI | 05401100 | 91.1 | 1964–79 | | Wisconsin River near Necedah, WI | 05401500 | 5,990 | 1903-14, 1944-50 | | Big Roche a Cri Creek near Hancock, WI | 05401510 | 9.61 | 1964–67 | | Big Roche a Cri Creek near Adams, WI | 05401535 | 52.8 | 1964–78 | | Yellow River at Sprague, WI | 05402500 | 392 | 1927-40 | | Yellow River at Necedah, WI | 05403000 | 491 | 1941–57 | | Lemonweir River at New Lisbon, WI | 05403500 | 507 | 1944–87, 1994 | | Hulbert Creek near Wisconsin Dells, WI | 05403630 | 11.2 | 1971–77 | | Dell Creek near Lake Delton, WI | 05403700 | 44.9 | 1957–65, 1971–80 | | Narrows Creek at Loganville, WI | 05404200 | 40.1 | 1964–66 | | Wisconsin River at Prairie du Sac, WI | 05406000 | 9,180 | 1946–54 | | Black Earth Creek at Cross Plains, WI | 05406460 | 12.8 | 1985–86, 1990–93 | | Brewery Creek, Upstream Site, at Cross Plains, WI | 05406469 | 10.1 | 2000–02 | | Brewery Creek at Cross Plains, WI | 05406470 | 10.5 | 1985–86, 1990–2002 | | Black Earth Creek at Mills Street at Cross Plains, WI | 05406476 | 25.5 | 1990-95 | | Garfoot Creek near Cross Plains, WI | 05406491 | 5.39 | 1985–86, 1990–94, | | | 0.7.10<10.7 | 10.4 | 1994–98 | | Black Earth Creek at South Valley Road nr Black Earth, WI | 05406497 | 40.6 | 1990–93 | | Trout Creek at Confluence with Arneson Creek near
Barneveld, WI | 05406573 | 8.37 | 1976–78 | | Trout Creek at Twin Parks Dam 8 nr Barneveld, WI | 05406574 | 9.02 | 1976–79 | | Trout Creek at County Highway T nr Barneveld, WI | 05406575 | 12.1 | 1976–78 | | Trout Creek near Ridgeway, WI | 05406577 | 13.5 | 1976–79 | | Knight Hollow Creek near Arena, WI | 05406590 | 7.57 | 1976–78 | | Otter Creek near Highland, WI | 05406640 | 16.8 | 1968–69, 1970–75 | | Kickapoo River at Ontario, WI | 05407500 | 151 | 1939, 1973–77 | | Knapp Creek near Bloomingdale, WI | 05408500 | 8.44 | 1955–69 | | West Fork Kickapoo River near Readstown, WI | 05409000 | 106 | 1939 | | Kickapoo River at Soldiers Grove, WI | 05409500 | 530 | 1939 | | North Fork Nederlo Creek near Gays Mills, WI | 05409830 | 2.21 | 1968-79 | | Nederlo Creek near Gays Mills, WI | 05409890 | 9.46 | 1968-80 | | Kickapoo River at Gays Mills, WI | 05410000 | 617 | 1914–34, 1964–77 | | GRAN | IT RIVER BASIN | | | | Pigeon Creek near Lancaster, WI | 05413400* | 6.93 | 1964–66 | | Kuenster Creek at Muskellunge Road nr North Andover, WI | 054134435 | 9.59 | 1982–96 | | Rattlesnake Creek near North Andover, WI | 05413449 | 42.4 | 1987–96 | | Rattlesnake Creek near Beetown, WI | 05413451 | 45.2 | 1990–91 | | GALE | NA RIVER BASIN | | | | Little Platte River near Platteville, WI | 05414213 | 79.7 | 1987–90 | | Sinsinawa River near Hazel Green, WI | 05414800 | 24.9 | 1987–90 | | Pats Creek near Belmont, WI | 05414894 | 5.42 | 1981-82 | | Madden Branch Tributary near Belmont, WI | 05414915 | 2.83 | 1981–82 | | Madden Branch near Meekers Grove, WI | 05414920 | 15.04 | 1981–82 | | Maddell Blaticii fical Micekels Glove, W1 | 03717720 | | 1701 02 | | Station name | Station number | Drainage area (mi ²) | Period of record | | | | | |--|----------------------|----------------------------------|-----------------------------|--|--|--|--| | APPLE RIVER BASIN | | | | | | | | | Apple River near Shullsburg, WI | 05418731 | 9.34 | 1981–82 | | | | | | ROC | K RIVER BASIN | | | | | | | | West Branch Rock River near Waupun, WI | 05423000 | 40.7 | 1949–70, 1978–81 | | | | | | West Branch Rock River at County Trunk Highway D near Waupun, WI | 05423100 | 43.9 | 1978–81 | | | | | | West Branch Rock River at State Highway 49 nr Waupun,WI | 05423510 | 113 | 1998-2001 | | | | | | East Branch Rock River near Mayville, WI | 05424000 | 179 | 1949-70,1998-200 | | | | | | Rubicon River near Slinger, WI | 05424095 | 7.97 | 1999-2001 | | | | | | Rubicon River at Pike Lake Outlet near Hartford, WI | 054240957 | 12.31 | 1999-2001 | | | | | | Johnson Creek near Johnson Creek, WI | 05425537 | 1.13 | 1978-80 | | | | | | Johnson Creek near Johnson Creek, WI | 05425539 | 13.3 | 1978-80 | | | | | | Pratt Creek near Juneau, WI | 05425928 | 3.54 | 1978-80 | | | | | | Rock River at Jefferson, WI | 05426031 | 1,850 | 1978–94 ² | | | | | | Whitewater Creek near Whitewater, WI | 05426500 | 11.8 | 1926-28, 1946-54 | | | | | | Whitewater Creek at Millis Road near Whitewater, WI | 05426900 | 20.6 | 1978-81 | | | | | | Whitewater Creek at Whitewater, WI | 05427000 | 22.8 | 1926-28, 1946-54 | | | | | | Koshkonong Creek near Rockdale, WI | 05427507 | 150 | 1977–82 | | | | | | Token Creek near Madison, WI | 05427800 | 24.3 | 1964-66, 1976-81 | | | | | | Sixmile Creek near Waunakee, WI | 05427900 | 41.1 | 1976–82 | | | | | | South Fork Pheasant Branch at Highway 14 near | 05427945 | 5.74 | 1978–81 | | | | | | Middleton, WI | | | | | | | | | Pheasant Branch at Century Avenue
at Middleton, WI | 05427950 | 20.8 | 1977–81 | | | | | | Pheasant Branch at mouth at Middleton, WI | 05427952 | 24.5 | 1978–81 | | | | | | Willow Creek at Madison, WI | 05427970 | 3.15 | 1974–83 | | | | | | Olbrich Park Storm Ditch at Madison, WI | 05428665 | 2.57 | 1976–80 | | | | | | Manitou Way Storm Sewer at Madison, WI | 05429040 | 0.23 | 1971–77 | | | | | | Nakoma Storm Sewer at Madison, WI | 05429050 | 2.30 | 1972–77 | | | | | | Lake Wingra Outlet at Madison, WI | 05429120 | 6.00 | 1971–77 | | | | | | Nine Springs Creek Storm Sewer Tributary at Madison, WI | 05429268 | 0.18 | 1991–93 | | | | | | Door Creek near Cottage Grove, WI | 05429580 | 15.3 | 1976–79 | | | | | | Yahara River near Edgerton, WI | 05430000 | 430 | 1917–18 | | | | | | Oregon Branch at Oregon, WI | 05430000 | 9.93 | 1979–81 | | | | | | Badfish Creek at County Highway A near Stoughton, WI | 05430095 | 40.9 | 1956–66, 1986–88 | | | | | | Badfish Creek near Stoughton, WI | | 41.3 | 1956–66 | | | | | | Delavan Lake Trib at South Shore Drive at Delavan, WI | 05430100
05431018 | 7.66 | 1985–86, 1989–91 | | | | | | | | 8.96 | 1983–80, 1989–91
1984–95 | | | | | | Jackson Creek at Petrie Road near Elkhorn, WI | 05431014 | | | | | | | | Livingston Branch Pecatonica River nr Livingston, WI | 05432055 | 16.4 | 1987–91 | | | | | | Yellowstone River near Blanchardville, WI | 05433500* | 28.5 | 1954–65, 1978–79 | | | | | | Pecatonica River at Dill, WI | 05434000 | 944 | 1914–19 | | | | | | Steiner Branch near Waldwick, WI | 05433510 | 5.9 | 1978–79 | | | | | | Skinner Creek at Skinner Hollow Road near Monroe, WI | 05434235 | 32.6 | 1978–81 | | | | | | Skinner Creek at Klondyke Road near Monroe, WI | 05434240 | 35.0 | 1978–81 | | | | | | West Branch Sugar River near Mount Vernon, WI | 05435980 | 32.7 | 1979–80 | | | | | | Mount Vernon Creek near Mount Vernon, WI | 05436000 | 16.4 | 1954–65, 1976–80 | | | | | | | DIS RIVER BASIN | | | | | | | | Fox River, at Watertown Road, near Waukesha | 05543800 | 77.4 | 1992-2000 | | | | | | White River near Burlington, WI | 05545300 | 110 | 1964–66, 1973–82 | | | | | | Unnamed Lauderdale Lakes Trib No. 2 near Lauderdale, WI | 05544793 | 0.19 | 1999–2001 | | | | | | Birches Creek at Lackey Lane near Lake Geneva, WI | 05545133 | 2.07 | 1998-2001 | | | | | ¹ No winter record in water year 1997 ² No winter record in water years 1993 and 1994 The following daily- or continuous-record surface-water-quality stations were discontinued prior to the 2003 water year. Discontinued stations with less than 1 year of record or where data collection frequency was less than daily are not included. Some of the stations in the list are still in operation for purposes other than collection of daily or continuous water-quality data. Information regarding these stations may be obtained from the District Office at the address given on the back of the title page of this report. [Type of record: T (water tempeature), SC (specific conductance,), DO (dissolved-oxygen concentration), PH (pH), SED (daily sediment discharge), C (daily discharge of one or more chemical constituents)] | Station name | Station numberr | Drainage area
(mi ²) | Type of record | Period of record | |---|---------------------|-------------------------------------|----------------|---------------------------------| | S | TREAMS TRIBUTARY TO | LAKE SUPERIOR | | | | Little Balsam Creek at Patzau, WI | 04024314 | 5.00 | SED | 1976–78 | | Little Balsam Creek near Patzau, WI | 04024315 | 4.57 | SED | 1976-78 | | Little Balsam Creek Tributary near Patzau, WI | 04024318 | 0.64 | SED | 1976–78 | | Little Balsam Creek near Foxboro, WI | 04024320 | 6.27 | SED | 1977–78 | | Nemadji River near South Superior, WI | 04024430 | 420 | SED | 1974–78 | | North Fish Creek near Benoit, WI | 04026346 | 36 | SED | 1990–91 | | Pine Creek at Moquah, WI | 04026347 | 5.90 | SED | 1976–78 | | Pine Creek Tributary at Moquah, WI | 04026348 | 0.57 | SED | 1976–78 | | Pine Creek near Moquah, WI | 04026349 | 21.5 | SED | 1976–78 | | North Fish Creek near Moquah, WI | 040263491 | 65.4 | SED | 1990–91 | | North Fish Creek near Ashland, WI | 04026350 | 74.4 | SED | 1990–91 | | Bad River near Odanah, WI | 04027000 | 597 | T,SC | 1976–78 | | White River near Mason, WI | 04027080 | | T,SC | 1970–73 | | Sadjak Springs Trib to White River near Mason, WI | 04027086 | 1.00 | T | 1970–72 | | Bad River at Odanah, WI | 04027595 | 970 | T,SC | 1978–81 | | | | | 1,50 | 1970 01 | | | TREAMS TRIBUTARY TO | | | | | Escanaba River at mouth at Escanaba, MI | 040590345 | 928 | SED | 1988–90 | | Menominee River near McAllister, WI | 04067500 | 3,930 | T,SC | 1979–80 | | | | | SED | 1988–90 | | Menominee River at mouth at Marinette, WI | 04067651 | 4,070 | SED | 1988–90 | | Peshtigo River at Peshtigo, WI | 04069500 | 1,080 | T | 1989–90 | | | | | SED | 1988–90 | | Peshtigo River at mouth near Peshtigo, WI | 04069530 | 1,100 | SED | 1988-90 | | Oconto River near Oconto, WI | 04071765 | 966 | SED | 1989–90 | | Oconto River at mouth at Oconto, WI | 04071775 | 982 | SED | 1989-90 | | Duck Creek near Howard, WI | 04072150 | 108 | C | 1992 | | Parsons Creek, Upstream Site, near Fond du Lac, WI | 04083420 | 5.3 | T | 1998-2001 | | • | | | C | 1997-99,2000-01 | | Parsons Creek, Middle Site, near Fond du Lac, WI | 04083423 | 5.6 | С | 1997-99,2000-01 | | Parsons Creek, Downstream Site, near Fond du Lac, WI | 04083425 | 5.7 | Т | 1997–2001 | | | | | С | 1997-99,2000-01 | | Fox River at Appleton, WI | 04084445 | 5,950 | T | 1987–90 | | | | -,, | SED | 1986–90 | | Fox River at State Highway 55 at Kaukauna, WI | 04084475 | 5,980 | SED | 1989–90 | | Fox River at Wrightstown, WI | 04085000 | 6,050 | T,SC | 1975–81 | | Fox River at Little Rapids, WI | 04085054 | 6,100 | SED | 1989–90 | | Fox River at De Pere, WI | 04085059 | 6,110 | SED | 1989–90 | | Bower Creek at Sunnyview Road near De Pere, WI | 04085037 | 4.82 | SED,C | 1985–86 | | Bower Creek at Highway MM near DePete, WI | 04085118 | 14.8 | T,C | 1983–80
1991-97 ² | | Fox River at mouth at Green Bay, WI | 04085139 | 6,330 | T,SC,DO,PH | 1989–90 | | Manitowoc River at Manitowoc, WI | | 526 | T,SC | 1979–80 | | | 04085427 | | | | | Cedar Lake near Kiel, WI | 04085500 | 1.43 | T | 1974–77 | | Otter Creek #3A at County Hgihway J near Plymouth, WI | 0408570045 | 9.10 | C | 1994–97 ² | | Otter Creek at Laack Farm near Plymouth, WI | 0408570047 | 9.16 | C | 1994–97 ² | | Otter Creek, at Willow Road, near Plymouth, WI | 040857005 | 9.5 | T | 1991–2002 | | | | | C, SED | 1991–97,1999–20 | | | | | DO | 1991–97 | | Onion River at Hingham, WI | 04085813 | 37.2 | T,SC,SED | 1979–80 | | | | | C | 1980 | | Station name | Station numberr | Drainage area
(mi ²) | Type of record | Period of record | |--|-------------------|-------------------------------------|----------------|----------------------| | STREAMS | TRIBUTARY TO LAKE | MICHIGANCONTINUE | ED . | | | Onion River near Sheboygan Falls, WI | 04085845 | 94.1 | T,SC,SED
C | 1979–80
1980 | | Parnell Creek near Dundee, WI | 04086175 | 9.35 | T | 1997 | | Ailwaukee River near Cedarburg, WI | 04086600 | 607 | SED | 1982–84 | | incoln Creek at 47th Street at Milwaukee, WI | 040869415 | 9.56 | T | 1993-97 ² | | meoni Creek at 47 til Street at Willwattkee, Wi | 040007413 | 7.50 | DO | 1994-97 ² | | filwaukee River at Milwaukee, WI | 04087000 | 696 | SED | 1982–84 | | filwaukee River above North Avenue Dam at Milwaukee, WI | | 702 | SED | 1982–84 | | Menomonee River at Germantown, WI | 04087018 | 19 | SED | 1975–77 | | • | | 1.82 | SED | 1977–78 | | efferson Park Drain at Germantown, WI | 04087019 | | | | | Menomonee River at Menomonee Falls, WI | 04087030 | 34.7 | SED | 1975–77, 1982–84 | | Menomonee River at Butler, WI | 04087040 | 60.64 | SED | 1975–77 | | ittle Menomonee River near Freistadt, WI | 04087050 | 8.0 | SED | 1975–77 | | loyes Creek at Milwaukee, WI | 04087060 | 1.94 | SED | 1975–77 | | ittle Menomonee River at Milwaukee, WI | 04087070 | 19.7 | SED | 1975–77 | | Inderwood Creek at Wauwatosa, WI | 04087088 | 18.2 | SED | 1975–77 | | Ioney Creek at Wauwatosa, WI | 04087119 | 10.3 | SED | 1975–77 | | Menomonee River at Wauwatosa, WI | 04087120 | 123 | SED | 1975-77, 1982-84 | | choonmaker Creek at Wauwatosa, WI | 04087125 | 1.94 | SED | 1975-77 | | Iawley Road Storm Sewer at Wauwatosa, WI | 04087130 | 1.83 | SED | 1975-77 | | Menomonee River at Milwaukee, WI | 04087138 | 134 | SED | 1983-84 | | Menomonee River at Falk Corp at Milwaukee, WI | 04087140 | 133.82 | SED | 1975–77, 1982 | | Kinnickinnic River at South 11th Street at Milwaukee, WI | 04087159 | 20.2 | SED | 1983–84 | | | ST. CROIX RIVE | | ~ | | | and Laborator WI | | | Т | 1001 05 | | Round Lake near Gordon, WI | 461342091561002 | | | 1981–85 | | Namekagon River at Leonards, WI | 05331833 | 126 | T,SC | 1996–2001 | | t. Croix River at St. Croix Falls, WI | 05340500 | 6,240 | SC | 1975–81 | | | | | SED | 1982 | | Rice Creek near Balsam Lake, WI | 05341375 | 12.5 | С | 1988–89 | | Balsam Branch at Balsam Lake, WI | 05341402 | 52.8 | С | 1988–89 | | Deer Lake Tributary #1, Downstream Site, near Centuria, WI | 05341405 | 0.38 | T | 1998,1999–2001 | | | CHIPPEWA RIVE | ER BASIN | | | | Bear River near Manitowish Waters, WI | 05357335 | 81.3 | SED,C | 1991-94 | | Ouncan Creek Tributary near Tilden, WI | 05364850 | 4.17 | T,C,SED | 1987-89 | | • | | | DO | 1987-88 ¹ | | Red Cedar River at Cty Trunk Highway D at Birchwood, WI | 05367102 | 70.8 | SED,C | 2000-01 | | bucker Creek at Loch Lamond Blvd near Birchwood, WI | 05367154 | 12.3 | SED,C | 2000-01 | | Iemlock Creek near Mikana, WI | 05367190 | 20.4 | SED.C | 2000-01 | | Red Cedar River at Mikana, WI | 05367202 | 151 | C | 2000-01 | | Red Cedar River near Colfax, WI | 05367500 | 1,090 | C | 1959, 1990 | | Hay River at Wheeler, WI | 05368000 | 418 | C | 1959, 1990 | | Chippewa River at Durand, WI |
05369500 | 9,010 | T,SC | 1975–81 ² | | imppewa Kivei at Duranu, w i | 05309300 | 9,010 | SED | 1974–79 | | . C 11 D' W 1 '11 WI | 05260000 | 20.4 | | | | Eau Galle River near Woodville, WI | 05369900 | 39.4 | T,SC | 1978–83 ² | | Eau Galle River at Low-Water Bridge at Spring Valley, WI | 05369945 | 47.9 | T | 1982–83, 1987–93 | | | | | SC | 1983 | | Eau Galle River at Spring Valley, WI | 05370000 | 64.1 | T,SC | 1978–90 | | | WAUMANDEE CRI | EEK BASIN | | | | oos Valley Creek near Fountain City, WI | 05378183 | 5.89 | DO | 1990-92 | | Eagle Creek at County Highway G near Fountain City,WI | 05378185 | 14.3 | DO | 1990-92 | | | TREMPEALEAU R | IVER BASIN | | | | Bruce Valley Creek near Pleasantville, WI | 05379288 | 10.1 | T,SC,SED,C | 1980 | | Elk Creek near Independence, WI | 05379305 | 108 | T,SC,SED,C | 1980 | | | BLACK RIVER | BASIN | | | | Disab Bissansa Calassilla Wi | 05292000 | 2.090 | CED | 1077 70 | | Black River near Galesville, WI | 05382000 | 2,080 | SED | 1976–79 | | Station name | Station numberr | Drainage area
(mi ²) | Type of record | Period of record | |---|-----------------|-------------------------------------|----------------|---------------------------------------| | | WISCONSIN RIV | ER BASIN | | | | Lake Clara near Tomahawk, WI | 453100089343002 | 0.46 | T | 1982–86 | | Little Rock Lake near Woodruff, WI | 455946089415704 | | T | 1984-87 | | Buena Vista Creek near Kellner, WI | 05400853 | 53.1 | T | 1965-67 | | Tenmile Creek Ditch 5 near Bancroft, WI | 05401020 | 9.73 | T | 1965-72 | | Dell Creek near Lake Delton, WI | 05403700 | 44.9 | T,SED | 1958-65 | | Black Earth Creek at Cross Plains, WI | 05406460 | 12.8 | C,SED | 1985-86 | | | | | T,DO | 1985-86, 1990-95 | | Brewery Creek, Upstream Site, at Cross Plains | 05406469 | 10.1 | T | 2000-02 | | Brewery Creek at Cross Plains, WI | 05406470 | 10.5 | T | 1985–86, 1990–98. | | ,,, | | | | 2000–02 | | | | | SED | 1985–86, 1990–98 | | | | | C | 1985–86, 1990–98 | | | | | DO | 1990–91 | | Black Earth Creek at Mills Street at Cross Plains, WI | 05406476 | 25.5 | T,DO | 1990–91 | | Garfoot Creek near Cross Plains, WI | 05406491 | 5.39 | SED | 1985–86, 1992–98 | | Garroot Creek fical Cross Flams, W1 | 03400491 | 3.39 | | · · · · · · · · · · · · · · · · · · · | | | | | DO | 1984–85, 1990–98 | | NITE OF THE STATE | 05406405 | 10.6 | T,C | 1985–86, 1990–98 | | Black Earth Creek at South Valley Rd near Black Earth, WI | 05406497 | 40.6 | T,DO | 1990–98 | | Black Earth Creek at Black Earth, WI | 05406500 | 45.6 | T | 1954–65, 1985–86 | | | | | DO | 1986 ¹ | | | | | SED | 1956–65, 1985–86 | | | | | С | 1985–86 | | Trout Creek Confluence Arneson Creek near Barneveld, WI | 05406573 | 8.37 | T,SC | 1976–79 | | Trout Creek at Twin Parks Dam 8 near Barneveld, WI | 05406574 | 9.02 | SED | 1976–79 | | Trout Creek at CTH T near Barneveld, WI | 05406575 | 12.1 | T,SED | 1976–78 | | Trout Creek near Ridgeway, WI | 05406577 | 13.5 | T,SED | 1976–79 | | Wisconsin River at Muscoda, WI | 05407000 | 10,400 | T,SC | 1975–80 ¹ , 1981 | | | | | SED | 1975-79 | | Kickapoo River at Hwy 33 at Ontario, WI | 05407470 | 117 | T.SED | 1973 | | Kickapoo River at Ontario, WI | 05407500 | 150 | T | 1974–77 | | • | | | SED | 1973-77 | | Kickapoo River near Rockton, WI | 05407920 | 260 | T,SED | 1972–77 | | Kickapoo River at LaFarge, WI | 05408000 | 266 | T,SC | 1971–77 | | | | | SED | 1972–77 | | North Fork Nederlo Creek at mouth near Gays Mills, WI | 05409842 | 2.31 | T | 1970 ¹ , 1974–78 | | South Fork Nederlo Creek near Gays Mills, WI | 05409860 | 4.11 | T | 1970 ¹ , 1974–78 | | Nederlo Creek at Utica Town Hall near Gays Mills, WI | 05409870 | 6.70 | T | 1968–78 | | Nederlo Creek at Otica Town Han heat Gays Mins, W1 | | | 1 | 1900–76 | | | GRANT RIVER | (BASIN | | | | Kuenster Creek at Muskellunge Road near North Andover, WI | 054134435 | 9.59 | T,DO | 1992-96 | | | | | C | 1993-96 | | Rattlesnake Creek near North Andover, WI | 05413449 | 42.4 | T,DO | 1987-96 | | | | | C | 1992-94 | | | GALENA RIVE | R BASIN | | | | Little Platte River near Platteville, WI | 05414213 | 79.7 | T | 1987–90 | | Little Platte River hear Plattevine, WI | 03414213 | 19.1 | | 1987–90
1987–90 ¹ | | C, , D, H 1C MI | 05414000 | 24.0 | DO | | | Sinsinawa River near Hazel Green, WI | 05414800 | 24.9 | T | 1987–90 | | D. G. I. D. I. W. | 07111001 | - 10 | DO | 1987–90 ¹ | | Pats Creek near Belmont, WI | 05414894 | 5.42 | T,SC,C | 1981–82 | | | | | DO | 1982 ¹ | | Madden Branch Tributary near Belmont, WI | 05414915 | 2.83 | T,SC,C | 1981–82 | | | | | DO | 1981 ¹ | | Madden Branch near Meekers Grove, WI | 05414920 | 15.06 | T,SC,C | 1981–82 | | | | | DO | 1981–82 ¹ | | | | | PH | 1982 ¹ | | | APPLE RIVER | BASIN | | | | Apple River near Shullsburg, WI | 05418731 | 9.34 | T,SC,C | 1981–82 | | rippie retter near onunsours, 111 | 05-10/51 | 7.57 | DO | 1981 ¹ | | | | | טט | 1901 | | Station name | Station numberr | Drainage area
(mi ²) | Type of record | Period of record | |---|-----------------|-------------------------------------|----------------|------------------------| | | ROCK RIVER | BASIN | | | | Rock River at Horicon, Wi | 05424057 | 456 | C | 1998-2003 | | Dead Creek near Hustisford, WI | 05424075 | 26.1 | C | 2002-03 | | Rock River at Hustisford, WI | 05424082 | 511 | C | 1999-2003 | | Rubicon River near Slinger, WI | 05424095 | 7.79 | C | 1998-2000 | | Rubicon River at Pike Lake Outlet near Hartford, WI | 054240957 | 12.31 | C | 1998-2000 | | Crawfish River at Milford, WI | 05426000 | 762 | SED | 1980-82 | | Rock River at Indianford, WI | 05427570 | 2,630 | T | 1975–78 | | | | | SC,DO,PH | 1976-78 | | South Fork Pheasant Branch at Hwy 14 near Middleton, WI | 05427945 | 5.74 | SED | 1978-81 | | Pheasant Branch at Centruy Avenue at Middleton, WI | 05427950 | 20.8 | SED | 1978-81 | | Pheasant Branch at mouth at Middleton, WI | 05427952 | 24.5 | SED | 1978-81 | | Willow Creek at Madison, WI | 05427970 | 3.15 | SED | 1973-84 | | Rock River at Afton, WI | 05430500 | 3,340 | T | 1955-83 | | Jackson Creek at Petrie Road near Elkhorn, WI | 05431014 | 8.96 | C,SED | 1984-85 | | | | | | 1993-95 | | Delavan Lake Trib at South Shore Drive at Delavan, WI | 05431018 | 9.99 | SED,C | 1984-85, 1990-91 | | Livingston Branch Pecatonica River near Livingston, WI | 05432055 | 16.4 | T | 1987-91 | | | | | DO | 1987–91 ¹ | | Yellowstone River near Blanchardville, WI | 05433500 | 28.5 | T | 1954-60 | | | | | SED | 1958-60, 1978-79 | | Steiner Branch near Waldwick, WI | 05433510 | 5.90 | T,SC,SED,C | 1978-79 | | Pecatonica River at Martintown, WI | 05434500 | 1,034 | SED | 1980-82 | | Mount Vernon Creek near Mount Vernon, WI | 05436000 | 16.4 | T | 1954-60 | | | | | SED | 1956-60 | | Sugar River near Brodhead, WI | 05436500 | 523 | SED | 1978–86 | | | ILLINOIS RIVE | R BASIN | | | | Birches Creek at Lackey Lane near Lake Geneva, WI | 05545133 | 2.07 | T
SED,C | 1998–2000
1997–1999 | | Powers Lake Tributary at Powers Lake, WI | 05548163 | 1.83 | C | 1987 | | | | | | | Seasonal record, non-freezing periods Numerous periods of missing record Station currently in operation for constituents(s) not listed here #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with local, State and Federal agencies, obtains a large amount of data pertaining to the water resources of Wisconsin each year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the state. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Wisconsin." Lake stage and inlake water-quality data previously published in this series are now published annually in a report series "Water-Quality and Lake-Stage Data for Wisconsin Lakes." This
Open-File Report series began in 1994; 2003 water year data for lakes are published in OF 2004-1087. Water-resources data for Wisconsin for the 2003 water year includes records of streamflow at gaging stations, partial-record stations, and miscellaneous sites; stage and contents of lakes and reservoirs; chemical, physical, and biological characteristics of surface and ground water; and water levels in observation wells. Records from several stations in bordering states are also included. This report contains discharge records from 171 gaging stations and peak stage and discharge from 84 crest-stage stations; stage for 9 lakes and contents for 24 reservoirs; water-quality data from 40 streams and from 3 lakes; precipitation from 19 sites; and water-level records from 40 observation wells. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published in this report as miscellaneous measurements. This series of annual reports for Wisconsin began in the 1961 water year with streamflow data, the 1964 water year with water-quality data, and the 1971 water year with ground-water data. Beginning with the 1975 water year, streamflow, water-quality, and ground-water data for each state were published in present format. These annual reports are for sale, in paper copy or microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 2216l. Recent versions of these reports can be found online. Visit: http://wi.water.usgs.gov/pubs and then click on "online publications". Prior to introduction of this series and for several water years concurrent with it, water-resources data for Wisconsin were published in U.S. Geological Survey Water-Supply Papers. Records of stream discharges and of water levels in lakes and reservoirs were published annually through 1960 and then for the 5-year periods 1961-65 and 1966-70 in the series "Surface-Water Supply of the United States". Chemical-quality, water-temperature, and suspended-sediment data were published annually, from 1941 to 1970, in the series "Quality of Surface Waters of the United States." Records of ground-water levels were published annually from 1935 to 1974, in the series "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Box 25425, Federal Center, Denver, CO 80225. Publications similar to this report are published annually by the Geological Survey for all states. These official Survey reports have an identification number consisting of the two-letter state abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report WI-03-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. Additional information, including current prices for ordering specific reports, may be obtained from the District Chief at the address given on the back of the title page, or by telephone (608)828-9901. Water-resources data, including stage and discharge data at most streamflow-gaging stations, water levels in selected wells, and some water-quality data, are available through the World Wide Web on the Internet. Current and historical data provided in water-data reports are available. The Universal Resource Locator (URL) to the Wisconsin District's home page is: http://wi.water.usgs.gov/. Information on all U.S. Geological Survey reports and products (including maps, images, and computerized data) is available by calling 1-888-ASK-USGS. Additional earth science information is available by accessing the U.S. Geological Survey Home Page at http://www.usgs.gov. #### COOPERATION The U.S. Geological Survey and the State of Wisconsin have worked under cooperative agreements since 1913 collecting streamflow data, since 1955 collecting water-quality data, and since 1964 collecting ground-water level data. Agencies that worked cooperatively with the Survey during this year collecting data are: Bad River Band of Lake Superior Chippewa Indians **Bayfield County** Black River Falls Municipal Utilities City of Barron City of Beaver Dam City of Delafield City of Fond du Lac City of Hillsboro City of Madison City of Middleton City of Muskego City of Peshtigo City of Sparta City of Thorp City of Waupun Dane County Department of Planning and Development Dane County Department of Public Works Dane County Regional Planning Commission: City of Madison City of Middleton Village of Westport Department of Agriculture, Trade and Consumer Protection Federal Energy Regulatory Commission Licensees: Appleton Papers Dairyland Power Cooperative Excel Energy (NSP) Stora Enso Wisconsin Electric Power Company Wisconsin Public Service Corporation Wisconsin Valley Improvement Company Fontana/Walworth Water Pollution Control Commission Geneva Lake Environmental Agency Green Bay Metropolitan Sewerage District Green Lake Sanitary District Illinois Department of Transportation Kickapoo Valley Reserve Lac Courte Oreilles Tribe Lac du Flambeau Band of Lake Superior Chippewa Little Muskego Lake District Little St. Germain Lake District Madison Metropolitan Sewerage District Menominee Indian Tribe of Wisconsin Milwaukee County Oneida Indian Tribe of Wisconsin Price County Rock County Public Works Department Sokaogon Chippewa Community, Mole Lake Band Southeastern Wisconsin Regional Planning Commission: Milwaukee Metropolitan Sewerage District Waukesha County City of Racine Kenosha Water Utility Stockbridge/Munsee Indian Tribe The University of Wisconsin-Extension, Geological and Natural History Survey Town of Delavan U.S. Army Corps of Engineers U.S. Department of Agriculture, Dairy Forage Research Center Village of Wittenberg Walworth County Metropolitan Sewerage District Wisconsin Department of Natural Resources Wisconsin Department of Transportation Wisconsin Historical Society, Wade House Historic Site The following organizations aided in collecting streamflow records: Appleton Papers, Excel Energy (NSP) and Wisconsin Valley Improvement Co. Organizations that provided data are acknowledged in station descriptions. #### SUMMARY OF HYDROLOGIC CONDITIONS #### Streamflow The statewide average precipitation for the 2003 water year was 27.42 inches, which was 5.22 inches less than the normal annual precipitation of 32.64 inches for water years 1971-2000. Average precipitation values affecting streamflow conditions ranged from 67 percent in southeast Wisconsin to 99 percent in northeast Wisconsin with a statewide average of 84 percent (summary tables provided by Ed Hopkins, State Climatology Office, University of Wisconsin, Madison, written commun., 2004). The year started out with above normal precipitation for the state in October, especially the northern and central parts of the state. The only exception to this was the southeast region of the state, which had close to normal precipitation at 97% of the normal 1970-2000 October precipitation. The statewide October average precipitation was 159% of normal October precipitation. For the next 3 months all regions of the state were very dry. Statewide precipitation in November was only 18% of normal; December was 44% of normal and January was 31% of normal. In February, the statewide average precipitation was still only 66% of normal but the north central (100%) and northeast (111%) regions were near normal while the south central (28%) and southeast (27%) were very dry. The remaining regions of the state were also quite dry, ranging from 44% of normal in the southwest region to 77% in the west central region. In March, the northern and central regions of the state had close to normal precipitation while the southern regions remained dry (71% of normal). In April, the southern regions of the state were again drier than normal (55%), the central regions were moderately drier than normal (85%) and the northern regions were slightly wetter than normal (135%), especially the north central region with precipitation 157% of normal. In May, the statewide average precipitation was 142% of normal. The southern part of the state finally got some relief with precipitation 159% of normal, the northern regions of the state had 131% of normal and the central regions of the state received 139% of the normal precipitation. In June, all regions of the state had below normal precipitation except for the northwest, which was near normal at 103%. The southern part of the state was again the driest part of the state at 66% of normal; the central part of the state had 85% and the northern part of the state had 89% of normal precipitation. In July, the statewide average precipitation was 83% of normal with all regions falling below normal except for the east central region, which had 127% of normal precipitation. August statewide precipitation was 48% of normal with all regions falling below normal. In September, the statewide precipitation was 85% of normal with all regions falling below normal except the northeast which had 120% of normal precipitation. The southeast region (57%), the west central region (66%) and the north central regions (71%) were considerably below normal. To summarize the 2003 water year precipitation on a statewide basis, it was a near normal fall and spring with a very dry winter and a dry summer. Runoff for rivers in the state ranged from 22 percent of the average annual runoff (1985-2003) at the Beaver Dam River station in the east-central part of the state to 167 percent of the average annual runoff (1914-1920 and
1986-2003) at the Apple River station near Sommerset in the northwest part of the state. Runoff in the 2003 water year for stations with drainage areas greater than 150 square miles and at least 20 years of record is shown in figure 1. Figure 1. 2003 runoff as percentage of long-term average runoff. Annual discharges for the individual water years (1916-2003) at the Oconto River near Gillett, Jump River at Sheldon, and Sugar River near Brodhead are shown in Figure 2. Comparisons between the monthly and annual discharges for the 2003 water year and an 88-year period at the same three gaging stations are shown in Figure 3. Water year 2003 was a dry year – it will be remembered more for low-flows than flooding. In mid-August, Governor Doyle declared a statewide emergency for farmers due to the dry conditions (Wisconsin State Journal, 8/20/03). Fifteen stations had annual minimum 7-consecutive day average flows (Q7) that equaled or exceeded their 10-year recurrence intervals. Several of them were the lowest on record, including the Root River near Franklin, which exceeded the 100-year recurrence interval. The Q7 values, the date of occurrence and the recurrence intervals for these stations are listed in table 1. **Figure 2.** Comparison of annual discharge at representative gaging stations to their long-term average discharge for water years 1916–2003. **Figure 3.** Comparison of discharge at representative gaging stations during 2003 water year with discharge for 1916–2003. Table 1. Stations where the lowest mean discharge for 7 consecutive days (Q7) had recurrence intervals of 10 or more years | | | | | | Approximate | |--------------------|-------------------------------------|----------|---------|----------|------------------| | | | Years of | | | recurrence | | Station number | Station name | Record | Date | Q7 (cfs) | interval (years) | | 04073462 | White Cr. near Green Lake | 13 | Jan. 13 | 0.01* | 40 | | 04073468 | Green Lake Inlet near Green Lake | 16 | Jan. 21 | 1.2* | 40 | | 04073500 | Fox River at Berlin | 106 | Sep. 4 | 340 | 10 | | 04074950 | Wolf River at Langlade | 37 | Jan. 23 | 150 | 25 | | 04077630 | Red River at Morgan | 12 | Jan. 21 | 57* | 15 | | 04085200 | Kewaunee River near Kewaunee | 39 | Jan. 19 | 6.1* | 80 | | 04087030 | Menomonee River at Menomonee Falls | 28 | Feb. 9 | 1.1 | 25 | | 04087120 | Menomonee River at Wauwatosa | 29 | Sep. 1 | 5.7 | 15 | | 04087220 | Root River near Franklin | 41 | Sep. 6 | 0.99* | >100 | | 04087240 | Root River at Racine | 41 | Jan. 21 | 2.0 | 40 | | 05365707 | N. Fork Eau Claire River near Thorp | 18 | Sep. 5 | 0.18 | 30 | | 05382325 | La Crosse River at Sparta | 12 | Aug. 18 | 87* | 20 | | 05394500 | Prairie River near Merrill | 82 | Jan. 18 | 55 | 50 | | 05402000 | Yellow River at Babcock | 59 | Sep. 5 | 3.3 | 10 | | 05544200 | Mukwonago River at Mukwonago | 31 | Sep. 5 | 8.3 | 15 | | * indicates the lo | west 07 on record | | | | | ^{*} indicates the lowest Q7 on record Water year 2003 had only a few instances of minor localized flooding and none of the continuously gaged rivers in the state had record flood peaks. However, there were several sites that had peak discharges of note. Stations that recorded a peak discharge that equaled or exceeded the 5-year recurrence interval are listed in table 2. Table 2. Stations that recorded a peak discharge that equaled or exceeded the 5-year recurrence interval | Station | | Drainage | | Instanta-
neous peak
discharge | Peak of record | Approximate recurrence interval | |--------------------------|--|-------------------------|---------|--------------------------------------|----------------|---------------------------------| | number | Station name | area (mi ²) | Date | (ft^3/s) | (y/n) | (years) | | 04026450 | Bad River near Mellen | 82.0 | May 12 | 2,880 | у | 75** | | 04027000 | Bad River near Odanah | 597 | May 12 | 20,600 | n | 50 | | 04027200 | Pearl Creek at Grandview | 16.9 | May 11 | 395 | n | 10 | | 04027500 | White River near Ashland | 301 | May 11 | 4,500 | n | 8 | | 04029990 | Montreal River at Saxon Falls | 262 | May 12 | 8,520* | n | 75 | | 04074850 | Lily River near Lily | 45.6 | Apr. 21 | 127 | n | 5 | | 0407809265 | Middle Br. Embarrass River near Wittenberg | 76.3 | Apr. 17 | 693 | n | 7 | | 05332500 | Namekagon River near Trego | 488 | Oct. 8 | 1,950* | n | 7 | | 05341500 | Apple River near Somerset | 579 | May 15 | 2,450 | n | 40 | | 05356000 | Chippewa River near Winter | 790 | May 12 | 5,560 | n | 9 | | 05356500 | Chippewa River near Bruce | 1650 | May 12 | 15,200 | n | 8 | | 05360500 | Flambeau River near Bruce | 1860 | May 13 | 17,400 | n | 20 | | 05357225 | Stevenson Cr-Boulder Jct | 7.96 | Jul. 3 | 29 | n | 40 | | 05357245 | Trout River near Boulder Jct | 46.2 | May 12 | 88 | n | 9 | | 05365500 | Chippewa River at Chippewa Falls | 5650 | May 13 | 54,500 | n | 6 | | 05369500 | Chippewa River at Durand | 9010 | May 14 | 64,400 | n | 6 | | 05392150 | Mishonagon Creek near Woodruff | 17.6 | May 12 | 99.3 | n | 20 | | 05392350
* mean daily | Bearskin Creek near Harshaw Q | 31.1 | May 12 | 106 | n | 7 | ^{*} mean daily Q #### References: Hopkins, E., Wisconsin State Climatology Office, written communication, 2004, -- Wisconsin rainfall statistics for water year 2003. J.F. Walker and W.R. Krug, 2003, Flood-frequency Characteristics of Wisconsin Streams: U.S. Geological Survey Water Resources Investigations Report 03-4250, 185 p. ^{**} recurrence interval statistics updated with data through water year 2002 Walker, J.F. U.S.Geological Survey, written communication, 2003, -- updated flood-frequency characteristics of selected Wisconsin streams through 2002 Wisconsin Agricultural Statistics Service, 2002, Wisconsin Crop Weather – Review of the 2002 Crop Year: U.S. Department of Agriculture, Wisconsin Agricultural Statistics Service, Madison, Wis., 8 p. Wisconsin Agricultural Statistics Service, 2003, Wisconsin Crop Weather – Review of the 2003 Crop Year: U.S. Department of Agriculture, Wisconsin Agricultural Statistics Service, Madison, Wis., 8 p. Wisconsin State Journal, Doyle declares statewide emergency for farmers: Move will aid irrigating some fields: August 20, 2003. #### Water Quality Suspended-sediment yields from four watersheds in southern Wisconsin in water year 2003 ranged from 12 to 53 percent of normal, as indicated by loads measured at relatively long-term monitoring sites on these watersheds. Sediment yields at Grant River in southwestern Wisconsin were only 12 percent of normal. The low yields at Grant River likely were caused by the absence of large storm-runoff events and generally less than normal runoff, as annual discharge was 71 percent of normal. Yahara River at Windsor in south-central Wisconsin experienced a 23 percent of normal sediment yield, and corresponding annual discharge, which was 64 percent of normal. Sediment yield at Jackson Creek Tributary near Elkhorn in southeastern Wisconsin was 35 percent of normal and discharge was 45 percent of normal. At Green Lake Inlet (Silver Creek) near Green Lake sediment yield was 53 percent of normal, whereas, discharge was only 52 percent of normal. Phosphorus yields in water year 2003 from three watershed in southern Wisconsin, on which there are long-term monitoring sites, were below normal. Yields at these sites ranged from 28 to 46 percent of normal. The phosphorus yield for Yahara River at Windsor was 33 percent of normal, the yield for Jackson Creek Tributary was 28 percent of normal, and the yield for Green Lake Inlet was 46 percent of normal. #### **Ground-Water Levels** In general, shallow ground-water levels during the 2003 water year were normal to above normal for most of the wells in the State. Wells in Door, Jackson, and Marquette Counties had below normal ground-water levels at the beginning of the water year, and these levels remained below normal for the entire water year. The large extent of normal and above-normal ground-water levels can be attributed to near normal rainfall during the 2003 water year and normal rainfall during the previous water year. #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/. National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and
re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/. The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/nawqa_home.html. #### EXPLANATION OF THE RECORDS The surface-water and ground-water records published in this report are from the 2003 water year that began October 1, 2002, and ended September 30, 2003. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data; stage and content data for lakes and reservoirs; precipitation data; surface and ground water; and ground-water-level data. Figure 4 shows major surface-water drainage basins and an index of hydrologic records. The locations of the stations and wells where the data were collected are shown in basin location maps and figure 5. The following sections of introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. #### Station Identification Numbers In this report each data station, whether streamsite or well, is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order number" is used for most surface-water stations on streams and a unique 15-digit number is used for lakes, wells, and precipitation monitoring sites. #### Downstream Order and Station Number Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. No station-number distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight- to ten-digit number for each station, such as 04087000, 054310157, or 0407809265, which appears just to the left of the station name, includes the two-digit Part number "04" or "05" plus the six- to eight-digit downstream-order number ("087000", "4310157", or "07809265"). The Part number designates the major river basin; for example, records in this report are in Part 04 (St. Lawrence River basin) or Part 05 (Upper Mississippi River basin). In some special cases, stations on streams may be identified with the numbering system used for ground-water and lake-data sites described in the following paragraph. This is generally done only for special purpose short-term stations where station density precludes convenient assignment of downstream order numbers. #### Numbering System for Ground-Water, Lake, and Precipitation Data Sites Wells, springs, sites on lakes, and precipitation gages where data are collected are identified by a unique 15-digit number that is a concatenation of the site's latitude, longitude, and a two-digit sequence number. The sequence number is used to distinguish between sites located at the same latitude-longitude designation. The site identification number is permanently assigned to the site; actual latitude and longitude of the site are subject to update and are stored separately. Each ground-water site is also identified by a local number based on the cadastral-survey system of the U.S. Government. The number consists of an abbreviation of the county name, the township, range and section, and a four-digit number assigned to the well. #### Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained from a continuous stage-recording device by which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained from a continuous stage-recording device, but need not be. Because daily mean discharges are commonly published for such stations, they are referred to as "daily stations." By contrast, partial records consist of discrete measurements, without using a continuous stage-recording device. Two types of surface-water partial-record stations are operated: (1) crest-stage partial-record stations, for which maximum discharge is recorded; and (2) miscellaneous stations, for which periodic discharge measurements and/or limited water-quality analyses are made. Each type of station is presented separately in this report. #### **Data Collection and Computation** The basic data collected at complete-record gaging stations include stage and discharge measurements of streams, and stage, surface area, and content measurements of lakes and reservoirs. Factors affecting stage-discharge relationships, weather records, and other information supplement the basic data used to determine daily flow. Records of stage are obtained by reading a non-recording gage, from a continuous graph, from a tape punched at selected intervals on a water-stage recorder, or from electronic data logger. Measurements of discharge are made with a current meter by using methods described in "U.S. Geological Survey Techniques of Water Resources Investigations" listed in "Publications on techniques of water-resources investigations." Rating tables of stream stage and corresponding discharges are prepared from stage-discharge relationship curves. Extended-rating curves, based on step-backwater techniques, velocity-area studies, logarithmic plotting, and indirect measurements of peak discharge are used to estimate discharges greater than those measured. Daily mean discharges are computed from gage heights and rating tables, and the monthly and yearly means are computed from the daily figures. If the stage-discharge
relationship varies due to changes in the control, such as aquatic growth, debris, or scour and fill, daily mean discharge is computed by a shifting-control method in which correction factors, based on individual discharge measurements and notes by observers, are used when the gage heights are applied to the rating tables. The slope method is used to compute discharge at stream-gaging stations where backwater from lakes or reservoirs, tributary streams, or other sources affect the stage-discharge relationship. Acoustic velocity meters have also been installed at some locations where aforementioned problems occur. The rate of change of stage is used to compute discharge at stations where the stage-discharge relationship is affected by rapid changes in stage. When ice conditions at stream-gaging stations affect the stage-discharge relationship, gage-height records, winter discharge measurements, temperature and precipitation data, and comparable records of discharge for nearby stations are used to compute discharge. At gaging stations where gage-height records are faulty or non-existent for some periods, the daily discharges are estimated based on the recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for nearby stations. Descriptions of the stations and tabulations of data are included in this report. A table showing daily, monthly, and yearly discharges is given for each gaging station on a stream or canal. A table showing the monthly summary of stage is given for gaging stations on lakes. #### **Data Presentation** Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1992 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or stations manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences. The records published for each continuous-record surface-water discharge station (gaging station) now consists of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. #### Station manuscripts The manuscript provides, under various headings, descriptive information such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were provided by the U.S. Army Corps of Engineers or other agencies. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of map available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. All the reports in which revisions have been published for the station and the water years to which the revisions apply are listed under this heading. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see definition of terms), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations, or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify an estimated record, this information will be presented as the first entry of the paragraph. The paragraph is also used to present information about the accuracy of the records, special methods of computation, conditions that affect natural flow at the station and any other pertinent items. COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.--Information concerning major floods or unusually low flows that occurred outside the stated period of record is included here. The information may or may not have been obtained by the U.S. Geological Survey. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although it is rare, occasionally the records of a discontinued gaging station may need revision. Because there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations, who obtained the record from previously published data reports, may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. If the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. The data presented for most gaging stations on lakes include a description of the station and a monthly summary table of stage. Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. The RATING TABLE heading has also been deleted. No changes have been made to the data presentation of lake contents. #### Data table of daily mean values The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month is usually also expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, or if the drainage area includes large noncontributing areas. #### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS _______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. #### Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period as appropriate. The designated period selected, "WATER YEARS ______," will consist of all of the station record within the specified water years, inclusive, including complete months of record for
partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL" 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. HIGHEST ANNUAL MEAN .-- The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN .-- The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) MAXIMUM PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript. MAXIMUM PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMAKRS paragraph in the manuscript or a footnote may be used to provide further information. INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area. Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. 10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period. 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period. 90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period. Data collected at crest-stage partial-record stations are given in a table of annual maximum stages and discharges that follows the information for continuous-record sites. The crest-stage partial-record stations table is followed by a list of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for special reasons are called measurements at miscellaneous sites. Identifying Estimated Daily Discharge Estimated daily-discharge values are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description. #### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true value; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ${\rm ft}^3/{\rm s}$; to the nearest tenth between 1.0 and 10 ${\rm ft}^3/{\rm s}$; to the nearest whole number between 10 and 1,000 ${\rm ft}^3/{\rm s}$; and to 3 significant figures for more than 1,000 ${\rm ft}^3/{\rm s}$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, or changes in contents or reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents. #### Other Records Available Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Wisconsin District office. Also, most of the daily mean discharges are in computer-readable form and have been statistically analyzed. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office. #### Records of Surface-Water Quality Records of stream-water quality ordinarily are obtained at or near streamgaging stations, because interpretation of records of stream-water quality nearly always requires corresponding stream discharge data. The stream discharge shown with a water-quality analysis is the instantaneous value corresponding to the time of sample collection ("Streamflow, Instantaneous") whenever possible. When an instantaneous discharge value is not available, the daily mean discharge ("Discharge, in Cubic Feet per Second") is given if available. Water samples from lakes are collected at locations identified by latitude and longitude; the depth at which the sample was collected is given with each analysis. Records of surface-water quality in this report include a variety of types of data and measurement frequencies. #### Classification and Arrangement of Records The water-quality data collected at surface-water sites fall into two general classifications. Continuous-record stations are sites where data are collected on a regularly scheduled basis as part of a monitoring program or interpretive investigation. Water-quality records for these stations accompany stream-discharge or lake-stage records, where available, in the Surface Water Records section of this report. More limited water-quality data are collected at gaging stations and other sites on streams. These data include measurements of water temperature and specific conductance made at gaging stations and water-quality analyses of samples collected at gaging stations and other sites on streams for reconnaissance and other special purposes. These data are presented separately at the end of the Surface-Water Records section. #### On-site Measurements and Sample Collection
In obtaining water-quality data, care is taken to assure that the data obtained represent the quality of the water at the time of sampling. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen concentration, are made on site when the samples are taken. To assure that measurements made in the laboratory also reflect the original quality of the water, prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are detailed in the TWRI Book 1, Chapter D2: Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These references are listed in the PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS section of this report. These methods are consistent with ASTM standards and generally follow ISO standards. One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections using depth-integrating samplers to obtain a representative sample needed for an accurate mean concentration and for use in calculating the discharge of suspended and dissolved materials. Water quality in lakes may differ with depth and laterally at a particular depth depending on thermal stratification and other physical and biological factors. Water-quality data published in this report are considered to be representative values for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. For chemical-quality stations equipped with digital monitors, daily maximum, minimum, and mean values for each constituent or property are computed and reported herein. Records of recorded values used in the computations are on file at the U.S. Geological Survey (USGS) Wisconsin District Office. #### Transport of suspended and dissolved materials Samples used for computing discharge of suspended and dissolved materials (suspended sediment, suspended solids, phosphorus, and nitrogen) are collected using a number of sampling methods. Sample types include flow-integrated samples collected using a depth-integrating sampler at multiple locations in a stream cross section (equal-width increment or EWI samples), samples collected using depth-integrating sampler at a single location in a cross section, or point samples collected by an automated sampler from a single point in a cross section. Coefficients are used to compensate for concentration differences between flow-integrated samples and samples collected at single points or single locations. Samples are collected more frequently during periods of rapidly-changing stream discharge than during stable periods. Discharges of suspended and dissolved materials for days of rapidly-changing stream discharge are computed by the subdivided day (time-discharge weighted average) method. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3 listed in PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS. These methods are consistent with ASTM standards and generally follow ISO standards. For periods when no samples were collected, discharges of suspended and dissolved material are estimated from stream discharge and constituent concentrations from adjacent time periods and periods with similar stream discharges. Suspended-sediment and suspended-solids discharges of less than 0.005 tons/day are reported as 0.00 tons/day, and phosphorus and nitrogen discharges of less than 0.005 pounds per day (lb/day) are reported as 0.00 lb/day. In addition to the records of suspended-sediment discharge and concentration, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. #### Laboratory Measurements Samples for suspended-sediment concentration and particle-size determination are analyzed by the USGS Iowa District Sediment Laboratory. Chemical analyses, other than field measurements, are done by the USGS National Water Quality Laboratory unless indicated otherwise in the descriptive heading for the station. Methods used by USGS laboratories to analyze water and sediment samples and to compute sediment records are described in the TWRI Book 5, Chapter C1. Methods used by the U.S. Geological Survey laboratories are given in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with ASTM standards and generally follow ISO standards. In March 1989, the USGS National Water-Quality Laboratory discovered a bias in their turbidimetric method for sulfate analysis, indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and July 1989. The magnitude of the bias differs among stations. A problem has been identified with total phosphorus and total Kjeldahl nitrogen analyses done by the USGS National Water Quality Laboratory prior to Oct. 1, 1991. Some time after 1975, an error was introduced during a rewrite of the laboratory method for digestion of samples for total phosphorus or total Kjeldahl nitrogen analyses. The error resulted in incomplete digestion of samples causing a negative bias in the total phosphorus and total Kjeldahl nitrogen concentrations reported for many samples. The amount of bias is variable, but it generally increases with increasing concentrations of particulate phosphorus, suspended sediment, or organic carbon in the sample. In the absence of split-sample data, there is no scientifically defensible way to correct for the bias. Total phosphorus loads calculated using concentration data for samples analyzed prior to October 1991 may also have a sizeable negative bias. A new digestion procedure was implemented effective Oct. 1, 1991, that eliminated the bias. # Dissolved Trace-Element Concentrations Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (η g/L). Data above the η g/L level should be reviewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year. # Sampling Method Codes Water-quality analyses stored in USGS computer files (WATSTORE) contains codes that identify the sampling method used to collect the sample. Codes in use for Wisconsin data are as follows: | Method | Method Code | |---------------------------------|-------------| | Equal Width Increment (EWI) | 10 | | Equal Discharge Increment (EDI) | 20 | | Single Vertical | 30 | | Multiple Vertical | 40 | | Point Sample | 50 | | Weighted Bottle | 60 | | Grab Sample | 70 | | Van Dorn Sampler | 100 | | Submersible Pump | 4040 | | Peristaltic Pump | 4080 | | | | # Collecting and Analyzing Agencies All water-quality analyses stored in USGS computer files (WATSTORE) contain codes that identify the agencies that collected the sample (collecting agency) and analyzed it (analyzing agency). Codes in use for Wisconsin data are as follows: | Agency Code | |-------------| | 1028 | | 80020 | | 85543 | | 85545 | | | Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, laboratories (if other than USGS), cooperation, and extremes for daily discharges of suspended and dissolved materials. For each station, tables of data collected at less-than-daily frequency are presented first followed by tables of daily values. The concentrations of some constituents are given as less than a particular value (see "Remark Codes"); that value is the detection for the analytical method used for the analysis. Occasionally these values differ, or an actual concentration is given that is less than a higher detection limit indicated for the constituent in another analysis. These differences are due to differences in analytical methods. The five-digit numbers in parentheses in column headings in many of the water-quality tables are codes that identify the constituent or property in USGS computer files (WATSTORE). In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published
water-quality records for the station. The periods are shown separately for records of constituents or properties measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for each constituent or property. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, automated sediment sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. Laboratories other than USGS laboratories are identified. COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximum and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of USGS water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates or check with the District Office to determine if updates were made. The surface-water-quality records for water-quality partial-record stations are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its station number and name in the regular downstream-order sequence. #### Remark Codes The following remark codes may appear with the water-quality data in this report: | PRINTED OUTPUT | REMARK | |----------------|---| | E, e | Estimated value | | > | Actual value is known to be greater than the value shown | | < | Actual value is known to be less than the value shown | | K | Results based on colony count outside the acceptance range (non-ideal colony count) | | M | Presence of material verified but not quantified | | U | Material specifically analyzed but not detected | | V | Analyte was detected in both the environmental and the associated blanks | #### Records of Ground-Water Levels Water-level data for 40 wells are given in this report. The locations of these wells are shown in figure 5. These wells are part of a national network of observation wells, and the water-level data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Data in this report represent natural water-table and artesian conditions in the principal aquifers of the State, except in the sandstone aquifer in southeastern Wisconsin where heavy municipal and industrial pumping is causing a continual decline in the water level. Water in this aquifer is under artesian pressure where confined by the overlying Maquoketa Shale. Although records of water levels for 40 wells are presented in this report, water-level data are currently being collected for a total of 116 wells in Wisconsin through a cooperative program with the Wisconsin Geological and Natural History Survey (WG&NHS). Wells not published in this report are listed after figure 5. Many federal, state, county and local agencies, as well as interested area residents, assist in this program by measuring and reporting water levels. All water level data are placed in computer storage Data can be accessed from the web site: http://water.usgs.gov and clicking on ground water. Reports containing hydrographs, showing water-level changes in all of these wells, are periodically published by the WG&NHS. The amplitude of water-level changes is typified by seven well hydrographs in this report that show annual maximum and minimum water levels for the period of record. #### **Data Collection and Computation** Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are consistently accurate and reliable. Tables of water-level data are presented by county arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the heading. It is followed by the secondary identification number (the local number), that consists of a two-letter abbreviation of the county name, the township-range-section location of the well, and a four-digit identification number that is unique within the county. Water-level records are obtained from direct measurements with a steel tape or from a continuous water-level recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the lsd above sea level and the distance of the measuring point (MP) above or below the lsd is given in each well description. Water levels are normally reported to a hundredth of a foot. The absolute value of the depth to water may be in error by a few tenths of a foot, but the error in determining the net change in water level between successive measurements is normally only a hundredth or a few hundredths of a foot. #### **Data Presentation** Each well record consists of two parts, the station description and the data table of water levels observed during the water year. The description of the well precedes the tabular data. The comments below clarify information presented under the various headings. LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; and the land owner's name. AQUIFER.--This entry designates by name the primary aquifer(s) open to the well. WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, and use. INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method. DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of casing, top of breather pipe, hole in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision dependent on the method of determination. REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence. A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, only abbreviated tables are published; daily lows are listed for every fifth day and at the end of the month (eom). For these wells the highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for these wells, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. #### ACCESS TO U.S. GEOLOGICAL SURVEY WATER DATA The U.S. Geological Survey provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at http://water.usgs.gov Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (See address on the back of the title page.) #### **DEFINITION OF TERMS** Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units. Other glossaries that also define water-related terms are accessible from http://water.usgs.gov/glossaries.html. Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). **Acre-foot** (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") **Adenosine triphosphate** (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. **Adjusted discharge** is discharge data that have been mathematically adjusted (for example, to remove the effects of a daily tide cycle or reservoir storage). **Algal growth potential** (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight") **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample. **Annual runoff** is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. **Annual 7-day minimum** is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.) **Aroclor** is the registered trademark for a group of poly-chlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine. **Artificial substrate** is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass") **Aspect** is the direction toward which a slope faces with respect to the compass. **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. **Bankfull stage,** as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals. **Base discharge** (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow") **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load. **Bedload discharge** (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge") **Bed material** is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality. **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. **Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index. **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Bottom material** (See "Bed material") **Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock. **Canadian Geodetic Vertical Datum 1928** is a geodetic datum derived from a general adjustment of Canada's first order level network in 1928. **Cells/volume** refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L). Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm^3) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $$4/3 \pi r^3$$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$. pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159.... From cell volume, total algal biomass expressed as biovolume (µm³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species. Cfs-day (See "Cubic foot per second-day") Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed. **Chemical oxygen demand** (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental
stresses. (See also "Bacteria") **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment. **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. **Confined aquifer** is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. **Control** designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. **Control structure**, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. **Cubic foot per second** (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete. **Cubic foot per second-day** (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. **Cubic foot per second per square mile** [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") **Daily mean suspended-sediment concentration** is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration") **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. **Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. **Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") **Diatoms** (*Bacillariophyta*) are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle. **Discharge**, or **flow**, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. **Dissolved-solids concentration** in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60. **Diversity index** (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") **Dry mass** refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") **Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class") **Enterococcus bacteria** are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis*, *Streptococcus feacium*, *Streptococcus avium*, and their variants. (See also "Bacteria") **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Estimated (E) concentration value** is reported when an analyte is detected and all criteria
for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). **Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton") **Extractable organic halides** (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment. **Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fecal streptococcal bacteria** are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading. **Gage height** (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. **Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals. **Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. **Gas chromatography/flame ionization detector** (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. **Geomorphic channel units**, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Habitat**, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution. **Habitat quality index** is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. **Hardness** of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html **Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$HBI = sum \frac{(n)(a)}{N} ,$$ where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") **Hydrologic index stations** referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number. **Inch** (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") **Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge") **International Boundary commission Survey Datum** refers to a geodetic datum established at numerous monuments along the United States-Canada boundary by the International Boundary Commission. **Island**, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events. Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.] Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter. **Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation: $$I = I_{\circ}e^{-\lambda L}$$, where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-term method detection level (LT-MDL) is a
detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. **Low tide** is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html **Macrophytes** are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge") Mean high or low tide is the average of all high or low tides, respectively, over a specific period. **Mean sea level** is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. Megahertz is a unit of frequency. One megahertz equals one million cycles per second. **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. **Metamorphic stage** refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult. **Method detection limit** (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. **Method of Cubatures** is a method of computing discharge in tidal estuaries based on the conservation of mass equation. **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. **Micrograms per gram** (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. **Micrograms per kilogram** (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion. Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. **Milligrams per liter** (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture. **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method. **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin. **Most probable number** (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. **Nanograms per liter** (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. **National Geodetic Vertical Datum of 1929** (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. *See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88* (See "North American Vertical Datum of 1988") **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate") **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. **North American Datum of 1927** (NAD 27) is the horizontal control datum for the United States that was defined by a location and azimuth on the Clarke spheroid of 1866. **North American Datum of 1983** (NAD 83) is the horizontal control datum for the United States, Canada, Mexico, and Central America that is based on the adjustment of 250,000 points including 600 satellite Doppler stations that constrain the system to a geocentric origin. NAD 83 has been officially adopted as the legal horizontal datum for the United States by the Federal Government. **North American Vertical Datum of 1988** (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks. **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC). **Organic mass** or **volatile mass** of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass") **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. **Parameter code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. **Partial-record station** is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being
recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. **Particle size** is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). **Particle-size classification**, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classificat | tion Size (mm) | Method of analysis | |-------------|------------------|---------------------| | Clay | >0.00024 - 0.004 | Sedimentation | | Silt | >0.004 - 0.062 | Sedimentation | | Sand | >0.062 - 2.0 | Sedimentation/sieve | | Gravel | >2.0 - 64.0 | Sieve | | Cobble | >64 - 256 | Manual measurement | | Boulder | >256 | Manual measurement | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. **Peak flow (peak stage)** is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. **Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade. **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record. **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water. **Phytoplankton** is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton") **Picocurie** (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10^{10} radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. **Pool**, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas. **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") **Primary productivity (oxygen method)** is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") **Radioisotopes** are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. **Reach**, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data. **Recoverable from bed (bottom) material** is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") **Recurrence interval,** also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70
years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow ($7Q_{10}$) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the $7Q_{10}$ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. **Return period** (See "Recurrence interval") **Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation. **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river. **Run**, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence. **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") **Sea level,** as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. **Sediment** is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of pre-cipitation. **Sensible heat flux** (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter. **Seven-day, 10-year low flow** $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval") **Shelves**, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation. **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. **Soil heat flux** (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter. **Soil-water content** is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil. **Specific electrical conductance (conductivity)** is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. **Stable isotope ratio** (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") **Stage-discharge relation** is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. **Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. **Substrate** is the physical surface upon which an organism lives. **Substrate embeddedness class** is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment: 0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent **Surface area of a lake** is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. **Surficial bed material** is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers. **Surrogate** is an analyte that behaves similarly to a target analyte, but that is highly unlikely to occur in a sample. A surrogate is added to a sample in known amounts before extraction and is measured with the same laboratory procedures used to measure the target analyte. Its purpose is to monitor method performance for an individual sample. **Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended mate-rial collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") **Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") **Suspended-sediment concentration** is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") **Suspended-sediment discharge** (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration") **Suspended-sediment load** is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") **Suspended, total** is the total amount of a given constituent in the part of a
water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") **Suspended solids, total residue at 105** °C **concentration** is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis. **Synoptic studies** are short-term investigations of specific water-quality conditions during selected seasonal or hydro-logic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. Taxa (Species) richness is the number of species (taxa) present in a defined area or sampling unit. **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: Hexagenia Species: Hexagenia limbata Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel). **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration. **Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. **Total** is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) **Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria") **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. **Total in bottom material** is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. **Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume") **Total recoverable** is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. **Total sediment discharge** is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration") **Total sediment load** or **total load** is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load") **Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line. **Turbidity** is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. **Ultraviolet (UV) absorbance (absorption)** at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. **Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer") Vertical datum (See "Datum") Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings.
VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens. Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure. Water-table aquifer is an unconfined aquifer within which the water table is found. Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) **Weighted average** is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports. **Zooplankton** is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") #### TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required. Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required. # **Book 1. Collection of Water Data by Direct Measurement** #### Section D. Water Quality - 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p. - 1–D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p. # **Book 2. Collection of Environmental Data** # Section D. Surface Geophysical Methods - 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p. - 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p. ### Section E. Subsurface Geophysical Methods - 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p. - 2–E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p. # Section F. Drilling and Sampling Methods 2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p. # **Book 3. Applications of Hydraulics** # Section A. Surface-Water Techniques - 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p. - 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p. - 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p. - 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p. - 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p. - 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p. - 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p. - 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p. - 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p. - 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Alo. 1984. 59 p. - 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p. - 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p. - 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI book 3, chap. A13. 1983. 53 p. - 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p. - 3–A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p. - 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p. - 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p. - 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p. - 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p. - 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p. # Section B. Ground-Water Techniques - 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI book 3, chap. B1. 1971. 26 p. - 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p. - 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p. - 3–B4. *Regression modeling of ground-water flow,* by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p. - 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p. - 3–B5. *Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction*, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p. - 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p. - 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p. - 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p. # Section C. Sedimentation and Erosion Techniques 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p. - 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p. ### **Book 4. Hydrologic Analysis and Interpretation** # Section A. Statistical Analysis - 4–A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4,
chap. A1. 1968. 39 p. - 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p. - 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.) # Section B. Surface Water - 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p. - 4–B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI book 4, chap. B2. 1973. 20 p. - 4–B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p. # Section D. Interrelated Phases of the Hydrologic Cycle 4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p. # **Book 5. Laboratory Analysis** # Section A. Water Analysis - 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p. - 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p. - 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p. - 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p. - 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p. - 5–A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p. #### Section C. Sediment Analysis 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 p. # **Book 6. Modeling Techniques** #### Section A. Ground Water - 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p. - 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p. - 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p. - 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p. - 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p. - 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p. - 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p. # **Book 7. Automated Data Processing and Computations** # Section C. Computer Programs - 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p. - 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p. - 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p. #### **Book 8. Instrumentation** # Section A. Instruments for Measurement of Water Level - 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p. - 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p. # Section B. Instruments for Measurement of Discharge 8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p. # Book 9. Handbooks for Water-Resources Investigations # Section A. National Field Manual for the Collection of Water-Quality Data - 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p. - 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p. - 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p. - 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p. - 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p. - 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated. - 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p. - 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p. Figure 4. Major surface-water drainage basins and index of hydrologic records. ST. LAWRENCE RIVER BASIN RECORDS Base from U.S. Geological Survey 1:100 000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. LAKE SUPERIOR BASIN #### STREAMS TRIBUTARY TO LAKE SUPERIOR #### 04024430 NEMADJI RIVER NEAR SOUTH SUPERIOR, WI $LOCATION.--Lat\ 46^{\circ}38'00", long\ 92^{\circ}05'38", in\ SW\ ^{1}\!\!/_{\!\!4}\ sec.\ 14,\ T.48\ N.,\ R.14\ W.,\ Douglas\ County,\ Hydrologic\ Unit\ 04010301,\ on\ right\ bank\ at\ downstream\ side\ of\ bridge\ on\ County\ Trunk\ Highway\ C,\ 2.0\ mi\ south\ of\ South\ Superior\ and\ 7.8\ mi\ downstream\ from\ Black\ River.$ DRAINAGE AREA.--420 mi². PERIOD OF RECORD.--November 1973 to current year. REVISED RECORDS.--WDR WI-75-1: 1974(M). WDR WI-82-1: Drainage area and 1981. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 601.13 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | EXTREM | MES OUTSII | DE THE PE | RIOD OF RI | ECORDA | flood of Au | g. 17, 1972, | may have ex | ceeded flood | ls at this loca | ation since th | en. | | |--|--|--|--|---|--|---|--|--|---|---|--|--| | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 217
205
174
673
1,840 | 188
177
170
164
160 | e70
e67
e62
e58
e59 | e60
e60
e58
e57
e60 | e60
e60
e60
e59
e52 | e38
e39
e38
e38
e38 | e220
e800
e700
e500
e400 | 317
293
270
252
391 | 317
285
257
233
212 | 517
408
495
636
429 | 131
138
240
163
131 | 45
42
41
40
40 | | 6
7
8
9
10 | 1,100
1,280
840
632
505 | 159
155
151
151
152 | e60
e61
e62
e62
e62 | e64
e66
e66
e66 | e47
e44
e40
e40
e40 | e38
e39
e40
e41
e41 | e290
e300
e310
e460
e1,600 | 2,070
1,340
949
1,610
3,670 | 200
220
264
245
280 | 331
314
638
420
824 | 119
105
96
89
86 | 39
39
38
38
38 | | 11
12
13
14
15 | 420
411
650
474
373 | 147
141
133
e120
e100 | e64
e70
e74
e80
e82 |
e60
e59
e60
e60
e58 | e39
e38
e38
e38
e37 | e41
e42
e43
e43
e43 | e2,200
e1,300
e900
e700
611 | 2,370
2,280
1,710
1,280
1,010 | 1,000
815
578
454
363 | 1,710
930
602
469
662 | 99
98
86
78
72 | 37
49
107
93
74 | | 16
17
18
19
20 | 318
274
251
254
266 | e90
e80
e77
e78
e80 | e80
e76
e80
e85
e90 | e55
e55
e54
e53
e52 | e37
e37
e37
e38
e39 | e58
e100
e140
e130
e120 | 491
483
437
1,080
1,540 | 818
678
579
563
1,760 | 293
250
230
238
211 | 677
648
512
348
431 | 67
64
61
60
63 | 66
61
58
129
236 | | 21
22
23
24
25 | 252
244
239
225
210 | e80
e77
e76
e75
e75 | e85
e80
e75
e70
e66 | e51
e50
e50
e50
e51 | e40
e39
e39
e38
e37 | e130
e200
e300
e330
e360 | 2,280
1,450
943
735
606 | 1,390
989
816
702
596 | 182
161
1,820
3,200
1,770 | 293
233
200
177
159 | 60
58
55
55
53 | 161
132
118
107
96 | | 26
27
28
29
30
31 | 208
211
201
193
191
195 | e75
e77
e82
e81
e80 | e66
e62
e62
e64
e65
e65 | e52
e54
e54
e56
e58
e59 | e36
e36
e37
 | e300
e240
e180
e140
e200
e220 | 513
453
431
392
349 | 513
442
403
368
338
334 | 1,640
1,070
746
732
671 | 148
134
123
126
127
124 | 51
49
48
49
48
47 | 88
80
75
70
67 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 13,526
436
1,840
174
1.04
1.20 | 3,451
115
188
75
0.27
0.31 | 2,164
69.8
90
58
0.17
0.19 | 1,770
57.1
66
50
0.14
0.16 | 1,182
42.2
60
36
0.10
0.10 | 3,750
121
360
38
0.29
0.33 | 23,474
782
2,280
220
1.86
2.08 | 31,101
1,003
3,670
252
2.39
2.75 | 18,937
631
3,200
161
1.50
1.68 | 13,845
447
1,710
123
1.06
1.23 | 2,619
84.5
240
47
0.20
0.23 | 2,304
76.8
236
37
0.18
0.20 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 110S OF MC
313
1,082
(1983)
41.0
(1977) | ONTHLY M
301
1,200
(1992)
33.9
(1977) | EAN DATA
139
418
(1992)
28.2
(1977) | FOR WATE
81.1
177
(1984)
27.3
(1977) | ER YEARS
101
336
(1984)
29.8
(1977) | 1974 - 2003
444
1,088
(1995)
96.6
(2002) | , BY WATE
1,406
3,474
(2001)
244
(1987) | R YEAR (W
610
1,355
(1979)
119
(1998) | 474
1,357
(1993)
82.9
(1988) | 360
1,145
(1999)
46.6
(1988) | 219
1,047
(1999)
40.6
(1976) | 318
1,485
(1986)
34.4
(1976) | | SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | | 1 | FOR 2002 CA
132,141
362 | | YEAR | 118,12
32 | 24 | /EAR | 3
7
2 | YEARS 19
97
86
00 | 1986
1980 | | HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | | UM | (a)5,400 Apr 13
(a)48 Feb 5,6
(a)49 Feb 1 | | | | 66 Feb
67 Feb
60 May
8.12 May
0.77
0.46 | 26,27
23
7 10 | | 19 D
26 D
00 A | pr 24, 2001
ec 8, 1976
ec 5, 1976
pr 23, 2001
ep 6, 1990 | | | 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | | 827
144
60 | | | 13 | | | 1 | 50
56 | | 90 PERCENT EXCEEDS ⁽a) Ice affected ⁽b) Gage height, 25.18 ft (c) Discharge 13,700 ft³/s, rating then in use (e) Estimated due to ice effect or missing record # 04025500 BOIS BRULE RIVER AT BRULE, WI $LOCATION.--Lat\ 46^{\circ}32'16'',\ long\ 91^{\circ}35'43'',\ in\ NW\ {}^{1}\!\!/_{4}\ SW\ {}^{1}\!\!/_{4}\ sec.23,\ T.47\ N.,\ R.10\ W.,\ Douglas\ County,\ Hydrologic\ Unit\ 04010301,\ on\ right\ bank,\ 1.4\ mi\ southwest\ of\ Brule\ Post\ Office,\ 1.4\ mi\ downstream\ from\ Nebagamon\ Creek,\ and\ 1.7\ mi\ upstream\ from\ Little\ Bois\ Brule\ River.$ DRAINAGE AREA.--118 mi². PERIOD OF RECORD.--October 1942 to September 1981, January 1984 to current year. Prior to January 1943, monthly discharge published in WSP 1307. January 1984 to September 1994, incorrectly published as "near Brule." REVISED RECORDS.--WSP 1337: 1943(M), 1944, 1945-50(M). WDR WI-92-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 948.49 ft above NGVD of 1929. Prior to October 1964, nonrecording gage at same site and datum, supplemented by water-stage recorder part of 1959-62. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | KEMAKI | XSRecord | | | | ER SECONE | | poor (see pag
EAR OCTC | - | - | | ion. | | |---|---|--|---|---|---|---|--|---|---------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 174 | 164 | e140 | e130 | e140 | e130 | 153 | 195 | 192 | 221 | 139 | 108 | | 2 | 167 | 161 | e140 | 127 | e140 | e130 | 166 | 191 | 186 | 206 | 138 | 108 | | 3 | 162 | 159 | e130 | e130 | e140 | e130 | 164 | 187 | 180 | 221 | 137 | 107 | | 4 | 235 | 157 | e120 | 126 | e130 | e130 | 160 | 184 | 178 | 224 | 134 | 108 | | 5 | 286 | 156 | e130 | 127 | e120 | e120 | 156 | 204 | 173 | 208 | 132 | 107 | | 6 | 292 | 156 | e130 | 127 | e120 | e120 | 152 | 227 | 174 | 197 | 130 | 107 | | 7 | 302 | 154 | e130 | 126 | e110 | e130 | 152 | 224 | 176 | 190 | 128 | 107 | | 8 | 273 | 154 | e130 | 127 | e120 | e130 | 152 | 216 | 171 | 183 | 126 | 107 | | 9 | 253 | 153 | e130 | 129 | e120 | e120 | 164 | 287 | 166 | 177 | 124 | 108 | | 10 | 239 | 158 | e130 | e130 | e120 | e110 | 205 | 370 | 190 | 182 | 123 | 108 | | 11 | 227 | 157 | e130 | e130 | e120 | e120 | 243 | 438 | 214 | 200 | 123 | 108 | | 12 | 223 | 155 | 132 | e130 | e120 | e120 | 236 | 462 | 203 | 197 | 123 | 116 | | 13 | 214 | 152 | 133 | e120 | e120 | e120 | 218 | 395 | 194 | 184 | 121 | 120 | | 14 | 204 | 151 | 132 | e130 | e120 | 124 | 214 | 361 | 179 | 177 | 120 | 118 | | 15 | 194 | 149 | 131 | e130 | e120 | 131 | 212 | 332 | 168 | 186 | 119 | 114 | | 16 | 191 | 147 | 130 | e130 | e120 | 144 | 210 | 306 | 161 | 188 | 118 | 113 | | 17 | 187 | 146 | 130 | e130 | e120 | 143 | 209 | 285 | 158 | 186 | 117 | 113 | | 18 | 186 | 145 | 138 | e130 | e130 | 136 | 211 | 266 | 157 | 175 | 116 | 113 | | 19 | 192 | 147 | 142 | e130 | e130 | 134 | 248 | 287 | 153 | 166 | 115 | 158 | | 20 | 187 | 145 | 139 | e130 | e130 | 145 | 275 | 352 | 148 | 168 | 115 | 147 | | 21 | 185 | 145 | 137 | e130 | e140 | 152 | 300 | 324 | 143 | 167 | 114 | 136 | | 22 | 184 | 145 | 135 | e130 | e130 | 169 | 277 | 308 | 140 | 158 | 113 | 128 | | 23 | 180 | 144 | e130 | e130 | e130 | 174 | 254 | 293 | 252 | 152 | 115 | 122 | | 24 | 176 | 142 | e130 | e130 | e130 | 195 | 236 | 270 | 280 | 148 | 118 | 119 | | 25 | 175 | 140 | 130 | e130 | e120 | 188 | 224 | 250 | 293 | 144 | 115 | 117 | | 26
27
28
29
30
31 | 176
174
172
170
171
167 | e140
e140
139
140
e140 | e130
e130
129
129
130
e130 | e130
e120
e130
e130
e130
e130 | e120
e130
e130
 | 174
163
161
155
150
149 | 216
213
210
205
200 | 236
226
220
211
206
199 | 323
277
259
256
236 | 142
140
137
135
133
138 | 115
113
112
111
110
109 | 117
125
131
127
125 | | TOTAL | 6,318 | 4,481 | 4,087 | 3,989 | 3,520 | 4,397 | 6,235 | 8,512 | 5,980 | 5,430 | 3,743 | 3,542 | | MEAN | 204 | 149 | 132 | 129 | 126 | 142 | 208 | 275 | 199 | 175 | 121 | 118 | | MAX | 302 | 164 | 142 | 130 | 140 | 195 | 300 | 462 | 323 | 224 | 139 | 158 | | MIN | 162 | 139 | 120 | 120 | 110 | 110 | 152 | 184 | 140 | 133 | 109 | 107 | | CFSM | 1.73 | 1.27 | 1.12 | 1.09 | 1.07 | 1.20 | 1.76 | 2.33 | 1.69 | 1.48 | 1.02 | 1.00 | | IN. | 1.99 | 1.41 | 1.29 | 1.26 | 1.11 | 1.39 | 1.97 | 2.68 | 1.89 | 1.71 | 1.18 | 1.12 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 158
259
(1978)
110
(1949) | ONTHLY M
161
295
(1972)
119
(1949) | EAN DATA
143
205
(1972)
113
(1948) | FOR WATE
133
164
(1984)
104
(1948) | ER YEARS
133
187
(1966)
104
(1948) | 1943 - 2003,
155
265
(1945)
105
(1943) | , BY WATE
282
611
(2001)
157
(1959) | R YEAR (W
234
495
(1950)
140
(1958) | 193
416
(1944)
122
(1948) | 168
345
(1952)
108
(1964) | 149
289
(1999)
114
(1948) | 156
297
(1951)
108
(1948) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI INSTAN' ANNUAI ANNUAI 10 PERC 50 PERC | T ANNUAL T ANNUAL T DAILY M T DAILY M L SEVEN-E UM PEAK I UM PEAK S | MEAN MEAN MEAN EAN EAN SAY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | IUM | | .51 | 14
17 | 60,23
16
46
10
10
(b)50
(c) | 62 May
62 May
67 (a)Sep
65 May
64.33 Jan
66 (a)Sep
1.40
8.99 | /
12
5 3
5 2
/ 11
1 22 | 1,5
1,5 | 74 Ma
89 Ma
860 Ap
7.24 Ap | 1972
1948
or 23, 2001
ar 23, 1943
ar 23, 1943
or 23, 2001
or 23, 2001
ar 13, 1943 | ⁽a) Also occurred additional days ⁽b) Gage height, 3.23 ft ⁽c) Ice affected ⁽e) Estimated due to ice effect or missing record # STREAMS TRIBUTARY TO LAKE SUPERIOR # 040263205 WHITTLESEY CREEK NEAR ASHLAND, WI LOCATION.--Lat 46°35'40", long 90°57'47", in SE $^{1}\!\!/_{4}$ NW $^{1}\!\!/_{4}$ sec.35, T.48 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at Cherryville road, 3.7 mi west of courthouse in Ashland. DRAINAGE AREA.--37.6 mi², of which 30.2 mi² is noncontributing. PERIOD OF RECORD.--April 1999 to current year. REVISED RECORDS.--WDR WI-02-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 615 ft above NGVD of 1929, from topographic map. REMARKS.--Records good (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUI | BIC FEET PI | | O, WATER Y
LY MEAN V | YEAR OCTO
VALUES | DBER 2002 | TO SEPTEN | MBER 2003 | | | |--|---|--|--|--|--|---|---|---|---|--|---|--| | DAY 1 2 3 4 5 | OCT 21 20 19 122 39 | NOV
20
20
20
20
20
20 | DEC
19
19
19
19 | JAN
18
19
19
19 | FEB
19
18
19
18 | MAR
19
18
18
19 | APR 22 23 22 21 21 | MAY 20 20 20 19 20 | JUN
19
18
18
18 | JUL
18
18
19
18 | AUG
18
17
17
17 | SEP
17
17
17
17
17 | | 6
7
8
9
10 | 35
29
25
23
22 | 20
20
20
20
20
20 | 19
19
19
19 | 19
19
19
19 | 18
18
18
18 | 18
19
19
18
18 | 21
21
21
31
111 | 20
20
20
50
55 | 19
19
19
19
21 | 18
18
18
18
20 | 17
17
17
17
17 | 17
17
17
17
17 | | 11
12
13
14
15 | 21
22
21
20
20 | 20
20
20
20
20
19 | 19
19
19
19 | 19
18
18
18
18 | 19
18
18
18
18 | 19
19
19
19
28 | 75
38
35
45
31 | 192
63
29
24
22 | 21
19
19
18
18 | 21
18
18
18
18 | 17
17
17
17
17 | 17
17
17
17
17 | | 16
17
18
19
20 | 20
20
20
21
21 | 19
19
19
20
20 | 19
19
20
21
20 | 18
18
18
18 | 18
18
19
18
19 | 48
29
22
23
26 | 24
23
30
39
122 | 21
20
20
48
49 | 18
18
18
18 | 17
17
17
17
17 | 17
17
17
17
18 | 17
17
19
22
18 | | 21
22
23
24
25 | 21
21
21
20
21 | 20
19
19
19
19 | 20
19
19
19
19 | 18
18
18
18 | 19
18
18
18
18 | 34
63
48
45
31 | 66
33
26
23
22 | 26
22
21
20
20 | 18
18
20
19
20 | 17
17
17
17
17 | 17
17
17
18
17 | 18
18
18
18 | | 26
27
28
29
30
31 | 23
22
21
20
20
20 | 19
19
19
20
19 | 19
19
19
19
19 | 18
18
18
18
18 | 18
18
18
 | 25
22
20
20
21
21 | 21
21
21
20
20 | 19
19
19
19
19 | 20
19
18
18
18 | 17
17
16
16
18
21 | 18
17
17
17
17 | 18
18
18
18
18 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 791
25.5
122
19
3.45
3.98 | 588
19.6
20
19
2.65
2.96 | 594
19.2
21
19
2.59
2.99 | 569
18.4
19
18
2.48
2.86 | 510
18.2
19
18
2.46
2.56 | 786
25.4
63
18
3.43
3.95 | 1,049
35.0
122
20
4.73
5.27 | 975
31.5
192
19
4.25
4.90 | 561
18.7
21
18
2.53
2.82 | 551
17.8
21
16
2.40
2.77 | 531
17.1
18
17
2.31
2.67 | 528
17.6
22
17
2.38
2.65 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 20.9
25.5
(2003)
18.9
(2001) | ONTHLY M
20.6
25.1
(2001)
18.5
(2002) | 18.9
19.8
(2002)
18.0
(2000) | 18.0
18.4
(2003)
17.5
(2001) | ER YEARS
18.8
21.4
(2000)
17.7
(2001) | 1999 - 2003
21.6
25.4
(2003)
18.2
(2002) | 41.9
76.5
(2001)
19.2
(2000) | R YEAR (W
24.1
31.5
(2003)
19.4
(1999) | 19.8
22.6
(1999)
18.7
(2003) | 22.5
36.6
(1999)
17.8
(2001) | 19.7
22.8
(1999)
17.1
(2003) | 19.9
22.4
(2002)
17.6
(2003) | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMU INSTANT ANNUAL ANNUAL 10 PERCI 50 PERCI | L MEAN T ANNUAL T ANNUAL T DAILY M SEVEN-I JM PEAK JM PEAK TANEOUS RUNOFF | MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | IUM | 262
17
17 | 3.5
2 Apr
7 (a)Jan
7 Feb
3.18
3.15 | 11
18 | 8,03
2
19
1
1
43
1
4
2
2 | 22.0
22 May
6 Ju
7 (a)Ju | y 11
il 28,29
il 23
y 11
y 11 | | 16 (b)Jû
17 (a)Ju
777 Ap
c)6.44 Ap | 2001
2000
or 23, 2001
11 26, 2001
11 23, 2003
or 23, 2001
or 23, 2001
125, 2001 | ⁽a) Also occurred additional days(b) Also occurred July 28, 29, 2003, and Feb. 17, 2000, estimated(c) 7.18 ft, July 5, 1999, from crest-stage gage # 040263491 NORTH FISH CREEK NEAR MOQUAH, WI $LOCATION.--Lat\ 46^{\circ}32'56", long\ 91^{\circ}03'43", in\ SW\ {}^{1}\!\!/_{\!\!4}\ sec.13,\ T.47\ N.,\ R.6\ W.,\ Bayfield\ County,\ Hydrologic\ Unit\ 04010301,\ on\ left\ bank\ just\ downstream\ from\ bridge\ on\ old\ U.S.\ Highway\ 2,\ and\ 1.3\ mi\ southeast\ of\ Moquah.$ DRAINAGE AREA.--65.4 mi². PERIOD OF RECORD.--October 1989 to September 1991, October 1994 to September 1997, July 2000 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 660 ft above NGVD of 1929, from topographic map. REMARKS.--Records good (see page 11). Gage-height telemeter at station. | KEMAKI | KSRecord | s good (see p | _ | - | | | ÆAD OCTO | NDED 2002 7 | EO CEDTEN | MDED 2002 | | | |---|--|---|--|--|--|---|---|---|---|---|---|---| | | | DISCH | ARGE, CUB | IC FEET PE | | LY MEAN V | EAR OCTO
ALUES | JBER 2002 | IO SEPIEN | 1BER 2003 | | | | DAY
1
2
3
4
5 | OCT 61 59 57 463 237 | NOV
55
56
55
54
54 | DEC
53
52
51
52
52 | JAN
49
50
50
50
50 | FEB
50
50
51
49
51 | MAR
49
48
50
49
50 | APR
64
81
66
58
54 | MAY 52 50 51 49 58 | JUN 53 55 55 52 52 | JUL
51
53
62
54
51 | AUG
50
51
50
49
50 | SEP
49
49
49
49 | | 6
7
8
9
10 | 147
121
88
76
68 | 54
54
54
54
57 | 52
52
50
52
52
52 | 50
50
51
51
49 | 50
50
50
49
48 | 50
49
48
48
48 | 53
53
54
126
441 | 66
60
57
213
180 | 54
55
54
53
62 | 51
51
50
50
55 | 49
49
49
49
50 | 49
49
49
49
49 | | 11
12
13
14
15 | 63
64
64
61
58 | 55
56
54
54
54 | 52
52
52
52
52
52 | 49
49
48
48
50 | 50
49
49
49
49 | 49
48
49
63
111 | 266
126
98
110
89 | 661
303
126
90
76 | 65
60
56
54
53 | 55
53
51
51
51 | 51
49
49
49
49 | 49
51
50
50
49 | | 16
17
18
19
20 | 57
57
57
58
58 | 54
54
54
54
54 | 51
52
53
62
56 | 50
49
50
50
49 | 50
50
50
49
50 | 155
105
65
63
70 | 71
65
82
132
452 | 68
63
61
235
275 | 52
52
52
51
51 | 51
51
50
50
51 | 49
49
49
50
50 | 50
49
54
63
52 | | 21
22
23
24
25 | 58
59
58
58
59 | 54
53
54
53
53 | 52
51
51
50
50 | 48
49
51
52
50 | 50
49
49
48
50 | 101
197
155
132
87 | 294
118
84
71
66 | 111
82
72
66
61 | 51
51
61
55
57 | 50
50
49
50
50 | 49
49
50
51
50 | 51
50
50
50
50 | | 26
27
28
29
30
31 | 64
61
59
57
57
56 | 52
52
53
53
52 | 50
50
50
50
50
50 | 48
51
50
49
50
50 | 50
49
49
 | 69
60
56
51
51
52 | 60
58
57
55
53 | 59
57
56
54
55
54 | 58
56
54
53
52 | 50
49
49
49
50
50 |
54
50
49
49
49 | 51
51
51
50
50 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2,620
84.5
463
56
3.05
3.52 | 1,619
54.0
57
52
1.95
2.17 | 1,606
51.8
62
50
1.87
2.16 | 1,540
49.7
52
48
1.79
2.07 | 1,387
49.5
51
48
1.79
1.86 | 2,278
73.5
197
48
2.65
3.06 | 3,457
115
452
53
4.16
4.64 | 3,521
114
661
49
4.10
4.73 | 1,639
54.6
65
51
1.97
2.20 | 1,588
51.2
62
49
1.85
2.13 | 1,539
49.6
54
49
1.79
2.07 | 1,511
50.4
63
49
1.82
2.03 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 72.4
110
(1991)
50.7
(1995) | ONTHLY MI
66.7
102
(1997)
53.1
(1995) | EAN DATA
55.8
68.6
(2002)
49.0
(2001) | FOR WATE
54.2
63.7
(1997)
49.4
(2001) | ER YEARS
55.2
64.1
(1997)
49.5
(2003) | 1990 - 2003,
90.2
141
(1990)
59.3
(2001) | 187
374
(2001)
87.8
(1990) | R YEAR (W
87.1
114
(2003)
59.6
(1990) | 67.8
97.6
(1991)
54.6
(2003) | 74.6
155
(1996)
51.2
(1995) | 57.0
74.4
(1990)
49.6
(2003) | 70.8
135
(1990)
50.4
(2003) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI INSTAN' ANNUAI ANNUAI 10 PERC 50 PERC | T ANNUAL | . MEAN MEAN IEAN EAN AY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS | UM | | Apr
(a)Sep
Dec | 11
22 | 24,30
66
4
1,29
1
(d)3 | 66.6
61 May
18 (a)Jar
18 Mar
10 May
1.28 May | / 11
n 13
r 7
/ 11
/ 11 | 1,5
3,4
(d) | 45 (b)De
48 (c)De
20 Ap
16.79 Ap | 0 - 2003
1996
2003
or 23, 2001
c 10, 2000
c 4, 2000
or 23, 2001
or 23, 2001
or 19, 1989 | ⁽a) Also occurred additional days(b) Also occurred Jan. 2, 1995, estimated(c) Also occurred Mar. 7, 2003, and Dec. 29, 1994, estimated ⁽d) Result of freezeup (f) Also occurred Feb. 21, 2001 # 04027000 BAD RIVER NEAR ODANAH, WI LOCATION.--Lat 46°29'15", long 90°41'45", in SE $\frac{1}{4}$ sec.2, T.46 N., R.3 W., Ashland County, Hydrologic Unit 04010302, Bad River Indian Reservation, on left bank just downstream from Elm Hoist bridge, 5.0 mi downstream from Potato River, 8.5 mi south of Odanah, and 23 mi from mouth. DRAINAGE AREA.--597 mi². PERIOD OF RECORD.--July 1914 to December 1922 (monthly discharge for some periods published in WSP 1307) May 1948 to current year. REVISED RECORDS.--WSP 1337: 1922. WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 668.30 ft above NGVD of 1929. May 17, 1948, to Nov. 6, 1959, and Oct. 19, 1960, to Nov. 23, 1961, water-stage recorder. Nov. 7, 1959, to Oct. 18, 1960, and Nov. 24, 1961, to July 12, 1962, nonrecording gage. Prior to Nov. 11, 1922, water-stage recorder at site 2 mi downstream at different datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. EXTREMES OUTSIDE THE PERIOD OF RECORD.--Flood of June 24, 1946, reached a stage of at least 22.2 ft, top of former downstream bridge submerged, information from Indian Service. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|---------------------------------------|--|---------------------------------|--|--|---------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 473 | 647 | e230 | e180 | e150 | e120 | e620 | 722 | 413 | 264 | 238 | 106 | | | 2 | 455 | 578 | e230 | e180 | e150 | e120 | e860 | 655 | 374 | 254 | 263 | 104 | | | 3 | 390 | 524 | e230 | e190 | e150 | e120 | e700 | 590 | 338 | 301 | 222 | 101 | | | 4 | 1,790 | 484 | e220 | e180 | e140 | e120 | e680 | 546 | 313 | 380 | 194 | 100 | | | 5 | 4,650 | 456 | e220 | e180 | e140 | e110 | e840 | 512 | 287 | 334 | 179 | 99 | | | 6 | 3,830 | 430 | e230 | e190 | e140 | e110 | e700 | 572 | 271 | 280 | 163 | 100 | | | 7 | 4,560 | 403 | e240 | e190 | e140 | e120 | e600 | 621 | 281 | 236 | 151 | 100 | | | 8 | 3,380 | 398 | e250 | e190 | e140 | e120 | e520 | 592 | 293 | 206 | 142 | 100 | | | 9 | 2,420 | 394 | e250 | e200 | e140 | e120 | 679 | 625 | 292 | 185 | 134 | 100 | | | 10 | 1,720 | 416 | e240 | e190 | e140 | e120 | 1,830 | 1,220 | 329 | 190 | 129 | 98 | | | 11 | 1,270 | 500 | e250 | e180 | e130 | e130 | 3,380 | 4,590 | 754 | 294 | 129 | 93 | | | 12 | 1,040 | 490 | e270 | e170 | e120 | e130 | 3,270 | 18,800 | 699 | 311 | 125 | 94 | | | 13 | 1,070 | 451 | e270 | e170 | e120 | e130 | 2,740 | 12,700 | 550 | 262 | 120 | 102 | | | 14 | 926 | 418 | e270 | e170 | e120 | e130 | 2,820 | 6,460 | 439 | 219 | 116 | 108 | | | 15 | 787 | e380 | e270 | e170 | e120 | e140 | 3,060 | 3,200 | 360 | 205 | 112 | 111 | | | 16 | 679 | e370 | e260 | e170 | e120 | e300 | 2,540 | 2,060 | 309 | 202 | 109 | 109 | | | 17 | 597 | e340 | e260 | e170 | e120 | e900 | 2,040 | 1,520 | 281 | 205 | 104 | 103 | | | 18 | 547 | e330 | e270 | e170 | e120 | e700 | 1,810 | 1,190 | 261 | 187 | 99 | 95 | | | 19 | 625 | e340 | e340 | e160 | e130 | e620 | 2,110 | 1,060 | 241 | 172 | 103 | 141 | | | 20 | 785 | e320 | e550 | e150 | e130 | e580 | 2,930 | 3,500 | 223 | 176 | 126 | 217 | | | 21 | 733 | e320 | e500 | e140 | e140 | e540 | 6,300 | 2,560 | 213 | 190 | 135 | 229 | | | 22 | 793 | e310 | e430 | e140 | e130 | e700 | 5,070 | 1,800 | 202 | 200 | 128 | 200 | | | 23 | 762 | e300 | e390 | e140 | e120 | e1,000 | 3,240 | 1,320 | 217 | 191 | 122 | 173 | | | 24 | 685 | e290 | e370 | e140 | e120 | e2,000 | 2,220 | 1,030 | 250 | 175 | 124 | 156 | | | 25 | 645 | e280 | e330 | e140 | e120 | e2,700 | 1,700 | 838 | 262 | 160 | 125 | 145 | | | 26
27
28
29
30
31 | 700
748
705
665
668
707 | e230
e230
e250
e300
e270 | e300
e260
e250
e240
e240
e240 | e140
e130
e140
e140
e140
e150 | e120
e120
e120
 | e2,300
e1,200
e900
e800
e700
e600 | 1,380
1,170
1,030
912
809 | 712
613
553
511
476
451 | 317
338
299
281
284 | 154
171
148
136
132
145 | 137
135
123
119
113
109 | 139
146
177
233
228 | | | TOTAL | 39,805 | 11,449 | 8,900 | 5,090 | 3,650 | 18,380 | 58,560 | 72,599 | 9,971 | 6,665 | 4,328 | 4,007 | | | MEAN | 1,284 | 382 | 287 | 164 | 130 | 593 | 1,952 | 2,342 | 332 | 215 | 140 | 134 | | | MAX | 4,650 | 647 | 550 | 200 | 150 | 2,700 | 6,300 | 18,800 | 754 | 380 | 263 | 233 | | | MIN | 390 | 230 | 220 | 130 | 120 | 110 | 520 | 451 | 202 | 132 | 99 | 93 | | | CFSM | 2.15 | 0.64 | 0.48 | 0.28 | 0.22 | 0.99 | 3.27 | 3.92 | 0.56 | 0.36 | 0.23 | 0.22 | | | IN. | 2.48 | 0.71 | 0.55 | 0.32 | 0.23 | 1.15 | 3.65 | 4.52 | 0.62 | 0.42 | 0.27 | 0.25 | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1914 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | | MEAN | 473 | 515 | 294 | 190 | 199 | 671 | 2,225 | 1,066 | 637 | 481 | 300 | 346 | | | MAX | 1,861 | 2,151 | 638 | 410 | 713 | 2,494 | 4,320 | 2,752 | 2,054 | 2,311 | 1,565 | 1,775 | | | (WY) | (1986) | (1992) | (1992) | (1992) | (1984) | (1973) | (2001) | (1950) | (1951) | (1949) | (1972) | (1977) | | | MIN | 67.1 | 95.2 | 107 | 95.0 | 69.3 | 113 | 513 | 202 | 121 | 77.9 | 68.2 | 74.3 | | | (WY) | (1949) | (1949) | (1977) | (1917) | (1964) | (1917) | (1987) | (1998) | (1948) | (1964) | (1948) | (1976) | | # 04027000 BAD RIVER NEAR ODANAH, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALI | ENDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEARS 1914 - 2003 | | | |--------------------------|---------------|------------|-------------|----------|-------------------------|----------------|--| | ANNUAL TOTAL | 285,342 | | 243,404 | | | | | | ANNUAL MEAN | 782 | | 667 | | 619 | | | | HIGHEST ANNUAL MEAN | | | | | 942 | 1983 | | | LOWEST ANNUAL MEAN | | | | | 346 | 1990 | | | HIGHEST DAILY MEAN | 14,200 | Apr 16 | 18,800 | May 12 | 22,000 | Apr 24, 1960 | | | LOWEST DAILY MEAN | 123 | Aug 15 | 93 | Sep 11 | 52 | (a)Oct 1, 1948 | | | ANNUAL SEVEN-DAY MINIMUM | 136 | Aug 10 | 98 | Sep 6 | 54 | Feb 19, 1964 | | | MAXIMUM PEAK FLOW | | • | 20,600 | May 12 | (b)27,700 | Apr 24, 1960 | | | MAXIMUM PEAK STAGE | | | 18.67 | May 12 | (c)21.70 | Apr 24, 1960 | | | INSTANTANEOUS LOW FLOW | | | 89 | Sep 11 | (d)34 | Nov 8, 1976 | | | ANNUAL RUNOFF (CFSM) | 1.31 | | 1.12 | _ | 1.04 | | | | ANNUAL RUNOFF (INCHES) | 17.78 | | 15.17 | | 14.08 | | | | 10 PERCENT EXCEEDS | 1,100 | | 1,440 | | 1,430 | | | | 50 PERCENT EXCEEDS | 313 | | 260 | | 275 | | | | 90 PERCENT EXCEEDS | 170 | | 120 | | 120 | | | ⁽a) Also occurred Aug. 6, 7, 1964 (b) From rating curve extended above 12,000 ft³/s and a comparison with contracted-opening measurement of peak flow 45,600 ft³/s at Odanah, drainage area, 990 mi² (c) From floodmarks (d) Result of freezeup (e) Estimated due to ice effect or missing record # STREAMS TRIBUTARY TO LAKE SUPERIOR # 04027500 WHITE RIVER NEAR ASHLAND, WI LOCATION.--Lat 46°29'54", long 90°54'11"(revised), in NE \(^1\sqrt_4\) NE \(^1\sqrt_4\) sec.6, T.46 N., R.4 W., Ashland County, Hydrologic Unit 04010302, at downstream end of powerplant of Lake Superior District Power Co., 0.3 mi downstream from bridge on State Highway 112 over dam, and 4.5 mi south of Ashland city limits DRAINAGE AREA.--301 mi². PERIOD OF RECORD .-- May 1948 to current year. REVISED RECORDS.--WDR WI-82-1: Drainage area. WDR WI-92-1: 1952-53(M), 1960(M), 1967(M), 1972(M), and 1978(M).
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 660.15 ft above NGVD of 1929 (Lake Superior District Power Co. bench mark). Prior to May 20, 1976, nonrecording gage at same site and datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Diurnal fluctuation caused by hydroelectric plant at gage. Gage-height telemeter at station. | Gage-r | ieignt teiem | DISCH | on.
ARGE, CUB | IC FEET PE | | | | DBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |--|--|--|---|---|---|--|---|---|---------------------------------------|--|--|---| | DAY | ОСТ | NOV | DEC | JAN | FEB | LY MEAN V
MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 236 | 217 | 151 | 119 | e180 | e190 | 225 | 240 | 221 | 203 | 184 | 159 | | 2 | 222 | 213 | 126 | 132 | e180 | e190 | 342 | 213 | 214 | 197 | 184 | 159 | | 3 | 241 | 204 | 99 | 162 | e180 | e180 | 323 | 211 | 209 | 202 | 184 | 159 | | 4 | 1,080 | 196 | 128 | 175 | e180 | e140 | 256 | 207 | 208 | 233 | 183 | 159 | | 5 | 742 | 194 | 142 | 193 | e170 | e170 | 220 | 204 | 209 | 230 | 183 | 159 | | 6 | 829 | 193 | 188 | 193 | e130 | e160 | 239 | 218 | 216 | 205 | 183 | 163 | | 7 | 906 | 202 | 214 | 192 | e140 | e170 | 221 | 275 | 233 | 193 | 184 | 162 | | 8 | 798 | 200 | 171 | 191 | e160 | e170 | 203 | 260 | 273 | 189 | 173 | 162 | | 9 | 682 | 202 | 172 | 192 | e170 | e180 | 267 | 436 | 262 | 188 | 172 | 163 | | 10 | 535 | 194 | 152 | 175 | e180 | e170 | 1,040 | 542 | 267 | 187 | 176 | 162 | | 11 | 401 | 199 | 189 | 106 | e180 | e180 | 877 | 2,070 | 389 | 199 | 181 | 158 | | 12 | 355 | 143 | 202 | 95 | e180 | e180 | 765 | 1,380 | 430 | 221 | 184 | 164 | | 13 | 315 | 174 | 209 | e160 | e170 | e190 | 669 | 1,360 | 392 | 207 | 184 | 165 | | 14 | 292 | 152 | 206 | e160 | e170 | e190 | 579 | 1,160 | 310 | 193 | 184 | 168 | | 15 | 236 | 132 | 193 | e170 | e180 | e230 | 452 | 820 | 257 | 188 | 178 | 167 | | 16 | 224 | 139 | 189 | e170 | e170 | e320 | 434 | 532 | 230 | 190 | 172 | 163 | | 17 | 221 | 140 | 187 | e170 | e160 | 370 | 327 | 376 | 218 | 189 | 166 | 162 | | 18 | 213 | 140 | 189 | e170 | e170 | 291 | 357 | 321 | 213 | 187 | 165 | 158 | | 19 | 213 | 149 | 226 | e170 | e180 | 273 | 528 | 332 | 208 | 186 | 174 | 184 | | 20 | 219 | 146 | 209 | e170 | e180 | 267 | 1,300 | 835 | 200 | 186 | 171 | 219 | | 21 | 225 | 183 | 217 | e160 | e180 | 251 | 1,210 | 604 | 198 | 186 | 181 | 235 | | 22 | 223 | 172 | 188 | e160 | e180 | 392 | 966 | 658 | 196 | 188 | 170 | 213 | | 23 | 228 | 194 | 169 | e150 | e170 | 666 | 880 | 547 | 195 | 189 | 165 | 187 | | 24 | 226 | 191 | 146 | e160 | e150 | 707 | 642 | 374 | 231 | 187 | 167 | 180 | | 25 | 227 | 177 | 161 | e160 | e160 | 560 | 441 | 319 | 249 | 187 | 168 | 179 | | 26
27
28
29
30
31 | 250
256
262
248
221
218 | 135
125
155
208
184 | 172
174
194
201
201
174 | e170
e160
e160
e170
e170
e170 | e160
e180
e190
 | 400
329
255
218
210
210 | 364
317
296
271
238 | 271
237
239
229
223
221 | 261
262
242
221
214 | 187
187
187
187
172
185 | 174
172
164
165
168
163 | 177
177
177
177
177
173 | | TOTAL | 11,544 | 5,253 | 5,539 | 5,055 | 4,780 | 8,409 | 15,249 | 15,914 | 7,428 | 6,015 | 5,422 | 5,190 | | MEAN | 372 | 175 | 179 | 163 | 171 | 271 | 508 | 513 | 248 | 194 | 175 | 173 | | MAX | 1,080 | 217 | 226 | 193 | 190 | 707 | 1,300 | 2,070 | 430 | 233 | 184 | 235 | | MIN | 213 | 125 | 99 | 95 | 130 | 140 | 203 | 204 | 195 | 172 | 163 | 158 | | CFSM | 1.24 | 0.58 | 0.59 | 0.54 | 0.57 | 0.90 | 1.69 | 1.71 | 0.82 | 0.64 | 0.58 | 0.57 | | IN. | 1.43 | 0.65 | 0.68 | 0.62 | 0.59 | 1.04 | 1.88 | 1.97 | 0.92 | 0.74 | 0.67 | 0.64 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | ICS OF MC
236
445
(1983)
152
(1949) | 247
509
(1992)
160
(1977) | EAN DATA
203
311
(2002)
150
(1964) | FOR WATE
186
248
(1952)
146
(1991) | ER YEARS
194
318
(1984)
136
(1968) | 1948 - 2003
306
666
(1973)
178
(1965) | 594
1,330
(2001)
231
(2000) | R YEAR (W
361
867
(1950)
175
(1998) | 282
707
(1952)
140
(1948) | 266
697
(1953)
142
(1988) | 227
744
(1972)
147
(1948) | 235
635
(1960)
146
(1948) | | ANNUAL
ANNUAL
HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
ANNUAL
10 PERCE
50 PERCE | MEAN ANNUAL ANNUAL DAILY M DAILY M | . MEAN MEAN IEAN EAN AY MINIM FLOW STAGE (CFSM) (INCHES) EDS EDS | | | Apr
Dec
Nov | 14
3 | 95,79
26
2,07
9
14
4,50 | 0 May
5 Jar
3 Nov
0 May
5.84 May
0.87
1.84
2 | 7 11
112
7 14
7 11 | (a)8,1 | 61 Sep
68 Se
00 Ju | 8 - 2003
1953
2000
g 20, 1972
17,8, 1979
p 4, 1979
il 1, 1953
il 1, 1953 | ⁽a) From rating curve extended above 3,000 ft³/s ⁽e) Estimated due to ice effect or missing record # 04029990 MONTREAL RIVER AT SAXON FALLS NEAR SAXON, WI LOCATION.--Lat 46°32'13", long 90°22'47", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.21, T.47 N., R.1 E., Iron County, Hydrologic Unit 04010302, at Saxon Falls powerhouse, 3.4 mi northeast of Saxon, and 3.8 mi upstream from mouth. DRAINAGE AREA.--262 mi². PERIOD OF RECORD.--September 1938 to September 1970, October 1986 to current year. Published as "Montreal River near Saxon" (04030000), September 1938 to September 1970. REVISED RECORDS.--WSP 894: 1938-39. WSP 924: 1939-40. WSP 1307: 1948(M). WSP 1627: 1958. GAGE.--Headwater and tailwater gages read by Northern States Power Company. September 1938 to September 1970, water-stage recorder at site 1.8 mi downstream at elevation of 760 ft above NGVD of 1929 (from Power Company data). REMARKS.--Diurnal fluctuation caused by Saxon Falls powerplant. Flow regulated by Gile Reservoir on West Branch Montreal River (capacity 1,290,000,000 ft³/s) since April 1941. COOPERATION .-- Records were provided by Northern States Power Company and reviewed by the Geological Survey. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--|---|--|---|--|--|--|---|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 255
290
230
200
1,920 | 350
290
290
225
210 | 195
200
195
205
205 | 200
185
175
185
175 | 161
161
155
131
119 | 77
77
71
71
71 | 415
470
420
345
305 | 290
255
225
225
200 | 220
205
190
190
190 | 225
198
220
220
195 | 240
125
125
111
130 | 95
100
94
20
47 | | 6
7
8
9
10 | 1,920
1,920
1,540
1,140
788 | 190
205
225
215
215 | 216
215
215
195
210 | 220
210
210
210
210
200 | 95
107
115
115
105 | 66
71
64
64
66 | 305
318
325
298
470 | 220
220
220
220
220
420 | 205
225
225
225
225
225 | 195
166
158
160
129 | 115
115
115
115
115 | 53
53
65
59
47 | | 11
12
13
14
15 | 560
425
425
380
335 | 310
275
240
245
235 | 205
220
210
210
210 | 185
185
185
185
185 | 105
105
105
89
83 | 71
71
71
71
89 | 1,300
1,940
1,940
1,680
2,180 | 420
8,520
7,360
4,400
2,040 | 290
250
215
225
225 | 340
190
190
160
119 | 115
115
115
115
115 | 53
53
76
53
28 | | 16
17
18
19
20 | 270
250
210
225
225 | 209
209
200
200
200 | 200
200
210
250
335 | 185
185
200
200
200 | 83
83
60
64
75 | 89
235
288
335
480 | 1,800
1,220
1,220
950
950 | 1,700
1,040
1,040
475
1,220 | 200
205
210
205
210 | 107
119
119
109
109 | 115
115
105
100
105 | 59
53
47
59
76 | | 21
22
23
24
25 | 440
425
405
380
315 | 205
205
205
205
205
195 | 265
265
260
260
260 | 205
195
195
185
195 | 75
70
70
64
71 | 495
455
455
950
1,760 | 3,920
3,850
2,840
1,580
2,260 | 1,220
910
655
480
480 | 225
225
225
225
225
255 |
138
94
94
77
113 | 105
105
105
105
115 | 76
47
59
59
53 | | 26
27
28
29
30
31 | 331
331
360
335
330
397 | 185
195
195
195
195 | 210
210
220
220
220
220
200 | 195
185
185
190
185
167 | 66
71
71

 | 1,510
1,260
795
470
470
470 | 905
905
585
470
330 | 480
270
200
255
220
220 | 240
325
210
210
235 | 113
113
105
107
115
115 | 115
115
105
109
100
100 | 59
63
63
130
94 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 17,557
566
1,920
200
2.16
2.49 | 6,718
224
350
185
0.85
0.95 | 6,891
222
335
195
0.85
0.98 | 5,947
192
220
167
0.73
0.84 | 2,674
95.5
161
60
0.36
0.38 | 11,588
374
1,760
64
1.43
1.65 | 36,496
1,217
3,920
298
4.64
5.18 | 36,100
1,165
8,520
200
4.44
5.13 | 6,710
224
325
190
0.85
0.95 | 4,612
149
340
77
0.57
0.65 | 3,600
116
240
100
0.44
0.51 | 1,893
63.1
130
20
0.24
0.27 | | STATIS | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1938 - 2003. | BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 202
566
(2003)
38.2
(1949) | 244
800
(1992)
34.2
(1949) | 178
391
(1952)
38.1
(1949) | 161
295
(1969)
27.8
(1949) | 159
321
(1969)
21.0
(1949) | 316
888
(1945)
55.4
(1940) | 1,014
2,388
(2002)
213
(1987) | 532
1,180
(1954)
127
(1941) | 359
1,172
(1939)
101
(1987) | 285
1,068
(1992)
74.1
(1987) | 193
432
(1953)
36.1
(1987) | 189
894
(1941)
33.6
(1939) | | SUMMA | RY STATIS | STICS | 1 | FOR 2002 CALENDAR YEAR | | | FOR 2003 WATER YEAR | | | WATER YEARS 1938 - 2003 | | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | IUM | | Apr
Sep
Sep
.74 | 16,17
18,19
13 | 140,786
386
8,520 May 12
20 Sep 4
49 Sep 4
1,47
19,99
839
205
71 | | | 319
487 1952 | | et 24, 1948 | # STREAMS TRIBUTARY TO LAKE SUPERIOR # 04037500 CISCO BRANCH ONTONAGON RIVER AT CISCO LAKE OUTLET, MI $LOCATION.--Lat\ 46^{\circ}15'12'', long\ 89^{\circ}27'05'', in\ NE\ _{4}^{1}\ sec. 32, T.45\ N., R.41\ W., Gogebic\ County,\ Hydrologic\ Unit\ 04020102,\ on\ left\ bank\ 80\ ft\ downstream\ from\ Cisco\ Lake\ Dam,\ 2.5\ mi\ upstream\ from\ Langford\ Creek,\ 5.0\ mi\ upstream\ from\ U.S.\ Highway\ 2,\ and\ 13\ mi\ west\ of\ Watersmeet.$ DRAINAGE AREA.--50.7 mi². PERIOD OF RECORD.--October 1944 to current year. REVISED RECORDS .-- WSP 1911: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,672.69 ft above NGVD of 1929. Prior to Oct. 1, 1968, nonrecording gage at same site and at datum 4.00 ft higher. REMARKS.--Records good except for discharges below 3.0 ft³/s, which are poor (see page 11). Flow regulated by Cisco Lake (station 04037400). Several measurements of water temperature were made during the year. Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--|---|--|--|--|--|--|--|--|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 67
66
66
86
141 | 2.4
2.2
2.1
2.1
19 | 34
34
34
34
34 | 7.1
7.1
7.1
7.1
7.1 | 33
33
34
35
35 | 31
32
33
33
45 | 102
91
79
68
69 | 14
14
14
14
32 | 63
40
7.9
2.1
1.6 | 0.66
0.67
0.78
0.80
0.82 | 75
22
22
22
21
17 | 0.28
0.26
0.26
0.24
0.24 | | 6
7
8
9
10 | 164
169
167
162
158 | 54
75
76
59
58 | 34
33
33
34
33 | 23
52
62
61
60 | 34
35
34
34
34 | 57
32
11
11
22 | 69
67
67
54
46 | 48
61
68
e70
e70 | 1.1
0.95
0.90
10
58 | 0.85
0.80
0.75
0.72
0.79 | 12
11
11
11
10 | 0.24
0.24
0.24
0.24
0.27 | | 11
12
13
14
15 | 97
62
61
63
58 | 58
49
27
9.4
2.6 | 37
41
41
41
40 | 59
58
36
9.0
3.0 | 35
36
35
35
35 | 57
73
58
32
20 | 46
48
49
77
136 | 137
232
239
235
230 | 91
90
46
13
13 | 0.80
0.77
0.76
8.2
20 | 6.4
0.58
0.44
0.44
0.41 | 0.24
0.26
0.28
0.30 | | 16
17
18
19
20 | 58
30
12
12
13 | 2.6
2.6
2.6
2.6
25 | 40
39
40
41
41 | 2.8
2.6
2.6
2.6
6.3 | 34
26
15
15 | 21
22
22
23
24 | 169
172
171
169
179 | 224
218
213
206
201 | 6.7
1.6
1.4
1.3
1.3 | 20
19
18
18 | 0.36
0.34
0.34
0.30
16 | 36
65
62
29
9.6 | | 21
22
23
24
25 | 13
30
56
78
88 | 54
64
64
62
51 | 41
41
40
40
40 | 12
12
13
13 | 7.1
7.2
7.6
8.0 | 52
105
119
92
59 | 180
178
177
174
168 | 203
197
190
181
176 | 1.0
0.71
0.72
0.62
3.4 | 13
6.2
0.90
0.75
8.6 | 25
5.0
0.49
0.37
0.30 | 9.7
9.3
4.9
0.30
0.25 | | 26
27
28
29
30
31 | 85
84
57
8.3
2.9
2.6 | 42
37
33
33
33 | 36
26
15
15
11
7.0 | 13
26
44
43
42
38 | 9.4
20
29
 | 46
33
59
97
95
109 | 140
118
75
38
26 | 169
163
110
66
66
66 | 3.1
2.3
0.90
0.69
0.66 | 21
19
19
19
45
103 | 0.33
0.30
5.3
4.5
0.42
0.36 | 0.24
0.24
0.24
0.24
24 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2,216.8
71.5
169
2.6
1.41
1.63 | 1,004.2
33.5
76
2.1
0.66
0.74 | 1,050.0
33.9
41
7.0
0.67
0.77 | 744.4
24.0
62
2.6
0.47
0.55 | 722.3
25.8
36
7.1
0.51
0.53 | 1,525
49.2
119
11
0.97
1.12 | 3,202
107
180
26
2.11
2.35 | 4,125
133
239
14
2.62
3.03 | 464.95
15.5
91
0.62
0.31
0.34 | 386.62
12.5
103
0.66
0.25
0.28 | 279.98
9.03
75
0.30
0.18
0.21 | 268.60
8.95
65
0.24
0.18
0.20 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 66.9
151
(1986)
13.1
(1958) | 0NTHLY MI
65.3
116
(1968)
14.5
(1945) | EAN DATA
47.0
84.1
(1961)
23.5
(1990) | 38.6
62.6
(1983)
23.1
(1959) | 34.9
81.0
(1945)
20.6
(1950) | 1945 - 2003,
44.0
92.1
(1973)
24.1
(1956) | 63.6
156
(2002)
2.02
(1948) | R YEAR (W
49.1
160
(1996)
0.17
(1977) | Y) 44.6 123 (1953) 0.11 (1977) | 32.0
113
(1953)
0.25
(1977) | 25.1
99.7
(1978)
0.15
(1970) | 36.1
104
(1977)
0.23
(1976) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 242
()
()
1
15
169
40 | 5.11
5.2
2 Apr
2.63 Aug
3.98 Jul
1.11
5.06 | 19
20 | 15,98
4
23
24
1
11
3 | 3.8
39 May
0.24 Sep
0.24 Sep
13 May
5.86 May
0.86
11.73 | 13
4
3
12 | 2 | 0.08 Ju
0.09 Ju
288 Ma | 1973
1949
y 1, 1951
il 21, 1988
il 28, 1988
y 1, 1951
y 1, 1951 | | ⁽a) Present datum ⁽e) Estimated Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection #### STREAMS TRIBUTARY TO LAKE MICHIGAN #### 04060993 BRULE RIVER NEAR FLORENCE, WI LOCATION.--Lat 45°57'39", long 88°18'57", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.9, T.41 N., R.32 W., Michigan Meridian, Iron County, Hydrologic Unit 04030106, on left bank 30 ft upstream from bridge on U.S. Highway 2, 4.0 mi upstream from Paint River, 4.0 mi northwest of Florence, and 8.0 mi upstream from confluence with Michigamme River. DRAINAGE AREA.--366 mi², approximately. PERIOD OF RECORD.--January 1914 to February 1916, June 1944 to current year. REVISED RECORDS.--WSP 1387: 1914-16. WDR MI-92-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,240 ft above NGVD of 1929, from topographic map. Prior to Aug. 29, 1944, nonrecording gage, and Aug. 19, 1944 to Apr. 4, 1994, water-stage recorder at site 3.0 mi downstream at different datum. REMARKS.--Records good except those for
estimated daily discharges, which are fair (see page 11). Discharge includes some mine pumpage prior to August 1977. Several measurements of water temperature were made during the year. Gage-height telemeter at station. | 1977. | Several me | | | | ER SECONI | | Gage-neignt
EAR OCTO | | | MBER 2003 | | | |--|--|---------------------------------|---|--|--------------------------|--|--|--|---------------------------------------|---|--|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 563 | 338 | 221 | e220 | e220 | e230 | 334 | 442 | 386 | 222 | 238 | 209 | | 2 | 474 | 330 | e210 | e220 | e220 | e230 | 355 | 422 | 351 | 220 | 254 | 193 | | 3 | 399 | 321 | e200 | e220 | e230 | e230 | 347 | 401 | 332 | 224 | 335 | 184 | | 4 | 503 | 330 | e200 | e220 | e230 | e220 | 305 | 387 | 318 | 227 | 478 | 183 | | 5 | 680 | 322 | e200 | e230 | e230 | e220 | e310 | 386 | 309 | 217 | 387 | 185 | | 6 | 744 | 328 | e200 | e240 | e230 | e220 | e310 | 488 | 301 | 211 | 318 | 181 | | 7 | 867 | 316 | e200 | e240 | e240 | e220 | e310 | 500 | 336 | 208 | 282 | 180 | | 8 | 725 | 328 | e200 | e240 | e240 | e220 | 312 | 470 | 357 | 205 | 271 | 181 | | 9 | 602 | 331 | e200 | e240 | e240 | e220 | 307 | 445 | 400 | 203 | 254 | 181 | | 10 | 513 | 367 | e200 | e240 | e240 | e220 | 354 | 478 | 458 | 207 | 238 | 183 | | 11 | 452 | 422 | e200 | e230 | e240 | e220 | 608 | 630 | 567 | 230 | 232 | 181 | | 12 | 427 | 383 | e210 | e220 | e240 | e220 | 914 | 1,270 | 498 | 246 | 222 | 193 | | 13 | 450 | 354 | e210 | e220 | e240 | e220 | 752 | 1,600 | 406 | 222 | 210 | 281 | | 14 | 412 | 339 | e210 | e220 | e240 | e220 | 776 | 1,460 | 357 | 208 | 210 | 343 | | 15 | 378 | 332 | e220 | e220 | e240 | e230 | 928 | 1,040 | 332 | 214 | 205 | 352 | | 16 | 356 | 330 | e230 | e220 | e240 | e300 | 1,010 | 780 | 307 | 214 | 200 | 285 | | 17 | 345 | 333 | e250 | e220 | e240 | e400 | 928 | 639 | 291 | 206 | 196 | 249 | | 18 | 348 | 325 | e270 | e220 | e240 | e420 | 810 | 562 | 300 | 203 | 196 | 227 | | 19 | 372 | 321 | e280 | e220 | e240 | e400 | 785 | 517 | 287 | 196 | 191 | 217 | | 20 | 370 | 311 | e280 | e220 | e240 | e370 | 1,050 | 582 | 272 | 201 | 198 | 214 | | 21 | 362 | 305 | e270 | e220 | e240 | e390 | 1,360 | 575 | 262 | 229 | 213 | 209 | | 22 | 379 | 302 | e250 | e220 | e240 | e400 | 1,310 | 507 | 251 | 231 | 207 | 251 | | 23 | 373 | 300 | e240 | e220 | e240 | e420 | 1,020 | 463 | 243 | 229 | 193 | 272 | | 24 | 364 | 299 | e240 | e220 | e240 | e420 | 811 | 430 | 247 | 220 | 203 | 254 | | 25 | 366 | 298 | e240 | e220 | e240 | e410 | 695 | 401 | 251 | 204 | 206 | 231 | | 26
27
28
29
30
31 | 402
421
398
384
364
351 | 303
274
312
329
299 | e240
e240
e240
e240
e240
e230 | e220
e220
e220
e220
e220
e220 | e240
e240
e230
 | e400
e380
e350
e330
e320
e320 | 606
550
544
501
468 | 382
364
356
358
368
417 | 244
237
235
230
228 | 205
201
194
198
210
225 | 238
236
218
215
211
236 | 234
252
250
241
241 | | TOTAL | 14,144 | 9,782 | 7,061 | 6,940 | 6,630 | 9,370 | 19,670 | 18,120 | 9,593 | 6,630 | 7,491 | 6,837 | | MEAN | 456 | 326 | 228 | 224 | 237 | 302 | 656 | 585 | 320 | 214 | 242 | 228 | | MAX | 867 | 422 | 280 | 240 | 240 | 420 | 1,360 | 1,600 | 567 | 246 | 478 | 352 | | MIN | 345 | 274 | 200 | 220 | 220 | 220 | 305 | 356 | 228 | 194 | 191 | 180 | | CFSM | 1.25 | 0.89 | 0.62 | 0.61 | 0.65 | 0.83 | 1.79 | 1.60 | 0.87 | 0.58 | 0.66 | 0.62 | | IN. | 1.44 | 0.99 | 0.72 | 0.71 | 0.67 | 0.95 | 2.00 | 1.84 | 0.98 | 0.67 | 0.76 | 0.69 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 324
612
(1986)
179
(1949) | | EAN DATA
274
424
(1986)
175
(1990) | | | | , BY WATE
655
1,235
(1967)
235
(1990) | | 390
712
(1981)
194
(1988) | 335
983
(1953)
185
(1989) | 287
604
(1972)
186
(1948) | 306
582
(1959)
182
(1948) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | | | UM | FOR 2002 CALENDAR YEAR 148,527 407 3,500 Apr 17 200 Dec 3 200 Dec 3 1.11 15.10 | | | FOR 2003 WATER YEAR 122,268 335 1,600 May 13 180 Sep 7 182 Sep 5 (a)1,650 May 13 (b)6.92 Dec 3 180 (d) 0.92 12.43 | | | 350
512
221
4,420
4,420
130
140
140
140
140
140
140
140
14 | | | | ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 684
286
230 | • | | 51
25
20 | 0 | | 2 | 647
285
205 | | ⁽a) Gage height, 5.91 ft ⁽b) Backwater from ice ⁽c) Present site and datum; peak stage at previous site and datum, 8.60 ft, Dec. 20, 1983, backwater from ice ⁽d) Part or all of each day Sept. 3, 4, 6-12 ⁽e) Estimated due to ice effect or missing record ⁽f) Result of freezeup # 04062011 BRULE RIVER NEAR COMMONWEALTH, WI $LOCATION.--Lat\ 45^{\circ}56'51"\ long\ 88^{\circ}12'55", in\ NW\ {}^{1}\!\!/_{4}\ sec.14,\ T.40\ N.,\ R.18\ E.,\ Wisconsin\ Meridian,\ Florence\ County,\ Hydrologic\ Unit\ 04030106,\ on\ right\ bank\ 900\ ft\ downstream\ from\ Brule\ Island\ Dam,\ 1.5\ mi\ upstream\ from\ confluence\ with\ Michigamme\ River,\ and\ 2.8\ mi\ north\ of\ Commonwealth,\ WI.$ DRAINAGE AREA.--1,020 mi². PERIOD OF RECORD .-- October 1989 to current year. REVISED RECORD.--WDR MI-91-1: 1990(M). GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,130 ft above NGVD of 1929, from topographic map. REMARKS.--Records excellent (see page 11). Flow regulated by powerplant 900 ft upstream and by Lower Paint Dam 8.2 mi upstream. Records not adjusted for diversion to Michigamme River by Paint River Diversion Canal. Gage-height telemeter at station. COOPERATION .-- Gage-height record was provided by We Energies, under general supervision of the Geological Survey. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|---------------------------------|--|---|-----------------------|--|---|---|---------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 940 | 644 | 437 | 455 | 467 | 479 | 774 | 871 | 770 | 460 | 482 | 485 | | 2 | 834 | 645 | 452 | 527 | 475 | 484 | 785 | 822 | 692 | 458 | 499 | 482 | | 3 | 689 | 591 | 472 | 460 | 485 | 462 | 700 | 822 | 697 | 455 | 612 | 465 | | 4 | 895 | 569 | 489 | 460 | 516 | 459 | 685 | 814 | 674 | 488 | 827 | 445 | | 5 | 1,010 | 638 | 560 | 466 | 498 | 462 | 555 | 808 | 611 | 506 | 705 | 501 | | 6 | 1,030 | 618 | 548 | 555 | 503 | 463 | 725 | 868 | 655 | 449 | 521 | 488 | | 7 | 1,580 | 576 | 498 | 501 | 517 | 457 | 785 | 972 | 707 | 476 | 582 | 458 | | 8 | 1,940 | 574 | 533 | 534 | 517 | 459 | 680 | 921 | 692 | 416 | 551 | 480 | | 9 | 1,920 | 614 | 482 | 529 | 497 | 482 | 709 | 864 | 773 | 461 | 528 | 478 | | 10 | 1,820 | 682 | 490 | 517 | 508 | 482 | 737 | 926 | 877 | 454 | 528 | 434 | | 11 | 1,250 | 717 | 569 | 449 | 495 | 463 | 1,030 | 1,040 | 982 | 489 | 483 | 455 | | 12 | 1,070 | 701 | 580 | 467 | 518 | 454 | 1,460 | 2,340 | 874 | 455 | 481 | 490 | | 13 | 1,040 | 632 | 563 | 435 | 500 | 452 | 1,220 | 4,580 | 800 | 496 | 508 | 584 | | 14 | 980 | 666 | 498 | 507 | 495 | 482 | 1,140 | 4,310 | 726 | 454 | 515 | 681 | | 15 | 834 | 594 | 584 | 432 | 498 | 475 | 1,420 | 2,620 | 664 | 443 | 485 | 689 | | 16 | 668 | 643 | 526 | 499 | 502 | 522 | 1,520 | 2,020 | 622 | 446 | 477 | 647 | | 17 | 564 | 590 | 492 | 445 | 509 | 899 | 1,400 | 1,940 | 588 | 484 | 452 | 496 | | 18 | 656 | 540 | 567 | 457 | 484 | 974 | 1,270 | 1,820 | 535 | 414 | 473 | 485 | | 19 | 681 | 612 | 617 | 481 | 509 | 868 | 1,240 | 1,590 | 521 | 451 | 473 | 512 | | 20 | 669 | 650 | 606 | 496 | 502 | 747 | 1,490 | 1,220 | 598 | 437 | 472 | 491 | | 21 | 696 | 550 | 594 | 463 | 509 | 787 | 2,720 | 963 | 621 | 471 | 489 | 496 | | 22 | 695 | 552 | 564 | 455 | 477 | 850 | 3,240 | 842 | 551 | 523 | 490 | 526 | | 23 | 691 | 552 | 498 | 453 | 475 | 882 | 2,920 | 877 | 528 | 479 | 491 | 570 | | 24 | 622 | 649 | 501 | 457 | 502 | 920 | 2,180 | 781 | 524 | 444 | 476 | 552 | | 25 | 656 | 547 | 539 | 455 | 499 | 909 | 2,090 | 773 | 522 | 445 | 466 | 555 | | 26
27
28
29
30
31 | 731
728
733
740
579
668 | 483
535
533
575
619 |
514
496
503
521
525
534 | 452
472
465
431
486
505 | 490
484
482
 | 734
690
685
619
586
647 | 2,210
1,810
1,350
977
895 | 719
740
719
702
722
816 | 526
530
534
531
513 | 468
467
470
471
468
469 | 501
566
486
496
493
490 | 495
540
543
520
518 | | TOTAL | 28,609 | 18,091 | 16,352 | 14,766 | 13,913 | 19,334 | 40,717 | 40,822 | 19,438 | 14,367 | 16,098 | 15,561 | | MEAN | 923 | 603 | 527 | 476 | 497 | 624 | 1,357 | 1,317 | 648 | 463 | 519 | 519 | | MAX | 1,940 | 717 | 617 | 555 | 518 | 974 | 3,240 | 4,580 | 982 | 523 | 827 | 689 | | MIN | 564 | 483 | 437 | 431 | 467 | 452 | 555 | 702 | 513 | 414 | 452 | 434 | | | | | | FOR WATE | | | | , | , | | | | | MEAN | 443 | 407 | 368 | 347 | 354 | 444 | 1,165 | 889 | 511 | 468 | 394 | 386 | | MAX | 923 | 603 | 545 | 476 | 497 | 634 | 3,128 | 2,757 | 818 | 887 | 680 | 569 | | (WY) | (2003) | (2003) | (2002) | (2003) | (2003) | (1998) | (2002) | (1996) | (2002) | (1999) | (2002) | (2002) | | MIN | 276 | 307 | 270 | 259 | 270 | 327 | 322 | 355 | 334 | 272 | 296 | 285 | | (WY) | (1990) | (1990) | (1990) | (1991) | (1991) | (2001) | (1990) | (1998) | (1992) | (1990) | (1990) | (1998) | | SUMMA | RY STATIS | STICS | 1 | FOR 2002 CALENDAR YEAR | | | FOR 2003 WATER YEAR | | | WATER YEARS 1990 - 2003 | | | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | IUM | 317,873
871
10,500
357
410
1,410
569
434 | Apr
Jan
Mar | 18 | 258,06
70
4,58
41
44
5,03
1
1,02
53 | 0 May
4 Jul
7 Jul
0 May
1.34 May
0 | 1 18
1 14
7 13 | 8
3
10,5
1
2
11,2 | 82 Fé
202 M
200 A _j | 1996
1990
pr 17, 2002
eb 11, 1994
ar 26, 1990
pr 17, 2002
pr 17, 2002 | #### 04063500 MENOMINEE RIVER AT TWIN FALLS NEAR IRON MOUNTAIN, MI LOCATION.--Lat 45°52'17", long 88°04'12" in NE ¼ SE ¼ sec.12, T.40 N., R.31 W., Michigan Meridian, Dickinson County, Hydrologic Unit 04030108, on left bank 150 ft downstream from Wisconsin Electric Power Company powerhouse at Twin Falls Dam, 3.6 mi north of Iron Mountain, and at mile 106.6. DRAINAGE AREA.--1,800 mi². PERIOD OF RECORD.--January 1914 to current year. Published as "near Florence, WI" October 1957 to September 1989. Records published for both sites July 1950 to September 1957, October 1989 to September 1996, and October 1998 to current year. REVISED RECORDS.--WDR MI-91-1: 1990(M). WDR MI-92-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,062 ft above NGVD of 1929 (levels by We Energies). Prior to September 1957, headwater and tailwater gages and generation data entered hourly in daily log sheets by company employees. October 1957 to September 1989, water-stage recorder at site 10.4 mi upstream at different datum. November 1989 to July 1993, water-stage recorder at site 150 ft upstream at same datum. REMARKS.--Records good (see page 11). Prior to September 1957, discharge determined from powerplant records computed on basis of load-discharge rating of hydroelectric units and rating for tailwater gage during periods of spill; ratings developed by U.S. Geological Survey. Flow regulated by powerplants, by Michigamme Reservoir, capacity, 119,950 acre-ft, by Peavy Pond, capacity, 33,860 acre-ft, on Michigamme River, and by many smaller reservoirs upstream from station. Several measurements of water temperature were made during the year. Gage-height telemeter at station. COOPERATION.--Gage-height record was provided by Wd Energies, under general supervision of the Geological Survey. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG SEP 2.060 2.290 1.470 1.290 1.430 1.670 1.760 3.320 1.950 1.020 871 1.160 1,330 2,290 2,140 2,490 1.810 1,430 1.380 1.670 1.530 2.910 921 1.120 816 2,320 3 1,450 1.090 1.270 2 590 895 1.400 1,690 1.450 1.600 771 1,490 2.310 1.470 1.190 1.360 1.490 1.610 2.550 2.050 988 2.040 806 5 2,280 1,490 1.380 1.380 1.570 1.690 1,430 2.540 2,650 895 1.730 864 6 2,860 1.920 1,390 1,360 1,610 1,710 1,930 2,610 2,640 959 1,630 881 e1,350 4,140 1,830 1,340 1,620 1,630 1,550 2.550 2,610 911 1,430 1,310 8 4,580 1,790 e1,200 1,350 1.590 1,730 1,380 2,610 2,560 987 1,200 907 1,330 2,570 2,280 4,170 1,700 1.430 1,600 1,670 1.360 779 981 786 10 4.190 1.680 1,230 1,480 1.630 1.360 2,480 2,280 850 900 703 1.710 1.940 996 3.460 1,240 1,570 1,680 1.560 1.420 3,120 2 350 834 649 12 3,240 1.950 1,300 1,510 1,660 1,470 1,940 4,550 2.080 892 988 711 3,450 1,940 1,240 1,470 1,700 1,610 2,200 7,610 885 858 893 13 2.120 3,240 1,990 1,400 1,540 7,990 988 1,020 14 1,650 1,550 1,700 1,730 867 15 2,620 2,190 1,390 1,420 1,660 1,540 1.780 6,130 1,570 867 1,260 1.180 2,790 2.110 1.390 1,400 1.540 1,600 2.590 5,000 1.630 851 1.200 1.270 16 1,030 1,460 1,480 1.790 3,380 1,450 1.140 17 2.790 2.090 1.750 4.690 908 2,900 1,800 18 e1 900 1 440 1 480 1.630 3 760 4 270 1.500 801 986 952 e1,800 1.500 4.380 896 992 19 2.7701.440 1.670 1.870 3.900 1.410 839 20 2,420 1,820 1,410 1.530 1,660 1.580 4,020 3,950 1.290 900 844 989 21 2.550 1.810 1,730 1,470 1,580 1.530 4,990 3,280 1,210 957 827 920 2,360 2,000 e1,900 1,450 1,630 1,600 5,780 2,980 1,180 897 815 874 23 1,930 1,550 e1,800 1,480 1,600 1,730 5,510 3,080 1,100 942 834 855 24 2,140 e1,500 1,480 1,570 870 1,010 1.620 1.680 4.820 2,640 1.100 884 25 2,040 1.630 1.630 1.460 1.720 1.720 4,470 2,400 1.200 955 924 1.030 26 1.950 1.550 1,570 1,440 1,650 1.570 4.930 2.330 1,150 901 888 783 2.7 2,180 1,630 1,350 1,380 1,670 1,630 4,390 2.530 1,130 899 996 931 1,690 28 2,660 1,360 1,380 1,420 1,700 3,940 2,080 1,120 907 1,010 1,010 1,140 29 2,880 1,340 1,320 1,430 1,870 3,140 2,250 885 1,050 990 30 2,550 1,480 1,360 1,450 ---1,880 3,490 1,820 1.110 793 968 835 902 31 2,180 1.220 1,460 2,000 1.970 868 TOTAL 86,500 52,960 43.710 44.350 45.270 51,870 87,390 105.780 52,020 27.757 33.901 27.749 2 790 1,765 2.913 925 MEAN 1.410 1,431 1,617 1.673 3,412 1.734 895 1.094 1,900 7,990 1,020 2.040 4.580 2.290 1.570 5.780 MAX 1.750 2.0002.650 1.310 MIN 1.930 1.340 1.090 1.270 1.380 1,470 1.360 1.820 1.100 779 815 649 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1914 - 2003, BY WATER YEAR (WY) MEAN 1,475 1,587 1,454 1,406 1,393 1,609 3,179 3,041 2,124 1,597 1,307 1,393 MAX 3,537 3,465 2,640 2,253 2,514 3,544 8,159 6,319 5,035 4,309 2,359 3,149 (1986)(1984)(WY) (1986)(1984)(1983)(1973)(1916)(1960)(1916)(1953)(1972)(1968)MIN 726 725765 691 647 692 707 595 **799** 721 545 718 (1949)(1964)(1925)(1924)(1926)(1914)(1990)(1987)(1988)(1925)(1925)(1925)(WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1914 - 2003 ANNUAL TOTAL 813,019 659,257 ANNUAL MEAN 2.227 1,806 1,797 HIGHEST ANNUAL MEAN 3,069 1916 LOWEST ANNUAL MEAN 922 1925 HIGHEST DAILY MEAN Apr 18 14,200 7,990 May 14 18,100 Apr 26, 1960 Sep 26, 1975 LOWEST DAILY MEAN 904 649 57 Aug 28 Sep 11 ANNUAL SEVEN-DAY MINIMUM 1.050 Aug 26 810 277 Oct 18, 1975 Sep 8 (a)19,500MAXIMUM PEAK FLOW 8,460 Apr 26, 1960 May 14 MAXIMUM PEAK STAGE (b)13.8811.06 May 14 Apr 17, 2002 3.660 2.940 10 PERCENT EXCEEDS 3.020 1,550 50 PERCENT EXCEEDS 1,630 1,470 894 858 1,360 90 PERCENT EXCEEDS ⁽a) Gage height 14.15 ft, site and datum then in use ⁽b) Present site and datum ⁽e) Estimated due to ice effect or missing record #### 04063700 POPPLE RIVER NEAR FENCE, WI (HYDROLOGIC BENCHMARK STATION) LOCATION.--Lat 45°45'49", long 88°27'47", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.23, T.38 N., R.16 E., Florence County, Hydrologic Unit 04030108, on left bank 20 ft upstream from bridge on U. S. Forest Service Road 2159, 1.8 mi downstream from Mud Creek, 2.6 mi northwest of Fence, and 11.5 mi upstream from mouth. DRAINAGE AREA.--139 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1963 to current year. REVISED RECORDS.--WDR WI-76-1: 1972(M). WDR WI-80-1: Drainage area. WDR WI-81-1: 1965 (M). GAGE.--Water-stage recorder. Datum of gage is 1,406.16 ft above NGVD of 1929. Prior to June 18, 1964, nonrecording gage at same site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | |----------------------------------|--|----------------------------|----------------------------------|----------------------------------|-------------------|------------------------------------|---------------------------------|--|----------------------------|----------------------------------|----------------------------------|----------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 130 | 128 | 56 | 41 | 22 | e26 | 62 | 210 | 133 | 49 | 68 | 30 | | | 2 | 152 | 119 | 55 | 40 | 22 | e27 | 71 | 191 | 124 | 46 | 89 | 28 | | | 3 | 144 | 112 | 51 | 39 | 23 | e27 | 82 | 175 | 116 | 45 | 99 | 27 | | | 4 | 208 | 107 | 48 | 39 | 23 | e27 | 62 | 162 | 108 | 44 | 115 | 27 | | | 5 | 302 | 104 | 47 | 39 | 22 | e27 | 57 | 156 | 102 | 42 | 99 | 30 | | | 6 | 376 | 103 | 47 | 39 | 22 | e27 | 54 | 201 | 98 | 40 | 79 | 32 | | | 7 | 395 | 100 | 46 | 40 | 21 | e27 | 49 | 221 | 117 | 41 | 75 | 29 | | | 8 | 393 | 98 | 46 | 43 | 23 | e27 | 45 | 222 | 156 | 43 | 70 | 27 | | | 9 | 369 | 98 | 45 | 44 | 22 | e27 | 43 | 218 | 194 | 40 | 61 | 26 | | | 10 | 341 | 110 | 44 | 44 | 23 | e27 | 70 | 227 | 221 | 39 | 55 | 26 | | | 11 |
309 | 140 | 44 | 45 | 23 | e28 | 165 | 325 | 262 | 42 | 73 | 26 | | | 12 | 287 | 139 | 44 | 45 | 23 | e29 | 261 | 423 | 257 | 43 | 67 | 27 | | | 13 | 270 | 130 | 45 | 45 | 24 | e34 | 253 | 455 | 226 | 41 | 55 | 41 | | | 14 | 240 | 121 | 48 | 44 | 24 | e34 | 266 | 460 | 189 | 37 | 47 | 62 | | | 15 | 209 | 113 | 51 | 44 | 24 | e33 | 316 | 436 | 155 | 36 | 43 | 73 | | | 16 | 179 | 108 | 50 | 43 | 24 | e33 | e350 | 405 | 131 | 36 | 41 | 60 | | | 17 | 155 | 107 | 48 | 41 | 23 | e33 | 383 | 367 | 117 | 36 | 37 | 49 | | | 18 | 139 | 92 | 48 | 41 | e22 | e37 | 390 | 326 | 108 | 35 | 35 | 42 | | | 19 | 134 | 90 | 54 | 40 | e22 | e62 | 401 | 287 | 97 | 34 | 33 | 38 | | | 20 | 134 | 86 | 57 | 39 | e22 | e160 | 469 | 277 | 87 | 33 | 36 | 36 | | | 21 | 130 | 84 | 57 | 38 | e22 | e280 | 506 | 272 | 78 | 43 | 40 | 35 | | | 22 | 128 | 82 | 54 | 37 | e22 | e310 | 510 | 246 | 71 | 44 | 37 | 47 | | | 23 | 128 | 79 | 50 | 37 | e23 | e280 | 487 | 220 | 66 | 41 | 33 | 63 | | | 24 | 127 | 77 | 47 | 34 | e23 | e240 | 462 | 191 | 64 | 38 | 32 | 59 | | | 25 | 127 | 77 | 45 | 32 | e23 | 198 | 429 | 169 | 63 | 34 | 35 | 55 | | | 26
27
28
29
30
31 | 146
162
165
156
149
138 | 74
69
65
62
61 | 44
43
42
42
42
42 | 30
29
27
25
24
23 | e23
e23
e25 | 144
122
79
76
85
71 | 393
352
312
275
234 | 153
138
129
126
123
133 | 59
56
54
54
52 | 33
33
32
31
32
39 | 35
33
32
34
33
31 | 51
55
57
54
52 | | | TOTAL | 6,422 | 2,935 | 1,482 | 1,171 | 638 | 2,637 | 7,809 | 7,644 | 3,615 | 1,202 | 1,652 | 1,264 | | | MEAN | 207 | 97.8 | 47.8 | 37.8 | 22.8 | 85.1 | 260 | 247 | 120 | 38.8 | 53.3 | 42.1 | | | MAX | 395 | 140 | 57 | 45 | 25 | 310 | 510 | 460 | 262 | 49 | 115 | 73 | | | MIN | 127 | 61 | 42 | 23 | 21 | 26 | 43 | 123 | 52 | 31 | 31 | 26 | | | CFSM | 1.49 | 0.70 | 0.34 | 0.27 | 0.16 | 0.61 | 1.87 | 1.77 | 0.87 | 0.28 | 0.38 | 0.30 | | | IN. | 1.72 | 0.79 | 0.40 | 0.31 | 0.17 | 0.71 | 2.09 | 2.05 | 0.97 | 0.32 | 0.44 | 0.34 | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1964 - 2003 | , BY WATE | R YEAR (W | /Y) | | | | | | MEAN | 115 | 109 | 65.0 | 47.4 | 46.5 | 85.9 | 309 | 217 | 142 | 80.8 | 65.3 | 103 | | | MAX | 265 | 220 | 116 | 86.6 | 107 | 356 | 613 | 617 | 345 | 260 | 147 | 356 | | | (WY) | (1972) | (1986) | (1992) | (1969) | (1984) | (1973) | (1979) | (1965) | (1993) | (1999) | (1978) | (1980) | | | MIN | 25.0 | 30.9 | 23.9 | 24.6 | 22.8 | 30.5 | 54.6 | 52.0 | 21.2 | 17.5 | 23.1 | 16.4 | | | (WY) | (1990) | (1977) | (1990) | (1977) | (2003) | (1964) | (1990) | (1998) | (1988) | (1988) | (1989) | (1989) | | # 04063700 POPPLE RIVER NEAR FENCE, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEAR | S 1964 - 2003 | |--------------------------|---------------|--------------|-------------|----------|------------|----------------| | ANNUAL TOTAL | 51,155 | | 38,471 | | | | | ANNUAL MEAN | 140 | | 105 | | 115 | | | HIGHEST ANNUAL MEAN | | | | | 175 | 1973 | | LOWEST ANNUAL MEAN | | | | | 64.3 | 1988 | | HIGHEST DAILY MEAN | 1,500 | Apr 19 | 510 | Apr 22 | 1,610 | Apr 25, 1979 | | LOWEST DAILY MEAN | (a)26 | Feb 12,16-18 | 21 | Feb 7 | 10 | Aug 12, 1989 | | ANNUAL SEVEN-DAY MINIMUM | (a)26 | Feb 12 | 22 | Feb 1 | 12 | (b)Jul 3, 1988 | | MAXIMUM PEAK FLOW | | | (c)512 | Apr 21 | (d)1,640 | Apr 25, 1979 | | MAXIMUM PEAK STAGE | | | (a)3.23 | Apr 16 | 4.81 | Apr 19, 2002 | | INSTANTANEOUS LOW FLOW | | | 21 | Feb 5 | (f)5.9 | Oct 28, 1976 | | ANNUAL RUNOFF (CFSM) | 1.01 | | 0.76 | | 0.83 | | | ANNUAL RUNOFF (INCHES) | 13.69 | | 10.30 | | 11.29 | | | 10 PERCENT EXCEEDS | 348 | | 273 | | 251 | | | 50 PERCENT EXCEEDS | 65 | | 55 | | 70 | | | 90 PERCENT EXCEEDS | 32 | | 27 | | 33 | | ⁽a) Ice affected (b) Also occurred Sept. 20, 1989 (c) Gage height, 2.85 ft (d) Gage height, 4.52 ft (e) Estimated due to ice effect or missing record (f) Result of temporary storage from beaver dam # 04063700 POPPLE RIVER NEAR FENCE, WI--Continued (HYDROLOGIC BENCHMARK STATION) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 1964 to September 1997, October 2000 to current year. National Water-Qulity Assessment Program sampling April 1993 to October 1996, and April 2001 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: June 2002 to current year. SPECIFIC CONDUCTANCE: June 2002 to current year. INSTRUMENTATION.--Continuous water temperature recorder and specific conductance recorder since June 2002. Sensor located near midstream. REMARKS.--Records represent water temperature at sensor within 0.5°C. Records for water temperature were faulty Jan. 12 to May 29, June 24 to July 1, and Aug. 1-19. Records for specific conductance were faulty Jan. 12 to May 29, June 22 to July 1, and Aug. 1-19. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 27.0°C, July 5 and Aug. 19 (partial day), 2003; minimum, 0.0°C, many days in 2003. SPECIFIC CONDUCTANCE: Maximum, 244 mS/cm, July 11, 2002; minimum, 86 mS/cm, Oct. 10 and 11, 2002. ### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 27.0°C, July 5 and Aug. 19 (partial day), 2003; minimum, 0.0°C, many days. SPECIFIC CONDUCTANCE: Maximum, 292 mS/cm, Jan. 11; minimum, 86 mS/cm, Oct. 10 and 11. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | 1 | DAY | MAX | MIN | MEAN | |--|----------|------------|------------|------------|------------|------------|------------|------------|--------|------------|--------------|---------|------------| | 2 15.0 12.5 14.0 2.0 0.5 1.0 0.0 <td></td> <td></td> <td>ОСТОВЕ</td> <td>R</td> <td>N</td> <td>OVEMBE</td> <td>ER</td> <td>D</td> <td>ECEMBE</td> <td>R</td> <td>J</td> <td>JANUARY</td> <td>7</td> | | | ОСТОВЕ | R | N | OVEMBE | ER | D | ECEMBE | R | J | JANUARY | 7 | | 4 12.5 12.0 12.0 12.0 1.0 1.5 0.0 </td <td>2</td> <td>15.0</td> <td>12.5</td> <td>14.0</td> <td>2.0</td> <td>0.5</td> <td>1.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> | 2 | 15.0 | 12.5 | 14.0 | 2.0 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 6 | 4 | 12.5 | 12.0 | 12.0 | 2.0 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 8 9.0 7.5 8.5 3.0 1.0 2.0 0.0 | 6 | 11.0 | 9.5 | 10.5 | 1.5 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 8 | 9.0
9.5 | 7.5
8.0 | 8.5
8.5 | 3.0
4.0 | 1.0
2.5 | 2.0
3.5 | 0.0
0.0 | 0.0 | 0.0
0.0 | $0.0 \\ 0.0$ | 0.0 | 0.0
0.0 | | 13 9.0 6.5 7.5 1.5 0.5 1.5 0.0 0.0 0.0 | 11 | 10.5 | 8.5 | 9.5 | 4.0 | 2.0 | 3.0 | 0.0 | 0.0 | 0.0 | | | | | 15 7.0 5.5 6.0 0.5 0.0 0.0 0.0 0.0 0.0 | 13 | 9.0 | 6.5 | 7.5 | 1.5 | 0.5 | 1.5 | 0.0 | 0.0 | 0.0 | | | | | 17 5.0 3.5 4.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 | 15 | 7.0 | 5.5 | 6.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 20 4.0 3.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 21 3.0 1.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 22 2.0 1.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 23 3.0 1.0 2.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 24 4.0 2.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25 4.0 3.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26 4.0 3.5 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27 4.0 3.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 17
18 | 5.0
4.0 | 3.5
3.0 | 4.0
3.5 | 0.5
0.0 | 0.0
0.0 | 0.0
0.0 | 0.0
0.0 | 0.0 | 0.0
0.0 | | | | | 22 2.0 1.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>4.0</td> <td>3.0</td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> | | 4.0 | 3.0 | | | | 0.0 | | 0.0 | | | |
| | 24 | 22 | 2.0 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 27 4.0 3.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 | 24 | 4.0 | 2.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 28 4.0 2.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 | 27 | 4.0 | 3.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 29 | 4.0 | 2.5 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 31 3.5 1.5 2.5 0.0 0.0 0.0 0.0 MONTH 16.5 1.0 6.4 4.5 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 31 | 3.5 | 1.5 | 2.5 | | | | 0.0 | 0.0 | 0.0 | | | | # 04063700 POPPLE RIVER NEAR FENCE, WI--Continued # ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003}$ | TEBRUARY | DAY | MAX | MIN | MEAN | |---|----------|------|--------------|--------------|--------------|-------|--------------|--------------|--------|------|------------|------------|------| | 2 | | F | EBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 3 | | | | | | | | | | | | | | | S | | | | | | | | | | | | | | | 6 | • | | | | | | | | | | | | | | The content of | | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 12 | - | | | | | | | | | | | | | | 12 | 11 | | | | | | | | | | | | | | 144 <td>12</td> <td></td> | 12 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | 21 | 19 | | | | | | | | | | | | | | 22 | 20 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | | 26 | 24 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 30 | 28 | | | | | | | | | | | | | | MONTH 15.5 11.0 13.0 | | | | | | | | | | | | | | | JUNE JULY AUGUST SEPTEMBER 1 16.0 11.5 13.5 20.0 15.5 18.0 2 17.0 13.0 15.0 24.5 19.0 21.5 21.0 16.5 19.0 3 19.0 13.5 16.0 25.5 21.0 23.0 20.0 17.5 18.5 4 19.5 14.0 17.0 25.5 21.0 23.5 20.0 17.5 18.5 5 19.0 15.0 17.0 27.0 20.5 23.5 19.5 15.5 17.5 5 19.0 15.0 16.5 25.5 21.0 23.0 19.5 14.0 17.0 6 17.5 15.0 16.5 25.5 21.0 23.0 20.5 15.5 18.0 <td></td> | | | | | | | | | | | | | | | 1 16.0 11.5 13.5 2 17.0 13.0 15.0 24.5 19.0 21.5 21.0 16.5 19.0 3 19.0 13.5 16.0 25.5 21.0 23.0 20.0 17.5 18.5 4 19.5 14.0 17.0 25.5 21.0 23.5 19.5 15.5 17.5 5 19.0 15.0 17.0 27.0 20.5 23.5 19.5 15.5 17.5 5 19.0 15.0 17.0 27.0 20.5 23.5 19.5 15.5 17.5 6 17.5 15.0 16.5 25.5 21.0 23.0 20.5 15.5 18.0 7 15.5 14.0 14.5 26.5 20.5 23.0 20.5 17.0 | MONTH | | | | | | | | | | 16.5 | 11.0 | 14.0 | | 2 17.0 13.0 15.0 24.5 19.0 21.5 21.0 16.5 19.0 3 19.0 13.5 16.0 25.5 21.0 23.0 20.0 17.5 18.5 4 19.5 14.0 17.0 25.5 21.0 23.5 19.5 15.5 17.5 5 19.0 15.0 17.0 27.0 20.5 23.5 19.5 14.0 17.0 6 17.5 15.0 16.5 25.5 21.0 23.0 20.5 15.5 18.0 7 15.5 14.0 14.5 26.5 20.5 23.0 20.5 17.0 19.0 8 14.0 12.5 13.0 24.0 20.0 22.0 22.5 18.0 20.5 9 15.5 12.0 13.5 22.5 18.5 20.5 </th <th></th> <th></th> <th>JUNE</th> <th></th> <th></th> <th>JULY</th> <th></th> <th></th> <th>AUGUST</th> <th>·</th> <th>S</th> <th>EPTEMBI</th> <th>ER</th> | | | JUNE | | | JULY | | | AUGUST | · | S | EPTEMBI | ER | | 3 19.0 13.5 16.0 25.5 21.0 23.0 20.0 17.5 18.5 4 19.5 14.0 17.0 25.5 21.0 23.5 19.5 15.5 17.5 5 19.0 15.0 17.0 27.0 20.5 23.5 19.5 14.0 17.0 6 17.5 15.0 16.5 25.5 21.0 23.0 20.5 15.5 18.0 7 15.5 14.0 14.5 26.5 20.5 23.0 20.5 17.0 19.0 8 14.0 12.5 13.0 24.0 20.0 22.0 22.5 18.0 20.5 9 15.5 12.0 13.5 22.5 18.5 20.5 23.0 19.5 21.5 10 15.0 12.5 13.5 21.0 18.0 19.5 < | | | | | | | | | | | | | | | 4 19.5 14.0 17.0 25.5 21.0 23.5 19.5 15.5 17.5 5 19.0 15.0 17.0 27.0 20.5 23.5 19.5 15.5 14.0 17.0 6 17.5 15.0 16.5 25.5 21.0 23.0 20.5 15.5 18.0 7 15.5 14.0 14.5 26.5 20.5 23.0 20.5 17.0 19.0 8 14.0 12.5 13.0 24.0 20.0 22.0 22.5 18.0 20.5 9 15.5 12.0 13.5 22.5 18.5 20.5 23.0 19.5 21.5 10 15.0 12.5 13.5 21.0 18.0 19.5 23.0 19.5 21.5 11 15.5 11.5 13.5 19.0 16.5 17.5 | | | | | | | | | | | | | | | 6 17.5 15.0 16.5 25.5 21.0 23.0 20.5 15.5 18.0 7 15.5 14.0 14.5 26.5 20.5 23.0 20.5 17.0 19.0 8 14.0 12.5 13.0 24.0 20.0 22.0 22.5 18.0 20.5 9 15.5 12.0 13.5 22.5 18.5 20.5 23.0 19.5 21.5 10 15.0 12.5 13.5 21.0 18.0 19.5 23.0 19.5 21.5 11 15.5 11.5 13.5 19.0 16.5 17.5 22.5 19.0 21.0 12 18.0 13.5 15.5 23.0 16.0 19.0 21.5 19.0 19.5 13 19.0 15.0 17.0 23.0 18.0 21.0 - | 4 | 19.5 | 14.0 | 17.0 | 25.5 | 21.0 | 23.5 | | | | 19.5 | 15.5 | 17.5 | | 7 15.5 14.0 14.5 26.5 20.5 23.0 20.5 17.0 19.0 8 14.0 12.5 13.0 24.0 20.0 22.0 22.5 18.0 20.5 9 15.5 12.0 13.5 22.5 18.5 20.5 23.0 19.5 21.5 10 15.0 12.5 13.5 21.0 18.0 19.5 23.0 19.5 21.5 11 15.5 11.5 13.5 19.0 16.5 17.5 22.5 19.0 21.0 12 18.0 13.5 15.5 23.0 16.0 19.0 21.5 19.0 19.5 13 19.0 15.0 17.0 23.0 18.0 21.0 18.5 15.5 17.0 14 21.0 16.5 18.5 22.5 19.0 21.0 18.5 15.5 17.0 15 21.5 17.0 19.5 22.5 20.0 21.0 <td>5</td> <td>19.0</td> <td>15.0</td> <td>17.0</td> <td>27.0</td> <td>20.5</td> <td>23.5</td> <td></td> <td></td> <td></td> <td>19.5</td> <td>14.0</td> <td>17.0</td> | 5 | 19.0 | 15.0 | 17.0 | 27.0 | 20.5 | 23.5 | | | | 19.5 | 14.0 | 17.0 | | 8 14.0 12.5 13.0 24.0 20.0 22.0 22.5 18.0 20.5 9 15.5 12.0 13.5 22.5 18.5 20.5 23.0 19.5 21.5 10 15.0 12.5 13.5 21.0 18.0 19.5 23.0 19.5 21.5 11 15.5 11.5 13.5 19.0 16.5 17.5 22.5 19.0 21.0 12 18.0 13.5 15.5 23.0 16.0 19.0 21.5 19.0 19.5 13 19.0 15.0 17.0 23.0 18.0 21.0 19.0 18.0 18.5 14 21.0 16.5 18.5 22.5 19.0 21.0 18.5 15.5 17.0 15 21.5 17.0 19.5 22.5 20.0 21.0 17.5 12.5 15.0 | | | | | | | | | | | | | | | 10 15.0 12.5 13.5 21.0 18.0 19.5 23.0 19.5 21.5 11 15.5 11.5 13.5 19.0 16.5 17.5 22.5 19.0 21.0 12 18.0 13.5 15.5 23.0 16.0 19.0 21.5 19.0 19.5 13 19.0 15.0 17.0 23.0 18.0 21.0 19.0 18.0 18.5 14 21.0 16.5 18.5 22.5 19.0 21.0 18.5 15.5 17.0 15 21.5 17.0 19.5 22.5 20.0 21.0 17.0 14.0 15.5 16 23.0 17.5 20.5 24.5 17.5 21.0 17.5 12.5 15.0 | 8 | | | | 24.0 | | | | | | | | | | 11 15.5 11.5 13.5 19.0 16.5 17.5 22.5 19.0 21.0 12 18.0 13.5 15.5 23.0 16.0 19.0 21.5 19.0 19.5 13 19.0 15.0 17.0 23.0 18.0 21.0 19.0 18.0 18.5 14 21.0 16.5 18.5 22.5 19.0 21.0 18.5 15.5 17.0 15 21.5 17.0 19.5 22.5 20.0 21.0 17.0 14.0 15.5 16 23.0 17.5 20.5 24.5 17.5 21.0 17.5 12.5 15.0 | | | | | | | | | | | | | | | 12 18.0 13.5 15.5 23.0 16.0 19.0 21.5 19.0 19.5 13 19.0 15.0 17.0 23.0 18.0 21.0 19.0 18.0 18.5 14 21.0 16.5 18.5 22.5 19.0 21.0 18.5 15.5 17.0 15 21.5 17.0 19.5 22.5 20.0 21.0 17.0 14.0 15.5 16 23.0 17.5 20.5 24.5 17.5 21.0 17.5 12.5 15.0 | | | | | | | | | | | | | | | 13 19.0 15.0 17.0 23.0 18.0 21.0 19.0 18.0 18.5 14 21.0 16.5 18.5 22.5 19.0 21.0 18.5 15.5 17.0 15 21.5 17.0 19.5 22.5 20.0 21.0 17.0 14.0 15.5 16 23.0 17.5 20.5 24.5 17.5 21.0 17.5 12.5 15.0 | | | | | | | | | | | | | | | 15 21.5 17.0 19.5 22.5 20.0 21.0 17.0 14.0 15.5
16 23.0 17.5 20.5 24.5 17.5 21.0 17.5 12.5 15.0 | 13 | | 15.0 | | 23.0 | | 21.0 | | | | | | 18.5 | | | 15 | 21.5 | 17.0 | 19.5 | 22.5 | 20.0 | 21.0 | | | | 17.0 | | 17.0 | | | 16 | 23.0 | 17.5 | 20.5 | 24.5 | 17.5 | 21.0 | | | | 17.5 | 12.5 | 15.0 | | 17 25.0 10.0 21.0 25.0 20.0 25.0 17.0 14.0 10.0 | 17 | 23.0 | 18.5 | 21.0 | 25.0 | 20.5 | 23.0 | | | | 19.0 | 14.0 | 16.5 | | 18 23.0 19.0 21.0 24.0 18.5 21.5 20.0 15.5 18.0 19 22.5 17.0 20.0 24.5 19.0 21.5 18.5 14.5 16.5 | | | | 20.0 | 24.0
24.5 | | | | | | | | | | 20 23.0 16.0 19.5 25.0 20.5 23.0 26.0 23.0 24.0 16.5 12.0 14.5 | | | | 19.5 | | | 23.0 | 26.0 | 23.0 | 24.0 | | | 14.5 | | 21 24.0 17.0 20.5 23.5 20.0 21.0 26.0 22.5 24.0 16.0 12.0 14.5 | 21 | | | | | | | | | | | | | | 22 25.0 18.0 21.5 20.5 17.5 19.0 24.5 20.0 22.5 15.0 13.5 14.0 23 25.0 19.0 22.0 22.5 16.5 19.5 22.5 18.5 20.5 14.5 11.5 13.0 | 22
23 | | 18.0
19.0 | 21.5
22.0 | 20.5
22.5 | | 19.0
19.5 | | | | | | | | 24 23.0 17.5 20.5 24.0 18.5 21.0 13.0 11.5 12.0 | 24 | | | | 23.0 | 17.5 | 20.5 | 24.0 | 18.5 | 21.0 | 13.0 | 11.5 | 12.0 | | 25 23.0 18.5 21.0 25.0 21.0 23.0 12.5 9.0 11.0 | | | | | | | | | | | 12.5 | | | | 26 24.5 21.0 22.5 25.5 21.0 23.5 11.0 9.5 10.5 27 25.0 22.0 23.5 23.5 19.5 21.5 10.5 9.5 10.0 | | | | | | | 22.5 | 25.5
23.5 | | | |
9.5
9.5 | | | 28 24.5 19.0 22.0 21.0 17.5 19.0 10.5 9.0 9.5 | 28 | | | | 24.5 | 19.0 | 22.0 | 21.0 | 17.5 | 19.0 | 10.5 | 9.0 | 9.5 | | 29 24.0 20.0 22.0 20.0 17.5 19.0 9.5 7.0 8.0 30 23.0 20.0 21.5 19.5 15.0 17.5 8.5 6.5 7.5 | | | | | | | 22.0
21.5 | | | | 9.5
8.5 | | | | 31 22.0 19.5 21.0 19.5 15.0 17.5 | | | | | | | | | | | | | | | MONTH 25.0 11.5 17.4 27.0 16.0 21.4 26.0 15.0 21.1 23.0 6.5 15.8 | MONTH | 25.0 | 11.5 | 17.4 | 27.0 | 16.0 | 21.4 | 26.0 | 15.0 | 21.1 | 23.0 | 6.5 | 15.8 | # 04063700 POPPLE RIVER NEAR FENCE, WI--Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | N | OVEMBE | R | Б | ECEMBE | R | | JANUARY | 7 | | 1
2
3
4
5 | 153
146
157
155
130 | 139
109
129
87
109 | 144
127
146
136
116 | 133
135
143
145
148 | 129
131
135
141
145 | 130
133
138
143
146 | 204
208
215
218
221 | 198
203
208
214
218 | 202
206
212
217
220 | 255
262
285
272
271 | 248
254
260
263
260 | 252
258
268
270
268 | | 6
7
8
9
10 | 119
105
102
99
92 | 96
91
88
88
86 | 105
95
92
91
88 | 150
153
155
157
154 | 147
149
152
153
145 | 149
151
154
155
150 | 223
224
226
232
233 | 220
220
218
217
226 | 222
222
224
225
231 | 265
261
258
253
259 | 258
242
243
235
235 | 262
258
254
249
249 | | 11
12
13
14
15 | 94
93
95
96
112 | 86
88
91
93
95 | 89
90
92
94
99 | 145
145
148
143
140 | 135
132
130
130
132 | 140
135
132
133
135 | 235
233
230
226
224 | 224
224
218
217
214 | 233
230
227
223
222 | 292

 | 259

 | 270

 | | 16
17
18
19
20 | 108
112
120
126
126 | 100
104
110
117
122 | 104
108
114
121
123 | 165
234
194
172
179 | 120
115
151
154
162 | 139
150
158
160
168 | 229
231
232
221
218 | 219
222
215
212
207 | 226
229
227
216
214 |

 |

 |

 | | 21
22
23
24
25 | 128
126
133
135
135 | 122
121
124
127
127 | 124
123
127
130
129 | 174
174
174
178
183 | 162
163
166
168
172 | 166
168
169
172
177 | 219
223
232
238
240 | 212
212
214
225
229 | 217
220
225
234
236 |

 |

 |

 | | 26
27
28
29
30
31 | 138
132
122
125
128
130 | 127
120
117
117
123
126 | 130
125
119
120
125
128 | 230
198
195
196
198 | 178
187
191
190
190 | 184
190
193
193
193 | 246
250
249
250
248
250 | 237
235
241
239
244
240 | 241
245
246
248
247
246 |

 |

 |

 | | | | | | | | | | | | | | | | MONTH | 157 | 86 | 115 | 234 | 115 | 157 | 250 | 198 | 227 | 292 | 235 | 260 | | MONTH | | 86
FEBRUARY | | | 115
MARCH | 157 | 250 | 198
APRIL | 227 | 292 | 235
MAY | 260 | | 1 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY
 | | | 1
2
3 |
 | FEBRUARY |
 |

 | MARCH

 |
 |
 | APRIL

 |
 |
 | MAY

 |
 | | 1 2 |
 | FEBRUARY

 |
 |
 | MARCH
 |
 | | APRIL | | | MAY
 | | | 1
2
3
4 |

 | FEBRUARY |

 |

 | MARCH

 |

 |

 | APRIL

 |

 |

 | MAY

 |

 | | 1
2
3
4
5 | | FEBRUARY | |

 | MARCH |

 |

 | APRIL |

 |

 | MAY | | | 1
2
3
4
5
6
7
8 | | FEBRUARY | |

 | MARCH |

 |

 | APRIL |

 |

 | MAY |

 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | |

 | MARCH |

 |

 | APRIL |

 |

 | MAY |

 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH |

 |

 | APRIL | |

 | MAY |

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | | FEBRUARY | |

 | MARCH |

 | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH |

 | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | |

 | MARCH |

 | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | # 04063700 POPPLE RIVER NEAR FENCE, WI--Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS—CONTINUED WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | WILLIAM I | Li III OCI | OBER 2002 1 | O DEI TEM | DEI(2003 | | | | | |-------|-----|------|------|-----------|------------|-------------|-----------|-----------|------|-----|---------|------| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | S | ЕРТЕМВЕ | ER | | 1 | 145 | 132 | 135 | | | | | | | 243 | 240 | 242 | | 2 | 141 | 133 | 135 | 208 | 204 | 206 | | | | 245 | 241 | 243 | | 3 | 146 | 136 | 140 | 212 | 208 | 210 | | | | 247 | 244 | 246 | | 4 | 156 | 142 | 147 | 215 | 212 | 213 | | | | 248 | 245 | 246 | | 5 | 160 | 148 | 152 | 220 | 215 | 217 | | | | 248 | 246 | 247 | | 6 | 164 | 156 | 159 | 221 | 217 | 220 | | | | 250 | 238 | 246 | | 7 | 161 | 150 | 156 | 223 | 220 | 222 | | | | 250 | 246 | 248 | | 8 | 150 | 132 | 141 | 224 | 222 | 223 | | | | 253 | 248 | 251 | | 9 | 134 | 117 | 125 | 226 | 223 | 225 | | | | 254 | 250 | 253 | | 10 | 137 | 106 | 119 | 225 | 223 | 225 | | | | 254 | 249 | 252 | | 11 | 129 | 105 | 113 | 226 | 221 | 225 | | | | 252 | 248 | 251 | | 12 | 138 | 102 | 115 | 228 | 226 | 227 | | | | 251 | 235 | 246 | | 13 | 122 | 99 | 107 | 231 | 227 | 229 | | | | 235 | 232 | 234 | | 14 | 136 | 108 | 123 | 233 | 230 | 231 | | | | 232 | 218 | 222 | | 15 | 136 | 114 | 121 | 234 | 230 | 232 | | | | 221 | 218 | 219 | | 16 | 132 | 120 | 125 | 235 | 231 | 233 | | | | 228 | 219 | 223 | | 17 | 141 | 128 | 135 | 238 | 235 | 237 | | | | 234 | 228 | 232 | | 18 | 161 | 139 | 149 | 238 | 233 | 237 | | | | 238 | 233 | 235 | | 19 | 162 | 149 | 153 | 240 | 237 | 239 | | | | 239 | 236 | 238 | | 20 | 177 | 156 | 165 | 240 | 231 | 238 | 241 | 232 | 236 | 240 | 237 | 239 | | 21 | 201 | 167 | 175 | 231 | 229 | 230 | 238 | 230 | 235 | 241 | 238 | 240 | | 22 | | | | 232 | 229 | 231 | 236 | 233 | 235 | 240 | 228 | 233 | | 23 | | | | 237 | 231 | 234 | 239 | 235 | 238 | 230 | 220 | 225 | | 24 | | | | 237 | 233 | 236 | 242 | 236 | 240 | 223 | 220 | 222 | | 25 | | | | 239 | 237 | 238 | 243 | 238 | 241 | 225 | 222 | 224 | | 26 | | | | 240 | 238 | 240 | 243 | 239 | 242 | 226 | 221 | 224 | | 27 | | | | 242 | 240 | 241 | 245 | 242 | 244 | 224 | 220 | 222 | | 28 | | | | 244 | 240 | 242 | 245 | 235 | 242 | 222 | 219 | 221 | | 29 | | | | 245 | 238 | 242 | 243 | 206 | 240 |
223 | 219 | 222 | | 30 | | | | 242 | 232 | 241 | 240 | 237 | 239 | 225 | 223 | 224 | | 31 | | | | 243 | 227 | 238 | 243 | 237 | 241 | | | | | MONTH | 201 | 99 | 138 | 245 | 204 | 230 | 245 | 206 | 239 | 254 | 218 | 236 | | | | | | | | | | | | | | | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Alkalinity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | Bicarbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | Chloride,
water,
fltrd,
mg/L
(00940) | Sulfate
water,
fltrd,
mg/L
(00945) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | |-----------|------|--------------------------------------|-------------------------------|---|--|---|--|---|--|--|--|--|---| | OCT | 1015 | 200 | 10 | 721 | 10.6 | 7.0 | 95 | 6.0 | 27 | 45 | 1.40 | 2.5 | 1.0 | | 15
NOV | 1015 | 209 | 10 | 721 | 10.6 | 7.9 | 95 | 0.0 | 37 | 45 | 1.40 | 3.5 | 1.0 | | 12
DEC | 1010 | 141 | 10 | 725 | 12.2 | 7.7 | 134 | 1.0 | 62 | 76 | 1.81 | 4.7 | 0.59 | | 03 | 1030 | 50 | 10 | 761 | 12.6 | 7.8 | 210 | -0.1 | 108 | 132 | 1.87 | 6.8 | 0.41 | | JAN
08 | 1115 | 41 | 20 | 708 | 10.2 | 7.6 | 253 | -0.1 | 122 | 149 | 1.35 | 7.9 | 0.22 | | FEB
05 | 1215 | 24 | 20 | 723 | 7.0 | 7.4 | 291 | -0.2 | 133 | 162 | 1.93 | 8.5 | 0.33 | | MAR
12 | 1230 | 29 | 20 | 722 | 9.8 | 7.4 | 271 | -0.2 | 126 | 153 | 1.52 | 8.2 | 0.29 | | APR
09 | 0940 | 42 | 10 | 734 | 12.8 | 7.9 | 208 | 0.1 | 93 | 113 | | | 0.40 | | MAY
05 | 1000 | 151 | 10 | 713 | 9.7 | 7.6 | 106 | 9.5 | 47 | 57 | 1.46 | 4.9 | 0.75 | | JUN
04 | 0945 | 108 | 10 | 724 | 8.6 | 7.2 | 139 | 15.0 | 63 | 77 | 1.15 | 4.6 | 0.52 | | JUL
01 | 1000 | 49 | 10 | 726 | 7.5 | 7.7 | 204 | 18.5 | 96 | 118 | 1.58 | 5.4 | 0.47 | | AUG
05 | 0940 | 102 | 10 | 722 | 7.5 | 7.6 | 178 | 18.0 | 81 | 99 | 1.25 | 6.4 | 0.66 | | SEP
03 | 1010 | 27 | 10 | 722 | 7.8 | 7.6 | 251 | 17.5 | 111 | 135 | 1.97 | 6.2 | 0.35 | # 04063700 POPPLE RIVER NEAR FENCE, WI--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Particulate nitrogen, susp, water, mg/L (49570) | Phosphorus, water, unfltrd mg/L (00665) | Total
carbon,
suspnd
sedimnt
total,
mg/L
(00694) | Inorganic carbon, suspnd sedimnt total, mg/L (00688) | Organic
carbon,
suspnd
sedimnt
total,
mg/L
(00689) | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Suspnd.
sedi-
ment,
sieve
diametr
percent
<.063mm
(70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |-----------|--|---|--|--|---|---|--|--|--|---|--|--| | OCT | | | | | | | | | | | | | | 15 | < 0.04 | E.04 | E.006 | < 0.02 | 0.03 | 0.028 | 0.3 | < 0.1 | 0.3 | 38.9 | 33 | 2 | | NOV | -0.04 | 0.12 | E 005 | -0.03 | 0.07 | 0.010 | 0.5 | ۰0.1 | 0.5 | 20.0 | 50 | 2 | | 12
DEC | < 0.04 | 0.13 | E.005 | < 0.02 | 0.07 | 0.018 | 0.5 | < 0.1 | 0.5 | 20.0 | 50 | 2 | | 03 | < 0.04 | 0.14 | E.004 | < 0.02 | 0.03 | 0.011 | 0.1 | < 0.1 | 0.1 | 10.4 | 50 | 2 | | JAN | | | | | | | | | | | | | | 08 | 0.04 | 0.17 | < 0.008 | < 0.02 | 0.03 | 0.010 | 0.2 | < 0.1 | 0.2 | 4.4 | 80 | 3 | | FEB
05 | 0.11 | 0.21 | < 0.008 | < 0.02 | 0.03 | 0.011 | 0.3 | < 0.1 | 0.3 | 2.4 | 100 | 2 | | MAR | 0.11 | 0.21 | <0.008 | <0.02 | 0.03 | 0.011 | 0.3 | <0.1 | 0.3 | 2.4 | 100 | 2 | | 12 | 0.14 | 0.23 | < 0.008 | < 0.02 | 0.03 | 0.013 | 0.3 | < 0.1 | 0.3 | 2.1 | 100 | 1 | | APR | | | | | | | | | | | | | | 09 | 0.11 | 0.22 | E.005 | < 0.02 | < 0.02 | 0.014 | 0.1 | < 0.1 | 0.1 | 5.4 | 83 | 22 | | MAY
05 | < 0.04 | E.03 | < 0.008 | < 0.02 | 0.07 | 0.023 | 0.4 | < 0.1 | 0.4 | 15.0 | 62 | 5 | | JUN | ₹0.04 | L.03 | \0.000 | \0.02 | 0.07 | 0.023 | 0.4 | \0.1 | 0.4 | 13.0 | 02 | 3 | | 04 | < 0.04 | E.06 | < 0.008 | < 0.02 | 0.04 | 0.021 | 0.3 | < 0.1 | 0.3 | 14.4 | | 29 | | JUL | | 0.44 | 0.000 | 0.02 | 0.04 | | 0.4 | 0.4 | 0.4 | | | ••• | | 01
AUG | < 0.04 | 0.11 | < 0.008 | < 0.02 | 0.04 | 0.027 | 0.4 | < 0.1 | 0.4 | 9.1 | | 28 | | 05 | < 0.04 | < 0.06 | < 0.008 | < 0.02 | 0.08 | 0.026 | 0.5 | < 0.1 | 0.5 | 14.6 | | 34 | | SEP | ₹0.04 | 10.00 | 10.000 | 10.02 | 0.00 | 0.020 | 0.5 | 30.1 | 0.5 | 1 7.0 | | 54 | | 03 | < 0.04 | < 0.06 | < 0.008 | < 0.02 | 0.05 | 0.017 | 0.4 | < 0.1 | 0.4 | 5.4 | | 21 | ### 04064500 PINE RIVER BELOW PINE RIVER POWERPLANT NEAR FLORENCE, WI LOCATION.--Lat 45°50'16", long 88°13'31", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.22, T.39 N., R.18 E., Florence County, Hydrologic Unit 04030108, on left bank 60 ft upstream from bridge on County Trunk Highway N, 1.9 mi downstream from powerplant of Wisconsin-Michigan Power Co., 6.0 mi south of Florence, and 7.0 mi downstream from Popple River. DRAINAGE AREA.--533 mi². PERIOD OF RECORD.--October 1923 to December 1975, October 1996 to current year. REVISED RECORDS.--WDR WI-97-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,098.84 ft above mean NGVD of 1929. Prior to October 1968, record obtained from Pine River Powerplant 1.9 mi upstream with a drainage area of 528 mi². REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by Pine River Powerplant 1.9 mi upstream; since storage capacity is small, monthly flows are not affected appreciably. Gage-height telemeter at station. | upstream; since storage ca | acity is small | . monthly flows | are not aff | ected apprec | iably. Gage | height telen | neter at statio | n. | r | , | |---|----------------|------------------|---------------------------|-----------------|-----------------|---|-----------------|---|-----------------------------------|--------------------------| | | • | BIC FEET PE | | | | - | | | | | | | , | | | LY MEAN V | | | | | | | | DAY OCT NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 817 451 | e210 | e230 | e140 | e150 | 358 | 630 | 510 | 232 | 245 | 148 | | 2 830 448
3 726 410 | e190
e180 | e220
e200 | e130
e160 | e150
e180 | 382
345 | 584
550 | 488
447 | 204
239 | 280
381 | 154
150 | | 4 891 378 | e200 | e200 | e130 | e170 | 307 | 504 | 389 | 245 | 522 | 124 | | 5 1,170 410 | e240 | e170 | e160 | e150 | 257 | 534 | 389 | 198 | 489 | 136 | | 6 1,310 375 | e240 | e200 | e170 | e150 | 355 | 660 | 356 | 207 | 388 | 144 | | 7 1,410 380 | e260 | e200 | e180 | e160 | 398 | 704 | 420 | 170 | 331 | 157 | | 8 1,350 375
9 1,260 388 | e240
e220 | e190
e210 | e170
e180 | e180
e170 | 318
340 | 702
692 | 538
693 | 187
203 | 317
302 | 118
134 | | 10 1,100 454 | e230 | e230 | e170 | e170 | 407 | 728 | 808 | 168 | 282 | 137 | | 11 1,000 532 | e240 | e220 | e180 | e160 | 665 | 921 | 972 | 201 | 316 | 114 | | 12 879 525 | e250 | e190 | e170 | e170 | 921 | 1,470 | 920 | 204 | 292 | 133 | | 13 855 494 | e260 | e190 | e170 | e150 | 878 | 1,540 | 783 | 199 | 253 | 199 | | 14 738 453
15 689 416 | e260
e270 | e160
e180 | e180
e180 | e170
e170 | 875
1,010 | 1,560
1,370 | 684
587 | 169
194 | 199
234 | 348
370 | | 16 615 370 | e240 | e140 | e160 | e190 | 1,350 | 1,210 | 485 | 163 | 167 | 354 | | 17 552 283 | e230 | e150 | e160 | e310 | 1,430 | 1,080 | 433 | 176 | 198 | 261 | | 18 501 312 | e250 | e140 | e170 | e500 | 1,340 | 952 | 387 | 171 | 174 | 252 | | 19 502 373
20 507 361 | e280
e260 | e130
e140 | e160
e160 | e560
e560 | 1,350
1,630 | 874
855 | 376
318 | 166
147 | 154
173 | 203
182 | | 21 507 346 | e290 | e140 | e160 | e560 | 1,730 | 862 | 314 | 209 | 204 | 183 | | 22 487 372 | e260 | e120 | e170 | 563 | 1,650 | 807 | 279 | 203 | 190 | 216 | | 23 513 326 | e260 | e92 | e170 | 521 | 1,500 | 748 | 276 | 164 | 174 | 255 | | 24 479 319
25 499 e250 | e250
e230 | e99
e97 | e180
e180 |
582
569 | 1,330
1,220 | 650
577 | 267
257 | 205
197 | 168
163 | 259
225 | | 26 554 e220 | e230 | e92 | e180 | 467 | 1,060 | 535 | 272 | 155 | 178 | 237 | | 27 613 e260 | e220 | e120 | e180 | 432 | 968 | 489 | 235 | 162 | 200 | 253 | | 28 593 e250
29 552 e280 | e220
e230 | e110 | e140 | 346 | 868
804 | 455 | 241
234 | 161 | 154
190 | 248
297 | | 29 552 e280
30 535 e270 | e190 | e120
e110 | | 318
362 | 683 | 467
491 | 218 | 167
146 | 164 | 251 | | 31 527 | e230 | e130 | | 356 | | 524 | | 168 | 145 | | | TOTAL 23,561 11,081 | 7,360 | 4,920 | 4,640 | 9,646 | 26,729 | 24,725 | 13,576 | 5,780 | 7,627 | 6,242 | | MEAN 760 369 | 237 | 159 | 166 | 311 | 891 | 798 | 453 | 186 | 246 | 208 | | MAX 1,410 532 | 290 | 230 | 180 | 582 | 1,730 | 1,560 | 972 | 245 | 522 | 370 | | MIN 479 220
CFSM 1.43 0 | 180
59 0.45 | 92
0.30 | 130
0.31 | 150
0.58 | 257
1.67 | 455
1.50 | 218
0.85 | 146
0.35 | 145
0.46 | 114
0.39 | | | 77 0.51 | | 0.32 | 0.67 | 1.87 | 1.73 | 0.95 | 0.40 | 0.53 | 0.44 | | STATISTICS OF MONTHLY | MEAN DAT | A FOR WATE | R YEARS | 1924 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN 376 385 | 259 | 216 | 197 | 315 | 954 | 799 | 543 | 381 | 301 | 360 | | MAX 1,017 694 (WY) (1929) (194 | 433
(2002) | 473
(1939) | 351
(1969) | 1,188
(1973) | 1,882
(1967) | 2,127
(1965) | 1,424
(1939) | 1,000
(1999) | 760
(1938) | 1,115
(1928) | | MIN 100 185 | 139 | 120 | 80.7 | 74.5 | 325 | 209 | 190 | 117 | 80.3 | 108 | | (WY) (1949) (196 | 4) (1964) | (1964) | (1964) | (1964) | (1931) | (1998) | (1948) | (1934) | (1933) | (1998) | | SUMMARY STATISTICS | | FOR 2002 CA | LENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 192 | 4 - 2003 | | ANNUAL TOTAL | | 186,565 | | 12.11 | 145,88 | | | *************************************** | 12.110 172 | . 2000 | | ANNUAL MEAN | | 511 | | | 40 | 00 | | | 24 | 1060 | | | | | | | | | | | 58
10 | 1960
1931 | | HIGHEST ANNUAL MEAN | | | | | | 30 Ap | r 21 | 4,4 | | or 19, 2002 | | | | 4,440 | Apr | | | | | | | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN | DAID! | (a)180 | (b)Feb | 7,10 | (a)9 | | 1 23,26 | | 0.00 (c)Ja | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MIT | IMUM | | | 7,10 | (a)10 |)4 Jai | 1 22 | | 41 Au | g 4, 1936 | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN | IMUM | (a)180 | (b)Feb | 7,10 | |)4 Jai | 1 22
7 13 | (d)4,8 | 41 Au
50 Ap | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MIN
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
ANNUAL RUNOFF (CFSM) | | (a)180
(a)191 | (b)Feb
Feb | 7,10 | (a)10
2,07 | 04 Jar
70 May
6.11 May
0.75 | 1 22
7 13 | (d)4,8 | 41 Au
50 Ap
9.37 Ap
0.80 | g 4, 1936
or 19, 2002 | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MII
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE | | (a)180
(a)191 | (b)Feb
Feb
96
02 | 7,10 | (a)10
2,07 | 04 Jar
70 May
6.11 May
0.75
10.18 | 1 22
7 13 | (d)4,8 | 41 Au
50 Ap
9.37 Ap | g 4, 1936
or 19, 2002 | 150 150 90 PERCENT EXCEEDS 200 ⁽a) Ice affected ⁽b) Also occurred Dec. 3 ⁽c) No flow at times during 1924, 1926-27, 1930-31, 1933, 1940 ⁽d) From rating curve extended above 3,600 ft³/s ⁽e) Estimated due to ice effect or missing record ### 04065106 MENOMINEE RIVER AT NIAGARA, WI $LOCATION.--Lat\ 45^{\circ}46'04", long\ 87^{\circ}58'50", in\ NE\ \frac{1}{4}\ sec.15,\ T.38\ N.,\ R.20\ E.,\ Marinette\ County,\ Hydrologic\ Unit\ 04030108,\ on\ right\ bank\ 0.7\ mi\ downstream\ from\ Little\ Quinnesec\ Falls\ Dam,\ at\ Niagara.$ DRAINAGE AREA.--2,470 mi². PERIOD OF RECORD.--October 1992 to current year. GAGE.--Water-stage recorder. Elevation of gage is 880 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by powerplants, by Michigamme Reservoir, capacity, 119,950 acre-ft, by Peavy Pond, capacity, 33,860 acre-ft, on Michigamme River, and by smaller reservoirs upstream of gage. Gageheight telemeter at station. | | | DISCHA | ARGE, CUE | BIC FEET PE | |), WATER Y
LY MEAN V | | DBER 2002 T | ГО ЅЕРТЕМ | MBER 2003 | | | |--|--|---|--|--|--------------------------------|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2,910 | 2,820 | e1,600 | e1,400 | e1,500 | e1,600 | 2,170 | 4,070 | 2,550 | 1,390 | 1,420 | 1,100 | | 2 | 3,460 | 2,350 | e1,500 | e1,500 | e1,400 | e1,800 | 2,040 | 3,640 | 2,930 | 1,160 | 1,500 | 1,020 | | 3 | 3,330 | 1,890 | e1,100 | e1,400 | e1,500 | e1,800 | 1,830 | 3,190 | 2,840 | 1,280 | 1,930 | 918 | | 4 | 3,440 | 1,920 | e1,400 | e1,400 | e1,600 | e1,700 | 1,760 | 3,250 | 2,420 | 1,240 | 2,850 | 944 | | 5 | 3,640 | 1,830 | e1,500 | e1,400 | e1,600 | e1,700 | 1,700 | 3,120 | 3,150 | 1,190 | 2,310 | 1,010 | | 6 | 4,300 | 2,290 | e1,500 | e1,500 | e1,700 | e1,700 | 2,110 | 3,340 | 3,140 | 1,290 | 2,210 | 1,020 | | 7 | 5,700 | 2,260 | e1,500 | e1,400 | e1,600 | e1,700 | 2,020 | 3,420 | 3,140 | 1,250 | 1,820 | 1,430 | | 8 | 6,200 | 2,340 | e1,500 | e1,500 | e1,700 | e1,700 | 1,760 | 3,390 | 3,260 | 1,190 | 1,650 | 1,030 | | 9 | 5,700 | 2,050 | e1,400 | e1,500 | e1,700 | e1,700 | 1,680 | 3,350 | 3,130 | 1,190 | 1,280 | 968 | | 10 | 5,480 | 1,990 | e1,300 | e1,600 | e1,600 | e1,700 | 1,750 | 3,370 | 3,270 | 1,230 | 1,440 | 864 | | 11 | 4,690 | 2,470 | e1,400 | e1,600 | e1,700 | e1,500 | 2,040 | 4,030 | 3,720 | 1,150 | 1,400 | 826 | | 12 | 4,210 | 2,510 | e1,400 | e1,600 | e1,700 | e1,500 | 3,210 | 5,790 | 3,300 | 1,130 | 1,360 | 841 | | 13 | 4,460 | 2,570 | e1,500 | e1,500 | e1,800 | e1,600 | 3,220 | 9,230 | 3,140 | 1,080 | 1,340 | 1,120 | | 14 | 4,080 | 2,540 | e1,600 | e1,500 | e1,700 | e1,600 | 2,680 | 9,730 | 2,680 | 1,070 | 1,290 | 1,610 | | 15 | 3,560 | 2,540 | e1,600 | e1,500 | e1,700 | e1,700 | 2,960 | 7,790 | 2,270 | 1,250 | 1,500 | 1,630 | | 16 | 3,410 | 2,560 | e1,500 | e1,400 | e1,600 | e1,700 | 4,040 | 6,480 | 2,220 | 1,150 | 1,530 | 1,690 | | 17 | 3,520 | 2,420 | e1,500 | e1,500 | e1,700 | e1,900 | 4,840 | 6,050 | 1,940 | 1,120 | 1,230 | 1,500 | | 18 | 3,450 | 2,200 | e1,600 | e1,500 | e1,700 | e2,600 | 5,310 | 5,270 | 2,020 | 1,120 | 1,140 | 1,280 | | 19 | 3,400 | 2,210 | e1,700 | e1,500 | e1,700 | e2,600 | 5,420 | 5,460 | 1,860 | 1,120 | 1,120 | 1,290 | | 20 | 3,010 | 2,160 | e1,700 | e1,500 | e1,700 | 2,390 | 5,810 | 5,020 | 1,660 | 1,110 | 1,130 | 1,180 | | 21 | 3,120 | 2,140 | e1,600 | e1,500 | e1,600 | 2,350 | 6,800 | 4,320 | 1,630 | 1,110 | 1,130 | 1,100 | | 22 | 3,040 | 2,280 | e1,700 | e1,500 | e1,600 | 2,290 | 7,640 | 4,070 | 1,610 | 1,250 | 1,070 | 1,130 | | 23 | 2,570 | 2,080 | e1,700 | e1,500 | e1,700 | 2,290 | 7,370 | 3,860 | 1,510 | 1,180 | 1,000 | 1,190 | | 24 | 2,610 | 1,860 | e1,600 | e1,500 | e1,600 | 2,350 | 6,430 | 3,540 | 1,560 | 1,160 | 1,070 | 1,360 | | 25 | 2,620 | 1,780 | e1,700 | e1,400 | e1,700 | 2,340 | 5,680 | 3,160 | 1,610 | 1,280 | 1,140 | 1,220 | | 26
27
28
29
30
31 | 2,570
2,870
3,400
3,490
3,270
2,860 | 1,840
1,830
1,710
e1,600
e1,700 | e1,700
e1,600
e1,500
e1,400
e1,400
e1,300 | e1,400
e1,400
e1,500
e1,500
e1,500
e1,500 | e1,700
e1,700
e1,700
 | 2,150
2,210
2,070
2,200
2,260
2,280 | 6,180
5,440
5,100
4,050
4,280 | 3,030
2,910
2,800
2,850
2,340
2,620 | 1,450
1,500
1,450
1,490
1,510 | 1,190
1,190
1,060
1,140
1,100
1,100 | 1,130
1,200
1,280
1,280
1,220
1,160 | 1,140
1,210
1,220
1,350
1,210 | | TOTAL | 114,370 | 64,740 | 47,000 | 45,900 | 46,200 | 60,980 | 117,320 | 134,490 | 69,960 | 36,470 | 44,130 | 35,401 | | MEAN | 3,689 | 2,158 | 1,516 | 1,481 | 1,650 | 1,967 | 3,911 | 4,338 | 2,332 | 1,176 | 1,424 | 1,180 | | MAX | 6,200 | 2,820 | 1,700 | 1,600 | 1,800 | 2,600 | 7,640 | 9,730 | 3,720 | 1,390 | 2,850 | 1,690 | | MIN | 2,570 | 1,600 | 1,100 | 1,400 | 1,400 | 1,500 | 1,680 | 2,340 | 1,450 | 1,060 | 1,000 | 826 | | | | | | FOR WATE | | | | ` | * | 2.045 | 1.662 | 1.602 | | MEAN | 1,824 | 1,732 | 1,716 | 1,711 | 1,856 | 2,072 | 3,880 | 3,690 | 2,512 | 2,047 | 1,662 | 1,603 | | MAX | 3,689 | 2,531 | 2,458 | 2,258 | 2,286 | 2,800 | 7,476 | 7,555 | 4,184 | 3,547 | 2,290 | 2,225 | | (WY) | (2003) | (1993) | (1993) | (1993) | (1997) | (2000) | (2002) | (1996) | (1993) | (1999) | (1996) | (1994) | | MIN | 1,151 | 1,245 | 1,161 | 1,369 | 1,391 | 1,553 | 1,953 | 1,175 | 1,587 | 1,176 | 1,080 | 1,180 | | (WY) | (2001) | (2001) | (2001) | (1995) | (1995) | (2001) | (1994) | (1998) | (1998) | (2003) | (1998) | (2003) | | SUMMA | RY STATIS | TICS |] | FOR 2002 CA | LENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 199 | 3 - 2003 | | ANNUAI HIGHEST LOWEST HIGHEST LOWEST ANNUAI MAXIMU MAXIMU 10 PERCI | F ANNUAL F ANNUAL F DAILY M F DAILY MI L SEVEN-D JM PEAK F JM PEAK S ENT EXCEI | MEAN
EAN
EAN
AY MINIM
'LOW
TAGE
EDS | UM |
1,022,980
2,803
18,400
(a)1,100
1,390
4,890 | Apr
Dec
Aug | 3 | 4,03 | 0 May
6 Sep
7 Sep
10 May
2.62 May | 11
6
13 | 3,1
1,7
18,4
8
9
18,9 | 326 Sej
951 Maj
900 Ap
16.22 Ap | 1996
1998
or 19, 2002
p 11, 2003
y 24, 1998
or 18, 2002
or 18, 2002 | | | ENT EXCEI
ENT EXCEI | | | 1,950
1,580 | | | 1,70
1,14 | | | | 300
200 | | ⁽a) Ice affected ⁽e) Estimated due to ice effect or missing record ### 04065722 MENOMINEE RIVER NEAR VULCAN, MI LOCATION.--Lat 45°44'12", long 87°51'48", sec.34, T.39 N., R.29 W., Michigan Meridian, Dickinson County, Hydrologic Unit 04030108, on left bank 0.35 mi downstream from Sturgeon Falls Dam, 3.0 mi south of Vulcan, and at mile 78.7. DRAINAGE AREA .-- 2,900 mi². PERIOD OF RECORD.--December 1987 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 820 ft above NGVD of 1929, from topographic map. REMARKS.--Records good (see page 11). Flow regulated by powerplants, by Michigamme Reservoir, capacity, 119,950 acre-ft, by Peavy Pond, capacity, 33,860 acre-ft, on Michigamme River, and by smaller reservoirs upstream from station. Several measurements of water temperature were made during the year. | DAY | | | DISCH | ARGE, CUI | BIC FEET PEI | |), WATER Y
LY MEAN V | | DBER 2002 T | TO SEPTEM | IBER 2003 | | | | |---|---|--|---|----------------------------------|----------------------------------|--------------------|----------------------------------|--|--|----------------------------------|----------------------------------|--|---|-------| | 2 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1.430 | 2 | 4,270 | 3,010 | 1,910 | 1,770 | 1,720 | 2,050 | 2,740 | 4,560 | 3,610 | 1,280 | 1,540 | 1,030 | | | | 3 | 4,140 | 2,420 | 1,380 | 1,690 | 1,740 | 2,180 | 2,470 | 3,870 | 3,610 | 1,230 | 1,940 | 928 | | | | 4 | 4,310 | 2,340 | 1,670 | 1,630 | 1,890 | 1,980 | 2,300 | 3,980 | 2,940 | 1,290 | 3,280 | 918 | | | 12 | 7 | 7,230 | 2,710 | 1,760 | 1,720 | 1,890 | 2,040 | 2,670 | 4,220 | 3,680 | 1,310 | 2,190 | 1,430 | | | | 8 | 7,770 | 2,680 | 1,860 | 1,770 | 1,970 | 1,950 | 2,190 | 4,190 | 3,850 | 1,230 | 1,950 | 1,080 | | | | 9 | 7,300 | 2,520 | 1,810 | 1,730 | 2,070 | 2,100 | 2,090 | 4,200 | 3,830 | 1,400 | 1,460 | 985 | | | 17 | 12 | 5,340 | 3,130 | 1,730 | 1,910 | 2,110 | 1,800 | 4,240 | 6,650 | 4,410 | 1,170 | 1,440 | 884 | | | | 13 | 5,520 | 3,250 | 1,740 | 1,900 | 2,150 | 1,860 | 4,460 | 9,960 | 4,250 | 1,160 | 1,510 | 990 | | | | 14 | 5,160 | 3,240 | 1,910 | 1,780 | 2,060 | 1,920 | 4,010 | 11,100 | 3,630 | 1,140 | 1,470 | 1,860 | | | 22 3,870 2,670 2,050 1,760 1,870 3,380 9,740 5,030 1,850 1,180 1,110 1,280 | 17 | 4,180 | 2,860 | 1,800 | 1,810 | 2,070 | 2,220 | 6,530 | 7,170 | 2,440 | 971 | 1,290 | 1,750 | | | | 18 | 4,140 | 2,590 | 1,950 | 1,820 | 2,120 | 2,980 | 6,870 | 6,300 | 2,520 | 1,220 | 1,150 | 1,420 | | | | 19 | 3,980 | 2,660 | 2,090 | 1,760 | 2,020 | 3,150 | 6,880 | 6,410 | 2,290 | 1,110 | 1,180 | 1,330 | | | 27 3,510 2,110 2,010 1,760 2,000 3,150 6,760 3,460 1,750 1,220 1,200 1,270 28 | 22 | 3,870 | 2,670 | 2,050 | 1,760 | 1,870 | 3,380 | 9,740 | 5,030 | 1,850 | 1,180 | 1,110 | 1,280 | | | | 23 | 3,170 | 2,530 | 2,030 | 1,860 | 2,070 | 3,520 | 9,450 | 4,660 | 1,810 | 1,300 | 976 | 1,270 | | | | 24 | 3,250 | 2,110 | 1,920 | 1,790 | 1,960 | 3,680 | 8,350 | 4,460 | 1,700 | 1,200 | 1,090 | 1,510 | | | MEAN 4,574 2,609 1,855 1,779 1,992 2,557 5,025 5,193 2,881 1,221 1,529 1,265 MAX 7,770 3,510 2,170 1,930 2,150 3,680 9,740 11,100 4,890 1,480 3,280 1,960 MIN 3,170 1,880 1,380 1,630 1,720 1,800 2,090 2,850 1,700 971 976 884 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 2003, BY WATER YEAR (WY) MEAN 2,050 2,182 2,091 1,976 2,036 2,509 4,624 3,950 2,858 2,160 1,713 1,799 MAX 4,574 4,412 3,008 2,533 2,548 3,701 9,292 8,850 4,832 4,196 2,598 2,456 (WY) (2003) (1989) (1993) (1997) (2000) (2002) (1996) (1993) (1999) (1996) (1999) (1996) (1993) </td <td>27
28
29
30</td> <td>3,510
4,140
4,200
4,010</td> <td>2,110
2,090
1,880
1,970</td> <td>2,010
1,790
1,710
1,740</td> <td>1,760
1,740
1,790
1,730</td> <td>2,000
2,030
</td> <td>3,150
3,000
3,170
3,220</td> <td>6,760
6,300
5,080
4,980</td> <td>3,460
3,550
3,350
2,850</td> <td>1,750
1,700
1,700
1,710</td> <td>1,220
1,040
1,190
1,050</td> <td>1,200
1,360
1,310
1,270</td> <td>1,270
1,460
1,430
1,340</td> | 27
28
29
30 | 3,510
4,140
4,200
4,010 | 2,110
2,090
1,880
1,970 | 2,010
1,790
1,710
1,740 | 1,760
1,740
1,790
1,730 | 2,000
2,030
 | 3,150
3,000
3,170
3,220 | 6,760
6,300
5,080
4,980 | 3,460
3,550
3,350
2,850 | 1,750
1,700
1,700
1,710 | 1,220
1,040
1,190
1,050 | 1,200
1,360
1,310
1,270 | 1,270
1,460
1,430
1,340 | | | MEAN 2,050 2,182 2,091 1,976 2,036 2,509 4,624 3,950 2,858 2,160 1,713 1,799 MAX 4,574 4,412 3,008 2,533 2,548 3,701 9,292 8,850 4,832 4,196 2,598 2,456 (WY) (2003) (1989) (1989) (1993) (1997) (2000) (2002) (1996) (1993) (1999) (1994) MIN 1,081 1,382 1,376 1,489 1,442 1,855 1,356 1,344 1,062 1,100 1,184 1,223 (WY) (1990) (1990) (2001) (1995) (1995) (2001) (1990) (1988) (1988) (1988) (1988) (1989) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1988 - 2003 ANNUAL MEAN 3,349 2,710 2,532 HIGHEST ANNUAL MEAN <td colsp<="" td=""><td>MEAN</td><td>4,574</td><td>2,609</td><td>1,855</td><td>1,779</td><td>1,992</td><td>2,557</td><td>5,025</td><td>5,193</td><td>2,881</td><td>1,221</td><td>1,529</td><td>1,265</td></td> | <td>MEAN</td> <td>4,574</td> <td>2,609</td> <td>1,855</td> <td>1,779</td> <td>1,992</td> <td>2,557</td> <td>5,025</td> <td>5,193</td> <td>2,881</td> <td>1,221</td> <td>1,529</td> <td>1,265</td> | MEAN | 4,574 | 2,609 | 1,855 | 1,779 | 1,992 | 2,557 | 5,025 | 5,193 | 2,881 | 1,221 | 1,529 | 1,265 | | | MAX | 7,770 | 3,510 | 2,170 | 1,930 | 2,150 | 3,680 | 9,740 | 11,100 | 4,890 | 1,480 | 3,280 | 1,960 | | | MAX 4,574 4,412 3,008 2,533 2,548 3,701 9,292 8,850 4,832 4,196 2,598 2,456 (WY) (2003) (1989) (1989) (1993) (1997) (2000) (2002) (1996) (1993) (1999) (1996) (1999) (1999) (1996) (1994) MIN 1,081 1,382 1,376 1,489 1,442 1,855 1,356 1,344 1,062 1,100 1,184 1,223 (WY) (1990) (1990) (1995) (1995) (2001) (1990) (1998) (1988) (1998) (1988) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1988 - 2003 ANNUAL MEAN 3,349 2,710 2,532 HIGHEST ANNUAL MEAN 3,381 1996 LOWEST ANIUAL MEAN 1,360 Apr 19 11,100 May 14 22,800 Apr 19, 2002 | STATIST | TICS OF MO | NTHLY M | EAN DATA | A FOR WATE | R YEARS | 1988 - 2003 | , BY WATEI | R YEAR (W | Y) | | | | | | ANNUAL TOTAL 1,222,430 989,055 ANNUAL MEAN 3,349 2,710 2,532 HIGHEST ANNUAL MEAN 3,781 1996 LOWEST ANNUAL MEAN 1,864 1990 HIGHEST DAILY MEAN 22,800 Apr 19 11,100 May 14 22,800 Apr 19, 2002 LOWEST DAILY MEAN 1,300 Aug 31 884 Sep 12 846 Aug 3, 1988 ANNUAL SEVEN-DAY MINIMUM 1,480 Aug 27 1,030 Aug 31 932 Oct 1, 1989 MAXIMUM PEAK FLOW 11,700 May 13 23,000 Apr 19, 2002 MAXIMUM PEAK STAGE 13,06 May 13 17.72 Apr 19, 2002 INSTANTANEOUS LOW FLOW 630 Jul 20 603 Aug 1, 1992 10 PERCENT EXCEEDS 6,250 4,970 4,180 | MAX | 4,574 | 4,412 | 3,008 | 2,533 | 2,548 | 3,701 | 9,292 | 8,850 | 4,832 | 4,196 | 2,598 | 2,456 | | | | (WY) | (2003) | (1989) | (1989) | (1993) | (1997) | (2000) | (2002) | (1996) | (1993) | (1999) | (1996) | (1994) | | | | MIN | 1,081 | 1,382 | 1,376 | 1,489 | 1,442 | 1,855 | 1,356 | 1,344 | 1,062 | 1,100 | 1,184 | 1,223 | | | ANNUAL MEAN 3,349 2,710 2,532 HIGHEST ANNUAL MEAN 3,781 1996 LOWEST ANNUAL MEAN
1,864 1990 HIGHEST DAILY MEAN 22,800 Apr 19 11,100 May 14 22,800 Apr 19, 2002 LOWEST DAILY MEAN 1,300 Aug 31 884 Sep 12 846 Aug 3, 1988 ANNUAL SEVEN-DAY MINIMUM 1,480 Aug 27 1,030 Aug 31 932 Oct 1, 1989 MAXIMUM PEAK FLOW 11,700 May 13 23,000 Apr 19, 2002 MAXIMUM PEAK STAGE 13.06 May 13 17.72 Apr 19, 2002 INSTANTANEOUS LOW FLOW 630 Jul 20 603 Aug 1, 1992 10 PERCENT EXCEEDS 6,250 4,970 4,180 | SUMMA | RY STATIS | TICS | | FOR 2002 CA | ALENDAR | YEAR | FOR 2003 | 3 WATER Y | EAR | WATER | YEARS 19 | 88 - 2003 | | | ANNUAL SEVEN-DAY MINIMUM 1,480 Aug 27 1,030 Aug 31 932 Oct 1, 1989 MAXIMUM PEAK FLOW 11,700 May 13 23,000 Apr 19, 2002 MAXIMUM PEAK STAGE 13.06 May 13 17.72 Apr 19, 2002 INSTANTANEOUS LOW FLOW 630 Jul 20 603 Aug 1, 1992 10 PERCENT EXCEEDS 6,250 4,970 4,180 | ANNUAI
HIGHEST
LOWEST
HIGHEST | NUAL TOTAL
NUAL MEAN
HEST ANNUAL MEAN
WEST ANNUAL MEAN
HEST DAILY MEAN | | | 3,349
22,800 | Apr | | 2,71
11,10 | 0
0 May | | 3,7
1,8
22,8 | 781
864
800 A | 1990
pr 19, 2002 | | | 50 PERCENT EXCEEDS 2,260 2,030 2,050
90 PERCENT EXCEEDS 1,790 1,200 1,320 | ANNUAI
MAXIMU
MAXIMU
INSTAN
10 PERC
50 PERC | L SEVEN-D.
JM PEAK F
JM PEAK S
FANEOUS I
ENT EXCEI
ENT EXCEI | AY MINIM
LOW
TAGE
LOW FLOV
EDS
EDS | | 1,480
6,250
2,260 | | | 1,03
11,70
1
63
4,97
2,03 | 0 Aug
0 May
3.06 May
0 Jul
0 | 31
13
13 | 9
23,0
6
4,1
2,0 | 032 O
000 A
17.72 A
003 Au
80
050 | oct 1, 1989
pr 19, 2002
pr 19, 2002 | | ### 04066003 MENOMINEE RIVER BELOW PEMENE CREEK NEAR PEMBINE, WI LOCATION.--Lat 45°34'46", long 87°47'13", in NE $\frac{1}{4}$, sec.29, T. 37 N., R.28 W., Michigan Meridian, Menominee County, MI, Hydrologic Unit 04030108, on left bank 40 ft downstream from County Trunk Z bridge, 0.9 mi downstream from Pemene Creek, 3.9 mi west of Nathan, MI, 10.6 mi southeast of Pembine, and at mile 64.3. DRAINAGE AREA.--3,140 mi². PERIOD OF RECORD.--October 1949 to current year. Published as "near Pembine" (04066000) prior to August 1982. Monthly discharges for some periods published in WSP 1307. GAGE.--Water-stage recorder. Elevation of gage is 740 ft above NGVD of 1929, from topographic map. October 1949 to Oct. 27, 1972, water-stage recorder at site 1.0 mi upstream at elevation 745, from river-profile map, and Oct. 28, 1972, to August 1982, water-stage recorder at site 1.5 mi upstream at elevation 770, from river-profile map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by powerplants and by Michigamme Reservoir, capacity, 119,950 acre-ft, and Peavy Pond, capacity, 33,860 acre-ft, on the Michigamme River, and by many smaller reservoirs above station. Gage-height telemeter at station. | | | DISCH | ARGE, CU | BIC FEET PE | | O, WATER Y
LY MEAN V | | DBER 2002 | TO SEPTEN | MBER 2003 | | | |------------|------------------------|----------------|------------------|---------------------|------------------|-------------------------|------------------|------------------|----------------|----------------|------------------|--------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3,000 | 3,760 | e2,100 | e1,900 | e1,900 | e2,200 | e3,300 | 5,470 | 3,500 | 1,680 | 1,300 | 1,280 | | 2 3 | 4,310 | 3,390 | e2,000 | e1,900 | e1,900 | e2,300 | e3,000 | 4,950 | 3,770 | 1,540 | 1,710 | 1,240 | | 3 | 4,230 | 2,660 | e1,600 | e1,800 | e1,900 | e2,300 | e2,700 | 4,380 | 3,980 | 1,300 | 1,890 | 1,140 | | 4
5 | 4,520
5,390 | 2,590
2,500 | e1,700
e1,900 | e1,800
e1,900 | e2,100
e2,100 | e2,200
e2,200 | e2,500
e2,400 | 4,170
4,180 | 3,200
3,660 | 1,360
1,380 | 3,360
2,900 | 1,040
1,070 | | | | | | | | | | | | | | | | 6
7 | 5,780
7,540 | 2,920
2,930 | e1,900
e1,900 | e1,900
e1,900 | e2,200
e2,100 | e2,200 | 2,610
2,960 | 4,410
4,620 | 3,890
3,890 | 1,340
1,460 | 2,980
2,410 | 1,160 | | 8 | 8,320 | 2,930 | e1,900
e1,900 | e1,900
e1,900 | e2,100
e2,100 | e2,200
e2,200 | 2,430 | 4,620 | 4,010 | 1,400 | 2,410 | 1,490
1,250 | | 9 | 7,940 | 2,740 | e1,800 | e2,000 | e2,200 | e2,200 | 2,250 | 4,660 | 4,160 | 1,520 | 1,890 | 1,120 | | 10 | 7,650 | 2,800 | e1,800 | e2,100 | e2,200 | e2,200 | 2,460 | 4,440 | 4,200 | 1,330 | 1,670 | 1,120 | | 11 | 6,480 | 3,270 | e1,900 | e2,100 | e2,200 | e2,200 | 2,870 | 5,420 | 5,150 | 1,390 | 1,740 | 1,090 | | 12 | 5,630 | 3,400 | e1,900 | e2,000 | e2,300 | e2,200 | 4,330 | 6,810 | 4,860 | 1,260 | 1,740 | 1,070 | | 13
14 | 5,900
5,540 | 3,450
3,530 | e1,900
e2,000 | e2,000
e1,900 | e2,300
e2,200 | e2,100
e2,000 | 4,970
4,640 | 10,100
11,900 | 4,630
4,110 | 1,300
1,250 | 1,680
1,710 | 1,070
1,940 | | 15 | 4,650 | 3,230 | e2,000
e2,100 | e1,900
e1,900 | e2,200
e2,200 | e2,000
e2,000 | 4,430 | 10,400 | 3,210 | 1,260 | 1,650 | 1,940 | | | | | | | | | | | | | | | | 16
17 | 4,330
4,440 | 3,280
3,080 | e2,000
e1,900 | e1,800
e2,000 | e2,200
e2,200 | e2,100
e2,500 | 5,730
7,270 | 8,650
7,740 | 3,150
2,680 | 1,480
1,280 | 1,790
1,740 | 2,220
1,980 | | 18 | 4,220 | 2,800 | e2,100 | e2,000 | e2,300 | e3,000 | 7,440 | 6,840 | 2,590 | 1,180 | 1,320 | 1,770 | | 19 | 4,240 | 2,850 | e2,200 | e1,900 | e2,200 | e3,600 | 7,570 | 6,720 | 2,510 | 1,210 | 1,210 | 1,510 | | 20 | 3,980 | 2,780 | e2,300 | e1,900 | e2,300 | e3,500 | 8,120 | 6,600 | 2,250 | 1,290 | 1,290 | 1,510 | | 21 | 3,710 | 2,670 | e2,200 | e2,000 | e2,200 | e3,500 | 9,360 | 6,060 | 2,070 | 1,270 | 1,300 | 1,410 | | 22
23 | 4,230 | 2,770 | e2,200 | e2,000 | e2,000 | e3,800 | 10,600 | 5,420 | 2,020 | 1,320 | 1,200 | 1,450 | | 23
24 | 3,460 | 2,790
2,290 | e2,100 | e2,000
e2,000 | e2,200
e2,200 | e3,900 | 10,300
9,010 | 5,240
4,990 | 2,020
1,750 | 1,410 | 1,170
1,210 | 1,500 | | 25 | 3,470
3,660 | 2,250 | e2,000
e2,100 | e2,000
e1,900 | e2,200
e2,200 | e4,100
e4,100 | 7,770 | 4,990 | 2,030 | 1,270
1,310 | 1,210 | 1,640
1,740 | | | | | | | | | | | | | | | | 26
27 | 3,590
3,640 | 2,220
2,250 | e2,200
e2,200 | e1,900
e1,900 | e2,200
e2,200 | e3,800
e3,400 | 7,950
7,420 | 3,970
3,820 | 1,860
1,780 | 1,430
1,320 | 1,330
1,330 | 1,560
1,610 | | 28 | 4,420 | 2,250 | e2,100 | e1,900 | e2,200 | e3,400 | 6,660 | 3,910 | 1,850 | 1,330 | 1,410 | 1,810 | | 28
29 | 4,480 | 2,060 | e1,900 | e1,900 | | e3,500 | 5,590 | 3,420 | 1,790 | 1,220 | 1,430 | 1,620 | | 30 | 4,390 | e2,000 | e2,000 | e1,900 | | e3,500 | 5,240 | 3,480 | 1,840 | 1,280 | 1,450 | 1,660 | | 31 | 3,700 | | e1,700 | e1,900 | | e3,400 | | 3,490 | | 1,240 | 1,330 | | | TOTAL | 150,840 | 84,330 | 61,600 | 59,900 | 60,500 | 87,800 | 163,880 | 175,080 | 92,410 | 41,600 | 52,570 | 44,010 | | MEAN | 4,866 | 2,811 | 1,987 | 1,932 | 2,161 | 2,832 | 5,463 | 5,648 | 3,080 | 1,342 | 1,696 | 1,467 | | MAX
MIN | 8,320
3,000 | 3,760
2,000 | 2,300
1,600 | 2,100
1,800 | 2,300
1,900 | 4,100
2,000 | 10,600
2,250 | 11,900
3,420 | 5,150
1,750 | 1,680
1,180 | 3,360
1,170 | 2,220
1,040 | | | | | | | | | | | | 1,100 | 1,170 | 1,040 | | MEAN | 2,471 | 2,573 | 2,272 | A FOR WATE
2,111 | 2,104 | 2,628 | 5,600 | 4,788 | 3,351 | 2,514 | 2,075 | 2,265 | | MAX | 5,660 | 5,766 | 3,939 | 3,035 | 3,810 | 7,461 | 10,000 | 12,100 | 6,118 | 6,523 | 3,505 | 5,335 | | (WY) | (1986) | (1986) | (1986) | (1986) | (1984) | (1973) | (1967) | (1960) | (1953) | (1953) | (1952) | (1968) | | MIN | 1,028 | 1,043 | 1,167 | 1,080 | 1,201 | 1,461 | 1,432 | 1,341 | 1,152 | 1,201 | 1,003 | 1,009 | | (WY) | (1977) | (1977) | (1977) | (1977) | (1964) | (1964) | (1990) | (1987) | (1988) | (1988) | (1977) | (1976) | | SUMMAI | RY STATIS | TICS | | FOR 2002 CA | LENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 195 | 50 - 2003 | | ANNUAI | | | | 1,286,590 | | | 1,074,52 | .0 | | | | | | ANNUAL | | MEAN | | 3,525 | | | 2,94 | 4 | | | 396 | 1060 | | | Γ ANNUAL
` ANNUAL | | | | | | | | | 4,3 | 78 | 1960
1977 | | | Γ DAILY M | | | 22,100 | Apr | 19 | 11,90 | 0 May | 14 | 26,7 | | y 8, 1960 | | | DAILY M | | | 1,280 | Sep | 1 | 1,04 | 0 Sep | 4 | | | ig 14, 1977 | | | | AY MINIM | IUM | 1,460 | Aug | 27 | 1,17 | | | | | ig 8, 1977 | | | JM PEAK F
JM PEAK S | | | | | | (a)12,40 | | | (b)26,9 | | y 8, 1960
ec 17, 1985 | | | OM PEAK S
ENT EXCE | | | 6,580 | | | 5,40 | | 14 | |)18.94 De
)00 | L 17, 1983 | | | ENT EXCE | | | 2,380 | | | 2,20 | | | 2,3 | | | | | ENT EXCE | | | 1,880 | | | 1,32 | | | | 130 | | | | | | | | | | | | | | | | ⁽a) Gage height, 12.80 ft ⁽b) Gage height, 13.90 ft, site and datum then in use ⁽c) Ice affected ⁽e) Estimated due to ice effect or missing record ### 04066030 MENOMINEE RIVER AT WHITE RAPIDS DAM NEAR BANAT, MI LOCATION.--Lat 45°28'55", long 87°48'08", in SE $\frac{1}{4}$, SE $\frac{1}{4}$, sec.30, T. 36 N., R.28 W., Michigan Meridian, Menominee County, Hydrologic Unit 04030108, on left bank at powerplant at White Rapids Dam, 5.7 mi southwest of Banat, MI. DRAINAGE AREA.--3,190 mi². PERIOD OF RECORD.--October 1998 to current year. GAGE.--Water-stage recorder. Datum of gage is 680.00 ft above NGVD of 1929 (levels by Wisconsin Electric Power Company). REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by powerplants, by Michigamme Reservoir, capacity, 119,950 acre-ft, by Peavy Pond, capacity, 33,860 acre-ft, on the Michigamme River, and by many smaller reservoirs above station. Gage-height telemeter at station. | | | DISCH | ARGE, CUI | BIC FEET PEI | |), WATER Y
LY MEAN V | | DBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |---|--|---
--|---|-------------------------------|--|---|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3,130 | 3,630 | 2,030 | 1,700 | 1,940 | 2,230 | 3,450 | 5,470 | 3,590 | 1,790 | 1,280 | 1,230 | | 2 | 4,430 | 3,410 | 2,020 | 1,890 | 1,920 | 2,330 | 3,320 | 4,890 | 3,410 | 1,550 | 1,630 | 1,240 | | 3 | 4,460 | 2,740 | 1,630 | 1,900 | 2,010 | 2,370 | 3,130 | 4,190 | 4,090 | 1,510 | 2,060 | 1,170 | | 4 | 4,550 | 2,520 | 1,770 | 1,870 | 1,990 | 2,310 | 2,710 | 4,020 | 3,210 | 1,310 | 3,360 | 1,140 | | 5 | 5,340 | 2,820 | 1,990 | 1,880 | e1,900 | 2,340 | 2,340 | 4,240 | 3,330 | 1,310 | 3,130 | 980 | | 6 | 6,190 | 2,840 | 1,950 | 1,880 | e1,600 | 2,240 | 2,870 | 4,360 | 3,810 | 1,400 | 2,840 | 954 | | 7 | 7,230 | 3,110 | 1,930 | 1,920 | e2,200 | 2,250 | 2,920 | 4,550 | 3,740 | 1,470 | 2,600 | 1,430 | | 8 | 8,320 | 2,840 | 1,910 | 1,930 | e2,000 | 2,300 | 2,860 | 4,630 | 3,980 | 1,420 | 2,520 | 1,460 | | 9 | 7,780 | 2,830 | 1,880 | 2,000 | e2,100 | 2,290 | 2,400 | 4,480 | 4,190 | 1,360 | 1,730 | 1,070 | | 10 | 7,410 | 2,860 | 1,860 | 1,970 | e2,100 | 2,300 | 2,280 | 4,590 | 4,240 | 1,590 | 1,690 | 1,080 | | 11 | 6,590 | 3,350 | 1,920 | 1,820 | e2,100 | 2,310 | 3,180 | 5,220 | 5,230 | 1,390 | 1,910 | 1,060 | | 12 | 5,770 | 3,650 | 1,910 | 1,880 | e2,100 | 2,210 | 4,450 | 6,900 | 5,130 | 1,370 | 1,860 | 1,050 | | 13 | 5,730 | 3,320 | 1,880 | 2,050 | e2,100 | 2,090 | 5,360 | 9,110 | 4,510 | 1,320 | 1,720 | 1,090 | | 14 | 5,460 | 3,490 | 2,060 | 1,790 | e2,200 | 2,060 | 4,890 | 11,500 | 4,550 | 1,320 | 1,690 | 1,910 | | 15 | 4,730 | 3,400 | 2,150 | 1,940 | e2,200 | 1,960 | 4,320 | 9,880 | 3,390 | 1,330 | 1,780 | 2,280 | | 16 | 4,490 | 3,310 | 2,320 | 1,930 | e2,200 | 2,210 | 6,110 | 8,100 | 3,230 | 1,460 | 1,820 | 2,200 | | 17 | 4,320 | 3,290 | 2,110 | 1,740 | e2,100 | 2,560 | 7,610 | 7,310 | 2,750 | 1,480 | 1,800 | 2,180 | | 18 | 4,230 | 2,920 | 2,050 | 1,750 | 2,090 | 3,060 | 7,360 | 6,740 | 2,300 | 1,310 | 1,470 | 1,620 | | 19 | 4,210 | 2,790 | 2,340 | 1,750 | 2,370 | 3,870 | 7,720 | 6,040 | 2,850 | 1,200 | 1,200 | 1,600 | | 20 | 4,170 | 2,900 | 2,320 | 1,910 | 2,160 | 3,660 | 8,050 | 6,350 | 2,270 | 1,200 | 1,280 | 1,420 | | 21 | 3,690 | 2,780 | 2,390 | 1,890 | 2,400 | 3,570 | 9,380 | 5,730 | 2,030 | 1,300 | 1,310 | 1,350 | | 22 | 4,120 | 2,780 | 2,390 | 1,880 | 2,210 | 4,080 | 10,300 | 5,170 | 2,140 | 1,360 | 1,310 | 1,600 | | 23 | 3,960 | 2,770 | 2,090 | 1,530 | e2,000 | 4,480 | 10,100 | 5,180 | 1,870 | 1,590 | 1,250 | 1,500 | | 24 | 3,200 | 2,520 | 1,960 | 1,910 | e2,300 | 4,530 | 9,020 | 4,720 | 2,090 | 1,410 | 1,170 | 1,590 | | 25 | 3,740 | 2,500 | 2,240 | 1,960 | e2,200 | 4,480 | 7,710 | 3,970 | 1,960 | 1,380 | 1,170 | 1,960 | | 26
27
28
29
30
31 | 3,770
3,790
4,320
4,640
4,470
3,950 | 2,220
2,300
2,240
2,200
2,140 | 2,330
2,260
2,080
1,970
1,990
1,710 | 1,580
e1,500
e1,500
e1,600
e1,800
1,890 | e2,200
e2,200
2,160
 | 4,120
3,380
3,820
3,830
3,900
3,780 | 7,730
7,300
6,530
5,800
5,200 | 3,850
3,450
3,940
3,400
3,300
3,090 | 2,140
1,820
1,780
2,030
1,830 | 1,290
1,510
1,330
1,310
1,370
1,310 | 1,220
1,510
1,420
1,360
1,500
1,390 | 1,460
1,590
1,910
1,800
1,780 | | TOTAL | 152,190 | 86,470 | 63,440 | 56,540 | 59,050 | 92,920 | 166,400 | 168,370 | 93,490 | 43,250 | 53,980 | 44,704 | | MEAN | 4,909 | 2,882 | 2,046 | 1,824 | 2,109 | 2,997 | 5,547 | 5,431 | 3,116 | 1,395 | 1,741 | 1,490 | | MAX | 8,320 | 3,650 | 2,390 | 2,050 | 2,400 | 4,530 | 10,300 | 11,500 | 5,230 | 1,790 | 3,360 | 2,280 | | MIN | 3,130 | 2,140 | 1,630 | 1,500 | 1,600 | 1,960 | 2,280 | 3,090 | 1,780 | 1,200 | 1,170 | 954 | | | | | | A FOR WATE | | | | ` | <i>'</i> | 2.525 | 2 022 | 1.770 | | MEAN | 2,197 | 1,948 | 1,870 | 1,912 | 2,195 | 2,884 | 5,464 | 4,471 | 2,994 | 2,525 | 2,022 | 1,770 | | MAX | 4,909 | 2,882 | 2,619 | 2,068 | 2,345 | 4,118 | 9,373 | 6,120 | 3,850 | 4,584 | 2,674 | 2,237 | | (WY) | (2003) | (2003) | (2002) | (2002) | (1999) | (2000) | (2002) | (2002) | (2002) | (1999) | (2002) | (2000) | | MIN | 1,417 | 1,659 | 1,493 | 1,774 | 2,061 | 2,065 | 3,147 | 2,156 | 2,087 | 1,395 | 1,436 | 1,410 | | (WY) | (2001) | (1999) | (2001) | (1999) | (2002) | (2001) | (2000) | (2000) | (2000) | (2003) | (2001) | (2001) | | SUMMA | RY STATIS | TICS | | FOR 2002 CA | LENDAR | YEAR | FOR 2003 | 3 WATER Y | 'EAR | WATER | YEARS 199 | 99 - 2003 | | LOWEST
HIGHES'
LOWEST
ANNUAI
MAXIMU
MAXIMU
10 PERC
50 PERC | | MEAN EAN EAN AY MINIM TLOW TTAGE EDS EDS | IUM | 1,306,080
3,578
20,800
1,450
1,600
6,610
2,510
1,910 | Apr
Sep
Aug | 2 | 1,080,80
2,96
11,50
95
1,15
11,90
1
5,27
2,22
1,36 | 0 May
4 Sep
0 Sep
0 May
1.81 May
0 | 6
5
14 | 2,2
20,8
9
1,1
22,2
4,4
2,1 | 244
253
300 A ₁
254 Se
10 Se
200 A ₁ | 2002
2001
ppr 19, 2002
pp 6, 2003
pp 2, 2001
ppr 18, 2002
ppr 18, 2002 | ⁽e) Estimated due to ice effect or missing record ### 04066500 PIKE RIVER AT AMBERG, MI LOCATION.--Lat 45°30'00", long 88°00'00", in SE $\frac{1}{4}$, SE $\frac{1}{4}$, sec.16, T. 35 N., R.20 E., Meridian 4, Marinette County, MI, Hydrologic Unit 04030108, on right bank 35 ft upstream from bridge on County Trunk Highway V, 0.4 mi southwest of Amberg. DRAINAGE AREA.--255 mi². PERIOD OF RECORD.--February 1914 to September 1970, June 2000 to current year. REVISED RECORDS.--WSP 699: 1927. WSP 1207: Drainage area. WSP 1337: 1914(M), 1916-19(M), 1921-24(M), 1926(M), 1928(M), 1929, 1930(M), 1931, 1932-33(M), 1935, 1936-37(M), 1938, 1939-36(M). GAGE.--Water-stage recorder. Elevation of gage is 860 ft above NGVD of 1929, from topographic map. Oct. 7, 1946 to Sept. 30, 1970, water-stage recorder at site 0.5 mi downstream at elevation 865 ft above mean NGVD of 1929 (from survey level line along railroad). See WSP 1727 for history of changes prior to Oct. 7, 1946. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAV. OCT. NOV. DEC. JAN. SEP. MAR. APR. APR. MAY. HIN. ALIC. SEP. | | | | | | | | | | | | | | |----------------------------------|--|-------------------------------------|--|--|--------------------------|--|------------------------------------|--|---------------------------------|--|------------------------------------|---------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 247 | 253 | e170 | e110 | e92 | e110 | e270 | 314 | 249 | 129 | 129 | 93 | | | | 2 | 264 | 240 | e170 | e110 | e92 | e100 | e310 | 301 | 228 | 125 | 141 | 94 | | | | 3 | 248 | 228 | e160 | e110 | e92 | e94 | e300 | 285 | 213 | 122 | 197 | 90 | | | | 4 | 357 | 220 | e150 | e110 | e90 | e92 | e240 | 272 | 201 | 119 | 269 | 87 | | | | 5 | 498 | 219 | e140 | e120 | e88 | e92 | e210 | 274 | 191 | 115 | 243 | 87 | | | | 6
7
8
9
10 | 595
627
596
520
440 | 222
221
217
217
239 | e130
e130
e130
e120
e130 | e120
e120
e130
e130
e120 | e86
e86
e86
e86 | e94
e96
e98
e96
e96 | e220
e210
e210
209
244 | 342
391
384
365
382 | 184
213
277
329
364 | 111
110
108
106
110 | 204
226
222
189
168 | 85
85
85
85
85 | | | | 11 | 375 | 286 | e130 | e110 | e86 | e96 | 392 | 453 | 483 | 117 | 263 | 84 | | | | 12 | 330 | 286 | e140 | e100 | e88 | e96 | 514 | 591 | 486 | 116 | 275 | 85 | | | | 13 | 331 | 261 | e140 | e100 | e86 | e98 | 517 | 624 | 391 | 111 | 217 | 110 | | | | 14 | 316 | 243 | e140 | e94 | e88 | e100 | 486 | 545 | 304 | 107 | 172 | 180 | | | | 15 | 290 | 232 | e140 | e88 | e88 | e120 | 501 | 445 | 255 | 106 | 151 | 233 | | | | 16 | 265 | 220 | e140 | e88 | e88 | e160 | 686 | 367 | 225 | 102 | 141 | 217 | | | | 17 | 241 | e190 | e140 | e88 | e90 | e200 | 848 | 330 | 203 | 100 | 129 | 170 | | | | 18 | 241 | e190 | e150 | e86 | e96 | e260 | 875 | 311 | 187 | 97 | 120 | 140 | | | | 19 | 249 | e200 | e160 | e84 | e100 | e330 | 725 | 297 | 171 | 95 | 114 | 126 | | | | 20 | 254 | e190 | e160 | e80 | e110 | e410 | 756 | 324 | 165 | 96 | 113 | 118 | | | | 21 | 249 | 190 | e150 | e78 | e110 | e540 | 831 | 347 | 158 | 131 | 113 | 114 | | | | 22 | 257 | 190 | e140 | e78 | e110 | e560 | 786 | 325 | 150 | 136 | 107 | 138 | | | | 23 | 276 | 188 | e130 | e78 | e100 | e500 | 636 | 293 | 146 | 121 | 102 | 174 | | | | 24 | 277 | 187 | e130 | e78 | e96 | e460 | 516 | 270 | 145 | 110 | 104 | 186 | | | | 25 | 281 | 180 | e120 | e78 | e90 | e360 | 446 | 251 | 147 | 103 | 109 | 210 | | | | 26
27
28
29
30
31 | 306
339
338
314
288
269 | 181
e180
e180
e170
e170 | e120
e120
e120
e120
e120
e110 | e76
e78
e80
e84
e88
e92 |
e90
e98
e110
 | e290
e260
e270
e320
e290
e270 | 391
367
350
342
323 | 236
226
219
217
218
243 | 144
133
129
132
133 | 107
112
106
103
107
110 | 105
99
97
101
98
95 | 203
214
219
205
200 | | | | TOTAL | 10,478 | 6,390 | 4,250 | 2,986 | 2,608 | 6,958 | 13,711 | 10,442 | 6,736 | 3,448 | 4,813 | 4,202 | | | | MEAN | 338 | 213 | 137 | 96.3 | 93.1 | 224 | 457 | 337 | 225 | 111 | 155 | 140 | | | | MAX | 627 | 286 | 170 | 130 | 110 | 560 | 875 | 624 | 486 | 136 | 275 | 233 | | | | MIN | 241 | 170 | 110 | 76 | 86 | 92 | 209 | 217 | 129 | 95 | 95 | 84 | | | | CFSM | 1.33 | 0.84 | 0.54 | 0.38 | 0.37 | 0.88 | 1.79 | 1.32 | 0.88 | 0.44 | 0.61 | 0.55 | | | | IN. | 1.53 | 0.93 | 0.62 | 0.44 | 0.38 | 1.02 | 2.00 | 1.52 | 0.98 | 0.50 | 0.70 | 0.61 | | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1914 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | | | MEAN | 179 | 206 | 158 | 132 | 123 | 211 | 462 | 340 | 268 | 180 | 155 | 171 | | | | MAX | 454 | 422 | 296 | 215 | 194 | 503 | 1,016 | 820 | 699 | 525 | 365 | 452 | | | | (WY) | (1942) | (1920) | (1929) | (1939) | (1942) | (1921) | (1922) | (1960) | (1916) | (1914) | (1914) | (1941) | | | | MIN | 83.2 | 119 | 93.5 | 82.7 | 78.1 | 98.8 | 188 | 181 | 111 | 90.2 | 80.3 | 89.1 | | | | (WY) | (1949) | (1954) | (1918) | (1964) | (1948) | (1964) | (1931) | (1925) | (1948) | (1948) | (1934) | (1948) | | | # 04066500 PIKE RIVER AT AMBERG, MI—Continued | SUMMARY STATISTICS
ANNUAL TOTAL | FOR 2002 CALENDAR YEAR
88.734 | FOR 2003 WATER YEAR
77.022 | WATER YEARS 1914 - 2003 | |------------------------------------|----------------------------------|-------------------------------|-------------------------| | ANNUAL MEAN | 243 | 211 | 215 | | HIGHEST ANNUAL MEAN | | | 344 1916 | | LOWEST ANNUAL MEAN | | | 133 1931 | | HIGHEST DAILY MEAN | 1,000 Apr 14 | 875 Apr 18 | 2,620 Apr 11, 1922 | | LOWEST DAILY MEAN | (a)90 Jan 18 | (a)76 Jan 26 | 26 Dec 27, 1925 | | ANNUAL SEVEN-DAY MINIMUM | (a)97 (b)Jan 14 | (a)78 Jan 21 | (a)53 Mar 5, 1928 | | MAXIMUM PEAK FLOW | | 923 Apr 18 | (c)2,800 Apr 10, 1922 | | MAXIMUM PEAK STAGE | | 5.79 Apr 18 | (d)(f)7.80 Apr 10, 1922 | | INSTANTANEOUS LOW FLOW | | (a) | 26 Dec 27, 1925 | | ANNUAL RUNOFF (CFSM) | 0.95 | 0.83 | 0.84 | | ANNUAL RUNOFF (INCHES) | 12.94 | 11.24 | 11.44 | | 10 PERCENT EXCEEDS | 514 | 387 | 396 | | 50 PERCENT EXCEEDS | 176 | 165 | 160 | | 90 PERCENT EXCEEDS | 100 | 88 | 100 | ⁽a) Ice affected (b) Also occurred additional days (c) From rating curve extended above 1,100 ft³/s (d) Site and datum then in use (e) Estimated due to ice effect or missing record (f) From graph based on gage readings #### 04066800 MENOMINEE RIVER AT KOSS, MI LOCATION.--Lat 45°23′14″, long 87°42′07″, in NE $\frac{1}{4}$, sec.36, T. 35 N., R.28 W., Michigan Meridian, Menominee County, MI, Hydrologic Unit 04030108, on left upstream bank 30 ft from river and 18 ft west of County Trunk JJ (Koss) bridge, 0.3 mi southeast of Koss and 3.4 mi upstream of Grand Rapids Dam. DRAINAGE AREA.--3,700 mi². PERIOD OF RECORD.--July 1907 to March 1909 monthly discharge only (published as "at Koss"), July 1913 to September 1981 (published as 04067000 Menominee River below Koss, MI), June 1998 to current year. Records prior to October 1913 published in WSP 244, 264, and 384. REVISED RECORDS.--WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 665 ft above NGVD of 1929, from topographic map. June 1913 to September 1981, headwater and tailwater gages and generation data entered hourly in daily log sheet by Wisconsin Public Service Corp. employees at powerplant 4 mi downstream. Records of daily discharge furnished by Wisconsin Public Service Corp. Prior to June 1913, chain gage on railroad bridge at Koss. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by powerplants and by Michigamme Reservoir, capacity, 119,950 acre-ft, and Peavy Pond, capacity, 33,860 acre-ft, on the Michigamme River, and by many smaller reservoirs above station. Gage-height telemeter at station. | | | DISCH | ARGE, CU | BIC FEET PEI | | D, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | MBER 2003 | | | |---|------------------------|------------------|------------------|------------------|------------------|-------------------------|------------------|-----------------|-----------------|-----------------|----------------|-----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2,660 | 4,240 | e1,600 | e1,900 | e1,900 | e2,100 | 4,320 | 6,470 | 3,940 | 1,810 | 1,530 | 1,410 | | 2 3 | 4,260 | 3,960 | e2,000 | e2,100 | e1,900 | e2,200 | 4,310 | 6,090 | 3,820 | 1,710 | 1,600 | 1,410 | | 4 | 4,850
4,990 | 3,470
2,590 | e1,900
e1,800 | e2,200
e2,000 | e1,900
e1,900 | e2,200
e2,200 | 4,070
4,070 | 5,360
4,750 | 4,130
4,050 | 1,570
1,550 | 1,870
2,620 | 1,320
1,300 | | 5 | 5,850 | 2,830 | e2,100 | e2,000 | e1,900 | e2,200 | 3,600 | 4,880 | 3,350 | 1,420 | 4,200 | 1,330 | | 6 | 6,700 | 2,780 | e2,100 | e2,000 | e1,800 | e2,200 | 3,420 | 5,060 | 4,000 | 1,460 | 3,170 | 1,070 | | 7
8 | 7,740
8,800 | 3,470
3,060 | e2,100
e2,100 | e2,000
e2,000 | e1,800
e2,100 | e2,100
e2,200 | 3,590
3,570 | 5,490
5,650 | 4,260
4,360 | 1,600
1,590 | 3,350
2,610 | 1,210
1,770 | | 9 | 9,410 | 2,930 | e2,100
e2,000 | e2,000 | e2.000 | e2,200
e2,100 | 3,310 | 5.450 | 4,730 | 1,510 | 2,300 | 1,300 | | 10 | 8,900 | 2,970 | e2,100 | e1,900 | e2,100 | e2,100 | 2,870 | 5,640 | 4,870 | 1,600 | 1,810 | 1,340 | | 11 | 8,320 | 3,370 | e2,100 | e1,800 | e2,100 | e2,100 | 3,220 | 5,730 | 5,690 | 1,570 | 1,900 | 1,310 | | 12
13 | 7,160
6,480 | 4,310
4,160 | e2,000
e1,900 | e1,800
e1,900 | e2,100
e2,000 | e2,200
e2,100 | 4,620
6,170 | 7,160
9,150 | 6,420
5,760 | 1,580
1,540 | 2,180
2,020 | 1,340
1,350 | | 14 | 6,590 | 3,730 | e1,900 | e2,000 | e2,100 | e2,100
e2,000 | 6,290 | 11,600 | 5,700 | 1,500 | 1,800 | 1,540 | | 15 | 5,790 | 3,990 | e2,100 | e1,800 | e2,200 | e2,000 | 5,500 | 12,800 | 4,640 | 1,460 | 1,680 | 2,710 | | 16 | 5,100 | 3,800 | e2,200 | e1,900 | e2,200 | e2,000 | 6,620 | 11,200 | 3,710 | 1,520 | 1,710 | 2,180 | | 17
18 | 4,980
4,830 | 3,820
3,710 | e2,400
e2,200 | e1,800
e1,600 | e2,100
e2,100 | e2,400
e2,900 | 9,030
9,840 | 9,260
8,670 | 3,310
2,350 | 1,520
1,540 | 1,700
1,680 | 2,370
1,980 | | 19 | 4,710 | 3,110 | e2,400 | e1,600 | e2,100
e2,000 | e3,600 | 9,840 | 7.250 | 2,810 | 1,340 | 1,370 | 1,650 | | 20 | 4,710 | 3,320 | e2,600 | e1,800 | e2,100 | e4,200 | 10,200 | 7,380 | 2,500 | 1,340 | 1,370 | 1,620 | | 21 | 4,450 | 3,090 | e2,600 | e1,900 | e2,200 | e4,500 | 11,000 | 6,930 | 2,120 | 1,220 | 1,300 | 1,460 | | 22
23 | 4,440 | 3,130 | e2,700
e2,500 | e1,900 | e2,200
e1,900 | e4,700 | 12,200
12,900 | 6,390
5,970 | 2,020 | 1,480 | 1,370 | 1,540
1,690 | | 23
24 | 4,790
4,110 | 3,120
2,930 | e2,300
e2,100 | e1,700
e1,700 | e2,000 | e5,000
e5,400 | 12,300 | 5,700 | 1,930
1,980 | 1,580
1,630 | 1,390
1,290 | 1,620 | | 25 | 3,980 | 2,820 | e2,100 | e1,900 | e2,200 | e5,400 | 10,800 | 5,040 | 1,780 | 1,520 | 1,280 | 1,770 | | 26
27 | 4,430 | 2,670 | e2,300
e2,500 | e1,800 | e2,100 | e5,400 | 9,260 | 4,340 | 2,070 | 1,490 | 1,420 | 1,910 | | 27 | 4,470 | e2,500 | e2,500 | e1,400 | e2,100 | e5,000 | 9,150 | 4,050 | 1,960 | 1,490 | 1,540 | 1,620 | | 28
29 | 4,660
5,250 | e2,600
e2,300 | e2,300
e2,100 | e1,600
e1,600 | e2,100 | e5,000
e5,200 | 8,280
7,600 | 4,010
4,170 | 1,880
1,840 | 1,540
1,480 | 1,650
1,530 | 1,850
2,030 | | 29
30 | 5,220 | e2,300 | e2,100 | e1,700 | | e5,200 | 6,310 | 3,700 | 1,970 | 1,490 | 1,560 | 1,690 | | 31 | 4,850 | | e2,000 | e1,900 | | e4,800 | | 3,500 | | 1,550 | 1,590 | | | TOTAL | 173,480 | 97,080 | 66,900 | 57,200 | 57,100 | 102,700 | 208,380 | 198,840 | 103,540 | 47,220 | 58,390 | 48,690 | | MEAN
MAX | 5,596 | 3,236
4,310 | 2,158
2,700 | 1,845
2,200 | 2,039
2,200 | 3,313
5,400 | 6,946
12,900 | 6,414
12,800 | 3,451
6,420 | 1,523 | 1,884
4,200 | 1,623 | | MIN | 9,410
2,660 | 2,300 | 1,600 | 1,400 | 1,800 | 2,000 | 2,870 | 3,500 | 1,780 | 1,810
1,220 | 1,280 | 2,710
1,070 | | | | | | A FOR WATE | | | | | | -, | -, | -, | | MEAN | 2,567 | 2,802 | 2,198 | 1,985 | 1.892 | 2,725 | 6,638 | 5,712 | 3,862 | 2,743 | 2,154 | 2,405
5,538 | | MAX | 6,178 | 5,597 | 3,588 | 3,174 | 3,176 | 7,973 | 13,650 | 13,180 | 10,780 | 6,159 | 3,800 | 5,538 | | (WY)
MIN | (1929)
1,131 | (1917)
1,170 | (1919)
1,166 | (1969)
989 | (1969)
864 | (1973)
1,199 | (1916)
2,479 | (1960)
2,220 | (1916)
1,708 | (1953)
1,111 | (1972)
731 | (1928)
1,013 | | (WY) | (1977) | (1977) | (1931) | (1926) | (1926) | (1934) | (1964) | (1977) | (1977) | (1934) | (1934) | (1933) | | SUMMA | RY STATIS | STICS | | FOR 2002 CA | LENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 19 | 13 - 2003 | | ANNUA | | | | 1,460,590 | | | 1,219,52 | 20 | | | | | | ANNUAL | l mean
Γannual | MEAN | | 4,002 | | | 3,34 | ł1 | | | 45
262 | 1916 | | | ANNUAL | | | | | | | | | 1.6 | 642 | 1931 | | HIGHES' | HIGHEST DAILY MEAN | | | 23,000 | Apr | | 12,90 | | r 23 | 33,0 | 000 Ma | ay 10, 1960 | | LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM | | | II IM | (a)1,600 | Dec | | 1,07 | | 0 6 | | | ep 15, 1931 | | | L SEVEN-D
JM PEAK F | | IUWI | 1,760 | Aug | 40 | 1,29
(b)13,10 | | n 1
r 23 | 2 | 102 Se | p 9, 1931 | | MAXIMU | JM PEAK S | STAGE | | | | | 1 | 4.42 May | | | | | | | ENT EXCE | | | 8,060 | | | 6,34
2,20 | | | | 930
330 | | | | ENT EXCE
ENT EXCE | | | 2,750
1,950 | | | 1,52 | | | | 30
390 | | | , 0.1 Enc
| | | | 1,750 | | | 1,52 | | | 1,0 | | | ⁽a) Ice affected ⁽b) Gage height, 14.41 ft ⁽c) Also occurred May 15 ⁽e) Estimated due to ice effect or missing record #### 04067500 MENOMINEE RIVER NEAR MC ALLISTER, WI LOCATION.--Lat 45°19'33", long 87°39'48", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.17, T.33 N., R.23 E., Marinette County, Hydrologic Unit 04030108, on right bank 85 ft downstream from bridge on County Highway JJ, 2.9 mi downstream from Grand Rapids Dam, 2.6 mi east of McAllister, 1.9 mi downstream from Little Cedar River, and at mile 22.6. DRAINAGE AREA.--3,930 mi². PERIOD OF RECORD.--March 1945 to September 1961; October 1961 to September 1979, miscellaneous measurements and peaks only; October 1979 to September 1986; October 1986 to March 1987, crest-stage partial-record station; April 1988 to September 1990; April 1993 to September 1995; October 1997 to current year. REVISED RECORDS.--WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 622.20 ft above NGVD of 1929 (Michigan Department of Transportation reference mark). Prior to May 15, 1945, nonrecording gage 1,400 ft downstream at same datum; May 16, 1945 to September 1961, water-stage recorder at same datum; October 1961 to September 1979, crest-stage gage 1,100 ft downstream at same datum; October 1979 to September 1986, water-stage recorder at same site and datum; October 1986 to March 1987, crest-stage gage at same site and datum. April 1988 to September 1990, and April 1993 to September 1995, water-stage recorder at same site and datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by powerplants, by Michigamme Reservoir, capacity, 119,950 acre-ft, and Peavy Pond, capacity, 33,860 acre-ft on the Michigamme River, and by many smaller reservoirs above station. Gage-height telemeter at station. | | | DISCHA | ARGE, CUE | BIC FEET PI | | O, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | IBER 2003 | | | |----------------------------------|--|---|---|--|--------------------------------|---|---|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2,840 | 4,300 | e1,700 | 2,000 | e2,000 | e2,200 | 5,060 | 6,560 | 3,900 | 1,980 | 1,650 | 1,440 | | 2 | 3,940 | 4,100 | e2,100 | e2,100 | e2,000 | e2,300 | 4,580 | 6,260 | 3,950 | 1,930 | 1,670 | 1,350 | | 3 | 4,810 | 3,740 | e2,000 | e2,300 | e2,000 | e2,300 | 4,260 | 5,570 | 4,060 | 1,710 | 2,020 | 1,380 | | 4 | 5,040 | 3,050 | e1,900 | e2,000 | e2,000 | e2,300 | 4,090 | 5,020 | 4,220 | 1,640 | 2,530 | 1,270 | | 5 | 5,780 | 3,120 | e2,300 | e2,000 | e2,000 | e2,300 | 3,030 | 5,020 | 3,490 | 1,550 | 4,050 | 1,240 | | 6 | 6,720 | 3,160 | e2,300 | e2,000 | e2,000 | e2,300 | 3,450 | 5,330 | 3,920 | 1,440 | 3,220 | 1,150 | | 7 | 7,760 | 3,590 | e2,300 | e2,000 | e1,900 | e2,200 | 3,600 | 5,790 | 4,220 | 1,620 | 3,290 | 1,040 | | 8 | 8,670 | 3,400 | e2,200 | e2,000 | e2,200 | e2,300 | 3,570 | 5,930 | 4,320 | 1,610 | 2,770 | 1,790 | | 9 | 9,280 | 3,250 | e2,100 | e2,000 | e2,100 | e2,300 | 3,250 | 5,710 | 4,790 | 1,520 | 2,560 | 1,250 | | 10 | 8,900 | 3,300 | e2,200 | e2,000 | e2,200 | e2,200 | 3,010 | 5,870 | 4,950 | 1,620 | 2,060 | 1,220 | | 11 | 8,380 | 3,660 | e2,200 | e1,900 | e2,200 | e2,300 | 3,550 | 5,890 | 5,810 | 1,650 | 2,090 | 1,200 | | 12 | 7,330 | 4,340 | e2,200 | e2,000 | e2,200 | e2,300 | 4,980 | 7,230 | 6,640 | 1,590 | 2,360 | 1,200 | | 13 | 6,600 | 4,260 | e2,100 | e2,100 | e2,200 | e2,200 | 6,460 | 8,910 | 6,100 | 1,520 | 2,200 | 1,300 | | 14 | 6,670 | 3,960 | e2,100 | e2,100 | e2,300 | e2,100 | 6,780 | 11,000 | 5,560 | 1,490 | 2,060 | 1,640 | | 15 | 6,000 | 4,050 | e2,400 | e1,900 | e2,300 | e2,100 | 6,020 | 12,300 | 5,000 | 1,440 | 1,970 | 2,890 | | 16 | 5,230 | 3,940 | e2,500 | e1,900 | e2,300 | e2,100 | 6,970 | 10,900 | 4,080 | 1,500 | 1,970 | 2,450 | | 17 | 5,080 | 3,720 | e2,600 | e1,900 | e2,200 | e2,600 | 9,340 | 9,080 | 3,690 | 1,560 | 1,950 | 2,580 | | 18 | 4,910 | 3,720 | e2,300 | e1,800 | e2,200 | e3,000 | 10,200 | 8,440 | 2,860 | 1,550 | 1,900 | 2,280 | | 19 | 4,800 | 3,190 | e2,500 | e1,800 | e2,200 | e3,600 | 10,200 | 7,270 | 3,040 | 1,370 | 1,480 | 1,840 | | 20 | 4,750 | 3,270 | e2,700 | e1,900 | e2,300 | e4,500 | 10,600 | 7,230 | 2,890 | 1,340 | 1,430 | 1,740 | | 21 | 4,560 | 3,160 | e2,700 | e2,000 | e2,400 | e4,600 | 11,300 | 6,910 | 2,450 | 1,460 | 1,500 | 1,590 | | 22 | 4,470 | 3,180 | e2,700 | e2,000 | e2,400 | e4,800 | 12,400 | 6,430 | 2,290 | 1,430 | 1,460 | 1,630 | | 23 | 4,940 | 3,160 | e2,600 | e1,800 | e2,100 | e5,400 | 12,900 | 6,000 | 2,300 | 1,540 | 1,430 | 1,830 | | 24 | 4,360 | 3,020 | e2,200 | e1,700 | e2,200 | e5,800 | 12,300 | 5,780 | 2,220 | 1,700 | 1,440 | 1,740 | | 25 | 4,130 | 2,860 | e2,300 | e2,000 | e2,400 | e5,800 | 10,800 | 5,220 | 2,110 | 1,530 | 1,300 | 1,900 | | 26
27
28
29
30
31 | 4,550
4,620
4,730
5,270
5,360
5,020 | 2,670
2,450
2,820
2,460
2,420 | e2,500
2,670
2,440
2,320
2,210
2,140 | e2,000
e1,600
e1,700
e1,700
e1,800
e2,000 | e2,200
e2,200
e2,200
 | e5,800
e5,200
e4,900
5,520
5,600
5,410 | 9,240
9,140
8,310
7,660
6,510 | 4,430
4,210
4,060
4,370
3,770
3,680 | 2,260
2,180
1,990
1,960
2,200 | e1,600
e1,600
e1,600
1,440
1,470
1,620 | 1,360
1,430
1,630
1,510
1,530
1,650 | 2,140
1,790
1,950
2,300
2,030 | | TOTAL | 175,500 | 101,320 | 71,480 | 60,000 | 60,900 | 108,330 | 213,560 | 200,170 | 109,450 | 48,620 | 61,470 | 51,150 | | MEAN | 5,661 | 3,377 | 2,306 | 1,935 | 2,175 | 3,495 | 7,119 | 6,457 | 3,648 | 1,568 | 1,983 | 1,705 | | MAX | 9,280 | 4,340 | 2,700 | 2,300 | 2,400 | 5,800 | 12,900 | 12,300 | 6,640 | 1,980 | 4,050 | 2,890 | | MIN | 2,840 | 2,420 | 1,700 | 1,600 | 1,900 | 2,100 | 3,010 | 3,680 | 1,960 | 1,340 | 1,300 | 1,040 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1945 - 2003. | BY WATE | R YEAR (W | YY) | | | | | MEAN | 2,922 | 3,139 | 2,554 | 2,364 | 2,397 | 3,098 | 6,595 | 5,308 | 3,892 | 3,108 | 2,353 | 2,590 | | MAX | 6,755 | 7,332 | 4,561 | 3,777 | 4,710 | 5,687 | 12,800 | 15,930 | 6,958 | 7,127 | 4,056 | 5,952 | | (WY) | (1986) | (1986) | (1986) | (1983) | (1984) | (1983) | (1951) | (1960) | (1993) | (1951) | (1952) | (1959) | | MIN | 1,195 | 1,753 | 1,532 | 1,621 | 1,245 | 1,897 | 1,869 | 1,636 | 1,296 | 1,374 | 1,312 | 1,390 | | (WY) | (1949) | (1990) | (1990) | (1949) | (1948) | (1956) | (1990) | (1998) | (1988) | (1988) | (1998) | (1989) | # 04067500 MENOMINEE RIVER NEAR MC ALLISTER, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALI | ENDAR YEAR | FOR 2003 WAT | TER YEAR | WATER YEAR | S 1945 - 2003 | |--------------------------|---------------|------------|--------------|----------|------------|---------------| | ANNUAL TOTAL | 1,525,440 | | 1,261,950 | | | | | ANNUAL MEAN | 4,179 | | 3,457 | | 3,369 | | | HIGHEST ANNUAL MEAN | | | | | 5,496 | 1960 | | LOWEST ANNUAL MEAN | | | | | 2,118 | 1948 | | HIGHEST DAILY MEAN | 23,300 | Apr 20 | 12,900 | Apr 23 | 31,800 | May 9, 1960 | | LOWEST DAILY MEAN | (a)1,700 | Dec 1 | 1,040 | Sep 7 | 810 | Oct 26, 1948 | | ANNUAL SEVEN-DAY MINIMUM | 1,880 | Aug 28 | 1,260 | Sep 6 | 952 | Oct 24, 1948 | | MAXIMUM PEAK FLOW | | • | 13,100 | Apr 23 | 32,500 | May 9, 1960 | | MAXIMUM PEAK STAGE | | | 15.02 | Apr 23 | (b)20.00 | May 9, 1960 | | INSTANTANEOUS LOW FLOW | | | | • | (c)538 | Oct 6, 1946 | | 10 PERCENT EXCEEDS | 8,380 | | 6,530 | | 5,940 | | | 50 PERCENT EXCEEDS | 2,920 | | 2,320 | | 2,580 | | | 90 PERCENT EXCEEDS | 2,080 | | 1,540 | | 1,630 | | ⁽a) Ice affected (b) From graph based on gage readings (c) Observed (e) Estimated due to ice effect or missing record ### 04067958 PESHTIGO RIVER NEAR WABENO, WI LOCATION.--Lat $45^{\circ}23'16''$, long $88^{\circ}18'18''$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 31, T.34 N., R.18 E., Marinette County, Hydrologic Unit 04030105, on left upstream bank 50 ft from river's edge and 12 ft north of County Trunk C, 12.2 mi west of Athelstane and 17.7 mi east of Wabeno. DRAINAGE AREA.--447 mi². PERIOD OF RECORD.--June 1998 to current year. GAGE.--Water-stage recorder. Elevation of gage is 980 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | KLWAK | KSRecord | DISCH/ | | | ER SECONI | | YEAR OCTO | | TO SEPTEM | | ion. | | |--|--|--|--|--|---|---|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 478 | 462 | e260 | e210 | e170 | e180 | e400 | 607 | 470 | 240 | 261 | 178 | | 2 | 494 | 429 | e240 | e220 | e160 |
e180 | e410 | 565 | 448 | 232 | 318 | 174 | | 3 | 481 | 406 | e230 | e200 | e160 | e180 | e400 | 529 | 418 | 228 | 363 | 170 | | 4 | 607 | 392 | e250 | e190 | e170 | e180 | e400 | 500 | 392 | 221 | 427 | 168 | | 5 | 823 | 380 | e230 | e220 | e170 | e170 | e390 | 499 | 372 | 216 | 448 | 165 | | 6 | 952 | 380 | e230 | e220 | e170 | e170 | e400 | 585 | 363 | 209 | 438 | 164 | | 7 | 1,070 | 374 | e230 | e230 | e170 | e170 | e400 | 648 | 405 | 212 | 425 | 161 | | 8 | 1,080 | 378 | e230 | e240 | e170 | e180 | e380 | 689 | 487 | 203 | 385 | 177 | | 9 | 1,050 | 389 | e220 | e240 | e180 | e170 | e380 | 687 | 614 | 196 | 346 | 174 | | 10 | 971 | 420 | e230 | e250 | e180 | e170 | e390 | 703 | 725 | 204 | 305 | 168 | | 11 | 868 | 443 | e230 | e200 | e180 | e170 | 558 | 840 | 845 | 214 | 315 | 162 | | 12 | 756 | 466 | e250 | e190 | e170 | e180 | 760 | 1,130 | 829 | 217 | 301 | 167 | | 13 | 681 | 456 | e260 | e180 | e170 | e180 | 836 | 1,260 | 763 | 216 | 295 | 226 | | 14 | 616 | 424 | e270 | e180 | e170 | e180 | 860 | 1,260 | 671 | 207 | 267 | 334 | | 15 | 571 | 397 | e270 | e160 | e170 | e190 | 925 | 1,190 | 569 | 201 | 243 | 413 | | 16 | 517 | 372 | e260 | e160 | e170 | e220 | 1,240 | 1,060 | 481 | 194 | 226 | 389 | | 17 | 478 | 344 | e240 | e160 | e170 | e280 | 1,480 | 938 | 419 | 193 | 215 | 337 | | 18 | 452 | e330 | e290 | e150 | e180 | e400 | 1,500 | 799 | 377 | 191 | 205 | 286 | | 19 | 453 | e370 | e310 | e150 | e170 | e560 | 1,440 | 711 | 343 | 188 | 197 | 250 | | 20 | 455 | e370 | e320 | e140 | e180 | e700 | 1,510 | 715 | 320 | 187 | 196 | 229 | | 21 | 463 | e340 | e300 | e130 | e190 | e680 | 1,560 | 721 | 302 | 228 | 198 | 217 | | 22 | 475 | e320 | e280 | e130 | e190 | e680 | 1,480 | 708 | 284 | 228 | 192 | 251 | | 23 | 476 | e310 | e260 | e130 | e180 | e660 | 1,380 | 656 | 272 | 220 | 189 | 279 | | 24 | 461 | e300 | e250 | e130 | e180 | e640 | 1,230 | 600 | 276 | 211 | 192 | 321 | | 25 | 457 | e290 | e260 | e130 | e180 | e620 | 1,070 | 548 | 273 | 200 | 195 | 359 | | 26
27
28
29
30
31 | 492
548
555
537
509
507 | e300
e310
e300
e290
e280 | e250
e240
e240
e230
e240
e230 | e130
e130
e130
e140
e140
e150 | e180
e180
e180
 | e600
e560
e490
e450
e430
e400 | 944
835
750
688
643 | 508
474
449
439
436
460 | 265
256
248
250
245 | 253
296
266
234
217
219 | 198
195
189
189
183
182 | 357
368
355
341
324 | | TOTAL | 19,333 | 11,022 | 7,830 | 5,360 | 4,890 | 11,020 | 25,639 | 21,914 | 12,982 | 6,741 | 8,278 | 7,664 | | MEAN | 624 | 367 | 253 | 173 | 175 | 355 | 855 | 707 | 433 | 217 | 267 | 255 | | MAX | 1,080 | 466 | 320 | 250 | 190 | 700 | 1,560 | 1,260 | 845 | 296 | 448 | 413 | | MIN | 452 | 280 | 220 | 130 | 160 | 170 | 380 | 436 | 245 | 187 | 182 | 161 | | CFSM | 1.40 | 0.82 | 0.57 | 0.39 | 0.39 | 0.80 | 1.91 | 1.58 | 0.97 | 0.49 | 0.60 | 0.57 | | IN. | 1.61 | 0.92 | 0.65 | 0.45 | 0.41 | 0.92 | 2.13 | 1.82 | 1.08 | 0.56 | 0.69 | 0.64 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 298
624
(2003)
210
(2001) | ONTHLY MI
282
367
(2003)
221
(2000) | 233
356
(2002)
184
(2001) | 177
195
(2001)
154
(1999) | ER YEARS
188
209
(1999)
172
(2002) | 1998 - 2003,
326
542
(2000)
211
(2002) | , BY WATE
780
1,201
(2002)
400
(2000) | R YEAR (W
589
978
(2002)
288
(2000) | 7Y) 416 694 (2002) 267 (1998) | 319
481
(1999)
183
(1998) | 235
308
(2002)
176
(1998) | 255
422
(2000)
160
(1998) | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM INSTAN ANNUA ANNUA ANNUA 50 PERC | UM PEAK :
UM PEAK : | L MEAN MEAN MEAN MEAN DAY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EEDS | UM | | Apr
(b)Feb
Feb | 17,18
9-13 | 142,67
39
1,56
(a)13
(a)13
(d)1,58
(a) | 01 Ap 80 Jai 80 Jai 80 Ap 96.65 Ap 11.87 | r 21
n 21-28
n 21
r 21
r 5 | (f)] | 30 (c)Ja
30 Ja
370 Ap
7.17 Ap | 2002
1999
7,18, 2002
n 5, 1999
n 21, 2003
or 17, 2002
or 17, 2002
c 9, 1998 | ⁽a) Ice affected(b) Also occurred Mar. 1-6(c) Also occurred Jan. 21-28, 2003 ⁽d) Gage height, 6.28 ft (e) Estimated due to ice effect or missing record (f) Result of freezeup ### 04069416 PESHTIGO RIVER AT PORTERFIELD, WI LOCATION.--Lat 45°08'36", long 87°48'02", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.19, T.31 N., R.22 E., Marinette County, Hydrologic Unit 04030105, on right bank 15 ft upstream from County Trunk E bridge, 0.8 mi south of Porterfield. DRAINAGE AREA.--1,020 mi². PERIOD OF RECORD.--June 1998 to current year. Prior to October 2000, published as "near Porterfield". GAGE.--Water-stage recorder. Elevation of gage is 625 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Diurnal fluctuation caused by powerplant upstream. Gage-height telemeter at station. | Guge | noight teleff | DISCH | | IC EEET DE | D SECONE | WATERN | VEAD OCTO | DRED 2002 | TO SEDTEN | MRED 2003 | | | | |--|---|----------------|---------------|------------------------------|---------------|------------------|------------------|-----------------|-----------------|----------------|----------------------------|----------------------------|--| | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC. LAN. EEP. MAR. APR. MAY HIN HIS ALIC SEP. | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 2 | 824
966 | 929
956 | e520
e540 | e410
e490 | e310
e320 | e400
e400 | 1,590
1,470 | 1,330
1,260 | 953
842 | 394
390 | 553
625 | 332
326 | | | 3 | 886 | 961 | e520 | e520 | e380 | e400 | e1,300 | 1,090 | 837 | 431 | 847 | 328 | | | 4
5 | 1,090
1,440 | 947
925 | e430
e490 | e430
e400 | e470
e820 | e420
e400 | e1,200
e1,100 | 1,130
1,190 | 700
606 | 400
392 | 1,040
986 | 300
275 | | | 6 | 1,800 | 915 | e520 | e390 | e440 | e380 | 999 | 1,380 | 593 | 361 | 989 | 282 | | | 7
8 | 2,330
2,340 | 903
906 | e560
e540 | e390
e470 | e330
e350 | e370
e370 | 940
1,090 | 1,500
1,660 | 763
880 | 323
327 | 1,090
1,030 | 269
230 | | | 9 | 2,190 | 903 | e540 | e500 | e350 | e330 | 1,090 | 1,840 | 1,100 | 414 | 872 | 258 | | | 10 | 2,190 | 908 | e560 | e520 | e330 | e370 | 1,100 | 1,940 | 1,350 | 371 | 812 | 333 | | | 11
12 | 2,090
1,730 | 1,030
1,200 | e490
e490 | e460
e410 | e340
e330 | e380
e390 | 1,330
1,640 | 1,850
2,190 | 2,120
2,380 | 383
422 | 742
729 | 295
294 | | | 13
14 | 1,550
1,460 | 1,170
1,120 | e500
e500 | e360
e320 | e370
e410 | e360
e360 | 1,970
2,080 | 2,470
2,710 | 2,120
1,630 | 408
365 | 680
639 | 408
714 | | | 15 | 1,220 | 960 | e520 | e340 | e440 | e390 | 1,980 | 2,450 | 1,420 | 378 | 480 | 1,060 | | | 16 | 1,170 | 914 | e520 | e300 | e440 | e560 | 2,420 | 2,210 | 1,100 | 399 | 534 | 1,270 | | | 17
18 | 1,180
1,060 | 904
811 | e580
e560 | e220
e200 | e410
e400 | e760
e1,100 | 3,460
3,730 | 1,950
1,630 | 863
711 | 411
374 | 446
428 | 1,180
884 | | | 19
20 | 1,010
1,100 | 684
688 | e560
e700 | e190
e210 | e390
e390 | e1,400
e1,800 | 3,740
3,700 | 1,400
1,350 | 763
630 | 362
307 | 447
371 | 750
530 | | | 21 | 1,070 | 783 | e760 | e240 | e410 | e2,100 | 3,740 | 1,430 | 453 | 343 | 326 | 397 | | | 22 | 1,160 | 771 | e720 | e250 | e410 | e2,100 | 3,800 | 1,230 | 510 | 346 | 374 | 458 | | | 23
24 | 1,370
1,170 | 768
767 | e680
e520 | e250
e260 | e480
e440 | e2,100
e2,100 | 3,640
3,050 | 1,250
1,160 | 517
472 | 489
371 | 409
402 | 509
520 | | | 25 | 1,190 | 673 | e540 | e280 | e390 | 1,880 | 2,610 | 912 | 456 | 340 | 403 | 489 | | | 26
27 | 1,200
1,200 | 637
e480 | e520
e480 | e260
e250 | e400
e500 | 1,520
1,220 | 2,500
2,190 | 963
778 | 576
571 | 420
509 | 392
318 | 543
675 | | | 28 | 1,230 | e420 | e540 | e250 | e470 | 1,540 | 1,810 | 650 | 396 | 639 | 375 | 712 | | | 29
30 | 1,310
1,170 | e480
e600 | e470
e500 | e250
e250 | | 1,970
1,900 | 1,410
1,340 | 929
700 | 417
422 | 597
500 | 467
412 | 699
725 | | | 31 | 1,040 | | e480 | e290 | | 1,790 | | 936 | | 513 | 404 | | | | TOTAL | 42,736 | 25,113 | 16,850 | 10,360 | 11,520 | 31,560 | 64,019 | 45,468 | 27,151 | 12,679 | 18,622 | 16,045 | | | MEAN
MAX | 1,379
2,340 | 837
1,200 | 544
760 | 334
520 | 411
820 | 1,018
2,100 | 2,134
3,800 | 1,467
2,710 | 905
2,380 | 409
639 | 601
1,090 | 535
1,270 | | | MIN | 824 | 420 | 430 | 190 | 310 | 330 | 940 | 650 | 396 | 307 | 318 | 230 | | | CFSM
IN. | 1.35
1.56 | 0.82
0.92 | 0.53
0.61 | 0.33
0.38 | 0.40
0.42 | 1.00
1.15 | 2.09
2.33 | 1.44
1.66 | 0.89
0.99 | 0.40
0.46 | 0.59
0.68 | 0.52
0.59 | | | STATIST | ΓICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1998 - 2003 | , BY WATE | R YEAR (W | /Y) | | | | | | MEAN | 659 | 598 | 472 | 372 | 422 | 801 | 1,589 | 1,139 | 892 | 561 | 480 | 510 | | | MAX
(WY) | 1,379
(2003) | 837
(2003) | 675
(2002) | 434
(1999) | 526
(1999) | 1,027
(2000) | 2,209
(2002) | 1,754
(2002) | 1,791
(2002) | 844
(1999) | 660
(2002) | 762
(2000) | | | MIN | 432 | 429 | 347 | 334 | 368 | 589 | 774 | Š87 | Š18 | 330 | 353 | 316 | | |
(WY) | (2000) | (2000) | (2000) | (2003) | (2001) | (2002) | (2000) | (2000) | (2000) | (2001) | (1998) | (1999) | | | SUMMA | RY STATIS | STICS | I | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 19 | 98 - 2003 | | | ANNUA
HIGHES | L TOTAL
L MEAN
T ANNUAI
Γ ANNUAL | | | 361,548
991 | | | 322,123
883 | | | 9 | 21
17
68 | 2002
2000 | | | | T DAILY Μ
Γ DAILY M | | | 4,120 Jun 25
(a)280 Jan 4 | | 3,80
(a)19 | | r 22
n 19 | 4,1 | 20 Ju
64 Se | an 25, 2002
ep 25, 1998 | | | | ANNUA | | OAY MINIM | UM | (a)331 | | | (a)22
(b)4,00 | 23 Jai | n 17
r 18 | | .18 J | ul 28, 1998
ın 25, 2002 | | | MAXIM | UM PEAK S | STAGE | | 0 | 07 | | (a)1 | 11.76 Ma | r 23 | | 12.08 Ju | in 25, 2002
in 25, 2002 | | | ANNUA | L RUNOFF
L RUNOFF | (INCHÉS) | | 13 | .97
.19 | | 1 | 0.87
11.75 | | | 0.71
9.60 | | | | | | | | 2,320
704 | | | 1,89
59 | | | 1,3
5 | | | | | 10 PERCENT EXCEEDS 2,320 1,890 1,300 50 PERCENT EXCEEDS 704 597 518 90 PERCENT EXCEEDS 374 330 340 | | | | | | | | | | | | | | ⁽a) Ice affected(b) Gage height, 11.42 ft(e) Estimated due to ice effect or missing record ### 04069500 PESHTIGO RIVER AT PESHTIGO, WI LOCATION.--Lat 45°02'49", long 87°44'40", in NE \(^1\)/₄ sec.30, T.30 N., R.23 E., Marinette County, Hydrologic Unit 04030105, on left bank 75 ft downstream from Chicago and Northwestern Railway bridge, 0.5 mi downstream from Wisconsin Public Service Corp. Powerplant at Peshtigo, and 11.5 mi upstream from mouth DRAINAGE AREA.--1,080 mi². PERIOD OF RECORD.--June 1953 to current year. REVISED RECORDS.--WDR WI-80-1: Drainage area. WDR WI-84-1: 1983 average discharge. GAGE.--Water-stage recorder. Datum of gage is 584.64 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Diurnal fluctuation caused by two powerplants upstream. Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | MBER 2003 | | | |-------------|------------------------|-----------------|-----------------|-----------------|-----------------|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 741 | 940 | 526 | 420 | e310 | e400 | 1,680 | 1,370 | 1,080 | 466 | 664 | 359 | | 2 | 829 | 981 | 570 | 514 | e330 | e400 | 1,520 | 1,310 | 919 | 440 | 709 | 326 | | 3 | 837 | 994 | 539 | 536 | e400 | e410 | 1,440 | 1,150 | 947 | 473 | 862 | 338 | | 4
5 | 1,050
1,350 | 960
967 | 437
507 | 452
422 | e500
e860 | e420
e410 | 1,400
1,090 | 1,170
1,260 | 821
711 | 447
418 | 1,130
1,110 | 322
252 | | 6 | | 951 | 535 | e410 | e450 | | | | 671 | | | 290 | | 7 | 1,730
2,190 | 908 | 594 | 402 | e330 | e390
e370 | 1,120
871 | 1,440
1,560 | 869 | 413
359 | 1,150
1,210 | 269 | | 8 | 2,360 | 937 | 598 | 473 | e360 | e360 | 1,090 | 1,680 | 1,000 | 366 | 1,130 | 234 | | 9 | 2,130 | 936 | 592 | 515 | e360 | e330 | 1,100 | 1,810 | 1,170 | 472 | 970 | 244 | | 10 | 2,150 | 952 | 556 | 554 | e350 | e370 | 1,180 | 1,930 | 1,490 | 449 | 915 | 344 | | 11
12 | 2,040
1,770 | 1,020
1,200 | 512
491 | 482
e410 | e360
e330 | e410
e420 | 1,410
1,690 | 2,030
2,230 | 2,120
2,380 | 441
484 | 862
802 | 338
321 | | 13 | 1,770 | 1,150 | 526 | e370 | e390 | e380 | 1,930 | 2,230 | 2,380 | 482 | 751 | 563 | | 14 | 1,480 | 1,150 | 517 | e330 | e430 | e370 | 2,080 | 2,650 | 1,760 | 418 | 689 | 949 | | 15 | 1,300 | 982 | 535 | e340 | e460 | e400 | 1,990 | 2,430 | 1,500 | 408 | 540 | 1,400 | | 16 | 1,190 | 925 | e560 | e320 | e460 | e560 | 2,460 | 2,200 | 1,220 | 423 | 460 | 1,520 | | 17
18 | 1,220 | 922
837 | e560
e580 | e230
e190 | e420 | e780 | 3,390 | 2,000 | 986
774 | 430 | 461 | 1,430 | | 19 | 1,110
1,050 | 732 | e580 | e170 | e410
e390 | e1,100
e1,400 | 3,680
3,790 | 1,700
1,490 | 765 | 387
373 | 466
442 | 1,120
933 | | 20 | 1,100 | 688 | 729 | e220 | e400 | e1,900 | 3,730 | 1,410 | 757 | 309 | 367 | 715 | | 21 | 1,150 | 756 | 797 | e250 | e410 | e2,200 | 3,800 | 1,450 | 492 | 370 | 305 | 495 | | 22 | 1,190 | 822 | 753 | e260 | e420 | e2,200 | 3,740 | 1,330 | 524 | 390 | 349 | 501 | | 23
24 | 1,430
1,220 | 762
760 | e680
e540 | e260
e260 | e500
e460 | e2,200
e2,200 | 3,640
3,100 | 1,320
1,240 | 566
533 | 569
452 | 356
396 | 602
628 | | 25 | 1,240 | 693 | e560 | e260 | e400 | 1,920 | 2,630 | 1,020 | 478 | 369 | 384 | 587 | | 26 | 1,240 | 655 | e560 | e260 | e410 | 1,600 | 2,450 | 1,060 | 597 | 481 | 378 | 634 | | 27 | 1,250 | 498 | e480 | e270 | e520 | 1,240 | 2,240 | 910 | 616 | 620 | 300 | 768 | | 28 | 1,260 | 424 | e520 | e260 | e490 | 1,600 | 1,870 | 764 | 464 | 727 | 348 | 809 | | 29
30 | 1,280
1,240 | 554
636 | 491
515 | e260
e260 | | 2,060
2,000 | 1,480
1,370 | 949
830 | 463
479 | 706
583 | 541
443 | 797
818 | | 31 | 1,100 | | 514 | e300 | | 1,850 | | 939 | | 583 | 417 | | | TOTAL | 42,757 | 25,692 | 17,454 | 10,660 | 11,910 | 32,650 | 64,961 | 47,072 | 29,322 | 14,308 | 19,907 | 18,906 | | MEAN | 1,379 | 856 | 563 | 344 | 425 | 1,053 | 2,165 | 1,518 | 977 | 462 | 642 | 630 | | MAX
MIN | 2,360
741 | 1,200
424 | 797
437 | 554
170 | 860
310 | 2,200
330 | 3,800
871 | 2,650
764 | 2,380
463 | 727
309 | 1,210
300 | 1,520
234 | | CFSM | 1.28 | 0.79 | 0.52 | 0.32 | 0.39 | 0.98 | 2.00 | 1.41 | 0.91 | 0.43 | 0.59 | 0.58 | | IN. | 1.47 | 0.88 | 0.60 | 0.37 | 0.41 | 1.12 | 2.24 | 1.62 | 1.01 | 0.49 | 0.69 | 0.65 | | STATIST | ΓICS OF MO | ONTHLY MI | EAN DATA | FOR WATE | ER YEARS | 1953 - 2003. | BY WATE | R YEAR (W | /Y) | | | | | MEAN | 794 | 880 | 625 | 532 | 542 | 1,055 | 2,041 | 1,450 | 1,058 | 650 | 586 | 729 | | MAX
(WY) | 1,728
(1986) | 2,197
(1986) | 1,128
(1966) | 1,219
(1960) | 1,449
(1984) | 3,272
(1973) | 3,813
(1979) | 4,639
(1960) | 2,768
(1993) | 1,362
(1993) | 1,242
(1974) | 1,706
(1959) | | MIN | 310 | 328 | 250 | 268 | 282 | 424 | 485 | 538 | 228 | 300 | 285 | 264 | | (WY) | (1990) | (1977) | (1990) | (1990) | (1990) | (1964) | (1990) | (1977) | (1988) | (1989) | (1957) | (1989) | | SUMMA | RY STATIS | STICS | 1 | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 195 | 3 - 2003 | | ANNUA | L TOTAL | | _ | 371,930 | | | 335,59 | 9 | | | | | | | L MEAN | MEAN | | 1,019 | | | 91 | 9 | | | 12 | 1072 | | | T ANNUAI
Γ ANNUAL | | | | | | | | | 1,5 | 80 | 1973
2000 | | | T DAILY M | | | 4,240 | Jun | 25 | 3,80 | 00 Ap | r 21 | 9,6 | | y 9, 1960 | | | Γ DAILY M | | | 290 | | | (a)17 | | n 19 | | | g 5, 1957 | | | L SEVEN-L
UM PEAK I | DAY MINIM | UM | 337 | Jan | 3 | (a)22
3,97 | | n 17
r 19 | (b)9,7 | | g 4, 1957
y 9, 1960 | | | UM PEAK S | | | | | | | | r 19 | | | y 9, 1960 | | | L RUNOFF | | | | .94 | | | 0.85 | | | 0.84 | - | | | L RUNOFF
ENT EXCE | | | 2 310 | | | 1
1,93 | 1.56 | | 1,7 | 11.47 | | | | ENT EXCE | | | 2,310
746 | | | 67 | | | | 65 | | | | ENT EXCE | | | 392 | | | 34 | | | | 50 | | | | | | | | | | | | | | | | ⁽a) Ice affected ⁽b) From rating curve extended above 5,000 ft³/s on basis of computation of peak flow through dam gates ⁽e) Estimated due to ice effect or missing record ### 04071000 OCONTO RIVER NEAR GILLETT, WI $\begin{array}{l} \textbf{LOCATION.--Lat } \ 44^\circ51^\circ55^\circ (\text{revised}), \ \log \ 88^\circ18^\circ00^\circ, \ \text{in NE } \ 1/4 \ \text{NW} \ ^{1/}_{4} \ \text{sec.} \ 34, \ T.28 \ \text{N., R.} \ 18 \ \text{E., Oconto County, Hydrologic Unit } \ 04030104, \ \text{on left bank } \ 300 \ \text{ft upstream from County Trunk Highway BB bridge, } \ 2.0 \ \text{mi upstream from Christy Brook, } \ 2.0 \ \text{mi south of Gillett, } \ \text{and at mile } \ 29. \end{array}$ DRAINAGE AREA.--705 mi². PERIOD OF RECORD.--June 1906 to April 1909, October 1913 to current year. Monthly discharge for some periods published in WSP 1307. REVISED RECORDS.--WSP 1207: 1922. WSP 1307: 1907-8(M), 1914-16(M), 1918-21(M), 1923-33(M), 1937-38(M), 1943(M). WDR WI-79-1: Drainage GAGE.--Water-stage recorder. Datum of gage is 732.87 ft above NGVD of 1929 (levels by Wisconsin Department of Transportation). See WSP 1727 for history of changes prior to Aug. 25, 1938. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUB | IC FEET PE | | D, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | MBER 2003 | | | |---------------|------------------------|---------------|---------------|------------------------|---------------|-------------------------|-----------------|------------------|-----------------|---------------|---------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 402 | 667 | e430 | e310 | e220 | e260 | 1,090
952 | 934 | 564 | 369 | 565 | 305 | | 2 3 | 444
447 | 641
615 | e390
e340 | e290
e300 | e220
e230 | e260
e260 | 952
872 | 868
800 | 541
509 | 352
348 | 596
713 | 292
283 | | 4 | 498 | 593 | e320 | e300 | e230 | e260 | 815 | 728 | 479 | 329 | 852 | 276 | | 5 | 604 | 579 | e340 | e300 | e240 | e260 | 707 | 731 | 454 | 327 | 675 | 274 | | 6
7 | 740
860 | 584
581 | e360
e370 | e320
e330 | e250
e250 | e260
e260 | 685
e690 | 817
947 | 407
444 | 328
323 | 600
547 | 268
264 | | 8 | 984 | 577 | e370 | e320 | e250 | e260 | e690 | 1,100 | 556 | 316 | 523 | 262 | | 9
10 | 1,060
1,060 | 570
566 | e360
e350 | e310
e290 | e250
e250 | e260
e250 | 704
719 | 1,200
1,200 | 662
887 | 308
342 | 479
453 | 259
256 | | 11 | 1,000 | 575 | e350 | e270 | e260 | e250
 759 | 1,220 | 1,080 | 395 | 500 | 253 | | 12
13 | 906
783 | 625
659 | e350
e360 | e260
e270 | e260
e260 | e260
e260 | 825
902 | 1,230
1,300 | 1,150
1,220 | 411
379 | 491
482 | 259
349 | | 14 | 704 | 629 | e360 | e280 | e260 | e260 | 961 | 1,410 | 1,170 | 347 | 427 | 682 | | 15 | 684 | 610 | e360 | e280 | e260 | e270 | 1,040 | 1,390 | 1,000 | 330 | 392 | 767 | | 16
17 | 659
629 | 595
571 | e360
e370 | e270
e270 | e260
e260 | e390
e620 | 1,910
1,970 | 1,280
1,150 | 785
639 | 321
317 | 359
323 | 731
664 | | 18 | 608 | 544 | e380 | e270 | e260 | e740 | 2,240 | 1,000 | 563 | 308 | 316 | 555 | | 19
20 | 596
598 | 507
518 | e390
e410 | e260
e250 | e250
e250 | e720
e720 | 2,320
2,250 | 897
861 | 512
465 | 299
291 | 309
302 | 453
367 | | 21 | 611 | 516 | e420 | e240 | e260 | e720 | 2,130 | 852 | 429 | 302 | 296 | 341 | | 22
23 | 629
663 | 506
499 | e410
e400 | e230
e220 | e260
e260 | e760
e820 | 2,040
1,930 | 857
825 | 403
384 | 301
301 | 290
286 | 347
380 | | 24 | 708 | 492 | e390 | e210 | e260 | e850 | 1,780 | 767 | 371 | 298 | 295 | 417 | | 25 | 738 | 478 | e360 | e210 | e260 | e890 | 1,620 | 720 | 378 | 292 | 314 | 398 | | 26
27 | 756
769 | 460
423 | e370
e380 | e210
e210 | e260
e260 | e940
991 | 1,460
1,320 | 668
604 | 421
392 | 339
471 | 346
321 | 376
379 | | 28 | 779 | e390 | e370 | e210 | e260 | 1,030 | 1,190 | 556 | 377 | 485 | 288 | 404 | | 29
30 | 764
734 | e370
e410 | e360
e350 | e210
e210 | | 1,120
1,180 | 1,070
999 | 547
557 | 378
383 | 505
507 | 318
332 | 426
398 | | 31 | 701 | | e330 | e220 | | 1,190 | | 579 | | 526 | 321 | | | TOTAL
MEAN | 22,118
713 | 16,350
545 | 11,460
370 | 8,130
262 | 7,050
252 | 17,571
567 | 38,640
1,288 | 28,595
922 | 18,003
600 | 11,067
357 | 13,311
429 | 11,685
390 | | MAX | 1,060 | 667 | 430 | 330 | 260 | 1,190 | 2,320 | 1,410 | 1,220 | 526 | 852 | 767 | | MIN
CFSM | 402
1.01 | 370
0.77 | 320
0.52 | 210
0.37 | 220
0.36 | 250
0.80 | 685
1.83 | 547
1.31 | 371
0.85 | 291
0.51 | 286
0.61 | 253
0.55 | | IN. | 1.17 | 0.86 | 0.60 | 0.43 | 0.37 | 0.93 | 2.04 | 1.51 | 0.95 | 0.58 | 0.70 | 0.62 | | STATIS | | | EAN DATA | | | | | | | | | | | MEAN
MAX | 484
1,216 | 559
1,377 | 446
900 | 355
700 | 348
643 | 643
1,867 | 1,217
3,435 | 867
2,185 | 672
1,744 | 461
1,022 | 383
742 | 447
1,347 | | (WY) | (1942) | (1986) | (1907) | (1907) | (1984) | (1973) | (1922) | (1960) | (1916) | (1922) | (1960) | (1928) | | MIN
(WY) | 199
(1949) | 259
(1934) | 216
(1990) | 206
(1957) | 204
(1948) | 240
(1934) | 379
(1931) | 357
(1931) | 197
(1988) | 226
(1988) | 158
(1934) | 190
(1933) | | (₩1) | (1)4)) | (1754) | (1770) | (1737) | (1740) | (1754) | (1731) | (1)31) | (1700) | (1700) | (1754) | (1755) | | ANNUA | RY STATIS
L TOTAL | STICS | F | FOR 2002 C.
214,951 | | YEAR | 203,98 | 3 WATER Y
30 | YEAR | | YEARS 190 | 6 - 2003 | | | L MEAN
T ANNUAL | MEAN | | 589 | | | 55 | 59 | | | 74
30 | 1973 | | | T ANNUAL | | | | | | | | | 3 | 15 | 1931 | | | T DAILY M
T DAILY M | | | 1,870
(a)220 | | | 2,32
(a)21 | | r 19
1 24-30 | | | or 10, 1922
n 3, 1907 | | ANNUA | L SEVEN-D | OAY MINIM | UM | (a)229 | | | (a)21 | 0 Jai | n 24 | 1 | 37 Au | g 9, 1908 | | | UM PEAK I
UM PEAK S | | | | | | (c)2,36 | | r 19
r 25 | | | or 10, 1922
or 10, 1922 | | INSTAN | TANEOUS | LOW FLOW | V | _ | | | (| (a) Nov 26, 1941 | | | | | | | L RUNOFF
L RUNOFF | | | | .84
.34 | | | 0.79
10.76 | | | 0.81
11.06 | | | 10 PERC | CENT EXCE | ÈDS | | 1,110 | | | 1,01 | 0 | | 1,0 | 50 | | | | EENT EXCE
EENT EXCE | | | 468
240 | | | 41
26 | | | | -38
:57 | | |) of Ence | EIVI EIVEE | LDS | | 210 | | | 20 | ,0 | | - | .5 / | | ⁽a) Ice affected ⁽b) Also occurred Feb. 15 ⁽c) Gage height, 4.34 ft ⁽d) From floodmarks, caused by failure of a dam at Pulcifer 4 mi above station (e) Estimated due to ice effect or missing record ⁽f) Result of freezeup ### 04071765 OCONTO RIVER NEAR OCONTO, WI $LOCATION.--Lat~44^{\circ}51'38", long~87^{\circ}59'02", in~NW~\frac{1}{4}~NW~\frac{1}{4}~sec. 32, T.28~N., R.21~E., Oconto~County, Hydrologic~Unit~04030104, on~left~bank~30~ft~upstream~from~County~Highway~J~bridge,~0.7~mi~downstream~from~mouth~of~Little~River,~and~4.6~mi~west~of~Oconto.$ DRAINAGE AREA.--966 mi². PERIOD OF RECORD.--October 1988 to September 1990, October 1997 to current year. GAGE.--Water-stage recorder. Elevation of gage is 583.14 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Flow regulated by Machickanee Flowage (capacity, 556 acre-ft) 3.9 mi upstream. Gage-height telemeter at station. | 220 44 | | DISCH | ARGE, CUB | | R SECONI |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | MBER 2003 | | | |--|--|--|---|---|---|---|--|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 476 | 763 | e390 | e340 | e240 | e270 | 1,630 | 1,170 | 705 | 396 | 663 | 315 | | 2 | 491 | 728 | e280 | e320 | e260 | e270 | 1,350 | 1,070 | 663 | 380 | 695 | 311 | | 3 | 499 | 713 | e210 | e330 | e250 | e280 | 1,170 | 993 | 619 | 351 | 796 | 266 | | 4 | 843 | 671 | e260 | e320 | e250 | e280 | 1,030 | 898 | 591 | 355 | 1,210 | 257 | | 5 | 1,270 | 679 | e290 | e320 | e260 | e280 | 771 | 1,030 | 559 | 314 | 866 | 252 | | 6 | 1,110 | 693 | e380 | e350 | e270 | e280 | 923 | 1,520 | 535 | 329 | 734 | 241 | | 7 | 1,180 | 699 | e390 | e330 | e270 | e280 | 807 | 1,580 | 616 | 322 | 627 | 251 | | 8 | 1,250 | 679 | e390 | e360 | e280 | e280 | 849 | 1,660 | 778 | 307 | 593 | 249 | | 9 | 1,230 | 677 | e380 | e340 | e270 | e280 | 879 | 1,720 | 945 | 294 | 511 | 236 | | 10 | 1,330 | 689 | e360 | e320 | e280 | e270 | 1,130 | 1,640 | 1,490 | 378 | 485 | 231 | | 11 | 1,360 | 690 | e350 | e300 | e280 | e260 | 1,260 | 2,170 | 2,410 | 485 | 541 | 242 | | 12 | 1,100 | 716 | e350 | e280 | e280 | e270 | 1,210 | 2,250 | 1,980 | 465 | 527 | 284 | | 13 | 941 | 753 | e370 | e270 | e280 | e270 | 1,200 | 2,010 | 1,870 | 438 | 537 | 534 | | 14 | 796 | 736 | e380 | e300 | e280 | e290 | 1,170 | 1,900 | 1,580 | 380 | 451 | 1,550 | | 15 | 832 | 680 | e380 | e300 | e280 | e430 | 1,330 | 1,800 | 1,300 | 344 | 413 | 1,750 | | 16 | 745 | 679 | e380 | e300 | e280 | e660 | 4,000 | 1,630 | 911 | 320 | 395 | 1,420 | | 17 | 713 | 634 | e380 | e300 | e280 | e980 | 4,390 | 1,480 | 702 | 316 | 301 | 1,200 | | 18 | 705 | 593 | e390 | e280 | e270 | e1,100 | 3,660 | 1,220 | 617 | 310 | 312 | 1,020 | | 19 | 693 | 612 | e450 | e270 | e270 | e970 | 3,490 | 1,170 | 545 | 288 | 299 | 602 | | 20 | 685 | 586 | e520 | e260 | e260 | e920 | 3,470 | 1,080 | 508 | 270 | 286 | 529 | | 21 | 734 | 593 | e520 | e260 | e270 | e970 | 3,210 | 1,020 | 493 | 331 | 292 | 496 | | 22 | 849 | 598 | e520 | e250 | e280 | e1,200 | 2,850 | 1,010 | 435 | 300 | 269 | 500 | | 23 | 937 | 571 | e520 | e240 | e280 | e1,400 | 2,610 | 983 | 391 | 284 | 243 | 525 | | 24 | 960 | 574 | e460 | e230 | e280 | 1,740 | 2,300 | 916 | 409 | 295 | 317 | 573 | | 25 | 971 | 549 | e360 | e230 | e280 | 2,140 | 2,100 | 845 | 419 | 264 | 329 | 551 | | 26
27
28
29
30
31 | 967
958
959
909
865
825 | 500
e400
e370
e440
e510 | e370
e420
e420
e420
e400
e380 | e230
e230
e230
e240
e230
e230 | e270
e270
e270
 | 1,880
1,460
1,950
2,480
1,930
1,840 | 1,850
1,610
1,530
1,400
1,150 | 794
734
676
682
671
731 | 437
399
419
427
418 | 489
568
551
523
512
606 | 360
330
289
464
383
367 | 524
543
544
573
543 | | TOTAL | 28,183 | 18,775 | 12,070 | 8,790 | 7,590 | 27,910 | 56,329 | 39,053 | 24,171 | 11,765 | 14,885 | 17,112 | | MEAN | 909 | 626 | 389 | 284 | 271 | 900 | 1,878 | 1,260 | 806 | 380 | 480 | 570 | | MAX | 1,360 | 763 | 520 | 360 | 280 | 2,480 | 4,390 | 2,250 | 2,410 | 606 | 1,210 | 1,750 | | MIN | 476 | 370 | 210 | 230 | 240 | 260 | 771 | 671 | 391 | 264 | 243 | 231 | | CFSM | 0.94 | 0.65 | 0.40 | 0.29 | 0.28 | 0.93 | 1.94 | 1.30 | 0.83 | 0.39 | 0.50 | 0.59 | | IN. | 1.09 | 0.72 | 0.46 | 0.34 | 0.29 | 1.07 | 2.17 | 1.50 | 0.93 | 0.45 | 0.57 | 0.66 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | AUS OF MO
405
909
(2003)
240
(2000) | ONTHLY MI
441
626
(2003)
280
(2000) | EAN DATA
345
557
(2002)
251
(1990) | FOR WATE
296
344
(1998)
240
(2000) | ER YEARS
353
565
(1998)
263
(1990) | 1989 - 2003,
805
1,132
(1990)
459
(2001) | , BY WATE
1,158
1,878
(2003)
423
(1990) | R YEAR (W
834
1,266
(2002)
448
(1998) | 846
1,439
(1990)
370
(1999) | 440
751
(2000)
260
(1989) | 398
635
(2002)
261
(1989) |
478
1,044
(1990)
196
(1999) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 277,178
759
2,860
(b)210
289 | Apr
Dec
Jul
.79 | 28
3 | 266,63
73
4,33
(b)21
(b)23
5,20 | 00 Ap
00 Dec
31 Jan
00 Ap
0.0.23 Ap
0.76
10.27
40 | YEAR r 17 c 3 n 24 r 17 r 17 | 5
7
4
(a)4,7
1
1
(d)5,3
(b) | 53 Se
81 (c)Ju
00 Ma
11.24 Ma
0.59
7.97 | 2003
2000
2000
ar 31, 1998
p 4, 1999
il 30, 1998
ar 28, 1989
ar 13, 1990 | ⁽a) Estimated, discharge measurement of 4,700 $\rm ft^3/s$ on Mar. 31, 1998 (b) Ice affected ⁽c) Also occurred Sept. 3, 1999 (d) Estimated, gage height, 10.91 ft, backwater from ice (e) Estimated due to ice effect or missing record ### 04072150 DUCK CREEK NEAR HOWARD, WI $LOCATION.--Lat~44^{\circ}32'09" (revised),~long~88^{\circ}07'47",~in~SW~\frac{1}{4}~SW~\frac{1}{4}~sec.19,~T.24~N.,~R.20~E.,~Brown~County,~Hydrologic~Unit~04030103,~on~left~bank~upstream~from~County~Trunk~Highway~FF~bridge~2.2~mi~southwest~of~Howard,~and~about~9~mi~upstream~from~mouth.$ DRAINAGE AREA.--108 mi². # WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- May 1988 to current year. GAGE.--Continuous water-stage recorder since April 1988. Elevation of gage is 605 ft above NGVD of 1929, from topographic map. REMARKS.-Records good except those for estimated daily discharges and discharges less than 0.5 ft³/s, which are poor (see page 11). Gage-height telemeter | at stati | on. | DISCHA | ARGE, CUE | BIC FEET PI | | | | OBER 2002 | TO SEPTEM | 1BER 2003 | | | |--|--|--|--|--|--|---|--|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | LY MEAN V
MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.47
0.53
0.60
3.5
3.4 | 5.9
5.4
5.2
4.5
4.7 | e3.3
e3.7
e3.6
e3.3
e3.0 | e4.7
e4.3
e4.1
e4.3
e4.6 | e2.9
e3.3
e4.0
e3.7
e3.5 | e6.0
e5.4
e4.9
e4.6
e4.1 | 70
59
e49
e43
e36 | 29
28
26
22
37 | 12
19
15
13 | 4.5
3.6
3.6
3.6
2.5 | 319
383
279
438
544 | 2.0
1.6
1.3
0.96
0.76 | | 6
7
8
9
10 | 6.3
6.4
5.3
4.5
4.6 | 4.5
5.1
4.6
4.8
4.7 | e2.7
e2.9
e2.7
e2.7
e2.8 | e4.3
e4.6
e4.9
e5.1
e4.7 | e3.2
e2.9
e3.1
e2.9
e2.8 | e4.1
e4.5
e4.2
e3.9
e3.7 | e31
e27
24
23
30 | 140
161
154
159
187 | 9.9
17
23
30
73 | 2.0
2.1
1.7
1.4
3.2 | 310
214
177
115
68 | 0.65
0.55
0.52
0.47
1.1 | | 11
12
13
14
15 | 4.4
3.3
2.7
2.3
2.3 | 4.8
4.8
4.6
4.8
4.7 | e3.1
e3.1
e3.1
e2.9 | e4.4
e4.2
e3.9
e3.6
e3.4 | e2.8
e2.7
e2.7
e2.7
e2.6 | e3.9
e4.0
e4.0
e12
e92 | 40
41
37
33
32 | 252
407
263
147
103 | 314
304
158
93
57 | 7.1
4.5
6.8
6.8
4.6 | 130
100
55
35
24 | 0.51
0.42
4.5
36
118 | | 16
17
18
19
20 | 1.9
2.0
2.2
2.8
2.7 | 5.1
4.5
4.3
4.6
4.4 | e2.7
e2.9
e5.7
e6.5
e5.5 | e1.1
0.61
0.19
e2.8
e2.6 | e2.6
e2.8
e3.1
e3.5
e4.0 | e350
e320
e190
e120
e93 | 120
372
280
155
165 | 77
59
45
36
31 | 35
24
17
14
11 | 3.0
3.1
2.6
1.5
1.1 | 17
13
9.4
7.2
5.7 | 100
62
41
24
14 | | 21
22
23
24
25 | 4.5
7.3
9.4
12
9.9 | 4.4
4.3
4.3
e4.3
e4.2 | e4.9
e4.3
e3.9
e3.4
e3.1 | e0.40
0.10
e0.91
e2.3
e2.4 | e5.9
e5.7
e5.1
e4.6
e4.2 | e89
e110
e140
e110
e89 | 195
149
111
85
69 | 26
21
17
14
13 | 9.2
7.6
6.3
5.8
4.9 | 0.99
0.84
0.60
0.40
0.27 | 8.4
6.6
5.6
4.7
4.1 | 9.5
8.7
6.6
5.9
5.1 | | 26
27
28
29
30
31 | 9.5
9.0
8.4
8.0
7.4
6.6 | e4.0
e3.9
e3.8
4.0
e3.9 | e3.2
e3.3
e3.5
e3.6
e4.8
e5.1 | e2.3
e2.4
e2.3
e2.4
e2.6 | e4.0
e4.2
e4.9 | e67
e55
e96
235
170
92 | 57
46
38
32
29 | 11
9.8
10
9.0
9.1 | 4.5
3.6
5.5
5.9
6.5 | 0.44
0.51
0.27
0.14
16
121 | 3.4
2.9
3.3
6.8
2.9
2.2 | 5.0
4.6
4.1
3.8
3.6 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 154.20
4.97
12
0.47
0.05
0.05 | 137.1
4.57
5.9
3.8
0.04
0.05 | 112.4
3.63
6.5
2.7
0.03
0.04 | 92.81
2.99
5.1
0.10
0.03
0.03 | 100.4
3.59
5.9
2.6
0.03
0.03 | 2,487.3
80.2
350
3.7
0.74
0.86 | 2,478
82.6
372
23
0.76
0.85 | 2,513.9
81.1
407
9.0
0.75
0.87 | 1,309.7
43.7
314
3.6
0.40
0.45 | 210.76
6.80
121
0.14
0.06
0.07 | 3,294.2
106
544
2.2
0.98
1.13 | 467.24
15.6
118
0.42
0.14
0.16 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 9.19
52.7
(1996)
0.14
(2000) | ONTHLY M
27.8
207
(1993)
1.02
(2000) | EAN DATA
15.8
93.5
(1993)
0.59
(1990) | 6.37
36.8
(1996)
0.11
(1990) | ER YEARS
26.6
102
(1998)
0.51
(1989) | 1988 - 2003
142
250
(1991)
16.4
(2000) | 159
318
(1994)
9.40
(1990) | R YEAR (W
53.6
109
(1990)
2.79
(1988) | 7Y)
104
370
(1990)
0.000
(1988) | 29.6
295
(1993)
0.000
(1988) | 12.8
106
(2003)
0.000
(1988) | 8.28
36.8
(1990)
0.000
(1989) | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMU INSTANT ANNUAL ANNUAL 10 PERCI 50 PERCI | L MEAN | MEAN MEAN IEAN EAN AY MINIM FLOW TAGE LOW FLOW (CFSM) (INCHES) EDS EDS | UM | 22,67
6
84 | 2.1
8 Jun
0.10 Aug
0.27 Sep
0.58
7.81 | 4
11 | 13,35
3
54
(b)59
(d)1 | 14 Aug
0.10 Jan
0.38 Ju
15 Aug
4.71 Ma
0.09 Jan
0.34
4.60 | YEAR g 5 n 22 1 23 g 5 r 16 n 22 | 3,(c)4,: | 0.00 (a)Jur
0.00 (a)Jur
520 Jur | 1993
2000
1 23, 1990
1 1, 1988
1 1, 1988
1 23, 1990
1 23, 1990 | ⁽a) Also occurred additional days (b) Gage height, 14.33 ft (c) Based on rating curve extended above 1,500 ft³/s on basis of contracted-opening measurement of peak flow ⁽d) Ice affected ⁽e) Estimated due to ice effect or missing record ⁽f) Estimated from floodmarks # 04072150 DUCK CREEK NEAR HOWARD, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- May 2002 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: May 2002 to current year. SPECIFIC CONDUCTANCE: May 2002 to current year. INSTRUMENTATION.--Continuous water temperature recorder and specific conductance recorder since May 2002. Sensor located near midstream. REMARKS.--Records represent water temperature at sensor within 0.5°C. Records for water temperature were faulty Jan. 15 to Mar. 23, Apr. 3-7, and July 26 to Aug. 8. Records for specific conductance were faulty Jan. 15 to Mar. 23, Apr. 3-7, and July 26 to Aug. 8. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 30.5°C, July 2, 21 and 2, 2002; minimum, 0.0° many days during 2003 water year. SPECIFIC CONDUCTANCE: Maximum, 1,930 microsiemens per centimeter, Jan. 15, 2003 (partial day); minimum, 340 microsiemens per centimeter, June 4, 2002. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 29.0°C, July 5; minimum, 0.0°C, many days. SPECIFIC CONDUCTANCE: Maximum, 1,930 microsiemens per centimeter, Jan. 15 (partial day); minimum, 479 microsiemens per centimeter, Sept. 15. ### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |-------------|--------------|--------------|--------------|------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------| | | | OCTOBE | 3 | N | OVEMBE | ER | D | ECEMBE | ER. | J | IANUARY | 7 | | 1 | 21.0
18.5 | 16.5
14.0 | 18.5
16.0 | 4.0
4.0 | 2.0
2.0 | 3.0
2.5 | 0.0
0.0 | 0.0 | 0.0
0.0 | 0.0
0.0 | 0.0 | 0.0
0.0 | | 2
3
4 | 15.5 | 12.0 | 14.0 | 3.5 | 1.5 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4
5 | 16.0
14.0 | 14.0
12.0 | 15.0
13.0 | 4.0
3.5 | 2.0
2.5 | 3.0
3.0 | 0.0
0.0 | $0.0 \\ 0.0$ | 0.0
0.0 | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | 0.0
0.0 | | 6
7 | 14.0
11.5 | 11.5
9.5 | 13.0
10.5 | 4.5
4.5 | 3.0
1.5 | 3.5
3.0 | 0.0
0.0 | 0.0
0.0 | 0.0
0.0 | 0.0
0.0 | 0.0 | 0.0
0.0 | | 8 | 12.5 | 10.0 | 11.0 | 6.5 | 3.5 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 9 | 12.5 | 10.0 | 11.0 | 7.5 | 5.5 | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 10 | 12.0 | 9.0 | 10.0 | 8.5 | 7.5 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 11 | 13.0 | 9.5 | 11.0 | 7.5 | 5.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12 | 12.0 | 10.5 | 11.5 | 5.0 | 4.0 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 13
14
 11.0
9.0 | 8.0
6.5 | 9.5
8.0 | 4.5
4.5 | 2.5
2.5 | 4.0
4.0 | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | | 15 | 9.5 | 7.5 | 8.5 | 2.5 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | | | | | 16 | 8.0 | 5.5 | 7.0 | 2.0 | 0.5 | 1.5 | 0.0 | 0.0 | 0.0 | | | | | 17 | 7.5 | 5.0 | 6.5 | 1.5 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | | | | 18
19 | 6.0
7.5 | 5.0
5.5 | 5.5
6.5 | 1.0
2.0 | $0.0 \\ 0.0$ | 0.5
1.0 | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | | | | | 20 | 7.0 | 5.5 | 6.5 | 2.5 | 0.5 | 1.5 | 0.0 | 0.0 | 0.0 | | | | | 21 | 6.5 | 3.5 | 5.0 | 2.5 | 1.5 | 2.0 | 0.0 | 0.0 | 0.0 | | | | | 22 | 5.0 | 4.5 | 4.5 | 2.0 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | | | | | 23
24 | 5.5
5.0 | 4.0
4.0 | 4.5
4.5 | 2.5
2.0 | 1.0
0.0 | 1.5
1.0 | 0.0
0.0 | 0.0 | $0.0 \\ 0.0$ | | | | | 25 | 5.5 | 4.5 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 26 | 6.5 | 5.0 | 6.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 27 | 6.0 | 4.5 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 28
29 | 6.0
6.0 | 4.0
4.0 | 5.0
5.0 | 0.5
0.5 | $0.0 \\ 0.0$ | 0.0
0.0 | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | $0.0 \\ 0.0$ | | | | | 30 | 6.0 | 3.5 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 31 | 5.5 | 3.5 | 5.0 | | | | 0.0 | 0.0 | 0.0 | | | | | MONTH | 21.0 | 3.5 | 8.6 | 8.5 | 0.0 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | # 04072150 DUCK CREEK NEAR HOWARD, WI—Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--|--|--|--|--|--|--|--| | | | FEBRUARY | 7 | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 |

 |

 |

 |

 |

 |

 | 5.0
4.0
 | 1.5
2.0
 | 3.0 | 16.0
14.5
15.0
13.5
12.5 | 10.0
10.0
9.0
10.0
9.5 | 13.0
12.5
12.0
12.0
11.0 | | 6
7
8
9 |

 |

 |

 |

 |

 |

 | 5.0
6.5
8.5 | 0.0
0.5
2.5 | 2.5
3.5
6.0 | 10.5
10.0
13.5
13.0
15.0 | 9.0
9.0
9.5
11.0
11.5 | 10.0
9.5
11.0
12.0
13.0 | | 11
12
13
14
15 |

 |

 |

 |

 |

 |

 | 11.0
10.5
11.5
15.0
15.5 | 4.5
5.5
5.0
8.0
11.5 | 8.0
8.0
8.5
11.5
13.5 | 13.5
12.0
14.5
15.0
17.0 | 11.5
10.5
10.0
12.5
12.0 | 13.0
11.0
12.0
13.5
14.5 | | 16
17
18
19
20 |

 |

 |

 |

 |

 |

 | 12.0
5.5
4.5
6.0
9.5 | 5.5
3.0
3.0
4.0
6.0 | 7.0
4.0
3.5
5.0
7.5 | 18.5
17.5
19.0
18.0
19.0 | 12.5
14.0
13.5
15.5
15.0 | 15.5
15.5
16.5
16.5
17.0 | | 21
22
23
24
25 |

 |

 |

 | 0.0
0.5 | 0.0
0.0 | 0.0
0.0 | 10.0
11.5
12.0
13.0
14.0 | 8.5
7.5
7.0
7.0
9.0 | 9.0
9.5
9.0
10.0
11.5 | 17.0
21.5
18.5
19.0
20.0 | 12.5
12.0
13.0
13.5
15.0 | 15.5
14.5
15.5
16.0
17.5 | | 26
27
28
29
30
31 |

 |

 |

 | 0.5
0.0
1.5
2.0
2.5
4.0 | 0.0
0.0
0.0
0.5
0.0 | 0.0
0.0
1.0
1.0
1.0
2.0 | 14.5
16.5
17.5
15.5
14.5 | 8.0
9.0
12.0
11.5
11.0 | 11.0
13.0
15.0
14.0
12.0 | 21.0
21.5
18.5
20.5
18.0
18.5 | 15.0
16.0
15.5
14.5
15.5
14.0 | 18.0
18.5
17.0
17.5
17.0
16.0 | | MONTH | | | | 4.0 | 0.0 | 0.6 | 17.5 | 0.0 | 8.3 | 21.5 | 9.0 | 14.3 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | SE | EPTEMBI | ER | | 1
2
3
4
5 | 18.5
18.0
20.5
20.0
21.5 | JUNE
13.0
15.0
16.0
16.0
16.0 | 15.5
16.5
18.0
17.5
18.5 | 25.5
25.5
28.0
27.5
29.0 | JULY
19.5
20.0
21.0
22.0
22.0 | 22.5
22.5
24.5
24.5
25.0 |

 | AUGUST |

 | 21.0
21.5
21.0
19.0
19.5 | 16.0
16.0
17.5
16.0
14.0 | 18.5
18.5
19.0
17.5
17.0 | | 2
3
4 | 18.0
20.5
20.0 | 13.0
15.0
16.0
16.0 | 16.5
18.0
17.5 | 25.5
28.0
27.5 | 19.5
20.0
21.0
22.0 | 22.5
24.5
24.5 |

 |

 |

 | 21.0
21.5
21.0
19.0 | 16.0
16.0
17.5
16.0 | 18.5
18.5
19.0
17.5 | | 2
3
4
5
6
7
8
9 | 18.0
20.5
20.0
21.5
18.5
18.5
16.5
19.0 | 13.0
15.0
16.0
16.0
16.0
16.5
16.5
14.5 | 16.5
18.0
17.5
18.5
17.5
17.0
16.0
16.5 | 25.5
28.0
27.5
29.0
24.5
27.5
24.0
21.0 | 19.5
20.0
21.0
22.0
22.0
22.0
20.5
21.0
18.5 | 22.5
24.5
24.5
25.0
23.0
23.5
22.0
20.0 |

22.5 |

19.5 |

20.5 | 21.0
21.5
21.0
19.0
19.5
21.5
21.5
22.5
23.0 | 16.0
16.0
17.5
16.0
14.0
15.5
17.5
18.0
18.5 | 18.5
18.5
19.0
17.5
17.0
18.5
19.5
20.5
20.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.0
20.5
20.0
21.5
18.5
16.5
19.0
18.5
16.0
17.5
20.0
21.5 | 13.0
15.0
16.0
16.0
16.5
16.5
15.5
14.5
15.0
14.0
14.5
16.0
17.0 | 16.5
18.0
17.5
18.5
17.5
17.0
16.0
16.5
15.5
15.0
16.0
17.5
19.0 | 25.5
28.0
27.5
29.0
24.5
27.5
24.0
21.0
20.0
24.5
25.5
25.5 | 19.5
20.0
21.0
22.0
22.0
22.5
21.0
18.5
18.0
17.5
19.0
21.0 | 22.5
24.5
24.5
25.0
23.0
23.5
22.0
20.0
19.0
20.5
22.0
23.0 |

22.5
23.0
21.0
21.0
22.0
23.5 |

19.5
19.0
19.5
18.0
19.0 |

20.5
21.0
20.0
20.0
20.0
21.0 | 21.0
21.5
21.0
19.0
19.5
21.5
22.5
23.0
22.0
23.0
21.5
20.5
20.5 | 16.0
16.0
17.5
16.0
14.0
15.5
17.5
18.0
18.5
18.5
19.5
17.5 | 18.5
18.5
19.0
17.5
17.0
18.5
19.5
20.5
20.5
20.0
20.5
20.0
20.0
18.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 18.0
20.5
20.0
21.5
18.5
16.5
19.0
18.5
16.0
17.5
20.0
21.5
22.0
22.0
23.0
22.0 | 13.0
15.0
16.0
16.0
16.0
16.5
16.0
15.5
14.5
15.0
14.0
17.0
17.5
17.0
16.5
19.0
18.5 | 16.5
18.0
17.5
18.5
17.5
17.0
16.0
16.5
15.5
15.0
16.0
17.5
19.0
19.5
20.0
21.5
20.0 | 25.5
28.0
27.5
29.0
24.5
27.5
24.0
21.0
20.0
24.5
25.5
25.5
25.5
26.0
23.5
24.5
25.5 | 19.5
20.0
21.0
22.0
22.0
20.5
21.0
18.5
18.0
17.5
19.0
21.0
21.5
19.0
20.0
17.0 | 22.5
24.5
24.5
25.0
23.0
23.5
22.0
20.0
19.0
19.0
20.5
22.0
23.0
23.0
23.0
22.5
21.5
20.5
21.5 | 22.5
23.0
21.0
22.0
23.5
24.5
24.5
24.5
25.5
26.0 |

19.5
19.0
19.5
18.5
18.0
19.0
20.5
22.0
21.5
21.5 | 20.5
21.0
20.0
20.0
21.0
22.5
23.5
23.0
23.0
23.5 | 21.0
21.5
21.0
19.0
19.5
21.5
21.5
22.5
23.0
22.0
23.0
21.5
20.5
20.0
18.0
18.0
18.0 | 16.0
16.0
17.5
16.0
14.0
15.5
17.5
18.0
18.5
18.5
19.5
17.5
16.0
15.0
16.0 | 18.5
18.5
19.0
17.5
17.0
18.5
19.5
20.5
20.5
20.0
20.0
20.0
18.5
17.0
16.5
17.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |
18.0
20.5
20.0
21.5
18.5
18.5
19.0
18.5
16.0
17.5
20.0
21.5
21.5
22.0
23.0
22.0
22.0
24.0
25.5
26.0
27.0 | 13.0
15.0
16.0
16.0
16.0
16.5
16.0
15.5
14.5
15.0
14.0
14.5
16.0
17.0
17.5
17.0
16.5
19.0
18.5
16.5 | 16.5
18.0
17.5
18.5
17.5
17.0
16.0
16.5
15.5
15.0
16.0
17.5
19.0
19.5
20.0
21.5
20.0
19.0
20.5
21.5
22.5
24.0 | 25.5
28.0
27.5
29.0
24.5
27.5
24.0
21.0
20.0
24.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5 | 19.5
20.0
21.0
22.0
22.0
22.0
20.5
21.0
18.5
18.0
17.5
19.0
21.0
21.5
20.0
17.0
17.5
20.0
20.5
17.5
19.0 | 22.5
24.5
24.5
25.0
23.0
23.5
22.0
20.0
19.0
20.5
22.0
23.0
23.0
23.0
22.5
21.5
20.5
21.5
22.0
20.5
21.5
21.5
21.5
22.0 | 22.5
23.0
21.0
22.0
23.5
24.5
24.5
25.5
26.0
27.0
26.0
24.0
25.0 |

19.5
19.0
19.5
18.0
19.0
20.5
22.0
21.5
22.0
23.0
21.5
20.5
20.5 | 20.5
21.0
20.0
20.0
21.0
22.5
23.5
23.0
23.5
24.0
25.0
25.0
22.5 | 21.0
21.5
21.0
19.0
19.5
21.5
22.5
23.0
22.0
23.0
21.5
20.5
20.0
18.0
18.0
16.0
16.5
15.5
15.5 | 16.0
16.0
17.5
16.0
14.0
15.5
17.5
18.0
18.5
18.5
19.5
17.5
16.0
15.0
16.0
13.5
14.5
13.0
13.0 | 18.5
18.5
19.0
17.5
17.0
18.5
19.5
20.5
20.0
20.5
20.0
20.0
18.5
17.0
16.5
17.0
15.0
15.0
14.0 | # 04072150 DUCK CREEK NEAR HOWARD, WI-Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|---|--|---|---|---|---|---|---|--|--|--| | | | OCTOBER | | N | NOVEMBE | R | Γ | DECEMBE | R | | JANUARY | 7 | | 1
2
3
4
5 | 862
864
868
872
813 | 833
838
841
743
750 | 850
853
855
801
786 | 985
968
973
982
986 | 967
962
965
970
969 | 975
965
968
975
978 | 1,270
1,310
1,460
1,500
1,540 | 1,050
1,150
1,300
1,400
1,460 | 1,230
1,250
1,400
1,470
1,500 | 1,140
1,160
1,130
1,130
1,160 | 908
980
973
963
959 | 1,080
1,140
1,120
1,120
1,110 | | 6
7
8
9
10 | 853
892
890
805
869 | 750
852
785
766
805 | 803
873
826
777
837 | 994
1,020
1,040
1,050
1,050 | 981
990
1,020
1,030
1,020 | 988
1,000
1,020
1,040
1,030 | 1,630
1,590
1,600
1,670
1,670 | 1,450
1,180
1,360
1,360
1,410 | 1,570
1,520
1,530
1,640
1,620 | 1,160
1,110
1,080
1,060
1,240 | 992
1,080
1,030
1,020
978 | 1,130
1,090
1,070
1,040
1,150 | | 11
12
13
14
15 | 950
1,020
1,080
1,100
1,100 | 869
950
1,010
1,050
1,050 | 906
987
1,040
1,060
1,070 | 1,040
1,040
1,050
1,050
1,060 | 1,020
924
989
1,020
1,030 | 1,030
1,030
1,040
1,050
1,050 | 1,600
1,590
1,530
1,390
1,320 | 1,410
1,410
1,390
1,290
1,250 | 1,570
1,560
1,460
1,340
1,290 | 1,390
1,520
1,690
1,800 | 1,110
1,250
1,510
1,650 | 1,310
1,460
1,600
1,740 | | 16
17
18
19
20 | 1,110
1,110
1,080
1,100
1,120 | 1,020
1,010
1,030
1,050
1,090 | 1,070
1,070
1,060
1,070
1,100 | 1,080
1,100
1,120
1,090
1,090 | 1,060
1,070
1,080
1,070
917 | 1,060
1,080
1,100
1,080
1,060 | 1,330
1,350
1,360
1,200
1,250 | 1,280
1,150
1,190
1,010
1,040 | 1,310
1,330
1,260
1,070
1,130 |

 |

 |

 | | 21
22
23
24
25 | 1,120
1,010
932
927
867 | 979
806
806
862
861 | 1,050
947
908
888
864 | 1,040
1,050
1,070
1,090
1,130 | 822
833
915
1,070
1,050 | 1,030
1,020
1,060
1,080
1,100 | 1,630
1,630
1,500
1,380
1,380 | 1,250
1,480
1,380
1,320
1,180 | 1,440
1,560
1,430
1,350
1,340 |

 |

 |

 | | 26
27
28
29
30
31 | 911
999
1,100
1,100
1,020
987 | 867
911
999
993
979
984 | 885
954
1,050
1,070
988
985 | 1,160
1,230
1,260
1,250
1,240 | 1,080
1,160
1,070
1,180
1,190 | 1,140
1,200
1,240
1,230
1,210 | 1,330
1,310
1,300
1,270
1,220
1,160 | 1,040
1,140
1,270
1,100
1,150
856 | 1,300
1,290
1,290
1,240
1,180
1,070 |

 |

 |

 | | MONTH | 1,120 | 743 | 945 | 1,260 | 822 | 1,060 | 1,670 | 056 | 1 270 | 1 900 | 908 | 1,230 | | MONTH | 1,120 | 743 | 943 | 1,200 | 822 | 1,000 | 1,070 | 856 | 1,370 | 1,800 | 900 | 1,230 | | MONTH | | FEBRUARY | | 1,200 | MARCH | 1,000 | 1,070 | APRIL | | | MAY | | | 1
2
3
4
5 | | | |

 | |

 | 741
772
 | | 721
759
 | 878
891
888
889
880 | | 871
879
878
882
872 | | 1
2
3
4 |

 | FEBRUARY

 |

 |

 | MARCH |

 | 741
772
 | APRIL
693
741
 | 721
759
 | 878
891
888
889 | MAY
862
868
868
875 | 871
879
878
882 | | 1
2
3
4
5
6
7
8
9 |

 | FEBRUARY | |

 | MARCH | | 741
772

912
936 | 693 741 887 893 | 721
759

899
918 | 878
891
888
889
880
871
798
787
771 | MAY
862
868
868
875
860
798
773
766
736 | 871
879
878
882
872
838
781
776
755 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

 | FEBRUARY | |

 | MARCH | | 741
772

912
936
927
932
923
909
904 | APRIL 693 741 887 893 897 907 875 833 855 | 721
759

899
918
917
922
904
886
883 | 878
891
888
889
880
871
798
787
771
739
723
683
718
749 | MAY 862 868 868 875 860 798 773 766 736 723 683 666 678 718 | 871
879
878
882
872
838
781
776
755
732
712
672
699
734 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 741
772

912
936
927
932
923
909
904
925
897
779
582
649 | APRIL 693 741 887 893 897 907 875 833 855 868 779 551 525 582 | 721
759

899
918
917
922
904
886
883
899
843
610
550
616 | 878
891
888
889
880
871
798
787
771
739
723
683
718
749
771
796
819
837
863 | 862
868
868
875
860
798
773
766
736
723
683
666
678
718
749
771
793
815
825 | 871
879
878
882
872
838
781
776
755
732
712
672
699
734
763
787
811
828
851 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | | | MARCH | | 741
772

912
936
927
932
923
909
904
925
897
779
582
649
689
735
794
821
833
842
846
852
865
869
871 | APRIL 693 741 887 893 897 907 875 833 855 868 779 551 525 582 649 669 730 794 821 830 832 827 834 840 850 | 721
759

899
918
917
922
904
886
883
899
843
610
550
616
669
708
768
811
826
837
840
843
850
858
865 | 878
891
888
889
880
871
798
787
771
739
723
683
718
749
771
796
819
837
863
880
894
896
891
905
902
909
912
913
923
923 |
862
868
868
868
875
860
798
773
766
736
723
683
666
678
718
749
771
793
815
825
859
865
850
827
807
814
808
833
870
832 | 871
879
878
882
872
838
781
776
755
732
712
672
699
734
763
787
811
828
851
870
880
878
876
884
873
863
855
868
897
877 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | | MARCH | | 741
772

912
936
927
932
923
909
904
925
897
779
582
649
689
735
794
821
833
842
846
852
865
869 | APRIL 693 741 887 893 897 907 875 833 855 868 779 551 525 582 649 669 730 794 821 830 832 827 834 840 | 721
759

899
918
917
922
904
886
883
899
843
610
550
616
669
708
768
811
826
837
840
843
850
858 | 878
891
888
889
880
871
798
787
771
739
723
683
718
749
771
796
819
837
863
880
894
896
891
905
902 | 862
868
868
875
860
798
773
766
736
723
683
666
678
718
749
771
793
815
825
850
850
827
807 | 871
879
878
882
872
838
781
776
755
732
712
672
699
734
763
787
811
828
851
870
880
878
876
884
873 | # 04072150 DUCK CREEK NEAR HOWARD, WI-Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS—CONTINUED WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |-------|-----|------|------|-----|------|------|-----|--------|------|-----|---------|------| | | | JUNE | | | JULY | | | AUGUST | | Sl | EPTEMBE | ER | | 1 | 916 | 845 | 883 | 913 | 868 | 893 | | | | 881 | 825 | 852 | | 2 | 920 | 872 | 903 | 920 | 883 | 905 | | | | 902 | 859 | 874 | | 3 | 951 | 905 | 926 | 923 | 864 | 895 | | | | 923 | 876 | 892 | | 4 | 946 | 883 | 912 | 918 | 830 | 875 | | | | 931 | 876 | 898 | | 5 | 913 | 794 | 855 | 905 | 855 | 883 | | | | 949 | 882 | 909 | | 6 | 879 | 814 | 842 | 918 | 888 | 901 | | | | 939 | 858 | 899 | | 7 | 836 | 729 | 803 | 912 | 805 | 882 | | | | 971 | 792 | 896 | | 8 | 841 | 818 | 829 | 911 | 870 | 896 | | | | 927 | 858 | 880 | | 9 | 845 | 823 | 835 | 931 | 882 | 905 | | | | 915 | 839 | 875 | | 10 | 828 | 619 | 716 | 924 | 799 | 861 | | | | 902 | 808 | 862 | | 11 | 664 | 501 | 563 | 815 | 776 | 793 | | | | 910 | 842 | 873 | | 12 | 607 | 525 | 565 | 912 | 814 | 845 | | | | 893 | 828 | 857 | | 13 | 673 | 607 | 641 | 978 | 912 | 945 | | | | 834 | 566 | 715 | | 14 | 718 | 672 | 694 | 980 | 959 | 970 | | | | 767 | 583 | 636 | | 15 | 739 | 716 | 727 | 977 | 914 | 940 | | | | 776 | 479 | 653 | | 16 | 750 | 663 | 728 | 964 | 910 | 938 | | | | 607 | 491 | 579 | | 17 | 762 | 640 | 723 | 955 | 864 | 921 | | | | 658 | 607 | 627 | | 18 | 763 | 658 | 717 | 948 | 890 | 913 | | | | 701 | 658 | 687 | | 19 | 758 | 668 | 720 | 958 | 902 | 930 | | | | 702 | 686 | 692 | | 20 | 747 | 672 | 714 | 961 | 908 | 932 | | | | 722 | 688 | 712 | | 21 | 794 | 585 | 721 | 961 | 910 | 935 | | | | 745 | 718 | 733 | | 22 | 795 | 673 | 736 | 964 | 917 | 938 | | | | 754 | 715 | 732 | | 23 | 808 | 703 | 760 | 976 | 928 | 942 | | | | 800 | 754 | 775 | | 24 | 783 | 731 | 758 | 984 | 923 | 949 | | | | 805 | 741 | 792 | | 25 | 806 | 741 | 768 | 969 | 928 | 947 | | | | 813 | 780 | 798 | | 26 | 823 | 778 | 800 | | | | | | | 823 | 796 | 811 | | 27 | 849 | 802 | 824 | | | | 870 | 845 | 855 | 831 | 811 | 820 | | 28 | 876 | 749 | 820 | | | | 884 | 701 | 835 | 839 | 816 | 831 | | 29 | 825 | 761 | 782 | | | | 753 | 694 | 730 | 860 | 839 | 853 | | 30 | 888 | 817 | 849 | | | | 784 | 723 | 747 | 875 | 850 | 864 | | 31 | | | | | | | 826 | 780 | 799 | | | | | MONTH | 951 | 501 | 770 | 984 | 776 | 909 | 884 | 694 | 793 | 971 | 479 | 796 | Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. ### 04073365 FOX RIVER AT PRINCETON, WI LOCATION.--Lat 43°51'04", long 89°08'00", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.24, T.16 N., R.11 E., Green Lake County, Hydrologic Unit 04030201, on right bank at upstream side of bridge on State Highway 23 at Princeton, and at mile 105. DRAINAGE AREA.--962 mi². PERIOD OF RECORD.--July 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is 754.57 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Occasional regulation by dams upstream. Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | ТО ЅЕРТЕМ | IBER 2003 | | | |---|--|--|--------------------------------------|--|----------------------------|--|------------------------------------|--|---------------------------------|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 529 | 693 | e520 | e480 | e360 | e410 | 791 | 625 | 882 | 491 | 402 | 309 | | 2 | 503 | 692 | e510 | e450 | e360 | e410 | 721 | 616 | 854 | 480 | 406 | 309 | | 3 | 498 | 675 | e500 | e440 | e350 | e420 | 672 | 631 | 802 | 476 | 398 | 304 | | 4 | 583 | 669 | e500 | e470 | e340 | e430 | 679 | 637 | 754 | 470 | 409 | 284 | | 5 | 621 | 653 | e500 | e500 | e340 | e420 | 670 | 629 | 733 | 472 | 420 | 298 | | 6 | 651 | 646 | e520 | e530 | e340 | e420 | 761 | 675 | 719 | 475 | 416 | 304 | | 7 | 630 | 663 | e540 | e540 | e350 | e450 | 664 | 698 | 715 | 514 | 413 | 295 | | 8 | 628 | 664 | e540 | e550 | e350 | e470 | 669 | 737 | 714 | 521 | 405 | 291 | | 9 | 616 | 650 | e540 | e500 | e350 | e480 | 747 | 818 | 719 | 513 | 414 | 290 | | 10 | 625 | 632 | e540 | e470 | e360 | e480 | 763 | 877 | 764 | 542 | 412 | 290 | | 11 | 645 | 612 | e540 | e450 | e370 | e480 | 750 | 1,050 | 777 | 564 | 393 | 295 | | 12 | 646 | 631 | e550 | e430 | e370 | e500 | 719 | 1,010 | 791 | 574 | 390 | 300 | | 13 | 657 | 626 | e570 | e400 | e370 | e540 | 713 | 978 | 813 | 576 | 398 | 324 | | 14 | 658 | 616 | e580 | e390 | e380 | e560 | 733 | 1,070 | 809 | 573 | 398 | 371 | | 15 | 615 | 591 | e550 | e370 | e380 | e580 | 715 | 1,150 | 764 | 570 | 394 | 409 | | 16 | 600 | 586 | e530 | e350 | e370 | e610 | 581 | 1,200 | 728 | 586 | 380 | 420 | | 17 | 738 | 593 | e530 | e350 | e370 | e640 | 593 | 1,210 | 707 | 587 | 367 | 442 | | 18 | 890 | 597 | e540 | e340 | e370 | 670 | 671 | 1,220 | 686 | 574 | 363 | 442 | | 19 | 853 | 601 | e540 | e340 | e380 | 663 | 689 | 1,220 | 685 | 581 | 361 | 432 | | 20 | 817 | 597 | e540 | e330 | e390 | 682 | 757 | 1,210 | 662 | 568 | 353 | 429 | | 21 | 787 | 566 | e530 | e320 | e390 | 709 | 735 | 1,190 | 634 | 529 | 339 | 427 | | 22 | 742 | 567 | e530 | e310 | e390 | 722 | 716 | 1,180 | 599 | 499 | 309 | 426 | | 23 | 720 | 594 | e510 | e300 | e390 | 749 | 734 | 1,150 | 565 | 496 | 309 | 433 | | 24 | 717 | 572 | e500 | e320 | e400 | 751 | 730 | 1,110 | 546 | 497 | 321 | 423 | | 25 | 724 | 538 | e480 | e320 | e400 | 731 | 697 | 1,070 | 536 | 504 | 309 | 409 | | 26
27
28
29
30
31 | 727
718
712
681
678
685 | e520
e500
e490
e490
e450 | e490
e500
e510
e490
e500 | e320
e330
e330
e340
e340
e350 | e400
e400
e400
 | 729
726
739
759
793
804 | 683
706
670
640
618 | 1,020
979
933
894
900
855 | 543
523
509
502
505 | 486
442
425
422
421
403 | 326
323
333
316
308
313 | 416
420
387
394
391 | | TOTAL | 20,894 | 17,974 | 16,220 | 12,260 | 10,420 | 18,527 | 20,987 | 29,542 | 20,540 | 15,831 | 11,398 | 10,964 | | MEAN | 674 | 599 | 523 | 395 | 372 | 598 | 700 | 953 | 685 | 511 | 368 | 365 | | MAX | 890 | 693 | 580 | 550 | 400 | 804 | 791 | 1,220 | 882 | 587 | 420 | 442 | | MIN | 498 | 450 | 480 | 300 | 340 | 410 | 581 | 616 | 502 | 403 | 308 | 284 | | CFSM | 0.70 | 0.62 | 0.54 | 0.41 | 0.39 | 0.62 | 0.73 | 0.99 | 0.71 | 0.53 | 0.38 | 0.38 | | IN. | 0.81 | 0.70 | 0.63 | 0.47 | 0.40 | 0.72 | 0.81 | 1.14 | 0.79 | 0.61 | 0.44 | 0.42 | | STATIST | TICS OF MC | NTHLY MI | EAN DATA | FOR WATE | ER YEARS | 2001 - 2003. | BY WATE | R YEAR (W | YY) | | | | | MEAN | 733 | 643 | 697 | 529 | 563 | 863 | 946 | 1,097 | 861 | 714 | 457 | 544 | | MAX | 791 | 687 | 870 | 662 | 754 | 1,129 | 1,192 | 1,241 | 1,038 | 1,031 | 581 | 793 | | (WY) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2001) | (2001) | (2001) | | MIN | 674 | 599 | 523 | 395 | 372 | 598 | 700 | 953 | 685 | 511 | 368 | 365 | | (WY) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | | SUMMA | RY STATIS | TICS | 1 | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 200 | 1 - 2003 | | ANNUA
HIGHES
LOWES | L TOTAL
L MEAN
T ANNUAL
T ANNUAL
T DAILY M | MEAN | | 282,977
775
1,530 | | 3,4 | 205,55
56 | 53 | y 18,19 | 8 | 93
22
63
00 Ju | 2002
2003
al 1, 2001 | | LOWEST
ANNUAL
MAXIMI
MAXIMI
INSTANI
ANNUAL
ANNUAL
10 PERC
50 PERC | T DAILY MI
L SEVEN-D
UM PEAK F
UM PEAK S | EAN AY MINIM LOW TAGE LOW FLOW (CFSM) (INCHES) EDS EDS | | 362
389 | Aug
Aug
0.81
0.94 | 19 |
78
29
1,24
27
78
53 | 34 Sep
33 Sep
40 May
6.43 May
72 Sep
7.95
31 | o 4
o 4
y 19 | 2
2
1,5
2
1,1
6 | 84 Se
93 Se
40 Ma
7.32 Ma
72 Se
0.72
9.78 | p 4, 2003
p 4, 2003
p 4, 2003
y 4, 2002
y 4, 2002
p 4, 2003 | ⁽e) Estimated due to ice effect or missing record # 04073462 WHITE CREEK AT SPRING GROVE ROAD NEAR GREEN LAKE, WI LOCATION.--Lat 43°48'58", long 88°55'42", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.34, T.16 N., R.13 E., Green Lake County, Hydrologic Unit 04030201, at culvert on Spring Grove Road at Forest Glen Beach, 2.6 mi southeast of Green Lake. DRAINAGE AREA.--3.05 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--December 1981 to June 1988, October 1996 to current year. Prior to October 2000, published as "at Forest Glen Beach". GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 800 ft, from topographic map. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CU | JBIC FEET P | | D, WATER '
LY MEAN ' | | OBER 2002 | TO SEPTEM | MBER 2003 | | | |---|---|---|--|---|---|---|--|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.39
0.47
0.41
0.93
0.59 | 0.39
0.38
0.38
0.35
0.34 | 0.21
0.21
0.18
e0.19
e0.19 | e0.10
e0.08
e0.07
e0.07
e0.07 | e0.02
e0.03
e0.04
e0.02
e0.01 | e0.01
e0.01
e0.01
e0.01
e0.01 | 0.21
0.20
0.20
0.20
0.20 | 0.29
0.21
0.20
0.20
0.39 | 2.7
2.7
2.6
2.5
2.4 | 1.6
1.5
1.5
1.5
1.4 | 1.1
0.87
1.1
1.5
1.3 | 0.32
0.29
0.29
0.28
0.27 | | 6
7
8
9
10 | 0.59
0.56
0.50
0.43
0.46 | 0.34
0.32
0.30
0.30
0.30 | e0.18
e0.18
e0.19
e0.18
e0.19 | e0.08
e0.10
e0.10
e0.10
e0.08 | e0.01
e0.01
e0.01
e0.01
e0.01 | e0.01
e0.01
e0.01
e0.01 | 0.19
0.18
0.18
0.18
0.19 | 0.26
0.35
0.28
0.57
1.4 | 2.4
2.4
2.7
2.7
3.1 | 1.9
1.9
1.7
1.5
2.0 | 1.1
1.0
0.93
0.86
0.83 | 0.26
0.26
0.26
0.25
0.25 | | 11
12
13
14
15 | 0.42
0.43
0.45
0.45
0.41 | 0.31
0.30
0.30
0.26
0.26 | 0.23
0.19
0.18
e0.16
e0.14 | e0.05
e0.03
e0.01
e0.01
e0.01 | e0.01
e0.01
e0.01
e0.01
e0.01 | e0.02
e0.03
e0.04
e2.8
7.9 | 0.20
0.19
0.19
0.20
0.21 | 4.3
4.1
4.3
4.3
4.2 | 2.6
2.4
2.3
2.2
2.2 | 1.6
1.5
1.3
1.3 | 0.79
0.74
0.68
0.66
0.61 | 0.25
0.28
0.56
0.88
0.49 | | 16
17
18
19
20 | 0.43
0.45
0.56
0.50
0.44 | 0.28
0.27
0.27
0.28
0.25 | e0.13
e0.13
e0.13
e0.13 | e0.01
e0.01
e0.01
e0.01
e0.01 | e0.01
e0.02
e0.04
e0.06
e0.09 | 3.4
1.6
0.54
0.29
0.27 | 0.27
0.23
0.22
0.26
0.26 | 4.0
4.0
3.9
3.9
3.6 | 2.1
2.1
2.2
2.1
2.0 | 1.2
1.2
1.1
1.1 | 0.60
0.55
0.53
0.51
0.49 | 0.41
0.37
0.35
0.34
0.32 | | 21
22
23
24
25 | 0.49
0.45
0.45
0.46
0.51 | 0.24
0.24
0.24
0.24
0.23 | e0.11
e0.11
e0.10
e0.09
e0.09 | e0.01
e0.01
e0.01
e0.01
e0.01 | e0.10
e0.08
e0.06
e0.04
e0.03 | 0.26
0.28
0.24
0.22
0.20 | 0.25
0.23
0.22
0.22
0.21 | 3.5
3.4
3.2
3.2
3.0 | 1.9
1.9
1.8
1.9
2.0 | 1.1
0.95
0.94
0.94
0.92 | 0.48
0.45
0.43
0.40
0.45 | 0.29
0.32
0.29
0.28
0.27 | | 26
27
28
29
30
31 | 0.44
0.41
0.41
0.42
0.44
0.45 | 0.22
0.21
0.21
0.22
0.21 | e0.08
e0.07
e0.07
e0.07
e0.08
e0.10 | e0.01
e0.01
e0.01
e0.01
e0.01 | e0.02
e0.01
e0.01 | 0.17
0.20
0.40
0.23
0.21
0.21 | 0.21
0.20
0.19
0.19
0.28 | 2.9
2.8
3.2
3.0
3.1
3.0 | 1.9
1.7
2.0
1.7
1.6 | 0.88
0.85
0.83
0.78
0.77
1.4 | 0.43
0.40
0.38
0.36
0.33
0.33 | 0.28
0.30
0.30
0.29
0.28 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 14.80
0.48
0.93
0.39
0.16
0.18 | 8.44
0.28
0.39
0.21
0.09
0.10 | 4.42
0.14
0.23
0.07
0.05
0.05 | 1.12
0.036
0.10
0.01
0.01
0.01 | 0.79
0.028
0.10
0.01
0.01
0.01 | 19.61
0.63
7.9
0.01
0.21
0.24 | 6.36
0.21
0.28
0.18
0.07
0.08 | 79.05
2.55
4.3
0.20
0.84
0.96 | 66.8
2.23
3.1
1.6
0.73
0.81 | 39.66
1.28
2.0
0.77
0.42
0.48 | 21.19
0.68
1.5
0.33
0.22
0.26 | 9.88
0.33
0.88
0.25
0.11
0.12 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 2.69
12.9
(1987)
0.31
(1999) | 2.84
12.7
(1986)
0.28
(2003) | 2.38
7.47
(1986)
0.14
(2003) | TA FOR WAT
1.63
5.28
(1983)
0.036
(2003) | 3.05
9.29
(1984)
0.028
(2003) | 1982 - 2003
6.44
16.1
(1986)
0.63
(2003) | 6.97
15.7
(1998)
0.21
(2003) | R YEAR (W
4.76
10.9
(2001)
1.96
(2000) | 4.46
12.3
(2001)
1.29
(1988) | 3.19
5.69
(2001)
1.28
(2003) | 2.28
4.39
(1986)
0.68
(2003) | 2.90
18.5
(1986)
0.33
(2003) | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PERCI 50 PERCI | | . MEAN MEAN MEAN EAN EAN DAY MININ FLOW STAGE (CFSM) (INCHES) EDS EDS | 1UM | 2
(a)
(a) | 0.36
1.92
2 Mar | · 9
27-29 | (a
(a |)0.01 (b)Ja
)0.01 (c)Ja
23 Ma | ır 15
n 13-31 | 3
7
6
89
(a)0
(a)0
781
10
16
9 | 0.01 (b)Jan 1
0.01 (c)Ja
Se | 1986
2003
ep 22, 1986 | ⁽a) Ice affected ⁽b) Also occurred Feb. 5-16 and Feb. 27 to Mar. 10 ⁽c) Also occurred additional days ⁽e) Estimated due to ice effect or missing record #### 04073462 WHITE CREEK AT FOREST GLEN BEACH NEAR GREEN LAKE, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- October 1981 to June 1988, October 1996 to current year. #### PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: October 1981 to June 1988, October 1996 to current year. TOTAL AMMONIA-NITROGEN DISCHARGE: October 1981 to June 1988. TOTAL-PHOSPHORUS DISCHARGE: October 1981 to June 1988, October 1996 to current year. INSTRUMENTATION.--Automatic pumping sampler since December 1981. REMARKS .-- Records are fair. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 51,300 mg/L, Apr. 3, 1982; minimum observed, 1 mg/L, Sept. 26, 1981, Nov. 28, 1984, Sept. 5, 1985, Jan. 14, 1987, Aug. 12. 1998, Sept. 2, 1998, and May 10, 2003. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 2,420 tons, Apr. 3, 1982; minimum daily, 0.00 ton, on many days during 1982, 1987, 1988, 1997, 1998, 1999, 2000, and 2003 water years. TOTAL AMMONIA-NITROGEN CONCENTRATIONS: Maximum observed, 8.4 mg/L, Apr. 3, 1982; minimum observed, <0.01 mg/L, many days. TOTAL AMMONIA-NITROGEN CONCENTRATIONS. Maximum daily, 490 lb, Apr. 3, 1982; minimum daily, 0.01 lb, Nov. 27, Dec. 2-4, 1987. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 7.6 mg/L, May 31, 1987; minimum observed, <0.01 mg/L, may days. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 1,130 lb, Sept. 10, 1986; minimum daily, 0.00 lb, on many days during 2003. EXTREMES FOR CURRENT YEAR.--SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 530 mg/L, May 10; minimum observed, 1 mg/L, May 10. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 4.8 tons, Mar. 15; minimum daily, 0.00 ton, on many days. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 2.50 mg/L, Mar. 15; minimum observed, 0.034 mg/L, May 8. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 83 lb, Mar. 15; minimum daily, 0.00 lb, on many days. #### SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--| | 1 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.07 | 0.05 | 0.02 | | 2 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.07 | 0.03 | 0.01 | | 3 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.08 | 0.05 | 0.01 | | 4 | 0.11 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.08 | 0.07 | 0.01 | | 5 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.07 | 0.06 | 0.01 | | 6 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.17 | 0.05
| 0.01 | | 7 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.16 | 0.05 | 0.01 | | 8 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.10 | 0.05 | 0.01 | | 9 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.09 | 0.04 | 0.01 | | 10 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 1.3 | 0.24 | 0.18 | 0.04 | 0.01 | | 11 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 1.2 | 0.17 | 0.12 | 0.04 | 0.01 | | 12 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.14 | 0.08 | 0.04 | 0.02 | | 13 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.13 | 0.07 | 0.03 | 0.04 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 | 0.00 | 0.13 | 0.13 | 0.09 | 0.03 | 0.05 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.8 | 0.00 | 0.12 | 0.12 | 0.08 | 0.03 | 0.02 | | 16
17
18
19
20 | 0.00
0.00
0.03
0.03
0.03 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.35
0.07
0.01
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.12
0.12
0.11
0.11
0.10 | 0.11
0.11
0.14
0.15
0.10 | 0.05
0.04
0.04
0.03
0.03 | 0.03
0.03
0.03
0.02
0.02 | 0.02
0.02
0.02
0.02
0.02
0.01 | | 21 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.10 | 0.03 | 0.02 | 0.01 | | 22 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.09 | 0.09 | 0.03 | 0.02 | 0.01 | | 23 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.09 | 0.09 | 0.03 | 0.02 | 0.01 | | 24 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.09 | 0.11 | 0.03 | 0.02 | 0.01 | | 25 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.13 | 0.02 | 0.02 | 0.01 | | 26
27
28
29
30
31 | 0.02
0.02
0.02
0.02
0.02
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00

 | 0.00
0.00
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.08
0.11
0.23
0.20
0.26
0.22 | 0.11
0.09
0.11
0.09
0.08 | 0.02
0.02
0.02
0.02
0.02
0.02 | 0.02
0.02
0.02
0.02
0.02
0.02 | 0.01
0.01
0.01
0.01
0.00 | | TOTAL | 0.51 | 0.14 | 0.04 | 0.00 | 0.00 | 5.71 | 0.06 | 5.19 | 4.02 | 2.06 | 1.01 | 0.43 | WTR YR 2003 TOTAL 19.17 81 # STREAMS TRIBUTARY TO LAKE MICHIGAN # 04073462 WHITE CREEK AT FOREST GLEN BEACH NEAR GREEN LAKE, WI—Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|---------------------------------|--------------------------------------|--|--|--------------------------------------| | 1 | 0.27 | 0.20 | 0.07 | 0.04 | 0.00 | 0.00 | 0.08 | 0.13 | 1.3 | 0.69 | 0.36 | 0.11 | | 2 | 0.33 | 0.19 | 0.07 | 0.03 | 0.01 | 0.00 | 0.08 | 0.08 | 1.2 | 0.65 | 0.26 | 0.10 | | 3 | 0.30 | 0.19 | 0.07 | 0.03 | 0.02 | 0.00 | 0.08 | 0.07 | 1.2 | 0.64 | 0.38 | 0.10 | | 4 | 1.0 | 0.17 | 0.07 | 0.03 | 0.00 | 0.00 | 0.08 | 0.05 | 1.1 | 0.65 | 0.48 | 0.10 | | 5 | 0.43 | 0.16 | 0.07 | 0.03 | 0.00 | 0.00 | 0.08 | 0.09 | 1.1 | 0.61 | 0.40 | 0.09 | | 6 | 0.43 | 0.16 | 0.07 | 0.03 | 0.00 | 0.00 | 0.08 | 0.06 | 1.1 | 0.87 | 0.36 | 0.10 | | 7 | 0.40 | 0.15 | 0.08 | 0.04 | 0.00 | 0.00 | 0.07 | 0.07 | 1.1 | 0.85 | 0.33 | 0.10 | | 8 | 0.36 | 0.13 | 0.09 | 0.04 | 0.00 | 0.00 | 0.08 | 0.05 | 1.3 | 0.72 | 0.30 | 0.10 | | 9 | 0.31 | 0.13 | 0.09 | 0.04 | 0.00 | 0.00 | 0.08 | 0.21 | 1.2 | 0.66 | 0.28 | 0.09 | | 10 | 0.33 | 0.13 | 0.10 | 0.03 | 0.00 | 0.00 | 0.08 | 3.7 | 1.5 | 0.89 | 0.27 | 0.09 | | 11 | 0.30 | 0.13 | 0.12 | 0.02 | 0.00 | 0.01 | 0.09 | 6.6 | 1.2 | 0.72 | 0.25 | 0.10 | | 12 | 0.31 | 0.12 | 0.10 | 0.01 | 0.00 | 0.03 | 0.08 | 2.5 | 1.1 | 0.63 | 0.24 | 0.12 | | 13 | 0.32 | 0.12 | 0.11 | 0.00 | 0.00 | 0.07 | 0.08 | 2.0 | 1.1 | 0.58 | 0.22 | 0.24 | | 14 | 0.32 | 0.10 | 0.10 | 0.00 | 0.00 | 17 | 0.08 | 1.9 | 1.0 | 0.56 | 0.22 | 0.38 | | 15 | 0.29 | 0.10 | 0.09 | 0.00 | 0.00 | 83 | 0.09 | 1.9 | 0.98 | 0.62 | 0.20 | 0.20 | | 16
17
18
19
20 | 0.31
0.31
0.38
0.33
0.29 | 0.10
0.10
0.10
0.10
0.09 | 0.09
0.09
0.10
0.10
0.09 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.02
0.02
0.03 | 16
5.2
0.97
0.35
0.23 | 0.11
0.08
0.07
0.07
0.07 | 1.8
1.8
1.7
1.7 | 0.93
0.92
0.98
0.93
0.86 | 0.51
0.47
0.42
0.40
0.39 | 0.20
0.18
0.18
0.17
0.16 | 0.16
0.14
0.14
0.13
0.12 | | 21
22
23
24
25 | 0.31
0.28
0.28
0.28
0.30 | 0.08
0.08
0.08
0.08
0.07 | 0.07
0.07
0.06
0.05
0.05 | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.03
0.02
0.02
0.01 | 0.16
0.14
0.11
0.10
0.08 | 0.06
0.05
0.05
0.05
0.05 | 1.6
1.5
1.4
1.4 | 0.84
0.82
0.79
0.83
0.89 | 0.38
0.33
0.32
0.31
0.29 | 0.16
0.15
0.14
0.13
0.15 | 0.11
0.12
0.11
0.11
0.11 | | 26
27
28
29
30
31 | 0.26
0.24
0.23
0.23
0.24
0.24 | 0.07
0.06
0.06
0.07
0.06 | 0.04
0.04
0.03
0.03
0.04
0.04 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.07
0.12
0.43
0.12
0.08
0.08 | 0.05
0.05
0.05
0.04
0.11 | 1.3
1.3
1.5
1.4
1.5 | 0.82
0.76
0.86
0.76
0.70 | 0.27
0.26
0.25
0.22
0.21
0.52 | 0.14
0.13
0.13
0.12
0.11
0.11 | 0.11
0.12
0.12
0.11
0.10 | | TOTAL | 10.21 | 3.38 | 2.29 | 0.37 | 0.22 | 124.35 | 2.17 | 43.71 | 30.17 | 15.89 | 6.91 | 3.83 | | MEAN | 0.33 | 0.11 | 0.07 | 0.01 | 0.00 | 4.0 | 0.07 | 1.4 | 1.0 | 0.51 | 0.22 | 0.13 | | MAX | 1.0 | 0.20 | 0.12 | 0.04 | 0.04 | 83 | 0.11 | 6.6 | 1.5 | 0.89 | 0.48 | 0.38 | | MIN | 0.23 | 0.06 | 0.03 | 0.00 | 0.00 | 0.00 | 0.04 | 0.05 | 0.70 | 0.21 | 0.11 | 0.09 | WTR YR 2003 TOTAL 243.50 # 04073462 WHITE CREEK AT FOREST GLEN BEACH NEAR GREEN LAKE, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Discharge,
cfs
(00060) | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Phosphorus, water, unfltrd mg/L (00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |----------------|------|------------------------------|--------------------------------------|-------------------------------|---|--| | OCT 2002 | | | | | | | | 04 | 0955 | | 1.5 | 50 | 0.258 | 89 | | 16 | 1240 | | 0.45 | 50 | 0.132 | 7 | | NOV | | | | | | | | 29 | 1552 | | 0.22 | 50 | 0.054 | 62 | | DEC | 1540 | 0.12 | | 50 | 0.141 | 10 | | 18
JAN 2003 | 1540 | 0.13 | | 50 | 0.141 | 18 | | 03 | 1317 | 0.07 | | 50 | 0.069 | 14 | | MAR | 1317 | 0.07 | | 30 | 0.009 | 14 | | 14 | 1030 | 2.8 | | 50 | 0.553 | 13 | | 14 | 1520 | 2.8 | | 50 | 1.70 | 92 | | 14 | 2005 | 2.8 | | 50 | 2.12 | 187 | | 15 | 0110 | | 5.7 | 50 | 1.64 | 74 | | 15 | 1245 | | 11 | 50 | 1.91 | 328 | | 15 | 1400 | | 19 | 50 | 2.50 | 491 | | 15 | 1930 | | 10 | 50 | 1.74 | 108 | | 16 | 0025 | | 4.2 | 50 | 1.32 | 53 | | 16 | 1225 | | 3.7 | 50 | 0.770 | 39 | | 17 | 0030 | | 2.2 | 50 | 0.760 | 22 | | 18 | 1322 | | 0.42 | 50 | 0.300 | 6 | | 28 | 1015 | | 0.88 | 50 | 0.240 | 14 | | APR | 0005 | | | | | | | 16 | 0925 | | 0.34 | 50 | 0.080 | 6 | | 19 | 1855 | | 0.34 | 50 | 0.047 | 3 | | 22
30 | 1400 | | 0.24 | 10
50 | 0.042 | 30 | | MAY | 2130 | | 0.38 | 30 | 0.090 | 11 | | 05 | 0810 | | 0.50 | 50 | 0.045 | 4 | | 08 | 2255 | | 0.30 | 50 | 0.043 | 4 | | 09 | 0545 | | 1.4 | 50 | 0.034 | 12 | | 09 | 0730 | | 0.99 | 50 | 0.096 | 2 | | 09 | 1525 | | 0.41 | 50 | 0.053 | 3 | | 10 | 1525 | | 0.34 | 50 | 0.042 | 1 | | 10 | 2125 | | 2.6 | 50 | 0.425 | 274 | | 10 | 2150 | | 10 | 50 | 0.654 | 530 | | 11 | 0240 | | 4.2 | 50 | 0.546 | 241 | | 11 | 1440 | | 3.9 | 50 | 0.143 | 23 | | 13 | 1700 | | 4.2 | 50 | 0.082 | 11 | | 28 | 1530 | | 4.9 | 50 | 0.093 | 23 | | JUL | | | | 4.0 | 0.000 | 20 | | 10 | 1115 | | 2.2 | 10 | 0.092 | 38 | | 31 | 1135 | | 0.79 | 10 | 0.050 | 8 | | 31 | 1136 | | 0.79 | 50 | 0.070 | 20 | | SEP
10 | 1100 | | 0.25 | 10 | 0.071 | 18 | | 10 | 1100 | | 0.23 | 10 | 0.071 | 10 | # 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI $LOCATION.--Lat~43^{\circ}49^{\circ}28^{"}, long~88^{\circ}55^{\circ}36^{"}, in~NE~\frac{1}{4}~SE~\frac{1}{4}~SE~\frac{1}{4}~sec.27, T.16~N., R.13~E., Green~Lake~County, Hydrologic~Unit~04030201, on left bank at downstream side of County Trunk Highway A, 2.3 mi southeast of Green~Lake.$ DRAINAGE AREA.--53.5 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--February 1987 to current year. GAGE.--Nortek Easy-Q doppler velocity meter installed Aug. 16, 2000. Acoustical Velocity Meter (AVM) installed on June 6, 1990 and used to Aug. 3, 2000. Datum of gage is 790.00 ft above NGVD of 1929 (from Wisconsin Department of Natural Resources benchmark). REMARKS.--Records fair (see page 11). Flows fluctuate due to seiche from Green Lake. Gage-height telemeter at station. | | | DISCH | ARGE, CUI | BIC FEET PI | |), WATER Y
LY MEAN V | | OBER 2002 7 | ГО ЅЕРТЕМ | MBER 2003 | | | |---|--
---|--|--|---|--|---|--|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 18
24
17
23
60 | 6.8
23
12
18
11 | 4.9
12
8.6
4.0
-1.7 | 7.4
6.8
8.2
8.5
4.8 | 4.6
5.2
6.5
2.3
3.2 | 5.0
4.2
4.0
6.0
4.1 | 28
25
16
11
14 | 44
24
26
19
44 | 55
40
34
31
26 | 11
11
13
6.5
7.2 | 39
10
26
104
47 | 5.6
4.1
6.6
6.5
3.0 | | 6
7
8
9
10 | 30
39
28
23
23 | 15
15
19
15
16 | 3.0
0.86
4.0
-0.07
2.2 | 3.5
1.9
0.41
3.5
-7.1 | 3.2
5.3
2.9
3.0
3.4 | 5.8
5.0
7.9
2.8
2.6 | 26
15
15
22
23 | 43
48
48
67
63 | 23
28
23
25
48 | 9.1
13
16
15
18 | 21
25
18
16
16 | 6.4
6.0
6.2
6.8
7.2 | | 11
12
13
14
15 | 22
18
18
18
23 | 11
13
13
21
14 | 4.3
5.7
6.3
5.1
9.1 | 6.6
4.9
7.0
2.8
3.3 | 3.8
4.0
2.9
4.4
2.9 | 3.2
6.0
4.7
6.7
28 | 26
25
20
24
38 | 193
168
135
120
93 | 47
37
28
29
26 | 25
14
13
11
8.5 | 17
12
18
12
10 | 6.6
2.1
16
49
38 | | 16
17
18
19
20 | 14
15
8.9
21
20 | 16
13
9.3
17
16 | 13
15
12
21
12 | 4.5
3.3
1.9
4.3
3.8 | 2.2
3.4
4.4
4.0
3.4 | 41
47
44
30
26 | 28
20
25
17
31 | 75
60
52
42
49 | 22
20
16
24
16 | 10
16
7.1
9.2
8.7 | 14
19
13
10
3.1 | 17
17
8.3
1.8 | | 21
22
23
24
25 | 16
26
19
23
22 | 15
12
9.8
14
8.6 | 8.9
0.40
9.5
9.6
-1.4 | 1.7
0.64
0.54
3.0
0.48 | 6.1
9.0
6.1
5.3
4.8 | 21
32
26
22
21 | 40
32
27
24
27 | 45
39
35
35
33 | 15
12
12
7.3
5.4 | 20
8.6
14
7.5
6.9 | 13
6.7
9.8
5.9
1.9 | 9.8
-0.47
10
-3.2
13 | | 26
27
28
29
30
31 | 20
23
24
22
17
9.3 | 11
6.1
10
8.8
7.6 | 3.4
2.0
6.0
8.8
0.94
5.2 | 0.25
1.9
1.9
1.9
2.3
2.2 | 3.9
4.2
5.4
 | 20
25
39
47
33
22 | 16
21
21
20
20 | 29
27
27
36
43
103 | 8.4
21
21
16
12 | 8.4
12
12
5.9
9.7
22 | 9.2
11
2.1
12
2.8
6.2 | 3.4
4.4
7.2
0.96
3.1 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 684.2
22.1
60
8.9
0.41
0.48 | 397.0
13.2
23
6.1
0.25
0.28 | 194.63
6.28
21
-1.7
0.12
0.14 | 97.12
3.13
8.5
-7.1
0.06
0.07 | 119.8
4.28
9.0
2.2
0.08
0.08 | 592.0
19.1
47
2.6
0.36
0.41 | 697
23.2
40
11
0.43
0.48 | 1,865
60.2
193
19
1.12
1.30 | 728.1
24.3
55
5.4
0.45
0.51 | 369.3
11.9
25
5.9
0.22
0.26 | 530.7
17.1
104
1.9
0.32
0.37 | 273.39
9.11
49
-3.2
0.17
0.19 | | STATIST | TICS OF MC | ONTHLY M | EAN DATA | A FOR WAT | ER YEARS | 1987 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 21.4
64.1
(1996)
7.00
(1989) | 25.8
71.3
(1996)
12.2
(2000) | 20.6
47.5
(1993)
5.73
(1990) | 15.6
46.1
(1996)
3.13
(2003) | 25.2
60.7
(1996)
4.28
(2003) | 63.0
107
(1997)
19.1
(2003) | 65.3
185
(1993)
23.2
(2003) | 45.1
112
(2001)
16.1
(1988) | 47.2
156
(1993)
4.57
(1988) | 34.2
190
(1993)
3.78
(1988) | 24.3
67.5
(1990)
5.03
(1988) | 21.2
57.4
(2000)
9.01
(1988) | | SUMMAI | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 19 | 87 - 2003 | | LOWEST
HIGHEST
LOWEST
ANNUAL
ANNUAL
ANNUAL
10 PERCI
50 PERCI | L MEAN | MEAN EAN EAN AY MINIM (CFSM) (INCHES) EDS EDS | UM | 253
-1
1
(9
79
23 | 3 Jun
1.7 Dec
1.8 Dec
0.67
0.09 | 5 | 19 | | 11
10
21 | - | -7.1 J | 1993
2003
ay 31, 1989
an 10, 2003
an 21, 2003 | # 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- February 1987 to current year. PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: February 1987 to current year. TOTAL-PHOSPHORUS DISCHARGE: February 1987 to current year. INSTRUMENTATION.--Automatic pumping sampler from March 1997; manual samples February 1987 to February 1997. REMARKS.--Records are fair to poor. Phosphorus analyses by the Wisconsin State Laboratory of Hygiene. Problems with automatic sampler intake required rejection of many analyses. Samples are point samples unless otherwise indicated. COOPERATION .-- Observer furnished by the Green Lake Sanitary District. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 1,030 mg/L, May 30, 1989; minimum observed, 0 mg/L, Mar. 25, 1988. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 456 tons, May 31, 1989; minimum daily, -3.1 ton, Apr. 5, 2000. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 1.45 mg/L, May 30, 1989; minimum observed, <0.02 mg/L, Oct. 10, 1991. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 3,230 lb, May 31, 1989; minimum daily, -13 lb, Apr. 5, 2000. #### EXTREMES FOR CURRENT YEAR .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 701 mg/L, May 11; minimum observed, 16 mg/L, Feb. 5. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 271 tons, May 11; minimum daily, -0.54 tons, Jan. 10. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.236 mg/L, July 31; minimum observed, 0.060 mg/L, Dec. 18. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 198 lb, May 11; minimum daily, -2.5 lb, Jan. 10. #### SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---|---|--|--|--------------------------------------|--|--|--------------------------------------|----------------------------------|--|---|--------------------------------------| | 1 | 0.95 | 0.49 | e0.25 | e0.40 | 0.22 | e0.26 | e2.3 | e4.5 | 5.7 | 0.89 | 3.6 | 0.48 | | 2 | 1.3 | 1.7 | e0.71 | e0.37 | 0.24 | e0.21 | e2.0 | e1.9 | 4.0 | 0.85 | 0.96 | 0.36 | | 3 | 0.90 | 1.0 | e0.48 | e0.46 | 0.29 | e0.20 | e1.1 | e2.1 | 3.3 | 1.0 | 2.4 | 0.57 | | 4 | 1.6 | 1.6 | e0.20 | e0.48 | 0.10 | e0.32 | e0.63 | e1.3 | 2.9 | 0.50 | 10 | 0.56 | | 5 | 8.0 | 1.0 | e-0.10 | e0.24 | 0.14 | e0.21 | e0.92 | e4.5 | 2.4 | 0.54 | 5.0 | 0.26 | | 6
7
8
9
10 | 4.0
5.1
3.6
3.0
2.7 | 1.4
e0.93
e1.3
e0.99
e1.0 | e0.15
e0.00
e0.20
e0.00
e0.11 | e0.17
e0.10
e0.00
e0.17
e-0.25 | 0.14
0.24
0.14
0.14
0.16 | e0.30
e0.25
e0.43
e0.14
e0.12 | e2.0
e0.94
e0.96
e1.6
e1.8 | e4.4
e5.2
e5.1
e8.8
e7.9 | 2.3
2.7
2.3
2.6
5.0 | 0.68
0.96
1.1
1.1 | 2.3
2.8
1.9
1.7 | 0.55
0.52
0.54
0.59
0.62 | | 11 | 2.4 | e0.62 | e0.22 | e0.35 | e0.19 | e0.16 | e2.1 | e25 | 5.0 | 1.7 | 1.8 | 0.57 | | 12 | 1.8 | e0.80 | e0.30 | e0.25 | e0.20 | e0.32 | e1.9 | e22 | 3.9 | 0.95 | 1.3 | 0.18 | | 13 | 1.7 | e0.78 | e0.34 | e0.38 | e0.14 | e0.24 | e1.4 | e18 | 3.0 | 0.88 | 1.8 | 1.4 | | 14 | 1.5 | e1.5 | e0.26 | e0.14 | e0.22 | e0.36 | e1.8 | e16 | 3.0 | 0.75 | 1.1 | 4.2 | | 15 | 1.8 | e0.92 | e0.52 | e0.16 | e0.14 | e2.2 | e3.6 | e12 | 2.7 | 0.55 | 0.98 | 3.3 | | 16 | 1.1 | e1.0 | e0.78 | e0.23 | e0.11 | e4.1 | e2.2 | e9.8 | 2.2 | 0.64 | 1.3 | 1.5 | | 17 | 1.1 | e0.79 | e0.97 | e0.16 | e0.17 | e5.0 | e1.4 | e7.3 | 2.0 | 1.0 | 1.7 | 1.5 | | 18 | 0.64 | e0.53 | e0.75 | e0.10 | e0.22 | e4.5 | e1.9 | e5.9 | 1.5 | 0.45 | 1.2 | 0.72 | | 19 | 1.5 | e1.1 | e1.5 | e0.22 | e0.20 | e2.6 | e1.1 | e4.2 | 2.3 | 0.60 | 0.88 | 0.16 | | 20 | 1.4 | e1.0 | e0.69 | e0.19 | e0.17 | e2.1 | e2.7 | e5.3 | 1.5 | 0.59 | 0.27 | 0.92 | | 21 | 1.1 | e0.97 | e0.50 | e0.10 | e0.32 | e1.5 | e3.9 | e4.6 | 1.4 | 1.4 | 1.1 | 0.85 | | 22 | 1.8 | e0.73 | e0.00 | e0.00 | e0.51 | e2.8 | e2.8 | e3.7 | 1.1 | 0.62 | 0.58 | -0.04 | | 23 | 1.3 | e0.57 | e0.54 | e0.00 | e0.32 | e2.1 | e2.2 | e3.2 | 1.1 | 1.0 | 0.84 | 0.86 | | 24 | 1.6 | e0.84 | e0.55 | e0.15 | e0.28 | e1.6 | e1.9 | e3.1 | 0.65 | 0.57 | 0.51 | -0.27 | | 25 | 1.5 | e0.48 | e-0.10 | e0.00 | e0.24 | e1.5 | e2.1 | e2.9 | 0.48 | 0.54 | 0.17 | 1.1 | | 26
27
28
29
30
31 | 1.4
1.6
1.6
1.5
1.1
0.64 | e0.62
e0.32
e0.58
e0.50
e0.42 | e0.17
e0.10
e0.32
e0.50
e0.00
e0.27 | e0.00
e0.10
e0.10
e0.10
e0.11
e0.11 | e0.19
e0.21
e0.28 | e1.4
e1.9
e3.7
e5.0
e2.9
e1.6 | e1.1
e1.6
e1.5
e1.5
e1.4 | e2.4
e2.1
2.9
3.9
4.6 | 0.72
1.7
1.8
1.3
1.0 | 0.67
0.97
1.0
0.52
0.86
2.0 |
0.79
0.92
0.19
1.0
0.25
0.53 | 0.30
0.38
0.62
0.09
0.26 | | TOTAL | 61.23 | 26.48 | 11.18 | 5.09 | 5.92 | 50.02 | 54.35 | 215.6 | 71.55 | 27.18 | 51.57 | 23.65 | WTR YR 2003 TOTAL 603.82 e Estimated # 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI—Continued PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | Dilli | 31 11112/111 | TECES | | | | | | |----------------------------------|--|---------------------------------|--|--|----------------------------------|----------------------------------|------------------------------|----------------------------------|--------------------------------|---------------------------------|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.6
12
7.4
10
52 | 2.3
7.6
4.2
6.2
3.9 | 1.8
4.4
3.2
1.6
-0.65 | 2.5
2.3
2.8
2.9
1.6 | 1.7
1.9
2.4
0.86
1.2 | 2.0
1.6
1.6
2.3
1.6 | 19
16
10
6.9
9.4 | 39
22
23
17
39 | 40
28
22
19
15 | 8.8
8.6
10
5.2
5.7 | 33
9.7
26
111
50 | 4.4
3.2
5.1
5.0
2.3 | | 6
7
8
9
10 | 28
30
16
10
9.6 | 5.0
5.0
6.5
5.2
5.4 | 1.2
0.36
1.7
-0.02
0.97 | 1.2
0.66
0.15
1.2
-2.5 | 1.2
2.1
1.2
1.2
1.4 | 2.3
1.9
3.1
1.1
1.0 | 17
10
11
16
18 | 39
44
44
62
58 | 13
15
12
13
23 | 7.2
10
12
12
14 | 21
24
16
14
14 | 4.8
4.5
4.6
5.0
5.2 | | 11
12
13
14
15 | 9.2
7.5
7.7
7.3
9.6 | 3.6
4.5
4.4
7.2
5.0 | 1.9
2.5
2.6
2.0
3.4 | 2.3
1.7
2.5
1.0
1.2 | 1.6
1.7
1.2
1.9 | 1.3
2.5
2.3
3.9 | 20
20
17
20
30 | 198
167
124
102
78 | 22
18
15
17
16 | 20
11
11
9.2
6.8 | 15
11
16
10
9.1 | 4.8
1.5
13
44
34 | | 16
17
18
19
20 | 5.9
5.9
3.6
8.1
7.8 | 5.3
4.4
3.2
5.8
5.3 | 4.5
5.1
4.0
6.8
3.8 | 1.6
1.2
0.68
1.6
1.4 | 0.96
1.5
1.9
1.7
1.4 | 31
36
33
22
18 | 20
14
15
11
22 | 63
51
44
36
42 | 15
14
12
19
12 | 8.1
13
5.7
7.2
6.8 | 12
16
12
8.8
2.8 | 14
13
6.1
1.3
7.5 | | 21
22
23
24
25 | 5.9
9.6
7.2
8.4
8.0 | 5.1
4.1
3.3
4.5
2.9 | 2.9
0.15
3.1
3.2
-0.45 | 0.63
0.23
0.20
1.1
0.18 | 2.5
3.7
2.5
2.2
1.9 | 14
21
17
14
14 | 32
26
22
20
22 | 38
32
29
28
25 | 12
9.6
9.9
5.8
4.3 | 15
6.7
10
5.7
5.2 | 11
5.8
8.3
5.0
1.6 | 6.8
-0.28
6.7
-2.1
8.3 | | 26
27
28
29
30
31 | 7.2
8.2
8.2
7.6
5.8
3.1 | 3.5
2.0
3.4
3.1
2.7 | 1.1
0.66
2.0
3.0
0.33
1.8 | 0.09
0.68
0.71
0.69
0.83
0.83 | 1.6
1.7
2.1
 | 13
18
28
33
23
15 | 14
18
18
18
18 | 22
19
19
26
33
79 | 6.7
16
17
13
9.9 | 6.3
8.8
8.7
4.3
7.1 | 7.6
8.7
1.8
9.8
2.3
4.9 | 2.2
2.8
4.4
0.60
1.8 | | TOTAL | 335.4 | 134.6 | 68.95 | 34.16 | 48.42 | 397.5 | 530.3 | 1,642 | 464.2 | 287.1 | 498.2 | 214.52 | WTR YR 2003 TOTAL 4,655.35 # 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI—Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Discharge,
cfs
(00060) | Sampling
method,
code
(82398) | Phosphorus,
water,
unfltrd
mg/L
(00665) | Suspended
sediment
concen-
tration
mg/L
(80154) | |------|------|------------------------------|--|---|--| | OCT | | | | | | | 02 | 1215 | 24 | 50 | 0.091 | 20 | | 04 | 1100 | 23 | 50 | 0.072 | 19 | | 04 | 2300 | 23 | 50 | 0.108 | 50 | | 06 | 1830 | 30 | 50 | 0.174 | | | 09 | 1230 | 23 | 50 | 0.078 | 47 | | 16 | 1315 | 14 | 50 | 0.076 | 27 | | 30 | 1215 | 17 | 50 | 0.062 | 24 | | NOV | | | | | | | 03 | 1245 | 13 | 50 | 0.064 | | | 27 | 1345 | 6.1 | 50 | 0.062 | | | DEC | | | | | | | 11 | 1745 | 4.3 | 50 | 0.083 | | | 18 | 1215 | 12 | 50 | 0.060 | | | FEB | | | | | | | 05 | 1215 | 3.2 | 10 | 0.070 | 16 | | 15 | 1245 | 2.9 | 50 | 0.080 | | | MAR | | | | | | | 03 | 1100 | 4.0 | 50 | 0.072 | | | 25 | 1215 | 21 | 50 | 0.118 | | | 27 | 1645 | 25 | 50 | 0.138 | 38 | | APR | | | | | | | 01 | 1215 | 28 | 50 | 0.122 | 31 | | 14 | 1930 | 24 | 50 | 0.157 | | | 18 | 2015 | 25 | 50 | 0.109 | | | MAY | | | | | | | 09 | 1615 | 67 | 50 | 0.172 | | | 10 | 2045 | 63 | 50 | 0.169 | | | 13 | 0845 | 135 | 50 | 0.172 | | | 14 | 1300 | 120 | 50 | 0.155 | | | 21 | 1300 | 45 | 50 | 0.159 | | | 28 | 1300 | 27 | 50 | 0.130 | 44 | | 31 | 0630 | 103 | 50 | 0.146 | 40 | | JUN | 1220 | 2.4 | | 0.440 | 2.4 | | 04 | 1330 | 31 | 50 | 0.112 | 34 | | 11 | 1300 | 47 | 50 | 0.085 | 40 | | 18 | 1300 | 16 | 50 | 0.147 | 36 | | JUL | 1140 | 10 | 50 | 0.172 | 26 | | 10 | 1140 | 18 | 50 | 0.173 | 26 | | 17 | 1500 | 16 | 50 | 0.148 | 23 | | 31 | 1200 | 22 | 50 | 0.236 | 34 | | AUG | 1645 | 26 | 50 | | 2.4 | | 03 | 1645 | 26 | 50 | 0.224 | 34 | | 06 | 1300 | 21 | 50 | 0.224 | 42 | | 20 | 1300 | 3.1 | 50 | 0.162 | 32 | # 04073473 PUCHYAN RIVER DOWNSTREAM NORTH LAWSON DRIVE NEAR GREEN LAKE, WI LOCATION.--Lat 43°51'27", long 88°56'47", in NE ${}^{1}\!\!/_{\!\!4}$ sec.16, T.16 N., R.13 E., Green Lake County, Hydrologic Unit 04030201, on right bank 220 ft downstream from bridge on North Lawson Drive, 1.0 mi northeast of dam at outlet of Green Lake at Green Lake. DRAINAGE AREA.--105 mi². PERIOD OF RECORD.--November 1996 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 777.47 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Flow regulated by dams 1.1 mi and 180 ft upstream. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES OAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | |--|--|--|--|--|--|---|--|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 15
17
17
27
24 | 18
17
17
17
18 | 12
11
11
11
11 | 12
12
12
12
13 | 16
16
16
16
15 | 22
22
22
22
22
22 | 16
13
13
15
19 | 44
43
41
38
44 | 55
56
56
57
56 | 58
56
55
46
35 | 27
26
25
25
25 | 9.3
9.1
9.0
7.9
7.6 | | 6
7
8
9
10 | 25
22
23
21
22 | 18
18
18
18 | 11
11
11
11
11 | 14
17
17
17
17 | 16
16
16
e15
e15 | 22
22
23
23
23 | 19
18
19
21
20 | 45
50
70
126
149 | 52
53
55
55
61 | 38
43
44
44
44 | 25
25
26
25
26 | 7.4
7.3
7.1
7.9 | | 11
12
13
14
15 | 23
23
23
23
19 | 18
18
16
16
15 | 11
11
11
11
11 | 17
17
16
16
16 | e15
e14
e14
e15
e15 | 23
23
23
24
26 | 20
22
25
24
23 | 241
278
283
268
249 | 57
55
56
56
56 | 45
43
44
45
51 | 25
24
22
20
21 | 14
14
17
26
24 | | 16
17
18
19
20 | 17
17
18
17
16 | 16
16
17
16
16 | 11
11
11
11
11 | 16
16
16
15
15 | e15
e15
18
18
20 | 25
24
24
23
24 | 22
25
25
28
33 | 213
172
165
152
153 | 57
56
57
61
60 | 54
52
50
47
44 | 21
20
20
21
21 | 25
21
19
17
15 | | 21
22
23
24
25 | 17
16
16
16
17 | 15
16
16
14
14 | 9.9
9.5
9.1
9.3
9.7 | 15
15
15
15
14 | 21
22
22
22
22
21 | 26
27
23
15
13 | 31
45
59
53
48 | 150
141
135
130
124 | 60
59
59
60
62 | 44
45
42
43
38 | 20
16
11
8.0
7.0 | 21
20
19
18
16 | | 26
27
28
29
30
31 | 18
18
18
17
18 | 13
13
13
13
12 | 10
12
12
12
12
12 | 14
14
14
15
15 | 21
21
22
 | 11
12
16
15
15 | 47
37
32
33
38 | 119
97
58
53
58
57 | 65
62
60
60
59 | 30
28
27
28
28
27 | 6.1
6.2
7.1
8.0
8.2
8.8 | 15
14
12
14
15 | |
TOTAL
MEAN
MAX
MIN
CFSM
IN. | 598
19.3
27
15
0.18
0.21 | 480
16.0
18
12
0.15
0.17 | 338.5
10.9
12
9.1
0.10
0.12 | 465
15.0
17
12
0.14
0.16 | 488
17.4
22
14
0.17
0.17 | 652
21.0
27
11
0.20
0.23 | 843
28.1
59
13
0.27
0.30 | 3,946
127
283
38
1.21
1.40 | 1,733
57.8
65
52
0.55
0.61 | 1,318
42.5
58
27
0.40
0.47 | 576.4
18.6
27
6.1
0.18
0.20 | 441.6
14.7
26
7.1
0.14
0.16 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | | ER YEARS | | , BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 23.3
44.2
(2001)
6.99
(1999) | 16.1
30.5
(2001)
6.60
(1999) | 19.2
51.0
(2002)
10.4
(1999) | 22.9
36.6
(1997)
11.6
(2000) | 36.6
56.0
(1997)
15.0
(2000) | 70.3
184
(1997)
21.0
(2003) | 137 124 113 256 214 240 (2001) (2001) (2001) 28.1 89.5 57.8 (2003) (2000) (2003) | | | 42.5 18.6 | | 37.7
103
(2000)
13.7
(1998) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | 'EAR | WATER | YEARS 199 | 7 - 2003 | | LOWEST HIGHEST LOWEST ANNUAI MAXIMU MAXIMU ANNUAI ANNUAI 10 PERCI 50 PERCI | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY M | MEAN IEAN EAN DAY MINIM FLOW STAGE (CFSM) (INCHES) EDS EDS | IUM | 183 | 6.4 8 May 9.1 Dec 9.8 Dec 10.54 7.29 6 | 23 | 33 | 79.5
32.5
83 May
6.1 Aug
7.2 Aug
21 May
0.31
4.21
58
20 | ; 26
; 24
; 11 | 4
(a)4
(b | 2.8 No
3.3 No
98 Ap | 2001
2003
r 12, 2001
v 8, 1998
v 3, 1998
r 12, 2001
r 2, 1998 | ⁽a) Gage height, 5.48 ft (b) Discharg, e 423 ft³/s (e) Estimated due to ice effect or missing record # 04073500 FOX RIVER AT BERLIN, WI $LOCATION.--Lat~43^{\circ}57'14'', long~88^{\circ}57'08'', in~NE~\frac{1}{4}~sec.16, T.17~N., R.13~E., Green~Lake~County, Hydrologic~Unit~04030201, on~left~bank, 0.4~mi~downstream~from~government~dam, 1.0~mi~south~of~Huron~Street~bridge~in~Berlin, 2.5~mi~upstream~from~Barnes~Creek, and at mile~89.0.$ DRAINAGE AREA.--1,340 mi². PERIOD OF RECORD .-- January 1898 to current year. REVISED RECORDS.--WSP 1337: 1910. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 744.52 ft above mean tide at New York City (by U.S. Army Corps of Engineers). Prior to Oct. 27, 1954, nonrecording gage at site 0.3 mi upstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Usually less than about 10 ft³/s was diverted into the basin from the Wisconsin River at Portage Canal throughout the year. Data-collection platform and gage-height telemeter at station. | | | DISCH | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|---|---|---|--|---|---|--|--|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 731 | 959 | e540 | e650 | e450 | e510 | 1,180 | 999 | 1,510 | 753 | 515 | 366 | | 2 | 715 | 954 | e540 | e550 | e470 | e520 | 1,160 | 1,020 | 1,510 | 728 | 511 | 360 | | 3 | 711 | 942 | e560 | e570 | e480 | e530 | 1,070 | 998 | 1,440 | 698 | 529 | 365 | | 4 | 780 | 928 | e620 | e620 | e470 | e530 | 1,040 | 992 | 1,350 | 686 | 525 | 344 | | 5 | 924 | 896 | e700 | e660 | e420 | e530 | 990 | 1,020 | 1,240 | 666 | 527 | 322 | | 6 | 967 | 880 | e760 | e680 | e430 | e540 | 1,010 | 1,090 | 1,160 | 659 | 536 | 342 | | 7 | 983 | 901 | e760 | e700 | e440 | e570 | 1,060 | 1,170 | 1,130 | 706 | 547 | 351 | | 8 | 968 | 925 | e760 | e730 | e440 | e600 | 992 | 1,220 | 1,130 | 768 | 531 | 341 | | 9 | 946 | 912 | e760 | e740 | e440 | e610 | 1,010 | 1,300 | 1,150 | 763 | 516 | 337 | | 10 | 924 | 903 | e740 | e650 | e460 | e600 | 1,070 | 1,400 | 1,210 | 755 | 515 | 343 | | 11 | 933 | 879 | e740 | e370 | e460 | e600 | 1,090 | 1,610 | 1,300 | 791 | 507 | 358 | | 12 | 938 | 861 | e770 | e420 | e460 | e640 | 1,090 | 1,810 | 1,340 | 797 | 485 | 378 | | 13 | 931 | 871 | e800 | e450 | e460 | e680 | 1,050 | 1,910 | 1,350 | 795 | 483 | 426 | | 14 | 923 | 874 | e810 | e470 | e470 | e750 | 1,060 | 1,960 | 1,340 | 788 | 486 | 537 | | 15 | 919 | 858 | e830 | e450 | e470 | e800 | 1,070 | 2,000 | 1,310 | 795 | 482 | 573 | | 16 | 866 | 827 | e820 | e440 | e470 | e900 | 1,070 | 2,030 | 1,240 | 789 | 479 | 606 | | 17 | 854 | 806 | e800 | e430 | e470 | e1,000 | 976 | 2,050 | 1,160 | 814 | 452 | 610 | | 18 | 998 | 803 | e840 | e430 | e470 | e1,100 | 1,000 | 2,050 | 1,090 | 791 | 446 | 604 | | 19 | 1,090 | 825 | e880 | e420 | e480 | e1,200 | 1,060 | 2,030 | 1,060 | 767 | 442 | 564 | | 20 | 1,090 | 841 | e870 | e420 | e480 | e1,300 | 1,120 | 2,010 | 1,020 | 770 | 432 | 541 | | 21 | 1,080 | 836 | e780 | e410 | e500 | 1,310 | 1,190 | 1,960 | 982 | 756 | 434 | 539 | | 22 | 1,060 | 792 | e680 | e400 | e510 | 1,200 | 1,180 | 1,900 | 928 | 699 | 402 | 551 | | 23 | 1,030 | 797 | e700 | e400 | e500 | 1,170 | 1,170 | 1,850 | 876 | 668 | 384 | 547 | | 24 | 1,010 | 819 | e680 | e400 | e500 | 1,150 | 1,170 | 1,790 | 839 | 651 | 373 | 539 | | 25 | 1,020 | 794 | e670 | e390 | e510 | 1,110 | 1,150 | 1,730 | 814 | 648 | 381 | 526 | | 26
27
28
29
30
31 | 1,040
1,040
1,030
1,010
973
962 | e690
e620
e590
e660
e750 | e680
e700
e710
e680
e700
e700 | e380
e370
e380
e400
e410
e440 | e510
e510
e510
 | 1,090
1,080
1,110
1,190
1,210
1,200 | 1,100
1,060
1,060
1,000
983 | 1,660
1,580
1,510
1,450
1,400
1,470 | 804
798
777
780
759 | 649
614
556
534
527
523 | 384
390
381
401
364
371 | 515
519
513
490
498 | | TOTAL | 29,446 | 24,993 | 22,580 | 15,230 | 13,240 | 27,330 | 32,231 | 48,969 | 33,397 | 21,904 | 14,211 | 13,905 | | MEAN | 950 | 833 | 728 | 491 | 473 | 882 | 1,074 | 1,580 | 1,113 | 707 | 458 | 464 | | MAX | 1,090 | 959 | 880 | 740 | 510 | 1,310 | 1,190 | 2,050 | 1,510 | 814 | 547 | 610 | | MIN | 711 | 590 | 540 | 370 | 420 | 510 | 976 | 992 | 759 | 523 | 364 | 322 | | CFSM | 0.71 | 0.62 | 0.54 | 0.37 | 0.35 | 0.66 | 0.80 | 1.18 | 0.83 | 0.53 | 0.34 | 0.35 | | IN. | 0.82 | 0.69 | 0.63 | 0.42 | 0.37 | 0.76 | 0.89 | 1.36 | 0.93 | 0.61 | 0.39 | 0.39 | | STATIS'
MEAN
MAX
(WY)
MIN
(WY) | 71CS OF MO
981
3,819
(1987)
347
(1959) | ONTHLY M
1,071
2,463
(1986)
380
(1977) | EAN DATA
896
1,871
(1986)
369
(1977) | 697
1,631
(1939)
311
(1959) | 767
1,803
(1966)
318
(1959) | 1898 - 2003,
1,744
4,272
(1973)
495
(1964) | , BY WATE
2,208
4,225
(1979)
667
(1902) | R YEAR (W
1,477
3,801
(1973)
600
(1934) | 7Y)
1,207
4,230
(1905)
367
(1988) | 929
4,072
(1993)
384
(1988) | 799
2,540
(1993)
346
(1958) | 890
3,491
(1938)
364
(1958) | | ANNUA ANNUA HIGHES LOWES HIGHES LOWES ANNUA MAXIM MAXIM INSTAN ANNUA ANNUA 50 PERC | UM PEAK I
UM PEAK S | MEAN MEAN MEAN MEAN EAN MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | IUM | | Jun
Aug
Aug
0.86 | 28
20 | 297,43
81
2,03
33
2,00
31
31 | 50 May
22 Sep
40 Sep
560 May
11.28 May
0.61
8.26
80 | y 17
o 5
o 4
y 17 | 1,1
2,2
5
6,9
2
(a)2
6,9
2 | 03
59
00 Ma
17 Ju
66 Ja
00 Ma
15.50 Ma
10 Ju
0.85
11.58 | 1993
1964
ar 17, 1946
n 27, 1988
n 30, 1900
ar 17, 1946
ar 17, 1946
n 27, 1988 | ⁽a) Ice affected ⁽e) Estimated due to ice effect or missing record # 04074538 SWAMP CREEK ABOVE RICE LAKE AT MOLE LAKE, WI $LOCATION.--Lat\ 45^{\circ}29'18'', long\ 88^{\circ}57'49'', in\ SW\ ^{1}\!\!/_{4}\ NW\ ^{1}\!\!/_{4}\ sec. 26,\ T.35\ N.,\ R.12\ E.,\ Forest\ County,\ Hydrologic\ Unit\ 04030202,\ on\ right\ bank\ approximately\ 200\ ft\ upstream\ from\ bridge\ on\ State\ Highway\ 55,\ on\ Mole\ Lake\ Indian\ Reservation.$ DRAINAGE AREA.--46.3 mi². PERIOD OF RECORD.--August 1977 to September 1983. October 1984 to December 1986. July 2001 to current year. REVISED RECORDS.--WDR WI-82-1: Drainage area. $GAGE.--Water-stage\ recorder\ and\ concrete\ control.\ Datum\ of\ gage\ is\ 1,532.28\ ft\ above\ NGVD\ of\ 1929\ (levels\ by\ Wisconsin\ Department\ of\ Transportation).$ REMARKS.--Records good except those for periods of ice effect and missing record, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUE | BIC FEET PI | ER SECONI
DAII | O, WATER Y
LY MEAN V | YEAR OCTO
VALUES | OBER 2002 | TO SEPTEM | IBER 2003 | | | |---|---|--|--
--|--|---|---|---|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 34
29
26
48
84 | 31
30
29
29
29 | e17
e16
e16
e16
e16 | e14
e14
e14
e14 | e13
e13
e13
e13
e12 | e18
e19
e19
e19
e19 | e20
e24
e22
e22
e24 | 39
37
35
31
34 | 32
30
29
27
27 | 19
19
19
18
18 | 29
27
37
35
27 | 15
15
14
15
14 | | 6
7
8
9
10 | 78
72
59
49
42 | 30
29
30
30
34 | e16
e16
e16
e15
e16 | e14
e14
e14
e14
e14 | e12
e12
e12
e12
e12 | e19
e19
e20
e20
e20 | e23
e24
25
25
32 | 52
51
49
48
54 | 27
40
48
69
65 | 17
17
16
16
17 | 25
24
22
21
20 | 14
14
14
14
15 | | 11
12
13
14
15 | 42
42
44
40
37 | 38
33
31
30
28 | e18
e18
e18
e17
e17 | e13
e13
e12
e12
e12 | e12
e12
e12
e12
e12 | e20
e20
e20
e20
e20 | 51
65
54
53
59 | 68
99
81
57
49 | 70
54
44
39
35 | 19
17
16
15
17 | 23
21
19
19 | 14
16
26
32
31 | | 16
17
18
19
20 | 34
33
33
40
39 | 27
24
25
26
25 | e17
e17
e18
e19
e18 | e12
e12
e12
e12
e12 | e12
e12
e13
e14
e15 | e24
e31
e39
e37
e30 | 102
141
95
76
103 | 45
43
42
40
49 | 32
30
29
27
25 | 15
14
14
13
13 | 18
17
17
18
20 | 24
21
19
17
17 | | 21
22
23
24
25 | 36
38
39
38
38 | 23
19
e19
e19
e18 | e18
e17
e16
e16
e15 | e11
e11
e11
e11 | e15
e15
e15
e15
e15 | e28
e32
e33
e26
e22 | 115
84
61
53
49 | 46
41
38
35
33 | 24
23
23
24
25 | 19
18
16
15
14 | 21
19
21
21
20 | 16
29
e30
e33
34 | | 26
27
28
29
30
31 | 42
43
40
36
34
33 | e17
e17
e17
e18
e18 | e15
e15
e15
e16
e15
e15 | e11
e12
e13
e13
e13 | e15
e16
e18 | e18
e16
e16
e16
e16
e18 | 47
45
44
43
40 | 33
32
32
34
34
36 | 23
22
21
21
20 | 58
78
44
30
25
27 | 19
17
17
18
17 | 27
28
26
23
22 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,322
42.6
84
26
0.92
1.06 | 773
25.8
38
17
0.56
0.62 | 510
16.5
19
15
0.36
0.41 | 390
12.6
14
11
0.27
0.31 | 374
13.4
18
12
0.29
0.30 | 694
22.4
39
16
0.48
0.56 | 1,621
54.0
141
20
1.17
1.30 | 1,397
45.1
99
31
0.97
1.12 | 1,005
33.5
70
20
0.72
0.81 | 673
21.7
78
13
0.47
0.54 | 664
21.4
37
16
0.46
0.53 | 629
21.0
34
14
0.45
0.51 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 33.3
52.9
(1987)
18.5
(2002) | 29.0
52.9
(1986)
14.5
(1982) | EAN DATA
24.8
39.2
(1986)
14.3
(1982) | 21.6
31.3
(1986)
12.6
(2003) | ER YEARS
20.6
28.1
(1986)
13.4
(2003) | 1977 - 2003
30.5
48.4
(1983)
18.3
(1978) | , BY WATE
60.3
79.8
(1979)
47.3
(1980) | R YEAR (W
46.6
64.0
(1983)
31.0
(1980) | 40.3
57.8
(1981)
22.6
(1982) | 31.3
48.6
(1978)
18.2
(2001) | 23.4
40.1
(1978)
14.3
(1981) | 27.5
40.3
(1977)
13.2
(1981) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI INSTAN' ANNUAI ANNUAI 10 PERC' 50 PERC' | RY STATIS L TOTAL L MEAN I ANNUAL I ANNUAL I DAILY M SEVEN-D I PEAK F I DAILY M I SEVEN-D I PEAK F I RUNOFF I RUNOFF I RUNOFF I RUNOFF I ENT EXCE I ENT EXCE I ENT EXCE | MEAN MEAN EAN EAN AY MINIM TAGE LOW FLOV (CFSM) (INCHES) EDS EDS | IUM | 162
14
(a)15 | 2
4.3
2 Apr
4 Aug
5 Dec
0.74
0.06
2 | 14
20 | 10,05
2
14
(a)1
(a)1
16
(a) | 27.5
11 Apr.
1 Jar
1 Jar
53 Apr. | r 17
n 21-27
n 21
r 17
r 17 | 2 | 8.3 At
9.2 At
228 July
b)3.82 July | 77 - 2003
1986
1982
un 15, 1981
ug 25, 1977
ug 13, 1982
un 15, 1981
un 15, 1981
ug 25, 1977 | ⁽a) Ice affected ⁽b) Site and datum then in use ⁽e) Estimated due to ice effect or missing record # 04074548 SWAMP CREEK BELOW RICE LAKE AT MOLE LAKE, WI $LOCATION.--Lat\ 45^{\circ}28'46", long\ 88^{\circ}59'52", in\ NE\ {}^{1}\!\!/_{4}\ NW\ {}^{1}\!\!/_{4}\ sec. 33, T.35\ N., R.12\ E., Forest\ County,\ Hydrologic\ Unit\ 04030202,\ on\ left\ bank\ approximately\ 100\ ft\ downstream\ from\ bridge\ on\ County\ Trunk\ Highway\ M,\ 0.9\ mi\ west\ of\ Mole\ Lake.$ DRAINAGE AREA.--56.8 mi². PERIOD OF RECORD.--August 1977 to September 1979. April 1982 to June 1985. July 2001 to current year. REVISED RECORDS.--WDR WI-83-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,529.66 ft above National Geodetic Vertical Datum of 1929 (levels by Wisconsin Department of Transportation). Prior to July 1985, water-stage recorder at same site and approximately 1.0 ft higher datum. REMARKS.--Records fair except for periods of estimated record, which are poor (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | | D, WATER Y
LY MEAN V | | DBER 2002 | го ѕертем | MBER 2003 | | | |--|---|---|--|--|--|---|---|--|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 56 | 51 | e32 | e38 | e31 | e26 | e32 | 54 | 42 | 30 | 68 | 46 | | 2 | 54 | 49 | e30 | e38 | e31 | e25 | e39 | 50 | 41 | 30 | 65 | 44 | | 3 | 50 | 47 | e28 | e38 | e29 | e25 | e48 | 47 | 39 | 30 | 68 | 44 | | 4 | 65 | 46 | e26 | e38 | e27 | e23 | e66 | 45 | 37 | 29 | 70 | 44 | | 5 | 97 | 46 | e26 | e39 | e26 | e23 | e60 | 49 | 35 | 27 | 67 | 43 | | 6 | 120 | 47 | e26 | e40 | e26 | e25 | 56 | 58 | 36 | 26 | 62 | 42 | | 7 | 129 | 47 | e26 | e40 | e26 | e25 | 46 | 66 | 44 | 25 | 60 | 43 | | 8 | 126 | 49 | e26 | e41 | e26 | e24 | 44 | 66 | 55 | 25 | 57 | 43 | | 9 | 114 | 50 | e28 | e40 | e26 | e26 | 36 | 65 | 72 | 24 | 54 | 44 | | 10 | 99 | 53 | e30 | e39 | e26 | e26 | 40 | 69 | 86 | 25 | 52 | 45 | | 11 | 83 | 58 | e30 | e39 | e25 | e24 | 73 | 86 | 93 | 27 | 56 | 44 | | 12 | 74 | 57 | e32 | e37 | e25 | e26 | 114 | 115 | 83 | 27 | 54 | 46 | | 13 | 69 | 55 | e34 | e36 | e25 | e28 | 126 | 119 | 65 | 25 | 53 | 54 | | 14 | 65 | 52 | e34 | e35 | e24 | e31 | 118 | 98 | 54 | 23 | 51 | 62 | | 15 | 60 | 47 | e32 | e35 | e25 | e33 | 125 | 76 | 46 | 25 | 50 | 65 | | 16 | 53 | 42 | e30 | e33 | e25 | e40 | 158 | 63 | 42 | 25 | 50 | 62 | | 17 | 49 | 41 | e30 | e32 | e26 | e49 | 193 | 57 | 39 | 25 | 48 | 57 | | 18 | 49 | 35 | e34 | e31 | e26 | e58 | 200 | 54 | 38 | 24 | 47 | 53 | | 19 | 52 | 37 | e39 | e30 | e28 | e67 | 191 | 53 | 36 | 23 | 47 | 49 | | 20 | 57 | 37 | e39 | e29 | e28 | e63 | 191 | 59 | 33 | 23 | 50 | 46 | | 21 | 59 | 37 | e38 | e29 | e28 | e54 | 202 | 60 | 33 | 28 | 52 | 45 | | 22 | 60 | 34 | e36 | e28 | e27 | e48 | 196 | 56 | 32 | 30 | 52 | 50 | | 23 | 59 | 30 | e37 | e28 | e26 | e51 | 177 | 52 | 32 | 30 | 52 | 55 | | 24 | 58 | e31 | e35 | e28 | e24 | e54 | 156 | 49 | 34 | 28 | 54 | 59 | | 25 | 60 | e31 | e34 | e28 | e24 | e44 | 139 | 45 | 36 | 26 | 55 | 63 | | 26
27
28
29
30
31 | 63
67
68
63
59
54 | e29
e27
e27
e28
e32 | e35
e36
e36
e38
e38
e40 | e28
e28
e29
e30
e31
e31 | e25
e26
e26
 | e31
e26
e35
e41
e33
e30 | 122
107
89
60
56 | 43
42
44
46
47
48 | 34
34
34
33
32 | 65
108
108
91
76
70 | 54
52
50
51
48
47 | 62
61
59
55
51 | | TOTAL | 2,191 | 1,252 | 1,015 | 1,046 | 737 | 1,114 | 3,260 | 1,881 | 1,350 | 1,178 | 1,696 | 1,536 | | MEAN | 70.7 | 41.7 | 32.7 | 33.7 | 26.3 | 35.9 | 109 | 60.7 | 45.0 | 38.0 | 54.7 | 51.2 | | MAX | 129 | 58 | 40 | 41 | 31 | 67 | 202 | 119 | 93 | 108 | 70 | 65 | | MIN | 49 | 27 | 26 | 28 | 24 | 23 | 32 | 42 | 32 | 23 | 47 | 42 | | CFSM | 1.24 | 0.73 | 0.58 | 0.59 | 0.46 | 0.63 | 1.91 | 1.07 | 0.79 | 0.67 | 0.96 | 0.90 | | IN. | 1.43 | 0.82 | 0.66 | 0.69 | 0.48 | 0.73 | 2.14 | 1.23 | 0.88 | 0.77 | 1.11 | 1.01 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | FICS OF MO
51.2
70.7
(2003)
27.1
(2002) | ONTHLY M
43.1
53.4
(1983)
32.2
(2002) | EAN DATA
39.4
45.5
(1985)
32.0
(1979) | FOR
WATE
34.1
38.2
(1983)
29.7
(2002) | ER YEARS
34.5
50.7
(1984)
26.3
(2003) | 1977 - 2003
46.3
66.5
(1979)
29.5
(1978) | 85.8
120
(1979)
59.8
(1984) | R YEAR (W
68.6
88.2
(1979)
53.0
(1978) | 52.2
84.7
(1979)
32.1
(1982) | 42.0
68.8
(1978)
26.5
(2001) | 37.7
60.5
(1978)
21.1
(1982) | 42.4
59.2
(1977)
29.2
(2001) | | ANNUA: ANNUA: HIGHES: LOWES: HIGHES: LOWES: ANNUA: MAXIMI INSTAN ANNUA: ANNUA: 10 PERC 50 PERC | T ANNUAI
F ANNUAL
T DAILY M
F DAILY M
L SEVEN-E
UM PEAK I
UM PEAK S | MEAN MEAN MEAN EAN EAN STAGE LOW FLOW (CFSM) (INCHES) EDS | UM | | .2
Apr
Jul
Jul
.88
.99 | YEAR
15,16
20
15 | 18,25
5
20
(a)2
2
20
2
1
7
4 | 0.0
2 Apı
3 (b)Maı
4 Jul
4 Apı
4.17 Apı | : 21
: 4,5
 14
: 21 | 2 (3 | 15 Au
15 Au
210 A
a)4.43 A | 77 - 2003
1979
1984
pr 22, 1979
1g 18, 1982
1g 17, 1982
pr 21, 1979
pr 16, 2002
ct 27, 1978 | ⁽a) Ice affected(b) Also occurred July 14, 19, 20(e) Estimated due to ice effect or missing record # 04074950 WOLF RIVER AT LANGLADE, WI LOCATION.--Lat 45°11'24", long 88°44'00", in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.3, T.31 N., R.14 E., Langlade County, Hydrologic Unit 04030202, on left bank, upstream of bridge on State Highway 64 at Langlade, 1.5 mi east of White Lake, 3.0 mi upstream from White Lake Creek, and at about mile 170 above mouth. DRAINAGE AREA.--463 mi². PERIOD OF RECORD.--March 1966 to September 1979, October 1980 to current year. REVISED RECORDS.--WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 1,240 ft above NGVD of 1929, from topographic map. Prior to Oct. 1, 1976, nonrecording gage 50 ft downstream at same elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 | ГО ЅЕРТЕМ | IBER 2003 | | | |--|---|---|---|---|---|---|---|---|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 508 | 436 | e260 | e270 | e180 | e240 | 435 | 754 | 488 | 257 | 651 | 238 | | 2 | 476 | 411 | e260 | e260 | e190 | e240 | 478 | 709 | 468 | 245 | 567 | 243 | | 3 | 450 | 410 | e260 | e250 | e190 | e230 | 515 | 633 | 447 | 244 | 581 | 222 | | 4 | 618 | 429 | e250 | e250 | e190 | e220 | 499 | 581 | 436 | 237 | 516 | 206 | | 5 | 842 | 427 | e270 | e260 | e190 | e220 | 480 | 596 | 405 | 228 | 482 | 189 | | 6 | 880 | 436 | e270 | e280 | e200 | e210 | e470 | 737 | 365 | 220 | 456 | 187 | | 7 | 900 | 422 | e270 | e290 | e200 | e220 | e430 | 749 | 386 | 218 | 445 | 184 | | 8 | 878 | 393 | e270 | e280 | e200 | e230 | 404 | 733 | 472 | 214 | 421 | 181 | | 9 | 862 | 387 | e270 | e280 | e190 | e220 | 398 | 726 | 599 | 211 | 402 | 203 | | 10 | 832 | 410 | e270 | e260 | e200 | e220 | 427 | 753 | 694 | 223 | 358 | 193 | | 11 | 782 | 466 | e280 | e240 | e210 | e220 | 518 | 916 | 783 | 230 | 354 | 188 | | 12 | 730 | 466 | e300 | e220 | e210 | e230 | 568 | 1,140 | 734 | 234 | 366 | 217 | | 13 | 687 | 455 | e300 | e200 | e210 | e230 | 608 | 1,120 | 690 | 222 | 333 | 333 | | 14 | 670 | 445 | e300 | e200 | e210 | e240 | 677 | 1,090 | 654 | 208 | 309 | 438 | | 15 | 657 | 437 | e300 | e190 | e210 | e280 | 728 | 1,050 | 577 | 209 | 296 | 469 | | 16 | 661 | e410 | e310 | e190 | e220 | e350 | 997 | 987 | 493 | 208 | 287 | 443 | | 17 | 605 | e400 | e320 | e180 | e220 | e600 | 1,160 | 920 | 451 | 232 | 278 | 378 | | 18 | 509 | e430 | e340 | e170 | e230 | e730 | 1,110 | 859 | 427 | 238 | 271 | 288 | | 19 | 487 | e420 | e370 | e170 | e240 | e810 | 1,130 | 820 | 405 | 231 | 264 | 269 | | 20 | 500 | e400 | e380 | e170 | e240 | e880 | 1,250 | 816 | 381 | 221 | 262 | 259 | | 21 | 535 | 364 | e370 | e160 | e240 | e900 | 1,300 | 772 | 340 | 238 | 271 | 243 | | 22 | 560 | 358 | e340 | e160 | e240 | e850 | 1,270 | 705 | 318 | 230 | 251 | 297 | | 23 | 567 | 355 | e330 | e150 | e230 | e800 | 1,230 | 670 | 306 | 213 | 229 | 330 | | 24 | 562 | 359 | e320 | e150 | e230 | e660 | 1,160 | 638 | 312 | 206 | 253 | 364 | | 25 | 555 | 350 | e320 | e150 | e230 | e610 | 1,090 | 609 | 294 | 200 | 255 | 383 | | 26
27
28
29
30
31 | 580
589
573
545
526
503 | e340
e360
e340
e320
e300 | e310
e300
e300
e280
e280
e280 | e150
e150
e150
e150
e160
e170 | e240
e240
e240
 | e560
e500
549
574
547
491 | 1,020
960
894
836
788 | 580
540
515
483
474
486 | 301
293
289
297
278 | 229
435
513
517
573
629 | 251
237
232
231
235
225 | 394
380
373
365
413 | | TOTAL | 19,629 | 11,936 | 9,280 | 6,310 | 6,020 | 13,861 | 23,830 | 23,161 | 13,383 | 8,513 | 10,569 | 8,870 | | MEAN | 633 | 398 | 299 | 204 | 215 | 447 | 794 | 747 | 446 | 275 | 341 | 296 | | MAX | 900 | 466 | 380 | 290 | 240 | 900 | 1,300 | 1,140 | 783 | 629 | 651 | 469 | | MIN | 450 | 300 | 250 | 150 | 180 | 210 | 398 | 474 | 278 | 200 | 225 | 181 | | CFSM | 1.37 | 0.86 | 0.65 | 0.44 | 0.46 | 0.97 | 1.72 | 1.61 | 0.96 | 0.59 | 0.74 | 0.64 | | IN. | 1.58 | 0.96 | 0.75 | 0.51 | 0.48 | 1.11 | 1.91 | 1.86 | 1.08 | 0.68 | 0.85 | 0.71 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | FICS OF MO
435
813
(1986)
196
(1977) | ONTHLY MI
436
788
(1986)
204
(1977) | EAN DATA
363
578
(1986)
226
(1977) | FOR WATE
310
548
(1969)
191
(1999) | ER YEARS
311
482
(1984)
213
(1982) | 1966 - 2003,
462
1,227
(1973)
278
(1982) | 815
1,330
(1976)
263
(1990) | R YEAR (W
613
1,312
(1973)
289
(1998) | 481
1,013
(1991)
173
(1988) | 368
874
(1968)
183
(1989) | 326
632
(1972)
188
(1989) | 399
813
(1968)
171
(1989) | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM INSTAN ANNUA ANNUA ANNUA 50 PERC | UM PEAK I
UM PEAK S | . MEAN MEAN IEAN EAN AY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | UM | | .04 | 19
20 | 1,30
(a)15
(b)1,31
(a) | 26 OO Api 50 Jar 60 Jar 10 Api 99.61 Mai 0.92 2.48 55 54 | 21
123-29
123
21 | 2,4
(c)1 | 137 Ju
142 Sej
140 Ap
10.40 Ap | 6 - 2003
1973
1988
r 26, 1996
1 7, 1988
p 28, 1989
r 26, 1996
r 26, 1996
c 17, 1999 | ⁽a) Ice affected ⁽b) Gage height, 9.36 ft ⁽c) Result of freezeup ⁽e) Estimated due to ice effect or missing record # 04075365 EVERGREEN RIVER BELOW EVERGREEN FALLS NEAR LANGLADE, WI LOCATION.--Lat 45°03'57", long 88°40'34", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.21, T.30 N., R.15 E., Menominee County, Hydrologic Unit 04030202, on right bank, 200 ft upstream from bridge on Evergreen Falls Road below Evergreen Falls. DRAINAGE AREA.--64.5 mi². PERIOD OF RECORD.--December 2002 to September 2003. GAGE.--Water-stage recorder. Elevation of gage is 990 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAII | LY MEAN V | /ALUES | | | | | | |---------|-----------|----------|----------|---------|----------|-------------|-----------|-----------|--------|--------|--------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | e53 | e52 | e57 | e47 | 58 | 76 | 75 | 63 | 107 | 51 | | 2 | | | e52 | e52 | e58 | e46 | 66 | 73 | 72 | 62 | 90 | 49 | | 3 | | | e50 | e54 | e56 | e44 | 58 | 72 | 70 | 64 | 75 | 49 | | 4 | | | e51 | e54 | e52 | e44 | e41 | 70 | 68 | 63 | 76 | 49 | | 5 | | | e51 | e53 | e48 | e44 | e64 | 96 | 66 | 63 | 72 | 49 | | 6 | | | e51 | e52 | e47 | e45 | e60 | 148 | 66 | 59 | 66 | 49 | | 7 | | | e52 | e54 | e46 | e46 | e56 | 111 | 88 | 61 | 67 | 49 | | 8 | | | e50 | e57 | e46 | e46 | e51 | 99 | 103 | 59 | 64 | 48 | | 9 | | | e52 | e56 | e46 | e46 | e45 | 96 | 112 | 58 | 61 | 48 | | 10 | | | e54 | e56 | e46 | e45 | 62 | 94 | 114 | 73 | 59 | 48 | | 11 | | | e58 | e55 | e45 | e46 | 78 | 127 | 134 | 74 | 60 | 47 | | 12 | | | e60 | e55 | e45 | e47 | 78 | 145 | 100 | 67 | 59 | 58 | | 13 | | | e60 | e55 | e45 | e47 | 64 | 109 | 83 | 62 | 56 | 96 | | 14 | | | e60 | e54 | e44 | e50 | 64 | 92 | 81 | 59 | 55 | 125 | | 15 | | | e60 | e54 | e44 | e53 | 77 | 86 | 77 | 62 | 55 | 107 | | 16 | | | e60 | e54 | e44 | e57 | 219 | 84 | 71 | 60 | 54 | 73 | | 17 | | | e61 | e53 | e44 | e90 | 205 | 81 | 66 | 61 | 53 | 63 | | 18 | | | e65 | e53 | e44 | e140 | 116 | 80 | 67 | 59 | 53 | 59 | | 19 | | | e71 | e53 | e45 | e110 | 99 | 80 | 65 | 58 | 52 | 58 | | 20 | | | e67 | e53 | e46 | e96 | 121 | 89 | 63 | 58 | 54 | e57 | | 21 | | | e63 | e52 | e47 | e90 | 119 | 85 | 62 | 65 | 55 | e57 | | 22 | | | e59 | e52 | e46 | e90 | 97 | 79 | 61 | 63 | 52 | e67 | | 23 | | | e58 | e52 | e45 | e87 | 87 | 77 | 60 | 61 | 52 | e74 | | 24 | | | e56 | e51 | e44 | 79 | 82 | 75 | 69 | 58 | 63 | e68 | | 25 | | | e55 | e51 | e44 | 70 | 83 | 74 | 74 | 57 | 61 | e63 | | 26 | | | e55 | e51 | e44 | 60 | 84 | 73 | 66 | 77 | 57 | e65 | | 27 | |
| e55 | e50 | e44 | 56 | 78 | 72 | 62 | 76 | 53 | e64 | | 28 | | | e54 | e50 | e46 | 96 | 78 | 73 | 67 | 64 | 55 | e62 | | 29 | | | e54 | e50 | | 98 | 77 | 78 | 72 | 60 | 61 | e60 | | 30 | | | e56 | e53 | | 68 | 76 | 77 | 66 | 64 | 55 | e59 | | 31 | | | e53 | e55 | | 59 | | 81 | | 73 | 52 | | | TOTAL | | | 1,756 | 1,646 | 1,308 | 2,042 | 2,543 | 2,752 | 2,300 | 1,963 | 1,904 | 1,871 | | MEAN | | | 56.6 | 53.1 | 46.7 | 65.9 | 84.8 | 88.8 | 76.7 | 63.3 | 61.4 | 62.4 | | MAX | | | 71 | 57 | 58 | 140 | 219 | 148 | 134 | 77 | 107 | 125 | | MIN | | | 50 | 50 | 44 | 44 | 41 | 70 | 60 | 57 | 52 | 47 | | STATIST | ICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 2003 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN | | | 56.6 | 53.1 | 46.7 | 65.9 | 84.8 | 88.8 | 76.7 | 63.3 | 61.4 | 62.4 | | MAX | | | 56.6 | 53.1 | 46.7 | 65.9 | 84.8 | 88.8 | 76.7 | 63.3 | 61.4 | 62.4 | | (WY) | | | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | | MIN | | | 56.6 | 53.1 | 46.7 | 65.9 | 84.8 | 88.8 | 76.7 | 63.3 | 61.4 | 62.4 | | (WY) | | | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | # SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS FOR 2003 WATER YEAR (DECEMBER-SEPTEMBER) | 20,085 | | |--------|--------| | 66.1 | | | 219 | Apr 16 | | (a)41 | Apr 4 | | (a)44 | Feb 12 | | 249 | Apr 16 | | 4.59 | Apr 16 | | 36 | Apr 8 | | 93 | • | | 60 | | | 46 | | | | | | | | (a) Ice affected (e) Estimated due to ice effect or missing record # 04077630 RED RIVER, AT MORGAN ROAD, NEAR MORGAN, WI LOCATION.--Lat $44^{\circ}53'53"$, long $88^{\circ}50'39"$, in NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.19, T.28 N., R.14 E., Shawano County, Hydrologic Unit 04030202, on left bank 1.7 mi northwest of Morgan, 1.1 mi downstream of the confluence with the West Branch of the Red River, and 2.2 mi upstream of Smith Creek. DRAINAGE AREA.--114 mi². PERIOD OF RECORD .-- October 1992 to current year. REVISED RECORDS.--WDR WI-95-1: 1993(M). GAGE.--Water-stage recorder. Elevation of gage is 990 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | REMARI | KSRecord | - | | estimated dail | R SECOND | | YEAR OCTO | - | - | | ion. | | |--|--|--|--|--|---|---|--|--|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 123 | 135 | e110 | e97 | e70 | e70 | 151 | 146 | 144 | 112 | 141 | 82 | | 2 | 124 | 132 | e110 | e95 | e70 | e70 | 155 | 143 | 133 | 108 | 165 | 81 | | 3 | 116 | 130 | e110 | e90 | e70 | e70 | 147 | 141 | 127 | 108 | 163 | 79 | | 4 | 160 | 127 | e110 | e90 | e70 | e68 | 132 | 138 | 122 | 107 | 139 | 81 | | 5 | 294 | 128 | e110 | e90 | e65 | e68 | e130 | 177 | 121 | 106 | 121 | 79 | | 6 | 302 | 130 | e110 | e96 | e60 | e68 | e140 | 284 | 121 | 106 | 109 | 79 | | 7 | 273 | 131 | e100 | e92 | e60 | e70 | e140 | 302 | 139 | 144 | 103 | 78 | | 8 | 231 | 130 | e110 | e92 | e60 | e70 | 132 | 282 | 158 | 116 | 102 | 78 | | 9 | 197 | 128 | e110 | e90 | e60 | e71 | 135 | 240 | 182 | 107 | 97 | 78 | | 10 | 167 | 130 | e110 | e85 | e60 | e75 | 141 | 227 | 217 | 113 | 95 | 77 | | 11 | 150 | 135 | e110 | e80 | e60 | e77 | 155 | 257 | 276 | 124 | 105 | 77 | | 12 | 144 | 135 | 118 | e72 | e60 | e79 | 165 | 324 | 259 | 115 | 99 | 89 | | 13 | 140 | 131 | 119 | e68 | e60 | e83 | 167 | 316 | 210 | 111 | 95 | 159 | | 14 | 137 | 127 | 120 | e66 | e60 | e85 | 161 | 269 | 157 | 107 | 93 | 206 | | 15 | 132 | 125 | e110 | e63 | e60 | e88 | e250 | 214 | 140 | 104 | 94 | 191 | | 16 | 128 | 123 | e110 | e61 | e60 | e110 | e390 | 177 | 130 | 106 | 89 | 157 | | 17 | 125 | 122 | 115 | e60 | e60 | e210 | e600 | 163 | 124 | 103 | 87 | 113 | | 18 | 127 | e120 | 122 | e59 | e68 | e380 | e490 | 157 | 122 | 112 | 85 | 96 | | 19 | 133 | e120 | 137 | e58 | e70 | e350 | 399 | 157 | 117 | 103 | 86 | 95 | | 20 | 137 | e120 | 135 | e58 | e70 | e270 | 349 | 168 | 113 | 98 | 85 | 99 | | 21 | 139 | 119 | e120 | e57 | e70 | 232 | 326 | 164 | 111 | 97 | 84 | 95 | | 22 | 141 | 119 | e110 | e57 | e70 | 212 | 281 | 153 | 108 | 99 | 82 | 118 | | 23 | 145 | 118 | e100 | e57 | e70 | 203 | 235 | 146 | 108 | 96 | 80 | 125 | | 24 | 145 | 118 | e100 | e57 | e69 | 205 | 199 | 141 | 112 | 94 | 83 | 114 | | 25 | 144 | 112 | e100 | e57 | e69 | 190 | 182 | 137 | 115 | 92 | 84 | 103 | | 26
27
28
29
30
31 | 157
167
167
154
144
139 | e120
e120
e120
122
e120 | e100
e110
e100
e100
e100
e97 | e56
e57
e60
e62
e70
e70 | e70
e70
e70
 | 164
144
178
249
246
177 | 166
159
158
153
151 | 131
129
130
130
123
140 | 113
109
111
118
119 | 99
112
104
96
107
118 | 85
81
81
86
87
83 | 100
107
109
106
110 | | TOTAL | 4,982 | 3,747 | 3,423 | 2,222 | 1,831 | 4,632 | 6,539 | 5,806 | 4,236 | 3,324 | 3,069 | 3,161 | | MEAN | 161 | 125 | 110 | 71.7 | 65.4 | 149 | 218 | 187 | 141 | 107 | 99.0 | 105 | | MAX | 302 | 135 | 137 | 97 | 70 | 380 | 600 | 324 | 276 | 144 | 165 | 206 | | MIN | 116 | 112 | 97 | 56 | 60 | 68 | 130 | 123 | 108 | 92 | 80 | 77 | | CFSM | 1.41 | 1.10 | 0.97 | 0.63 | 0.57 | 1.31 | 1.91 | 1.64 | 1.24 | 0.94 | 0.87 | 0.92 | | IN. | 1.63 | 1.22 | 1.12 | 0.73 | 0.60 | 1.51 | 2.13 | 1.89 | 1.38 | 1.08 | 1.00 | 1.03 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MO
126
175
(1996)
79.6
(2000) | DNTHLY M
128
221
(1993)
84.6
(2000) | EAN DATA
106
164
(1993)
73.7
(1999) | 92.5
126
(1993)
63.5
(1999) | ER YEARS
96.8
124
(1998)
65.4
(2003) | 1993 - 2003
127
170
(1998)
97.7
(2001) | , BY WATE
209
331
(1996)
111
(2000) | R YEAR (W
164
254
(1993)
106
(2000) | 7Y) 164 313 (1996) 97.0 (1999) | 126
217
(1996)
78.8
(1995) | 122
209
(1995)
86.6
(1999) | 115
160
(1993)
72.7
(1999) | | SUMMARY STATISTICS ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | | FOR 2002 CA
47,089
129
366
(a)76
(a)77
1.
15,
205
118
82 | Apr
Feb
Feb | 13
13,16,17 | 46,98
12
(e)60
(a)5
(a)5
(c) | 99 00 Apr 166 Jar 17 Jar 100 Apr 11.13 15.33 | r 17
n 26
n 21
r 17
r 17 | 1
1
1
2
(a)
(a)
1,(d) |)56 (b)Ja
)57 Ja
)60 Ju
8.88 Ju | 3 - 2003
1996
1999
n 18, 1996
n 11, 1999
n 21, 2003
n 18, 1996
c 13, 1997 | ⁽a) Ice affected ⁽b) Also occurred Jan. 26, 2003 (c) Unknown ⁽d) Result of freezeup ⁽e) Estimated due to ice effect or missing record # 0407809265 MIDDLE BRANCH EMBARRASS RIVER NEAR WITTENBERG, WI $LOCATION.--Lat~44^{\circ}49^{\circ}31^{"},~long~89^{\circ}07^{\prime}05^{"},~in~NW~\frac{1}{4}~NW~\frac{1}{4}~sec.13,~T.27~N.,~R.11~E.,~Shawano~County,~Hydrologic~Unit~04030202,~on~right~bank~60~ft~upstream~from~Cardinal~Lane,~2.5~mi~east~of~Wittenberg,~and~2.5~mi~upstream~from~Wilson~Creek.$ DRAINAGE AREA.--76.3 mi². # WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1989 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,118.24 ft above NGVD of 1929 (levels by Wisconsin Department of Transportation). REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Flow affected by pumping for irrigation many times during summer months. Gage-height telemeter at station. | | | DISCHA | ARGE, CUI | BIC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 | ТО ЅЕРТЕМ | IBER 2003 | | | |--|--|---|--|---|--|---|---|---|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 55
62
53
136
234 | 71
53
43
68
56 | e35
e31
e33
e31
e30 | e26
e25
e25
e26
e27 |
e19
e19
e18
e17
e17 | e18
e18
e18
e18
e18 | 99
97
91
65
50 | 80
76
72
68
108 | 90
73
64
59
56 | 41
38
37
37
35 | 35
43
47
68
47 | 22
21
21
21
21 | | 6
7
8
9
10 | 276
293
225
160
122 | 56
55
54
55
60 | e30
e30
e30
e31
e31 | e28
e27
e26
e25
e24 | e16
e15
e16
e16
e16 | e18
e18
e18
e19 | e52
e53
e56
e57
60 | 207
254
232
187
177 | 54
54
74
115
150 | 35
36
35
34
35 | 38
35
35
33
32 | 21
21
21
21
21 | | 11
12
13
14
15 | 97
84
77
112
55 | 64
85
61
41
60 | e30
e30
e30
e30
e29 | e23
e22
e20
e19
e18 | e16
e16
e16
e16
e16 | e19
e20
e21
e22
e30 | 78
100
93
83
96 | 238
298
349
286
191 | 209
231
182
104
77 | 38
38
35
33
32 | 33
30
29
28
27 | 21
27
60
82
76 | | 16
17
18
19
20 | 64
61
41
56
76 | 57
45
35
31
37 | e30
e31
e33
e34
e33 | e18
e18
e17
e17 | e16
e17
e17
e19
e19 | e50
e100
e160
e160
e140 | 367
521
537
365
290 | 130
110
98
93
103 | 64
57
53
50
39 | 32
31
31
30
29 | 27
27
26
26
26 | 52
39
33
31
29 | | 21
22
23
24
25 | 71
77
81
59
74 | 43
43
43
41 | e32
e31
e30
e29
e28 | e17
e17
e17
e16
e17 | e19
e18
e18
e17
e18 | e120
e110
116
116
104 | 279
256
197
138
120 | 110
93
82
75
70 | 31
36
37
38
44 | 29
29
28
27
27 | 25
23
20
20
20 | 29
36
45
42
35 | | 26
27
28
29
30
31 | 99
127
132
96
83
73 | 39
39
38
38
e37 | e28
e27
e26
e26
e26
e26 | e17
e18
e18
e18
e19
e19 | e19
e19
e19
 | 84
68
104
160
164
126 | 109
101
95
77
82 | 66
62
60
59
62
82 | 46
41
42
48
46 | 27
27
27
27
26
27 | 20
21
22
23
23
23
22 | 33
35
37
36
35 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3,311
107
293
41
1.40
1.61 | 1,491
49.7
85
31
0.65
0.73 | 931
30.0
35
26
0.39
0.45 | 641
20.7
28
16
0.27
0.31 | 484
17.3
19
15
0.23
0.24 | 2,175
70.2
164
18
0.92
1.06 | 4,664
155
537
50
2.04
2.27 | 4,178
135
349
59
1.77
2.04 | 2,264
75.5
231
31
0.99
1.10 | 993
32.0
41
26
0.42
0.48 | 931
30.0
68
20
0.39
0.45 | 1,024
34.1
82
21
0.45
0.50 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 53.3
107
(2003)
23.2
(1990) | 53.1
128
(1993)
27.2
(1990) | EAN DATA
36.6
73.3
(1993)
13.5
(1990) | A FOR WATE
27.8
45.7
(1996)
15.4
(2000) | 31.0
44.1
(1998)
17.3
(2003) | 1990 - 2003,
65.5
116
(1990)
35.9
(2001) | 139
241
(1996)
40.4
(1990) | R YEAR (W
95.1
167
(1993)
46.7
(1998) | 89.9
222
(1993)
31.6
(1995) | 48.1
96.3
(1996)
21.9
(1995) | 46.0
100
(1995)
25.1
(1998) | 50.3
97.9
(1992)
23.4
(1999) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMU ANNUAI 10 PERC: 50 PERC: | L MEAN
F ANNUAL
F ANNUAL
F DAILY M
F DAILY M | . MEAN MEAN IEAN EAN OAY MINIMITAGE (CFSM) (INCHES) EDS EDS | | FOR 2002 CA
24,257
66.
341
(a)18
(a)19
0.
11.
149
44
23 | 5
Apr
Jan
Jan
87
83 | 14
5-8 | 23,08
6
53
(a)1
(a)1
69 | 53.3
37 Ap
15 Fet
16 Fet
103 Ap
10.83
11.26 | r 18
5 7
5 6
r 17
r 17 | (a)
(a)
(a)
(b) |)11 Dec 2
)12 Dec
)05 Ju | 90 - 2003
1993
1999
nn 19, 1996
22,23, 1989
ec 17, 1989
nn 19, 1996
nn 19, 1996 | ⁽b) Recorded gage height, 5.09 ft, result of drawdown; outside crest-gage peak 5.29 ft (e) Estimated due to ice effect or missing record # 0407809265 MIDDLE BRANCH EMBARRASS RIVER NEAR WITTENBERG, WI—Continued # WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: December 1989 to current year. INSTRUMENTATION .-- Continuous water temperature recorder since December 1989. Sensor located at midstream. REMARKS.--Records represent water temperature at sensor within 0.5°C. # EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 31.0°C, Aug. 7, 8, 2001; minimum, 0.0°C, on many days during winter. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 28.0°C, July 5 and Aug. 20; minimum, 0.0°C, many days in winter. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |-------------|------|--------|------|-----|--------|------------|-----|--------|------|-----|--------|------| | | | ОСТОВЕ | 2 | N | OVEMBE | ER | Б | ECEMBE | ER | J | ANUARY | Y | | 1 | 17.0 | 14.0 | 15.5 | 3.0 | 1.5 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2 | 16.0 | 14.0 | 15.0 | 3.0 | 1.0 | 2.0 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 2
3
4 | 14.5 | 13.0 | 13.5 | 3.5 | 1.5 | 2.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | | 14.0 | 12.5 | 13.0 | 3.5 | 1.5 | 2.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5 | 12.5 | 11.5 | 12.0 | 2.5 | 2.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 6 | 11.5 | 10.0 | 11.0 | 3.5 | 1.5 | 2.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 7 | 10.0 | 8.5 | 9.5 | 4.0 | 1.5 | 2.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 8 | 9.5 | 8.0 | 9.0 | 5.0 | 2.5 | 4.0 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 9 | 10.5 | 8.5 | 9.5 | 6.0 | 4.0 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 10 | 9.5 | 8.5 | 9.0 | 7.5 | 5.5 | 6.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 11 | 10.5 | 8.5 | 9.5 | 6.5 | 4.5 | 5.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12 | 10.5 | 9.5 | 10.0 | 5.0 | 3.5 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 13 | 9.5 | 7.5 | 8.5 | 4.0 | 2.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 14 | 8.0 | 6.5 | 7.5 | 3.5 | 1.0 | 2.5
1.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 15 | 9.0 | 6.0 | 7.5 | 3.0 | 0.5 | 1.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 16 | 7.5 | 4.5 | 6.0 | 3.0 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 17 | 6.5 | 4.5 | 5.5 | 2.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 18 | 4.5 | 3.0 | 4.0 | 2.0 | 0.0 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 19 | 4.5 | 3.5 | 4.0 | 2.5 | 0.0 | 1.0 | 0.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 20 | 5.0 | 3.0 | 4.0 | 2.5 | 0.0 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 21 | 4.0 | 2.0 | 3.0 | 2.5 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 22 | 3.0 | 2.0 | 2.5 | 2.5 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 23 | 4.0 | 2.0 | 2.5 | 3.0 | 1.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 24 | 4.5 | 2.5 | 3.5 | 2.0 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 25 | 4.0 | 3.0 | 3.5 | 1.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 26 | 4.5 | 3.5 | 4.0 | 1.5 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 27 | 4.0 | 3.0 | 3.5 | 1.5 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 28 | 4.5 | 3.0 | 3.5 | 1.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 29 | 5.0 | 3.5 | 4.0 | 2.0 | 0.5 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 30 | 5.0 | 3.5 | 4.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 31 | 5.0 | 3.0 | 4.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | MONTH | 17.0 | 2.0 | 7.2 | 7.5 | 0.0 | 2.1 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | # 0407809265 MIDDLE BRANCH EMBARRASS RIVER NEAR WITTENBERG, WI—Continued ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003}$ | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | |---|--|--|--|--|---|--|--|---|--|--|--
--| | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 4.5
5.0
3.0
1.5
4.0 | 1.0
2.0
1.0
0.0
0.0 | 2.5
3.5
2.0
0.5
1.5 | 14.5
15.0
15.0
13.5
11.5 | 10.5
10.0
10.0
10.0
8.5 | 12.0
12.0
12.0
11.5
10.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 4.5
2.5
6.5
7.5
9.0 | 0.0
0.0
0.0
0.0
1.5 | 1.5
1.0
2.5
3.0
5.0 | 9.0
8.5
10.5
11.0
11.5 | 8.0
8.0
8.0
10.0
9.0 | 8.5
8.0
9.5
10.5
10.5 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 9.5
9.0
9.0
11.5
13.0 | 4.0
4.5
5.0
5.5
8.0 | 6.0
6.5
6.5
8.5
10.5 | 11.5
11.0
13.5
14.0
14.0 | 9.5
9.0
11.0
13.0
12.0 | 10.5
10.0
12.0
13.5
13.0 | | 16
17
18
19
20 | 0.5
0.5
0.5
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 10.0
1.5
2.0
3.5
5.0 | 1.5
0.0
1.0
2.0
3.5 | 6.0
1.0
1.5
2.5
4.5 | 15.0
15.5
16.0
15.5
15.5 | 12.5
13.0
13.0
15.0
13.0 | 13.5
14.0
14.5
15.0
14.5 | | 21
22
23
24
25 | 0.5
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
1.0
1.5
2.5
3.5 | 0.0
0.0
0.0
1.0
0.0 | 0.0
0.0
0.5
1.5 | 5.0
6.0
8.0
10.0
12.5 | 4.5
3.5
6.0
7.0
8.5 | 4.5
5.0
7.0
8.5
10.0 | 15.0
15.0
16.0
17.5
19.0 | 12.5
11.5
11.0
12.0
13.0 | 13.5
13.0
13.0
14.5
15.5 | | 26
27
28
29
30
31 | 0.5
0.5
0.5
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 4.0
1.0
1.5
2.0
2.5
3.0 | 0.5
0.0
0.0
0.0
0.0
0.0 | 1.5
0.5
1.0
0.5
1.0
1.5 | 12.5
14.5
15.5
16.0
12.5 | 9.0
9.5
11.5
11.5
11.0 | 10.5
12.0
13.0
13.5
12.0 | 19.0
20.5
18.5
20.5
17.5
18.0 | 14.0
14.5
16.0
15.0
15.5
14.5 | 16.0
17.5
17.0
17.5
16.5
16.0 | | 5. | | | | | | | | | | | | | | MONTH | 0.5 | 0.0 | 0.0 | 4.0 | 0.0 | 0.3 | 16.0 | 0.0 | 5.8 | 20.5 | 8.0 | 13.1 | | MONTH | 0.5 | 0.0
JUNE | 0.0 | 4.0 | 0.0
JULY | 0.3 | 16.0 | 0.0
AUGUST | | | 8.0
EPTEMBI | | | MONTH 1 2 3 4 5 | 0.5
17.5
17.5
18.0
19.5
20.0 | | 0.0
15.5
15.5
16.0
16.5
17.5 | 24.0
24.5
27.0
26.5
28.0 | | 20.5
21.0
23.0
23.5
24.0 | 25.0
22.0
23.5
23.0
24.5 | | | | | | | 1
2
3
4 | 17.5
17.5
18.0
19.5 | JUNE
13.5
13.5
14.5
14.5 | 15.5
15.5
16.0
16.5 | 24.0
24.5
27.0
26.5 | JULY
17.5
18.5
20.0
21.5 | 20.5
21.0
23.0
23.5 | 25.0
22.0
23.5
23.0 | 19.5
20.0
20.0
20.0
20.0 | 22.0
21.0
21.5
21.0 | SE | 16.5
16.0
17.5
16.5 | 19.0
19.0
19.0
19.0
18.5 | | 1
2
3
4
5
6
7
8
9 | 17.5
17.5
18.0
19.5
20.0
17.5
17.5
15.5 | JUNE 13.5 13.5 14.5 14.5 15.5 15.0 14.5 14.0 | 15.5
15.5
16.0
16.5
17.5
16.5
15.5
15.0
15.0 | 24.0
24.5
27.0
26.5
28.0
23.5
26.0
23.0
21.0 | JULY 17.5 18.5 20.0 21.5 21.5 21.0 20.0 20.0 18.5 | 20.5
21.0
23.0
23.5
24.0
22.0
22.5 | 25.0
22.0
23.5
23.0
24.5
25.0
23.5
24.0
25.5 | 19.5
20.0
20.0
20.0
19.0
20.0
20.0
20.0
19.5
19.0 | 22.0
21.0
21.5
21.0
21.5
22.0
21.5
21.5
22.0 | 22.5
22.5
21.5
21.5
21.5
22.5
23.0
23.5
24.0 | 16.5
16.0
17.5
16.5
14.5
15.5
17.5
18.0
19.5 | 19.0
19.0
19.0
18.5
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 17.5
17.5
18.0
19.5
20.0
17.5
17.5
16.0
14.0
15.0
16.5
19.0
20.5 | JUNE 13.5 13.5 14.5 14.5 15.5 15.0 14.5 14.0 14.0 13.0 14.5 16.0 16.5 | 15.5
15.5
16.0
16.5
17.5
16.5
15.0
15.0
14.0
14.0
15.5
17.0
18.5 | 24.0
24.5
27.0
26.5
28.0
23.5
26.0
23.0
21.0
19.0
21.0
23.5
24.5
23.0 | JULY 17.5 18.5 20.0 21.5 21.5 21.0 20.0 20.0 18.5 18.0 17.0 17.5 18.5 | 20.5
21.0
23.0
23.5
24.0
22.5
21.0
19.5
18.5
19.5
20.5
20.5 | 25.0
22.0
23.5
23.0
24.5
25.0
23.5
24.0
25.5
24.0
23.5
24.5
24.5
25.5
26.0 | AUGUST 19.5 20.0 20.0 20.0 19.0 20.0 19.5 19.0 19.0 20.0 18.5 18.5 19.5 | 22.0
21.0
21.5
21.5
21.5
22.0
21.5
22.0
21.5
21.5
22.0
21.5
21.0
22.0 | 22.5
22.5
21.5
21.5
21.5
22.5
23.0
23.5
24.0
24.0
24.5
21.0
20.0
19.0 | 16.5
16.0
17.5
16.5
14.5
15.5
17.5
18.0
19.5
19.0
19.0
19.0
19.0 | 19.0
19.0
19.0
18.5
18.0
19.0
20.0
21.0
21.5
21.5
20.0
19.5
18.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 17.5
17.5
18.0
19.5
20.0
17.5
17.5
16.0
14.0
15.0
16.5
19.0
20.5
22.0
23.5
24.0
24.5
24.0 | JUNE 13.5 13.5 14.5 14.5 15.5 15.0 14.5 14.0 14.0 13.0 14.5 16.0 16.5 17.0 17.5 18.0 19.0 18.5 | 15.5
15.5
16.0
16.5
17.5
16.5
15.5
15.0
14.0
14.0
15.5
17.0
18.5
19.0
20.0
20.5
21.5
20.5 | 24.0
24.5
27.0
26.5
28.0
23.5
26.0
23.0
21.0
19.0
21.0
23.5
24.5
23.0
24.5
26.0
22.0
25.0
25.5 | JULY 17.5 18.5 20.0 21.5 21.0 20.0 20.0 18.5 18.0 17.0 17.5 18.5 19.5 | 20.5
21.0
23.0
23.5
24.0
22.5
21.0
19.5
18.5
19.5
20.5
20.5
21.5
22.0
21.0
21.0
21.0 | 25.0
22.0
23.5
23.0
24.5
25.0
23.5
24.0
25.5
24.0
23.5
24.5
25.5
26.0
27.0
27.5
27.5
27.5 | AUGUST 19.5 20.0 20.0 20.0 19.0 20.0 19.5 19.0 19.0 20.0 18.5 19.5 20.5 22.0 21.0 22.0 | 22.0
21.0
21.5
21.0
21.5
22.0
21.5
22.0
21.5
22.0
22.5
23.5
24.0
24.0
24.5 | 22.5
22.5
21.5
21.5
21.5
21.5
22.5
23.0
23.5
24.0
24.0
24.5
21.0
20.0
19.0
17.5 | 16.5
16.0
17.5
16.5
14.5
15.5
17.5
18.0
19.5
19.0
19.0
19.0
19.0
15.5
14.5
14.5 | 19.0
19.0
19.0
19.0
18.5
18.0
19.0
20.0
21.0
21.5
21.5
20.0
19.5
18.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 17.5
17.5
18.0
19.5
20.0
17.5
17.5
15.5
16.0
14.0
15.0
20.5
22.0
23.5
24.0
24.5
24.0
24.5
25.0
24.5
25.5 | JUNE 13.5 13.5 14.5 14.5 14.5 15.5 15.0 14.5 14.0 14.0 13.0 14.5 16.0 16.5 17.0 17.5 18.0 19.0 18.5 17.5 16.0 17.5 18.5 20.0 | 15.5
15.5
16.0
16.5
17.5
16.5
15.0
15.0
14.0
14.0
14.0
15.5
17.0
18.5
19.0
20.5
21.5
20.5
20.5
20.5
21.0
22.0 | 24.0
24.5
27.0
26.5
28.0
23.5
26.0
23.0
21.0
19.0
21.0
23.5
24.5
23.0
24.5
25.0
25.5
25.5
25.5
23.5
24.5
23.5
24.5 | JULY 17.5 18.5 20.0 21.5 21.5 21.0 20.0 20.0 18.5 18.0 17.0 17.5 18.5 19.5 19.5 20.0 17.5 17.5 19.5 20.0 18.5 17.5 17.5 19.5 | 20.5
21.0
23.0
23.5
24.0
22.5
21.0
19.5
18.5
19.5
20.5
20.5
21.5
22.0
21.0
21.0
22.0
21.0
21.0
22.0
21.0 | 25.0
22.0
23.5
23.0
24.5
25.0
23.5
24.0
25.5
24.0
23.5
24.5
25.5
26.0
27.0
27.5
27.5
27.5
27.5
27.5
27.0
24.0
26.5 | AUGUST 19.5 20.0 20.0 20.0 19.0 20.0 19.5 19.0 19.0 20.0 18.5 19.5 20.5 22.0 21.0 22.0 23.5 21.5 19.5 19.5 | 22.0
21.0
21.5
21.5
21.5
22.0
21.5
22.0
21.5
21.5
22.0
22.5
23.5
24.0
24.0
24.5
25.0
25.0
25.0
26.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27 | 22.5
22.5
21.5
21.5
21.5
21.5
22.5
23.0
23.5
24.0
24.0
24.5
21.0
20.0
19.0
17.5
18.0
19.0
20.0
17.0
17.5
17.0
16.0
15.5
14.5 | 16.5
16.0
17.5
16.5
14.5
15.5
17.5
18.0
19.5
19.0
19.0
19.0
19.0
15.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | 19.0
19.0
19.0
18.5
18.0
19.0
20.0
21.5
21.5
21.5
20.0
19.5
18.5
16.5
16.5
17.5
16.5
15.0
15.0
15.0
14.0
13.5 | # 04078500 EMBARRASS RIVER NEAR EMBARRASS, WI LOCATION.--Lat 44°43'29", long 88°44'10", in SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec. 18, T.26 N., R.15 E., Shawano County, Hydrologic Unit 04030202, on right bank 40 ft downstream from bridge on county road, 1.3 mi downstream from Mill Creek, and 4.0 mi northwest of Embarrass. DRAINAGE AREA.--384 mi². PERIOD OF RECORD.--June 1919 to September 1985, December 1993 to current year. REVISED RECORDS.--WSP 1337: 1920-26(M), 1928,
1929-30(M), 1933-34, 1936-37, 1938(M), 1940. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 803.95 ft above NGVD of 1929. Prior to Aug. 23, 1938, nonrecording gage at same site and datum. Aug. 23, 1938 to May 8, 1984, at site 40 ft upstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Slight diurnal fluctuation caused by powerplants above station. Gage-height telemeter at station. | | | DISCH | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | YEAR OCTO
VALUES | OBER 2002 | TO SEPTEM | IBER 2003 | | | |--|--|--|--|--|--|---|--|--|---|--|--|---| | DAY 1 2 3 4 5 | OCT 205 214 219 251 448 | NOV
316
292
277
235
251 | DEC
e150
e150
e150
e150
e150 | JAN
e140
e130
e130
e140
e140 | FEB
e90
e89
e87
e85
e83 | MAR
e95
e95
e97
e98
e99 | APR
590
501
477
406
301 | MAY
394
393
377
349
450 | JUN
462
418
366
323
285 | JUL
233
206
196
193
180 | AUG
306
333
316
285
273 | SEP
104
101
98
93
92 | | 6 | 777 | 257 | e150 | e140 | e83 | e99 | 279 | 971 | 270 | 171 | 242 | 90 | | 7 | 809 | 260 | e160 | e140 | e83 | e98 | e270 | 1,210 | 307 | 167 | 209 | 91 | | 8 | 854 | 262 | e160 | e130 | e83 | e98 | e280 | 1,130 | 411 | 171 | 190 | 92 | | 9 | 724 | 258 | e160 | e120 | e83 | e99 | 286 | 992 | 509 | 171 | 174 | 92 | | 10 | 525 | 257 | e170 | e120 | e83 | e110 | 294 | 925 | 668 | 182 | 167 | 91 | | 11 | 414 | 286 | e170 | e110 | e83 | e110 | 322 | 1,060 | 1,110 | 208 | 175 | 90 | | 12 | 360 | 289 | e170 | e100 | e83 | e110 | 371 | 1,390 | 1,170 | 220 | 183 | 97 | | 13 | 319 | 277 | e160 | e100 | e84 | e120 | 417 | 1,380 | 959 | 196 | 169 | 176 | | 14 | 303 | 283 | e160 | e97 | e85 | e150 | 402 | 1,170 | 687 | 175 | 149 | 383 | | 15 | 286 | 238 | e160 | e93 | e86 | e190 | 415 | 981 | 443 | 166 | 138 | 489 | | 16 | 285 | 220 | e170 | e90 | e87 | e290 | 879 | 664 | 370 | 160 | 130 | 402 | | 17 | 215 | 225 | e150 | e90 | e88 | e600 | 1,830 | 565 | 297 | 156 | 126 | 270 | | 18 | 254 | 189 | e150 | e87 | e90 | e1,200 | 2,150 | 476 | 279 | 152 | 121 | 196 | | 19 | 227 | 202 | e150 | e86 | e97 | e900 | 1,840 | 449 | 256 | 148 | 112 | 174 | | 20 | 245 | 203 | e140 | e85 | e100 | e780 | 1,480 | 461 | 237 | 143 | 114 | 154 | | 21 | 303 | 192 | e140 | e85 | e100 | e630 | 1,210 | 519 | 221 | 140 | 117 | 144 | | 22 | 322 | 198 | e140 | e85 | e97 | e580 | 1,160 | 481 | 198 | 140 | 110 | 175 | | 23 | 336 | 201 | e130 | e84 | e96 | 671 | 986 | 394 | 189 | 138 | 106 | 225 | | 24 | 397 | 198 | e140 | e84 | e95 | 673 | 781 | 381 | 189 | 135 | 104 | 222 | | 25 | 422 | 184 | e140 | e87 | e95 | 612 | 622 | 344 | 199 | 130 | 101 | 201 | | 26
27
28
29
30
31 | 421
538
526
493
405
359 | 157
e160
e180
e160
e150 | e140
e140
e140
e140
e140
e140 | e90
e90
e90
e90
e90 | e95
e95
e95
 | 501
464
522
833
871
670 | 554
515
477
457
433 | 329
313
302
296
292
373 | 205
199
209
252
263 | 131
131
130
125
131
224 | 100
98
97
109
114
109 | 176
172
178
178
170 | | TOTAL | 12,456 | 6,857 | 4,660 | 3,233 | 2,500 | 12,465 | 20,985 | 19,811 | 11,951 | 5,149 | 5,077 | 5,216 | | MEAN | 402 | 229 | 150 | 104 | 89.3 | 402 | 700 | 639 | 398 | 166 | 164 | 174 | | MAX | 854 | 316 | 170 | 140 | 100 | 1,200 | 2,150 | 1,390 | 1,170 | 233 | 333 | 489 | | MIN | 205 | 150 | 130 | 84 | 83 | 95 | 270 | 292 | 189 | 125 | 97 | 90 | | CFSM | 1.05 | 0.60 | 0.39 | 0.27 | 0.23 | 1.05 | 1.82 | 1.66 | 1.04 | 0.43 | 0.43 | 0.45 | | IN. | 1.21 | 0.66 | 0.45 | 0.31 | 0.24 | 1.21 | 2.03 | 1.92 | 1.16 | 0.50 | 0.49 | 0.51 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 7ICS OF MO
264
1,324
(1987)
86.8
(1949) | ONTHLY M
284
932
(1986)
89.5
(1934) | EAN DATA
194
908
(1987)
67.3
(1934) | FOR WATE
150
377
(1939)
52.8
(1959) | ER YEARS
157
517
(1986)
57.8
(1959) | 1919 - 2003
386
1,386
(1973)
98.5
(1931) | 751
1,892
(1922)
151
(1931) | R YEAR (W
441
1,324
(1973)
148
(1931) | 358
1,105
(1943)
111
(1977) | 217
826
(1978)
75.5
(1932) | 188
579
(1928)
44.5
(1931) | 238
886
(1938)
59.5
(1933) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | | Apr
Jan
Jan
0.74
0.06 | 13
18,19 | 110,36
30
2,15
(a)8
(a)8
2,20 | 50 Ap. 53 Fet 53 Fet 50 Ap. 66.97 Ap. 0.79 0.69 | r 18
0 5-12
0 5 5
1 18
r 18 | (b)7,(b) | 24 Au
27 Au
080 Ap | 9 - 2003
1973
1931
or 10, 1922
g 3, 1931
g 2, 1931
or 12, 1965
or 12, 1965 | ⁽a) Ice affected ⁽b) Affected by failure of dam near Pella, 9.2 mi above station (e) Estimated due to ice effect or missing record # 04079000 WOLF RIVER AT NEW LONDON, WI LOCATION.--Lat 44°23'32", long 88°44'25", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.12, T.22 N., R.14 E., Waupaca County, Hydrologic Unit 04030202, on right bank 100 ft downstream from Pearl Street bridge in New London, 0.2 mi downstream from Embarrass River, and at mile 56.3. DRAINAGE AREA.--2,260 mi² PERIOD OF RECORD.--March 1896 to current year. Prior to October 1913 monthly discharges only, published in WSP 1307. REVISED RECORDS.--WSP 1114: 1943(M). WSP 1337: 1931. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 747.94 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 4, 1951, nonrecording gage. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter and data-collection platform at station. COOPERATION .-- Values prior to October 1913 taken from House Document 276, 72nd Congress, First Session (computed by Corps of Engineers). EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of Apr. 16, 1888, reached a stage of 11.6 ft, from information by U.S. Army Corps of Engineers. | D.T.T. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |--|---|---|---|---|--|--|---|--|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 1,130
1,180
1,270
1,380
1,540 | 2,170
2,100
2,010
1,930
1,840 | e1,200
e1,100
e1,000
e960
e960 | e900
e850
e760
e780
e770 | e570
e580
e590
e590
e590 | e660
e660
e670
e680
e680 | 3,280
3,210
3,140
3,060
2,930 | 3,840
3,580
3,340
3,130
3,040 | 2,390
2,440
2,420
2,320
2,180 | 1,570
1,490
1,390
1,290
1,210 | 1,690
1,960
2,150
2,290
2,390 | 780
762
754
722
700 | | | 6
7
8
9
10 | 1,700
1,850
2,000
2,120
2,200 | 1,740
1,690
1,680
1,660
1,650 | e970
e990
e990
e990
e990 | e780
e800
e800
e810
e800 | e590
e580
e570
e570
e570 | e680
e690
e700
e700
e690 | 2,780
2,620
2,430
2,250
2,140 | 3,080
3,160
3,250
3,320
3,400 | 2,010
1,940
1,950
2,070
2,330 | 1,150
1,130
1,090
1,060
1,090 | 2,400
2,380
2,270
2,100
1,910 | 695
689
681
680
681 | | | 11
12
13
14
15 | 2,260
2,300
2,320
2,280
2,240 | 1,640
1,620
1,620
1,620
1,620 | e970
e970
e1,000
e1,000
e1,000 | e780
e740
e680
e670
e660 | e600
e600
e600
e600
e610 | e690
e690
e700
e720
e750 | 2,050
1,960
1,920
1,940
1,970 | 3,620
3,960
4,240
4,430
4,520 | 2,780
3,050
3,220
3,330
3,350 | 1,200
1,270
1,320
1,280
1,210 | 1,720
1,560
1,500
1,430
1,300 | 684
705
809
1,080
1,340 | | | 16
17
18
19
20 | 2,180
2,130
2,080
2,020
1,940
 1,630
1,630
1,590
1,540
1,450 | e1,100
e1,100
e1,000
e1,100
e1,200 | e620
e600
e580
e560
e550 | e610
e610
e610
e610
e620 | e900
e1,100
e1,300
e1,500
e1,900 | 2,150
2,460
2,700
2,890
3,140 | 4,530
4,500
4,400
4,280
4,150 | 3,400
3,420
3,400
3,250
3,010 | 1,130
1,060
1,020
1,010
988 | 1,230
1,140
1,060
1,010
978 | 1,640
1,780
1,790
1,710
1,540 | | | 21
22
23
24
25 | 1,890
1,890
1,920
1,970
2,030 | 1,390
1,390
1,380
1,390
1,370 | e1,200
e1,100
e900
e900
e880 | e550
e540
e510
e510
e520 | e620
e630
e650
e640
e640 | e2,500
e2,700
e2,900
e3,100
3,210 | 3,560
4,220
4,790
5,090
5,170 | 3,960
3,770
3,610
3,460
3,290 | 2,750
2,450
2,080
1,750
1,530 | 967
949
925
918
909 | 957
930
901
884
863 | 1,370
1,230
1,130
1,120
1,170 | | | 26
27
28
29
30
31 | 2,090
2,130
2,160
2,190
2,200
2,200 | 1,290
1,150
e1,100
e1,100
e1,200 | e880
e870
e900
e900
e880
e900 | e500
e500
e500
e510
e520
e550 | e650
e650
e650
 | 3,270
3,320
3,340
3,360
3,370
3,350 | 5,090
4,910
4,670
4,390
4,100 | 3,080
2,870
2,680
2,510
2,330
2,320 | 1,410
1,340
1,310
1,410
1,530 | 903
878
860
869
933
1,280 | 830
807
803
804
791
790 | 1,190
1,220
1,190
1,160
1,170 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 60,790
1,961
2,320
1,130
0.87
1.00 | 47,190
1,573
2,170
1,100
0.70
0.78 | 30,900
997
1,200
870
0.44
0.51 | 20,200
652
900
500
0.29
0.33 | 17,000
607
650
570
0.27
0.28 | 51,480
1,661
3,370
660
0.73
0.85 | 97,010
3,234
5,170
1,920
1.43
1.60 | 109,650
3,537
4,530
2,320
1.57
1.80 | 71,820
2,394
3,420
1,310
1.06
1.18 | 34,349
1,108
1,570
860
0.49
0.57 | 43,828
1,414
2,400
790
0.63
0.72 | 32,172
1,072
1,790
680
0.47
0.53 | | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 1,477
4,761
(1987)
533
(1949) | ONTHLY M
1,609
4,738
(1986)
617
(1934) | 1,222
2,892
(1993)
555
(1934) | A FOR WATE
950
2,149
(1960)
523
(1959) | R YEARS
929
2,003
(1984)
523
(1936) | 1896 - 2003
2,123
7,566
(1973)
679
(1964) | 3,936
9,169
(1922)
1,157
(1931) | 2 YEAR (W
2,784
7,452
(1960)
901
(1931) | Y) 2,165 5,764 (1993) 595 (1988) | 1,476
5,005
(1993)
581
(1988) | 1,145
2,845
(1924)
443
(1933) | 1,330
4,544
(1938)
429
(1933) | | | SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | | | FOR 2002 CA
654,949
1,794 | | | 616,389
1,689 |) | | 1,7
3,2
8 | YEARS 18
768
200
866 | 1973
1931 | | | HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | IUM | 4,790
721
(a)760
0.
10.
3,470
1,380 | May
Aug
Jan
79
78 | 11 | 3,330
1,300 |) (b)Jan
7 Jan
).75
).15
) | | (c)
3,5 | 216 Au
337 Se | pr 13, 1922
ug 27, 1931
ep 3, 1933
pr 3, 1979 | | | | 90 PERCI | ENT EXCE | EDS | | 832 | | | 620 |) | | 7 | 710 | | | ⁽a) Ice affect ⁽b) Also occurred Jan. 27, 28 ⁽c) Backwater from ice ⁽e) Estimated due to ice effect or missing record # 04082400 FOX RIVER AT OSHKOSH, WI $LOCATION.--Lat\ 44^{\circ}00'49", long\ 88^{\circ}32'27" \ in\ SW\ {}^{1}\!\!/_{4}\ SW\ {}^{1}\!\!/_{4}\ sec.24, T.18\ N., R.16\ E., Winnebago\ County,\ Hydrologic\ Unit\ 04030201,\ on\ right\ bank\ about\ 400\ ft\ downstream\ from\ U.S.\ Highway\ 45\ and\ State\ Highway\ 26\ bridge,\ at\ Oshkosh.$ DRAINAGE AREA.--5,310 mi². PERIOD OF RECORD.--October 1991 to current year. GAGE.--Acoustical Velocity Meter (AVM) system. Single-path transducer installation. REMARKS.--Records fair, except those for estimated daily discharges and days with negative mean daily flow, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | |--|---|---|---|--|-----------------------------|--|---|--|---|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 3,820 | 5,760 | -1,080 | 1,970 | 1,260 | 1,720 | 6,190 | 6,180 | 5,110 | 2,920 | 2,980 | e1,400 | | | | 2 | 838 | 826 | 1,870 | 2,510 | 1,440 | 1,780 | 3,670 | 6,080 | 5,350 | 3,360 | 1,810 | e1,000 | | | | 3 | 1,830 | 4,050 | 2,120 | 2,030 | 1,720 | 1,250 | 3,450 | 5,680 | 4,020 | 2,520 | 2,910 | 4,750 | | | | 4 | 6,330 | 2,980 | 1,870 | 2,070 | 1,910 | 1,760 | 5,800 | 2,250 | 4,470 | 2,990 | 3,900 | e1,100 | | | | 5 | 736 | 4,410 | 1,890 | 2,550 | 1,490 | 1,490 | 8,140 | 5,800 | 5,180 | 399 | 3,740 | 841 | | | | 6 | 5,870 | 5,080 | 1,640 | 2,500 | 1,880 | 1,330 | 3,920 | 8,890 | 1,950 | 2,730 | 3,290 | 1,730 | | | | 7 | 563 | 2,150 | 2,140 | 2,870 | 1,610 | 1,870 | 2,890 | 6,310 | 5,170 | 4,290 | 2,050 | e1,400 | | | | 8 | 3,340 | 3,820 | 1,910 | 2,980 | 1,790 | 1,870 | 7,760 | 4,620 | 4,800 | 1,370 | 3,230 | e1,300 | | | | 9 | 3,950 | 3,260 | 1,630 | 3,040 | 1,580 | 1,920 | 6,050 | 4,320 | 5,010 | 328 | 3,510 | e1,400 | | | | 10 | 3,000 | 4,510 | 1,980 | 2,520 | 1,780 | 1,400 | 4,880 | 8,710 | 4,790 | 4,910 | 3,220 | e1,500 | | | | 11 | 3,340 | 4,010 | 1,970 | 377 | 1,570 | 1,540 | 4,170 | 13,300 | 6,190 | 3,230 | 1,810 | e1,700 | | | | 12 | 6,160 | 3,510 | 2,240 | 1,430 | 1,540 | 1,600 | 3,480 | 8,750 | 6,360 | 1,290 | 3,080 | 1,880 | | | | 13 | 5,780 | 1,930 | 2,490 | 2,070 | 1,530 | 1,660 | 3,580 | 4,930 | 6,810 | 2,220 | 1,480 | 4,230 | | | | 14 | 48 | 4,050 | 2,030 | 2,030 | 1,550 | 1,580 | 4,090 | 8,020 | 5,510 | 1,760 | 3,000 | 3,760 | | | | 15 | 6,310 | 2,570 | 2,550 | 1,910 | 1,630 | 1,750 | 2,650 | 8,220 | 6,100 | 5,480 | 3,110 | 1,740 | | | | 16 | 3,340 | 3,450 | 1,420 | 1,990 | -2,400 | 7,840 | 5,780 | 1,220 | 442 | 2,170 | | | | | | 17 | 3,240 | 3,670 | 427 | 1,700 | 8,590 | 8,520 | 5,930 | -455 | 1,900 | 37 | | | | | | 18 | 3,030 | 2,020 | 2,610 | 1,930 | 5,880 | 7,610 | 4,510 | 3,490 | 1,020 | 2,010 | | | | | | 19 | 6,800 | 3,640 | 4,130 | 1,720 | 5,660 | 8,250 | 5,290 | 2,330 | 2,170 | 8,450 | | | | | | 20 | 2,170 | 2,470 | 4,180 | 1,770 | 7,440 | 11,400 | 5,600 | 2,070 | 936 | -582 | | | | | | 21 | 2,280 | 4,270 | 3,850 | 1,660 | 1,670 | 4,730 | 8,630 | 5,460 | 4,170 | 2,860 | 5,090 | 564 | | | | 22 | 5,560 | 1,800 | 3,960 | 1,720 | 1,870 | 4,210 | 2,560 | 7,960 | 4,360 | 1,680 | 431 | 7,030 | | | | 23 | 2,890 | 4,640 | 1,300 | 1,610 | 1,670 | 4,280 | 3,980 | 8,050 | 4,060 | 921 | -1,140 | 2,190 | | | | 24 | 3,000 | 3,660 | 1,060 | 1,300 | 1,700 | 5,280 | 6,490 | 6,500 | 3,950 | 2,300 | 4,390 | 3,700 | | | | 25 | 2,570 | 1,760 | 2,510 | 1,610 | 1,360 | 5,810 | 5,060 | 6,980 | 3,190 | 1,190 | 1,820 | 359 | | | | 26
27
28
29
30
31 | 7,180
3,500
1,740
2,860
5,890
6,750 | 588
2,350
2,230
3,400
4,260 | 2,370
2,560
2,690
1,280
3,920
2,870 | 1,600
1,130
1,310
1,070
1,040
1,480 | 1,520
1,580
1,670
 | 4,960
3,740
7,550
6,740
5,330
3,760 | 6,000
7,570
8,560
4,690
6,090 | 6,730
6,360
7,510
5,650
4,950
5,400 | 6,850
603
839
4,480
1,630 | 2,840
528
2,680
1,130
500
1,890 | 1,310
-477
2,360
2,890
700
1,210 | 1,360
5,840
1,360
1,520
3,080 | | | | TOTAL | 114,715 | 97,124 | 68,387 | 57,497 | 44,720 | 95,770 | 155,520 | 217,230 | 138,062 | 66,971 | 68,172 | 68,819 | | | | MEAN | 3,700 | 3,237 | 2,206 | 1,855 | 1,597 | 3,089 | 5,184 | 7,007 | 4,602 | 2,160 | 2,199 | 2,294 | | | | MAX | 7,180 | 5,760 | 4,180 | 3,040 | 1,910 | 7,550 | 8,630 | 13,300 | 6,850 | 5,480 | 5,090 | 8,450 | | | | MIN | 48 | 588 | -1,080 | 377 | 1,260 | 1,250 | -2,400 | 2,250 | 603 | -455 | -1,140 | -582 | | | | CFSM | 0.70 | 0.61 | 0.42 | 0.35 | 0.30 | 0.58 | 0.98 | 1.32 | 0.87 | 0.41 | 0.41 | 0.43 | | | | IN. | 0.80 | 0.68 | 0.48 | 0.40 | 0.31 | 0.67 | 1.09 | 1.52 | 0.97 | 0.47 | 0.48 | 0.48 | | | | STATIST | TICS OF MO | NTHLY M | EAN DATA | A FOR WATE | R YEARS | 1992 - 2003 | , BY WATEI | R YEAR (W | YY) | | | | | | | MEAN | 3,196 | 3,834 | 3,310 | 2,550 | 2,827 | 4,894 | 7,842 | 6,407 | 5,644 | 4,469 | 3,225 | 3,015 | | | | MAX | 6,411 | 6,201 | 6,811 | 3,673 | 3,930 | 6,348 | 12,870 | 11,050 | 11,980 | 13,440 | 5,915 | 5,541 | | | | (WY) | (1996) | (1996) | (1993) | (1992) | (1999) | (1992) | (1993) | (1993) | (1993) | (1993) | (1993) | (2000) | | | | MIN | 1,875 | 2,520 | 2,031 | 1,855 | 1,597 | 3,089 | 3,928 | 3,333 | 2,645 | 1,939 | 2,032 | 1,581 | | | | (WY) | (1999) | (1998) | (1999) | (2003) | (2003) | (2003) | (2000) |
(1998) | (1994) | (1995) | (1998) | (1998) | | | | SUMMA | RY STATIS | | FOR 2002 CA | ALENDAR | YEAR | FOR 2003 | 3 WATER Y | /EAR | WATER | YEARS 199 | 2 - 2003 | | | | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | IUM | 1,472,354
4,034
16,600
-1,470
1,490
0,
10,
7,660
3,330
1,260 | May
Jul
Dec
76
31 | 23 | | 8
0 May
0 Ap;
0 Aug
0.62
8.36
0 | r 16 | 7,2
3,2
18,6
-6,2
5
8,2
3,4 | 268
500 Ju
270 No | 1993
2003
n 25, 1993
v 1, 1992
et 23, 1999 | | | | ⁽e) Estimated due to ice effect or missing record #### 04082500 LAKE WINNEBAGO AT OSHKOSH, WI LOCATION.--Lat 44°00'35", long 88°31'38", in NE ¼ NE ¼ sec.25, T.18 N., R.16 E., Winnebago County, Hydrologic Unit 04030203, at 905 Bay Shore Drive, 800 ft east of mouth of the upper Fox River. DRAINAGE AREA.--5,880 mi², at lake outlet at Menasha Dam. Area of Lake Winnebago, 215 mi². PERIOD OF RECORD.—October 1938 to current year in reports of Geological Survey. Records from July 1882 to September 1938 in files of Geological Survey and U.S. Army Corps of Engineers. A report on Fox River by U.S. Army Corps of Engineers, published as House Document No. 146, 67th Congress, 2nd session, contains semi-monthly records of inflow of Lake Winnebago for the period 1896-1917. REVISED RECORD.--WDR WI-83-1: Drainage area. 2.33 2.89 MIN 2.05 1.61 1.59 GAGE.--Water-stage recorder. Nonrecording gage read once daily October 1938 to October 1978. Datum of gage is 745.05 ft above mean tide at New York City (levels by U.S. Army Corps of Engineers). Datum of Deuchman gage is 745.00 ft above mean tide at New York City. REMARKS.--Lake elevations controlled by dams at Menasha and Neenah, which are operated in the interest of navigation. Crests of both dams are at elevation 746.73 ft. Present limits of regulation are from 21 ½ in. above the crest of Menasha dam to crest during navigation season, plus additional 18 in. below crest during winter. Oshkosh staff gage gives true level of lake, while Deuchman gage readings are affected by loss of head in the channel between lake and dam. Data-collection platform and gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 5.33 ft (Deuchman gage) Nov. 8, 1881; minimum observed, -2.00 ft (Deuchman gage) Nov. 28, 1891. EXTREMES FOR CURRENT YEAR.--Maximum daily mean gage height, 3.09 ft, May 13; minimum recorded, 1.54 ft, Feb. 22. #### GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES OCT NOV JUL DAY DEC JAN **FEB** MAR APR MAY JUN AUG SEP 2.39 2.95 2.86 2.05 1.65 1.62 2.03 2.65 2.77 2.76 2.86 2.74 2.74 3.01 2.88 2.40 2.02 1.62 2.10 2.67 2.75 2.90 2.72 1.66 2.37 2.74 2.92 3 2.99 2.83 1.99 1.67 1.62 2.14 2.66 2.76 2.66 2.95 2.82 2.36 1.97 2.17 2.75 2.74 2.94 2.68 1.67 1.63 2.67 2.78 5 3.08 2.78 2.36 1.95 1.65 1.64 2.12 2.70 2.72 2.95 2.64 6 2.97 2.75 2.36 1.94 2.23 2.73 2.79 2.97 2.62 1.63 1.63 2.73 2.73 2.71 2.35 3.05 1.92 1.62 1.62 2.30 2.80 2.87 3.02 2.63 2.35 2.76 2.69 1.90 2.20 2.88 8 3.02 1.61 1.62 2.85 3.03 2.62 9 1.90 3.04 2.66 2.35 1.60 1.62 2.20 2.84 2.78 2.89 3.02 2.61 2.22 2.90 10 2.632.35 2.84 2.60 3.03 1.89 1.59 1.61 2.85 3.03 11 3.02 2.62 2.34 1.88 1.59 1.60 2.23 2.83 2.88 2.91 3.05 2.58 2.99 2.56 2.33 1.85 1.60 1.59 2.24 3.05 2.86 2.92 3.04 2.55 12 2.97 2.54 2.31 1.83 1.60 2.23 3.09 2.84 2.90 3.03 2.66 13 1.60 2.97 2.51 2.30 1.82 1.59 2.21 3.07 2.85 2.87 3.02 2.82 14 1.60 2.94 2.52 2.29 2.22 2.84 15 1.80 1.60 1.61 3.07 2.83 3.02 2.83 16 2.96 2.50 2.28 1.79 1.60 1.63 2.35 3.08 2.81 2.88 3.02 2.82 2.25 2.20 2.94 2.48 1.78 1.64 3.07 2.80 2.89 3.01 2.80 17 1.60 2.92 2.47 2.25 1.65 2.23 3.06 2.81 2.86 2.98 2.77 18 1.76 1.60 2.50 2.27 2.91 2.24 2.86 2.84 2.95 2.69 1.75 19 1.60 1.66 3.05 2.50 2.93 20 2.94 2.26 1.74 1.60 1.69 2.25 3.01 2.81 2.83 2.76 2.25 21 2.50 1.72 3.05 2.91 2 95 1.60 1.73 2.31 2.82 2.86 2.75 22 23 2.95 2.49 2.22 1.70 1.60 1.74 2.39 3.00 2.81 2.86 2.83 2.93 2.70 2.21 2.38 2.71 2.97 2.45 1.68 1.60 1.73 2.97 2.82 2.92 24 2.96 2.47 2.19 1.66 1.61 1.73 2.38 2.95 2.81 2.80 2.82 2.66 25 2.96 2.46 2.16 1.64 1.74 2.45 2.91 2.79 2.77 2.84 2.68 1.61 2.93 2.47 2.13 1.63 1.77 2.75 2.75 2.85 26 1.61 2.46 2.88 2.61 27 2.95 2.43 2.11 1.61 1.61 1.80 2.45 2.85 2.78 2.79 2.85 2.59 2.10 28 2.96 2.40 1.61 1.86 2.50 2.79 2.79 2.76 2.78 2.64 1.62 2.95 2.36 2.10 1.63 1.94 2.58 2.78 2.77 2.75 2.78 2.61 2.74 30 2.93 2.33 1.98 2.76 2.77 2.78 2.06 1.62 ---2.60 2.59 31 2.89 2.05 2.80 2.75 1.65 2.01 2.83 ------2.97 2.57 2.26 1.80 2.89 2.79 2.82 2.93 MEAN 1.61 1.69 2.29 2.68 2.92 MAX 3.08 2.88 2.40 2.05 1.67 2.01 2.60 3.09 2.88 3.05 2.83 1.59 2.03 2.65 2.72 2.74 2.55 2.75 #### 04084255 LAKE WINNEBAGO NEAR STOCKBRIDGE, WI LOCATION.--Lat 44°04'17", long 88°19'52", Stockbridge Indian Reservation, Calumet County, Hydrologic Unit 04030203, on east shore of Lake Winnebago, 300 ft south of County Highway E and 1.6 mi west of Stockbridge. DRAINAGE AREA.--5,880 mi², at lake outlet at Menasha Dam. Area of Lake Winnebago, 215 mi². PERIOD OF RECORD.--November 1982 to current year. 2.95 2.38 2.38 2.01 1.95 1.55 1.64 1.54 MAX MIN 3.08 2.82 GAGE.--Water-stage recorder. Datum of gage is 745.05 ft above mean tide of New York City (levels by U. S. Army Corps of Engineers). REMARKS.--Lake elevations controlled by dams at Menasha and Neenah, which are operated in the interest of navigation. Crests of both dams are at elevation 746.73 ft. Present limits of regulation are from 21 \(^1\frac{1}{4}\) in. above the crest of Menasha dam to crest during navigation season, plus additional 18 in. below crest during winter. Data-collection platform and gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum daily mean gage height, 3.85 ft, July 9, 11, 1993; minimum observed, 0.30 ft, Mar. 1, 1986. EXTREMES FOR CURRENT YEAR.--Maximum daily mean gage height, 3.10 ft, May 12; minimum recorded, 1.49 ft, Feb. 21. #### GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC **FEB** MAY JUN JUL AUG SEP JAN MAR APR 2.95 2.38 2 91 1 95 1.61 1.56 1 95 2.55 2.71 2.71 2.81 2 69 2.71 2.88 1.95 1.90 2.31 1.57 2.54 2.70 2 2.88 1.61 2.86 2.68 2.74 3 2.81 2.31 2.58 2.86 2.88 1.94 1.62 1.57 1.88 2.68 2.69 2.77 2.76 2.88 2.30 2.55 2.62 4 3.03 1.91 1.64 1.58 1.89 2.66 5 2.76 3.08 2.72 2.30 1.90 1.60 1.58 2.05 2.53 2.68 2.91 2.61 6 2.29 1.89 2.07 2.76 2.93 3.08 1.58 2.67 2.66 2.60 2.72 3.05 2.70 2.30 1.86 1.57 1.57 1.96 2.64 2.85 2.94 2.57 8 3.01 2.64 2.30 1.85 1.56 1.57 2.07 2.76 2.68 2.85 2.93 2.55 9 2.28 2.79 2.96 2.54 2.99 2.60 1.86 1.55 1.58 2.15 2.73 2.75 2.96 2.57 2.28 2.16 2.78 2.76 2.86 2.99 2.52 10 1.86 1.54 1.56 11 2.96 2.53 2.28 1.83 1.55 1.54 3.08 2.78 2.96 2.94 2.51 2.16 1.55 2.97 2.55 2.27 1.54 2.15 2.95 2.51 1.79 2.77 2.89 12 3.10 2.15 2.49 2.26 1.55 1.55 2.79 2.86 2.97 13 3.08 1.78 3.05 2.64 2.25 1.54 2.17 2.77 2.86 2.97 2.43 1.77 1.55 2.78 14 2.96 3.03 2.39 2.88 2.91 2.23 1.55 2.75 3.00 15 1.75 1.56 2.14 3.02 2.83 2.22 2.18 2.39 1.55 2.98 2.79 16 2.88 1.73 1.57 1.97 3.01 2.75 2.86 17 2.89 2.41 1.72 1.55 1.59 2.03 3.00 2.74 2.82 2.94 2.76 2.91 2.43 2.18 1.71 1.55 1.60 2.11 2.99 2.74 2.79 2.94 2.71 18 19 2.96 2.46 2.22 1.70 1.55 2.99 2.72 2.83 2.93 2.78 1.61 20 2.92 2.44 2.23 1.68 1.54 2.26 3.01 2.75 2.83 2.91 2.72 1.63 21 2.87 2.41 2.23 1.66 1.54 1.67 2.30 2.96 2.77 2.78 2.92 2.66 2.44 2.22 1.55 2.31 2.93 2.78 2.75 2.74 2.88 2.73 2.77 2.88 1.65 1.69 23 2.86 2.20 1.56 2.29 2.91 2.79 2.82 2.47 1.64 1.67 24 1.56 2.30 2.88 2.80 2.77 2.87 2.48 2.13 1.61 1.66 2.83 2.73 2.11 2.31 2.81 25 2.85 2.79 2.83 2.46 1.56 1.69 2.69 1.60 2.84 26 2.92 2.38 2.09 1.59 1.56 1.72 2.37 2.81 2.89 2.77 2.81 2.62 2.71 2.70 2.71 2.7 2.92 2.40 2.06 2.44 2.79 2.76 1.55 1.56 1.74 2.80 2.70 28 2.87 2.43 2.04 1.56 1.56 1.82 2.48 2.75 2.69 2.74 2.62 29 2.50 2.82 2.42 2.02 1.58 1.90 2.72 2.76 2.75 2.60 30 2.85 2.40 2.01 1.57 ---1.92 2.50 2.72 2.73 2.72 2.72 2.63 31 2.90 2.01 1.60 1.94 2.64 2.77 2.71 1.56 2.93 2.54 2.21 1.74 2.83 2.74 2.79 2.88 MEAN 1.64 2.17 2.66 1.94 1.54 2.50 1.88 3.10 2.53 2.89 2.64 2.96 2.70 3.00 2.71 2.83 2.51 # 04084445 FOX RIVER AT APPLETON, WI LOCATION.--Lat 44°14'53", long 88°25'23" in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.34, T.21 N., R.17 E., Outagamie County, Hydrologic Unit 04030204, on left bank at south end of Lutz Park, approximately 2,600 ft upstream of Memorial Drive bridge at Appleton. DRAINAGE AREA.--5,950 mi². PERIOD OF RECORD.--July 1986 to current year. GAGE.--Sontek Argonaut-SL doppler velocity meter. REMARKS.--Records good, except for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station | REMARI | KSRecord | s good, exce | ept for estim | ated daily disc | charges, wh | ich are fair (| see page 11) | . Gage-heig | ht telemeter | at station. | | | |--|--|---|--|--|---------------------------------|--|--|--|--|--|--|---| | | | DISCH | ARGE, CUI | BIC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 | ГО ЅЕРТЕМ | IBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR |
MAY | JUN | JUL | AUG | SEP | | 1 | 2,080 | 4,960 | 2,330 | 3,660 | e1,400 | 1,640 | 4,050 | 5,090 | 6,020 | 3,600 | 2,780 | 1,710 | | 2 | 1,980 | 4,820 | 2,610 | 3,570 | e1,400 | 1,730 | 3,960 | 5,030 | 5,580 | 3,010 | 2,320 | 1,700 | | 3 | 1,940 | 4,830 | 2,600 | 3,570 | e1,800 | 1,700 | 3,960 | 5,080 | 5,040 | 1,850 | 2,450 | 1,700 | | 4 | 2,590 | 5,060 | 2,510 | 3,650 | e2,800 | 1,640 | 3,990 | 5,140 | 4,810 | 1,700 | 2,380 | 1,360 | | 5 | 3,300 | 5,690 | 2,010 | 3,620 | 3,570 | 1,650 | 4,030 | 4,950 | 4,880 | 1,740 | 2,260 | 1,490 | | 6 | 3,370 | 5,580 | 2,010 | 3,630 | 3,020 | 1,880 | 4,080 | 4,380 | 4,940 | 1,800 | 2,230 | 1,640 | | 7 | 3,020 | 5,750 | 2,030 | 3,620 | 2,570 | 2,560 | 4,040 | 4,930 | 4,980 | 1,960 | 2,280 | 1,590 | | 8 | 3,790 | 5,730 | 2,030 | 3,620 | e2,400 | 2,570 | 4,130 | 5,960 | 5,000 | 1,940 | 2,150 | 1,400 | | 9 | 4,300 | 5,620 | 2,040 | 3,290 | e2,400 | 2,580 | 4,350 | 7,020 | 5,030 | 1,930 | 2,210 | 1,470 | | 10 | 4,370 | 5,520 | 2,030 | 2,640 | e2,000 | 2,560 | 4,390 | 7,310 | 5,960 | 1,950 | 2,270 | 1,440 | | 11 | 4,530 | 5,350 | 2,200 | 2,710 | 1,800 | 2,600 | 4,390 | 8,190 | 6,740 | 2,220 | 2,160 | 1,440 | | 12 | 4,450 | 5,270 | 2,960 | 3,000 | e1,400 | 2,200 | 4,370 | 7,920 | 7,110 | 3,420 | 2,150 | 1,540 | | 13 | 4,330 | 5,270 | 2,950 | 2,870 | e1,600 | 1,710 | 4,390 | 8,610 | 7,110 | 3,390 | 2,240 | 1,870 | | 14 | 4,420 | 4,670 | 2,910 | 2,810 | e1,100 | 1,640 | 4,520 | 8,770 | 7,100 | 2,820 | 2,320 | 2,070 | | 15 | 4,320 | 3,500 | 2,880 | 2,660 | e1,400 | 1,680 | 4,510 | 8,690 | 7,030 | 2,190 | 2,290 | 2,370 | | 16 | 3,910 | 2,960 | 3,240 | 2,720 | e1,500 | 1,980 | 4,730 | 8,860 | 6,580 | 1,940 | 2,240 | 3,020 | | 17 | 4,010 | 2,910 | 3,730 | 2,710 | e1,500 | 2,240 | 4,780 | 9,110 | 6,120 | 1,930 | 2,150 | 3,130 | | 18 | 4,280 | 2,950 | 3,960 | 2,720 | e1,500 | 2,840 | 4,460 | 9,120 | 5,510 | 1,860 | 2,180 | 3,100 | | 19 | 4,070 | 3,040 | 3,980 | 2,690 | e1,600 | 3,000 | 4,530 | 9,130 | 4,670 | 1,920 | 2,260 | 2,890 | | 20 | 4,020 | 3,030 | 4,010 | 2,650 | e1,400 | 3,410 | 4,720 | 8,960 | 4,280 | 1,960 | 2,270 | 2,840 | | 21 | 4,070 | 2,810 | 3,960 | 2,670 | e1,500 | 4,300 | 4,650 | 9,040 | 3,850 | 1,930 | 2,200 | 2,870 | | 22 | 3,980 | 2,860 | 3,950 | e2,500 | 1,850 | 5,460 | 4,620 | 8,980 | 3,850 | 1,790 | 2,040 | 2,980 | | 23 | 3,840 | 2,970 | 3,740 | e2,400 | 1,810 | 5,520 | 4,690 | 8,780 | 3,830 | 1,670 | 1,960 | 2,890 | | 24 | 3,920 | 2,930 | 3,870 | e2,400 | 1,820 | 5,040 | 4,250 | 8,700 | 3,820 | 1,810 | 2,020 | 2,950 | | 25 | 3,990 | 2,910 | 3,880 | e2,400 | 1,770 | 4,350 | 3,540 | 8,660 | 3,900 | 2,010 | 2,000 | 2,800 | | 26
27
28
29
30
31 | 3,990
3,930
3,880
3,850
4,270
5,020 | 2,860
2,820
2,840
2,870
2,680 | 3,830
3,850
3,850
3,790
3,800
3,760 | e2,400
e2,200
e1,200
e900
e1,400
e1,500 | 1,770
1,770
1,700

 | 3,660
3,860
4,050
4,020
3,990
4,000 | 3,620
3,840
3,800
4,190
4,860 | 8,580
8,530
8,480
7,710
7,120
6,000 | 3,870
3,760
3,690
3,680
3,650 | 2,050
1,810
1,700
1,780
1,970
2,600 | 1,970
1,840
1,820
1,810
1,760
1,740 | 2,880
2,790
2,710
2,700
2,710 | | TOTAL | 117,820 | 121,060 | 97,300 | 84,380 | 52,150 | 92,060 | 128,440 | 232,830 | 152,390 | 66,250 | 66,750 | 68,050 | | MEAN | 3,801 | 4,035 | 3,139 | 2,722 | 1,862 | 2,970 | 4,281 | 7,511 | 5,080 | 2,137 | 2,153 | 2,268 | | MAX | 5,020 | 5,750 | 4,010 | 3,660 | 3,570 | 5,520 | 4,860 | 9,130 | 7,110 | 3,600 | 2,780 | 3,130 | | MIN | 1,940 | 2,680 | 2,010 | 900 | 1,100 | 1,640 | 3,540 | 4,380 | 3,650 | 1,670 | 1,740 | 1,360 | | CFSM | 0.64 | 0.68 | 0.53 | 0.46 | 0.31 | 0.50 | 0.72 | 1.26 | 0.85 | 0.36 | 0.36 | 0.38 | | IN. | 0.74 | 0.76 | 0.61 | 0.53 | 0.33 | 0.58 | 0.80 | 1.46 | 0.95 | 0.41 | 0.42 | 0.43 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | A FOR WATE | R YEARS | 1986 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN | 3,839 | 4,577 | 4,081 | 3,691 | 3,701 | 4,798 | 6,365 | 5,794 | 5,615 | 3,848 | 2,890 | 3,194 | | MAX | 13,510 | 7,863 | 7,509 | 5,575 | 5,422 | 7,702 | 11,920 | 11,900 | 13,300 | 15,110 | 6,259 | 8,899 | | (WY) | (1987) | (1996) | (1993) | (1987) | (1987) | (1994) | (1993) | (1993) | (1993) | (1993) | (1993) | (1986) | | MIN | 1,413 | 2,312 | 2,541 | 2,535 | 1,862 | 2,445 | 2,688 | 2,682 | 1,243 | 944 | 971 | 1,226 | | (WY) | (2000) | (2000) | (1990) | (1990) | (2003) | (2000) | (1990) | (1988) | (1988) | (1988) | (1988) | (1988) | | SUMMA | RY STATIS | STICS | | FOR 2002 CA | ALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 198 | 6 - 2003 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | IUM | | May
Jul
Aug
71 | 23 | | 50 May
50 Jar
70 Jar
0.59
8.00 | 7 19
1 29
1 28 | 8,1
2,9
18,0
8
8
8,1
3,6 | 340 Au | 1993
1988
al 6, 1993
g 17, 1988
al 9, 1988 | | ⁽e) Estimated due to ice effect or missing record # 04084500 FOX RIVER AT RAPIDE CROCHE DAM, NEAR WRIGHTSTOWN, WI $LOCATION.--Lat~44^{\circ}19'03", long~88^{\circ}11'50", in~SE~\frac{1}{4}~sec.4, T.21~N., R.19~E., Outagamie~County, Hydrologic~Unit~04030204, at~Rapide~Croche~Dam, 2.0~mi~upstream~from~Wrightstown, and~18~mi~upstream~from~mouth.$ DRAINAGE AREA.--6,010 mi². PERIOD OF RECORD.--March 1896 to September 1917 (monthly discharge only), October 1917 to current year. REVISED RECORD.--WDR WI-80-1: Drainage area. WDR WI-81-1: 1980. GAGE.--Recording headwater and tailwater gages and electric generation are read 24 times a day and used to compute the discharge records. REMARKS.--Flow regulated by storage in Lake Winnebago (see sta. 04082500 and 04084255). Daily discharges determined from records of flow through turbines, head, gate openings, and lockages through navigation canal. Usually less than about 20 ft³/s is diverted into basin from Wisconsin River at Portage Canal throughout the year. COOPERATION .- Figures of daily discharge furnished by Kaukauna Electric and Water Department. Records reviewed by Geological Survey. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | | |--|--|--|--|---|-----------------------------|--|--|--|---|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 2,050 | 5,260 | 2,040 | 3,680 | 1,410 | 1,530 | 4,390 | 5,300 | 6,270 | 3,590 | 3,710 | 1,390 | | | 2 | 1,890 | 5,420 | 2,530 | 3,540 | 1,400 | 1,510 | 4,270 | 5,300 | 5,830 | 2,910 | 2,560 | 1,410 | | | 3 | 1,750 | 5,340 | 2,410 | 3,690 | 1,910 | 1,580 | 4,280 | 5,240 | 5,160 | 1,420 | 2,760 | 1,270 | | | 4 | 2,410 | 5,570 | 2,480 | 3,820 | 2,850 | 1,500 | 4,300 | 5,320 | 4,790 | 1,460 | 2,680 | 847 | | | 5 | 3,560 | 6,330 | 1,780 | 3,900 | 3,560 | 1,530 | 4,320 | 5,390 | 5,040 | 1,850 | 2,190 | 1,280 | | | 6 | 3,410 | 6,380 | 1,810 | 3,840 | 2,990 | 1,750 | 4,270 | 4,720 | 5,060 | 1,770 | 1,980 | 1,290 | | | 7 | 2,750 | 6,160 | 1,980 | 3,900 | 2,520 | 2,820 | 4,450 | 4,760 | 5,240 | 1,670 | 2,000 | 1,420 | | | 8 | 3,240 | 6,030 | 2,020 | 3,860 | 2,440 | 2,450 | 3,890 | 6,210 | 5,220 | 1,720 | 1,780 | 1,150 | | | 9 | 4,340 | 5,800 | 2,040 | 3,460 | 2,420 | 2,520 | 4,730 | 6,740 | 5,220 | 1,660 | 1,880 | 1,120 | | | 10 | 3,970 | 5,710 | 1,980 | 2,340 | 2,100 | 2,700 | 4,830 | 6,870 | 5,920 | 1,590 | 2,200 | 1,230 | | | 11 | 4,960 | 5,480 | 2,060 | 2,100 | 1,390 | 2,590 | 4,750 | 8,000 | 6,950 | 2,020 | 1,860 | 1,190 | | | 12 | 4,700 | 5,220 | 3,370 | 2,950 | 1,440 | 2,020 | 4,840 | 7,500 | 6,790 | 3,490 | 1,860 | 1,440 | | | 13 | 4,200 | 5,370 | 3,130 | 2,620 | 1,660 | 1,690 | 4,670 | 9,440 | 7,450 | 3,230 | 2,010 | 1,890 | | | 14 | 4,240 | 4,640 | 2,990 | 2,630 | 1,140 | 1,580 | 4,100 | 9,050 | 6,940 | 2,560 | 2,050 | 2,350 | | | 15 | 4,430 | 3,460 | 3,300 | 2,400 | 1,420 | 1,870 | 4,530 | 8,620 | 6,800 | 2,040 | 1,900 | 2,220 | | | 16 | 3,720 | 2,900 | 3,340 | 2,570 | 1,520 | 1,990 | 4,700 | 9,210 | 6,410 | 1,520 | 2,040 | 3,010 | | | 17 | 3,960 | 2,730 | 3,990 | 2,540 | 1,500 | 2,040 | 4,740 | 9,190 | 6,000 | 1,590 | 1,910 | 3,180 | | | 18 | 4,280 | 2,930 | 4,280 | 2,470 | 1,520 | 2,810 | 4,510 | 9,200 | 5,630 | 1,750 | 1,910 | 3,160 | | | 19 | 4,340 | 2,880 | 4,230 | 2,540 | 1,600 | 2,880 | 4,790 | 9,500 | 4,470 | 1,750 | 1,990 | 2,870 | | | 20 | 4,060 | 2,990 | 4,130 | 2,430 | 1,460 | 3,590 | 4,910 | 9,460 | 4,510 | 1,610 | 2,080 | 2,860 | | | 21 | 4,170 | 2,600 | 4,120 | 2,490 | 1,510 | 4,150 | 4,910 | 9,210 | 3,590 | 1,770 | 2,070 | 2,980 | | | 22 | 4,260 | 2,590 | 4,060 | 2,450 | 1,330 | 5,930 | 4,750 | 9,210 | 3,620 | 1,570 | 1,550 | 2,930 | | | 23 | 3,270 | 2,910 | 3,690 | 2,500 | 1,540 | 5,920 | 5,010 | 9,150 | 3,410 | 1,320 | 1,560 | 2,850 | | | 24 | 4,040 | 2,720 | 3,600 | 2,500 | 1,460 | 5,560 | 4,620 | 9,180 | 3,720 | 1,560 | 1,560 | 3,100 | | | 25 | 4,060 | 2,780 | 4,020 | 2,470 | 1,380 | 4,820 | 3,610 | 9,210 | 3,910 | 1,640 | 1,560 | 2,710 | | | 26
27
28
29
30
31 | 4,290
4,320
4,180
4,160
4,210
5,030 | 2,900
2,680
2,930
2,890
2,630 |
3,910
3,920
3,960
3,910
3,950
3,970 | 2,440
2,270
1,290
377
1,440
1,530 | 1,390
1,520
1,440
 | 3,950
4,110
4,260
4,410
4,360
4,820 | 3,760
3,860
3,890
4,260
5,060 | 9,090
9,100
9,060
8,400
7,230
5,910 | 3,810
3,890
3,540
3,620
3,300 | 1,900
1,620
1,440
1,530
1,970
3,440 | 1,530
1,460
1,450
1,490
1,410
1,390 | 2,740
2,720
2,470
2,650
2,530 | | | TOTAL | 118,250 | 124,230 | 99,000 | 83,037 | 49,820 | 95,240 | 134,000 | 239,770 | 152,110 | 60,960 | 60,380 | 64,257 | | | MEAN | 3,815 | 4,141 | 3,194 | 2,679 | 1,779 | 3,072 | 4,467 | 7,735 | 5,070 | 1,966 | 1,948 | 2,142 | | | MAX | 5,030 | 6,380 | 4,280 | 3,900 | 3,560 | 5,930 | 5,060 | 9,500 | 7,450 | 3,590 | 3,710 | 3,180 | | | MIN | 1,750 | 2,590 | 1,780 | 377 | 1,140 | 1,500 | 3,610 | 4,720 | 3,300 | 1,320 | 1,390 | 847 | | | | | | | A FOR WATE | | | | · · | <i>'</i> | | | | | | MEAN | 3,308 | 3,973 | 3,986 | 3,977 | 4,040 | 4,925 | 7,162 | 6,102 | 5,109 | 3,453 | 2,672 | 2,828 | | | MAX | 14,230 | 12,740 | 9,879 | 7,831 | 7,831 | 12,440 | 19,360 | 20,160 | 13,330 | 15,600 | 9,623 | 11,020 | | | (WY) | (1987) | (1985) | (1983) | (1960) | (1939) | (1973) | (1929) | (1960) | (1993) | (1993) | (1924) | (1938) | | | MIN | 728 | 1,242 | 1,562 | 1,432 | 1,768 | 1,596 | 1,590 | 1,260 | 1,098 | 983 | 761 | 709 | | | (WY) | (1933) | (1931) | (1959) | (1977) | (1977) | (1964) | (1954) | (1931) | (1931) | (1931) | (1936) | (1933) | | | SUMMA | RY STATIS | STICS | | FOR 2002 CA | LENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 18 | 396 - 2003 | | | ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
10 PERC
50 PERC | T ANNUAL
T ANNUAL
T DAILY M
T DAILY M | MEAN
IEAN
EAN
OAY MINIM
EDS
EDS | UM | 1,599,550
4,382
12,200
1,220
1,470
8,100
3,580
1,640 | May
Jul
Jul | 23 | 1,281,05
3,51
9,50
37
1,19
5,92
2,99
1,50 | 0 May
7 Jan
0 Sep
00 | / 19
1 29
1 4 | 7,8
3,5 | 27
526
000 <i>A</i>
38 A | 1993
1931
Apr 18, 1952
ug 2, 1936
dep 20, 1933 | | # 040851385 FOX RIVER, AT OIL TANK DEPOT, AT GREEN BAY, WI LOCATION.--Lat 44°31'43", long 88°00'36" in NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec. 25, T.24 N., R.20 E., Brown County, Hydrologic Unit 04030204, about 0.5 mi upstream of Interstate Highway 43 bridge in Green Bay, and 0.8 mi upstream from mouth. DRAINAGE AREA.--6,330 mi². PERIOD OF RECORD .-- October 1988 to current year. GAGE.--Two-path Acoustical Velocity Meter (AVM) system replaced with side-looking velocity meter on Dec. 19, 2002. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | |---|--|---|--|--|-----------------------------|--|---|--|---|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 1,320 | 5,920 | 1,010 | 2,290 | 1,530 | 1,200 | 3,890 | 3,940 | 5,380 | 3,230 | 4,920 | 1,580 | | | 2 | 1,480 | 4,940 | 3,100 | 2,520 | 1,410 | 1,450 | 2,820 | 5,010 | 5,210 | 3,130 | 3,310 | 1,580 | | | 3 | 1,960 | 5,950 | 3,000 | 3,940 | 1,920 | 1,310 | 3,040 | 4,820 | 4,410 | 1,150 | 4,280 | 1,650 | | | 4 | 3,310 | 5,770 | 2,830 | 3,720 | 3,170 | 1,440 | 3,870 | 4,080 | 4,730 | 1,500 | 4,420 | 1,300 | | | 5 | 4,050 | 6,290 | 2,660 | 3,650 | 3,180 | 1,570 | 4,210 | 4,480 | 4,420 | 1,180 | 2,950 | 1,630 | | | 6 | 3,530 | 6,610 | 2,650 | 3,540 | 3,600 | 1,600 | 4,160 | 5,590 | 4,330 | 526 | 2,450 | 678 | | | 7 | 3,910 | 7,520 | 2,320 | 4,250 | 2,630 | 2,330 | 3,460 | 4,200 | 4,920 | 1,480 | 2,700 | 2,050 | | | 8 | 2,890 | 5,550 | 1,540 | 3,220 | 2,860 | 1,920 | 3,920 | 5,790 | 5,400 | 2,220 | 2,760 | 2,380 | | | 9 | 4,660 | 6,590 | 3,170 | 3,750 | 2,770 | 3,110 | 4,690 | 6,900 | 4,910 | 711 | 3,110 | 1,240 | | | 10 | 4,950 | 5,960 | 2,460 | 3,100 | 2,670 | 2,620 | 4,340 | 7,820 | 6,340 | 1,990 | 2,280 | 1,170 | | | 11 | 5,290 | 6,560 | 2,130 | 1,630 | 1,750 | 2,600 | 4,360 | 9,040 | 7,870 | 2,830 | 1,910 | 1,090 | | | 12 | 5,720 | 5,850 | 3,390 | 3,150 | 1,480 | 2,000 | 4,570 | 9,720 | 6,600 | 2,860 | 2,940 | 1,640 | | | 13 | 3,900 | 6,080 | 3,890 | 2,800 | 1,510 | 1,570 | 4,380 | 9,040 | 6,920 | 3,190 | 3,070 | 1,990 | | | 14 | 5,720 | 5,510 | 3,780 | 3,080 | 1,380 | 1,710 | 3,390 | 8,680 | 6,910 | 2,740 | 2,340 | 3,230 | | | 15 | 4,330 | 4,920 | 2,720 | 2,980 | 1,060 | 1,870 | 3,200 | 8,510 | 6,470 | 2,410 | 1,690 | 2,330 | | | 16 | 4,480 | 3,360 | 3,570 | 2,830 | 1,790 | 2,650 | 4,420 | 8,580 | 6,400 | 1,840 | 2,050 | 2,700 | | | 17 | 4,530 | 3,650 | 4,100 | 2,420 | 1,520 | 3,060 | 5,700 | 8,910 | 6,040 | 1,150 | 3,140 | 2,920 | | | 18 | 5,450 | 3,480 | e4,070 | 3,040 | 1,580 | 2,140 | 4,810 | 9,150 | 5,210 | 2,140 | 2,170 | 2,590 | | | 19 | 3,640 | 3,420 | e4,020 | 2,370 | 1,480 | 1,640 | 4,390 | 8,920 | e4,720 | 1,650 | 1,670 | 3,620 | | | 20 | 3,380 | 3,200 | 3,980 | 2,880 | 1,050 | 3,730 | 5,230 | 9,840 | 4,640 | 1,150 | 1,990 | 2,260 | | | 21 | 4,770 | 3,010 | 3,790 | 2,450 | 1,580 | 3,920 | 5,160 | 8,510 | 3,260 | 1,610 | 1,970 | 2,190 | | | 22 | 3,990 | 3,380 | 3,500 | 2,990 | 1,090 | 5,990 | 4,520 | 9,110 | 3,500 | 2,150 | 1,910 | 3,310 | | | 23 | 4,960 | 3,160 | 3,650 | 2,450 | 1,410 | 5,980 | 4,810 | 8,840 | 2,480 | 2,910 | 2,230 | 2,900 | | | 24 | 4,490 | 3,750 | 3,280 | 2,990 | 1,640 | 5,500 | 4,410 | 8,540 | 3,050 | 1,670 | 1,850 | 1,890 | | | 25 | 4,690 | 2,640 | 4,640 | 2,960 | 1,650 | 4,810 | 2,780 | 8,700 | 2,990 | 1,260 | 1,780 | 3,140 | | | 26
27
28
29
30
31 | 4,930
4,200
4,530
4,730
4,720
6,550 | 3,130
3,820
3,840
2,740
2,680 | 3,620
3,260
3,270
3,310
e3,420
e3,000 | 2,640
2,620
1,930
811
1,280
1,920 | 1,490
1,590
1,650
 | 4,040
3,290
4,550
4,850
4,180
4,470 | 3,930
3,010
3,760
3,090
4,600 | 8,580
8,690
8,360
7,350
6,320
7,170 | 3,880
3,170
2,840
3,780
2,660 | 1,380
2,370
2,020
1,310
2,110
4,480 | 1,520
1,760
1,470
2,100
1,610
1,420 | 2,010
2,680
2,540
2,390
2,400 | | | TOTAL | 131,060 | 139,280 | 99,130 | 86,201 | 52,440 | 93,100 | 122,920 | 233,190 | 143,440 | 62,347 | 75,770 | 65,078 | | | MEAN | 4,228 | 4,643 | 3,198 | 2,781 | 1,873 | 3,003 | 4,097 | 7,522 | 4,781 | 2,011 | 2,444 | 2,169 | | | MAX | 6,550 | 7,520 | 4,640 | 4,250 | 3,600 | 5,990 | 5,700 | 9,840 | 7,870 | 4,480 | 4,920 | 3,620 | | | MIN | 1,320 | 2,640 | 1,010 | 811 | 1,050 | 1,200 | 2,780 | 3,940 | 2,480 | 526 | 1,420 | 678 | | | CFSM | 0.67 | 0.73 | 0.51 | 0.44 | 0.30 | 0.47 | 0.65 | 1.19 | 0.76 | 0.32 | 0.39 | 0.34 | | | IN. | 0.77 | 0.82 | 0.58 | 0.51 | 0.31 | 0.55 | 0.72 | 1.37 | 0.84 | 0.37 | 0.45 | 0.38 | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1989 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | | MEAN | 3,409 | 4,795 | 4,365 | 3,797 | 3,778 | 5,521 | 7,291 | 6,519 | 6,738 | 4,490 | 3,362 | 3,204 | | | MAX | 8,504 | 8,668 | 9,446 | 6,092 | 5,814 | 7,827 | 13,660 | 13,220 | 14,780 | 15,620 | 6,855 | 6,172 | | | (WY) | (1996) | (1993) | (1993) | (1993) | (1996) | (1994) | (1993) | (1993) | (1993) | (1993) | (1993) | (1993) | | | MIN | 1,019 | 2,037 | 2,977 | 2,768 | 1,873 | 2,394 | 3,010 | 2,710 | 2,484 | 2,011 | 1,767 | 1,355 | | | (WY) | (2000) | (2000) | (1990) | (1990) | (2003) | (2000) | (1990) | (1998) | (1994) | (2003) | (2002) | (1998) | | | SUMMA | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 198 | 39 - 2003 | | | ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | T ANNUAL
T ANNUAL
T DAILY M
T DAILY M | MEAN IEAN EAN OAY MINIM (CFSM) (INCHES) EDS EDS | UM | | May
Dec
Aug
0.72 | 1 | | 2
0 May
6 Ju
0 Ju
0.56
7.66
0 | 7 20
1 6
1 3 | 9,1
3,5
33,8
-3,2
2
9,0
3,8 | 260 No | 1993
2000
nn 23, 1990
ov 4, 1990
ul 27, 2000 | | ⁽e) Estimated due to missing record Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. # **LAKE MICHIGAN BASIN** # 04085200 KEWAUNEE RIVER NEAR KEWAUNEE, WI LOCATION.--Lat $44^{\circ}27'30''$, long $87^{\circ}33'23''$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.14, T.23 N., R.24 E., Kewaunee County, Hydrologic Unit 04030102, on left bank just upstream from bridge on County Trunk Highway F, 2.3 mi west of Kewaunee, and about 7.0 mi upstream from mouth. DRAINAGE AREA.--127 mi². PERIOD OF RECORD.--Annual maximum, water years 1958-65, and occasional low-flow measurements, water years 1963-64. September 1964 to June 1996, November 1997 to current year. No winter records for years 1965 and 1966. REVISED RECORDS.--WDR WI-79-1: Drainage area. WDR WI-85-1: 1962(M), 1965(M), 1967-69(M), 1971(M), 1973-74(M), 1976(M), 1978(M), 1980-82(M). GAGE.--Water-stage recorder. Datum of gage is 579.64 ft above NGVD of 1929 (Wisconsin State Highway Commission benchmark). Apr. 3, 1957, to Sept. 2, 1964, crest-stage gage only at same site and datum. REMARKS.--Records good except those for estimated daily discharges, which
are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUE | BIC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | IBER 2003 | | | |--|--|---|---|--|--|---|---|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 10
9.7
9.7
17
e32 | 20
20
20
19
20 | 14
e13
13
13 | 11
12
11
9.5 | 7.7
9.9
e15
e14
e14 | e12
e12
e11
e11
e10 | 54
50
44
39
34 | 52
50
44
40
54 | 28
26
25
24
23 | 19
18
17
16
16 | 31
29
25
29
34 | 9.0
8.4
8.1
7.7
7.4 | | 6
7
8
9
10 | 27
22
20
20
20 | 20
19
20
19 | 13
e12
e12
12
13 | 11
11
11
10
9.2 | e13
e12
e12
e11
e11 | e10
e9.6
e9.6
e9.0
e9.0 | 32
33
30
34
56 | 112
98
95
84
77 | 22
31
45
53
108 | 15
15
15
14
29 | 25
20
17
17
15 | 7.3
7.2
7.5
7.6
7.8 | | 11
12
13
14
15 | 20
19
17
16
e15 | 18
18
18
18 | 13
13
13
14
14 | 8.5
10
8.6
7.5
7.1 | e10
e10
e9.6
e9.0
e9.0 | e8.4
e8.2
e8.0
e12
e30 | 84
78
60
51
56 | 208
487
291
162
111 | 340
258
146
85
56 | 46
37
26
21
19 | 20
18
15
13 | 7.5
7.8
10
27
50 | | 16
17
18
19
20 | e14
e13
e17
e15
e14 | 17
17
16
19
21 | 13
13
15
18
19 | 7.0
e6.8
e6.6
e6.4
e6.2 | e9.0
e9.0
e8.6
e8.6
e8.4 | e150
e300
e210
e170
e150 | 524
976
457
232
300 | 83
68
59
53
50 | 43
35
31
29
26 | 17
17
16
15 | 12
12
11
11
10 | 26
19
15
13 | | 21
22
23
24
25 | e16
e23
e30
e24
e22 | 20
19
18
17
17 | 15
14
12
12
13 | e6.2
e6.0
e6.0
5.8
6.1 | e11
e16
e13
e12
e12 | e170
e180
e160
e140
84 | 371
243
163
120
97 | 44
40
37
35
33 | 23
21
21
19 | 27
30
22
18
16 | 10
10
9.9
10 | 12
12
12
11
11 | | 26
27
28
29
30
31 | e24
e22
e21
e21
e20
e20 | 16
15
16
16
15 | 12
11
11
11
12
12 | 6.4
e6.4
6.6
6.7
7.1
7.7 | e11
e11
e12 | 58
49
72
124
90
64 | 79
67
59
53
49 | 30
29
29
29
29
29 | 18
17
19
22
22 | 29
35
26
20
17
19 | 11
11
10
11
9.6
9.2 | 11
12
12
12
13 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 590.4
19.0
32
9.7
0.15
0.17 | 544
18.1
21
15
0.14
0.16 | 408
13.2
19
11
0.10
0.12 | 252.4
8.14
12
5.8
0.06
0.07 | 308.8
11.0
16
7.7
0.09
0.09 | 2,340.8
75.5
300
8.0
0.59
0.69 | 4,525
151
976
30
1.19
1.33 | 2,642
85.2
487
29
0.67
0.77 | 1,635
54.5
340
17
0.43
0.48 | 662
21.4
46
14
0.17
0.19 | 488.7
15.8
34
9.2
0.12
0.14 | 383.3
12.8
50
7.2
0.10
0.11 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATI | ER YEARS | 1964 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 43.6
221
(1985)
10.1
(1967) | 61.8
458
(1986)
10.9
(1977) | 49.6
226
(1993)
9.10
(1977) | 34.8
265
(1973)
8.14
(2003) | 61.3
314
(1984)
11.0
(2003) | 243
567
(1986)
38.8
(2000) | 198
450
(1993)
26.0
(2000) | 82.5
354
(1973)
21.2
(1977) | 85.4
483
(1990)
12.3
(1988) | 39.4
342
(1993)
8.29
(1965) | 32.0
113
(1975)
7.90
(1970) | 51.5
454
(1986)
8.98
(1966) | # 04085200 KEWAUNEE RIVER NEAR KEWAUNEE, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | ΓER YEAR | WATER YEARS | S 1964 - 2003 | |--------------------------|---------------|-----------|-------------|-----------|-------------|---------------| | ANNUAL TOTAL | 20,823.4 | | 14,780.4 | | | | | ANNUAL MEAN | 57.1 | | 40.5 | | 81.8 | | | HIGHEST ANNUAL MEAN | | | | | 178 | 1993 | | LOWEST ANNUAL MEAN | | | | | 27.8 | 2000 | | HIGHEST DAILY MEAN | 762 | Apr 29 | 976 | Apr 17 | 5,950 | Jun 23, 1990 | | LOWEST DAILY MEAN | 9.5 | Sep 13 | 5.8 | Jan 24 | 5.8 | Jan 24, 2003 | | ANNUAL SEVEN-DAY MINIMUM | 9.7 | Sep 12 | (a)6.1 | Jan 19 | (a)6.1 | Jan 19, 2003 | | MAXIMUM PEAK FLOW | | • | 1,100 | Apr 17 | (b)8,570 | Jun 23, 1990 | | MAXIMUM PEAK STAGE | | | 11.57 | Apr 17 | (c)16.03 | Mar 30, 1960 | | INSTANTANEOUS LOW FLOW | | | 5.4 | Jan 22-24 | (d)3.8 | Dec 15, 1997 | | ANNUAL RUNOFF (CFSM) | 0.45 | | 0.32 | | 0.64 | | | ANNUAL RUNOFF (INCHÉS) | 6.10 | | 4.33 | | 8.75 | | | 10 PERCENT EXCEEDS | 134 | | 84 | | 162 | | | 50 PERCENT EXCEEDS | 21 | | 17 | | 30 | | | 90 PERCENT EXCEEDS | 12 | | 8.6 | | 12 | | ⁽a) Ice affected (b) Gage height, 16.00 ft, from crest-stage gage (c) Backwater from ice (d) Result of freezeup (e) Estimated due to ice effect or missing record # 04085395 SOUTH BRANCH MANITOWOC RIVER AT HAYTON, WI $LOCATION.--Lat~44^{\circ}01'29", long~88^{\circ}07'05", in~SW~\frac{1}{4}~SW~\frac{1}{4}~sec.16, T.18~N., R.20~E., Calumet~County, Hydrologic~Unit~04030101, on~left~bank~100~ft~downstream~from~Weeks~Road~bridge, at~Hayton.$ DRAINAGE AREA.--109 mi². PERIOD OF RECORD .-- July 1993 to current year. GAGE.--Water-stage recorder. Elevation of gage is 808 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--|--|--|--|---|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.9
9.8
12
29
39 | 15
14
14
13
14 | e16
e16
e14
e13
e12 | e4.4
e4.4
e4.4
e4.4 | e3.2
e3.3
e3.1
e3.0
e3.0 | e3.3
e3.6
e3.6
e3.5
e3.4 | 41
40
37
36
26 | 51
48
41
36
66 | 37
31
27
25
23 | 18
16
15
16
14 | 41
53
48
90
72 | 3.3
3.4
3.6
2.8
2.8 | | 6
7
8
9
10 | 31
24
22
20
17 | 14
13
13
14
14 | e11
e11
e11
e11 | e4.4
e4.4
e4.4
e4.4 | e3.0
e3.0
e3.0
e3.0
e2.9 | e3.3
e3.1
e3.2
e3.3
e3.5 | 29
32
27
30
39 | 93
91
93
100
99 | 22
27
31
37
48 | 23
49
25
19
41 | 45
30
26
21
18 | 3.1
2.6
2.6
3.0
2.9 | | 11
12
13
14
15 | 16
15
15
14
15 | 15
16
16
16
16 | e11
e12
e12
e12
e12 | e4.2
e3.8
e3.6
e3.5
e3.5 | e2.9
e3.0
e3.0
e3.0
e2.9 | e13
e14
e16
e30
e61 | 46
46
43
42
44 | 357
378
310
249
224 | 62
48
38
32
28 | 78
51
32
25
22 | 18
17
15
14
14 | 2.7
4.9
14
48
49 | | 16
17
18
19
20 | 16
21
21
20
17 | 17
17
19
28
26 | e12
e10
e8.0
e7.4
e7.0 | e3.4
e3.2
e3.0
e3.0
e3.0 | e3.0
e3.1
e3.3
e3.7
e4.2 | e90
e110
e80
e52
48 | 63
64
54
49
58 | 211
195
175
151
134 | 24
22
24
24
20 | 21
19
18
16
15 | 13
11
10
9.9
9.4 | 33
19
14
12
10 | | 21
22
23
24
25 | 19
21
20
19
19 | 26
25
24
23
e22 | e6.5
e6.0
e5.6
e5.3
e4.8 | e3.0
e3.0
e3.2
e3.1 | e4.8
e4.1
e3.8
e3.5
e3.2 | 48
61
68
66
59 | 64
61
55
50
46 | 110
91
77
64
54 | 18
17
16
17
17 | 17
19
15
14
12 | 9.0
7.7
7.1
6.3
5.6 | 8.7
10
9.7
9.0
7.4 | | 26
27
28
29
30
31 | 21
19
18
17
16
16 | e19
e19
e18
e18
e17 | e4.7
e4.8
e4.9
e4.9
e4.8
e4.6 | e3.0
e3.0
e3.0
e3.0
e3.0
e3.0 | e3.1
e3.1
e3.0 | 52
49
58
67
51
44 | 41
37
34
33
33 | 45
40
35
34
33
42 | 17
16
19
30
21 | 12
11
11
9.5
9.6
15 | 6.5
6.0
5.8
6.9
5.0
3.5 | 8.2
9.9
9.7
9.6
10 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. |
588.7
19.0
39
9.8
0.17
0.20 | 535
17.8
28
13
0.16
0.18 | 286.3
9.24
16
4.6
0.08
0.10 | 111.5
3.60
4.4
3.0
0.03
0.04 | 91.2
3.26
4.8
2.9
0.03
0.03 | 1,170.8
37.8
110
3.1
0.35
0.40 | 1,300
43.3
64
26
0.40
0.44 | 3,727
120
378
33
1.10
1.27 | 818
27.3
62
16
0.25
0.28 | 678.1
21.9
78
9.5
0.20
0.23 | 644.7
20.8
90
3.5
0.19
0.22 | 328.9
11.0
49
2.6
0.10
0.11 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1993 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 18.6
40.0
(2001)
7.17
(1995) | 22.3
47.5
(1996)
10.9
(1995) | 16.5
35.4
(2002)
8.74
(1995) | 12.3
21.6
(1997)
3.60
(2003) | 40.8
86.7
(1999)
3.26
(2003) | 95.6
189
(1997)
37.8
(2003) | 123
328
(2001)
43.3
(2003) | 72.5
128
(2001)
30.1
(1995) | 66.6
170
(1996)
12.1
(1995) | 55.2
232
(1993)
2.46
(1995) | 21.1
49.4
(1999)
8.48
(1995) | 25.0
137
(2000)
4.02
(1998) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | 'EAR | WATER | YEARS 199 | 3 - 2003 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 208
2
2
100
17 | 9.3
8 Mar
4.6 Dec
4.8 Dec
9.36
4.89 | 31 | 37
44 | 78 May
2.6 Sep
2.8 Sep
13 May
5.50 May | 7
5
7 11 | Ş | 0.92 Ju
1.5 Ju
947 Ap
6.95 Ap | 1993
1995
or 1, 1998
ol 31, 1995
ol 26, 1995
or 1, 1998
or 1, 1998
ol 30, 1995 | ⁽a) Also occurred July 31 to Aug. 1, 1995(e) Estimated due to ice effect or missing record # 04085427 MANITOWOC RIVER AT MANITOWOC, WI LOCATION.--Lat 44°06′26″, long 87°42′55″, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.23, T.19 N., R.23 E., Manitowoc County, Hydrologic Unit 04030101, on right bank 300 ft upstream from bridge on County Trunk Highway JJ, just west of the Manitowoc city limits and 6.6 mi upstream from mouth. DRAINAGE AREA.--526 mi². PERIOD OF RECORD .-- July 1972 to September 1996, December 1997 to current year. REVISED RECORDS.--WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 610.12 ft above NGVD of 1929. REMARKS.--Records good except for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | REMARI | SRecord | s good excep | | | - | _ | |). Gage-heig
OBER 2002 T | | | | | |---------------|--|--------------------|----------------|-----------------------|----------------|---------------|------------------|-----------------------------|----------------|----------------|----------------|----------------------------| | | | DISCH | ARGE, CUB | IC FEET PE | | LY MEAN V | | JBER 2002 | IO SEPIEN | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | $\frac{1}{2}$ | 28
29 | 56
60 | e38
e43 | e37
e35 | e20
e23 | e24
e22 | 203
181 | 139
143 | 147
141 | 61
58 | 132
169 | 27
25 | | 3
4 | 30
62 | 59
49 | e40
e38 | e36
e39 | e25
e24 | e20
e19 | 165
154 | 150
147 | 126
110 | 53
48 | 168
367 | 24
23 | | 5 | 65 | 45 | e37 | e39 | e22 | e17 | e100 | 206 | 97 | 45 | 377 | 22 | | 6
7 | 79
68 | 44
47 | e38
e41 | e37
e41 | e21
e19 | e17
e18 | e120
e130 | 321
353 | 94
95 | 42
42 | 401
421 | 25
23 | | 8 | 72 | 51 | e39 | e44 | e20 | e17 | e110 | 364 | 105 | 38 | 425 | 22 | | 9
10 | 59
55 | 49
47 | e42
e44 | e46
e42 | e19
e18 | e15
e13 | 141
163 | 378
388 | 117
163 | 53
74 | 418
399 | 23
22 | | 11
12 | 53
48 | 43
44 | e45
e45 | e39
e36 | e18
e17 | e14
e14 | 178
177 | 1,550
1,310 | 213
239 | 84
106 | 374
328 | 22
22 | | 13 | 46 | 46 | e45 | e33 | e18 | e14 | 179 | 1,120 | 241 | 108 | 275 | 28 | | 14
15 | 51
49 | 47
46 | e43
e38 | e30
e27 | e18
e17 | e17
e50 | 174
176 | 1,010
952 | 227
192 | 101
88 | 211
154 | 40
64 | | 16
17 | 38
37 | 46
44 | e34
e36 | e26
e25 | e17
e19 | e380
e430 | 183
207 | 895
845 | 159
188 | 76
67 | 114
88 | 92
89 | | 18 | 41 | 43 | e39 | e23 | e19 | e430 | 250 | 803 | 224 | 55 | 71 | 76 | | 19
20 | 43
49 | 52
56 | e43
e42 | e22
e20 | e21
e22 | e420
e400 | 251
251 | 751
718 | 172
121 | 46
44 | 60
51 | 63
61 | | 21
22 | 59
54 | 60
59 | e39
e37 | e19
e18 | e25
e24 | e390
e380 | 269
270 | 678
617 | 93
79 | 49
47 | 45
41 | 57
46 | | 23 | 55 | 63 | e34 | e17 | e21 | e380 | 261 | 566 | 69 | 42 | 41 | 38 | | 24
25 | 57
57 | 61
61 | e32
e30 | e16
e16 | e19
e18 | e400
e700 | 239
214 | 515
459 | 63
57 | 40
39 | 35
31 | 42
41 | | 26
27 | 56
61 | e57
e53 | e30
e32 | e15
e15 | e18
e19 | e800
e400 | 193
179 | 398
329 | 55
55 | 38
37 | 30
29 | 40
36 | | 28 | 66 | 57 | e33 | e16 | e21 | e240 | 166 | 269 | 62 | 34 | 29 | 29 | | 29
30 | 58
51 | 53
53 | e35
e39 | e15
e16 | | 266
253 | 150
133 | 216
173 | 54
54 | 32
33 | 30
24 | 33
33 | | 31 | 52 | | e39 | e18 | | 230 | | 148 | 2.012 | 40 | 26 | 1 100 | | TOTAL
MEAN | 1,628
52.5 | 1,551
51.7 | 1,190
38.4 | 858
27.7 | 562
20.1 | 6,790
219 | 5,567
186 | 16,911
546 | 3,812
127 | 1,720
55.5 | 5,364
173 | 1,188
39.6 | | MAX
MIN | 79
28 | 63
43 | 45
30 | 46
15 | 25
17 | 800
13 | 270
100 | 1,550
139 | 241
54 | 108
32 | 425
24 | 92
22 | | CFSM
IN. | 0.10
0.12 | 0.10
0.11 | 0.07
0.08 | 0.05
0.06 | 0.04
0.04 | 0.42
0.48 | 0.35
0.39 | 1.04
1.20 | 0.24
0.27 | 0.11
0.12 | 0.33
0.38 | 0.08 | | STATIST | CICS OF MO | ONTHLY MI | EAN DATA | FOR WATE | ER YEARS | 1972 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX | 184
1,465 | 235
1,367 | 174
575 | 110
503 | 187
1,104 | 803
1,951 | 934
2,672 | 399
991 | 290
1,396 | 138
1,071 | 76.6
343 | 137
1,711 | | (WY)
MIN | (1987)
18.8 | (1986)
23.1 | (1983)
16.3 | (1973)
20.4 | (1984)
20.1 | (1985)
219 | (1979)
181 | (1978)
53.8 | (1993)
18.1 | (1993)
13.6 | (1986)
13.7 | (1986)
14.9 | | (WY) | (1977) | (1977) | (1977) | (1977) | (2003) | (2003) | (2000) | (1977) | (1988) | (1988) | (1988) | (1976) | | SUMMA | RY STATIS | STICS | I | FOR 2002 CA
87,289 | | YEAR | FOR 200
47,14 | 3 WATER Y | /EAR | WATER | YEARS 197 | 72 - 2003 | | ANNUAI | ANNUAL TOTAL
ANNUAL MEAN | | | | | | 12 | | | | 308 | 1006 | | | IIGHEST ANNUAL MEAN
OWEST ANNUAL MEAN | | | | | | | | | • | 728
82.7 | 1986
1977 | | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN | | | 964
26 | | 10
16,18 | 1,55
(a)1 | | | 8,0 | | ar 31, 1979
ct 3, 1989 | | ANNUAI | ANNUAL SEVEN-DAY MINIMUM | | | 28 | Sep | | (a)1
2,05 | 15 Mai | r 8 | (b)8,2 | 8.1 Se | ep 28, 1989
ar 31, 1979 | | MAXIMU | MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE | | | | | | | 8.63 May | | |)13.30 Ma | ar 25, 1986 | | | L'ANEOUS
L'RUNOFF | LOW FLOW
(CFSM) | / | | .45 | | (| a)
0.25 | | | 0.58 | ul 8, 1988 | | | L RUNOFF
ENT EXCE | | | 6
689 | .17 | | 37 | 3.33
75 | | ۶ | 7.95
306 | | | 50 PERC | ENT EXCE | EDS | | 64
34 | | | 4 | 51
19 | | | 116
30 | | | JO I LIKE | LITE LACE | | | 34 | | | 1 | . , | | | 20 | | ⁽a) Ice affected ⁽b) Gage height, 13.24 ft (c) From floodmarks ⁽d) Also occurred Oct. 3-5, 1989 ⁽e) Estimated due to ice effect or missing record # 04085746 MULLET RIVER AT OLD WADE HOUSE AT GREENBUSH, WI LOCATION.--Lat 43°46'39", long 88°05'07", in SE $^1\!/_4$ SE $^1\!/_4$ sec.10, T.15 N., R.20 E., Sheboygan County, Hydrologic Unit 04030101, on right bank about 300 ft upstream of Plank Road bridge in Greenbush, located in Old Wade House Historic site. DRAINAGE AREA.--24.3 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is 963.96 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Flow partly regulated by sawmill at Old Wade House, May-September. Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | |--|--|---|--|--|--|--|--|--|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 2.5
2.9
3.6
10
13 | 4.3
4.1
4.0
4.1
4.5 | 5.8
5.9
5.0
4.8
4.7 | 5.3
4.6
4.4
3.9
4.0 | 1.4
1.5
1.6
1.6 | 1.9
1.9
1.9
1.8
1.8 | e17
e15
14
12
9.8 |
20
20
19
18
31 | 9.5
8.5
8.0
7.4
6.9 | 3.8
3.2
2.8
2.9
3.0 | 3.9
3.1
3.5
3.1
2.7 | 0.49
0.45
0.44
0.44 | | | 6
7
8
9
10 | 9.1
5.7
4.8
4.7
5.7 | 5.6
5.7
5.8
5.8
5.2 | 4.4
4.4
3.9
3.3
3.3 | 4.0
4.1
4.3
4.4
4.0 | 1.6
1.6
1.4
1.4
1.5 | 1.8
1.8
1.8
1.8 | 11
10
9.7
12
13 | 35
35
37
41
41 | 6.5
7.1
9.2
13
16 | 3.2
5.6
4.7
4.3
7.0 | 2.4
2.3
2.6
2.7
2.6 | 0.51
0.49
0.44
0.42
0.45 | | | 11
12
13
14
15 | 6.7
6.9
6.9
6.8
6.9 | 4.9
4.3
4.2
4.2
4.1 | 3.3
3.5
3.7
3.9
4.0 | e3.2
e2.7
e2.5
e2.0
e1.8 | 1.5
1.5
1.5
1.5 | 1.9
1.8
1.8
2.0
5.7 | 15
17
17
18
20 | 50
50
48
46
42 | 20
20
20
18
15 | 9.3
9.0
8.4
7.7
6.7 | 3.2
2.5
2.1
1.9
1.7 | 0.45
0.47
1.0
5.9
5.3 | | | 16
17
18
19
20 | 6.9
7.8
9.6
10
9.8 | 4.0
3.8
3.8
5.3
5.0 | 3.9
4.0
6.2
10
8.7 | e1.6
e1.4
e1.2
e1.1
e1.0 | 1.5
1.5
1.6
1.6
1.8 | 10
12
8.8
12
22 | 20
18
17
17
20 | 39
36
33
30
27 | 12
9.6
8.2
7.5
6.3 | 5.6
4.4
3.7
3.0
2.6 | 1.4
1.2
1.1
0.88
0.81 | 3.0
2.3
2.1
1.9
1.9 | | | 21
22
23
24
25 | 9.8
9.5
9.3
9.0
9.7 | 5.9
6.8
6.6
6.5
5.7 | 7.2
7.2
6.5
6.5
6.5 | e0.90
e0.70
e0.60
e0.60
e0.60 | 2.0
2.2
2.3
2.2
2.1 | 23
e24
e27
e26
e25 | 21
20
19
18
17 | 23
20
18
15
14 | 5.7
5.1
4.8
4.4
4.3 | 2.4
2.3
2.0
1.8
1.7 | 0.72
0.65
0.63
0.57
0.62 | 1.8
1.8
1.7
1.6
1.4 | | | 26
27
28
29
30
31 | 9.9
9.1
8.6
8.1
7.7
5.8 | 5.9
5.5
5.5
6.3
5.4 | 6.1
5.9
6.0
5.5
5.7
5.2 | e0.60
0.61
0.60
0.68
e0.90
1.3 | 2.0
2.0
1.9 | e23
e21
e20
e17
e15
e19 | 15
14
13
12
11 | 12
11
9.9
9.3
9.1 | 4.8
4.2
4.7
4.9
4.3 | 1.6
1.5
1.2
1.2
1.1 | 0.94
0.62
0.52
0.64
0.53
0.48 | 1.4
1.6
1.7
1.7
1.7 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 236.8
7.64
13
2.5
0.31
0.36 | 152.8
5.09
6.8
3.8
0.21
0.23 | 165.0
5.32
10
3.3
0.22
0.25 | 69.59
2.24
5.3
0.60
0.09
0.11 | 47.4
1.69
2.3
1.4
0.07
0.07 | 336.4
10.9
27
1.8
0.45
0.51 | 462.5
15.4
21
9.7
0.63
0.71 | 850.3
27.4
50
9.1
1.13
1.30 | 275.9
9.20
20
4.2
0.38
0.42 | 119.4
3.85
9.3
1.1
0.16
0.18 | 52.61
1.70
3.9
0.48
0.07
0.08 | 45.33
1.51
5.9
0.42
0.06
0.07 | | | | | | | A FOR WAT | | | | * | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 9.49
11.3
(2002)
7.64
(2003) | 8.78
12.5
(2002)
5.09
(2003) | 9.71
14.1
(2002)
5.32
(2003) | 4.19
6.14
(2002)
2.24
(2003) | 8.57
15.5
(2002)
1.69
(2003) | 19.5
28.1
(2002)
10.9
(2003) | 25.5
35.6
(2002)
15.4
(2003) | 22.3
27.4
(2003)
17.2
(2002) | 12.2
16.3
(2001)
9.20
(2003) | 4.40
5.77
(2002)
3.59
(2001) | 4.41
8.39
(2001)
1.70
(2003) | 5.33
12.1
(2001)
1.51
(2003) | | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN ANUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | UM | 4,33: | 1.9
4 Apr
1.2 Aug
1.6 Sep
0.49
6.63 | 12
11 | 2,81 | 0.46 Ser
52 May | | WATER | 0.42 S
0.46 S
56 A | 2002
2003
2003
2003
2003
2003
2003
2003 | | | ⁽e) Estimated due to ice effect or missing record # 04085746 MULLET RIVER AT OLD WADE HOUSE AT GREENBUSH, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- June 2001 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: June 2001 to current year (no winter records). DISSOLVED OXYGEN: June 2001 to current year (no winter records). INSTRUMENTATION.--Continuous water-temperature recorder dissolved-oxyten recorder since June 2001. REMARKS.--Records represent water temperature at sensor within 0.5°C. EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 29.0°C, Aug. 8, 2001; minimum, 3.5°C, Oct. 28, 2001. DISSOLVED OXYGEN: Maximum, 14.3 mg/L, May 8, 2002 and May 3, 2003; minimum, 4.6 mg/L, July 6, 2003. EXTREMES FOR CURRENT PERIOD (OCTOBER, MAY-SEPTEMBER).--WATER TEMPERATURE: Maximum, 27.5°C, Aug. 21; minimum, 4.0°C, Oct. 30. DISSOLVED OXYGEN: Maximum, 14.3 mg/L, May 3; minimum, 4.6 mg/L, July 6. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------|------|--------|------|-----|--------|------|-----|--------|------|-----|---------|------| | | | ОСТОВЕ | 2 | N | OVEMBE | ER | Б | ECEMBE | ER | J | JANUAR` | Y | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | 11.5 | 9.5 | 10.5 | | | | | | | | | | | 11 | 13.0 | 10.5 | 11.5 | | | | | | | | | | | 12 | 13.0 | 12.0 | 12.5 | | | | | | | | | | | 13 | 12.0 | 8.5 | 10.0 | | | | | | | | | | | 14 | 9.0 | 7.0 | 8.0 | | | | | | | | | | | 15 | 9.5 | 7.5 | 8.5 | | | | | | | | | | | 16 | 8.5 | 6.0 | 7.0 | | | | | | | | | | | 17 | 6.5 | 5.0 | 6.0 | | | | | | | | | | | 18 | 7.0 | 5.5 | 6.0 | | | | | | | | | | | 19 | 7.5 | 6.5 | 7.0 | | | | | | | | | | | 20 | 7.0 | 5.5 | 6.5 | | | | | | | | | | | 21 | 6.5 | 6.0 | 6.5 | | | | | | | | | | | 22
23 | 6.5 | 5.5 | 6.0 | | | | | | | | | | | 23 | 6.5 | 5.0 | 5.5 | | | | | | | | | | | 24 | 6.0 | 5.0 | 5.5 | | | | | | | | | | | 25 | 6.0 | 5.0 | 5.5 | | | | | | | | | | | 26 | 7.0 | 6.0 | 6.5 | | | | | | | | | | | 27 | 7.0 | 5.5 | 6.0 | | | | | | | | | | | 28 | 6.5 | 5.0 | 6.0 | | | | | | | | | | | 29 | 6.0 | 5.0 | 5.5 | | | | | | | | | | | 30 | 6.0 | 4.0 | 5.0 | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | 13.0 | 4.0 | 7.2 | | | | | | | | | | # 04085746 MULLET RIVER AT OLD WADE HOUSE AT GREENBUSH, WI—Continued # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | TEBRUARY | DAY | MAX | MIN | MEAN | |--|----------|--------------|--------|------|------|-------|------|------|--------|------|------|---------|------| | 2 | | F | EBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 3 | | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | | Color | | | | | | | | | | | | | | | The color of | | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | | 10 | 8 | | | | | | | | | | 13.0 | 8.5 | 11.0 | | 11 | | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | | 14 | 12 | | | | | | | | | | 13.5 | 8.5 | 10.5 | | 16 | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | 18 | | | | | | | | | | | 16.0 | 11.5 | | | 19 | | | | | | | | | | | | | | | 21 | 19 | | | | | | | | | | | | 15.0 | | 222 | 20 | | | | | | | | | | 17.5 | 14.0 | 16.0 | | 23 | | | | | | | | | | | | | | | 24 18.0 13.0 15.5 25.0 < | | | | | | | | | | | | | | | 26 | 24 | | | | | | | | | | 18.0 | 13.0 | 15.5 | | 277 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 30 | 28 | | | | | | | | | | 18.0 | 15.5 | 16.5 | | MONTH | | | | | | | | | | | | | | | Tune | | | | | | | | | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | MONTH | | | | | | | | | | 20.5 | 7.5 | 13.4 | | 2 17.0 13.0 15.0 24.0 19.5 22.0 22.0 19.5 21.0 21.5 15.0 18.0 3 18.0 14.0
16.0 24.5 21.0 23.0 21.0 19.0 20.0 22.5 17.0 19.0 4 18.0 14.5 16.0 25.5 21.5 23.5 20.0 18.5 19.0 21.0 16.0 18.0 5 18.0 15.0 16.5 25.5 21.5 24.0 22.0 17.5 19.5 21.5 14.0 17.5 6 16.5 15.0 15.5 24.0 21.5 22.5 23.5 19.5 21.5 22.5 16.5 19.0 7 17.0 14.0 15.5 24.5 20.0 22.0 21.5 19.5 20.0 24.5 19.0 21.5 9 17.0 14.0 15.5 23.0 20.0 21.0 20.5 19.5 20.0 24.5 19.0 21.5 10 16.0 15.0 15.5 18.5< | | | JUNE | | | JULY | | | AUGUST | ı | S | EPTEMBE | ER | | 3 18.0 14.0 16.0 24.5 21.0 23.0 21.0 19.0 20.0 22.5 17.0 19.0 4 18.0 14.5 16.0 25.5 21.5 23.5 20.0 18.5 19.0 21.0 16.0 18.0 5 18.0 15.0 16.5 25.5 21.5 24.0 22.0 17.5 19.5 21.5 14.0 17.5 6 16.5 15.0 15.5 24.0 21.5 22.5 23.5 19.5 21.5 22.5 16.5 19.0 7 17.0 14.0 15.5 24.5 20.0 22.0 21.5 19.5 20.5 24.0 18.5 21.0 8 16.0 14.5 15.5 23.0 20.0 21.0 20.5 19.5 20.0 24.5 19.0 21.5 9 17.0 14.0 15.5 20.0 18.0 22.0 17.5 19.0 24.5 19.0 21.5 10 16.0 15.0 15.5 18.5 17.0< | 1 | 17.0 | 11.0 | 14.0 | 22.5 | 18.5 | 21.0 | 22.0 | 19.5 | 21.0 | 21.0 | 15.5 | 18.0 | | 4 18.0 14.5 16.0 25.5 21.5 23.5 20.0 18.5 19.0 21.0 16.0 18.0 5 18.0 15.0 16.5 25.5 21.5 24.0 22.0 17.5 19.5 21.5 14.0 17.5 6 16.5 15.0 15.5 24.5 20.0 22.0 21.5 19.5 20.5 24.0 18.5 21.9 7 17.0 14.0 15.5 24.5 20.0 22.0 21.5 19.5 20.5 24.0 18.5 21.0 8 16.0 14.5 15.5 23.0 20.0 21.0 20.5 19.5 20.0 24.5 19.0 21.5 9 17.0 14.0 15.5 20.0 18.0 19.0 20.0 17.5 19.0 24.5 19.0 21.5 10 16.6 14.5 15.5 18.5 17.0 18.0 22.0 17.5 19.0 24.5 19.5 21.5 11 16.5 14.5 15.5 19.0 | | | | | | | | | | | | | | | 6 16.5 15.0 15.5 24.0 21.5 22.5 23.5 19.5 21.5 22.5 16.5 19.0 7 17.0 14.0 15.5 24.5 20.0 22.0 21.5 19.5 20.5 24.0 18.5 21.0 8 16.0 14.5 15.5 23.0 20.0 21.0 20.5 19.5 20.0 24.5 19.0 21.5 9 17.0 14.0 15.5 20.0 18.0 19.0 20.0 17.5 19.0 24.5 19.5 21.5 10 16.0 15.0 15.5 18.5 17.0 18.0 22.0 17.0 20.0 24.5 19.5 21.5 10 16.5 14.5 15.5 19.0 16.5 17.5 21.0 18.5 19.5 24.5 19.5 21.5 11 16.5 14.5 16.0 22.0 16.5 19.0 20.5 17.5 19.0 | 4 | | | | 25.5 | | | | | | 21.0 | | 18.0 | | 7 17.0 14.0 15.5 24.5 20.0 22.0 21.5 19.5 20.5 24.0 18.5 21.0 8 16.0 14.5 15.5 23.0 20.0 21.0 20.5 19.5 20.0 24.5 19.0 21.5 9 17.0 14.0 15.5 20.0 18.0 19.0 20.0 17.5 19.0 24.5 19.5 21.5 10 16.0 15.0 15.5 18.5 17.0 18.0 22.0 17.0 20.0 24.0 19.0 21.5 11 16.5 14.5 15.5 19.0 16.5 17.5 21.0 18.5 19.5 24.5 19.5 21.5 12 17.5 14.5 16.0 22.0 16.5 19.0 20.5 17.5 19.0 22.0 18.5 20.0 13 19.5 15.5 17.5 23.0 18.5 20.5 21.5 17.5 19.0 | 5 | 18.0 | 15.0 | 16.5 | 25.5 | 21.5 | 24.0 | 22.0 | 17.5 | 19.5 | 21.5 | 14.0 | 17.5 | | 8 16.0 14.5 15.5 23.0 20.0 21.0 20.5 19.5 20.0 24.5 19.0 21.5 9 17.0 14.0 15.5 20.0 18.0 19.0 20.0 17.5 19.0 24.5 19.5 21.5 10 16.0 15.0 15.5 18.5 17.0 18.0 22.0 17.0 20.0 24.0 19.0 21.0 11 16.5 14.5 15.5 19.0 16.5 17.5 21.0 18.5 19.5 24.5 19.5 21.5 12 17.5 14.5 16.0 22.0 16.5 19.0 20.5 17.5 19.0 22.0 18.5 20.0 13 19.5 15.5 17.5 23.0 18.5 20.5 21.5 17.5 19.5 22.0 18.5 20.0 14 20.5 17.5 19.0 23.0 20.0 21.5 22.5 18.5 20.5 19.5 16.5 18.0 15 21.0 17.5 19.0 | | | | | | | | | | | | | | | 10 16.0 15.0 15.5 18.5 17.0 18.0 22.0 17.0 20.0 24.0 19.0 21.0 11 16.5 14.5 15.5 19.0 16.5 17.5 21.0 18.5 19.5 24.5 19.5 21.5 12 17.5 14.5 16.0 22.0 16.5 19.0 20.5 17.5 19.0 22.0 18.5 20.0 13 19.5 15.5 17.5 23.0 18.5 20.5 21.5 17.5 19.5 20.0 18.5 20.0 14 20.5 17.5 19.0 23.0 20.0 21.5 22.5 18.5 20.5 19.5 16.5 18.0 15 21.0 17.5 19.0 23.5 21.0 22.5 24.0 20.5 19.5 16.5 18.0 16 21.0 17.0 19.0 23.5 19.0 21.5 25.0 22.0 23.5 17.5 | | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | 12 17.5 14.5 16.0 22.0 16.5 19.0 20.5 17.5 19.0 22.0 18.5 20.0 13 19.5 15.5 17.5 23.0 18.5 20.5 21.5 17.5 19.5 20.0 19.5 20.0 14 20.5 17.5 19.0 23.0 20.0 21.5 22.5 18.5 20.5 19.5 16.5 18.0 15 21.0 17.5 19.0 24.5 21.0 22.5 24.0 20.5 22.5 17.0 15.0 16.0 16 21.0 17.0 19.0 23.5 19.0 21.5 25.0 22.0 23.5 17.5 14.0 16.0 17 21.5 17.0 19.0 23.5 20.0 22.0 24.0 20.5 22.0 18.5 15.5 17.0 18 22.0 18.5 20.0 22.0 18.0 20.5 22.0 18.5 15.5 18.0 19 21.0 17.0 19.0 22.0 17.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | 13 19.5 15.5 17.5 23.0 18.5 20.5 21.5 17.5 19.5 20.5 19.5 20.0 14 20.5 17.5 19.0 23.0 20.0 21.5 22.5 18.5 20.5 19.5 16.5 18.0 15 21.0 17.5 19.0 24.5 21.0 22.5 24.0 20.5 22.5 17.0 15.0 16.0 16 21.0 17.0 19.0 23.5 19.0 21.5 25.0 22.0 23.5 17.5 14.0 16.0 17 21.5 17.0 19.0 23.5 20.0 22.0 24.0 20.5 22.0 18.5 15.5 17.0 18 22.0 18.5 20.0 22.0 18.0 20.5 22.0 18.5 19.5 16.5 18.0 19 21.0 17.0 19.0 22.0 17.0 20.0 25.0 20.5 22.0 18.0 14.5 16.0 20 20.5 15.0 17.5 22.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | 15 21.0 17.5 19.0 24.5 21.0 22.5 24.0 20.5 22.5 17.0 15.0 16.0 16 21.0 17.0 19.0 23.5 19.0 21.5 25.0 22.0 23.5 17.5 14.0 16.0 17 21.5 17.0 19.0 23.5 20.0 22.0 24.0 20.5 22.0 18.5 15.5 17.0 18 22.0 18.5 20.0 22.0 18.0 20.0 24.0 19.5 21.5 19.5 16.5 18.0 19 21.0 17.0 19.0 22.0 17.0 20.0 25.0 20.5 22.0 18.0 14.5 16.0 20 20.5 15.0 17.5 22.0 19.5 21.0 26.0 21.0 23.5 15.5 12.0 14.0 21 21.0 15.5 18.5 22.0 20.0 21.0 27.5 23.0 25.0 16.0 13.0 14.5 22 22.5 17.5 20.0 21.5 18.5 20.0 26.0 21.5 23.5 16.0 14.5 15.5 23 23.0 18.5 2 | | | 15.5 | 17.5 | 23.0 | 18.5 | 20.5 | 21.5 | 17.5 | 19.5 | 20.5 | 19.5 | 20.0 | | 17 21.5 17.0 19.0 23.5 20.0 22.0 24.0 20.5 22.0 18.5 15.5 17.0 18 22.0 18.5 20.0 22.0 18.0 20.0 24.0 19.5 21.5 19.5 16.5 18.0 19 21.0 17.0 19.0 22.0 17.0 20.0 25.0 20.5 22.0 18.0 14.5 16.0 20 20.5 15.0 17.5 22.0 19.5 21.0 26.0 21.0 23.5 15.5 12.0 14.0 21 21.0 15.5 18.5 22.0 20.0 21.0 27.5 23.0 25.0 16.0 13.0 14.5 22 22.5 17.5 20.0 21.5 18.5 20.0 26.0 21.5 23.5 16.0 14.5 15.5 23 23.0 18.5 21.0 17.0 19.5 24.5 20.0 21.5 15.5 12.5 14.0 24 24.0 20.0 22.0 21.0 17.0 19.5 25.0 19.5 22.0 16.0 13.5 14.0 | | 20.5 | 17.5 | | 23.0 | | 21.5 | | | 20.5 | 19.5 | | 16.0 | | 17 21.5 17.0 19.0 23.5 20.0 22.0 24.0 20.5 22.0 18.5 15.5 17.0 18 22.0 18.5 20.0 22.0 18.0 20.0 24.0 19.5 21.5 19.5 16.5 18.0 19 21.0 17.0 19.0 22.0 17.0 20.0 25.0 20.5 22.0 18.0 14.5 16.0 20 20.5 15.0 17.5 22.0 19.5 21.0 26.0 21.0 23.5 15.5 12.0 14.0 21 21.0 15.5 18.5 22.0 20.0 21.0 27.5 23.0 25.0 16.0 13.0 14.5 22 22.5 17.5 20.0 21.5 18.5 20.0 26.0 21.5 23.5 16.0 14.5 15.5 23 23.0 18.5 21.0 17.0 19.5 24.5 20.0 21.5 15.5 12.5 14.0 24 24.0 20.0 22.0 21.0 17.0 19.5 25.0 19.5 22.0 16.0 13.5 14.0 | 16 | 21.0 | 17.0 | 19.0 | 23.5 | 19.0 | 21.5 | 25.0 | 22.0 | 23.5 | 17.5 | 14 0 | 16.0 | | 19 21.0 17.0 19.0 22.0 17.0 20.0 25.0 20.5 22.0 18.0 14.5 16.0 20 20.5 15.0 17.5 22.0 19.5 21.0 26.0 21.0 23.5 15.5 12.0 14.0 21 21.0 15.5 18.5 22.0 20.0 21.0 27.5 23.0 25.0 16.0 13.0 14.5 22 22.5 17.5 20.0 21.5 18.5 20.0 26.0 21.5 23.5 16.0 14.5 15.5 23 23.0 18.5 21.0 21.0 17.0 19.5 24.5 20.0 21.5 15.5 12.5 14.0 24 24.0 20.0 22.0 21.0 17.0 19.5 25.0 19.5 22.0 16.0 13.5 14.0 | 17 | 21.5 | 17.0 | 19.0 | 23.5 | 20.0 | 22.0 | 24.0 | 20.5 | 22.0 | 18.5 | 15.5 | 17.0 | | 20 20.5 15.0 17.5 22.0 19.5 21.0 26.0 21.0 23.5 15.5 12.0 14.0 21 21.0 15.5 18.5 22.0 20.0 21.0 27.5 23.0 25.0 16.0 13.0 14.5 22 22.5 17.5 20.0 21.5 18.5 20.0 26.0 21.5 23.5 16.0 14.5 15.5 23 23.0 18.5 21.0 21.0 17.0 19.5 24.5 20.0 21.5 15.5 12.5 14.0 24 24.0 20.0 22.0 21.0 17.0 19.5 25.0 19.5 22.0 16.0 13.5 14.0 | | | | | 22.0 | | | | | | | | | | 22 22.5 17.5 20.0 21.5 18.5 20.0 26.0 21.5 23.5 16.0 14.5 15.5 23 23.0 18.5 21.0 21.0 17.0 19.5 24.5 20.0 21.5 15.5 12.5 14.0 24 24.0 20.0 22.0 21.0 17.0 19.5 25.0 19.5 22.0 16.0 13.5 14.0 | | | | | 22.0 | | 21.0 | | | | 15.5 | | 14.0 | | 23 23.0 18.5 21.0 21.0 17.0 19.5 24.5 20.0 21.5 15.5 12.5 14.0 24 24.0 20.0 22.0 21.0 17.0 19.5 25.0 19.5 22.0 16.0 13.5 14.0 | 21 | | | | | | | | | | | | | | 24 24.0 20.0 22.0 21.0 17.0 19.5 25.0 19.5 22.0 16.0 13.5 14.0 | 22 | 22.5
23.0 | | | | | 20.0 | | | | | | | | 25 25.0 21.5 23.5 23.0 18.5 21.0 24.5 21.0 22.5 14.0 11.5 12.5 | 24 | 24.0 | 20.0 | 22.0 | 21.0 | 17.0 | 19.5 | 25.0 | 19.5 | 22.0 | 16.0 | 13.5 | 14.0 | | | | | | | | | | | | | | | | | 26 23.0 19.5 21.5 22.0 20.5 21.5 26.0 20.5 22.5 12.5 11.5 12.0 27 22.0 17.5 19.5 25.5 22.0 23.0 25.0 20.0 22.5 12.0 11.0 11.5 | 26
27 | | | | | | | | | | | | 12.0 | | 28 20.0 17.0 18.0 23.5 20.0 21.5 24.5 18.0 21.0 11.5 10.5 11.0 | 28 | 20.0 | 17.0 | 18.0 | 23.5 | 20.0 | 21.5 | 24.5 | 18.0 | 21.0 | 11.5 | 10.5 | 11.0 | | 29 21.5 16.5 19.0 23.5 18.0 21.0 24.5 20.0 22.0 11.5 9.0 10.0 30 22.5 17.5 20.0 24.0 20.0 21.5 22.0 18.0 20.0 11.0 9.0 10.0 | | | | | | | | | | | | | | | 31 24.0 20.0 21.5 20.5 17.0 18.5 | | | | | | | | | | | | | | | MONTH 25.0 11.0 18.0 25.5 16.5 21.0 27.5 17.0 21.2 24.5 9.0 16.5 | MONTH | 25.0 | 11.0 | 18.0 | 25.5 | 16.5 | 21.0 | 27.5 | 17.0 | 21.2 | 24.5 | 9.0 | 16.5 | # 04085746 MULLET RIVER AT OLD WADE HOUSE AT GREENBUSH, WI—Continued # DISSOLVED OXYGEN, WATER, UNFILTERED, MILLIGRAMS PER LITER WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|----------------------|----------------------|-------------------|----------------------------------|--------|----------|--------------|---------|------------------|---|--|--| | | | OCTOBER | | N | OVEMBE | R | Ι | DECEMBE | R | | JANUARY | | | 1 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7
8 | | | | | | | | | |
 | | | 9 | | | | | | | | | | | | | | 10 | 10.5 | 8.8 | 9.5 | | | | | | | | | | | 11 | 10.3 | 8.5 | 9.3 | | | | | | | | | | | 12 | 10.3 | 8.5 | 8.8 | | | | | | | | | | | 13
14 | 13.0
11.7 | 8.7
10.1 | 10.4
10.7 | | | | | | | | | | | 15 | 12.9 | 10.0 | 10.6 | | | | | | | | | | | 16 | 11.9 | 10.2 | 11.0 | | | | | | | | | | | 17 | 11.9 | 10.8 | 11.3 | | | | | | | | | | | 18
19 | 12.2 | 10.6 | 11.2 | | | | | | | | | | | 20 | 11.5
12.4 | 10.5
10.9 | 10.9
11.5 | | | | | | | | | | | 21 | 11.9 | 11.1 | 11.4 | | | | | | | | | | | 22 | 12.0 | 11.1 | 11.6 | | | | | | | | | | | 23 | 13.1 | 11.6 | 12.2 | | | | | | | | | | | 24
25 | 13.0
12.1 | 11.8
11.3 | 12.3
11.8 | 26
27 | 12.0
12.5 | 10.9
10.8 | 11.3
11.5 | | | | | | | | | | | 28 | 12.3 | 10.9 | 11.5 | | | | | | | | | | | 29 | 13.4 | 11.7 | 12.3 | | | | | | | | | | | 30
31 | 13.6 | 11.8 | 12.4 | MONTH | 13.6 | 8.5 | 11.1 | | | | | | | | | | | MONTH | | 6.5
FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | 13.2 | MAY
10.0 | 11.2 | | 1
2 | | FEBRUARY
 | Y | | MARCH | | | APRIL | | 13.2
13.9 | MAY
10.0
9.8 | 11.2
11.5 | | 1 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3 | MAY
10.0
9.8
10.2 | 11.2
11.5
12.0 | | 1
2
3 |
 | FEBRUARY

 | Y
 |
 | MARCH |
 |

 | APRIL |
 | 13.2
13.9 | MAY
10.0
9.8 | 11.2
11.5 | | 1
2
3
4
5 |

 | FEBRUARY

 |

 |

 | MARCH |

 |

 | APRIL |

 | 13.2
13.9
14.3
14.1 | MAY
10.0
9.8
10.2
10.4
9.2
9.0 | 11.2
11.5
12.0
11.9
10 | | 1
2
3
4
5 |

 | FEBRUARY | Y

 |

 | MARCH | |

 | APRIL |

 | 13.2
13.9
14.3
14.1
10.7
11.1
10.4 | MAY
10.0
9.8
10.2
10.4
9.2
9.0
8.9 | 11.2
11.5
12.0
11.9
10
9.8
9.3 | | 1
2
3
4
5
6
7
8 | | FEBRUARY | Y

 |

 | MARCH | | | APRIL |

 | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8 | | 1
2
3
4
5 |

 | FEBRUARY | Y

 |

 | MARCH | |

 | APRIL |

 | 13.2
13.9
14.3
14.1
10.7
11.1
10.4 | MAY
10.0
9.8
10.2
10.4
9.2
9.0
8.9 | 11.2
11.5
12.0
11.9
10
9.8
9.3 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | Y |

 | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7 | | 1
2
3
4
5
6
7
8
9
10 |

 | FEBRUARY | Y |

 | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | Y |

 | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | Y |

 | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 7.8 7.6 6.7 8.0 6.5 6.2 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | Y |

 | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | Y |

 | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | Y |

 | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.3
8.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
8.9 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
8.9
9.5 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
8.9
9.5 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4
9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
8.9
9.5 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
9.5
10.4
10.6
10.4
10.6 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 8.7 8.4 8.2 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4
9.3
9.3
9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
9.5
10.4
10.6
10.6 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 8.7 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4
9.3
9.6
9.3
9.1
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
9.5
10.4
10.6
10.4
10.2
10.0 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 8.7 8.4 8.2 7.9 7.8 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4
9.3
9.6
9.3
9.1
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
9.5
10.4
10.6
10.4
10.2
10.0 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 8.7 8.4 8.2 7.9 7.8 8.1 |
11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4
9.3
9.3
9.1
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
8.9
9.5
10.4
10.6
10.4
10.2
10.0 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 8.7 8.4 8.2 7.9 7.8 8.1 8.0 8.3 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4
9.3
9.6
9.3
9.1
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
9.5
10.4
10.6
10.4
10.2
10.0
10.3
10.2
9.7 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 8.7 8.4 8.2 7.9 7.8 8.1 8.0 8.3 8.1 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.3
8.5
8.2
8.4
9.3
9.6
9.3
9.1
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | Y | | MARCH | | | APRIL | | 13.2
13.9
14.3
14.1
10.7
11.1
10.4
11.2
9.9
10.2
8.5
10.8
9.7
8.9
10.1
9.9
10.0
9.9
8.9
9.5
10.4
10.6
10.4
10.2
10.0 | MAY 10.0 9.8 10.2 10.4 9.2 9.0 8.9 7.8 7.6 6.7 8.0 6.5 6.2 7.0 7.1 7.2 7.5 7.6 7.5 8.3 8.7 8.4 8.2 7.9 7.8 8.1 8.0 8.3 | 11.2
11.5
12.0
11.9
10
9.8
9.3
9.8
8.9
8.7
7.7
9.1
8.3
7.5
8.2
8.3
8.5
8.2
8.4
9.3
9.6
9.3
9.1
8.8 | # 04085746 MULLET RIVER AT OLD WADE HOUSE AT GREENBUSH, WI—Continued # DISSOLVED OXYGEN, WATER, UNFILTERED, MILLIGRAMS PER LITER—CONTINUED WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---------------------------------|---------------------------------|--|--|--|---|--|--|--------------------------------------|-----------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | S | ЕРТЕМВІ | ER | | 1
2
3
4
5 | 10.7
10.0
10.3
10.9
10.7 | 8.6
8.5
8.4
8.3
8.5 | 9.4
9.1
9.1
9.2
9.3 | 9.3
9.1
8.1
7.7
7.6 | 6.4
5.9
5.0
4.8
4.7 | 7.7
7.3
6.4
6.1
6.0 | 8.3
8.6
9.0
8.9
9.6 | 6.2
6.8
6.9
7.2
7.1 | 7.3
7.5
7.5
8.0
8.3 | 11.7
11.7
11.9
11.3
11.3 | 7.3
7.4
7.1
7.1
6.8 | 9.0
9.1
8.9
8.7
8.4 | | 6
7
8
9
10 | 10.3
10.3
9.7
9.4
8.6 | 8.4
8.3
8.2
8.1
8.0 | 9.0
8.9
8.7
8.7
8.2 | 7.5
8.0
8.1
8.4
7.6 | 4.6
5.7
5.7
6.9
6.8 | 5.9
6.7
7.1
7.6
7.2 | 9.5
9.2
9.2
9.9
10.0 | 6.7
6.6
7.1
7.5
7.0 | 7.9
7.8
7.9
8.4
8.4 | 11.5
11.7
11.7
11.5
11.6 | 6.7
6.4
6.2
7.0
5.9 | 8.6
8.6
8.9
9.2
8.0 | | 11
12
13
14
15 | 8.7
9.0
8.7
8.7
9.1 | 8.0
8.0
7.6
7.5
7.5 | 8.3
8.4
8.2
8.0
8.1 | 8.1
8.2
8.6
8.4
8.7 | 7.2
7.1
7.0
7.0
6.9 | 7.5
7.6
7.6
7.5
7.4 | 8.9
9.9
10.1
10.6
10.8 | 7.0
7.5
7.4
7.4
6.8 | 7.8
8.4
8.5
8.7
8.4 | 11.4
12.1
9.0
8.0
9.1 | 6.2
6.2
6.0
6.1
7.9 | 8.5
8.0
7.1
7.3
8.4 | | 16
17
18
19
20 | 9.0
9.5
9.0
9.6
10.1 | 7.6
7.6
7.2
7.2
7.6 | 8.2
8.3
7.9
8.3
8.7 | 8.7
8.7
8.8
9.0 | 7.0
7.0
7.1
6.7 | 7.7
7.6
7.9
7.9 | 10.4
10.1
10.2
10.1
9.8 | 6.5
6.7
6.9
6.5
5.7 | 8.0
8.1
8.2
8.0
7.5 | 9.9
10.0
10.1
10.5
11.4 | 7.7
7.7
7.6
7.7
8.8 | 8.7
8.6
8.5
8.9
10.0 | | 21
22
23
24
25 | 10.0
10.0
9.7
8.7
8.2 | 7.4
7.0
6.7
6.0
5.7 | 8.5
8.2
7.8
7.3
6.6 | 9.1
9.5 | 7.0
6.8 | 7.9
8.0 | 9.5
9.6
10.4
10.3
8.8 | 5.4
5.4
6.0
5.8
5.5 | 6.9
7.1
7.7
7.8
6.4 | 11.9
10.5
10.9
11.2
11.9 | 9.1
8.5
8.7
8.4
8.6 | 10.3
9.2
9.6
9.4
10.0 | | 26
27
28
29
30
31 | 8.6
9.2
9.0
9.3
9.3 | 5.9
6.7
6.8
7.1
6.7 | 7.0
7.7
7.8
8.2
7.9 | 8.7
9.2
10.0
10.5
9.6
8.9 | 6.7
6.6
6.7
7.1
6.2
6.1 | 7.4
7.6
8.1
8.5
7.7
7.2 | 9.9
10.3
10.4
10.2
11.2
11.3 | 5.7
5.8
5.9
5.7
6.4
7.0 | 7.4
7.5
7.9
7.5
8.4
8.6 | 11.9
11.9
12.3
13.3
13.6 | 9.2
9.0
9.5
10.1
10.3 | 10.0
10.1
10.6
11.4
11.6 | | MONTH | 10.9 | 5.7 | 8.3 | 10.5 | 4.6 | 7.4 | 11.3 | 5.4 | 7.9 | 13.6 | 5.9 | 9.1 | # 04086000 SHEBOYGAN RIVER AT SHEBOYGAN, WI $LOCATION.-Lat~43^{\circ}44'30", long~87^{\circ}45'14", in~SE~\frac{1}{4}~NW~\frac{1}{4}~sec.28, T.15~N., R.23~E., Sheboygan~County,~Hydrologic~Unit~04030101, on~left~bank~0.5~mi~upstream~from~bridge~on~State~Highway~28, near~west~city~limits~of~Sheboygan, and~3.9~mi~upstream~from~mouth.$ DRAINAGE AREA.--418 mi². PERIOD OF RECORD.—June 1916 to September 1924 (published as "near Sheboygan"), October 1950 to current year. Monthly discharge for some periods published in WSP 1307, 1727. REVISED RECORDS.--WSP 1307: 1917(M), 1919(M), 1921(M), 1923(M). WSP 1727: 1951. WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 580.49 ft, above NGVD of 1929. June 1916 to June 1924, nonrecording gage 0.4 mi downstream at different datum. November 1950 to June 1951, nonrecording gage near present site at different datum. July 1951 to September 1998, water-stage recorder at site 0.3 mi upstream at different datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Diurnal fluctuation caused by numerous powerplants above station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |--|---|--|---|---|---|---|--|---|---|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 61
67
72
105
192 | 81
80
75
76
80 | e76
e74
e74
e74
e74 | e76
e76
e78
e78
e78 | e40
e39
e38
e38
e38 | e42
e43
e42
e41
e40 | 235
230
221
233
204 | 261
295
252
221
529 | 140
149
225
184
116 | 69
61
56
55
55 | 232
269
210
164
140 | 36
36
37
35
33 | | | 6
7
8
9
10 | 187
174
154
142
127 | 82
83
84
86
86 | e74
e76
e78
e78
e80 | e80
e84
e80
e80 | e38
e37
e36
e35
e34 | e41
e40
e40
e38
e36 | 175
171
183
190
215 | 832
748
817
916
947 | 96
92
101
119
162 | 62
88
81
72
68 | 117
143
174
137
115 | 32
31
33
34
34 | | | 11
12
13
14
15 | 113
103
96
91
85 | 91
89
86
86
87 | e82
e84
e82
e82
e82 | e72
e66
e60
e56
e54 | e34
e34
e34
e35 | e37
e38
e40
e50
e90 | 230
229
217
211
211 | 1,010
1,180
1,040
877
774 | 210
213
199
169
154 | 85
100
103
119
120 | 101
89
78
73
70 | 34
33
41
74
80 | | | 16
17
18
19
20 | 81
79
86
93
96 | 86
83
78
103
115 | e80
e80
e82
e80
e80 | e50
e48
e44
e42
e40 | e35
e35
e35
e37
e40 | e130
e240
e230
e220
e210 | 224
220
210
215
231 | 709
608
545
506
489 | 140
127
116
105
95 | 116
112
101
91
84 | 66
61
58
56
54 | 67
54
45
42
41 | | | 21
22
23
24
25 | 95
91
96
94
101 | 112
107
108
106
102 | e78
e74
e70
e70
e68 | e39
e37
e36
e35
e33 | e43
e43
e42
e40
e38 | e210
e270
e330
e400
e350 | 249
254
243
229
215 | 380
276
189
193
191 | 82
75
71
68
67 | 77
73
67
60
57 | 52
47
42
40
41 | 42
45
45
44
43 | | | 26
27
28
29
30
31 | 108
106
101
94
88
85 | e80
e70
e80
e76
e76 | e64
e66
e68
e72
e78
e76 |
e32
e32
e32
e32
e33
e37 | e36
e37
e40
 | e300
261
255
275
265
245 | 200
183
171
162
171 | 179
168
161
159
159
168 | 69
69
78
79
77 | 53
51
47
42
45
128 | 45
43
40
42
39
36 | 41
43
42
44
44 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3,263
105
192
61
0.25
0.29 | 2,634
87.8
115
70
0.21
0.23 | 2,356
76.0
84
64
0.18
0.21 | 1,700
54.8
84
32
0.13
0.15 | 1,045
37.3
43
34
0.09
0.09 | 4,849
156
400
36
0.37
0.43 | 6,332
211
254
162
0.50
0.56 | 15,779
509
1,180
159
1.22
1.40 | 3,647
122
225
67
0.29
0.32 | 2,398
77.4
128
42
0.19
0.21 | 2,874
92.7
269
36
0.22
0.26 | 1,285
42.8
80
31
0.10
0.11 | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1916 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 153
741
(1987)
29.6
(1958) | 200
1,372
(1986)
31.7
(1951) | 162
505
(1983)
19.7
(1959) | 117
370
(1960)
17.1
(1959) | 188
887
(1984)
20.9
(1958) | 669
2,052
(1918)
110
(1968) | 717
1,994
(1993)
141
(1970) | 309
1,027
(1960)
41.5
(1958) | 227
926
(1996)
25.2
(1958) | 118
607
(1993)
19.8
(1958) | 116
1,433
(1924)
11.1
(1958) | 139
1,143
(1986)
20.4
(1958) | | # 04086000 SHEBOYGAN RIVER AT SHEBOYGAN, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALE | ENDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEARS 1916 - 2003 | | | |--------------------------|---------------|------------|-------------|----------|-------------------------|--------------|--| | ANNUAL TOTAL | 84,996 | | 48,162 | | | | | | ANNUAL MEAN | 233 | | 132 | | 260 | | | | HIGHEST ANNUAL MEAN | | | | | 526 | 1986 | | | LOWEST ANNUAL MEAN | | | | | 47.1 | 1958 | | | HIGHEST DAILY MEAN | 1,360 | Apr 9 | 1,180 | May 12 | 7,000 | Aug 6, 1924 | | | LOWEST DAILY MEAN | 46 | Aug 20 | 31 | Sep 7 | 1.0 | Aug 27, 1922 | | | ANNUAL SEVEN-DAY MINIMUM | 49 | Sep 12 | 33 | Jan 24 | 8.9 | Aug 14, 1958 | | | MAXIMUM PEAK FLOW | | _ | (a)1,220 | May 12 | 7,820 | Aug 6, 1998 | | | MAXIMUM PEAK STAGE | | | (b)5.03 | Mar 24 | 12.02 | Aug 6, 1998 | | | INSTANTANEOUS LOW FLOW | | | (c)31 | Sep 5 | 1.0 | Aug 27, 1922 | | | ANNUAL RUNOFF (CFSM) | 0.56 | | 0.32 | | 0.62 | | | | ANNUAL RUNOFF (INCHES) | 7.56 | | 4.29 | | 8.44 | | | | 10 PERCENT EXCEEDS | 568 | | 237 | | 610 | | | | 50 PERCENT EXCEEDS | 130 | | 80 | | 119 | | | | 90 PERCENT EXCEEDS | 64 | | 37 | | 38 | | | ⁽a) Gage height, 4.40 ft (b) Backwater from ice (c) Also occurred Sept. 6, 7, 8 (e) Estimated due to ice effect or missing record # 04086500 CEDAR CREEK NEAR CEDARBURG, WI $LOCATION.--Lat~43^{\circ}19'23'', long~87^{\circ}58'43'', in~SE~\frac{1}{4}~SW~\frac{1}{4}~sec.14, T.10~N., R.21~E., Ozaukee~County, Hydrologic~Unit~04040003, on~left~bank~40~ft~upstream~from~bridge~on~State~Highway~60,~1.9~mi~north~of~Cedarburg, and~6.6~mi~upstream~from~mouth.$ DRAINAGE AREA.--120 mi². PERIOD OF RECORD.--August 1930 to September 1970, July 1973 to September 1981, August 1983 to September 1987, October 1990 to current year. REVISED RECORDS.--WSP 1307: 1932-34(M), 1937(M), 1939(M), 1945(M), 1948-49(M). WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 795.33 ft above NGVD of 1929 (levels by Corps of Engineers). Nonrecording gage and crest-stage gage August 1930 to September 1970 at same site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|----------------|----------------|----------------------|----------------|-----------------|------------------|----------------|------------------|----------------|----------------|-----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 24
22 | 34
33 | e29
e29 | e18
e26 | e9.0
e10 | e14
e13 | 52
50 | 139
197 | 60
51 | 16
14 | 43
50 | 8.7
8.5 | | 3
4 | 25
32 | 32
32 | e27
e24 | e23
e19 | e12
e11 | e12
e12 | 47
46 | 141
99 | 47
44 | 12
11 | 33
34 | 8.6
8.3 | | 5 | 56 | 34 | e25 | e22 | e10 | e12 | 50 | 164 | 41 | 14 | 32 | 7.6 | | 6
7 | 48
41 | 34
36 | e34
e36 | e23
e22 | e10
e9.7 | e12
e13 | 54
55 | 229
193 | 39
39 | 16
17 | 26
32 | 7.4
7.3 | | 8 | 36
33 | 37
39 | e33
e30 | e23
e25 | e9.0
e8.7 | e12
e12 | 47
51 | 240
292 | 53
80 | 20
18 | 33
26 | 7.4
7.7 | | 10 | 30 | 41 | e32 | e18 | e8.6 | e15 | 64 | 319 | 71 | 16 | 21 | 8.2 | | 11
12 | 29
29 | 43
47 | 48
48 | e14
e10 | e8.4
e8.0 | e17
e19 | 70
66 | 409
589 | 77
73 | 16
16 | 18
16 | 8.5
7.7 | | 13
14 | 28
26 | 47
45 | 48
46 | e10
e9.6 | e8.0
e7.9 | e21
e32 | 58
53 | 550
415 | 55
46 | 14
12 | 16
14 | 9.4
15 | | 15 | 26 | 43 | 44 | e9.2 | e7.8 | e56 | 53 | 304 | 40 | 12 | 13 | 26 | | 16
17 | 26
25 | 43
42 | e29
e30 | e9.0
e8.8 | e7.8
e7.8 | e100
e98 | 55
54 | 218
159 | 33
30 | 13
12 | 13
12 | 19
13 | | 18
19 | 27
33 | e40 | e35 | e8.3 | e7.9
e9.0 | e92 | 47 | 129 | 25
23 | 10
9.9 | 11 | 11 | | 20 | 32 | 45
49 | e62
e58 | e8.0
e7.7 | e15 | e85
e80 | 46
56 | 111
114 | 21 | 9.3 | 11
11 | 10
10 | | 21
22 | 31
30 | 47
47 | e42
e27 | e7.6
e7.6 | e14
e13 | e78
e74 | 66
62 | 110
91 | 19
18 | 9.1
9.4 | 11
10 | 10
11 | | 23
24 | 29 | 46 | e30 | e7.5 | e12 | e72 | 54 | 81 | 16 | 9.7 | 9.0 | 11 | | 25 | 30
33 | 43
e28 | e36
e32 | e7.5
e7.4 | e12
e11 | e65
67 | 46
43 | 73
66 | 16
16 | 9.3
9.1 | 8.7
9.4 | 10
9.4 | | 26
27 | 44
42 | e27
e27 | e28
e26 | e7.4
e7.4 | e10
e12 | 58
57 | 40
36 | 60
55 | 16
16 | 8.7
8.9 | 11
14 | 9.6
10 | | 28 | 38 | e29 | e26 | e7.4 | e15 | 62 | 34 | 52 | 16 | 8.5 | 11 | 10 | | 29
30 | 36
34 | e29
e27 | e27
e32 | e7.5
e7.6 | | 77
63 | 33
36 | 54
52 | 17
19 | 8.2
8.8 | 10
9.7 | 9.7
9.3 | | 31 | 34 | 1.146 | e24 | e8.0 | 204.6 | 55 | 1.504 | 56 | | 17 | 8.6 | 200.2 | | TOTAL
MEAN | 1,009
32.5 | 1,146
38.2 | 1,077
34.7 | 396.5
12.8 | 284.6
10.2 | 1,455
46.9 | 1,524
50.8 | 5,761
186 | 1,117
37.2 | 384.9
12.4 | 577.4
18.6 | 309.3
10.3 | | MAX
MIN | 56
22 | 49
27 | 62
24 | 26
7.4 | 15
7.8 | 100
12 | 70
33 | 589
52 | 80
16 | 20
8.2 | 50
8.6 | 26
7.3 | | CFSM
IN. | 0.27
0.31 | 0.32
0.36 | 0.29
0.33 | 0.11
0.12 | 0.08
0.09 | 0.39
0.45 | 0.42
0.47 | 1.55
1.79 | 0.31
0.35 | 0.10
0.12 | 0.16
0.18 | 0.09
0.10 | | | | | | | | 1930 - 2003 | | | | 0.12 | 0.10 | 0.10 | | MEAN
MAX | 44.6
306 | 57.9
376 | 50.3
268 | 49.8
273 | 68.0
253 | 190
575 | 165
586 | 89.4
291 | 77.7
454 | 43.8
298 | 25.7
106 | 45.4
485 | | (WY)
MIN | (1955)
5.65 | (1986)
6.66 | (1992)
4.92 | (1975)
3.74 | (1984)
5.32 | (1976)
19.9 | (1993)
38.9 | (1933)
14.0 | (1996)
3.34 | (1952)
1.40 | (1960)
1.45 | (1986)
2.48 | | (WY) | (1935) | (1938) | (1964) | (1940) | (1959) | (1940) | (1958) | (1958) | (1934) | (1936) | (1934) | (1932) | | | RY STATIS
L TOTAL | STICS | I | FOR 2002 C
26,734 | CALENDAR | YEAR | FOR 200
15,04 | 3 WATER ' | YEAR | WATER | YEARS 19 | 930 - 2003 | | ANNUA | L MEAN | MEAN | | · | 3.2 | | | 11.2 | | | 75.6 | 1006 | | LOWEST | Τ ANNUAL
Γ ANNUAL | MEAN | | | | | | | | (a) | 68
13.5 | 1986
1934 | | | T DAILY M
Γ DAILY M | | | 510
1 | | : 11
: 11,12 | 58 | | y 12
o 7 | 3,3 | 0.20 A | Iar 20, 1952
.ug 9, 1936 | | | LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW | | | | | ; 7 | | , | n 23
y 12 | 3.6 | | ug 6, 1936
Iar 30, 1960 | | MAXIM | UM PEAK S | | v | | | | | 7.82 Ma | y 12
o 5-8,12 | | 12.25 N | far 30, 1960
lug 9, 1936 | | ANNUA | L RUNOFF | (CFSM) | • | | 0.61 | | | 0.34
4.66 | 9 5 0,12 | | 0.63 | .ug), 1)30 | | 10 PERC | L RUNOFF
ENT EXCE | EDS | | 153 | | | | 71 | | 1 | 8.56
70 | | | | ENT EXCE
ENT EXCE | | | 42 | | | | 27
8.6 | | | 33
7.4 | | ⁽a) Published erroneously at 7.16, 1930, in 1999-2001 ⁽b) Ice affected ⁽c) From graph based on gage readings, backwater from ice (e) Estimated due to ice effect or missing record # 04086600 MILWAUKEE RIVER NEAR CEDARBURG, WI $LOCATION.--Lat~43^{\circ}16'49", long~87^{\circ}56'34", in~NW~\frac{1}{4}~NW~\frac{1}{4}~sec.6, T.9~N., R.22~E., Ozaukee~County, Hydrologic~Unit~04040003, on~right~bank~60~ft~downstream~from~Pioneer~Road~bridge, 2.6~mi~southeast~of~Cedarburg, 1.0~mi~west~of~I-43, and~26.25~mi~upstream~from~mouth.$ DRAINAGE AREA.--607 mi². PERIOD OF RECORD.--November 1981 to current year. $GAGE.--Water-stage\ recorder.\ Datum\ of\ gage\ is\ 653.56\ ft\ above\ NGVD\ of\ 1929\ (Southeastern\ Wisconsin\ Regional\ Planning\ Commission\ bench\ mark).$ REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--
--|---|---|--|--|--|--|--|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 127
102
119
160
214 | 121
113
103
102
96 | e89
e90
e98
e120
e120 | e120
e120
e130
e130
e130 | e64
e70
e85
e78
e71 | e120
e110
e100
e100
e100 | 344
315
298
320
362 | 470
775
724
615
786 | 266
262
239
218
201 | 75
65
50
51
47 | 324
231
188
158
269 | 44
42
40
36
32 | | 6
7
8
9
10 | 368
323
293
263
231 | 97
103
111
109
112 | e110
e100
e99
e88
e85 | e130
e130
e130
e130
e130 | e71
e68
e63
e61
e70 | e100
e110
e110
e110
e120 | 363
338
330
314
334 | 944
974
1,020
1,220
1,310 | 184
181
245
312
356 | 62
72
102
116
90 | 210
151
158
177
186 | 35
35
37
40
40 | | 11
12
13
14
15 | 205
165
134
120
115 | 117
122
141
144
132 | e85
e88
e91
e100
e110 | e100
e73
e70
e68
e65 | e72
e79
e82
e90
e100 | e140
e150
e170
e190
e200 | 375
383
370
354
337 | 1,640
1,740
1,660
1,410
1,170 | 394
403
371
329
281 | 85
80
86
88
92 | 166
141
116
106
100 | 38
38
64
78
169 | | 16
17
18
19
20 | 103
97
113
123
140 | 134
129
125
139
154 | e110
e130
e180
223
277 | e64
e61
e60
e57
e56 | e100
e100
e100
e110
e120 | e230
e270
e400
e500
e470 | 319
328
324
326
333 | 963
791
662
570
541 | 237
195
161
128
114 | 90
86
75
70
67 | 99
90
84
76
68 | 259
158
121
106
97 | | 21
22
23
24
25 | 139
132
123
122
143 | 169
165
160
145
124 | e200
e160
e150
e140
e140 | e52
e52
e52
e52
e52 | e120
e110
e100
e100
e100 | e450
e450
e440
e440
439 | 367
390
388
365
318 | 539
527
487
440
389 | 103
78
69
67
60 | 64
64
62
59 | 69
60
54
47
56 | 98
113
93
74
56 | | 26
27
28
29
30
31 | 158
169
166
158
147
134 | e100
e93
e90
e83
e86 | e150
e160
e150
e140
e130
e130 | e52
e52
e52
e52
e52
e56 | e100
e100
e120
 | 392
369
365
398
423
389 | 289
268
244
222
225 | 345
306
277
272
271
257 | 56
60
60
64
77 | 55
55
51
51
53
227 | 65
52
53
56
45
42 | 53
55
51
52
50 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 5,106
165
368
97
0.27
0.31 | 3,619
121
169
83
0.20
0.22 | 4,043
130
277
85
0.21
0.25 | 2,530
81.6
130
52
0.13
0.16 | 2,504
89.4
120
61
0.15
0.15 | 8,355
270
500
100
0.44
0.51 | 9,843
328
390
222
0.54
0.60 | 24,095
777
1,740
257
1.28
1.48 | 5,771
192
403
56
0.32
0.35 | 2,349
75.8
227
47
0.12
0.14 | 3,697
119
324
42
0.20
0.23 | 2,204
73.5
259
32
0.12
0.14 | | STATIS'
MEAN
MAX
(WY)
MIN
(WY) | 71CS OF MO
296
1,157
(1987)
99.8
(1998) | ONTHLY M
430
1,565
(1986)
121
(2003) | EAN DATA
350
757
(1983)
120
(1990) | 249
406
(1985)
81.6
(2003) | ER YEARS
428
997
(1984)
89.4
(2003) | 1982 - 2003
867
1,793
(1986)
270
(2003) | 926
2,501
(1993)
328
(2003) | R YEAR (W
513
902
(1999)
219
(1988) | 488
1,887
(1996)
89.5
(1988) | 259
767
(1993)
69.7
(1988) | 213
349
(1987)
69.5
(1988) | 289
1,593
(1986)
73.5
(2003) | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM INSTAN ANNUA ANNUA 10 PERC 50 PERC | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 754 90 PERCENT EXCEEDS 105 | | | | | | 74,11
20
1,74
1,75
2 | 10 May
32 Sep
36 Sep
90 May
8.40 May | / 12
5 5
5 3
/ 12 | 4,8 | 32 Se
36 Se
500 Ju
12.88 Ju | 1986
2003
In 19, 1996
ep 5, 2003
ep 3, 2003
In 18, 1996
In 18, 1996
ep 5, 2003 | ⁽a) Ice affected ⁽e) Estimated due to ice effect or missing record # 040869416 LINCOLN CREEK AT SHERMAN BOULEVARD AT MILWAUKEE, WI LOCATION.--Lat 43°05'51", long 87°58'01", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.2, T7 N., R.21 E., Milwaukee County, Hydrologic Unit 04040003, on left bank at the corner of Sherman Boulevard and Congress Street. DRAINAGE AREA.--9.56 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- June to September 2003. GAGE.--Water-stage recorder. Elevation of gage is 635 ft above NGVD of 1929. REMARKS.--Records good except those for estimated days, June 1-3, which are fair (see page 11). Gage-height telemeter at station. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------|-------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|------------------------------|-------------------------|-------------------------------|----------------------------|---|---|----------------------------| | 1 | | | | | | | | | e2.8 | 4.0 | 32 | 1.4 | | 2 | | | | | | | | | e2.5 | 4.1 | 9.7 | 1.7 | | 3 | | | | | | | | | e2.8 | 4.1 | 11 | 1.9 | | 4 | | | | | | | | | 2.7 | 12 | 2.7 | 1.8 | | 5 | | | | | | | | | 2.5 | 22 | 2.3 | 2.2 | | 6 | | | | | | | | | 2.5 | 33 | 4.1 | 1.6 | | 7 | | | | | | | | | 2.2 | 15 | 3.0 | 1.3 | | 8 | | | | | | | | | 97 | 8.8 | 2.1 | 1.6 | | 9 | | | | | | | | | 9.2 | 3.7 | 1.8 | 2.5 | | 10 | | | | | | | | | 5.9 | 2.8 | 1.6 | 2.5 | | 11 | | | | | | | | | 8.2 | 2.6 | 1.9 | 4.0 | | 12 | | | | | | | | | 4.1 | 2.3 | 5.2 | 7.3 | | 13 | | | | | | | | | 3.6 | 1.7 | 2.0 | 20 | | 14 | | | | | | | | | 3.0 | 1.9 | 1.9 | 37 | | 15 | | | | | | | | | 3.2 | 14 | 2.0 | 4.2 | | 16 | | | | | | | | | 2.3 | 3.5 | 2.3 | 2.4 | | 17 | | | | | | | | | 2.7 | 2.5 | 3.2 | 2.2 | | 18 | | | | | | | | | 2.8 | 2.4 | 1.6 | 2.3 | | 19 | | | | | | | | | 2.4 | 2.2 | 2.8 | 1.9 | | 20 | | | | | | | | | 2.4 | 1.6 | 3.5 | 1.7 | | 21 | | | | | | | | | 2.1 | 2.2 | 4.8 | 1.4 | | 22 | | | | | | | | | 1.8 | 5.4 | 2.8 | 25 | | 23 | | | | | | | | | 2.1 | 2.5 | 2.4 | 3.0 | | 24 | | | | | | | | | 2.7 | 2.4 | 1.7 | 2.2 | | 25 | | | | | | | | | 5.2 | 2.8 | 2.4 | 2.2 | | 26 | | | | | | | | | 5.1 | 2.4 | 3.1 | 6.7 | | 27 | | | | | | | | | 6.4 | 1.8 | 3.6 | 3.1 | | 28 | | | | | | | | | 14 | 2.4 | 2.1 | 1.8 | | 29 | | | | | | | | | 4.6 | 3.3 | 2.3 | 1.8 | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | 3.5 | 8.2 | 2.0 | 1.9 | | TOTAL | | | | | | | | | 3.5 | 8.2
3.6 | 2.0
1.4 | 1.9
 | | MEAN |
L | | | | | | | | 212.3 | 3.6
181.2 | 1.4
125.3 | 150.6 | | MAX |
L | | | | | | | | 212.3
7.08 | 3.6
181.2
5.85 | 1.4
125.3
4.04 | 150.6
5.02 | | |
L | | | | | | | | 212.3
7.08
97 | 3.6
181.2
5.85
33 | 1.4
125.3
4.04
32 | 150.6
5.02
37 | | MIN | L
I | | | | |
 | | | 212.3
7.08 | 3.6
181.2
5.85 | 1.4
125.3
4.04 | 150.6
5.02 | | | L
N |

 212.3
7.08
97
1.8 | 3.6
181.2
5.85
33 | 1.4
125.3
4.04
32 | 150.6
5.02
37 | | STATI
MEAN | STICS OF M |

 212.3
7.08
97
1.8 | 3.6
181.2
5.85
33
1.6 | 1.4
125.3
4.04
32
1.4 | 150.6
5.02
37
1.3 | | STATI | STICS OF M |

ONTHLY M |

EAN DATA |

. FOR WAT |

ER YEARS |

2003 - 2003, |

BY WATE |

R YEAR (W | 212.3
7.08
97
1.8 | 3.6
181.2
5.85
33
1.6 | 1.4
125.3
4.04
32
1.4 | 150.6
5.02
37
1.3 | | STATI
MEAN |
L

ISTICS OF MO |

ONTHLY M |

EAN DATA |

FOR WAT |

ER YEARS
 |

2003 - 2003, |

BY WATE |

R YEAR (W | 212.3
7.08
97
1.8 | 3.6
181.2
5.85
33
1.6 | 1.4
125.3
4.04
32
1.4 | 150.6
5.02
37
1.3 | | STATI
MEAN
MAX | L N ISTICS OF MO |

ONTHLY M
 |

EAN DATA
 |

FOR WAT |

ER YEARS
 | 2003 - 2003, |

BY WATE |

R YEAR (W
 | 212.3
7.08
97
1.8 |
3.6
181.2
5.85
33
1.6
5.85
5.85 | 1.4
125.3
4.04
32
1.4
4.04
4.04 | 150.6
5.02
37
1.3 | SUMMARY STATISTICS HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW (a) Also occurred Sept. 7 (e) Estimated FOR 2003 WATER YEAR (JUNE-SEPTEMBER) 97 Jun 8 1.3 Sep 7 1.7 Sep 1 30 Sep 14 8.03 Sep 14 1.0 (a)Aug 24 # 040869416 LINCOLN CREEK AT SHERMAN BOULEVARD AT MILWAUKEE, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- June to September 2003. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: June to September 2003. SPECIFIC CONDUCTANCE: June to September 2003. $INSTRUMENTATION. -- Continuous\ water\ temperature\ recorder\ and\ specific\ conductance\ recorder\ since\ June\ 2003.\ Sensor\ located\ near\ midstream.$ REMARKS.--Records represent water temperature at sensor within 0.5°C. #### EXTREMES FOR CURRENT PERIOD (JUNE-SEPTEMBER).-- WATER TEMPERATURE: Maximum, 30.5°C, Aug. 16 and 26; minimum, 10.0°C, Sept. 30. SPECIFIC CONDUCTANCE: Maximum, 1,800 microsiemens per centimeter, June 24; minimum, 77 microsiemens per centimeter, Sept. 14. # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--| | | | JUNE | | JULY | | | | AUGUST | | SEPTEMBER | | | | | 1
2
3
4
5 |

19.0
18.5 | 13.5
14.0 | 16.0
16.0 | 26.0
26.5
27.5
28.5
28.0 | 20.0
20.0
21.5
21.5
21.5 | 23.0
23.5
24.5
25.0
24.5 | 26.5
26.0
26.0
24.0
28.0 | 19.5
20.5
20.5
20.0
19.5 | 23.0
23.0
22.0
21.0
23.0 | 23.0
25.5
25.5
24.0
24.5 | 18.0
17.0
18.5
17.5
16.5 | 20.0
20.5
21.5
20.5
20.0 | | | 6
7
8
9
10 | 15.5
19.5
16.5
21.0
19.0 | 14.0
13.0
13.5
13.5
15.0 | 15.0
16.0
15.0
17.0
17.0 | 26.0
28.0
24.5
24.0
25.0 | 22.0
20.5
20.5
19.0
20.0 | 23.0
24.0
22.0
21.5
21.5 | 28.5
27.5
26.0
26.0
28.5 | 21.5
20.5
21.0
19.5
19.5 | 24.0
23.5
22.5
22.5
23.5 | 26.0
26.5
27.5
27.0
26.5 | 17.5
19.5
21.5
20.5
20.0 | 21.5
22.5
23.5
23.0
23.0 | | | 11
12
13
14
15 | 18.5
20.5
23.5
24.0
24.5 | 15.5
14.0
15.5
17.5
17.0 | 16.5
17.0
19.5
20.5
20.5 | 23.5
26.5
27.5
28.0
27.5 | 18.0
18.5
19.5
20.0
20.5 | 20.5
22.0
23.0
24.0
24.0 | 23.5
26.5
28.5
27.0
29.0 | 20.5
20.0
20.0
21.5
22.5 | 22.0
22.5
24.0
24.5
25.5 | 26.0
23.5
22.0
21.0
22.0 | 20.5
19.5
20.5
19.0
17.0 | 22.5
21.0
21.0
20.5
19.5 | | | 16
17
18
19
20 | 24.5
25.0
25.0
23.0
24.0 | 17.0
17.0
18.5
16.0
15.0 | 20.5
21.0
21.0
19.0
19.5 | 26.5
28.5
27.0
28.0
26.0 | 20.0
21.0
19.5
19.0
21.0 | 23.5
24.0
23.0
23.0
23.5 | 30.5
29.0
28.5
27.5
29.0 | 23.5
22.0
21.0
21.5
22.0 | 26.0
24.5
24.5
24.0
24.5 | 24.0
24.0
24.5
20.5
21.0 | 16.5
17.0
18.0
16.0
14.0 | 19.5
20.0
20.5
18.5
17.0 | | | 21
22
23
24
25 | 25.5
27.0
28.0
28.5
30.0 | 16.5
17.5
18.5
21.0
22.0 | 20.5
22.0
23.0
24.0
25.0 | 26.5
26.0
26.5
26.5
27.0 | 21.5
19.5
19.0
19.0
19.5 | 23.5
22.0
22.5
22.5
23.0 | 29.5
28.0
28.0
28.5
26.5 | 21.0
21.0
21.0
21.0
23.0 | 24.5
24.5
23.5
24.0
24.0 | 22.0
18.5
19.5
21.0
17.5 | 14.0
16.0
13.5
14.5
12.5 | 17.5
17.5
16.5
17.0
14.5 | | | 26
27
28
29
30
31 | 25.5
25.5
21.5
25.5
26.5 | 20.0
18.0
17.5
17.5
19.5 | 22.5
21.0
19.5
21.5
22.5 | 24.0
27.0
27.0
27.0
24.5
27.0 | 21.0
22.0
20.5
19.5
19.5
20.5 | 22.5
24.0
23.0
23.0
22.0
23.5 | 30.5
27.5
28.5
27.5
25.5
22.0 | 22.0
18.5
19.5
22.0
20.5
19.0 | 25.0
23.5
23.5
24.0
22.5
20.5 | 16.0
15.0
15.0
16.5
13.5 | 13.0
12.5
11.5
10.5
10.0 | 14.5
14.0
13.0
13.0
11.5 | | | MONTH | 30.0 | 13.0 | 19.6 | 28.5 | 18.0 | 23.0 | 30.5 | 18.5 | 23.5 | 27.5 | 10.0 | 18.8 | | ### 040869416 LINCOLN CREEK AT SHERMAN BOULEVARD AT MILWAUKEE, WI—Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|---|---|---|--|--|--|---|--|---|---|-------------------------------------|---| | | | JUNE | | | JULY | | | AUGUST | | S | ЕРТЕМВЕ | R | | 1
2
3
4
5 | 1,620
1,630 | 1,460
1,540 |

1,540
1,580 | 1,290
1,330
1,350
1,380
908 | 1,020
1,250
1,250
404
193 | 1,200
1,290
1,320
934
629 | 969
680
779
873
1,040 | 296
255
156
676
690 | 638
510
621
761
963 | 986
1,050
1,070
1,050
1,040 | 935
952
962
943
976 | 965
995
1,020
1,000
1,000 | | 6
7
8
9
10 | 1,670
1,620
1,600
1,140
1,310 | 1,470
1,560
144
668
825 | 1,590
1,590
592
954
1,210 | 981
820
978
1,040
1,210 | 166
179
369
728
1,030 | 648
643
775
884
1,100 | 1,120
815
998
1,100
1,120 | 729
661
815
998
747 | 1,050
699
910
1,050
1,070 | 1,050
1,060
1,090
1,100
1,060 | 911
973
1,050
1,040
923 | 1,000
1,010
1,060
1,070
1,010 | | 11
12
13
14
15 | 1,250
1,400
1,460
1,550
1,660 | 812
1,180
1,360
1,440
1,300 | 962
1,290
1,420
1,500
1,470 | 1,240
1,270
1,320
1,400
1,420 | 1,150
1,210
1,230
1,260
296 | 1,200
1,240
1,260
1,330
752 | 1,100
1,080
1,060
1,130
1,170 | 843
311
927
1,050
841 | 1,010
785
1,020
1,090
1,090 | 983
815
608
537
629 | 719
384
230
77
388 | 888
719
427
382
511 | | 16
17
18
19
20 | 1,650
1,750
1,720
1,660
1,660 | 1,400
1,490
1,480
1,420
1,100 | 1,490
1,680
1,640
1,520
1,610 | 1,110
1,120
1,220
1,270
1,310 | 615
1,000
1,100
1,220
1,230 | 951
1,060
1,160
1,240
1,260 | 1,200
1,160
1,060
1,100
1,110 | 805
623
962
985
601 | 1,130
1,040
1,020
1,050
996 | 741
804
859
862
908 | 629
723
804
832
840 | 699
771
841
850
886 | | 21
22
23
24
25 | 1,670
1,690
1,750
1,800
1,700 | 1,400
1,370
1,560
1,570
1,120 | 1,620
1,650
1,670
1,700
1,570 | 1,340
1,300
1,110
1,210
1,300 | 1,110
427
1,030
1,100
1,080 | 1,260
1,050
1,060
1,170
1,230 | 1,000
861
924
971
1,030 | 427
676
803
831
925 | 836
820
875
931
995 | 922
899
745
846
910 | 880
152
548
707
835 | 904
482
663
806
878 | | 26
27
28
29
30
31 | 1,260
1,300
1,090
1,010
1,200 | 1,010
618
405
693
1,010 | 1,070
1,180
793
911
1,100 | 1,360
1,370
1,480
1,480
1,260
1,030 | 1,270
1,330
1,300
992
190
429 | 1,320
1,360
1,380
1,360
1,110
835 | 1,020
926
893
923
943
935 | 756
658
783
843
767
896 | 965
821
821
889
895
906 | 883
666
826
984
1,000 | 426
441
566
826
901 | 755
583
723
916
968 | | MONTH | 1,800 | 144 | 1,370 | 1,480 | 166 | 1,100 | 1,200 | 156 | 912 | 1,100 | 77 | 826 | #### 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI (NATIONAL WATER-QUALITY ASSESSMENT PROGRAM STATION) $LOCATION.--Lat~43^{\circ}06'00", long~87^{\circ}54'32", in~NE~\frac{1}{4}, NE~\frac{1}{4}, sec.5, T.7~N., R.22~E., Milwaukee~County, Hydrologic~Unit~04040003, on~left~bank~near~northeast~limits~of~Milwaukee~in~Estabrook~Park, 2,000~ft~downstream~from~Port~Washington~Road~bridge~and~6.6~mi~upstream~from~mouth.$ DRAINAGE AREA.--696 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1914 to current year. Published as "near Milwaukee" prior to 1936. REVISED RECORDS.--WSP 564: 1918(M). WSP 924: 1940. WSP 1207: 1936(M). WSP 1337: 1915-17(M), 1918, 1919-21(M), 1922, 1923(M), 1924, 1925-33(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 607.23 ft above NGVD of 1929 (levels by U. S. Army Corps of Engineers). Prior to Apr. 6, 1929, nonrecording gage near present site at different datum. Apr. 6, 1929, to Jan. 8, 1934, nonrecording gage at bridge 0.5 mi upstream at different datum. REMARKS.--Records good except those for
estimated daily discharges, Oct. 14 and May 16-18, which are fair, and for all other estimated daily discharges, which are poor (see page 11). Occasional regulation caused by recreation dam approximately 1,200 ft upstream. Gage-height telemeter at station. | | | DISCH | ARGE, CUB | IC FEET PI | |), WATER Y
LY MEAN V | | OBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |----------------------------------|--|--------------------------------------|--|---------------------------------|--------------------------------------|--|---------------------------------|--|---------------------------------|-----------------------------------|----------------------------------|------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 189 | 198 | e100 | e160 | e100 | e150 | 372 | 485 | 278 | 146 | 422 | 57 | | 2 | 239 | 194 | e100 | e160 | e100 | e130 | 330 | 664 | 277 | 136 | 342 | 56 | | 3 | 251 | 184 | e120 | e170 | e110 | e120 | 316 | 729 | 267 | 123 | 258 | 55 | | 4 | 284 | 176 | e150 | e170 | e100 | e130 | 413 | 623 | 249 | 132 | 183 | 55 | | 5 | 243 | 177 | e150 | e170 | e98 | e130 | 421 | 942 | 231 | 178 | 199 | 53 | | 6 | 332 | 177 | e140 | e170 | e95 | e140 | 415 | 1,020 | 221 | 194 | 212 | 51 | | 7 | 368 | 171 | e130 | e160 | e90 | e140 | 397 | 1,050 | 213 | 254 | 185 | 49 | | 8 | 319 | 175 | e130 | e160 | e100 | e140 | 413 | 1,150 | 525 | 189 | 155 | 60 | | 9 | 300 | 177 | e130 | e160 | e100 | e150 | 386 | 1,600 | 361 | 212 | 156 | 68 | | 10 | 278 | 179 | 143 | e140 | e110 | e160 | 366 | 1,490 | 370 | 201 | 167 | 64 | | 11 | 251 | 190 | 146 | e140 | e110 | e170 | 381 | 1,670 | 437 | 180 | 160 | 62 | | 12 | 223 | 188 | 152 | e100 | e120 | e180 | 392 | 1,870 | 422 | 168 | 159 | 61 | | 13 | 199 | 195 | 172 | e110 | e120 | e200 | 380 | 1,770 | 402 | 152 | 129 | 62 | | 14 | e190 | 201 | 177 | e110 | e130 | e220 | 366 | 1,540 | 370 | 151 | 112 | 156 | | 15 | 183 | 197 | 181 | e100 | e140 | e230 | 351 | 1,290 | 328 | 179 | 105 | 96 | | 16 | 177 | 194 | 182 | e100 | e140 | e260 | 347 | e1,040 | 291 | 148 | 101 | 189 | | 17 | 169 | 195 | 183 | e100 | e150 | e340 | 339 | e830 | 255 | 138 | 96 | 190 | | 18 | 190 | 202 | 322 | e100 | e150 | e450 | 336 | e660 | 227 | 120 | 85 | 138 | | 19 | 191 | 244 | e250 | e96 | e160 | e550 | 472 | 585 | 201 | 106 | 80 | 107 | | 20 | 189 | 220 | e280 | e95 | e170 | e510 | 386 | 614 | 176 | 100 | 76 | 95 | | 21
22
23
24
25 | 195
195
193
211
266 | 267
256
229
220
210 | e250
e200
e190
e180
e180 | e94
e98
e94
e99 | e170
e160
e150
e150
e140 | e480
494
482
450
448 | 365
389
389
378
350 | 532
524
492
452
409 | 167
152
123
124
123 | 96
97
85
83
77 | 70
68
64
62
58 | 87
182
100
89
83 | | 26
27
28
29
30
31 | 220
222
224
221
212
207 | e190
e140
e130
e130
e140 | e200
e210
e180
e180
e190
e180 | e96
e96
e98
e96
e96 | e140
e140
e150 | 394
370
395
388
414
408 | 310
287
270
253
288 | 371
341
314
290
339
407 | 124
114
170
142
136 | 70
69
68
67
66
136 | 63
68
62
60
60
58 | 87
89
76
71
83 | | TOTAL | 7,131 | 5,746 | 5,478 | 3,732 | 3,593 | 9,223 | 10,858 | 26,093 | 7,476 | 4,121 | 4,075 | 2,671 | | MEAN | 230 | 192 | 177 | 120 | 128 | 298 | 362 | 842 | 249 | 133 | 131 | 89.0 | | MAX | 368 | 267 | 322 | 170 | 170 | 550 | 472 | 1,870 | 525 | 254 | 422 | 190 | | MIN | 169 | 130 | 100 | 94 | 90 | 120 | 253 | 290 | 114 | 66 | 58 | 49 | | CFSM | 0.33 | 0.28 | 0.25 | 0.17 | 0.18 | 0.43 | 0.52 | 1.21 | 0.36 | 0.19 | 0.19 | 0.13 | | IN. | 0.38 | 0.31 | 0.29 | 0.20 | 0.19 | 0.49 | 0.58 | 1.39 | 0.40 | 0.22 | 0.22 | 0.14 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1914 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN | 279 | 348 | 298 | 253 | 393 | 1,030 | 969 | 518 | 412 | 229 | 210 | 267 | | MAX | 1,316 | 1,956 | 981 | 864 | 2,200 | 3,545 | 3,024 | 1,720 | 2,007 | 1,200 | 2,936 | 2,304 | | (WY) | (1987) | (1986) | (1929) | (1916) | (1938) | (1929) | (1993) | (1973) | (1996) | (1952) | (1924) | (1938) | | MIN | 52.8 | 62.4 | 40.7 | 45.8 | 47.4 | 181 | 237 | 86.4 | 56.3 | 25.0 | 19.4 | 27.4 | | (WY) | (1947) | (1950) | (1964) | (1959) | (1959) | (1940) | (1958) | (1958) | (1934) | (1936) | (1934) | (1932) | # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEARS | 5 1914 - 2003 | |--------------------------|---------------|-----------|-------------|----------|-------------|---------------| | ANNUAL TOTAL | 153,893 | | 90,197 | | | | | ANNUAL MEAN | 422 | | 247 | | 433 | | | HIGHEST ANNUAL MEAN | | | | | 874 | 1986 | | LOWEST ANNUAL MEAN | | | | | 112 | 1958 | | HIGHEST DAILY MEAN | 2,030 | Apr 9,10 | 1,870 | May 12 | 14,800 | Mar 20, 1918 | | LOWEST DAILY MEAN | 97 | Aug 11 | 49 | Sep 7 | (a)0.00 | Sep 8, 1943 | | ANNUAL SEVEN-DAY MINIMUM | 110 | Aug 5 | 54 | Sep 1 | 8.3 | Aug 3, 1936 | | MAXIMUM PEAK FLOW | | • | 2,800 | May 9 | 16,500 | Jun 21, 1997 | | MAXIMUM PEAK STAGE | | | 4.68 | May 9 | 10.00 | Jun 21, 1997 | | INSTANTANEOUS LOW FLOW | | | 48 | Sep 6-8 | (a)0.00 | Sep 8, 1943 | | ANNUAL RUNOFF (CFSM) | 0.61 | | 0.36 | • | 0.62 | • | | ANNUAL RUNOFF (INCHÉS) | 8.23 | | 4.82 | | 8.45 | | | 10 PERCENT EXCEEDS | 891 | | 422 | | 976 | | | 50 PERCENT EXCEEDS | 252 | | 179 | | 230 | | | 90 PERCENT EXCEEDS | 148 | | 83 | | 73 | | ⁽a) Result of regulation(e) Estimated due to ice effect or missing record #### 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI-Continued (NATIONAL WATER-QUALITY ASSESSMENT PROGRAM STATION) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964-65, 1967-69, 1971, 1973 to current year. National Stream-Quality Accounting Network data collection began in January 1973 and was discontinued September 1994. National Water-Quality Assessment Program sampling began in April 1993. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: May 2002 to current year. SPECIFIC CONDUCTANCE: May 2002 to current year. INSTRUMENTATION.--Continuous water temperature recorder and specific conductance recorder since May 2002. Sensor located at the left edge of water. REMARKS.--Chemical analyses of some constituents for Wisconsin District program samples were done by the National Water-Quality Laboratory. Records represent water temperature at sensor within 0.5°C. Records for water temperature were faulty Oct. 2-7, Dec. 3 to Jan. 7, Jan. 20-29, July 24-30, and Aug. 19 to Sept. 2. Records for specific conductance were faulty Oct. 2-7, Dec. 3 to Jan. 7, Jan. 20 to Feb. 4, July 25-30, and Aug. 21 to Sept. 2. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 32.5°C, Aug. 1, 2002; minimum, 0.0°C, many days during 2003. SPECIFIC CONDUCTANCE: Maximum, 2,850 microsiemens per centimeter, Mar. 13, 2003; minimum, 208 microsiemens per centimeter, Aug. 13, 2002. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 28.0°C, July 4; minimum, 0.0°C, many days. SPECIFIC CONDUCTANCE: Maximum, 2,850 microsiemens per centimeter, Mar. 13; minimum, 519 microsiemens per centimeter, Sept. 15. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |--------|------|---------|------|------------|------------|------------|--------------|--------|------------|-----|---------|------| | | | ОСТОВЕН | ₹ | N | OVEMBE | ER | D | ECEMBE | R | J | IANUARY | 7 | | 1
2 | 20.0 | 19.0 | 19.5 | 6.0
7.0 | 3.5
3.5 | 4.5
4.5 | $0.0 \\ 0.0$ | 0.0 | 0.0
0.0 | | | | | 3 | | | | 6.0 | 3.0 | 4.5 | | | | | | | | 4 | | | | 6.5 | 3.5 | 4.5 | | | | | | | | 5 | | | | 4.5 | 4.0 | 4.5 | | | | | | | | 6 | | | | 5.5 | 4.0 | 5.0 | | | | | | | | 7 | | | | 7.5 | 4.0 | 5.5 | | | | | | | | 8 | 14.0 | 13.0 | 13.5 | 9.0 | 6.0 | 7.5 | | | | 1.0 | 0.0 | 0.0 | | 9 | 14.5 | 13.0 | 13.5 | 10.5 | 7.5 | 9.0 | | | | 0.5 | 0.0 | 0.0 | | 10 | 13.5 | 13.0 | 13.5 | 10.5 | 9.0 | 10.0 | | | | 0.0 | 0.0 | 0.0 | | 11 | 14.0 | 12.0 | 13.0 | 9.0 | 7.0 | 8.0 | | | | 0.0 | 0.0 | 0.0 | | 12 | 14.5 | 13.0 | 13.5 | 8.0 | 6.5 | 7.0 | | | | 0.5 | 0.0 | 0.0 | | 13 | 14.0 | 12.0 | 13.0 | 8.0 | 5.5 | 6.5 | | | | 0.0 | 0.0 | 0.0 | | 14 | 12.5 | 10.0 | 11.5 | 7.0 | 5.5 | 6.5 | | | | 0.0 | 0.0 | 0.0 | | 15 | 12.0 | 9.5 | 10.5 | 5.5 | 4.5 | 5.0 | | | | 0.0 | 0.0 | 0.0 | | 16 | 11.5 | 8.0 | 9.5 | 5.0 | 4.0 | 4.0 | | | | 0.0 | 0.0 | 0.0 | | 17 | 9.5 | 8.0 | 8.5 | 4.5 | 2.5 | 3.5 | | | | 0.0 | 0.0 | 0.0 | | 18 | 8.5 | 7.5 | 8.0 | 3.0 | 1.5 | 2.0 | | | | 0.0 | 0.0 | 0.0 | | 19 | 9.0 | 7.5 | 8.0 | 6.0 | 2.5 | 3.5 | | | | 0.0 | 0.0 | 0.0 | | 20 | 10.0 | 7.0 | 8.0 | 4.0 | 3.0 | 3.5 | | | | | | | | 21 | 8.5 | 8.0 | 8.0 | 4.0 | 3.0 | 3.5 | | | | | | | | 22 | 8.5 | 7.5 | 8.0 | 3.5 | 2.0 | 2.5 | | | | | | | | 23 | 8.5 | 7.0 | 7.5 | 4.5 | 2.0 | 3.0 | | | | | | | | 24 | 8.0 | 7.0 | 7.5 | 3.0 | 1.0 | 2.0 | | | | | | | | 25 | 7.5 | 7.0 | 7.5 | 2.0 | 0.0 | 1.0 | | | | | | | | 26 | 9.5 | 7.5 | 8.0 | 0.5 | 0.0 | 0.0 | | | | | | | | 27 | 8.0 | 6.5 | 7.5 | 1.5 | 0.0 | 0.0 | | | | | | | | 28 | 10.0 | 7.0 | 8.0 | 0.5 | 0.0 | 0.0 | | | | | | | | 29 | 8.0 | 6.5 | 7.0 | 1.5 | 0.0 | 0.5 | | | | | | | | 30 | 8.5 | 6.0 | 7.0 | 1.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 | | 31 | 8.0 | 5.5 | 6.5 | | | | | | | 0.0 | 0.0 | 0.0 | | MONTH | 20.0 | 5.5 | 9.8 | 10.5 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI—Continued # ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002\ TO\ SEPTEMBER\ 2003}$ | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN |
---|--|---|--|--|--|--|--|---|--|--|--|--| | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 9.0
8.0
7.0
5.0
4.5 | 4.5
6.0
5.0
3.0
2.0 | 7.0
7.0
6.0
4.0
3.5 | 12.0
12.5
13.5
13.5
12.5 | 10.5
10.5
10.5
11.5
11.0 | 11.5
11.5
12.0
12.0
11.5 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 6.0
4.5
3.5
7.0
9.0 | 2.0
1.5
1.0
1.0
3.5 | 3.5
2.0
2.0
4.0
6.5 | 13.0
13.0
12.5
14.0
14.5 | 11.0
11.5
11.0
11.5
13.0 | 12.0
12.0
12.0
12.5
14.0 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 11.0
12.0
13.0
15.5
18.5 | 6.5
7.5
8.0
9.5
13.0 | 9.0
10.0
10.5
12.5
15.5 | 14.5
13.5
15.0
14.0
15.0 | 13.0
12.0
12.5
13.5
13.0 | 14.0
12.5
13.5
14.0
13.5 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.5
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 16.5
11.0
9.5
10.5
13.0 | 11.0
9.5
8.0
7.5
10.0 | 13.0
10.0
9.0
9.0
11.5 | 16.5
16.5
17.0
17.0
17.5 | 13.5
15.0
15.0
15.5
16.0 | 15.0
16.0
16.0
16.0
17.0 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.0
2.0
3.5
4.5
6.5 | 0.0
0.0
0.0
0.5
2.0 | 0.5
0.5
1.0
2.5
4.5 | 12.0
14.0
14.0
12.5
13.5 | 10.5
9.0
9.0
9.0
10.0 | 11.0
11.5
11.5
11.5
11.5 | 17.5
17.5
17.5
17.5
19.0 | 16.0
16.0
16.5
17.0
17.5 | 17.0
17.0
17.0
17.5
18.0 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 6.5
5.5
6.0
5.0
5.0
6.5 | 3.5
4.0
5.0
4.0
2.5
2.5 | 5.0
5.0
5.5
4.5
4.0
5.0 | 14.5
16.5
18.0
17.0
15.0 | 9.5
11.0
14.5
13.5
12.0 | 12.0
13.5
16.0
15.5
13.5 | 20.5
21.0
20.5
19.5
19.0
17.5 | 18.0
18.5
19.0
17.5
17.5 | 19.0
19.5
19.5
18.5
18.0
16.5 | | 01 | | | | | | | | | | | | | | MONTH | 0.0 | 0.0 | 0.0 | 6.5 | 0.0 | 1.2 | 18.5 | 1.0 | 9.4 | 21.0 | 10.5 | 15.0 | | MONTH | 0.0 | 0.0
JUNE | 0.0 | 6.5 | 0.0
JULY | 1.2 | 18.5 | 1.0
AUGUST | 9.4 | | 10.5
EPTEMBI | | | MONTH 1 2 3 4 5 | 17.0
17.5
17.0
17.5
18.0 | | 0.0
16.0
16.5
16.5
16.5
17.0 | 24.5
25.0
26.5
28.0
27.0 | | 23.0
24.0
25.0
26.0
26.0 | 25.0
25.0
24.5
24.0
24.0 | | 24.0
24.0
23.5
23.0
23.0 | | | | | 1
2
3
4 | 17.0
17.5
17.0
17.5 | JUNE
15.0
15.0
15.5
16.0 | 16.0
16.5
16.5
16.5 | 24.5
25.0
26.5
28.0 | JULY
22.0
23.0
23.5
25.0 | 23.0
24.0
25.0
26.0 | 25.0
25.0
24.5
24.0 | AUGUST | 24.0
24.0
23.5
23.0 | SE

24.5
24.0 |

20.0
19.5 | ER 22.0 21.0 | | 1
2
3
4
5
6
7
8
9 | 17.0
17.5
17.0
17.5
18.0
17.0
17.5
17.0
18.0 | JUNE 15.0 15.0 15.5 16.0 16.0 16.5 16.5 16.0 16.0 | 16.0
16.5
16.5
16.5
17.0
17.0
16.5
17.0 | 24.5
25.0
26.5
28.0
27.0
27.0
26.0
25.0
24.5 | JULY 22.0 23.0 23.5 25.0 25.5 25.5 24.5 23.5 23.5 | 23.0
24.0
25.0
26.0
26.0
25.5
25.0
24.0
24.0 | 25.0
25.0
24.5
24.0
24.0
25.0
25.5
25.0
24.5 | 23.5
23.5
23.0
22.5
22.5
23.0
23.0 | 24.0
24.0
23.5
23.0
23.0
24.0
24.5
24.5
24.5 | 24.5
24.0
24.0
24.0
24.0 | 20.0
19.5
19.0
20.5
21.0
22.0 | 22.0
21.0
20.5
21.0
22.0
22.0
22.5
23.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 17.0
17.5
17.0
17.5
18.0
17.0
17.5
17.0
18.0
19.0
18.5
18.5
20.5
21.5 | JUNE 15.0 15.0 15.5 16.0 16.0 16.5 16.5 16.0 17.5 17.0 18.0 19.0 | 16.0
16.5
16.5
16.5
17.0
17.0
16.5
17.0
18.0
18.0
17.5
19.0
20.5 | 24.5
25.0
26.5
28.0
27.0
26.0
25.0
24.5
24.0
23.5
24.0
24.5 | JULY 22.0 23.0 23.5 25.0 25.5 25.5 24.5 23.5 23.5 23.0 22.0 22.0 22.0 22.5 | 23.0
24.0
25.0
26.0
26.0
25.5
25.0
24.0
23.5
22.5
22.5
22.5
23.0 | 25.0
25.0
24.5
24.0
24.0
25.0
25.5
25.0
24.5
24.5
24.5
24.5
25.0
24.5 | AUGUST 23.5 23.5 23.0 22.5 22.5 23.0 23.5 24.0 23.5 23.0 23.0 23.0 23.0 23.0 | 24.0
24.0
23.5
23.0
23.0
24.0
24.5
24.5
24.0
23.5
23.0
23.5
23.5
24.0 | 24.5
24.0
24.0
24.0
24.5
24.5
25.0
25.5
26.0
24.0
22.0
21.5 | 20.0
19.5
19.0
20.5
21.0
22.0
22.0
22.5
21.5
21.5
20.0 | 22.0
21.0
20.5
21.0
22.5
23.0
23.5
23.5
22.5
22.5
22.0
21.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 17.0
17.5
17.0
17.5
18.0
17.5
17.0
18.0
19.0
18.5
20.5
21.5
22.0
23.0
23.0
23.0
22.5 | JUNE 15.0 15.0 15.5 16.0 16.0 16.5 16.5 16.0 16.0 17.5 17.5 17.0 18.0 19.0 20.0 20.5 21.5 20.5 | 16.0
16.5
16.5
16.5
17.0
17.0
17.0
18.0
18.0
17.5
19.0
20.5
21.0
21.5
22.0
21.5 | 24.5
25.0
26.5
28.0
27.0
26.0
25.0
24.5
24.0
24.5
25.5
26.0
26.0
25.0
25.0
25.5 | JULY 22.0 23.0 23.5 25.0 25.5 25.5 24.5 23.5 23.0 22.0 22.0 22.0 22.0 22.0 23.0 24.0 23.5 23.0 24.0 23.5 23.0 22.5 | 23.0
24.0
25.0
26.0
26.0
25.5
25.0
24.0
23.5
22.5
22.5
22.5
23.0
24.0
25.0
24.0
25.5
22.5
23.0
24.0
25.5
25.5
25.5
25.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26 | 25.0
25.0
24.5
24.0
24.0
25.0
25.5
25.0
24.5
24.5
24.5
25.0
24.5
26.5
27.5
27.5
27.0 | AUGUST 23.5 23.5 23.0 22.5 22.5 23.0 23.5 24.0 23.5 23.0 23.0 23.0 23.0 23.0 24.0 25.0 24.5 | 24.0
24.0
23.5
23.0
23.0
24.5
24.5
24.5
24.0
23.5
23.5
23.5
24.0
25.0
26.0
25.0 | 24.5
24.0
24.0
24.0
24.5
25.0
25.5
26.0
24.0
22.0
21.5
21.0
22.0
20.5 | 20.0
19.5
19.0
20.5
21.0
22.0
22.0
22.0
22.5
21.5
21.5
20.0
19.0 | 22.0
21.0
20.5
21.0
22.5
23.0
23.5
23.5
22.5
22.0
21.0
20.0
20.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 17.0
17.5
17.0
17.5
18.0
17.0
18.0
19.0
18.5
20.5
21.5
22.0
23.0
23.0
22.5
21.5
22.0
23.0
24.5
25.0 | JUNE 15.0 15.0 15.0 15.5 16.0 16.0 16.5 16.5 16.0 17.5 17.5 17.5 17.0 18.0 19.0 20.0 20.5 21.5 20.0 20.5 21.5 20.0 20.5 21.5 22.5 | 16.0
16.5
16.5
16.5
17.0
17.0
16.5
17.0
18.0
18.0
17.5
19.0
20.5
21.0
21.5
22.0
21.5
22.5
21.0
21.5
22.5
23.5 | 24.5
25.0
26.5
28.0
27.0
26.0
25.0
24.5
24.0
24.5
25.5
26.0
25.0
25.5
24.5
25.5 | JULY 22.0 23.0 23.5 25.0 25.5 25.5 24.5 23.5 23.0 22.0 22.0 22.0 22.5 23.0 24.0 23.5 23.0 22.5 23.0 24.0 23.5 23.0 22.5 23.0 |
23.0
24.0
25.0
26.0
26.0
25.5
25.0
24.0
23.5
22.5
22.5
22.5
23.0
24.0
25.0
24.0
25.0
24.0
25.5
22.5
25.5
25.5
25.0
24.0
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25 | 25.0
25.0
24.5
24.0
24.0
25.0
25.5
25.0
24.5
24.5
24.5
25.0
24.5
27.5
27.5
27.0 | AUGUST 23.5 23.5 23.0 22.5 22.5 23.0 23.5 24.0 23.5 23.0 23.0 23.0 23.0 23.0 24.0 25.0 25.0 24.5 | 24.0 24.0 23.5 23.0 23.0 24.5 24.5 24.0 23.5 23.5 23.0 25.0 26.0 26.0 25.0 | 24.5
24.0
24.0
24.0
24.5
24.5
25.0
25.5
26.0
21.5
21.5
21.0
22.0
20.5
20.5
20.5
19.0 | 20.0
19.5
19.0
20.5
21.0
22.0
22.0
22.0
22.5
21.5
20.0
19.0
19.0
18.5
19.5
18.5
17.5 | 22.0
21.0
20.5
21.0
22.5
23.0
23.5
23.5
22.5
22.0
21.0
20.0
20.0
19.5
20.5
19.5
18.5
18.0
17.5
17.0 | ### 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI-Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|--|--|---|--|--|---|---|--|---|---|---| | | | OCTOBER | | | NOVEMBE | ER. | Ι | DECEMBE | R | | JANUARY | 7 | | 1 2 | 636 | 586 | 609 | 819
823 | 803
803 | 812
812 | 940
1,030 | 896
924 | 926
958 | | | | | 3 | | | | 827 | 807 | 817 | | | | | | | | 4
5 | | | | 824
830 | 811
809 | 819
817 | 6
7 | | | | 837
844 | 815
827 | 824
834 | | | | | | | | 8 | 819 | 791 | 810 | 855 | 738 | 840 | | | | 915 | 888 | 899 | | 9
10 | 791
747 | 742
728 | 756
738 | 860
870 | 847
854 | 853
863 | | | | 916
975 | 889
916 | 903
946 | | | | | | | | | | | | | | | | 11
12 | 742
765 | 728
742 | 734
755 | 867
863 | 848
848 | 863
857 | | | | 1,020
1,000 | 969
949 | 995
976 | | 13 | 769 | 765 | 767 | 866 | 859 | 864 | | | | 972 | 927 | 948 | | 14
15 | 807
804 | 764
792 | 787
799 | 874
875 | 865
863 | 872
871 | | | | 1,060
1,080 | 972
1,040 | 1,010
1,060 | | 16 | 811 | 787 | 799 | 868 | 860 | 865 | | | | 1,100 | | 1,080 | | 17 | 821 | 797 | 809 | 863 | 845 | 858 | | | | 1,110 | 1,060
1,070 | 1,080 | | 18 | 818 | 797 | 807 | 852 | 829 | 847 | | | | 1,180 | 1,110 | 1,140 | | 19
20 | 815
832 | 787
810 | 802
819 | 845
848 | 826
828 | 832
843 | | | | 1,240 | 1,180 | 1,220 | | | | | | | | | | | | | | | | 21
22 | 829
831 | 814
808 | 821
823 | 854
831 | 826
825 | 838
829 | | | | | | | | 23 | 828 | 803 | 817 | 837 | 826 | 831 | | | | | | | | 24
25 | 817
798 | 798
727 | 805
770 | 839
832 | 803
820 | 831
827 | 26
27 | 802
812 | 758
790 | 782
803 | 835
850 | 826
827 | 830
840 | | | | | | | | 28 | 817 | 798 | 809 | 866 | 842 | 856 | | | | | | | | 29
30 | 818
823 | 808
742 | 814
811 | 867
896 | 852
867 | 862
879 | | | | | | | | 31 | 821 | 804 | 813 | | | | | | | | | | | MONTH | 022 | 7 0.6 | 5 0.6 | 006 | 720 | 0.42 | 4.000 | 006 | 0.42 | 1.040 | 000 | | | MONTH | 832 | 586 | 786 | 896 | 738 | 843 | 1,030 | 896 | 942 | 1,240 | 888 | 1,020 | | MONTH | | 586
FEBRUARY | | 896 | MARCH | 843 | 1,030 | APRIL | 942 | 1,240 | MAY | 1,020 | | 1 | | | | 1,040 | MARCH
976 | 1,010 | 724 | APRIL
696 | 711 | 821 | MAY
545 | 731 | | 1
2 | | FEBRUARY

 | /

 | 1,040
1,030 | MARCH
976
978 | 1,010
1,010 | 724
723 | APRIL
696
698 | 711
712 | 821
821 | MAY
545
743 | 731
774 | | 1
2
3 | | FEBRUARY | <i></i> | 1,040
1,030
1,070 | MARCH
976
978
1,020 | 1,010
1,010
1,040 | 724
723
729 | APRIL
696
698
698 | 711
712
717 | 821
821
760 | MAY
545
743
725 | 731
774
750 | | 1
2 |
 | FEBRUARY

 |

 | 1,040
1,030 | MARCH
976
978 | 1,010
1,010 | 724
723 | APRIL
696
698 | 711
712 | 821
821 | MAY
545
743 | 731
774 | | 1
2
3
4
5 |

 | FEBRUARY 1,330 1,180 | 7

1,400
1,240 | 1,040
1,030
1,070
1,170
1,700 | 976
978
1,020
1,070
1,140
1,380 | 1,010
1,010
1,040
1,120
1,320
1,440 | 724
723
729
860
971
857 | APRIL 696 698 698 703 824 771 | 711
712
717
763
882
812 | 821
821
760
729
794 | MAY 545 743 725 697 671 | 731
774
750
720
705
686 | | 1
2
3
4
5 |

1,470
1,330
1,260 | FEBRUARY 1,330 1,180 1,210 | 7

1,400
1,240
1,230 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040 | 976
978
1,020
1,070
1,140
1,380
1,270 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540 | 724
723
729
860
971
857
1,110 | APRIL 696 698 698 703 824 771 796 | 711
712
717
763
882
812
927 | 821
821
760
729
794
711
718 | MAY 545 743 725 697 671 678 680 | 731
774
750
720
705
686
692 | | 1
2
3
4
5
6
7
8 | 1,470
1,330
1,260
1,320 | FEBRUARY 1,330 1,180 1,210 1,230 |

1,400
1,240
1,230
1,250 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690 | 724
723
729
860
971
857
1,110
1,700 | APRIL 696 698 698 703 824 771 796 1,050 | 711
712
717
763
882
812
927
1,240 | 821
821
760
729
794
711
718
704 | MAY 545 743 725 697 671 678 680 647 | 731
774
750
720
705
686
692
673 | | 1
2
3
4
5 |

1,470
1,330
1,260 | FEBRUARY 1,330 1,180 1,210 | 7

1,400
1,240
1,230 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040 | 976
978
1,020
1,070
1,140
1,380
1,270 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540 | 724
723
729
860
971
857
1,110 | APRIL 696 698 698 703 824 771 796 | 711
712
717
763
882
812
927 | 821
821
760
729
794
711
718 | MAY 545 743 725 697 671 678 680 | 731
774
750
720
705
686
692 | | 1
2
3
4
5
6
7
8
9 | 1,330
1,260
1,320
1,390 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 | 1,400
1,240
1,230
1,250
1,340 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290 | 724
723
729
860
971
857
1,110
1,700
1,480 | APRIL 696 698 698 703 824 771 796 1,050 1,040 | 711
712
717
763
882
812
927
1,240
1,150 | 821
821
760
729
794
711
718
704
656 | MAY 545 743 725 697 671 678 680 647 603 | 731
774
750
720
705
686
692
673
639 | | 1
2
3
4
5
6
7
8
9
10 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,620 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 | 1,240
1,240
1,230
1,250
1,340
1,250
1,400
1,550 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,140
1,128 |
1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974 | 821
821
760
729
794
711
718
704
656
648 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 | 731
774
750
720
705
686
692
673
639
642
632
586 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 1,470
1,330
1,260
1,320
1,320
1,280
1,280
1,480
1,620
1,600 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 | 1,240
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,280
1,380 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911 | 821
821
760
729
794
711
718
704
656
648
646
624
592 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 | 731
774
750
720
705
686
692
673
639
642
632
586
582 | | 1
2
3
4
5
6
7
8
9
10 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,620 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 | 1,240
1,240
1,230
1,250
1,340
1,250
1,400
1,550 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,140
1,128 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974 | 821
821
760
729
794
711
718
704
656
648 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 | 731
774
750
720
705
686
692
673
639
642
632
586 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1,470
1,330
1,260
1,320
1,320
1,280
1,280
1,480
1,620
1,430
1,380 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,430 1,370 1,320 1,230 | 1,240
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510
1,390
1,350 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,140
1,280
1,380
1,690
1,520 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940
1,960 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 893 893 893 8759 787 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 | 731
774
750
720
705
686
692
673
639
642
632
586
582
606 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,600
1,430
1,380
1,320
1,230 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 | 1,240
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510
1,390
1,350
1,270
1,200 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,140
1,280
1,380
1,690
1,520 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,350
1,940
1,960
1,660 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 893 843 800 759 787 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 | 731
774
750
720
705
686
692
673
639
642
632
586
582
606
635 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,620
1,430
1,430
1,320
1,230
1,170 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 1,140 | 1,400
1,240
1,230
1,250
1,340
1,250
1,510
1,510
1,350
1,270
1,200
1,150 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180
1,000 | MARCH 976 978 1,020 1,070 1,140 1,380 1,270 1,400 1,220 1,140 1,140 1,280 1,380 1,690 1,520 1,170 951 874 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,350
1,940
1,960
1,660
1,400
1,060
940 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801
787 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 | 731
774
750
720
705
686
692
673
639
642
632
586
582
606
635 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,600
1,430
1,380
1,320
1,230 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 | 1,240
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510
1,390
1,350
1,270
1,200 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,140
1,280
1,380
1,690
1,520 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,350
1,940
1,960
1,660 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 893 843 800 759 787 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 | 731
774
750
720
705
686
692
673
639
642
632
586
582
606
635 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,620
1,620
1,430
1,380
1,320
1,170
1,150
1,110 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 1,140 1,110 1,060 1,010 | 1,400
1,240
1,230
1,250
1,340
1,250
1,510
1,550
1,510
1,350
1,270
1,200
1,150
1,130
1,090 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180
1,000
898
820 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,280
1,380
1,590
1,520
1,170
951
874
763
631 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801
787
867
831 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 756 792 786 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812
807
791
781
802
811 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 |
731
774
750
720
705
686
692
673
639
642
632
586
582
606
635
648
660
670
686
718 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 1,470
1,330
1,260
1,320
1,320
1,320
1,280
1,620
1,600
1,430
1,380
1,320
1,230
1,170
1,110
1,080
1,060 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 1,140 1,110 1,060 1,010 1,020 | 1,400
1,240
1,230
1,250
1,340
1,250
1,510
1,550
1,510
1,390
1,350
1,270
1,200
1,150
1,130
1,090
1,050
1,040 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180
1,000
898
820 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,280
1,380
1,520
1,170
951
874
763
631
588
572 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801
787
867
831 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 756 792 786 781 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812
807
791
781
802
811 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 704 | 731
774
750
720
705
686
692
673
639
642
586
582
606
635
648
660
670
686
718 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,620
1,620
1,430
1,380
1,320
1,170
1,150
1,110 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 1,140 1,110 1,060 1,010 | 1,400
1,240
1,230
1,250
1,340
1,250
1,510
1,550
1,510
1,350
1,270
1,200
1,150
1,130
1,090 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180
1,000
898
820 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,280
1,380
1,590
1,520
1,170
951
874
763
631 | 1,010
1,010
1,010
1,120
1,320
1,440
1,540
1,540
1,290
1,160
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708
615
584
589
588 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801
787
867
831 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 756 792 786 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812
807
791
781
802
811 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744
711
718
726
732 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 | 731
774
750
720
705
686
692
673
639
642
632
586
582
606
635
648
660
670
686
718 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 1,470
1,330
1,260
1,320
1,320
1,280
1,280
1,620
1,600
1,430
1,380
1,320
1,170
1,150
1,110 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,430 1,370 1,320 1,230 1,170 1,140 1,110 1,060 1,010 1,020 1,000 | 1,240
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510
1,390
1,350
1,270
1,150
1,130
1,090
1,050
1,040
1,040 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180
1,000
898
820
637
594
602 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,140
1,280
1,380
1,690
1,520
1,170
951
874
763
631
588
572
570 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708
615
584
589 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801
787
867
831 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 756 792 786 781 774 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
971
842
812
807
791
781
802
811
793
793
796 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744
711
718
726 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 704 718 | 731
774
750
720
705
686
692
673
639
642
586
582
606
635
648
660
670
686
718
705
711
722 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,620
1,600
1,430
1,380
1,170
1,150
1,110
1,080
1,070
1,080
1,050 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 1,140 1,110 1,060 1,010 1,020 1,000 999 1,020 980 | 1,400
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510
1,390
1,350
1,270
1,130
1,090
1,050
1,040
1,040
1,030
1,030 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180
1,000
898
820
637
594
602
597
606 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,280
1,380
1,690
1,520
1,170
951
874
763
631
588
572
570
578
590 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708
615
584
589
588
597 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801
787
831
800
821
809
798
784 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 893 843 800 759 787 779 768 756 792 786 781 774 767 744 | 711
712
717
763
882
812
927
1,240
1,150
1,030
924
974
911
842
812
807
791
781
802
811
793
796
785
772 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744
711
718
726
732
727 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 704 718 717 534 | 731
774
750
720
705
686
692
673
639
642
586
582
606
635
648
660
670
686
718
705
711
722
723
712 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,600
1,430
1,380
1,170
1,150
1,110
1,080
1,070
1,080
1,050 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,170 1,140 1,110 1,060 1,010 1,020 1,000 999 1,020 980 973 | 1,400
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510
1,390
1,350
1,270
1,130
1,090
1,050
1,040
1,040
1,030
1,030
1,030 | 1,040
1,030
1,070
1,170
1,700
1,580
2,040
1,920
1,400
1,220
1,370
1,440
2,850
2,520
1,980
1,750
1,180
1,000
898
820
637
594
602
597
606 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,280
1,380
1,690
1,520
1,170
951
874
763
631
588
572
570
578
590 | 1,010
1,010
1,010
1,120
1,320
1,440
1,540
1,540
1,290
1,160
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708
615
584
589
588
597 | 724
723
729
860
971
857
1,110
1,700
1,480
1,090
939
1,040
939
857
831
828
801
787
867
831
800
821
809
798
784 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 893 843 800 759 787 779 768 756 792 786 781 774 744 745 | 711 712 717 763 882 812 927 1,240 1,150 1,030 924 974 911 842 812 807 791 781 802 811 793 796 785 772 762 760 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744
711
718
726
732
727 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 704 718 717 534 722 709 | 731
774
750
720
705
686
692
673
639
642
586
582
606
635
648
660
670
686
718
705
711
722
723
712 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 1,470
1,330
1,260
1,320
1,390
1,280
1,480
1,620
1,600
1,430
1,380
1,170
1,150
1,110
1,080
1,070
1,080
1,050 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,230 1,170 1,140 1,110 1,060 1,010 1,020 1,000 999 1,020 980 | 1,400
1,240
1,230
1,250
1,340
1,250
1,510
1,550
1,510
1,390
1,350
1,270
1,130
1,090
1,050
1,040
1,040
1,030
1,030 | 1,040 1,030 1,070 1,170 1,700 1,580 2,040 1,920 1,400 1,220 1,370 1,444 2,850 2,520 1,980 1,750 1,180 1,000 898 820 637 594 602 597 606 611 651 724 729 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,1280
1,380
1,690
1,520
1,170
951
874
763
631
588
572
570
578
599
611
651
687 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708
615
584
589
588
597 | 724 723 729 860 971 857 1,110 1,700 1,480 1,090 939 1,040 939 857 831 828 801 787 867 831 800 821 809 798 784 776 773 771 776 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 756 792 786 781 774 744 745 755 761 | 711 712 717 763 882 812 927 1,240 1,150 1,030 924 974 911 842 812 807 791 781 802 811 793 796 785 772 762 760 762 770 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744
711
718
726
732
727
734
728
739
747 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 704 718 717 534 722 709 720 731 | 731
774
750
720
705
686
692
673
639
642
586
582
606
635
648
660
670
686
718
705
711
722
723
712
728
716
733
742 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 1,470 1,330 1,260 1,320 1,320 1,280 1,620 1,600 1,430 1,380 1,320 1,170 1,150 1,110 1,080 1,070 1,080 1,050 1,040 1,020 1,050 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,430 1,370 1,320 1,230 1,170 1,140 1,110 1,060 1,010 1,020 1,000 999 1,020 980 973 1,000 | 1,400
1,240
1,230
1,250
1,340
1,250
1,400
1,550
1,510
1,390
1,350
1,270
1,200
1,150
1,130
1,090
1,030
1,030
1,030 | 1,040 1,030 1,070 1,170 1,700 1,580 2,040 1,920 1,400 1,220 1,370 1,440 2,850 2,520 1,980 1,750 1,180 1,000 898 820 637 594 602 597 606 611 651 724 729 704 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,140
1,280
1,380
1,690
1,520
1,170
951
874
763
631
588
572
570
578
590
611
687
687 | 1,010
1,010
1,010
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708
615
584
589
588
597
606
636
682
709
694 | 724 723 729 860 971 857 1,110 1,700 1,480 1,090 939 1,040 939 857 831 828 801 787 867 831 800 821 809 798 784 776 773 771 776 905 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 756 792 786 781 774 747 744 745 755 761 691 | 711 712 717 763 882 812 927 1,240 1,150 1,030 924 974 911 842 812 807 791 781 802 811 793 793 796 785 772 762 760 762 770 770 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744
711
718
726
732
727
734
728
739
747 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 704 718 717 534 722 709 720 731 725 | 731
774
750
720
705
686
692
673
639
642
586
582
606
635
648
660
670
686
718
705
711
722
723
712
728
716
733
742
754 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 1,470 1,330 1,260 1,320 1,390 1,280 1,480 1,620 1,620 1,430 1,170 1,150 1,110 1,080 1,060 1,070 1,080 1,050 1,040 1,020 1,050 | FEBRUARY 1,330 1,180 1,210 1,230 1,270 1,240 1,280 1,480 1,430 1,370 1,320 1,170 1,140 1,110 1,060 1,010 1,020 1,000 999 1,020 980 973 1,000 | 1,400 1,240 1,230 1,250 1,340 1,250 1,400 1,550 1,510 1,390 1,350 1,270 1,200 1,150 1,130 1,090 1,040 1,040 1,040 1,040 1,030 1,010 999 1,020 | 1,040 1,030 1,070 1,170 1,700 1,580 2,040 1,920 1,400 1,220 1,370 1,444 2,850 2,520 1,980 1,750 1,180 1,000 898 820 637 594 602 597 606 611 651 724 729 | 976
978
1,020
1,070
1,140
1,380
1,270
1,400
1,220
1,140
1,1280
1,380
1,690
1,520
1,170
951
874
763
631
588
572
570
578
599
611
651
687 | 1,010
1,010
1,040
1,120
1,320
1,440
1,540
1,690
1,290
1,160
1,200
1,350
1,940
1,960
1,660
1,400
1,060
940
837
708
615
584
589
588
597 | 724 723 729 860 971 857 1,110 1,700 1,480 1,090 939 1,040 939 857 831 828 801 787 867 831 800 821 809 798 784 776 773 771 776 | APRIL 696 698 698 703 824 771 796 1,050 1,040 939 893 893 843 800 759 787 779 768 756 792 786 781 774 744 745 755 761 | 711 712 717 763 882 812 927 1,240 1,150 1,030 924 974 911 842 812 807 791 781 802 811 793 796 785 772 762 760 762 770 | 821
821
760
729
794
711
718
704
656
648
646
624
592
616
645
657
666
680
703
744
711
718
726
732
727
734
728
739
747 | MAY 545 743 725 697 671 678 680 647 603 640 620 573 571 592 616 641 654 666 680 697 700 704 718 717 534 722 709 720 731 | 731
774
750
720
705
686
692
673
639
642
586
582
606
635
648
660
670
686
718
705
711
722
723
712
728
716
733
742 | ### 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI-Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS—CONTINUED WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|-----------------------------------|---------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | S | ЕРТЕМВЕ | ER | | 1
2
3
4
5 | 742
756
761
772
781 | 707
742
752
754
709 | 723
750
755
761
769 | 886
899
897
853
861 | 609
756
842
722
801 | 861
876
865
827
831 | 947
762
697
578
666 | 762
677
575
554
578 | 871
734
633
565
612 | 959
953
963 | 946
939
942 | 954
948
947 | | 6
7
8
9
10 | 792
802
885
733
771 | 780
789
525
578
733 | 786
797
725
647
759 | 835
755
690
814
824 | 715
619
542
690
801 | 772
709
629
748
814 | 745
776
769
754
779 | 645
728
740
747
753 | 717
766
760
750
764 | 979
986
1,020
1,030
1,030 | 924
967
982
1,020
945 | 966
976
995
1,020
1,030 | | 11
12
13
14
15 | 786
775
763
767
766 | 771
748
748
751
755 | 782
764
758
760
760 | 836
837
824
817
814 | 727
815
740
741
781 | 817
832
806
811
805 | 783
793
810
830
830 | 765
763
793
810
800 | 775
776
802
822
826 | 1,040
1,040
1,040
1,020
682 | 1,030
999
949
569
519 | 1,030
1,030
1,020
882
604 | | 16
17
18
19
20 | 777
795
790
793
798 | 762
772
774
784
739 | 772
780
784
788
792 | 815
806
814
823
835 | 691
734
781
733
818 | 799
793
806
811
825 | 835
834
846
862
874 | 768
821
825
831
810 | 824
827
834
843
840 | 878
1,020
1,020
983
951 | 623
842
947
932
924 | 753
964
1,000
964
938 | | 21
22
23
24
25 | 824
833
831
823
840 | 794
772
750
745
811 | 809
812
805
814
823 | 852
869
878
887 | 650
842
826
839 | 828
859
871
878 |

 |

 |

 | 925
917
792
756
711 | 863
792
710
702
690 | 910
871
763
727
703 | | 26
27
28
29
30
31 | 847
861
877
906
880 | 782
780
802
866
850 | 828
840
855
886
872 |

943 |

924 | 935 |

 |

 |

 | 768
799
823
838
845 | 696
767
799
823
835 | 725
790
809
831
840 | | MONTH | 906 | 525 | 785 | 943 | 542 | 816 | 947 | 554 | 767 | 1,040 | 519 | 892 | # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI—Continued | Date | Time | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) |
Alka-
linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | Bicarbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | Carbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | Chloride,
water,
fltrd,
mg/L
(00940) | Sulfate
water,
fltrd,
mg/L
(00945) | |--|---|---|--|--|--|---|--|---|---|--|---|--|---| | OCT 2002
07 | 1435 | 363 | 10 | 749 | 8.2 | 8.0 | 803 | 14.2 | 242 | 280 | 8 | 86.8 | 32.5 | | NOV
04 | 1310 | 173 | 10 | 741 | 15.7 | 8.6 | 828 | 5.5 | 275 | 321 | 7 | 86.8 | 39.5 | | DEC
03 | 1310 | 120 | 10 | 754 | E18.2 | 8.3 | 995 | -0.1 | 305 | 366 | 3 | 115 | 40.9 | | JAN 2003
07 | 1425 | 160 | 10 | 737 | 17.3 | 8.4 | 955 | 0.1 | 290 | 343 | 6 | 116 | 40.6 | | FEB
04 | 1510 | 100 | 10 | 737 | 16.3 | 8.2 | 1,730 | -0.2 | 281 | 338 | 3 | 377 | 48.3 | | MAR
03 | 1255 | 120 | 40 | 739 | 21.5 | 8.5 | 1,070 | -0.2 | 305 | 359 | 6 | 141 | 44.3 | | 17
APR | 1300 | 315 | 10 | 741 | 16.0 | 8.1 | 1,070 | 0.0 | 205 | 245 | 3 | | | | 09
22
MAY | 1355
1150 | 383
388 | 10
10 | 751
747 | 13.7
11.6 | 8.2
8.2 | 1,160
829 | 4.7
11.0 | 216
245 | 251
273 | 6
13 | 239 | 43.9 | | 05
12
28 | 1300
1300
1300 | 1,030
1,870
321 | 10
10
10 | 729
741
739 | 9.8
10.2
9.0 | 7.8
7.7
8.7 | 714
579
743 | 10.8
12.7
19.8 | 192
197
260 | 234
240
E266 | 0.0
E25 | 84.5

 | 35.6

 | | JUN
02
19 | 1310
0935 | 274
201 | 10
10 |
747 | 9.2
8.4 | 8.5
8.1 | 755
791 | 17.0
21.2 | 272
285 | 276
322 | 27
4 | 80.5 | 29.1 | | JUL
07
21 | 1400
1355 | 244
102 | 10
10 | 741
737 | 6.9
7.8 | 8.0
8.2 | 724
851 | 25.2
25.1 | 198
261 | E198
292 | E4
6 | 98.0
 | 25.4 | | AUG
05 | 1220 | 196 | 10 | 744 | 7.7 | 7.9 | 615 | 23.3 | 158 | 192 | 0.0 | 79.6 | 28.8 | | SEP
02 | 1000 | 26 | 10 | 753 | 6.4 | 7.8 | 933 | 22.1 | 251 | 294 | 6 | 137 | 36.6 | | | | | | | | | | | | | | | | | Date | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Particulate nitrogen, susp, water, mg/L (49570) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Total carbon, suspnd sedimnt total, mg/L (00694) | Inorganic carbon, suspnd sedimnt total, mg/L (00688) | Organic
carbon,
suspnd
sedimnt
total,
mg/L
(00689) | Organic
carbon,
water,
fltrd,
mg/L
(00681) | 2,6-Di-
ethyl-
aniline
water
fltrd
0.7u GF
ug/L
(82660) | CIAT,
water,
fltrd,
ug/L
(04040) | | OCT 2002
07 | +
org-N,
water,
unfltrd
mg/L
as N | Ammonia
water,
fltrd,
mg/L
as N | +
nitrate
water
fltrd,
mg/L
as N | water,
fltrd,
mg/L
as N | phos-
phate,
water,
fltrd,
mg/L
as P | ulate
nitro-
gen,
susp,
water,
mg/L | phorus,
water,
unfltrd
mg/L | carbon,
suspnd
sedimnt
total,
mg/L | ganic
carbon,
suspnd
sedimnt
total,
mg/L | carbon,
suspnd
sedimnt
total,
mg/L | carbon,
water,
fltrd,
mg/L | ethyl-
aniline
water
fltrd
0.7u GF
ug/L | water,
fltrd,
ug/L | | OCT 2002
07
NOV
04 | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | water,
fltrd,
mg/L
as N
(00613) | phosphate,
water,
fltrd,
mg/L
as P
(00671) | ulate
nitro-
gen,
susp,
water,
mg/L
(49570) | phorus,
water,
unfltrd
mg/L
(00665) | carbon,
suspnd
sedimnt
total,
mg/L
(00694) | ganic
carbon,
suspnd
sedimnt
total,
mg/L
(00688) | carbon,
suspnd
sedimnt
total,
mg/L
(00689) | carbon,
water,
fltrd,
mg/L
(00681) | ethyl-
aniline
water
fltrd
0.7u GF
ug/L
(82660) | water,
fltrd,
ug/L
(04040) | | OCT 2002
07
NOV
04
DEC
03 | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | water,
fltrd,
mg/L
as N
(00613) | phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | ulate
nitro-
gen,
susp,
water,
mg/L
(49570) | phorus,
water,
unfltrd
mg/L
(00665) | carbon,
suspnd
sedimnt
total,
mg/L
(00694) | ganic
carbon,
suspnd
sedimnt
total,
mg/L
(00688) | carbon,
suspnd
sedimnt
total,
mg/L
(00689) | carbon,
water,
fltrd,
mg/L
(00681) | ethyl-
aniline
water
fltrd
0.7u GF
ug/L
(82660) | water,
fltrd,
ug/L
(04040)
E.024 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07 | +
org-N,
water,
unfltrd
mg/L
as N
(00625)
0.56 | Ammonia
water,
fltrd,
mg/L
as N
(00608)
E.04
<0.04 | nitrate
water
fltrd,
mg/L
as N
(00631)
1.13 | water,
fltrd,
mg/L
as N
(00613)
0.012
E.006 | phosphate,
water,
fltrd,
mg/L
as P
(00671)
0.04
<0.02 | ulate
nitro-
gen,
susp,
water,
mg/L
(49570)
0.08 | phorus,
water,
unfltrd
mg/L
(00665)
0.104
0.035 | carbon,
suspnd
sedimnt
total,
mg/L
(00694)
1.1 | ganic
carbon,
suspnd
sedimnt
total,
mg/L
(00688)
<0.1 | carbon,
suspnd
sedimnt
total,
mg/L
(00689)
1.1 | carbon,
water,
fltrd,
mg/L
(00681)
5.7
7.7 | ethyl-
aniline
water
fltrd
0.7u GF
ug/L
(82660)
<0.006 | water,
fltrd,
ug/L
(04040)
E.024
E.022 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04 | + org-N, water, unfiltrd mg/L as N (00625) 0.56 0.62 0.59 | Ammonia
water,
fltrd,
mg/L
as N
(00608)
E.04
<0.04
E.04 | nitrate
water
fltrd,
mg/L
as N
(00631)
1.13
1.34
2.00 | water,
fltrd,
mg/L
as N
(00613)
0.012
E.006
0.012 | phosphate,
water,
fltrd,
mg/L
as P
(00671)
0.04
<0.02
E.01 | ulate
nitro-
gen,
susp,
water,
mg/L
(49570)
0.08
0.08 | phorus,
water,
unfltrd
mg/L
(00665)
0.104
0.035
0.039 | carbon,
suspnd
sedimnt
total,
mg/L
(00694)
1.1
0.5 | ganic
carbon,
suspnd
sedimnt
total,
mg/L
(00688)
<0.1
<0.1 | carbon,
suspnd
sedimnt
total,
mg/L
(00689)
1.1
0.5 | carbon,
water,
fltrd,
mg/L
(00681)
5.7
7.7
5.8 | ethyl-
aniline
water
flird
0.7u GF
ug/L
(82660)
<0.006
<0.006 | water,
fltrd,
ug/L
(04040)
E.024
E.022
E.024 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17 | + org-N, water, unfiltrd mg/L as N (00625) 0.56 0.62 0.59 | Ammonia
water,
fltrd,
mg/L
as N
(00608)
E.04
<0.04
E.04 | + nitrate water fltrd, mg/L as N (00631) 1.13 1.34 2.00 2.64 | water,
fltrd,
mg/L
as N
(00613)
0.012
E.006
0.012
0.016 | phos-
phate,
water,
fltrd,
mg/L
as P
(00671)
0.04
<0.02
E.01
0.02 | ulate
nitro-
gen,
susp,
water,
mg/L
(49570)
0.08
0.08
0.10 | phorus,
water,
unfltrd
mg/L
(00665)
0.104
0.035
0.039
0.053 | carbon,
suspnd
sedimnt
total,
mg/L
(00694)
1.1
0.5
0.9 | ganic carbon, suspnd sedimnt total, mg/L (00688) <0.1 <0.1 <0.1 | carbon,
suspnd
sedimnt
total,
mg/L
(00689)
1.1
0.5
0.9
1.0 | carbon,
water,
fltrd,
mg/L
(00681)
5.7
7.7
5.8
5.4 | ethyl-
aniline
water
fltrd
0.7u
GF
ug/L
(82660)
<0.006
<0.006
<0.006 | water,
fltrd,
ug/L
(04040)
E.024
E.022
E.024
E.021 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22 | + org-N, water, unfiltrd mg/L as N (00625) 0.56 0.62 0.59 0.60 1.2 0.54 | Ammonia water, fltrd, mg/L as N (00608) E.04 <0.04 E.04 0.06 0.40 E.03 | + nitrate water fltrd, mg/L as N (00631) 1.13 1.34 2.00 2.64 3.71 3.13 | water, fltrd, mg/L as N (00613) 0.012 E.006 0.012 0.016 0.055 0.018 | phos-
phate,
water,
fltrd,
mg/L
as P
(00671)
0.04
<0.02
E.01
0.02
0.06
E.01 | ulate
nitro-
gen,
susp,
water,
mg/L
(49570)
0.08
0.10
0.10
0.12 | phorus,
water,
unfltrd
mg/L
(00665)
0.104
0.035
0.039
0.053
0.125
0.041 | carbon,
suspnd
sedimnt
total,
mg/L
(00694)
1.1
0.5
0.9
1.1
1.1
0.4 | ganic carbon, suspnd sedimnt total, mg/L (00688) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | carbon,
suspnd
sedimnt
total,
mg/L
(00689)
1.1
0.5
0.9
1.0
1.1 | carbon,
water,
fltrd,
mg/L
(00681)
5.7
7.7
5.8
5.4
5.8
4.5 | ethyl-aniline water flird 0.7u GF ug/L (82660) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | water, fltrd, ug/L (04040) E.024 E.022 E.024 E.021 E.031 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR | + org-N, water, unfiltrd mg/L as N (00625) 0.56 0.62 0.59 0.60 1.2 0.54 1.3 0.68 | Ammonia water, fltrd, mg/L as N (00608) E.04 <0.04 E.04 0.06 0.40 E.03 0.28 <0.04 | + nitrate water fltrd, mg/L as N (00631) 1.13 1.34 2.00 2.64 3.71 3.13 2.33 1.52 | water, fltrd, mg/L as N (00613) 0.012 E.006 0.012 0.016 0.055 0.018 0.029 0.015 | phosphate, water, fltrd, mg/L as P (00671) 0.04 <0.02 E.01 0.02 0.06 E.01 0.08 E.01 | ulate nitrogen, susp, water, mg/L (49570) 0.08 0.08 0.10 0.12 0.08 0.11 | phorus,
water,
unfltrd
mg/L
(00665)
0.104
0.035
0.039
0.053
0.125
0.041
0.185 | carbon, suspnd sedimnt total, mg/L (00694) 1.1 0.5 0.9 1.1 1.1 0.4 0.9 | ganic carbon, suspnd sedimnt total, mg/L (00688) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | carbon, suspnd sedimnt total, mg/L (00689) 1.1 0.5 0.9 1.0 1.1 0.4 0.9 | carbon,
water,
fltrd,
mg/L
(00681)
5.7
7.7
5.8
5.4
5.8
4.5 | ethyl-aniline water fltrd 0.7u GF ug/L (82660) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | water, fltrd, ug/L (04040) E.024 E.022 E.024 E.021 E.031 E.031 E.031 E.016 E.023 E.018 E.016 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02 | + org-N, water, unfltrd mg/L as N (00625) 0.56 0.62 0.59 0.60 1.2 0.54 1.3 0.68 1.1 1.1 | Ammonia water, fltrd, mg/L as N (00608) E.04 <0.04 E.04 0.06 0.40 E.03 0.28 <0.04 <0.04 E.03 0.06 | + nitrate water fltrd, mg/L as N (00631) 1.13 1.34 2.00 2.64 3.71 3.13 2.33 1.52 0.61 0.97 1.63 | water, fltrd, mg/L as N (00613) 0.012 E.006 0.012 0.016 0.055 0.018 0.029 0.015 0.009 0.017 0.027 | phos-phate, water, fltrd, mg/L as P (00671) 0.04 <0.02 E.01 0.02 0.06 E.01 <0.02 0.08 0.01 0.02 0.03 0.06 | ulate nitro- gen, susp, water, mg/L (49570) 0.08 0.10 0.10 0.12 0.08 0.11 0.34 | phorus,
water,
unfltrd
mg/L
(00665)
0.104
0.035
0.039
0.053
0.125
0.041
0.185
0.049
0.111 | carbon, suspnd sedimnt total, mg/L (00694) 1.1 0.5 0.9 1.1 1.1 0.4 2.9 | ganic carbon, suspnd sedimnt total, mg/L (00688) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | carbon, suspnd sedimmt total, mg/L (00689) 1.1 0.5 0.9 1.0 1.1 0.4 2.8 | carbon, water, fltrd, mg/L (00681) 5.7 7.7 5.8 5.4 5.8 4.5 9.4 10.3 | ethyl-aniline water fltrd 0.7u GF ug/L (82660) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | water, fltrd, ug/L (04040) E.024 E.022 E.024 E.021 E.031 E.031 E.031 E.018 E.016 E.023 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02
19
JUN
07
21 | + org-N, water, unfltrd mg/L as N (00625) 0.56 0.62 0.59 0.60 1.2 0.54 1.3 0.68 1.1 1.1 1.8 1.3 | Ammonia water, fltrd, mg/L as N (00608) E.04 <0.04 E.04 0.06 0.40 E.03 0.28 <0.04 <0.04 E.03 0.06 <0.04 | + nitrate water fltrd, mg/L as N (00631) 1.13 1.34 2.00 2.64 3.71 3.13 2.33 1.52 0.61 0.97 1.63 0.10 0.45 | water, fltrd, mg/L as N (00613) 0.012 E.006 0.012 0.016 0.055 0.018 0.029 0.015 0.009 0.017 0.027 0.009 0.018 | phos-phate, water, fltrd, mg/L as P (00671) 0.04 <0.02 E.01 0.02 0.06 E.01 <0.02 0.03 0.06 <0.02 <0.02 | ulate nitro- gen, susp, water, mg/L (49570) 0.08 0.10 0.10 0.12 0.08 0.11 0.34 0.25 | phorus, water, unfltrd mg/L (00665) 0.104 0.035 0.039 0.053 0.125 0.041 0.185 0.049 0.111 0.126 0.20 0.100 0.091 | carbon, suspnd sedimnt total, mg/L (00694) 1.1 0.5 0.9 1.1 1.1 0.4 2.9 1.8 | ganic carbon, suspnd sedimnt total, mg/L (00688) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | carbon, suspnd sedimnt total, mg/L (00689) 1.1 0.5 0.9 1.0 1.1 0.4 2.8 1.8 | carbon, water, fltrd, mg/L (00681) 5.7 7.7 5.8 5.4 5.8 4.5 10.3 9.8 | ethyl-aniline water fltrd 0.7u GF ug/L (82660) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | water, fltrd, ug/L (04040) E.024 E.022 E.024 E.021 E.031 E.031 E.031 E.016 E.023 E.016 E.023 E.018 E.016 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
JUN
02
19
JUN
07 | + org-N, water, unfiltrd mg/L as N (00625) 0.56 0.62 0.59 0.60 1.2 0.54 1.3 0.68 1.1 1.1 1.8 1.3 1.1 | Ammonia water, fltrd, mg/L as N (00608) E.04 <0.04 E.04 0.06 0.40 E.03 0.28 <0.04 <0.04 <0.04 -0.04 0.06 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 | + nitrate water fltrd, mg/L as N (00631) 1.13 1.34 2.00 2.64 3.71 3.13 2.33 1.52 0.61 0.97 1.63 0.10 0.45 0.67 0.10 | water, fltrd, mg/L as N (00613) 0.012 E.006 0.012 0.016 0.055 0.018 0.029 0.015 0.009 0.017 0.027 0.009 0.018 0.021 0.013 | phosphate, water, fltrd, mg/L as P (00671) 0.04 <0.02 E.01 0.02 0.06 E.01 <0.02 0.03 0.06 <0.02 <0.02 0.06 0.15 | ulate nitrogen, susp, water, mg/L (49570) 0.08 0.08 0.10 0.12 0.08 0.11 0.34 0.25 0.47 | phorus, water, unfltrd mg/L (00665) 0.104 0.035 0.039 0.053 0.125 0.041 0.185 0.049 0.111 0.126 0.20 0.100 0.091 0.194 0.30 | carbon, suspnd sedimnt total, mg/L (00694) 1.1 0.5 0.9 1.1 1.1 0.4 2.9 1.8 3.5 | ganic carbon, suspnd sedimnt total, mg/L (00688) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | carbon, suspnd sedimnt total, mg/L (00689) 1.1 0.5 0.9 1.0 1.1 0.4 2.8 1.8 3.5 | carbon, water, fltrd, mg/L (00681) 5.7 7.7 5.8 5.4 5.8 4.5 9.4 10.3 9.8 8.6 | ethyl-aniline water fltrd 0.7u GF ug/L (82660) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | water, fltrd, ug/L (04040) E.024 E.022 E.024 E.021 E.031 E.031 E.031 E.031 E.031 E.031 E.031 E.033 E.018 E.016 E.023 E.037 E.025 E.039 E.030 E.030 E.026 | # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI—Continued | Date | Aceto-
chlor,
water,
fltrd,
ug/L
(49260) | Ala-
chlor,
water,
fltrd,
ug/L
(46342) | alpha-
HCH,
water,
fltrd,
ug/L
(34253) | alpha-
HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | Atrazine,
water,
fltrd,
ug/L
(39632) | Azin-
phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | Ben-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673) | Butylate,
water,
fltrd,
ug/L
(04028) | Carbaryl,
water,
fltrd
0.7u GF
ug/L
(82680) | Carbo-
furan,
water,
fltrd
0.7u GF
ug/L
(82674) | Chlor-
pyrifos
water,
fltrd,
ug/L
(38933) | cis-
Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | Cyana-
zine,
water,
fltrd,
ug/L
(04041) | |--
--|---|---|--|---|---|--|---|--|--|--|--|---| | OCT 2002
07 | < 0.006 | < 0.004 | < 0.005 | 110 | 0.021 | < 0.050 | < 0.010 | < 0.002 | <0.041 | <0.020 | < 0.005 | < 0.006 | <0.018 | | NOV
04 | < 0.006 | < 0.004 | < 0.005 | 98.1 | 0.019 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | | DEC
03 | < 0.006 | < 0.004 | < 0.005 | 94.4 | 0.018 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | | JAN 2003
07 | < 0.006 | < 0.004 | < 0.005 | 87.1 | 0.016 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | | FEB
04 | < 0.006 | < 0.004 | < 0.005 | 100 | 0.024 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | | MAR
03
17 | <0.006
<0.006 | <0.004
<0.004 | <0.005
<0.005 | 103
90.6 | 0.018
0.014 | <0.050
<0.050 | <0.010
<0.010 | <0.002
<0.002 | <0.041
<0.041 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | | APR
09
22
MAY | <0.006
0.011 | <0.004
<0.004 | <0.005
<0.005 | 84.2
86.1 | 0.023
0.032 | <0.050
<0.050 | <0.010
<0.010 | <0.002
<0.002 | <0.041
<0.041 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | | 05
12
28 | 0.066
0.137
0.011 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 79.5
105
85.4 | 0.049
0.098
0.035 | <0.050
<0.050
<0.050 | <0.010
<0.010
<0.010 | <0.002
<0.002
<0.002 | E.005
E.005
<0.041 | <0.020
<0.020
<0.020 | <0.005
<0.005
<0.005 | <0.006
<0.006
<0.006 | <0.018
<0.018
<0.018 | | JUN
02
19
JUL | 0.042
<0.006 | 0.008
<0.004 | <0.005
<0.005 | 105
90.6 | 0.130
0.259 | <0.050
<0.050 | <0.010
<0.010 | <0.002
<0.002 | E.007
<0.041 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | | 07
21
AUG | <0.006
<0.006 | <0.004
<0.004 | <0.005
<0.005 | 97.2
99.0 | 0.063
0.080 | <0.050
<0.050 | <0.010
<0.010 | <0.002
<0.002 | E.009
<0.041 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | | 05
SEP | < 0.006 | < 0.004 | < 0.005 | 87.0 | 0.487 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | | 02 | < 0.006 | < 0.004 | < 0.005 | 79.9 | 0.022 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | | | | | | | | | | | | | | | | | Date | DCPA,
water
fltrd
0.7u GF
ug/L
(82682) | Desulf-
inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | Diazinon,
water,
fltrd,
ug/L
(39572) | Diazi-
non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | Dieldrin,
water,
fltrd,
ug/L
(39381) | Disul-
foton,
water,
fltrd
0.7u GF
ug/L
(82677) | EPTC,
water,
fltrd
0.7u GF
ug/L
(82668) | Ethal-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82663) | Etho-
prop,
water,
fltrd
0.7u GF
ug/L
(82672) | Desulf-
inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | Fipro-
nil
sulfide
water,
fltrd,
ug/L
(62167) | Fipro-
nil
sulfone
water,
fltrd,
ug/L
(62168) | Fipronil, water, fltrd, ug/L (62166) | | OCT 2002
07 | water
fltrd
0.7u GF
ug/L | inyl
fipro-
nil,
water,
fltrd,
ug/L | non,
water,
fltrd,
ug/L | non-d10
surrog.
wat flt
0.7u GF
percent
recovry | drin,
water,
fltrd,
ug/L | foton,
water,
fltrd
0.7u GF
ug/L | water,
fltrd
0.7u GF
ug/L | flur-
alin,
water,
fltrd
0.7u GF
ug/L | prop,
water,
fltrd
0.7u GF
ug/L | inyl-
fipro-
nil
amide,
wat flt
ug/L | nil
sulfide
water,
fltrd,
ug/L | nil
sulfone
water,
fltrd,
ug/L | nil,
water,
fltrd,
ug/L | | OCT 2002
07
NOV
04 | water
fltrd
0.7u GF
ug/L
(82682) | inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | non,
water,
fltrd,
ug/L
(39572) | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | drin,
water,
fltrd,
ug/L
(39381) | foton,
water,
fltrd
0.7u GF
ug/L
(82677) | water,
fltrd
0.7u GF
ug/L
(82668) | fluralin,
water,
fltrd
0.7u GF
ug/L
(82663) | prop,
water,
fltrd
0.7u GF
ug/L
(82672) | inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | nil
sulfide
water,
fltrd,
ug/L
(62167) | nil
sulfone
water,
fltrd,
ug/L
(62168) | nil,
water,
fltrd,
ug/L
(62166) | | OCT 2002
07
NOV
04
DEC
03 | water
fltrd
0.7u GF
ug/L
(82682)
<0.003 | inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | non,
water,
fltrd,
ug/L
(39572)
E.005 | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | drin,
water,
fltrd,
ug/L
(39381)
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677)
<0.02 | water,
fltrd
0.7u GF
ug/L
(82668)
<0.002 | fluralin,
water,
fltrd
0.7u GF
ug/L
(82663) | prop,
water,
fltrd
0.7u GF
ug/L
(82672)
<0.005 | inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | nil
sulfide
water,
fltrd,
ug/L
(62167) |
nil
sulfone
water,
fltrd,
ug/L
(62168) | nil,
water,
fltrd,
ug/L
(62166) | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07 | water
fltrd
0.7u GF
ug/L
(82682)
<0.003 | inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170)
<0.004 | non,
water,
fltrd,
ug/L
(39572)
E.005
<0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
127 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677)
<0.02 | water,
fltrd
0.7u GF
ug/L
(82668)
<0.002
<0.002 | fluralin,
water,
fltrd
0.7u GF
ug/L
(82663)
<0.009 | prop,
water,
fltrd
0.7u GF
ug/L
(82672)
<0.005 | inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169)
<0.009 | nil
sulfide
water,
fltrd,
ug/L
(62167)
<0.005 | nil
sulfone
water,
fltrd,
ug/L
(62168)
<0.005 | nil,
water,
fltrd,
ug/L
(62166)
<0.007 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04 | water
fltrd
0.7u GF
ug/L
(82682)
<0.003
<0.003 | inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170)
<0.004
<0.004 | non,
water,
fltrd,
ug/L
(39572)
E.005
<0.005 | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063)
127
122
103 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677)
<0.02
<0.02 | water,
fltrd
0.7u GF
ug/L
(82668)
<0.002
<0.002 | fluralin,
water,
fltrd
0.7u GF
ug/L
(82663)
<0.009
<0.009 | prop,
water,
fltrd
0.7u GF
ug/L
(82672)
<0.005
<0.005 | inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169)
<0.009
<0.009 | nil
sulfide
water,
fltrd,
ug/L
(62167)
<0.005
<0.005 | nil
sulfone
water,
fltrd,
ug/L
(62168)
<0.005
<0.005 | nil,
water,
fltrd,
ug/L
(62166)
<0.007
<0.007 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB | water fltrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 | inyl fipronil, water, fltrd, ug/L (62170) <0.004 <0.004 <0.004 | non,
water,
fltrd,
ug/L
(39572)
E.005
<0.005
<0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
127
122
103
113 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677)
<0.02
<0.02
<0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82663) <0.009 <0.009 <0.009 | prop,
water,
fltrd
0.7u GF
ug/L
(82672)
<0.005
<0.005
<0.005 | inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169)
<0.009
<0.009
<0.009 | nil
sulfide
water,
fltrd,
ug/L
(62167)
<0.005
<0.005
<0.005 | nil
sulfone
water,
fltrd,
ug/L
(62168)
<0.005
<0.005
<0.005 | nil, water, fltrd, ug/L (62166) <0.007 <0.007 <0.007 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17 | water fltrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0 | inyl fipronil, water, fltrd, ug/L (62170) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | non,
water,
fltrd,
ug/L
(39572)
E.005
<0.005
<0.005
<0.005
0.011
E.003 | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063)
127
122
103
113
112
119 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005
<0.005
<0.005
<0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82663) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | prop,
water,
fltrd
0.7u GF
ug/L
(82672)
<0.005
<0.005
<0.005
<0.005
<0.005 | inyl- fipro- nil amide, wat flt ug/L (62169) <0.009 <0.009 <0.009 <0.009 <0.009 | nil sulfide water, fltrd, ug/L (62167) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil sulfone water, fltrd, ug/L (62168) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil, water, fltrd, ug/L (62166) <0.007 <0.007 <0.007 <0.007 <0.007 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28 | water filtrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0. | inyl fipronil, water, fltrd, ug/L (62170) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | non,
water,
fltrd,
ug/L
(39572)
E.005
<0.005
<0.005
0.011
E.003
<0.005
<0.005 | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063)
127
122
103
113
112
119
119 | drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82663) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | prop, water, fltrd 0.7u GF ug/L (82672) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | inyl- fipro- nil amide, wat flt ug/L (62169) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | nil sulfide water, fltrd, ug/L (62167) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil sulfone water, fltrd, ug/L (62168) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil, water, fltrd, ug/L (62166) <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 | | OCT 2002
07
NOV
04
DEC
03
JAN
2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02 | water filtrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0. | inyl fipronil, water, fltrd, ug/L (62170) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | non, water, fltrd, ug/L (39572) E.005 <0.005 <0.005 0.011 E.003 <0.005 <0.005 <0.005 0.019 0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
127
122
103
113
112
119
119
124
107 | drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82663) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | prop, water, fltrd 0.7u GF ug/L (82672) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | inyl- fipro- nil amide, wat flt ug/L (62169) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | nil sulfide water, fltrd, ug/L (62167) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil sulfone water, fltrd, ug/L (62168) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil, water, fltrd, ug/L (62166) <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 F.012 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02 | water fltrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0 | inyl fipronil, water, fltrd, ug/L (62170) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | non, water, fltrd, ug/L (39572) E.005 <0.005 <0.005 <0.005 0.011 E.003 <0.005 <0.005 <0.005 <0.005 0.019 0.005 <0.005 | non-d10 surrog. wat fit 0.7u GF percent recovry (91063) 127 122 103 113 112 119 119 124 107 104 111 109 120 | drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82663) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | prop, water, fltrd 0.7u GF ug/L (82672) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | inyl- fipro- nil amide, wat flt ug/L (62169) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | nil sulfide water, fltrd, ug/L (62167) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil sulfone water, fltrd, ug/L (62168) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil, water, fltrd, ug/L (62166) <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02
19
JUL
07
21 | water filtrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003
<0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0. | inyl fipronil, water, fltrd, ug/L (62170) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | non, water, fltrd, ug/L (39572) E.005 <0.005 <0.005 <0.005 0.011 E.003 <0.005 <0.005 <0.005 <0.005 <0.005 E.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | non-d10 surrog. wat flt 0.7u GF percent recovry (91063) 127 122 103 113 112 119 119 124 107 104 111 109 120 134 103 | drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82663) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | prop, water, fltrd 0.7u GF ug/L (82672) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | inyl- fipro- nil amide, wat flt ug/L (62169) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | nil sulfide water, fltrd, ug/L (62167) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil sulfone water, fltrd, ug/L (62168) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | nil, water, fltrd, ug/L (62166) <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 | # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI—Continued | Date | Fonofos
water,
fltrd,
ug/L
(04095) | Lindane
water,
fltrd,
ug/L
(39341) | Linuron
water
fltrd
0.7u GF
ug/L
(82666) | Mala-
thion,
water,
fltrd,
ug/L
(39532) | Methyl
para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667) | Metola-
chlor,
water,
fltrd,
ug/L
(39415) | Metri-
buzin,
water,
fltrd,
ug/L
(82630) | Molinate,
water,
fltrd
0.7u GF
ug/L
(82671) | Napropamide,
water,
fltrd
0.7u GF
ug/L
(82684) | p,p-'
DDE,
water,
fltrd,
ug/L
(34653) | Parathion, water, fltrd, ug/L (39542) | Peb-
ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | Pendimethalin, water, fltrd 0.7u GF ug/L (82683) | |--|---|---|---|---|--|--|--|---
--|--|---|---|--| | OCT 2002
07 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.007 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | | NOV
04 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | | DEC
03 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.001 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | | JAN 2003
07 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | | FEB
04
MAR | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | | 03
17 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | <0.006
<0.006 | E.003
<0.013 | <0.006
<0.006 | <0.002
<0.002 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | APR
09
22
MAY | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | <0.006
<0.006 | E.008
E.010 | <0.006
<0.006 | <0.002
<0.002 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | 05
12
28 | <0.003
<0.003
<0.003 | <0.004
<0.004
<0.004 | <0.035
<0.035
<0.035 | <0.027
<0.027
<0.027 | <0.006
<0.006
<0.006 | 0.053
0.055
0.076 | <0.006
<0.006
0.009 | <0.002
<0.002
<0.002 | <0.007
<0.007
<0.007 | <0.003
<0.003
<0.003 | <0.010
<0.010
<0.010 | <0.004
<0.004
<0.004 | <0.022
E.008
<0.022 | | JUN
02
19 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | <0.006
<0.006 | 0.046
0.163 | <0.006
<0.006 | <0.002
<0.002 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | JUL
07
21 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | <0.006
<0.006 | E.011
0.014 | <0.006
<0.006 | <0.002
<0.002 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | AUG
05 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.042 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | | SEP
02 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.005 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | <0.010 | < 0.004 | < 0.022 | | | | | | | | | | | | | | | | | Date | Phorate
water
fltrd
0.7u GF
ug/L
(82664) | Prometon,
water,
fltrd,
ug/L
(04037) | Pron-
amide,
water,
fltrd
0.7u GF
ug/L
(82676) | Propachlor, water, fltrd, ug/L (04024) | Propanil, water, fltrd 0.7u GF ug/L (82679) | Propargite,
water,
fltrd
0.7u GF
ug/L
(82685) | Sima-
zine,
water,
fltrd,
ug/L
(04035) | Tebu-
thiuron
water
fltrd
0.7u GF
ug/L
(82670) | Terba-
cil,
water,
fltrd
0.7u GF
ug/L
(82665) | Terbu-
fos,
water,
fltrd
0.7u GF
ug/L
(82675) | Thiobencarb water fltrd 0.7u GF ug/L (82681) | Tri-
allate,
water,
fltrd
0.7u GF
ug/L
(82678) | Tri-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82661) | | OCT 2002
07 | water
fltrd
0.7u GF
ug/L | ton,
water,
fltrd,
ug/L | amide,
water,
fltrd
0.7u GF
ug/L | chlor,
water,
fltrd,
ug/L | panil,
water,
fltrd
0.7u GF
ug/L | gite,
water,
fltrd
0.7u GF
ug/L | zine,
water,
fltrd,
ug/L | thiuron
water
fltrd
0.7u GF
ug/L | cil,
water,
fltrd
0.7u GF
ug/L | fos,
water,
fltrd
0.7u GF
ug/L | bencarb
water
fltrd
0.7u GF
ug/L | allate,
water,
fltrd
0.7u GF
ug/L | flur-
alin,
water,
fltrd
0.7u GF
ug/L | | OCT 2002
07
NOV
04 | water
fltrd
0.7u GF
ug/L
(82664) | ton,
water,
fltrd,
ug/L
(04037) | amide,
water,
fltrd
0.7u GF
ug/L
(82676) | chlor,
water,
fltrd,
ug/L
(04024) | panil,
water,
fltrd
0.7u GF
ug/L
(82679) | gite,
water,
fltrd
0.7u GF
ug/L
(82685) | zine,
water,
fltrd,
ug/L
(04035) | thiuron
water
fltrd
0.7u GF
ug/L
(82670) | cil,
water,
fltrd
0.7u GF
ug/L
(82665) | fos,
water,
fltrd
0.7u GF
ug/L
(82675) | bencarb
water
fltrd
0.7u GF
ug/L
(82681) | allate,
water,
fltrd
0.7u GF
ug/L
(82678) | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82661) | | OCT 2002
07
NOV
04
DEC
03 | water
fltrd
0.7u GF
ug/L
(82664)
<0.011 | ton,
water,
fltrd,
ug/L
(04037) | amide,
water,
fltrd
0.7u GF
ug/L
(82676)
<0.004 | chlor,
water,
fltrd,
ug/L
(04024) | panil,
water,
fltrd
0.7u GF
ug/L
(82679) | gite,
water,
fltrd
0.7u GF
ug/L
(82685) | zine,
water,
fltrd,
ug/L
(04035) | thiuron
water
fltrd
0.7u GF
ug/L
(82670)
<0.02 |
cil,
water,
fltrd
0.7u GF
ug/L
(82665) | fos,
water,
fltrd
0.7u GF
ug/L
(82675)
<0.02 | bencarb
water
fltrd
0.7u GF
ug/L
(82681)
<0.005 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002 | fluralin,
water,
fltrd
0.7u GF
ug/L
(82661) | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07 | water
fltrd
0.7u GF
ug/L
(82664)
<0.011 | ton,
water,
fltrd,
ug/L
(04037)
E.01
<0.01 | amide,
water,
fltrd
0.7u GF
ug/L
(82676)
<0.004 | chlor,
water,
fltrd,
ug/L
(04024)
<0.010 | panil,
water,
fltrd
0.7u GF
ug/L
(82679)
<0.011 | gite,
water,
fltrd
0.7u GF
ug/L
(82685)
<0.02 | zine,
water,
fltrd,
ug/L
(04035)
0.010
0.015 | thiuron
water
fltrd
0.7u GF
ug/L
(82670)
<0.02 | cil,
water,
fltrd
0.7u GF
ug/L
(82665)
<0.034 | fos,
water,
fltrd
0.7u GF
ug/L
(82675)
<0.02 | bencarb
water
fltrd
0.7u GF
ug/L
(82681)
<0.005 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002 | fluralin,
water,
fltrd
0.7u GF
ug/L
(82661)
<0.009 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 | ton,
water,
fltrd,
ug/L
(04037)
E.01
<0.01
E.01 | amide,
water,
fltrd
0.7u GF
ug/L
(82676)
<0.004
<0.004 | chlor,
water,
fltrd,
ug/L
(04024)
<0.010
<0.010 | panil,
water,
fltrd
0.7u GF
ug/L
(82679)
<0.011
<0.011 | gite,
water,
fltrd
0.7u GF
ug/L
(82685)
<0.02
<0.02 | zine,
water,
fltrd,
ug/L
(04035)
0.010
0.015 | thiuron
water
fltrd
0.7u GF
ug/L
(82670)
<0.02
<0.02
<0.02 | cil,
water,
fltrd
0.7u GF
ug/L
(82665)
<0.034
<0.034 | fos,
water,
fltrd
0.7u GF
ug/L
(82675)
<0.02
<0.02 | bencarb
water
fltrd
0.7u GF
ug/L
(82681)
<0.005
<0.005 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002
<0.002 | fluralin,
water,
fltrd
0.7u GF
ug/L
(82661)
<0.009
<0.009 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 | ton,
water,
fltrd,
ug/L
(04037)
E.01
<0.01
E.01 | amide,
water,
fltrd
0.7u GF
ug/L
(82676)
<0.004
<0.004
<0.004 | chlor,
water,
fltrd,
ug/L
(04024)
<0.010
<0.010
<0.010 | panil,
water,
fltrd
0.7u GF
ug/L
(82679)
<0.011
<0.011
<0.011 | gite,
water,
fltrd
0.7u GF
ug/L
(82685)
<0.02
<0.02
<0.02 | zine,
water,
fltrd,
ug/L
(04035)
0.010
0.015
0.015 | thiuron
water
fltrd
0.7u GF
ug/L
(82670)
<0.02
<0.02
<0.02 | cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 | fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 | bencarb
water
fltrd
0.7u GF
ug/L
(82681)
<0.005
<0.005
<0.005 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002
<0.002
<0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | ton,
water,
fltrd,
ug/L
(04037)
E.01
<0.01
E.01
<0.01
E.01 | amide,
water,
fltrd
0.7u GF
ug/L
(82676)
<0.004
<0.004
<0.004
<0.004
<0.004 | chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | gite,
water,
fltrd
0.7u GF
ug/L
(82685)
<0.02
<0.02
<0.02
<0.02
<0.02 | zine,
water,
fltrd,
ug/L
(04035)
0.010
0.015
0.015
0.015
0.014
0.012 | thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 | fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | ton, water, fltrd, ug/L (04037) E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 | amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | gite,
water,
fltrd
0.7u GF
ug/L
(82685)
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02 | zine,
water,
fltrd,
ug/L
(04035)
0.010
0.015
0.015
0.015
0.014
0.012
0.008
0.015 | thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 | fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.02 <0.02 0.02 <0.02 0.02 <0.02 | bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | ton, water, fltrd, ug/L (04037) E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 | amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.02 0. | zine, water, fltrd, ug/L (04035) 0.010 0.015 0.015 0.014 0.012 0.008 0.015 0.029 0.047 0.042 | thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 | fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02
19
JUN
02
19
19 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | ton, water, fltrd, ug/L (04037) E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 0.02 | amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0 | zine, water, fltrd, ug/L (04035) 0.010 0.015 0.015 0.014 0.012 0.008 0.015 0.029 0.047 0.042 0.027 0.021 | thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.03 | fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | | OCT 2002
07
NOV
04
DEC
03
JAN 2003
07
FEB
04
MAR
03
17
APR
09
22
MAY
05
12
28
JUN
02
19
19 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | ton, water, flurd, ug/L (04037) E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 <0.01 E.01 | amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 0.011 0.0 | gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0. | zine, water, fltrd, ug/L (04035) 0.010 0.015 0.015 0.014 0.012 0.008 0.015 0.029 0.047 0.042 0.027 0.021 0.012 0.011 | thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.034 <0.03 | fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI—Continued | Date | Suspended
sediment
concentration
mg/L
(80154) | |------------------------|---| | OCT
07 | 15 | | NOV
04
DEC | 34 | | 03
JAN | 47 | | 07
FEB | 35 | | 04
MAR | 23 | | 03
17 | 31
34 | | APR
09
22 | 21
24 | | MAY
05
12
28 | 20
65
12 | | JUN
02
19
JUL | 82
126 | | 07
21
AUG | 86 | | 05
SEP | 74 | | 02 | 81 | #### 04087030 MENOMONEE RIVER AT MENOMONEE FALLS, WI LOCATION.--Lat $43^{\circ}10^{\circ}22^{\circ}$, long $88^{\circ}06^{\circ}14^{\circ}$, in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec. 10, T.8 N., R.20 E., Waukesha County, Hydrologic Unit 04040003, on right bank, 150 ft upstream from Pilgrim Road (County Trunk Highway YY) bridge in Menomonee Falls, at mile 21.1. DRAINAGE AREA.--34.7 mi². PERIOD OF RECORD.--November 1974 to September 1977, July 1979 to current year. REVISED RECORDS.--WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 755.51 ft above NGVD of 1929 (Wisconsin Department of Transportation benchmark). Prior to Aug. 20, 1996, water-stage recorder at present site at datum 2.01 ft lower. REMARKS.--Records fair except those for estimated daily discharges and those for discharges less than 5 ft³/s, which are poor (see page 11). Occasional regulation caused by dam in Menomonee Falls, about 1.0 mi upstream. Gage-height telemeter at station. | reguia | tion caused | | | | ER SECONI | | EAR OCTO | OBER 2002 | | MBER 2003 | | | |---|--|---|--|---|--|--|--|---|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.3
11
18
27
22 | 6.9
6.9
6.9
7.1 | e6.6
e6.0
e5.2
e5.2
e5.2 | e6.4
6.4
e6.4
6.3
6.2 | e2.0
e2.5
e3.0
e2.1
e1.7 | e2.3
e2.2
e2.1
e2.1
e2.1 | 13
12
12
41
35 | 147
105
58
40
97 | 28
19
15
12
10 | 3.4
2.9
2.6
3.4
6.7 | 68
50
19
12
8.7 | 1.4
1.4
1.4
1.5
1.3 | | 6
7
8
9
10 | 13
8.9
8.0
6.3
5.9 | 6.7
6.5
6.6
7.1
7.9 | e5.8
e5.6
e5.6
e5.8
e5.2 | 6.5
6.6
6.6
7.0
e6.0 | e1.5
e1.4
e1.2
e1.1
e1.1 | e2.2
e2.5
e2.3
e2.2
e2.5 | 28
25
23
26
36 | 82
89
143
197
180 | 9.7
9.9
46
41
31 | 28
13
8.8
6.3
5.2 | 8.9
14
11
7.9
5.8 | 1.3
1.2
1.2
1.2
1.2 | | 11
12
13
14
15 | 5.7
6.2
5.8
5.3
5.3 | 7.8
7.1
7.0
6.8 | e5.6
e5.6
e5.7
e5.7
e5.5 | e4.8
e4.2
e2.2
e1.3
e1.2 | e1.1
e1.1
e1.1
e1.1 | e2.9
e3.6
e5.0
e11
e57 | 35
28
23
20
19 | 178
202
165
106
77 | 54
40
27
19
13 | 4.5
3.7
3.0
2.9
5.8 | 4.2
4.1
4.1
4.0
3.6 | 1.1
1.2
4.9
12
5.7 | | 16
17
18
19
20 | 4.8
4.2
7.7
9.1
7.7 | 6.5
6.5
8.0
9.4
8.7 | e5.5
e5.5
19
20
15 | e1.2
e1.2
e1.2
e1.2
e1.1 | e1.1
e1.4
e1.6
e1.8
e2.0 | e40
e28
e22
19
20 | 18
15
14
22
26 | 56
43
35
30
44 | 10
8.2
7.1
6.1
5.2 | 3.1
2.8
2.5
1.9
1.8 | 3.7
3.3
3.2
3.0
2.5 | 3.7
2.9
2.4
2.3
2.3 | | 21
22
23
24
25 | 6.9
6.1
5.4
6.7
15 | 9.3
9.2
8.6
7.5
7.1 | 11
e10
e9.0
e7.0
e6.0 | e1.1
e1.1
e1.1
e1.1 | e1.9
e1.8
e1.8
e1.8
e1.8 | 19
16
14
14
13 | 24
19
15
13
12 | 31
24
20
17
14 | 4.9
4.1
4.0
4.1
4.8 | 2.3
2.5
2.0
1.9
1.8 | 2.3
2.2
2.0
2.0
2.0 | 2.4
3.0
2.2
2.3
2.3 | | 26
27
28
29
30
31 | 15
11
9.3
7.8
6.8
6.7 | 7.6
6.9
7.7
7.2
e7.0 | e6.0
6.2
6.3
6.2
e6.3 | e1.2
e1.2
e1.2
e1.3
e1.3
e1.7 | e2.0
e2.1
e2.2 | 12
12
20
20
14
13 | 11
10
9.8
9.1
31 | 12
11
11
11
23
47 | 4.8
4.4
8.1
5.6
4.2 | 1.8
1.5
1.6
1.9
1.9 | 2.4
2.2
1.9
1.8
1.5 | 2.7
2.7
2.2
2.0
1.9 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 283.9
9.16
27
4.2
0.26
0.30 | 226.4
7.55
11
6.5
0.22
0.24 | 229.6
7.41
20
5.2
0.21
0.25 | 97.4
3.14
7.0
1.1
0.09
0.10 | 46.4
1.66
3.0
1.1
0.05
0.05 | 398.0
12.8
57
2.1
0.37
0.43 | 624.9
20.8
41
9.1
0.60
0.67 | 2,295
74.0
202
11
2.13
2.46 | 460.2
15.3
54
4.0
0.44
0.49 | 147.5
4.76
28
1.5
0.14
0.16 | 262.8
8.48
68
1.5
0.24
0.28 | 75.3
2.51
12
1.1
0.07
0.08 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) |
19.5
94.3
(1982)
3.31
(1977) | 26.8
137
(1986)
3.38
(1977) | EAN DATA
22.6
70.4
(1985)
3.00
(1977) | A FOR WAT
17.6
72.8
(1988)
2.29
(1977) | 33.4
95.9
(2001)
1.66
(2003) | 1975 - 2003
56.6
124
(1976)
12.8
(2003) | 63.8
193
(1993)
20.8
(2003) | ER YEAR (W
34.9
133
(2000)
3.80
(1977) | 32.8
142
(1997)
3.33
(1988) | 18.7
86.1
(1994)
1.55
(1988) | 14.2
34.9
(1986)
1.47
(1988) | 18.6
151
(1986)
1.86
(1976) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMU MAXIMU ANNUAI 10 PERCI 50 PERCI | L MEAN F ANNUAL F ANNUAL F DAILY M F DAILY M | . MEAN MEAN IEAN EAN DAY MINIM FLOW STAGE (CFSM) (INCHES) EDS EDS | UM | 8,45
2
36 | 3.2 | 4
11 | 5,1
20
(a
(a
40 | 03 Jul | 12 | (e)9
(c)1,5 | 0.63 Au
0.82 Au
500 Ju | 1986
1979
n 21, 1997
g 17, 1988
g 11, 1988
n 21, 1997
n 21, 1997 | ⁽a) Ice affected ⁽b) Also occurred Feb. 9-16 and Sept. 11 (c) From rating curve extended above 717 ft³/s ⁽d) From floodmarks ⁽e) Estimated due to ice effect or missing record #### 04087088 UNDERWOOD CREEK AT WAUWATOSA, WI LOCATION.--Lat 43°03'17", long 88°02'46", in SW ½ NW ½ sec.20, T.7 N., R.21 E., Milwaukee County, Hydrologic Unit 04040003, at U.S. Highway 45, on right bank, just downstream of the Chicago, Milwaukee, St. Paul and Pacific Railroad bridge, on Milwaukee County Park Commission property, at Wauwatosa, and 0.8 mi upstream from mouth. DRAINAGE AREA.--18.2 mi². PERIOD OF RECORD.--November 1974 to November 1979, July 1980 to current year. Unpublished daily discharge records from November 1974 to February 1975 in District files. REVISED RECORDS.--WDR WI-77-1: Drainage area. WRD WI-85-1: 1984. WRD WI-94-1: 1993(M). WRD WI-98-1: 1978(M, date). GAGE.--Water-stage recorder, crest-stage gage, and steel plate weir. Datum of gage is 683.78 ft above NGVD of 1929 (Southeastern Wisconsin Regional Planning Commission bench mark). Prior to Sept. 10, 1993, the orifice was located 10 ft downstream from Chicago, Milwaukee, St. Paul and Pacific Railroad bridge. The orifice was moved to 30 ft upstream from Chicago, Milwaukee, St. Paul and Pacific Railroad bridge on Sept. 10, 1993, and is at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUE | SIC FEET PI | ER SECONE
DAII |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.5
59
15
26
12 | 4.6
4.3
4.3
4.1
5.3 | e3.6
e3.5
e3.3
e3.2
e3.1 | 3.6
3.6
3.5
4.0 | e7.0
e9.0
e14
e9.0
e5.0 | e2.8
e2.7
e2.5
e2.5
e2.5 | 6.0
5.2
4.9
17 | 83
18
11
16
65 | 8.5
6.8
6.7
6.1
5.7 | 4.3
4.0
3.8
6.8
17 | 3.9
3.5
40
6.1
4.0 | 2.3
2.6
2.5
2.2
2.3 | | 6
7
8
9
10 | 9.0
7.5
6.7
6.4
6.1 | 4.8
4.3
4.5
4.4
4.6 | e3.1
e3.3
e3.3
e3.5
e4.0 | 3.7
3.5
3.8
3.6
e2.8 | e4.0
e3.0
e2.8
e2.6
e2.5 | e2.5
e2.9
e2.7
e2.6
e2.5 | 6.3
8.2
11
16
16 | 20
35
20
98
30 | 5.6
5.6
51
16
9.4 | 14
11
16
6.4
8.3 | 19
6.9
3.5
3.0
2.8 | 2.6
2.7
2.9
3.1
3.1 | | 11
12
13
14
15 | 5.9
5.8
4.8
4.7
4.5 | 6.7
4.8
4.6
4.4
4.3 | e3.5
3.1
3.1
3.1
3.0 | e2.6
e2.4
e2.3
e2.3
e2.3 | e2.4
e2.4
e2.3
e2.2
e2.2 | e2.8
e3.6
e5.3
e13 | 16
11
8.6
7.8
7.1 | 77
53
25
19
18 | 8.7
7.4
6.5
5.8
5.2 | 7.3
5.3
4.1
4.0
29 | 2.6
6.0
3.4
3.0
2.9 | 3.5
11
14
31
6.5 | | 16
17
18
19
20 | 4.1
5.0
10
6.1
5.0 | 4.3
4.3
6.9
7.9
5.1 | 2.9
3.1
26
8.5
4.9 | e2.3
e2.3
e2.2
e2.2
e2.2 | e2.2
e2.2
e2.4
e2.8
e3.1 | 19
10
6.7
12
10 | 6.5
6.1
5.9
20
14 | 14
12
11
9.8
19 | 4.9
4.7
4.6
4.2
4.0 | 6.1
4.3
3.6
3.2
3.4 | 2.4
2.3
2.5
2.3
2.6 | 4.0
3.5
3.5
3.5
3.1 | | 21
22
23
24
25 | 4.7
4.5
4.5
12
26 | 12
6.0
5.0
4.6
4.4 | 3.9
3.5
3.1
3.1
3.1 | e2.2
e2.2
e2.2
e2.2
e2.3 | e4.0
e2.4
e2.3
e2.2
e2.2 | 7.4
6.0
5.6
5.4
5.3 | 9.4
7.5
6.4
5.9
5.7 | 9.7
8.3
7.8
7.3
6.8 | 4.1
3.8
3.8
4.2
6.3 | 4.9
4.1
3.7
3.2
3.2 | 2.6
2.3
2.2
2.2
3.3 | 2.8
18
4.8
3.6
3.4 | | 26
27
28
29
30
31 | 9.1
6.4
5.7
5.0
5.0
4.9 | 4.3
4.2
3.9
4.2
3.6 | 2.9
3.3
3.2
3.4
3.7
3.5 | e2.3
e2.3
e2.4
e2.4
e3.0
e5.0 | e2.2
e2.4
e2.7
 | 5.0
4.8
15
7.2
5.4
5.6 | 5.3
5.0
4.9
4.7
35 | 6.4
6.0
9.5
8.4
18
27 | 6.8
16
18
6.2
4.6 | 3.2
3.0
2.8
2.9
4.5
3.1 | 3.3
2.3
2.3
2.3
2.1
2.2 | 6.8
3.8
3.0
3.0
3.2 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 297.9
9.61
59
4.1
0.53
0.61 | 150.7
5.02
12
3.6
0.28
0.31 | 131.8
4.25
26
2.9
0.23
0.27 | 87.3
2.82
5.0
2.2
0.15
0.18 | 103.5
3.70
14
2.2
0.20
0.21 | 213.3
6.88
32
2.5
0.38
0.44 | 294.4
9.81
35
4.7
0.54
0.60 | 769.0
24.8
98
6.0
1.36
1.57 | 251.2
8.37
51
3.8
0.46
0.51 | 200.5
6.47
29
2.8
0.36
0.41 | 149.8
4.83
40
2.1
0.27
0.31 | 162.3
5.41
31
2.2
0.30
0.33 | | STATIST | ICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1975 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 8.99
26.9
(1987)
2.43
(1976) | 10.9
42.1
(1986)
1.81
(1977) | 10.1
27.2
(1983)
1.57
(1977) | 8.62
39.1
(1988)
0.031
(1977) | 13.9
37.9
(2001)
1.83
(1977) | 22.4
73.4
(1979)
6.74
(1981) | 27.1
73.6
(1993)
6.24
(1977) | 17.8
56.9
(2000)
2.28
(1977) | 17.3
68.8
(1997)
4.80
(1976) | 13.0
37.5
(1999)
3.29
(1976) | 16.3
98.1
(1998)
3.49
(1976) | 12.9
56.0
(1986)
3.06
(1982) | # 04087088 UNDERWOOD CREEK AT WAUWATOSA, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEARS | 8 1975 - 2003 | |--------------------------|---------------|-----------|-------------|----------|-------------|---------------| | ANNUAL TOTAL | 4,666.6 | | 2,811.7 | | | | | ANNUAL MEAN | 12.8 | | 7.70 | | 15.0 | | | HIGHEST ANNUAL MEAN | | | | | 23.2 | 1993 | | LOWEST ANNUAL MEAN | | | | | 4.21 | 1977 | | HIGHEST DAILY MEAN | 261 | Aug 13 | 98 | May 9 | 1,420 | Aug 6, 1998 | | LOWEST DAILY MEAN | 2.9 | Dec 16,26 | 2.1 | Aug 30 | 0.00 | (a) | | ANNUAL SEVEN-DAY MINIMUM | (a)3.1 | Dec 11 | (b)2.2 | Jan 18 | 0.00 | Jan 11, 1977 | | MAXIMUM PEAK FLOW | | | 531 | Aug 3 | (c)7,500 | Aug 6, 1998 | | MAXIMUM PEAK STAGE | | | 5.13 | Aug 3 | 13.10 | Aug 6, 1998 | | ANNUAL RUNOFF (CFSM) | 0.70 | | 0.42 | | 0.82 | | | ANNUAL RUNOFF (INCHES) | 9.54 | | 5.75 | | 11.17 | | | 10 PERCENT EXCEEDS | 26 | | 16 | | 31 | | | 50 PERCENT EXCEEDS | 6.1 | | 4.5 | | 7.0 | | | 90 PERCENT EXCEEDS | 3.5 | | 2.3 | | 3.2 | | ⁽a) No flow on all or part of many days during 1977 winter period (b) Ice affected (c) From rating curve extended above 96 ft³/s based on slope-area measurement of peak flow (e) Estimated due to ice effect or missing record ### 04087120 MENOMONEE RIVER AT WAUWATOSA, WI LOCATION.--Lat 43°02'44", long 87°59'59", in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 27, T.7 N., R.21 E., Milwaukee County, Hydrologic Unit 04040003, on left bank near upstream side of 70th Street bridge in Wauwatosa, 800 ft downstream from Honey Creek, and at mile 6.2. DRAINAGE AREA.--123 mi². PERIOD OF RECORD.--October 1961 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 628.86 ft above NGVD of 1929. Prior to Nov. 1, 1974, nonrecording gage at present site and datum then in use. Prior to June 21, 1997 at 0320, datum was 2.00 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUI | BIC FEET PE | |), WATER Y
LY MEAN V | | DBER 2002 | ГО SEPTEN | MBER 2003 | | | |---|---|---|---|---|--|---|---|--|--|---|---
---| | DAY 1 2 3 4 5 | OCT
40
235
132
194
121 | NOV
20
20
21
20
23 | DEC
e18
18
e17
e16
e15 | JAN
19
19
18
e18
19 | FEB
e17
e24
e30
e27
e24 | MAR
e12
e11
e10
e10
e10 | APR 43 38 35 144 126 | MAY
690
275
149
120
503 | JUN
93
61
53
46
40 | JUL
20
18
17
35
100 | AUG
122
92
222
50
29 | SEP
5.6
5.8
5.8
5.8
5.5 | | 6 | 68 | 22 | e15 | 19 | e19 | e10 | 83 | 237 | 37 | 112 | 95 | 5.8 | | 7 | 47 | 20 | e16 | 19 | e14 | e12 | 74 | 280 | 36 | 209 | 52 | 5.8 | | 8 | 36 | 19 | e16 | 19 | e12 | e11 | 90 | 276 | 410 | 97 | 37 | 6.4 | | 9 | 31 | 19 | e17 | e19 | e10 | e11 | 118 | 783 | 199 | 47 | 26 | 5.9 | | 10 | 27 | 22 | e19 | e18 | e9.0 | e10 | 142 | 448 | 98 | 39 | 20 | 6.5 | | 11 | 25 | 37 | 17 | e15 | e8.0 | e12 | 134 | 585 | 110 | 35 | 17 | 7.0 | | 12 | 24 | 28 | 16 | e13 | e7.6 | e17 | 97 | 554 | 91 | 25 | 25 | 37 | | 13 | 23 | 22 | 16 | e12 | e7.2 | e30 | 73 | 348 | 69 | 19 | 15 | 76 | | 14 | 20 | 21 | 17 | e11 | e7.0 | e60 | 62 | 234 | 55 | 17 | 14 | 162 | | 15 | 19 | 20 | 17 | e10 | e6.5 | e150 | 56 | 196 | 44 | 107 | 13 | 41 | | 16 | 18 | 19 | 16 | e9.4 | e6.4 | e140 | 51 | 138 | 37 | 27 | 13 | 16 | | 17 | 19 | 18 | 16 | e8.7 | e6.3 | 89 | 47 | 108 | 33 | 18 | 12 | 11 | | 18 | 47 | 27 | 141 | e7.8 | e7.0 | 62 | 42 | 90 | 31 | 16 | 12 | 9.7 | | 19 | 40 | 48 | 71 | e7.5 | e10 | 89 | 166 | 79 | 29 | 14 | 9.6 | 9.3 | | 20 | 25 | 26 | 43 | e7.2 | e11 | 89 | 110 | 205 | 25 | 12 | 11 | 7.4 | | 21 | 22 | 58 | 32 | e7.0 | e12 | 64 | 78 | 96 | 25 | 18 | 9.4 | 6.7 | | 22 | 20 | 35 | e23 | e6.8 | e10 | 53 | 61 | 72 | 23 | 15 | 7.9 | 87 | | 23 | 19 | 25 | e20 | e6.5 | e8.0 | 44 | 50 | 62 | 21 | 14 | 7.5 | 22 | | 24 | 57 | 23 | e18 | e6.3 | e7.4 | 41 | 44 | 55 | 21 | 12 | 6.8 | 10 | | 25 | 148 | 21 | e17 | e6.1 | e7.2 | 39 | 40 | 49 | 33 | 12 | 12 | 7.9 | | 26
27
28
29
30
31 | 63
39
33
27
24
22 | 19
20
17
19
17 | e16
e17
18
18
19 | e6.0
e5.8
e5.8
e5.7
e6.0
e9.0 | e7.0
e8.8
e11
 | 36
36
92
65
44
39 | 36
33
32
30
149 | 45
40
44
46
96
283 | 45
57
81
39
22 | 12
11
10
10
18
40 | 12
8.4
7.8
7.0
6.5
5.9 | 19
19
12
8.6
8.3 | | TOTAL | 1,665 | 726 | 754 | 359.6 | 334.4 | 1,398 | 2,284 | 7,186 | 1,964 | 1,156 | 977.8 | 635.8 | | MEAN | 53.7 | 24.2 | 24.3 | 11.6 | 11.9 | 45.1 | 76.1 | 232 | 65.5 | 37.3 | 31.5 | 21.2 | | MAX | 235 | 58 | 141 | 19 | 30 | 150 | 166 | 783 | 410 | 209 | 222 | 162 | | MIN | 18 | 17 | 15 | 5.7 | 6.3 | 10 | 30 | 40 | 21 | 10 | 5.9 | 5.5 | | CFSM | 0.44 | 0.20 | 0.20 | 0.09 | 0.10 | 0.37 | 0.62 | 1.88 | 0.53 | 0.30 | 0.26 | 0.17 | | IN. | 0.50 | 0.22 | 0.23 | 0.11 | 0.10 | 0.42 | 0.69 | 2.17 | 0.59 | 0.35 | 0.30 | 0.19 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 64.4
232
(1982)
7.15
(1964) | ONTHLY M
77.6
422
(1986)
11.9
(1963) | EAN DATA
74.6
222
(1988)
4.65
(1964) | A FOR WATE
57.5
191
(1974)
4.45
(1963) | 98.6
277
(2001)
4.18
(1963) | 1962 - 2003
196
582
(1979)
17.5
(1968) | , BY WATE
205
715
(1993)
28.7
(1963) | R YEAR (W
119
419
(2000)
17.1
(1977) | 114
566
(1997)
12.6
(1962) | 77.4
257
(1964)
10.6
(1963) | 76.8
278
(1998)
10.5
(1962) | 82.7
562
(1986)
6.50
(1963) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMU MAXIMU ANNUAI 10 PERCI 50 PERCI | | MEAN MEAN EAN EAN AY MINIM LOW TAGE (CFSM) (INCHES) EDS EDS | | 1,170
12
15 | 2
6.6
(a)Jun
2 Aug
5 Aug
0.77
0.45 | 4
11 | 19,44
5
78
1,78 | 33 May
5.5 Sep
5.7 Sep
6.95 Aug
0.43
5.88 | 7 9
5 5
5 1
5 3 | 1
1
7,5
(t)
(t)
(c)13,5
(f) | 0)2.8 Ja
0)3.1 Fe
00 (d)Ap | 1986
1963
n 21, 1997
n 18, 1964
b 22, 1963
or 21, 1973
n 21, 1997 | ⁽a) Also occurred Aug. 13 (b) Ice affected (c) From rating curve extended above 6,000 ft³/s on basis of slope-area measurement of peak flow, gage height, 13.92 ft, datum then in use (d) Also occurred June 21, 1997, discharge determined from rating curve extended above 9,430 ft³/s on basis of slope-area measurement of peak flow (e) Estimated due to ice effect or missing record (f) High-water mark on gage-house door was 18.87 ft #### 040871473 WILSON PARK CREEK AT GMIA INFALL AT MILWAUKEE, WI $LOCATION.--Lat\ 42^{\circ}56'42'' (revised),\ long\ 87^{\circ}53'10'',\ in\ SW\ ^{1}\!\!/_{4}\ sec.27,\ T.6\ N.,\ R.22\ E.,\ Milwaukee\ County,\ Hydrologic\ Unit\ 04040003,\ 150\ ft\ northwest\ of\ Grange\ Avenue\ gate\ on\ General\ Mitchell\ International\ Airport\ property,\ at\ Milwaukee.$ DRAINAGE AREA.--0.89 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1996 to May 1997, November 1997 to current year. REVISED RECORDS.--WDR WI-98-1: 1997 (M, February monthly). GAGE.--Water-stage recorder. Elevation of gage is 665 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). | | | DISCH | ARGE, CU | BIC FEET P | | D, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|---|---|--|---|---|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.00 | 0.02 | 0.00 | 0.00 | e0.50 | 0.00 | 0.06 | 5.6 | 0.06 | 0.00 | 0.01 | 0.00 | | 2 | 1.1 | 0.01 | 0.00 | 0.00 | e0.30 | 0.00 | 0.00 | 0.28 | 0.06 | 0.00 | 0.00 | 0.00 | | 3 | 0.27 | 0.00 | 0.00 | e0.00 | e0.35 | e0.00 | 0.00 | 0.09 | 0.08 | 0.00 | 0.68 | 0.00 | | 4 | 1.2 | 0.00 | 0.00 | 0.00 | e0.10 | 0.00 | 2.9 | 0.94 | 0.04 | 0.01 | 0.10 | 0.00 | | 5 | 0.09 | 0.07 | 0.00 | e0.00 | e0.00 | 0.00 | 0.67 | 6.2 | 0.04 | 0.56 | 0.02 | 0.00 | | 6 | 0.04 | 0.03 | 0.00 | e0.02 | 0.00 | 0.00 | 0.17 | 0.52 | 0.08 | 2.9 | 0.00 | 0.00 | | 7 | 0.04 | 0.00 | 0.00 | e0.02 | 0.00 | 0.00 | 0.32 | 3.9 | 0.07 | 1.6 | 0.00 | 0.00 | | 8 | 0.03 | 0.00 | 0.00 | e0.03 | e0.00 | 0.00 | 0.61 | 0.92 | 4.0 | 1.5 | 0.00 | 0.00 | | 9 | 0.02 | 0.00 | 0.00 | e0.02 | e0.00 | 0.00 | 0.70 | 7.8 | 0.30 | 0.22 | 0.00 | 0.00 | | 10 | 0.06 | 0.08 | 0.00 | e0.00 | e0.00 | 0.00 | 0.47 | 0.67 | 0.13 | 0.11 | 0.00 | 0.00 | | 11 | 0.06 | 0.59 | 0.00 | 0.00 | e0.00 | 0.00 | 0.29 | 1.4 | 0.09 | 0.25 | 0.00 | 0.00 | | 12 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | e0.10 | 0.11 | 0.59 | 0.07 | 0.06 | 0.00 | 0.49 | | 13 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 | e0.20 | 0.06 | 0.30 | 0.06 | 0.02 | 0.00 | 0.29 | | 14 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | e0.40 | 0.06 | 0.73 | 0.06 | 0.01 | 0.00 | 1.2 | | 15 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | e2.0 | 0.05 | 0.76 | 0.05 | 1.5 | 0.00 | 0.03 | | 16 | 0.02 | 0.00 | 0.03 | 0.00 | 0.00 | 1.4 | 0.03 | 0.20 | 0.04 | 0.05 | 0.00 | 0.03 | | 17 | 0.05 | 0.03 | 0.03 | e0.00 | 0.00 | 0.42 | 0.03 | 0.14 | 0.05 | 0.03 | 0.00 | 0.00 | | 18 | 0.43 | 0.25 | 2.0 | e0.00 | 0.00 | 0.12 | 0.01 | 0.12 | 0.05 | 0.02 | 0.00 | 0.00 | | 19 | 0.04 | 0.35 | 0.33 | e0.00 | 0.00 | 1.6 | 2.1 | 0.38 | 0.04 | 0.01 | 0.00 | 0.00 | | 20 | 0.02 | 0.04 | 0.08 | 0.00 | 0.01 | 0.78 | 0.48 | 0.49 | 0.02 | 0.00 | 0.00 | 0.00 | | 21 | 0.01 | 1.2 | 0.04 | 0.00 | 0.04 | 0.26 | 0.07 | 0.10 | 0.01 | 0.12 | 0.00 | 0.00 | | 22 | 0.01 | 0.09 | 0.03 | 0.00 | 0.02 | 0.05 | 0.04 | 0.11 | 0.03 | 0.02 | 0.00 | 0.76 | | 23 | 0.00 | 0.03 | 0.02 | 0.00 | 0.00 | 0.07 | 0.06 | 0.10 | 0.02 | 0.00 | 0.00 | 0.08 | | 24 | 0.13 | 0.03 | 0.00 | 0.00 | 0.00 | 0.06 | 0.03 | 0.09 | 0.02 | 0.00 | 0.00 | 0.00 | | 25 | 1.4 | 0.02 | 0.00 | 0.00 | e0.00 | 0.01 | 0.03 | 0.08 | 0.03 | 0.01 | 0.08 | 0.00 | | 26
27
28
29
30
31 | 0.14
0.03
0.00
0.00
0.00
0.10 | 0.00
0.02
0.03
0.04
0.01 | e0.00
e0.00
e0.00
e0.01
e0.02
e0.01 | e0.00
e0.00
0.00
0.00
0.00
e0.40 | 0.00
0.00
0.00
 | 0.00
0.00
0.82
0.05
0.01
0.05 | 0.02
0.03
0.03
0.01
1.7 | 0.07
0.06
0.27
0.10
1.2
0.88 | 0.04
0.58
0.89
0.07
0.01 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.01
0.00
0.00
0.00
0.00
0.00 | 0.39
0.11
0.00
0.00
0.00 | | TOTAL | 5.35 | 3.00 | 2.68 | 0.49 | 1.32 | 8.40 | 11.14 | 35.09 | 7.09 | 9.00 | 0.90 | 3.38 | | MEAN | 0.17 | 0.10 | 0.086 | 0.016 | 0.047 | 0.27 | 0.37 | 1.13 | 0.24 | 0.29 | 0.029 | 0.11 | | MAX | 1.4 | 1.2 | 2.0 | 0.40 | 0.50 | 2.0 | 2.9 | 7.8 | 4.0 | 2.9 | 0.68 | 1.2 | | MIN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.01 | 0.00 | 0.00 | 0.00 | | CFSM | 0.19 | 0.11 | 0.10 | 0.02 | 0.05 | 0.30 | 0.42 | 1.27 | 0.27 | 0.33 | 0.03 | 0.13 | | IN. | 0.22 | 0.13 | 0.11 | 0.02 | 0.06 | 0.35 | 0.47 | 1.47 | 0.30 | 0.38 | 0.04 | 0.14 | | STATIS'
MEAN
MAX
(WY)
MIN
(WY) | TICS OF M
0.46
1.41
(2002)
0.17
(2003) | ONTHLY M
0.31
0.72
(1999)
0.094
(2000) | 0.20
0.50
(2002)
0.078
(2001) | 0.38
1.08
(1999)
0.016
(2003) | 0.95
2.47
(2001)
0.047
(2003) |
0.67
0.67
1.48
(1998)
0.27
(2003) | 1.39
2.56
(1999)
0.37
(2003) | ER YEAR (V
1.33
3.09
(2000)
0.63
(1998) | 1.11
1.88
(1999)
0.24
(2003) | 0.76
2.06
(2000)
0.17
(1998) | 0.76
1.43
(2000)
0.029
(2003) | 0.73
1.91
(2000)
0.11
(2003) | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM INSTAN ANNUA ANNUA ANNUA 50 PERC | UM PEAK
UM PEAK
TANEOUS
L RUNOFF | L MEAN L MEAN MEAN MEAN DAY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EEDS EEDS | | 24 | | | \$ | 0.00 Ma
0.00 Ma
24 Ma
12.56 Ma | y 9
uny days
ny periods
y 9
y 9
ny days | WATER | 0.00
0.00 M
34 Ju | 2000
2003
Jul 3, 2000
Many days
Iany periods
Il 2-3, 2000
Jul 3, 2000
Many days | ⁽e) Estimated due to ice effect or missing record #### 040871473 WILSON PARK CREEK AT GMIA INFALL AT MILWAUKEE, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1996 to May 1997, November 1997 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: November 1996 to May 1997, November 1997 to current year. INSTRUMENTATION.--Stage-activated water-quality sampler since November 1996. Continuous water-temperature recorder since November 1996. REMARKS.--Chemical analyses are by the Wisconsin State Laboratory of Hygiene. Samples are point samples unless otherwise indicated. Records represent water temperature at sensor within 0.5°C. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum observed, 31.5°C, July 4, 2003; minimum observed, 0.0°C, many days during winter. ### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum observed, 31.5°C, July 4; minimum observed, 0.0°C, many days during winter. ### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|-----------------------------------|---------------------------------|----------------------------------|--|--|--|--|--|--| | | | ОСТОВЕР | ₹ | N | OVEMBE | ER | Б | ECEMBE | ER | J | ANUARY | 7 | | 1
2
3
4
5 | 19.5
19.0
16.5
17.5
16.5 | 17.0
16.5
15.5
15.5
14.0 | 18.0
18.0
16.0
16.5
15.0 | 6.5
7.0
6.5
7.0
6.0 | 5.0
4.5
4.5
5.0
5.0 | 6.0
5.5
5.5
6.0
5.5 | 1.5
1.5
1.5
1.0
1.0 | 1.0
0.5
0.5
0.5
0.5 | 1.5
1.0
1.0
1.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.5
0.0
0.0 | | 6
7
8
9
10 | 15.5
14.0
14.5
15.0
13.5 | 13.5
11.5
12.0
13.0
11.5 | 14.5
13.0
13.0
13.5
12.5 | 6.5
7.5
8.5
10.5
11.0 | 5.0
5.0
6.0
7.5
9.5 | 6.0
6.5
7.5
9.0
10.5 | 1.0
0.5
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.5
0.5 | | 11
12
13
14
15 | 14.5
14.5
13.5
11.0
11.0 | 11.5
12.5
11.0
9.0
8.5 | 13.0
13.5
12.0
10.0
10.0 | 9.5
7.5
7.5
7.5
6.5 | 7.5
6.0
5.5
6.5
4.5 | 8.5
7.0
6.5
7.0
5.5 | 0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 10.5
9.0
9.5
9.5
9.5 | 8.0
7.5
7.5
8.5
7.5 | 9.0
8.0
8.5
9.0
8.5 | 5.5
5.0
4.5
5.5
5.5 | 4.0
3.5
3.5
3.5
3.5 | 4.5
4.0
4.0
4.5
4.5 | 0.5
1.0
2.0
3.0
2.5 | 0.0
0.0
0.5
2.0
1.0 | 0.5
0.5
1.0
2.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 9.0
9.0
8.5
8.5
8.5 | 8.0
8.0
7.5
7.5
8.0 | 8.5
8.5
8.0
8.0
8.5 | 5.5
4.5
5.0
4.0
3.5 | 4.0
3.0
3.0
2.5
2.0 | 5.0
4.0
4.0
3.0
2.5 | 1.5
1.5
1.5
1.0
1.0 | 1.0
0.5
0.5
0.0
0.0 | 1.0
1.0
1.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 9.5
8.5
8.5
8.0
8.5
8.0 | 8.0
7.0
7.0
7.0
6.5
6.5 | 8.5
8.0
7.5
7.5
7.5
7.0 | 3.0
3.0
2.5
2.5
2.5 | 2.0
2.0
1.5
1.5
1.5 | 2.5
2.5
2.0
2.0
2.0 | 1.0
0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | | MONTH | 19.5 | 6.5 | 10.9 | 11.0 | 1.5 | 5.1 | 3.0 | 0.0 | 0.6 | 0.5 | 0.0 | 0.1 | # 040871473 WILSON PARK CREEK AT GMIA INFALL AT MILWAUKEE, WI—Continued ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002\ TO\ SEPTEMBER\ 2003}$ | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|---|--|--
--|--| | | F | EBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 10.0
7.0
4.0
2.5
3.0 | 3.0
3.5
2.0
1.0
0.5 | 6.0
5.0
3.0
2.0
1.5 | 10.0
11.5
13.5
11.0
11.0 | 8.0
6.0
6.0
8.0
8.5 | 9.0
8.5
9.5
9.5
9.5 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 5.0
3.0
1.5
5.0
8.0 | 1.0
0.5
0.0
0.5
1.5 | 2.5
1.0
0.5
2.5
4.5 | 14.5
12.5
13.5
16.5
15.5 | 9.5
9.0
9.0
9.5
12.0 | 11.5
10.0
11.0
12.5
13.5 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 9.5
9.0
11.0
15.0
18.0 | 3.5
4.5
4.0
7.0
11.0 | 6.0
6.5
7.0
10.5
14.0 | 13.5
14.0
17.0
14.5
16.0 | 10.5
9.0
10.0
11.0
10.0 | 11.5
11.5
13.0
12.0
12.5 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
1.0
1.0
3.0 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.5
1.5 | 13.5
7.0
7.0
10.5
15.0 | 7.0
5.5
5.0
5.0
9.5 | 9.5
6.0
6.0
7.5
12.0 | 17.0
16.5
16.5
15.5
18.5 | 11.5
12.0
12.0
13.0
14.0 | 14.0
14.0
14.0
14.5
16.0 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 3.5
4.5
7.0
7.5
8.0 | 1.0
1.0
1.5
2.5
3.5 | 2.0
2.0
4.0
5.0
5.5 | 11.0
13.5
14.0
13.5
12.0 | 7.5
5.5
6.5
7.0
7.0 | 9.5
9.0
10.0
10.0
9.0 | 17.5
18.0
18.0
18.0
19.5 | 12.0
11.5
12.0
12.5
13.0 | 14.5
14.5
14.5
15.0
16.0 | | 26
27
28
29
30 | 0.0
0.0
0.0 | 0.0
0.0
0.0
 | 0.0
0.0
0.0 | 6.5
5.5
5.5
3.5
3.5 | 2.5
3.0
3.0
1.0
0.5 | 4.0
4.0
4.0
2.0
2.0 | 14.0
16.0
17.0
15.5
13.0 | 5.0
8.0
11.5
10.0
8.5 | 9.0
11.5
14.0
13.0
10.0 | 19.5
20.5
18.0
18.0
16.5 | 14.0
14.0
15.5
13.5
14.0 | 16.5
17.0
16.5
15.5
15.0 | | 31 | | | | 5.5 | 1.0 | 3.0 | | | | 15.5 | 12.0 | 14.0 | | MONTH | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 1.3 | 18.0 | 0.0 | 7.3 | 20.5 | 6.0 | 13.1 | | MONTH | 0.0 | 0.0
JUNE | 0.0 | 8.0 | 0.0
JULY | 1.3 | 18.0 | 0.0
AUGUST | 7.3 | 20.5
SI | 6.0
EPTEMBE | 13.1
ER | | MONTH 1 2 3 4 5 | 0.0
18.5
17.5
17.5
17.5
18.5 | | 0.0
14.0
14.5
15.0
15.0
15.5 | 28.0
27.5
28.5
31.5
27.0 | | 1.3
22.5
22.5
24.5
26.5
24.0 | | | 7.3
23.5
23.5
21.5
21.0
22.5 | | | | | 1
2
3
4 | 18.5
17.5
17.5
17.5 | JUNE
10.0
12.0
13.0
12.5 | 14.0
14.5
15.0
15.0 | 28.0
27.5
28.5
31.5 | JULY
18.5 | 22.5
22.5
24.5
26.5 | 30.0
28.5
25.5
23.5 | 19.5
19.5
19.5
19.5
19.5 | 23.5
23.5
21.5
21.0 | 18.5
19.5
19.5
18.0 | 17.0
14.5
16.5
15.5 | 17.5
17.5
18.0
16.5 | | 1
2
3
4
5
6
7
8
9 | 18.5
17.5
17.5
17.5
18.5
16.0
19.5
19.0
22.0 | JUNE 10.0 12.0 13.0 12.5 13.0 14.0 13.0 14.0 13.5 | 14.0
14.5
15.0
15.0
15.5
15.0
16.0 | 28.0
27.5
28.5
31.5
27.0
25.5
26.0
23.0
23.0 | JULY 18.5 18.5 20.5 22.5 21.5 21.0 20.0 19.0 18.0 19.0 17.5 | 22.5
22.5
24.5
26.5
24.0
22.5
22.5
21.0 | 30.0
28.5
25.5
23.5
28.0
27.0
26.5
23.5
24.5 | AUGUST 19.5 19.5 19.5 19.5 18.5 21.0 19.5 19.6 19.6 19.7 | 23.5
23.5
21.5
21.0
22.5
23.5
22.5
21.0 | SI
18.5
19.5
19.5
18.0
19.0
23.0
23.0
23.5 | 17.0
14.5
16.5
15.5
14.0
15.5
18.0
19.5
18.0 | 17.5
17.5
18.0
16.5
17.0
19.0
20.5
21.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.5
17.5
17.5
17.5
18.5
16.0
19.5
19.0
22.0
20.0
17.5
21.0
25.0
24.5 | JUNE 10.0 12.0 13.0 12.5 13.0 14.0 13.5 15.0 13.0 12.5 14.5 16.5 | 14.0
14.5
15.0
15.0
15.5
15.0
16.0
16.5
17.5
17.0
15.5
16.0
19.5 | 28.0
27.5
28.5
31.5
27.0
25.5
26.0
23.0
23.0
27.0
25.0
29.5
28.0
29.0 | JULY 18.5 18.5 20.5 22.5 21.5 21.0 20.0 19.0 18.0 19.0 17.5 17.0 18.5 19.0 | 22.5
22.5
24.5
26.5
24.0
22.5
21.0
20.0
21.5
20.5
22.0
22.5
23.0 | 30.0
28.5
25.5
23.5
28.0
27.0
26.5
23.5
24.5
26.5
21.0
23.5
26.0
25.5 | AUGUST 19.5 19.5 19.5 19.5 19.5 18.5 21.0 19.5 19.0 18.0 17.5 19.0 19.0 19.0 20.5 | 23.5
23.5
21.5
21.0
22.5
23.5
22.5
21.0
21.0
21.5
20.0
20.5
22.0
23.0 | 18.5
19.5
19.5
18.0
19.0
23.0
23.5
23.0
22.5
23.5
22.5
22.0
21.0 | 17.0
14.5
16.5
15.5
14.0
15.5
18.0
19.5
18.0
19.5
19.0
20.0
18.5 | 17.5
17.5
18.0
16.5
17.0
19.0
20.5
21.5
21.0
20.5
22.0
21.0
21.0
20.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18.5
17.5
17.5
17.5
18.5
16.0
19.5
19.0
22.0
20.0
17.5
21.0
25.0
24.5
25.0
26.0
27.5
26.0
24.0 | JUNE 10.0 12.0 13.0 12.5 13.0 14.0 13.5 15.0 13.0 12.5 14.5 16.5 15.0 15.5 17.5 14.5 | 14.0
14.5
15.0
15.0
15.5
15.0
16.0
16.5
17.5
17.0
15.5
16.0
19.0
19.5
19.0
19.5
20.5
21.0
18.0 | 28.0
27.5
28.5
31.5
27.0
25.5
26.0
23.0
23.0
27.0
25.0
29.5
28.0
29.0
27.5
28.5
29.0
28.5
28.5 | JULY 18.5 18.5 18.5 20.5 22.5 21.5 21.0 20.0 19.0 18.0 19.0 17.5 17.0 18.5 19.0 20.0 18.5 20.0 17.5 16.0 | 22.5
22.5
24.5
26.5
24.0
22.5
21.0
20.0
21.5
20.5
22.0
22.5
23.0
23.0
23.0
21.5
21.5 | 30.0
28.5
25.5
23.5
28.0
27.0
26.5
23.5
24.5
26.5
21.0
23.5
26.0
25.5
26.5
26.5
26.5
26.5 | AUGUST 19.5 19.5 19.5 19.5 19.5 18.5 21.0 19.5 19.0 18.0 17.5 19.0 19.0 20.5 22.0 22.0 21.5 19.5 19.5 | 23.5
23.5
21.5
21.0
22.5
23.5
22.5
21.0
21.0
21.5
20.0
20.5
22.0
23.0
24.0
24.0
22.0
21.5 | 18.5
19.5
19.5
18.0
19.0
23.0
23.5
23.0
22.5
22.5
22.0
21.0
21.5
23.0
22.5
23.0 | 17.0
14.5
16.5
15.5
14.0
15.5
18.0
19.5
18.0
19.5
19.0
20.0
18.5
16.5
15.0
16.5 | 17.5
17.5
18.0
16.5
17.0
19.0
20.5
21.5
21.0
20.5
22.0
21.0
20.0
18.5
19.0
19.5
19.5
19.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 18.5
17.5
17.5
17.5
18.5
16.0
19.5
19.0
22.0
20.0
17.5
21.0
25.0
24.5
25.0
24.5
25.0
24.0
25.0
25.0
25.5
28.0
27.5
29.0 | JUNE 10.0 12.0 13.0 12.5 13.0 14.0 13.5 15.0 13.0 12.5 14.5 16.5 15.5 17.5 14.5 13.5 15.0 16.5 17.5 14.5 10.5 | 14.0
14.5
15.0
15.0
15.5
15.0
16.0
16.5
17.5
17.0
15.5
16.0
19.5
19.0
19.5
20.5
21.0
18.5
19.5
21.0
22.5
24.0 | 28.0
27.5
28.5
31.5
27.0
25.5
26.0
23.0
27.0
25.0
29.5
28.0
29.0
27.5
28.5
29.0
27.5
28.5
29.0
27.0
25.5
26.0
27.0
27.0 | JULY 18.5 18.5 20.5 22.5 21.5 21.0 20.0 19.0 18.0 19.0 17.5 17.0 18.5 19.0 20.0 18.5 19.0 20.0 18.5 19.0 17.5 16.0 19.5 18.0 16.5 15.5 | 22.5
22.5
24.5
24.5
24.0
22.5
22.5
21.0
20.0
21.5
20.5
22.0
22.5
23.0
23.0
23.0
21.5
23.0
23.0
21.5
23.0
23.0
20.0
20.0
20.0
20.0
20.0
20.0 |
30.0
28.5
25.5
23.5
28.0
27.0
26.5
23.5
24.5
26.5
21.0
23.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
27.0
28.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0 | AUGUST 19.5 19.5 19.5 19.5 19.5 18.5 21.0 19.5 19.0 18.0 17.5 19.0 19.0 20.5 22.0 21.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 1 | 23.5
23.5
21.5
21.0
22.5
23.5
22.5
21.0
21.0
21.5
20.0
20.5
22.0
23.0
24.0
24.0
23.0
22.0
21.5
22.0
23.0
22.0
21.5
22.0
23.0
24.0
20.0
20.0
20.0
20.0
20.0
20.0
20 | SI
18.5
19.5
19.5
18.0
19.0
23.0
23.5
23.0
22.5
23.5
22.5
22.0
21.0
21.5
23.0
19.0
18.5
19.0 | EPTEMBE 17.0 14.5 16.5 15.5 14.0 15.5 18.0 19.5 18.0 19.5 19.0 20.0 18.5 16.5 15.0 16.0 17.5 14.5 12.5 11.5 11.5 11.5 11.5 11.5 11.5 11 | 17.5
17.5
18.0
16.5
17.0
19.0
20.5
21.5
21.0
20.5
21.0
21.0
21.0
20.0
18.5
18.5
19.0
19.5
17.0
15.0
16.0
16.5 | ### 040871473 WILSON PARK CREEK AT GMIA INFALL AT MILWAUKEE, WI-Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 #### DISCRETE SAMPLES | Date | Time | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | BOD,
water,
unfltrd
5 day,
20 degC
mg/L
(00310) | COD,
low
level,
water,
unfltrd
mg/L
(00335) | 1,2-
Propane
-diol,
water,
unfltrd
mg/L
(91080) | 1,2-
Ethane-
diol,
water,
unfltrd
mg/L
(91075) | |----------------------------|------|--------------------------------------|--|---|--|--|--|--|---|---|---|--| | OCT 2002
21
MAR 2003 | 1040 | 0.01 | 10 | | | | | | <2.0 | 20 | <18.0 | <18.0 | | 26 | 1425 | 0.01 | 10 | 8.1 | 1,780 | 235 | 1.3 | 0.475 | 19.0 | 68 | <18.0 | <18.0 | # COMPOSITE SAMPLES | Beginning
Date | Beginning
Time | Ending
date | Ending
time | Sam-
pling
method,
code
(82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | BOD,
water,
unfltrd
5 day,
20 degC
mg/L
(00310) | COD,
low
level,
water,
unfltrd
mg/L
(00335) | 1,2-
Propane
-diol,
water,
unfltrd
mg/L
(91080) | |-------------------|-------------------|----------------|----------------|---|---|--|--|---|---|--|---|---|---| | OCT
01-02 | 2330 | 20021002 | 1200 | 50 | 7.7 | | | 44 | | | 3.2 | 35 | <18.0 | | MAR | | | | | | | | | | | | | | | 14-16 | 1400 | 20030316 | 1725 | 50 | 7.3 | 2,640 | 64 | 69 | 3.2 | 0.900 | 16.6 | 84 | <18.0 | | APR | | | | | | | | | | | | | | | 04-05 | 2305 | 20030405 | 0100 | 50 | 7.9 | 1,530 | 87 | | 0.88 | 0.268 | <12.0 | 37 | 51.0 | | Date | 1,2-
Ethanediol,
water, unfltrd
mg/L
(91075) | Runoff
volume
thousands
of cubic feet
(99904) | |-----------------------|--|---| | OCT
01-02
MAR | <18.0 | 84 | | 14-16
APR
04-05 | <18.0
<18.0 | 570
11 | #### STREAMS TRIBUTARY TO LAKE MICHIGAN #### 040871475 WILSON PARK CREEK AT GMIA OUTFALL #7 AT MILWAUKEE, WI LOCATION.--Lat 42°57'24", long 87°54'25", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.28, T.6 N., R.22 E., Milwaukee County, Hydrologic Unit 04040003, 200 ft upstream of Howell Avenue culverts on General Mitchell International Airport property, at Milwaukee. DRAINAGE AREA.--2.25 mi². PERIOD OF RECORD.--November 1996 to May 1997, October 1997 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: November 1996 to May 1997, October 1997 to current year. DISSOLVED OXYGEN: October 1997 to November 1998 (discontinued). INSTRUMENTATION.--Stage-activated water-quality sampler since November 1996. Continuous water-temperature recorder since November 1996. REMARKS.--Chemical analyses are by the Wisconsin State Laboratory of Hygiene. Samples are point samples unless otherwise indicated. Records represent water temperature at sensor within 0.5° C. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum observed, 27.5°C, Aug. 9, 2001; minimum observed, 0.0°C, Mar. 11, 2003. DISSOLVED OXYGEN: Maximum observed, 14.1 mg/L, Feb. 27, 1998; minimum observed, 0.0 mg/L, June 27 and July 7, 1998. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum observed, 25.0°C, July 6; minimum observed, 0.0°C, Mar. 11. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--------------------------------------|--|--------------------------------------|------------------------------------|--------------------------------------|--|--|--|--|--|--| | | (| ОСТОВЕН | ₹ | N | OVEMBE | ER | D | ECEMBE | ER | Ţ | JANUAR | Y | | 1
2
3
4
5 | 18.0
19.5
17.5
19.0
18.0 | 17.5
17.5
16.5
17.5
17.0 | 18.0
18.5
17.5
18.0
17.0 | 10.5
9.5
10.0
9.5
10.5 | 9.0
8.5
9.0
9.0 | 9.5
9.0
9.5
9.0
9.5 | 5.5
5.5
6.0
6.0
6.5 | 3.5
4.0
5.5
5.5
5.5 | 4.5
5.5
6.0
6.0
6.0 |
5.5
5.5
5.0
5.0
5.0 | 5.0
4.0
4.0
4.5
4.5 | 5.0
5.0
4.5
4.5
5.0 | | 6
7
8
9
10 | 17.0
16.5
16.5
16.5
16.0 | 16.0
15.5
16.0
16.0
15.5 | 17.0
16.0
16.5
16.5
16.0 | 10.5
10.0
10.5
11.0
12.5 | 9.5
9.5
10.0
10.5
11.0 | 10.0
10.0
10.5
10.5
11.5 | 5.5
6.0
6.0
5.0
5.5 | 5.0
5.5
4.5
5.0
5.0 | 5.5
5.5
5.5
5.0
5.0 | 5.5
5.0
5.5
5.5
5.0 | 5.0
5.0
4.5
4.5
4.0 | 5.0
5.0
5.0
5.0
4.5 | | 11
12
13
14
15 | 16.0
16.5
16.0
15.0
15.0 | 16.0
16.0
13.5
14.0
13.5 | 16.0
16.0
14.0
14.5
14.5 | 11.5
10.5
11.0
11.0
10.0 | 9.5
10.0
10.0
9.5
9.0 | 10.5
10.5
10.5
10.5
9.0 | 6.0
6.0
6.5
6.0
6.5 | 5.0
5.5
6.0
6.0
5.5 | 5.5
6.0
6.0
6.0
6.0 | 4.0
3.5
3.5
3.5
3.5 | 3.0
2.5
3.0
3.0
2.5 | 3.5
3.5
3.0
3.0
3.0 | | 16
17
18
19
20 | 13.5
13.5
14.0
13.0
13.0 | 12.5
11.5
10.0
12.5
12.5 | 13.0
12.5
13.0
12.5
12.5 | 9.0
9.0
9.5
9.0
9.5 | 8.0
7.5
7.0
7.5
9.0 | 9.0
8.5
9.0
8.5
9.0 | 6.0
6.0
7.0
6.0
6.0 | 5.5
5.0
3.0
5.5
6.0 | 5.5
5.5
5.0
6.0
6.0 | 3.0
2.5
2.5
2.5
2.5 | 2.5
1.5
2.0
2.0
2.0 | 2.5
2.5
2.0
2.5
2.0 | | 21
22
23
24
25 | 13.0
13.0
11.0
13.0
13.0 | 12.5
11.0
10.5
11.0
9.5 | 12.5
11.5
11.0
12.0
11.0 | 9.5
8.5
8.5
8.5
7.5 | 6.5
7.5
8.0
7.0
6.5 | 8.0
8.0
8.5
7.5
7.0 | 6.0
6.0
5.5
5.5
5.0 | 5.5
4.5
4.5
5.0
3.5 | 6.0
5.5
5.0
5.0
4.5 | 2.5
2.5
2.0
1.5
1.5 | 1.5
1.5
1.5
1.0
0.5 | 2.0
2.0
1.5
1.5
1.0 | | 26
27
28
29
30
31 | 12.5
12.0
12.0
11.5
11.5
11.0 | 12.0
11.5
11.5
11.0
11.0 | 12.0
12.0
11.5
11.5
11.0
10.5 | 7.0
7.0
7.0
7.5
7.0 | 6.0
6.0
6.5
7.0
4.0 | 6.5
6.5
6.5
7.0
5.0 | 5.0
5.5
5.5
5.5
5.5
5.5 | 4.0
4.0
5.0
5.0
5.0
5.0 | 4.5
5.0
5.0
5.5
5.5
5.5 | 1.5
2.0
2.5
2.5
2.5
2.5 | 0.5
0.5
1.5
1.5
2.0
1.5 | 1.0
1.5
2.0
2.0
2.0
2.5 | | MONTH | 19.5 | 9.5 | 14.1 | 12.5 | 4.0 | 8.8 | 7.0 | 3.0 | 5.5 | 5.5 | 0.5 | 3.1 | ### 040871475 WILSON PARK CREEK AT GMIA OUTFALL #7 AT MILWAUKEE, WI—Continued # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|--|--|--|--| | | F | EBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 2.5
2.0
2.0
2.0
2.0 | 2.0
1.0
1.0
1.0
1.5 | 2.0
2.0
1.5
1.5 | 3.0
2.0
1.5
1.5 | 1.5
1.0
1.0
0.5
1.0 | 2.0
1.5
1.0
1.0 | 5.0
4.5
4.5
4.5
4.0 | 4.0
4.5
4.5
2.0
2.0 | 4.5
4.5
4.5
3.5
3.0 | 9.0
8.5
8.0
9.5
9.5 | 8.0
7.0
7.5
7.5
8.0 | 8.5
7.5
7.5
7.5
9.0 | | 6
7
8
9
10 | 2.0
1.5
1.5
1.5
1.5 | 1.5
1.0
1.0
1.0
1.0 | 1.5
1.5
1.5
1.0
1.5 | 2.0
2.0
2.5
2.0
1.0 | 1.0
1.5
0.5
1.0
0.5 | 1.5
2.0
2.0
1.5
1.0 | 4.0
4.0
4.0
4.5
5.5 | 3.5
3.0
3.0
3.5
3.5 | 3.5
3.5
3.5
4.0
4.5 | 9.5
9.5
10.0
12.0
11.5 | 8.5
8.5
8.5
9.0
9.5 | 9.0
9.0
9.0
10.5
10.5 | | 11
12
13
14
15 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
0.5
1.0 | 1.0
1.0
1.0
1.0
1.0 | 1.5
2.5
2.5
2.5
3.0 | 0.0
1.0
2.0
1.0
1.0 | 1.0
2.0
2.0
2.0
2.0 | 6.0
6.0
5.5
5.0
6.0 | 4.0
5.0
5.0
5.0
5.0 | 5.0
5.5
5.0
5.0
5.5 | 10.5
10.0
10.0
10.5
10.5 | 9.5
9.0
9.0
9.5
9.5 | 10.0
9.5
9.5
10.0
10.0 | | 16
17
18
19
20 | 1.5
1.5
1.5
1.5
2.0 | 1.0
1.0
1.0
1.0
0.5 | 1.0
1.0
1.0
1.5
1.5 | 4.5
4.0
4.0
3.5
4.0 | 1.0
2.5
2.5
2.5
2.5
2.0 | 3.0
3.5
3.5
3.0
3.0 | 6.0
6.0
6.0
10.5
9.0 | 5.5
5.5
5.5
5.5
7.5 | 6.0
6.0
6.0
7.0
8.0 | 10.5
10.5
10.0
12.0
12.5 | 9.5
10.0
10.0
10.0
11.0 | 10.0
10.0
10.0
10.5
11.5 | | 21
22
23
24
25 | 3.0
2.5
2.0
1.5
1.0 | 1.0
1.5
1.0
1.0
0.5 | 2.0
2.0
1.5
1.0
1.0 | 3.5
3.5
3.5
4.0
4.0 | 2.5
3.0
3.0
3.5
3.5 | 3.0
3.5
3.5
3.5
4.0 | 8.0
7.5
7.5
7.5
7.5 | 7.0
6.5
6.5
6.5
6.5 | 7.5
7.0
7.0
7.0
7.0 | 11.5
11.0
10.5
10.5
10.5 | 10.5
10.5
10.0
10.0
10.0 | 11.0
10.5
10.5
10.5
10.5 | | 26
27
28
29
30
31 | 1.5
1.5
2.5
 | 1.0
0.5
1.0
 | 1.0
1.0
1.5 | 4.5
4.5
6.5
5.0
4.5
4.5 | 4.0
4.0
4.0
4.0
4.0
4.0 | 4.0
4.0
5.5
4.5
4.0
4.5 | 7.0
7.5
7.0
7.5
9.0 | 6.5
6.5
6.5
7.0
7.0 | 6.5
7.0
7.0
7.0
8.0 | 10.5
11.0
11.0
12.0
16.0
15.0 | 10.5
10.5
10.5
11.0
11.0 | 10.5
10.5
11.0
11.5
12.0
13.0 | | | | | | | | | | | | | | | | MONTH | 3.0 | 0.5 | 1.3 | 6.5 | 0.0 | 2.7 | 10.5 | 2.0 | 5.6 | 16.0 | 7.0 | 10.0 | | MONTH | 3.0 | 0.5
JUNE | 1.3 | 6.5 | 0.0
JULY | 2.7 | | 2.0
AUGUST | 5.6 | | 7.0
EPTEMBE | 10.0
CR | | MONTH 1 2 3 4 5 | 3.0
12.0
12.0
11.5
11.5 | | 11.5
11.5
11.5
11.5
11.5 | 15.0
15.0
15.0
15.5
21.0 | | 15.0
14.5
14.5
15.0
17.5 | | | | | | | | 1
2
3
4 | 12.0
12.0
11.5
11.5 | JUNE
11.5
11.0
11.0
11.0 | 11.5
11.5
11.5
11.5 | 15.0
15.0
15.0
15.5 | JULY
14.5
14.5
14.5
14.5 | 15.0
14.5
14.5
15.0 | 17.0
17.0
23.0
19.5 | AUGUST
16.5
16.5
16.5
18.0 | 17.0
17.0
18.5
18.5 | 18.0
18.0
18.0
18.0 | 17.5
17.5
17.5
17.5
17.0 | 18.0
17.5
18.0
17.5 | | 1
2
3
4
5
6
7
8
9 | 12.0
12.0
11.5
11.5
11.5
11.5
11.5
17.0
15.0
13.0 | JUNE 11.5 11.0 11.0 11.0 11.0 11.0 11.5 11.5 | 11.5
11.5
11.5
11.5
11.5
11.5
11.5
11.5 | 15.0
15.0
15.0
15.5
21.0
25.0
21.0
20.0
19.0
18.0
20.0 | JULY 14.5 14.5 14.5 14.5 15.0 16.5 19.0 18.5 17.5 17.5 | 15.0
14.5
14.5
15.0
17.5
19.5
20.0
19.5
18.0 | 17.0
17.0
23.0
19.5
18.0
18.0
17.5
17.5 | AUGUST 16.5 16.5 16.5 18.0 17.5 17.5 17.0 17.0 | 17.0
17.0
18.5
18.5
18.0
17.5
17.5
17.5 | 18.0
18.0
18.0
18.0
17.5
17.5
18.0
18.0
18.0 | 17.5
17.5
17.5
17.5
17.0
17.0
17.5
17.5
17.5
17.5 | 18.0
17.5
18.0
17.5
17.5
17.5
17.5
17.5
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 12.0
12.0
11.5
11.5
11.5
11.5
11.5
17.0
15.0
13.0
12.5
12.5
12.5 | JUNE 11.5 11.0 11.0 11.0 11.0 11.0 11.5 11.5 | 11.5
11.5
11.5
11.5
11.5
11.5
11.5
12.5
12 | 15.0
15.0
15.0
15.5
21.0
25.0
21.0
20.0
19.0
18.0
20.0
18.5
17.5 | JULY 14.5 14.5 14.5 14.5 15.0 16.5 19.0 18.5 17.5 17.0 17.0 16.5 16.5 | 15.0
14.5
14.5
15.0
17.5
19.5
20.0
19.5
18.0
17.5
17.5
17.5
17.6
16.5 | 17.0
17.0
23.0
19.5
18.0
18.0
17.5
17.5
17.5
17.5
17.5 | AUGUST 16.5 16.5 16.5 18.0 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 | 17.0
17.0
18.5
18.5
18.0
17.5
17.5
17.0
17.0
17.0
17.0
17.5
17.5 | 18.0
18.0
18.0
18.0
17.5
17.5
18.0
18.0
18.0
18.0
21.5
21.0
20.5 | EPTEMBE 17.5 17.5 17.5 17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 | 18.0
17.5
18.0
17.5
17.5
17.5
17.5
17.5
18.0
18.0
19.0
20.0
20.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |
12.0
12.0
11.5
11.5
11.5
11.5
11.5
12.0
13.0
13.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | JUNE 11.5 11.0 11.0 11.0 11.0 11.0 11.5 11.5 | 11.5
11.5
11.5
11.5
11.5
11.5
11.5
12.5
12 | 15.0
15.0
15.0
15.5
21.0
25.0
21.0
20.0
19.0
18.0
20.0
18.5
17.5
17.0
21.0 | JULY 14.5 14.5 14.5 14.5 15.0 16.5 19.0 18.5 17.5 17.0 17.0 16.5 16.5 17.5 17.0 16.5 16.5 17.5 | 15.0
14.5
14.5
15.0
17.5
19.5
20.0
19.5
18.0
17.5
17.5
17.5
17.0
16.5
18.0
17.5 | 17.0
17.0
23.0
19.5
18.0
18.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | AUGUST 16.5 16.5 16.5 18.0 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 | 17.0
17.0
18.5
18.5
18.0
17.5
17.5
17.0
17.0
17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5 | 18.0
18.0
18.0
18.0
17.5
17.5
18.0
18.0
18.0
21.5
21.0
20.5
20.0
19.0
18.5
18.5 | EPTEMBE 17.5 17.5 17.5 17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 18.0 19.5 18.5 18.5 18.0 16.5 | 18.0
17.5
18.0
17.5
17.5
17.5
17.5
17.5
18.0
18.0
19.0
20.0
20.0
19.0
18.5
18.5
18.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 12.0
12.0
11.5
11.5
11.5
11.5
11.5
17.0
15.0
13.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | JUNE 11.5 11.0 11.0 11.0 11.0 11.0 11.5 11.5 | 11.5
11.5
11.5
11.5
11.5
11.5
11.5
12.5
12 | 15.0
15.0
15.0
15.5
21.0
25.0
21.0
20.0
19.0
18.5
17.5
17.0
21.0
18.5
17.5
17.0
17.0
17.5
17.0 | JULY 14.5 14.5 14.5 14.5 15.0 16.5 19.0 18.5 17.5 17.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 | 15.0
14.5
14.5
15.0
17.5
19.5
20.0
19.5
18.0
17.5
17.5
17.0
16.5
18.0
17.5
17.0
16.5
17.0
17.0
16.5 | 17.0
17.0
23.0
19.5
18.0
18.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | AUGUST 16.5 16.5 16.5 18.0 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 | 17.0
17.0
18.5
18.5
18.5
17.5
17.5
17.0
17.0
17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | 18.0
18.0
18.0
18.0
17.5
17.5
18.0
18.0
18.0
21.5
21.0
20.5
20.0
19.0
18.5
18.5
17.5
17.5
17.0 | EPTEMBE 17.5 17.5 17.5 17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 18.0 19.5 19.5 18.5 18.0 18.0 16.5 16.5 17.0 17.0 16.5 | 18.0
17.5
18.0
17.5
17.5
17.5
17.5
17.5
18.0
18.0
19.0
20.0
20.0
19.0
18.5
18.5
17.5
17.5
17.5
17.5 | # 040871475 WILSON PARK CREEK AT GMIA OUTFALL #7 AT MILWAUKEE, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 ### DISCRETE SAMPLES | Date | Time | Sampling method, code (82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | BOD,
water,
unfltrd
5 day,
20 degC
mg/L
(00310) | COD,
low
level,
water,
unfltrd
mg/L
(00335) | Oil and
grease,
water,
unfltrd
freon
extract
mg/L
(00556) | 1,2-
Propane
-diol,
water,
unfltrd
mg/L
(91080) | 1,2-
Ethane-
diol,
water,
unfltrd
mg/L
(91075) | |-----------------------|------|-------------------------------|---|--|--|--|--|---|---|--|---|--| | OCT 2002
21 | 1130 | 10 | | | | | | >25.0 | 540 | | 120 | <18.0 | | FEB 2003
21
MAR | 1530 | 50 | | | | | | | 810 | | | | | 16 | 1400 | 70 | | | | | | | | 2 | - - | | | 26
SEP | 1215 | 10 | 8.0 | 2,890 | 652 | 9.1 | 7.89 | 746 | 1,700 | | 200 | <18.0 | | 03 | 1220 | 10 | 9.0 | 1,250 | 344 | 0.99 | 0.088 | 3.4 | 43 | | <18.0 | <18.0 | ### 040871475 WILSON PARK CREEK AT GMIA OUTFALL #7 AT MILWAUKEE, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 ### COMPOSITE SAMPLES | | | | | | CO | WII OBITE | O' IIVII LLO | | | | | | | |---------------------------------|-------------------|----------------|----------------|-------------------------------|---|--|--|---|--|--|---|---|---| | Beginning
Date | Beginning
Time | Ending
date | Ending
time | Sampling method, code (82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | BOD,
water,
unfltrd
5 day,
20 degC
mg/L
(00310) | COD,
low
level,
water,
unfltrd
mg/L
(00335) | 1,2-
Propane
-diol,
water,
unfltrd
mg/L
(91080) | | OCT
02-02 | 0235 | 20021002 | 1050 | 50 | 7.8 | | | 31 | | | 3.4 | 25 | <18.0 | | DEC
02-11 | 1234 | 20021211 | 1045 | 50 | | | | | | | | 1,300 | | | DEC
11-19 | 1932 | 20,021219 | 0912 | 50 | | | | | | | | 330 | | | DEC
20-27
DEC 27
2002- | 1323 | 20021227 | 0828 | 50 | | | | | | | | 340 | | | JAN 03
2003 | 1525 | 20030103 | 0341 | 50 | | | | | | | | 190 | | | JAN
03-10 | 1149 | 20030110 | 0623 | 50 | | | | | | | | 2,900 | | | JAN
10-17 | 1258 | 20030117 | 0015 | 50 | | | | | | | | 3,000 | | | JAN
17-22 | 1714 | 20030122 | 0732 | 50 | | | | | | | | 620 | | | JAN
25-29 | 1713 | 20030129 | 0255 | 50 | | | | | | | | 120 | | | JAN
31-31 | 0805 | 20030131 | 1740 | 50 | | 14,300 | | | 17 | 6.74 | 2,900 | 4,400 | 2,300 | | JAN 31-
FEB 05 | 2011 | 20030205 | 0800 | 50 | | | | | | | | 7,500 | | | FEB
15-20
MAR | 1027 | 20030220 | 1811 | 50 | | | | | | | | 1,900 | | | 01-07 | 0349 | 20030307 | 0154 | 50 | | | | | | | | 3,700 | | | MAR
04-08 | 1620 | 20030308 | 1155 | 50 | | | | | 7.8 | 1.50 | | 5,600 | 1,900 | | MAR
07-09 | 1600 | 20030309 | 0906 | 50 | | | | | | | | 9,600 | | | MAR
12-14 | 1546 | 20030314 | 0911 | 50 | | | | | | | | 7,500 | | | MAR
14-16 | 1340 | 20030316 | 1910 | 50 | 7.4 | 2,430 | 351 | 96 | 4.8 | 0.223 | 738 | 1,300 | 410 | | MAR
14-15 | 1359 | 20030315 | 1331 | 50 | | | | | | | | 2,000 | | | MAR
16-17 | 1408 | 20030317 | 1023 | 50 | | | | | | | | 1,000 | | | MAR
18-21 | 2011 | 20030321 | 0319 | 50 | | | | | | | | 720 | | | MAR
21-28 | 1252 | 20030328 | 1322 | 50 | | | | | | | | 940 | | | MAR 28-
APR 04 | 1357 | 20030404 | 0927 | 50 | | | | | | | | 360 | | | APR
04-09 | 1117 | 20030409 | 1623 | 50 | | | | | | | | 1,300 | | | APR
04-05 | 1635 | 20030405 | 0155 | 50 | 7.5 | 1,070 | 178 | | 2.3 | 0.547 | 552 | 950 | 470 | | APR
11-18 | 1609 | 20030418 | 0002 | 50 | | | | | | | | 620 | | | APR
19-24 | 0017 | 20030424 | 1904 | 50 | | | | | | | | 280 | | | APR 25-
MAY 01 | 0607 | 20030501 | 0159 | 50 | | | | | | | | 120 | | # 040871475 WILSON PARK CREEK AT GMIA OUTFALL #7 AT MILWAUKEE, WI—Continued | Date | 1,2-
Ethanediol,
water, unfltrd
mg/L
(91075) | |------------------------------------|--| | OCT
02-02 | <18.0 | | DEC
02-11
DEC | | | 11-19
DEC | | | 20-27 | | | DEC 27 2002-
JAN 03 2003
JAN | | | 03-10
JAN | | | 10-17
JAN | | | 17-22
JAN | | | 25-29
JAN | | | 31-31
JAN 31- | <18.0 | | FEB 05
FEB | | | 15-20
MAR | | | 01-07
MAR | | | 04-08
MAR | 48.0 | | 07-09
MAR | | | 12-14
MAR | | | 14-16
MAR | 32.0 | | 14-15
MAR | | | 16-17
MAR | | | 18-21
MAR | | | 21-28
MAR 28- | | | APR 04
APR | | | 04-09
APR | | | 04-05
APR | <18.0 | | 11-18
APR | | | 19-24
APR 25- | | | MAY 01 | | ### 040871476 HOLMES AVENUE CREEK TRIB AT GMIA OUTFALL #1 AT MILWAUKEE, WI LOCATION.--Lat 42°56'43", long 87°54'38" (revised), in SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.29, T.6 N., R.22 E., Milwaukee County, Hydrologic Unit 04040003, 100 ft west of intersection at corner of Air Cargo Way and Howell Avenue, at Milwaukee. DRAINAGE AREA.--0.03 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1996 through May 1997, November 1997 to current year. GAGE.--Water-stage recorder in culvert. Elevation of gage is 690 ft above NGVD of 1929,
from topographic map. REMARKS.--Records poor (see page 11). | | | DISCH | ARGE, CU | BIC FEET I | | D, WATER '
LY MEAN ' | | OBER 2002 | 2 TO SEPTEM | IBER 2003 | | | |---|--|---|--|--|--------------------------|--|--------------------------------------|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.31 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3 | 0.06 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | | 4 | 0.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.31 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | | 5 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.16 | 0.00 | 0.07 | 0.00 | 0.00 | | 6 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.43 | 0.01 | 0.00 | | 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | 0.20 | 0.00 | 0.12 | 0.00 | 0.00 | | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.38 | 0.17 | 0.00 | 0.00 | | 9 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.06 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.24 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.16 | 0.13 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.16 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.05 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.00 | 0.20 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | | 24 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 25 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | 26
27
28
29
30
31 | 0.03
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.00
0.00
0.13
0.00
0.00
0.01 | 0.00
0.00
0.00
0.00
0.22 | 0.00
0.00
0.00
0.00
0.07
0.00 | 0.00
0.05
0.09
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.05
0.00
0.00
0.00
0.00 | | TOTAL | 1.47 | 0.67 | 0.30 | 0.03 | 0.19 | 0.90 | 1.05 | 1.32 | 0.52 | 1.02 | 0.17 | 0.57 | | MEAN | 0.047 | 0.022 | 0.010 | 0.001 | 0.007 | 0.029 | 0.035 | 0.043 | 0.017 | 0.033 | 0.005 | 0.019 | | MAX | 0.40 | 0.21 | 0.30 | 0.03 | 0.12 | 0.21 | 0.31 | 0.34 | 0.38 | 0.43 | 0.14 | 0.24 | | MIN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CFSM | 1.58 | 0.74 | 0.32 | 0.03 | 0.23 | 0.97 | 1.17 | 1.42 | 0.58 | 1.10 | 0.18 | 0.63 | | IN. | 1.82 | 0.83 | 0.37 | 0.04 | 0.24 | 1.12 | 1.30 | 1.64 | 0.64 | 1.26 | 0.21 | 0.71 | | STATIST | CICS OF MO | ONTHLY M | EAN DAT | A FOR WA | TER YEARS | 1997 - 2003 | , BY WATI | ER YEAR (| WY) | | | | | MEAN | 0.036 | 0.024 | 0.014 | 0.027 | 0.050 | 0.032 | 0.068 | 0.075 | 0.067 | 0.062 | 0.077 | 0.066 | | MAX | 0.083 | 0.047 | 0.041 | 0.057 | 0.12 | 0.061 | 0.10 | 0.18 | 0.12 | 0.16 | 0.12 | 0.16 | | (WY) | (2002) | (2001) | (1997) | (1999) | (2001) | (1998) | (1999) | (2000) | (1999) | (2000) | (2001) | (2000) | | MIN | 0.008 | 0.007 | 0.001 | 0.001 | 0.007 | 0.004 | 0.035 | 0.035 | 0.017 | 0.023 | 0.005 | 0.019 | | (WY) | (2000) | (2000) | (2001) | (2003) | (2003) | (1999) | (2003) | (1998) | (2003) | (1998) | (2003) | (2003) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMU INSTAN' ANNUAI ANNUAI 10 PERC. 50 PERC. | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY M L SEVEN-E UM PEAK S | MEAN MEAN MEAN EAN EAN DAY MINIM STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | | | | | FOR 200 | 0.00 M
0.00 M
2.31 J | YEAR Jul 6 Many days Many periods Jul 6 Many days | (| 0.00
0.00 M
(e)4.45 J | 97 - 2003
2000
2003
Jul 2, 2000
Many days
any periods
Jul 2, 2000
Many days | ⁽e) Estimated # 040871476 HOLMES AVENUE CREEK TRIB AT GMIA OUTFALL #1 AT MILWAUKEE, WI—Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- November 1996 to May 1997, November 1997 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: November 1996 to May 1997, November 1997 to August 1999, November 2000 to current year. INSTRUMENTATION.--Stage-activated water-quality sampler since November 1996. Continuous water-temperature recorder from November 1996 to September 1999. REMARKS.--Chemical analyses are by the Wisconsin State Laboratory of Hygiene. Samples are point samples unless otherwise indicated. Records represent water temperature at sensor within 0.5°C. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum observed, 29.5°C, July 20-21, 2001; minimum observed, 0.0°C, many days during winter. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE; Maximum observed, 26.0°C, July 6; minimum observed, 0.0°C, many days during winter. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|---|--------------------------------------|---------------------------------|----------------------------------|--|--|--|--|--|--| | | | ОСТОВЕН | ₹ | N | OVEMBE | ER | D | ECEMBE | CR. |] | JANUARY | Y | | 1 | 19.0 | 15.5 | 16.0 | 12.5 | 10.5 | 11.5 | 10.0 | 7.5 | 8.0 | 8.5 | 5.5 | 6.5 | | 2 | 19.0 | 13.0 | 16.5 | 12.5 | 10.0 | 11.0 | 10.0 | 0.0 | 5.0 | 7.5 | 3.5 | 6.0 | | 3 | 16.0 | 13.5 | 15.0 | 12.5 | 10.0 | 11.0 | 8.0 | 2.5 | 5.5 | 8.0 | 3.5 | 6.5 | | 4 | 19.0 | 15.5 | 16.5 | 12.5 | 9.0 | 10.5 | 9.0 | 7.0 | 8.0 | 8.0 | 6.0 | 6.5 | | 5 | 17.0 | 15.5 | 16.0 | 12.5 | 7.5 | 10.0 | 9.0 | 7.5 | 8.0 | 8.0 | 0.0 | 5.5 | | 6 | 16.5 | 14.5 | 15.5 | 13.0 | 10.5 | 11.5 | 9.5 | 7.5 | 8.0 | 8.5 | 3.0 | 6.5 | | 7 | 15.5 | 13.0 | 14.5 | 12.5 | 10.0 | 11.0 | 10.5 | 8.5 | 9.0 | 9.0 | 7.0 | 8.0 | | 8 | 16.0 | 14.5 | 15.0 | 13.0 | 11.5 | 12.0 | 9.0 | 6.5 | 7.5 | 9.0 | 7.5 | 8.0 | | 9 | 15.0 | 13.5 | 14.0 | 14.0 | 11.5 | 12.5 | 9.0 | 6.0 | 7.5 | 9.5 | 4.0 | 7.5 | | 10 | 15.0 | 13.5 | 14.5 | 13.0 | 9.5 | 12.5 | 10.0 | 7.5 | 9.0 | 8.5 | 6.5 | 7.5 | | 11 | 15.5 | 14.0 | 14.5 | 12.0 | 4.5 | 8.5 | 10.0 | 7.5 | 8.5 | 8.5 | 7.0 | 7.5 | | 12 | 16.0 | 14.5 | 15.0 | 13.0 | 10.0 | 11.5 | 10.0 | 8.0 | 9.0 | 8.0 | 6.0 | 7.0 | | 13 | 15.0 | 13.0 | 13.5 | 12.5 | 10.5 | 11.5 | 10.0 | 8.5 | 9.0 | 8.0 | 6.0 | 7.0 | | 14 | 14.5 | 12.5 | 13.5 | 12.5 | 8.5 | 10.5 | 10.5 | 8.5 | 9.5 | 8.0 | 6.0 | 6.5 | | 15 | 14.5 | 11.0 | 13.0 | 10.5 | 6.0 | 8.5 | 10.5 | 7.0 | 9.0 | 8.0 | 6.5 | 7.0 | | 16 | 12.0 | 9.5 | 10.5 | 7.0 | 5.0 | 6.0 | 9.0 | 6.0 | 7.5 | 7.5 | 5.0 | 6.5 | | 17 | 13.5 | 8.0 | 11.5 | 10.0 | 6.0 | 8.0 | 10.0 | 8.0 | 9.0 | 6.5 | 4.0 | 5.0 | | 18 | 13.0 | 6.0 | 10.5 | 11.5 | 3.0 | 8.0 | 10.0 | 1.5 | 5.5 | 7.5 | 5.0 | 6.0 | | 19 | 13.5 | 10.5 | 12.5 | 10.5 | 3.5 | 8.5 | 9.5 | 6.5 | 8.0 | 7.0 | 5.5 | 6.0 | | 20 | 13.5 | 10.5 | 12.0 | 11.5 | 10.0 | 10.5 | 9.5 | 8.5 | 8.5 | 7.5 | 5.5 | 6.0 | | 21 | 13.5 | 11.0 | 12.5 | 11.0 | 3.0 | 7.0 | 10.0 | 8.0 | 9.0 | 7.0 | 5.0 | 6.0 | | 22 | 13.0 | 11.0 | 12.0 | 10.5 | 8.0 | 9.0 | 10.0 | 8.0 | 8.5 | 7.0 | 4.5 | 5.5 | | 23 | 11.5 | 8.5 | 9.5 | 11.5 | 9.0 | 10.0 | 9.5 | 8.0 | 8.5 | 6.0 | 4.0 | 4.5 | | 24 | 11.5 | 7.0 | 10.0 | 11.0 | 8.5 | 9.5 | 9.0 | 6.0 | 7.5 | 5.5 | 4.5 | 4.5 | | 25 | 12.5 | 5.5 | 8.5 | 10.0 | 8.5 | 9.0 | 8.5 | 6.0 | 6.5 | 6.5 | 4.5 | 5.0 | | 26
27
28
29
30
31 | 13.0
13.5
12.0
12.0
11.0
12.0 | 9.5
10.5
9.5
8.5
8.5
10.0 | 11.0
11.5
10.5
10.0
9.5
11.0 | 10.0
10.5
10.0
11.5
11.0 | 7.5
8.0
8.0
9.5
7.5 | 8.5
9.0
8.5
10.5
8.5 | 8.5
8.0
9.0
9.5
10.0
10.0 | 6.5
6.5
7.5
7.5
8.0
7.5 | 7.0
7.0
8.0
8.0
8.5
8.5 | 5.5
5.5
5.5
5.5
6.5
6.5 | 3.0
3.5
0.0
0.0
3.5
0.5 | 4.0
4.0
3.5
3.0
5.0
3.5 | | MONTH | 19.0 | 5.5 | 12.8 | 14.0 | 3.0 | 9.8 | 10.5 | 0.0 | 7.9 | 9.5 | 0.0 | 5.9 | # 040871476 HOLMES AVENUE CREEK TRIB AT GMIA OUTFALL #1 AT MILWAUKEE, WI—Continued
${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002\ TO\ SEPTEMBER\ 2003}$ | DAY | MAX | MIN | MEAN | |---|---|--|---|--|--|--|--|--|--|--|--|--| | | F | EBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 7.5
7.5
6.5
6.0
6.0 | 4.0
1.5
0.0
0.5
4.0 | 5.5
5.0
2.5
4.0
4.5 | 5.5
5.5
3.5
5.0
5.0 | 1.5
0.0
0.0
0.0
0.0 | 3.5
2.5
2.5
2.5
2.5 | 6.5
6.0
6.0
6.0
5.0 | 4.0
4.0
4.0
0.0
0.0 | 5.0
4.5
4.5
1.5
2.5 | 10.0
8.5
7.0
9.5
10.0 | 7.0
5.5
5.0
5.0
6.5 | 8.0
6.0
5.5
6.0
8.0 | | 6
7
8
9
10 | 6.0
5.5
5.5
5.5
5.5 | 3.5
3.0
4.0
3.5
2.0 | 4.5
4.0
4.5
4.0
3.5 | 4.0
4.5
5.0
4.5
5.5 | 0.0
0.0
2.5
1.5
3.5 | 2.0
2.5
3.5
3.0
4.0 | 5.5
5.0
3.5
6.5
10.5 | 3.0
0.0
0.0
0.5
1.5 | 3.5
2.0
1.0
2.5
5.0 | 9.0
10.0
9.0
10.5
12.0 | 6.5
6.0
6.5
6.5
7.0 | 7.0
7.5
7.0
8.0
8.0 | | 11
12
13
14
15 | 5.0
5.5
6.5
6.0
3.0 | 2.5
0.0
3.5
3.0
0.0 | 3.5
3.0
5.0
4.5
1.0 | 5.5
5.5
6.0
4.5
4.0 | 3.5
3.0
0.0
0.0
0.0 | 4.0
4.0
2.0
1.5
1.5 | 6.0
6.0
6.0
6.0
6.5 | 4.0
3.5
3.5
4.0
4.5 | 4.5
4.5
4.5
5.0
5.0 | 12.0
9.5
8.5
13.5
10.0 | 7.0
7.0
7.0
7.0
7.5 | 8.5
8.0
7.5
8.5
8.0 | | 16
17
18
19
20 | 1.5
2.5
5.5
7.0
7.0 | 0.0
0.0
2.0
4.0
1.0 | 0.5
1.5
3.0
5.0
4.5 | 7.5
6.5
6.5
6.0
8.0 | 1.5
4.0
2.5
1.0
1.5 | 4.0
4.5
4.5
3.0
4.5 | 6.5
6.5
6.0
15.0
12.5 | 4.5
4.0
4.0
3.5
6.5 | 5.0
5.0
5.0
7.5
8.0 | 8.5
9.0
8.5
17.5
15.5 | 7.5
7.0
7.0
7.0
8.5 | 7.5
7.5
7.5
9.5
10.5 | | 21
22
23
24
25 | 6.0
5.0
2.0
4.0
5.0 | 2.5
1.0
0.0
0.0
1.5 | 4.0
2.5
0.5
2.0
3.0 | 6.0
5.5
6.0
6.5
6.5 | 3.0
2.5
3.0
3.0
4.5 | 4.0
3.5
4.0
4.5
5.0 | 8.5
7.5
7.0
8.0
6.5 | 6.0
5.0
4.5
4.5
4.5 | 6.5
6.0
5.5
5.5
5.0 | 10.0
9.5
9.0
8.5
9.0 | 7.5
7.0
7.0
7.0
7.5 | 8.0
7.5
7.5
7.5
7.5 | | 26
27
28
29
30 | 3.5
5.0
5.5 | 2.0
2.5
2.5
 | 2.5
3.5
3.5 | 6.5
6.5
10.5
6.5
6.5 | 4.0
4.5
4.5
4.5
4.5 | 5.0
5.0
6.0
5.0
5.0 | 6.5
8.5
7.0
7.0
9.5 | 4.0
4.5
5.0
5.0
4.5 | 5.0
5.5
5.5
5.5
7.0 | 9.0
9.0
13.5
11.0
18.0 | 7.5
7.5
7.5
8.0
8.0 | 7.5
8.0
8.5
9.0
9.5 | | 31 | | | | 6.5 | 3.5 | 5.0 | | | | 15.0 | 8.5 | 10.0 | | MONTH | 7.5 | 0.0 | 3.4 | 10.5 | 0.0 | 3.7 | 15.0 | 0.0 | 4 8 | 18.0 | 5.0 | 7/9 | | MONTH | 7.5 | 0.0
JUNE | 3.4 | 10.5 | 0.0
JULY | 3.7 | 15.0 | 0.0
AUGUST | 4.8 | 18.0
S | 5.0
EPTEMBE | 7.9
CR | | MONTH 1 2 3 4 5 | 7.5
10.0
8.5
12.0
10.0
10.0 | | 8.5
8.0
9.0
8.5
8.5 | 10.5
11.5
12.0
11.5
16.5
22.0 | | 3.7
11.0
11.0
10.5
12.0
14.5 | | | | | EPTEMBE | | | 1
2
3
4 | 10.0
8.5
12.0
10.0 | JUNE
8.0
8.0
8.0
8.0 | 8.5
8.0
9.0
8.5 | 11.5
12.0
11.5
16.5 | JULY
10.5
10.5
10.5
10.5 | 11.0
11.0
10.5
12.0 | 15.5
14.0
23.0
17.0 | 12.5
12.5
12.5
12.5
14.0 | 13.5
13.0
16.0
15.0 | 15.5
15.5
15.5
15.0 | 14.0
14.0
14.0
14.0
14.0 | 14.5
14.5
14.5
14.0 | | 1
2
3
4
5
6
7
8
9 | 10.0
8.5
12.0
10.0
10.0
14.5
11.0
19.0
13.5 | 3UNE
8.0
8.0
8.0
8.0
8.0
8.0
8.5
9.5
9.5
9.5 | 8.5
8.0
9.0
8.5
8.5
9.5
13.0
11.0
10.0 | 11.5
12.0
11.5
16.5
22.0
26.0
21.5
21.5
18.5 | JULY 10.5 10.5 10.5 10.5 11.0 12.0 15.0 13.5 13.5 13.5 | 11.0
11.0
10.5
12.0
14.5
18.0
17.5
17.0 | 15.5
14.0
23.0
17.0
15.0
22.5
18.5
16.5 | AUGUST 12.5 12.5 12.5 14.0 13.5 14.0 14.0 14.0 | 13.5
13.0
16.0
15.0
14.0
14.5
15.0
14.5
14.5
14.6 | S:
15.5
15.5
15.0
15.5
15.5
15.5
15.5
15.5 | 14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0 | 14.5
14.5
14.5
14.5
14.0
14.5
14.5
15.0
14.5
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 10.0
8.5
12.0
10.0
10.0
14.5
11.0
19.0
13.5
13.0
12.5
10.5
10.5 | JUNE 8.0 8.0 8.0 8.0 8.0 8.0 8.5 9.5 9.5 9.0 9.0 9.0 | 8.5
8.0
9.0
8.5
8.5
9.5
13.0
11.0
10.0
9.5
9.5
9.5 | 11.5
12.0
11.5
16.5
22.0
26.0
21.5
21.5
18.5
17.5 | JULY 10.5 10.5 10.5 10.5 11.0 12.0 13.5 13.5 13.5 12.5 12.5 12.0 12.0 | 11.0
11.0
10.5
12.0
14.5
18.0
17.5
17.0
15.0
14.5
14.5
13.5
12.5
12.5 | 15.5
14.0
23.0
17.0
15.0
22.5
18.5
16.5
16.0
15.0
15.5
16.0
18.0
18.5 | AUGUST 12.5 12.5 12.5 14.0 13.5 14.0 14.0 14.0 14.0 14.0 14.5 14.5 | 13.5
13.0
16.0
15.0
14.0
14.5
15.0
14.5
14.5
14.0
14.5
15.0
15.0
15.0 | S. 15.5
15.5
15.5
15.5
15.5
15.5
15.5
15. | 14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.5
14.5
14.5
14.5
14.5
14.5 | 14.5
14.5
14.5
14.0
14.5
14.5
14.5
15.0
14.5
15.0
16.5
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.0
8.5
12.0
10.0
10.0
14.5
11.0
19.0
13.5
13.0
12.5
10.5
10.5
10.5
10.5
10.5 | 8.0
8.0
8.0
8.0
8.0
8.0
8.5
8.5
9.5
9.5
9.0
9.0
9.0
9.0 | 8.5
8.0
9.0
8.5
8.5
9.5
9.5
13.0
11.0
10.0
9.5
9.5
9.5
9.5
9.5
9.5 | 11.5
12.0
11.5
16.5
22.0
26.0
21.5
21.5
18.5
17.5
19.0
15.0
13.5
21.0
14.5
13.5
13.5
13.5 | JULY 10.5 10.5 10.5 10.5 11.0 12.0 15.0 13.5 13.5 13.5 12.5 12.0 12.0 12.0 12.0 12.0 12.5 12.5 12.0 12.0 | 11.0
11.0
10.5
12.0
14.5
18.0
17.5
17.0
15.0
14.5
14.5
12.5
12.5
15.5
13.0
12.5
12.5
12.5
12.5 | 15.5
14.0
23.0
17.0
15.0
22.5
18.5
16.5
16.0
15.0
15.5
16.0
18.5
15.0
17.0
15.5
15.0 | AUGUST 12.5 12.5 12.5 14.0 13.5 14.0 14.0 14.0 14.0 14.0 14.5 14.5 14.5 14.0 14.0 13.5 14.5 14.5 14.0 13.5 14.0 | 13.5
13.0
16.0
15.0
14.0
14.5
15.0
14.5
14.5
14.5
15.0
15.0
15.0
14.5
14.5
14.5
14.5
14.5 | 15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5 | 14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.5
14.5
14.5
14.5
14.5
14.5
15.0
16.0
15.5 | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
15.0
14.5
15.0
16.5
18.0
16.0
15.5
15.5
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.0
8.5
12.0
10.0
10.0
14.5
11.0
19.0
13.5
13.0
12.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10 | JUNE 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 | 8.5
8.0
9.0
8.5
8.5
9.5
9.5
13.0
11.0
10.0
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 11.5
12.0
11.5
16.5
22.0
26.0
21.5
21.5
18.5
17.5
19.0
13.5
13.5
21.0
14.5
13.5
13.5
13.5
13.5
13.5 | JULY 10.5 10.5 10.5 10.5 11.0 12.0 15.0 13.5 13.5 13.5 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 | 11.0
11.0
10.5
12.0
14.5
18.0
17.5
17.0
15.0
14.5
14.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12 |
15.5
14.0
23.0
17.0
15.0
22.5
18.5
16.5
16.0
15.0
15.5
16.0
18.0
18.5
15.0
17.0
15.5
15.0
15.0
15.5 | AUGUST 12.5 12.5 12.5 14.0 13.5 14.0 14.0 14.0 14.0 13.5 14.5 14.5 14.0 14.0 13.5 14.0 14.0 13.5 14.0 14.0 13.5 14.0 14.0 13.5 14.0 14.0 14.0 | 13.5
13.0
16.0
15.0
14.0
14.5
15.0
14.5
14.5
14.0
15.0
15.0
14.5
14.5
14.0
14.0
14.0
14.0
14.0
14.0 | S. 15.5
15.5
15.5
15.5
15.5
15.5
15.5
15. | 14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.0
15.0
15.0
15.0
14.0
14.0
14.5
14.5 | 14.5
14.5
14.5
14.0
14.5
14.5
15.0
14.5
15.0
16.5
18.0
16.0
15.5
15.0
14.5
14.5
14.5 | ### 040871476 HOLMES AVENUE CREEK TRIB AT GMIA OUTFALL #1 AT MILWAUKEE, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 ### DISCRETE SAMPLES | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Oil and grease,
water, unfltrd
freon extract
mg/L
(00556) | |----------|------|---|--|---| | MAR 2003 | 2015 | 0.00 | 70 | 2 | | 15 | 2015 | 0.08 | 70 | 2 | ### COMPOSITE SAMPLES | Beginning
Date | Beginning
Time | Ending
date | Ending
time | Sampling method, code (82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | BOD,
water,
unfltrd
5 day,
20 degC
mg/L
(00310) | COD,
low
level,
water,
unfltrd
mg/L
(00335) | 1,2-
Propane
-diol,
water,
unfltrd
mg/L
(91080) | |-------------------|-------------------|----------------|----------------|-------------------------------|---|--|--|---|---|--|---|---|---| | OCT | | | | | | | | | | | | | | | 02-02 | 0128 | 20021002 | 0656 | 50 | 7.8 | | | 27 | | | < 2.0 | 21 | <18.0 | | JAN | 0754 | 20020121 | 1504 | 50 | | 27.000 | 5.410 | | | 1.04 | 12 000 | 20.000 | 5.500 | | 31-31 | 0754 | 20030131 | 1734 | 50 | 7.7 | 27,800 | 5,410 | | 6.0 | 1.24 | 12,800 | 20,000 | 5,700 | | MAR
04-07 | 1626 | 20030307 | 1842 | 50 | | | | | < 0.14 | 0.196 | | 20,000 | 7,300 | | MAR | | | | | | | | | | | | | | | 14-16 | 1320 | 20030316 | 1207 | 50 | 7.6 | 2,100 | 630 | 42 | 5.0 | 0.423 | >1000 | 5,800 | 2,900 | | APR | 1640 | 20020405 | 0122 | 50 | 7.4 | 5.40 | 100 | | 2.0 | 0.221 | 2 1 40 | 5 000 | 2.700 | | 04-05 | 1640 | 20030405 | 0133 | 50 | 7.4 | 548 | 188 | | 2.9 | 0.321 | 3,140 | 5,800 | 2,700 | | Date | 1,2-
Ethanediol,
water, unfltrd
mg/L
(91075) | Runoff
volume
thousand of
cubic feet
(99904) | |--------------|--|--| | OCT | | | | 02-02 | <18.0 | 20 | | JAN | | | | 31-31 | <18.0 | 2.3 | | MAR | | | | 04-07 | <18.0 | 5.3 | | MAR | 40.0 | 20 | | 14-16 | <18.0 | 30 | | APR
04-05 | <18.0 | 7.8 | #### 040871488 WILSON PARK CREEK AT ST. LUKES HOSPITAL AT MILWAUKEE, WI LOCATION.--Lat 42°59'16", long 87°57'07", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.12, T.6 N., R.21 E., Milwaukee County, Hydrologic Unit 04040003, on left bank 50 ft upstream from the Kinnickinnic River and 100 ft upstream of Kinnicknnic River Parkway bridge, at Milwaukee. DRAINAGE AREA.--11.34 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1996 to May 1997, November 1997 to current year. GAGE.--Water-stage recorder. Elevation of gage is 640 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). | | | DISCH | ARGE, CU | BIC FEET P | | D, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |---|--|--|--|--|---|--|---|---|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.7
27
9.4
37
5.7 | 2.3
2.0
2.0
2.0
3.9 | 1.5
1.8
2.2
2.0
2.2 | 1.4
1.4
1.7
1.5
1.8 | 2.6
2.8
8.8
4.6
1.9 | 1.6
1.5
1.5
2.1
2.3 | 4.4
2.9
2.6
47
17 | 88
9.6
5.7
15
82 | 6.3
4.8
5.4
3.6
2.9 | 2.2
2.1
2.2
4.8
16 | 4.0
2.8
59
7.2
3.9 | 1.6
1.6
1.8
2.0
2.0 | | 6
7
8
9
10 | 3.6
3.0
2.5
2.6
2.3 | 2.8
2.1
2.0
1.9
2.4 | 1.9
1.9
1.6
1.4
1.7 | 1.9
1.7
1.8
1.8
1.7 | 1.6
e1.4
1.2
1.1
1.1 | 2.4
3.0
2.4
1.9
1.6 | 6.7
9.4
11
14
12 | 12
42
15
107
16 | 3.4
3.5
56
7.6
4.7 | 57
20
26
6.4
6.8 | 17
5.6
2.7
2.4
2.0 | 1.8
1.8
2.2
2.3
2.6 | | 11
12
13
14
15 | 2.3
2.7
2.4
1.9
1.9 | 11
2.8
2.1
1.9
1.8 | 1.9
2.1
2.2
2.0
1.7 | 1.0
0.94
1.0
1.2
0.98 | 1.0
e0.94
e0.88
e1.0
e0.94 | 2.3
3.1
6.2
16
41 | 7.9
5.2
4.2
3.9
3.7 | 34
15
7.6
13
15 | 4.1
4.0
3.6
3.1
2.9 | 6.2
3.2
2.3
2.2
23 | 2.9
2.8
3.1
2.7
2.6 | 2.6
24
15
33
4.1 | | 16
17
18
19
20 | 1.8
2.9
11
3.2
2.1 | 1.7
1.9
6.2
8.7
2.7 | 1.7
1.7
33
6.5
3.0 | 1.1
0.99
1.0
0.83
0.70 | e0.90
e1.0
e1.2
2.0
2.0 | 16
8.5
5.6
25
14 | 3.4
3.0
2.7
36
11 | 6.4
5.5
5.0
6.6
12 | 2.9
2.8
3.2
3.2
2.5 | 3.0
2.6
2.3
2.0
2.0 | 2.6
2.5
2.3
2.4
2.5 | 2.9
2.4
2.2
2.3
2.4 | | 21
22
23
24
25 | 2.0
2.0
1.9
5.2
30 | 19
3.7
2.5
2.3
2.1 | 2.3
1.9
1.8
1.9 | 0.65
0.57
e0.50
e0.50
e0.90 | 2.6
2.0
1.7
1.5
1.6 | 8.9
5.5
3.8
3.4
3.2 | 5.0
3.7
3.2
3.0
2.7 | 4.5
4.2
4.1
3.9
3.8 | 2.1
2.0
2.0
2.1
2.2 | 5.3
2.8
1.8
1.8
2.7 | 2.5
2.3
2.3
2.0
6.8 | 3.0
19
5.4
2.8
2.5 | | 26
27
28
29
30
31 | 4.5
2.4
2.2
1.9
1.9 | 1.9
1.8
1.8
1.7
1.7 | 1.5
1.5
1.5
1.5
1.7
1.5 | e0.82
e0.76
1.4
2.0
1.5
2.6 | 1.5
1.6
1.6
 | 3.3
2.6
19
4.6
2.7
3.3 | 2.4
2.3
2.3
2.3
33 | 3.7
4.0
8.1
5.8
25
29 | 2.2
17
21
3.4
2.3 | 1.9
1.7
2.0
5.8
2.9
2.1 | 4.0
2.7
2.5
2.8
2.0
1.8 | 10
5.0
3.0
2.7
2.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 183.9
5.93
37
1.8
0.52
0.60 | 102.7
3.42
19
1.7
0.30
0.34 | 93.0
3.00
33
1.4
0.26
0.31 | 38.64
1.25
2.6
0.50
0.11
0.13 | 53.06
1.90
8.8
0.88
0.17
0.17 | 218.3
7.04
41
1.5
0.62
0.72 | 267.9
8.93
47
2.3
0.79
0.88 | 608.5
19.6
107
3.7
1.73
2.00 | 186.8
6.23
56
2.0
0.55
0.61 | 223.1
7.20
57
1.7
0.63
0.73 | 164.7
5.31
59
1.8
0.47
0.54 | 166.3
5.54
33
1.6
0.49
0.55 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 9.60
9.60
20.6
(2002)
5.05
(2000) | 7.01
12.2
(1999)
3.42
(2003) | EAN DATA
4.95
6.40
(2002)
3.00
(2003) | 9.00
9.00
21.9
(1999)
1.25
(2003) | TER YEARS
15.6
31.7
(2001)
1.90
(2003) | 11.0
22.3
(1998)
7.04
(2003) | , BY WATE
20.9
39.6
(1999)
8.55
(1997) | R YEAR (W
20.6
41.4
(2000)
12.4
(2002) | 7Y) 18.9 37.0 (1999) 6.23 (2003) | 14.8
35.3
(2000)
7.20
(2003) | 15.5
21.7
(1998)
5.31
(2003) | 15.5
34.4
(2000)
5.54
(2003) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI INSTAN' ANNUAI ANNUAI 10 PERC' 50 PERC' | | MEAN MEAN IEAN EAN AY MINIM FLOW TAGE LOW FLOW (CFSM) (INCHES) EDS EDS | | 17
1
1 | 0.0
0.1 | ; 13
: 9 | 2,30
10
52
(a | 0.66 Jan
27 May
16.09 May | y 9
n 23
n 20
y 9 | 3,0 | 0.50 Ja
0.66 Ja
090 J
20.82 J | 97 - 2003
2000
2003
un
13, 1999
an 23, 2003
an 20, 2003
rul 2, 2000
ul 2, 2000
an 23, 2003 | ⁽a) Result of freezeup ⁽e) Estimated due to ice effect or missing record #### 040871488 WILSON PARK CREEK AT ST. LUKES HOSPITAL AT MILWAUKEE, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1996 to April 1997, November 1997 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: November 1996 to April 1997, November 1997 to current year. DISSOLVED OXYGEN: November, 1996 to April 1997, November 1997 to current year. SPECIFIC CONDUCTANCE: January 2001 to current year. INSTRUMENTATION.--Stage-activated water-quality sampler since November 1996. Continuous water-temperature recorder since November 1996. Dissolved-oxygen recorder since November 1996. Specific conductance recorder since January 2001. REMARKS.--Chemical analyses are by the Wisconsin State Laboratory of Hygiene. Samples are point samples unless otherwise indicated. Dissolved-oxygen concentrations greater than 30 mg/L are out of calibration range of meter. Records represent water temperature at sensor within 0.5°C. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum observed, 29.5°C, July 30, 1999; minimum observed, 0.0°C, many days during winter. DISSOLVED OXYGEN: Maximum observed, 22.7 mg/L, Oct. 14, 2000; minimum observed, 0.0 mg/L, Feb. 24, 1997. SPECIFIC CONDUCTANCE: Maximum observed, 23,600 microsiemens per centimeter, Mar. 13, 2003; minimum observed, 38 microsiemens per centimeter, Aug. 13, 2002. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum observed, 27.5°C, Aug. 21; minimum observed, 0.0°C, many days during winter. DISSOLVED OXYGEN: Maximum observed, 22.0 mg/L, Nov. 4; minimum observed, 2.4 mg/L, May 30. SPECIFIC CONDUCTANCE: Maximum observed, 23,600 microsiemens per centimeter, Mar. 13; minimum observed, 77 microsiemens per centimeter, #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------|-------------------------|-------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|---------------------------------|---------------------------------| | | | ОСТОВЕБ | t | N | OVEMBE | ER | D | ECEMBE | R | Į | JANUARY | 7 | | 1
2
3
4
5 | 22.0

21.5 | 17.5

11.0 | 19.5

15.0 | 9.0
9.5
9.5
10.0 | 4.0
4.5
4.0
4.0 | 6.5
6.5
7.0
7.0 | 3.0
3.0
2.5
2.0
2.5 | 1.0
1.0
0.5
0.5
0.5 | 1.5
2.0
1.0
1.0
1.5 | 3.0
3.0
3.5
3.0
4.0 | 1.5
1.5
1.0
1.0
2.0 | 2.0
2.0
2.0
2.0
2.5 | | 6
7
8
9
10 | 22.5
16.0
16.0
 | 12.0
9.0
10.5
 | 15.0
12.5
13.0 | 11.0
12.5
 | 5.5
7.5
 | 8.0
10.0
 | 2.5
3.5
2.5
3.0
3.5 | 0.5
1.5
0.5
1.0
1.0 | 1.0
2.5
1.0
2.0
2.0 | 2.5
4.5
6.0
4.5
2.5 | 1.0
1.0
2.5
1.0
0.0 | 1.5
2.5
4.0
3.5
1.0 | | 11
12
13
14
15 | 13.5
13.0 | 8.5
8.5 |

11.5
11.0 | 12.5
9.5
7.5 | 4.5
6.0
5.0 | 8.5
8.0
6.5 | 3.5
3.5
5.0
4.0
4.5 | 1.0
1.5
2.0
2.5
2.0 | 2.0
2.5
3.5
3.0
3.5 | 2.0
2.5
2.5
2.0
2.5 | 0.0
0.5
0.5
0.0
0.0 | 1.0
1.5
1.0
1.0 | | 16
17
18
19
20 | 12.5

12.0
12.5 | 7.5

8.0
6.5 | 10.0

10.0
9.5 | 6.5
7.5
7.0
9.5
8.5 | 4.5
3.5
3.0
5.0
5.5 | 5.5
5.0
5.0
6.5
7.0 | 4.0
4.5
6.5
6.5
5.0 | 2.0
1.5
2.5
4.5
2.5 | 2.5
3.0
5.0
5.5
3.5 | 2.5
2.0
2.5
2.0
2.5 | 0.5
0.0
0.5
0.5
0.5 | 1.5
1.0
1.0
1.0
1.0 | | 21
22
23
24
25 |

 |

 |

 | 8.0
7.0
7.5
5.0
4.5 | 5.0
3.5
4.0
3.0
2.0 | 6.0
5.0
5.5
4.5
3.0 | 4.0
3.0
2.5
2.0
2.5 | 1.5
1.5
1.0
1.0
0.5 | 2.5
2.0
1.5
1.5 | 2.0
2.0
1.5
2.0
2.0 | 0.5
0.0
0.0
0.0
0.0 | 1.0
1.0
0.5
1.0 | | 26
27
28
29
30
31 | 13.0 | 5.0 | 9.0 | 4.5
5.0
4.0
6.5
4.5 | 1.5
2.0
1.5
2.5
0.5 | 2.5
3.0
2.5
4.5
2.5 | 3.0
3.5
4.5
4.5
6.5
4.5 | 1.0
1.0
2.0
2.0
3.0
1.5 | 2.0
2.0
3.0
3.0
5.0
3.0 | 1.5
2.5
2.0
1.0
1.5
2.0 | 0.0
0.0
0.5
0.0
0.0 | 0.5
0.5
1.0
0.5
0.5 | | MONTH | 22.5 | 5.0 | 12.4 | 12.5 | 0.5 | 5.7 | 6.5 | 0.5 | 2.5 | 6.0 | 0.0 | 1.4 | # 040871488 WILSON PARK CREEK AT ST. LUKES HOSPITAL AT MILWAUKEE, WI—Continued # ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003}$ | DAY | MAX | MIN | MEAN | |---|--|---|--|--|---|--|--|---|--|--|--|--| | | F | EBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.5
2.0
1.0
0.5
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.0
0.5 | 2.0
1.5
1.5
1.5
1.0 | 0.5
0.0
0.0
0.0
0.0 | 1.0
1.0
0.5
0.5
0.0 | 12.0
10.0
6.5
4.5
5.0 | 5.5
5.5
4.0
2.0
1.0 | 8.0
7.0
5.0
3.0
3.0 | 10.5
12.5
14.5
11.5
11.5 | 8.5
6.5
7.0
7.5
9.0 | 9.5
9.0
10.5
10.0
10.0 | | 6
7
8
9
10 | 1.5
2.0
1.5
2.0 | 0.0

0.0
0.0
0.0 | 0.5

1.0
1.0
1.0 | 1.0
1.0
1.0
1.0
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | 8.0
4.5
4.0
10.0
11.5 | 1.5
0.5
1.0
0.0
2.0 | 4.0
2.0
2.0
4.5
6.5 | 16.5
11.5
14.5
16.0
15.5 | 9.5
9.5
9.0
9.5
11.5 | 12.5
10.0
11.0
12.5
13.0 | | 11
12
13
14
15 | 2.0
1.5
1.5
1.5
1.5 | 0.0
0.0
0.0
0.0
0.5 | 1.0
0.5
0.5
1.0
1.0 | 1.5
0.5
0.5
1.0
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.5 | 12.5
11.0
13.0
16.5
19.0 | 4.5
5.0
5.0
7.5
11.5 | 8.0
7.5
8.5
11.5
14.5 | 12.5
15.0
18.0
13.0
17.0 | 10.5
9.5
9.0
10.5
10.0 | 11.0
12.0
13.0
11.5
13.0 | | 16
17
18
19
20 | 1.5
2.0
2.0
1.5
1.5 | 0.5
1.0
0.5
0.0
0.0 | 1.0
1.5
1.5
1.0
1.0 | 6.0
9.0
5.0
4.0
5.5 | 0.0
3.0
3.5
2.0
2.0 | 2.5
5.0
4.5
3.0
3.5 | 13.0
7.5
8.5
12.5
15.0 | 7.0
6.0
6.0
6.0
10.5 | 10.0
7.0
7.0
9.0
12.0 | 18.0
17.0
17.0
16.0
18.5 | 10.5
12.0
11.5
13.0
13.5 | 13.5
13.5
14.0
14.0
15.5 | | 21
22
23
24
25 | 1.5
1.5
1.0
1.5
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 6.5
7.5
11.5
12.5
11.5 | 3.5
3.5
4.0
6.5
6.5 | 4.5
5.0
7.5
9.0
9.0 | 11.0
13.5
14.0
13.0
11.5 | 7.5
6.0
6.5
6.5
7.0 | 9.5
9.5
10.0
9.5
9.0 | 17.5
18.0
17.5
18.0
19.0 | 10.5
10.0
11.0
11.5
12.5 | 14.0
14.0
14.0
14.5
15.5 | | 26
27
28
29
30
31 | 1.5
2.0
1.5 | 0.5
0.5
0.5
 | 1.0
1.0
1.0
 | 10.5
8.5
8.5
5.0
6.5
8.5 | 5.5
5.5
4.5
3.0
1.5
2.5 | 7.5
7.0
6.5
4.0
4.0
5.5 | 14.0
16.0
16.5
15.5
11.5 | 6.0
7.5
11.5
10.0
9.0 | 9.5
11.5
13.5
12.5
10.0 | 19.0
20.0
18.0
18.5
18.5
16.0 | 12.5
13.5
14.5
13.5
13.0
12.0 | 16.0
16.5
15.5
15.0
15.0
14.0 | | 31 | | | | | | | | | | | | | | MONTH | 2.0 | 0.0 | 0.8 | 12.5 | 0.0 | 3.0 | 19.0 | 0.0 | 8.2 | 20.0 | 6.5 | 13.0 | | MONTH | 2.0 | 0.0
JUNE | 0.8 | 12.5 |
0.0
JULY | 3.0 | | 0.0
AUGUST | 8.2 | | 6.5
EPTEMBE | | | MONTH 1 2 3 4 5 | 2.0
18.5
17.0
17.0
17.5
18.0 | | 0.8
14.0
14.5
14.5
14.5
15.0 | 23.5
23.0
25.0
26.5
26.0 | | 3.0
20.5
21.0
22.0
23.5
23.0 | | | 8.2
22.5
22.0
21.0
20.0
21.5 | | | | | 1
2
3
4 | 18.5
17.0
17.0
17.5 | JUNE
10.0
12.0
13.0
13.0 | 14.0
14.5
14.5
14.5 | 23.5
23.0
25.0 | JULY
18.0
18.5
19.5
21.0 | 20.5
21.0
22.0 | 25.0
24.5
23.5 | AUGUST
20.0
20.0
19.5 | 22.5
22.0
21.0
20.0 | 20.5
22.0 | 18.5
17.0
18.0
16.5 | 19.0
19.5
19.5
18.5 | | 1
2
3
4
5
6
7
8
9 | 18.5
17.0
17.0
17.5
18.0
15.5
19.0
17.5
19.5 | JUNE 10.0 12.0 13.0 13.0 13.5 13.5 13.5 13.5 14.5 | 14.0
14.5
14.5
14.5
15.0
14.5
16.0
15.5
16.5
16.5 | 23.5
23.0
25.0
26.5
26.0
27.0
25.5
22.5
21.5
22.5 | JULY 18.0 18.5 19.5 21.0 21.5 20.5 20.0 19.5 18.0 18.5 17.0 | 20.5
21.0
22.0
23.5
23.0
22.5
22.5
20.5 | 25.0
24.5
23.5
21.5
25.5
24.5
25.0
22.0 | AUGUST 20.0 20.0 19.5 19.5 18.5 20.0 19.5 19.5 18.5 | 22.5
22.0
21.0
20.0
21.5
22.0
22.0
20.5 | 20.5
22.0
22.0
20.5
21.0
21.5
22.5
23.0
23.5
24.0 | 18.5
17.0
18.0
16.5
16.5
17.0
19.0
20.0
19.5 | 19.0
19.5
19.5
18.5
18.5
19.0
20.5
21.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.5
17.0
17.0
17.5
18.0
15.5
19.0
17.5
19.5
18.0
16.5
18.5
21.5
21.0 | JUNE 10.0 12.0 13.0 13.0 13.5 13.5 13.5 13.5 14.5 14.0 13.0 14.5 15.5 | 14.0
14.5
14.5
14.5
15.0
14.5
16.0
15.5
16.5
16.5
17.5
17.5
18.0 | 23.5
23.0
25.0
26.5
26.0
27.0
25.5
22.5
21.5
22.5
23.0
24.0 | JULY 18.0 18.5 19.5 21.0 21.5 20.5 20.0 19.5 18.0 18.5 17.0 17.0 18.0 19.0 | 20.5
21.0
22.0
23.5
23.0
22.5
20.5
20.0
20.0
20.0
20.5
21.5 | 25.0
24.5
23.5
21.5
25.5
24.5
22.0
23.0
23.5
21.5
23.5
25.5
25.0
25.0 | AUGUST 20.0 20.0 19.5 19.5 19.5 18.5 20.0 19.5 19.5 19.5 20.0 20.0 20.0 20.0 20.5 | 22.5
22.0
21.0
20.0
21.5
22.0
20.5
20.5
21.0
20.5
21.5
22.5
22.5
22.5 | 20.5
22.0
22.0
20.5
21.0
21.5
22.5
23.0
23.5
24.0
23.5
22.0
22.0
21.0 | 18.5
17.0
18.0
16.5
16.5
17.0
19.0
20.0
19.5
19.5
20.0
18.5
19.0
18.5 | 19.0
19.5
19.5
18.5
18.5
19.0
20.5
21.0
21.5
21.5
20.5
20.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18.5
17.0
17.5
18.0
15.5
19.0
17.5
19.5
18.0
16.5
18.5
21.5
21.0
21.5
21.0
22.0
22.5
19.0 | JUNE 10.0 12.0 13.0 13.0 13.5 13.5 13.5 13.5 14.5 14.0 13.0 14.5 15.5 15.0 16.5 14.5 | 14.0
14.5
14.5
14.5
15.0
14.5
16.0
15.5
16.5
16.5
17.5
18.0
18.0
18.0
18.5
19.0
16.5 | 23.5
23.0
25.0
26.5
26.0
27.0
25.5
22.5
21.5
22.5
22.5
23.0
24.0
25.5
25.0
25.0
25.0
25.0
25.5 | JULY 18.0 18.5 19.5 21.0 21.5 20.5 20.0 19.5 18.0 17.0 18.0 19.0 20.5 19.0 19.5 17.5 17.0 | 20.5
21.0
22.0
23.5
23.0
22.5
20.5
20.0
20.0
19.5
20.0
20.5
21.5
22.5
22.5
22.0
20.0 | 25.0
24.5
23.5
21.5
25.5
24.5
25.0
22.0
23.0
23.5
21.5
23.5
25.0
26.0
26.0
26.5
25.5
24.5
24.5 | AUGUST 20.0 20.0 19.5 19.5 18.5 20.0 19.5 19.5 18.5 19.0 20.0 20.0 20.0 20.5 21.5 22.5 21.5 21.0 20.5 | 22.5
22.0
21.0
20.0
21.5
22.0
22.5
20.5
21.0
20.5
21.5
22.5
22.5
24.0
24.0
23.5
22.5
22.5
22.5 | 20.5
22.0
22.0
20.5
21.0
21.5
22.5
23.0
23.5
24.0
23.5
22.0
21.0
20.0
21.5
21.0
21.5 | 18.5
17.0
18.0
16.5
16.5
17.0
19.0
20.0
19.5
19.5
20.0
18.5
19.0
18.5
16.5
15.5
16.5 | 19.0
19.5
19.5
18.5
18.5
19.0
20.5
21.0
21.5
21.5
20.5
20.5
20.0
18.0
18.0
19.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 18.5
17.0
17.0
17.5
18.0
15.5
19.0
17.5
19.5
18.0
16.5
18.5
21.5
21.0
22.0
22.5
19.0
21.0
21.5
22.5
23.5
23.5
25.0 | JUNE 10.0 12.0 13.0 13.0 13.5 13.5 13.5 14.5 14.0 13.0 14.5 15.5 15.0 16.5 14.5 15.0 16.5 14.5 19.0 | 14.0
14.5
14.5
14.5
15.0
14.5
16.0
15.5
16.5
16.5
17.5
18.0
18.0
18.0
18.0
19.0
16.5
17.0 | 23.5
23.0
25.0
26.5
26.0
27.0
25.5
22.5
21.5
22.5
23.0
24.0
25.5
25.0
22.5
23.5
24.5
22.5
23.5
24.5
22.5
23.5
24.5
22.5 | JULY 18.0 18.5 19.5 21.0 21.5 20.0 19.5 18.0 18.5 17.0 17.0 18.0 19.0 20.5 17.5 17.0 19.0 20.0 18.5 17.5 17.5 17.5 17.5 | 20.5
21.0
22.0
23.5
23.0
22.5
20.5
20.0
20.0
20.0
20.5
21.5
22.5
22.0
21.5
22.0
20.0
20.0
21.5 | 25.0
24.5
23.5
21.5
25.5
24.5
25.0
22.0
23.0
23.5
21.5
25.0
26.0
26.0
26.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24 | AUGUST 20.0 20.0 19.5 19.5 18.5 20.0 19.5 19.5 18.5 19.0 20.0 20.0 20.0 20.5 21.5 22.5 21.0 20.5 21.0 22.5 20.0 20.0 | 22.5
22.0
21.0
20.0
21.5
22.0
20.5
20.5
21.0
20.5
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 20.5
22.0
22.0
20.5
21.0
21.5
22.5
23.0
23.5
24.0
23.5
22.0
21.0
20.0
21.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 18.5
17.0
18.0
16.5
16.5
17.0
19.0
20.0
19.5
19.5
20.0
18.5
19.0
18.5
16.5
17.0
15.5
14.0
14.0
15.5
13.5
14.5 | 19.0
19.5
19.5
18.5
18.5
19.0
20.5
21.0
21.5
21.5
20.5
20.0
18.0
18.0
18.5
19.0
17.0
16.0
17.0
15.5
16.0 | # 040871488 WILSON PARK CREEK AT ST. LUKES HOSPITAL AT MILWAUKEE, WI—Continued DISSOLVED OXYGEN, WATER, UNFILTERED, MILLIGRAMS PER LITER, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |--|--|--|--|--|---|---|--|---|--|--|--|--| | DAI | | OCTOBER | | | OVEMBE | | | ECEMBE | | | JANUARY | | | 1
2
3
4
5 | 14.6
12.2
15.3
9.6
14.6 | 7.2
7.3
8.4
7.7
8.8 | 10.4
9.4
10.6
8.7
11.3 | 18.6
18.4
19.9
22.0
17.9 | 12.4
13.1
12.5
12.5
9.4 | 14.8
15.1
15.2
15.9
13.5 | 18.0
17.2
17.8
17.7
16.5 | 13.6
13.5
12.8
11.3
11.7 | 15.0
14.8
14.6
13.5
13.2 | 18.8
18.6
19.1
19.9
17.0 | 13.8
13.5
13.3
12.3
12.0 | 15.4
15.3
15.6
15.7
14.1 | | 6
7
8
9
10 | 14.4
15.0
13.9
14.6
13.0 | 6.8
8.7
7.1
7.4
8.9 | 10.4
11.1
10.5
10.4
10.5 | 18.6
21.2
21.4
20.5
17.0 | 9.0
12.0
12.1
10.7
9.8 | 12.6
15.0
15.3
14.4
12.4 | 16.3
17.8
18.2
17.4
16.9 | 11.5
13.5
13.0
12.6
13.3 | 13.7
14.8
15.0
14.4
14.5 | 17.9
15.8
14.4
14.8
16.8 | 10.4
9.3
8.5
8.9
10.3 | 13.4
11.9
10.6
10.9
13.0 | | 11
12
13
14
15 | 14.1
12.8
14.9
15.7
16.1 | 8.3
5.9
6.4
9.2
9.8 | 10.5
8.8
10.6
11.5
12.0 | 12.6
17.9
17.8
16.4
17.3 | 8.7
9.2
10.9
11.0
11.3 | 10.6
12.6
13.4
12.7
13.4 | 16.5
17.2
17.5
17.0 | 12.5
10.9
10.9
11.6 | 13.7
13.4
13.6
13.4 | 16.1

17.4
 | 9.2

9.6
 | 12.1

13.6
 | | 16
17
18
19
20 | 16.4
17.2
10.7
15.1
15.6 | 10.7
9.2
8.3
8.7
10.0 | 12.9
12.4
9.3
11.5
12.2 | 16.7
17.2
18.6
15.0
15.7 | 11.8
11.0
9.4
8.9
9.3 | 13.4
13.4
12.9
10.9
11.3 | 18.3
18.9
14.1
13.8
14.4 | 13.5
13.2
9.8
8.6
8.4 | 15.1
14.9
11.5
10.3
10.6 | 15.7
16.4

16.1 | 11.9
12.3

12.6 | 13.4
13.8

14.0 | | 21
22
23
24
25 | 15.8
15.2
16.0
13.1
10.9 | 9.7
9.9
10.9
8.9
9.2 | 11.6
12.2
12.8
10.6
10.1 | 12.0
16.6
15.9
16.3
18.5 | 8.3
9.6
10.8
11.0
12.4 | 10
12.1
12.4
13.0
14.5 | 15.8
16.1

 | 10.1
11.4

 | 12.4
13.0
 | 14.8
13.3 |

11.6
11.5 | 13.2
12.1 | | 26
27
28
29
30
31 | 15.7
16.5
17.5
17.5
17.7
18.9 |
9.2
9.7
10.3
10.6
11.1
11.3 | 11.3
12.4
12.9
13.1
13.5
14.2 | 17.2
16.8
18.0
16.7
17.6 | 12.7
12.6
13.0
11.3
11.9 | 14.5
14.2
14.6
13.4
14.7 | 18.2
17.8
17.9
15.4
18.3 | 12.8
12.6
12.5
11.6
12.0 | 15.0
14.4
14.4
12.7
14.7 | 13.4
12.9
12.8
12.7
12.2
11.5 | 11.6
11.4
11.5
11.2
11.2
9.8 | 12.4
12.2
12.1
12.0
11.7
10.7 | | MONTH | 18.9 | 5.9 | 11.3 | 22.0 | 8.3 | 13.4 | 18.9 | 8.4 | 13.7 | 19.9 | 8.5 | 13.0 | | | | FEBRUAR | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 10.5
9.8
10.2
10.0
10.7 | 8.7
8.4
8.5
8.6
9.0 | 9.4
9.0
9.5
9.4
9.8 | 15.7
15.7
14.4
13.5
12.0 | 13.6
12.4
11.8
10.4
9.4 | 14.6
13.9
13.1
12.2
10.9 | 13.3 |

9.8 |

11.0 | 11.6
11.1
 | 8.4
8.3 | 9.9
9.7
 | | 6
7
8
9
10 | 13.2
14.5
14.6 | 11.3
12.4
12.8 | 12.1
13.2
13.7 | 10.8
14.6
12.2
11.2
11.3 | 9.3
8.5
7.7
8.2
7.2 | 10.0
9.8
9.4
9.8 | 12.8
11.6
10.5 | 7.6
7.8
7.8 | 9.8
10.0
9.4 |

12 2 |

8.9 |

11.5 | | 11
12
13 | 14.9 | | 13.7 | 11.5 | 1.2 | 10.4 | | | | 13.3
13.4 | 6.0 | 10.6 | | 14
15 | 15.5
15.4
14.3
15.5 | 13.0
12.7
13.3
13.2
13.9 | 13.8
14.0
14.1
13.8
14.8 | 11.6
11.5
12.6
11.9
11.2 | 7.2
9.1
8.5
7.8
9.3 | 10.4
10.2
9.9
10.8
10.0
10.2 | | | | | | | | 14 | 15.5
15.4
14.3 | 12.7
13.3
13.2 | 13.8
14.0
14.1
13.8 | 11.6
11.5
12.6
11.9 | 7.2
9.1
8.5
7.8 | 10.2
9.9
10.8
10.0 | 9.5
8.6
14.1 |
4.8
5.5
5.8 | 7.7
7.1
8.4 | 13.4
13.1
13.4
14.1
14.0 | 6.0
5.9
9.9
9.5
3.5 | 9.9
11.6
11.5
9.6 | | 14
15
16
17
18
19 | 15.5
15.4
14.3
15.5
16.1
16.2
16.2
17.7 | 12.7
13.3
13.2
13.9
14.6
14.6
13.6
15.0 | 13.8
14.0
14.1
13.8
14.8
15.3
15.3
15.2
15.9 | 11.6
11.5
12.6
11.9
11.2 | 7.2
9.1
8.5
7.8
9.3 | 10.2
9.9
10.8
10.0
10.2 | 9.5
8.6
14.1
12.5
11.0
11.1
10.6 | 4.8
5.5
5.8
9.1
9.2
8.5
9.0 | 7.7
7.1
8.4
10.8
10.2
10.2
9.9 | 13.4
13.1
13.4
14.1
14.0
12.1
13.9

15.0 | 6.0
5.9
9.9
9.5
3.5
7.2
10.2

8.1 | 10.6
9.9
11.6
11.5
9.6
10.4
12.0

11.4 | | 14
15
16
17
18
19
20
21
22
23
24 | 15.5
15.4
14.3
15.5
16.1
16.2
16.2
17.7
16.6
12.6
13.6
14.0
13.8 | 12.7
13.3
13.2
13.9
14.6
14.6
15.0
12.6
10.1
10.1
11.9
12.9 | 13.8
14.0
14.1
13.8
14.8
15.3
15.3
15.2
15.9
15.3
11.5
12.3
12.7
13.4 | 11.6
11.5
12.6
11.9
11.2

7.7
6.1 | 7.2
9.1
8.5
7.8
9.3

4.5
3.6 | 10.2
9.9
10.8
10.0
10.2 | 9.5
8.6
14.1
12.5
11.0
11.1
10.6
 | 4.8
5.5
5.8
9.1
9.2
8.5
9.0 | 7.7
7.1
8.4
10.8
10.2
10.2
9.9 | 13.4 13.1 13.4 14.1 14.0 12.1 13.9 15.0 15.2 17.8 17.2 16.9 15.4 | 6.0
5.9
9.9
9.5
3.5
7.2
10.2

8.1
6.0
6.5
7.5
7.2
7.3 | 10.6
9.9
11.6
11.5
9.6
10.4
12.0

11.4
10.4
12.3
12.1
11.8
11.2 | # 040871488 WILSON PARK CREEK AT ST. LUKES HOSPITAL AT MILWAUKEE, WI—Continued ### DISSOLVED OXYGEN, WATER, UNFILTERED, MILLIGRAMS PER LITER, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | | |----------------------------------|------------------------------------|---------------------------------|-----------------------------------|--|--|---|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------------------|--| | | JUNE | | | JULY | | | | AUGUST | • | SEPTEMBER | | | | | 1
2
3
4
5 | 12.4

15.7
15.8
13.0 | 6.8

5.7
5.0
6.6 | 9.6

9.8
9.9
9.5 | 9.6
9.9
10.3
9.3
8.8 | 6.8
6.8
6.4
6.0
3.8 | 8.3
8.5
8.1
7.5
6.9 | 9.9
11.1
10.7
12.0
14.1 | 5.8
5.8
6.7
7.3
8.1 | 7.8
8.2
8.0
9.5 | 10.8
10.9
10.9
11.2
10.8 | 8.0
7.8
7.9
8.1
8.0 | 9.1
9.1
9.0
9.4
9.2 | | | 6
7
8
9
10 | 11.7
8.7
7.7
10.7
12.2 | 6.0
5.4
4.9
5.7
6.3 | 9.0
6.5
6.2
8.3
8.7 | 8.8
7.8
8.7
10.8
10.4 | 4.5
5.1
6.2
7.1
6.9 | 6.4
6.7
7.4
8.9
8.2 | 11.7
13.0
10.3 |
6.6
7.0
7.0 | 8.5
8.9
8.4 | 10.5
9.6
9.7
9.9 | 7.3
7.3
7.5
7.3 | 8.5
8.3
8.3
8.3 | | | 11
12
13
14
15 | 15.2
16.5
8.6
8.4
8.4 | 6.1
6.6
5.2
7.3
6.8 | 10.2
10.8
7.4
7.9
7.7 | 10.8
10.7
10.7
10.6
10.2 | 6.2
6.5
7.2
7.3
6.4 | 8.4
8.4
9.0
8.8
8.2 | 11.1
10.6
10.9
10.9
11.1 | 7.0
7.4
7.2
7.0
6.9 | 8.7
8.7
8.8
8.8
8.6 | 9.6
10.3
8.5
8.4
11.9 | 7.3
5.3
6.2
6.7
7.5 | 8.2
8.1
7.3
7.4
9.4 | | | 16
17
18
19
20 | 8.4
8.9
9.7
10.9 | 7.2
7.2
7.1
7.2 | 7.8
8.2
8.3
9.1 | 11.6
11.6
12.3
11.8
11.1 | 7.1
7.4
8.2
7.9
7.6 | 9.4
9.5
10.0
9.7
9.2 | 10.2
10.8
11.0
11.5
12.3 | 6.9
7.4
7.5
7.6
7.1 | 8.4
8.8
8.9
9.3
9.2 | 11.8
11.1
10.6
11.6
11.6 | 8.2
8.0
8.0
8.0
8.9 | 9.5
9.3
9.1
9.7
10.0 | | | 21
22
23
24
25 |

 |

 |

 | 12.4
12.2
11.5
11.3
13.5 | 6.5
6.8
8.2
8.3
7.9 | 8.7
9.5
9.7
9.9
10.2 | 11.4
11.5
11.6
11.6
9.9 | 7.1
7.1
7.0
7.2
3.3 | 8.7
9.0
9.1
9.0
6.9 | 11.5
11.5
12.8
11.7
12.2 | 8.7
7.5
7.5
8.7
9.0 | 9.9
9.0
10.0
9.9
10.5 | | | 26
27
28
29
30
31 | 7.8
8.4
8.3
8.6
9.1 | 5.3
5.2
4.8
6.4
6.8 | 6.8
7.4
6.4
7.6
7.9 | 11.9
11.3
12.8
10.5
10.8
10.2 | 7.8
7.5
8.2
7.4
6.3
6.7 | 9.4
9.3
10.1
9.1
8.9
8.3 | 9.9
10.8
11.1

11.0 | 3.4
5.6
6.7

7.7 | 6.7
8.1
8.5

9.0 | 14.6
13.3
13.2
13.7
13.6 | 7.2
7.2
9.3
9.2
8.9 | 9.6
10.2
10.7
11.0
11.4 | | | MONTH | 16.5 | 4.8 | 8.3 | 13.5 | 3.8 | 8.7 | 14.1 | 3.3 | 8.6 | 14.6 | 5.3 | 9.3 | | # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | WILLIAM | LI III OCT | JDLK 2002 | TO SEI TEM | DER 2003 | | | | | |----------------------------------|--|--|--|---|-----------------------------------|---|--|---|---|---|---|---| | DAY | MAX | MIN | MEAN | | | OCTOBER | | NOVEMBER | | | DECEMBER | | | JANUARY | | | | | 1
2
3
4
5 | 957
1,010
793
887
974 | 773
169
341
123
601 | 887
450
581
550
839 | 1,160
1,150
1,160
1,100
1,080 | 743
892
828
957
614 | 1,020
1,050
1,010
1,040
932 | 1,200
13,600
12,300
11,100
5,660 | 1,000
1,120
2,460
5,660
1,810 | 1,110
3,400
8,120
8,520
3,540 | 1,430
1,530
4,720
7,550
7,550 | 1,230
1,250
1,480
1,580
3,060 | 1,320
1,360
2,630
2,210
5,120 | | 6
7
8
9
10 | 1,020
961
1,120
1,140
1,000 | 868
820
904
978
838 | 960
916
983
1,070
924 | 995
1,100
1,100
1,130
1,160 | 663
947
993
962
943 | 834
1,010
1,060
1,070
1,070 | 1,980
3,070
2,600
2,450
1,740 | 1,310
1,660
2,040
1,520
1,300 | 1,670
1,980
2,330
1,850
1,560 | 8,350
5,530
3,140
3,290
2,350 | 4,620
2,930
1,830
1,770
1,130 | 6,610
4,250
2,460
2,110
1,910 | | 11
12
13
14
15 | 987
1,000
1,010

1,000 | 815
594
775

840 | 926
883
878

928 | 983
975
1,000
1,010
1,040 | 323
649
884
853
916 | 577
789
958
969
999 | 1,260
1,400
1,560
1,480 | 727
991
859
932 | 1,130
1,260
1,310
1,280 | 3,190
1,720
1,600
2,070 | 1,090
855
781
720 | 2,060
1,190
1,190
1,280 | | 16
17
18
19
20 | 995
995
887
910
982 | 829
605
281
514
880 | 921
883
502
721
942 | 995
1,000

909
1,000 | 851
834

576
849 | 922
928

762
932 | 1,510
1,660
6,900
2,080
2,000 | 879
802
952
1,240
1,600 | 1,190
1,150
1,610
1,720
1,790 | 1,250
1,330
 | 694
635
 | 1,070
1,130
 | | 21
22
23
24
25 | 1,040
1,040
1,020
1,020
708 | 917
900
884
518
185 | 966
961
958
710
424 | 1,060
1,040
1,070
1,080
1,180 |
249
713
918
955
890 | 643
920
1,020
1,030
1,060 | 1,780
1,670

 | 1,410
1,420
 | 1,610
1,530

 |

 |

 |

 | | 26
27
28
29
30
31 | 903
1,090
1,180
1,180
1,150
1,180 | 613
872
962
967
1,010
991 | 780
1,000
1,080
1,060
1,080
1,100 | 1,380
1,100
1,150
1,230
1,250 | 1,000
929
791
947
662 | 1,140
1,010
1,010
1,140
1,090 | 1,470
1,380
1,340
1,320
1,370 | 1,170
1,210
1,110
1,200
1,200 | 1,350
1,310
1,250
1,260
1,270 |

 |

 |

 | | MONTH | 1,180 | 123 | 862 | 1,380 | 249 | 965 | 13,600 | 727 | 2,160 | 8,350 | 635 | 2,370 | ### 040871488 WILSON PARK CREEK AT ST. LUKES HOSPITAL AT MILWAUKEE, WI-Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS—CONTINUED WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|---|--|--|---|--|--|---|--|--|--|---|---| | | F | EBRUAR | Y | | MARCH | | | APRIL | | MAY | | | | 1
2
3
4
5 |

 |

 |

 | 1,630
4,780
8,570
13,500
17,600 | 1,240
1,280
1,770
2,900
7,200 | 1,410
1,850
2,600
8,040
12,000 | 3,000
3,250
3,100
4,150
5,990 | 2,250
1,500
2,520
419
1,620 | 2,550
2,790
2,850
1,320
4,090 | 1,660
1,680
 | 1,260
1,530
 | 1,490
1,620
 | | 6
7
8
9
10 | 1,550
1,220
1,470 |
1,190
998
1,050 | 1,350
1,150
1,190 | 14,400
21,700
15,700
16,600
11,200 | 10,300
6,100
9,030
7,290
7,320 | 12,700
13,700
12,900
10,200
8,670 | 2,220
9,040
9,680
5,580
3,500 | 1,120
2,030
4,320
2,460
2,570 | 1,970
4,990
7,150
3,780
3,050 | 1,520
1,360 |

270
1,000 |

806
1,260 | | 11
12
13
14
15 | 1,220
13,200
6,040
4,890
3,970 | 683
1,080
1,800
3,050
2,600 | 1,140
3,390
3,080
3,830
3,330 | 11,000
11,100
23,600
13,900
5,720 | 5,380
7,390
8,170
4,430
2,030 | 8,100
9,110
15,300
8,510
3,840 | 3,270
3,160
3,280
3,340
3,450 | 2,460
2,700
2,880
2,910
2,790 | 2,960
2,990
3,100
3,110
3,110 | 1,540
1,560
1,690
1,720
1,580 | 524
740
1,510
829
782 | 1,060
1,290
1,600
1,410
1,170 | | 16
17
18
19
20 | 2,670
2,320
3,840
2,820
3,700 | 2,050
1,900
1,650
1,380
2,140 | 2,330
2,040
2,260
2,330
2,780 | 4,650
5,360
5,400
5,380
4,200 | 2,380
3,270
3,880
1,270
2,260 | 3,790
4,650
4,600
3,750
3,350 | 3,260
3,230
3,230
3,100
2,420 | 2,770
2,820
2,820
523
1,180 | 3,020
3,050
3,010
1,530
1,970 | 1,810
1,870
1,930
2,000
1,510 | 1,580
1,750
1,810
1,310
601 | 1,710
1,800
1,860
1,850
1,120 | | 21
22
23
24
25 | 3,790
3,680
2,820
6,090
3,590 | 2,960
2,410
1,950
2,030
2,000 | 3,460
2,780
2,390
3,200
2,950 | 4,320
4,300
4,220
4,140
3,980 | 2,280
3,710
3,810
3,590
3,170 | 3,720
4,050
4,100
3,870
3,560 | 3,320
3,040
2,940
2,870
2,280 | 2,290
2,360
2,220
1,800
1,500 | 2,760
2,740
2,540
2,400
2,120 | 1,770
1,860
1,860
2,030
2,010 | 1,510
1,600
1,650
1,680
1,660 | 1,650
1,760
1,770
1,790
1,850 | | 26
27
28
29
30 | 2,900
2,140
2,970
 | 2,040
1,550
1,490
 | 2,430
1,860
1,830 | 3,490
3,490
3,440

3,380 | 1,110
2,920
469

3,000 | 2,730
3,290
2,040

3,240 | 2,310
2,340
2,270
1,970 | 2,080
1,810
1,660
1,460 | 2,170
2,190
2,060
1,720 | 2,000
2,370
2,370
1,780
1,610 | 1,660
1,630
476
1,360
257 | 1,810
1,960
1,700
1,520
1,320 | | 31 | | | | 3,360 | 1,970 | 3,040 | | | | 1,300 | 321 | 850 | | | | | | | | | | | | | | | | MONTH | 13,200 | 683 | 2,430 | 23,600 | 469 | 6,090 | 9,680 | 419 | 2,870 | 2,370 | 257 | 1,520 | | | | JUNE | | | JULY | | | AUGUST | | S | ЕРТЕМВЕ | ER | | MONTH 1 2 3 4 5 | 13,200
1,520
1,610
1,620
1,550
1,830 | | 1,390
1,470
1,490
1,420
1,550 | 23,600
1,440
1,430
1,500
1,340
1,330 | | 1,370
1,350
1,350
1,140
784 | 9,680
955
1,040
1,040
1,110
1,180 | | | | | | | 1
2
3
4 | 1,520
1,610
1,620
1,550 | JUNE
1,250
1,340
1,290
1,330 | 1,390
1,470
1,490
1,420 | 1,440
1,430
1,500
1,340 | JULY
1,290
1,260
1,260
358 | 1,370
1,350
1,350
1,140 | 955
1,040
1,040
1,110 | 531
569
77
741 | 818
882
720
974 | 1,150
1,100
1,130
1,080 | EPTEMBE
1,040
980
996
950 | 1,090
1,050
1,060
1,000 | | 1
2
3
4
5
6
7
8
9 | 1,520
1,610
1,620
1,550
1,830
1,830
1,580
1,580 | JUNE 1,250 1,340 1,290 1,330 1,380 1,530 1,480 228 791 | 1,390
1,470
1,490
1,420
1,550
1,660
1,570
651
1,270 | 1,440
1,430
1,500
1,340
1,330
972
1,000
1,100
1,310 | JULY 1,290 1,260 1,260 358 182 171 386 307 739 | 1,370
1,350
1,350
1,140
784
568
740
773
1,070 | 955
1,040
1,040
1,110
1,180

928
906 | 531
569
77
741
1,030

811
590 | 818
882
720
974
1,110

879
793 | S
1,150
1,100
1,130
1,080
1,040
1,150
1,240
1,060
971 | 1,040
980
996
950
744
744
836
693
861 | 1,090
1,050
1,060
1,060
1,000
908
927
1,130
913
919 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1,520
1,610
1,620
1,550
1,830
1,830
1,580
1,520
1,650
1,660
1,610
2,940
1,760 | JUNE 1,250 1,340 1,290 1,330 1,380 1,530 1,480 228 791 1,490 1,440 1,280 1,420 1,570 | 1,390
1,470
1,490
1,420
1,550
1,660
1,570
651
1,270
1,540
1,480
1,880
1,700 | 1,440
1,430
1,500
1,340
1,330
972
1,000
1,100
1,310
1,210
1,260
1,160
1,240
1,250 | JULY 1,290 1,260 1,260 358 182 171 386 307 739 692 530 862 1,140 1,130 | 1,370
1,350
1,350
1,140
784
568
740
773
1,070
1,050
1,100
1,180
1,210 | 955
1,040
1,040
1,110
1,180

928
906
867
920
919
971
945 | AUGUST 531 569 77 741 1,030 811 590 775 640 752 831 791 | 818
882
720
974
1,110

879
793
827
807
841
910
871 | \$\begin{align*} 1,150 \\ 1,100 \\ 1,130 \\ 1,080 \\ 1,040 \\ 1,150 \\ 1,240 \\ 1,060 \\ 971 \\ 1,020 \\ 891 \\ 706 \\ 875 | 1,040
980
996
950
744
744
836
693
861
839
815
138
350
85 | 1,090
1,050
1,060
1,060
1,000
908
927
1,130
913
919
921
929
658
519
516 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 1,520
1,610
1,620
1,550
1,830
1,680
1,580
1,520
1,650
1,660
1,610
2,940
1,760
1,850
1,800
1,770
1,630 | JUNE 1,250 1,340 1,290 1,330 1,380 1,530 1,480 228 791 1,490 1,440 1,280 1,420 1,570 1,590 1,560 1,560 1,460 | 1,390
1,470
1,490
1,420
1,550
1,660
1,570
651
1,270
1,540
1,480
1,880
1,700
1,670
1,700
1,690
1,640
1,550 | 1,440
1,430
1,500
1,340
1,330
972
1,000
1,100
1,310
1,210
1,260
1,160
1,240
1,250
1,260
1,260
1,260 | JULY 1,290 1,260 1,260 358 182 171 386 307 739 692 530 862 1,140 1,130 229 1,040 994 885 936 | 1,370
1,350
1,350
1,140
784
568
740
773
1,070
1,050
1,100
1,050
1,180
1,210
694
1,150
1,070
990
984 |
955
1,040
1,040
1,110
1,180

928
906
867
920
919
971
945
942
960
982
972
972 | 531
569
77
741
1,030

811
590
775
640
752
831
791
840
825
861
856
848 | 818
882
720
974
1,110

879
793
827
807
841
910
871
891
874
931
911
905 | \$\begin{array}{cccccccccccccccccccccccccccccccccccc | 1,040
980
996
950
744
744
836
693
861
839
815
138
350
85
604
852
1,120
1,040
994 | 1,090
1,050
1,060
1,000
908
927
1,130
913
919
921
929
658
519
516
1,030
1,140
1,180
1,110
1,070 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1,520 1,610 1,620 1,550 1,830 1,830 1,580 1,520 1,650 1,660 1,610 2,940 1,760 1,760 1,850 1,800 1,770 1,630 | JUNE 1,250 1,340 1,290 1,330 1,380 1,530 1,480 228 791 1,490 1,440 1,280 1,420 1,570 1,590 1,560 1,560 1,460 | 1,390 1,470 1,490 1,420 1,550 1,660 1,570 651 1,270 1,540 1,480 1,880 1,700 1,670 1,700 1,690 1,640 1,550 | 1,440 1,430 1,500 1,340 1,330 972 1,000 1,100 1,310 1,210 1,260 1,160 1,240 1,250 1,260 1,170 1,060 1,050 1,080 1,180 849 1,100 1,100 | JULY 1,290 1,260 1,260 358 182 171 386 307 739 692 530 862 1,140 1,130 229 1,040 994 885 936 958 311 743 849 1,020 | 1,370
1,350
1,350
1,140
784
568
740
773
1,070
1,050
1,100
1,050
1,1210
694
1,150
1,070
990
984
1,030
894
792
972
1,050 | 955 1,040 1,040 1,110 1,180 928 906 867 920 919 971 945 942 960 982 972 972 990 1,030 994 1,000 1,080 | AUGUST 531 569 77 741 1,030 811 590 775 640 752 831 791 840 825 861 856 848 716 892 750 967 | 818
882
720
974
1,110

879
793
827
807
841
910
871
891
874
931
911
905
881
949
904
897
1,020 | \$\begin{array}{cccccccccccccccccccccccccccccccccccc | 1,040
980
996
950
744
744
836
693
861
839
815
138
350
85
604
852
1,120
1,040
994
967
769
174
587
809 | 1,090
1,050
1,060
1,060
1,000
908
927
1,130
913
919
921
929
658
519
516
1,030
1,140
1,180
1,110
1,070
1,070 | ### 040871488 WILSON PARK CREEK AT ST. LUKES HOSPITAL AT MILWAUKEE, WI-Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 ### DISCRETE SAMPLES | Date | Time | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | BOD,
water,
unfltrd
5 day,
20 degC
mg/L
(00310) | COD,
low
level,
water,
unfltrd
mg/L
(00335) | 1,2-
Propane
-diol,
water,
unfltrd
mg/L
(91080) | 1,2-
Ethane-
diol,
water,
unfltrd
mg/L
(91075) | |----------------------------|------|--------------------------------------|--|---|--|--|--|--|---|---|---|--| | OCT 2002
21
MAR 2003 | 1300 | 2.0 | 10 | | | | | | <2.0 | 12 | 19.0 | <18.0 | | 26 | 0950 | 5.3 | 10 | 8.0 | 3,300 | 275 | 1.2 | 0.360 | 73.4 | 170 | <18.0 | <18.0 | | SEP
03 | 1430 | 2.1 | 10 | 8.8 | 1,060 | 154 | 0.38 | 0.076 | <2.0 | 18 | <18.0 | <18.0 | # COMPOSITE SAMPLES | | | | | | | Specif. | ANC, | Residue | Ammonia | | | | | |-----------|------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | | pН, | conduc- | wat unf | total | + | | BOD, | COD, | 1,2- | | | | | | | water, | tance, | fixed | at 105 | org-N, | Ammonia | water, | low | Propane | | | | | | Sam- | unfltrd | wat unf | end pt, | deg. C, | water, | water, | unfltrd | level, | -diol, | | | | | | pling | lab, | lab, | lab, | sus- | unfltrd | fltrd, | 5 day, | water, | water, | | Beginning | | Ending | Ending | method, | std | uS/cm | mg/L as | pended, | mg/L | mg/L | 20 degC | unfltrd | unfltrd | | Date | Time | date | time | code | units | 25 degC | CaCO3 | mg/L | as N | as N | mg/L | mg/L | mg/L | | | | | | (82398) | (00403) | (90095) | (00417) | (00530) | (00625) | (00608) | (00310) | (00335) | (91080) | | OCT | | | | | | | | | | | | | | | 02-02 | 0120 | 20021002 | 1310 | 50 | 7.8 | | | 143 | | | 4.8 | 36 | <18.0 | | JAN | | | | | | | | | | | | | | | 31-31 | 0850 | 20030131 | 2230 | 50 | 7.5 | 10,400 | 156 | | 3.1 | 1.04 | 17.2 | 83 | <18.0 | | MAR | | | | | | | | | | | | | | | 04-08 | 2325 | 20030308 | 1440 | 50 | | | | | 1.2 | 0.054 | | 330 | 140 | | MAR | | | | | | | | | | | | | | | 14-16 | 1435 | 20030316 | 2015 | 50 | 7.3 | 4,320 | 171 | 152 | 3.9 | 0.028 | 201 | 480 | 130 | | APR | | | | | | | | | | | | | | | 04-05 | 1750 | 20030405 | 0545 | 50 | 7.5 | 2,600 | 110 | | 1.8 | 0.161 | 166 | 340 | 120 | | 1,2-
Ethanediol,
water, unfltrd
mg/L
(91075) | Runoff
volume
thousands of
cubic feet
(99904) | |--|---| | | | | <18.0 | 2,000 | | | | | <18.0 | 150 | | | | | <18.0 | 810 | | 10.0 | 5.000 | | <18.0 | 5,800 | | <18.0 | 2,100 | | | Ethanediol, water, unfltrd mg/L (91075) <18.0 <18.0 <18.0 <18.0 | #### 04087159 KINNICKINNIC RIVER AT SOUTH 11TH STREET AT MILWAUKEE, WI $LOCATION.--Lat~42^{\circ}59'51'', long~87^{\circ}55'35'', in~SW~\frac{1}{4}~NW~\frac{1}{4}~sec. 8, T.6~N., R.22~E., Milwaukee~County, Hydrologic~Unit~04040003, on~left~bank~150~ft~upstream~from~footbridge~on~South~11th~Street, 3.2~mi~upstream~from~mouth, at~Milwaukee.$ DRAINAGE AREA.--18.8 mi². PERIOD OF RECORD.—October 1982 to current year. Low-flow records equivalent to records for Kinnickinnic River at Milwaukee, WI (04087160) September 1976 to January 1983 (discontinued). Discontinued gage was located 0.3 mi downstream from present gage. REVISED RECORDS.--WDR WI-97-1: Drainage area. GAGE.--Water-stage recorder and steel plate weir. Elevation of gage is 590 ft above NGVD of 1929, from river-profile map. REMARKS.--Records good except those for estimated daily discharges, which are poor, and those for discharges greater than 500 ft³/s, which are fair (see page 11). Gage-height telemeter at station. | r6 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |---------------|---|-------------------|------------------|-------------------|----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|-------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 6.8
84 | 5.2
4.8 | 3.6
e3.8 | 3.5
3.8 | e6.4
e8.6 | e4.3
e4.2 | 11
8.4 | 201
15 | 6.9
6.3 | 4.7
4.7 | 16
10 | 3.7
4.0 | | 3
4 | 17
69 | 4.7
4.7 | e3.8
e3.7 | 4.2
3.7 | e11
e7.0 | e4.1
e4.0 | 8.0
76 | 9.2
20 | 7.5
5.8 | 5.0
14 | 154
12 | 4.2
4.2 | | 5 | 9.7 | 8.2 | e3.7 | 4.5 | e5.7 | e4.0 | 35 | 150 | 5.6 | e50 | 6.6 | 4.5 | | 6
7 | 6.6
6.3 | 6.0
4.7 | e3.7
e3.7 | 4.8
4.4 | e5.0
e4.4 | e4.0
e4.3 | 13
19 | 18
69 | 6.2
7.5 | e140
e52 | 32
12 | 4.2
4.0 | | 8
9 | 6.4
5.6 | 4.5
4.5 | e3.7
e3.7 | 4.5
4.4 | e4.2
e4.0 | e4.2
e4.0 | 26
32 | 25
208 | 105
12 | e70
10 | 5.5
5.0 | 4.2
4.1 | | 10 | 6.2 | 4.8 | e4.0 | 3.9 | e3.9 | e4.0 | 22 | 27 | 7.2 | 14 | 4.5 | 4.3 | | 11
12 | 6.1
5.6 | 20
5.9 | e4.3
4.7 | e3.9
e3.9 | e3.9
e3.8 | e4.0
e5.0 | 16
12 | 67
28 | 6.7
6.6 | 11
6.1 | 5.4
6.3 | 4.5
45 | | 13
14 | 5.1
5.4 | 5.0
4.4 | 4.6
4.2 | e3.9
e3.9 | e3.8
e3.8 | e15
e30 | 10
9.6 | 13
22 | 6.8
6.0 | 5.0
4.8 | 5.4
5.5 | 31
70 | | 15 | 5.7 | 4.4 | 3.9 | e3.8 | e3.7 | e60 | 9.3 | 28 | 5.9 | 41 | 5.8 | 7.0 | | 16
17 | 5.3
5.5 | 4.9
4.9 | 4.1
4.1 | e3.8
e3.8 | e3.7
e3.8 | 29
16 | 8.8
8.3 | 11
8.9 | 5.9
5.6 | 6.1
5.3 | 5.7
5.2 | 5.5
4.7 | | 18
19 | 23
6.4 | 12
17 | 69
12 | e3.8
e3.8 | e4.0
e5.0 | 12
45 | 7.9
63 | 7.8
9.6 | 5.4
5.4 | 4.9
4.3 | 5.1
6.0 | 4.4
4.3 | | 20 | 4.6 | 5.0 | 5.9 | e3.7 | e5.6 | 31 | 22 | 26 | 4.8 | 4.4 | 6.9 | 3.8 | | 21
22 | 4.6
4.6 | 37
6.6 | 4.9
4.4 | e3.7
e3.7 | e6.5
e5.0 | 17
12 | 11
9.4 | 8.7
7.4 | 4.8
4.4 | 15
6.1 | 6.8
5.8 | 3.6
34 | | 23
24 | 4.5
14 | 4.8
4.5 | 3.8
4.0 | e3.7
e3.7 | e4.4
e4.2 | 9.4
8.9 | 8.5
8.0 | 6.7
6.2 | 4.7
5.0 | 4.7
4.7 | 4.4
4.0 | 7.3
4.2 | | 25 | 57 | 4.3 | 3.9 | e3.7 | e4.2 | 8.6
8.5 | 7.8 | 5.8 | 5.6
7.2 | 5.9
4.9 | 14 | 3.8 | | 26
27 | 8.9
5.7 | 4.8
4.1 | 3.6
3.8 | e3.8
e3.8 | e4.1
e4.4 | 8.3 | 7.4
7.2 | 5.6
5.6 | 35 | 4.7 | 9.2
5.3 | 16
8.0 | |
28
29 | 5.4
5.1 | 4.0
3.8 | 4.0
4.2 | e3.8
e3.8 | e4.6 | 40
11 | 7.3
7.3 | 15
8.6 | 40
6.8 | 4.8
10 | 5.2
5.4 | 5.2
4.5 | | 30
31 | 5.0
4.9 | 3.9 | 4.3
4.0 | e4.0
e5.0 | | 8.3
9.2 | 65 | 41
46 | 5.0 | 9.2
6.3 | 4.2
3.7 | 4.4 | | TOTAL
MEAN | 410.0
13.2 | 213.4
7.11 | 199.1
6.42 | 122.7
3.96 | 138.7
4.95 | 429.3
13.8 | 556.2
18.5 | 1,120.1
36.1 | 347.6
11.6 | 533.6
17.2 | 382.9
12.4 | 312.6
10.4 | | MAX | 84 | 37 | 69 | 5.0 | 11 | 60 | 76 | 208 | 105 | 140 | 154 | 70 | | MIN
CFSM | 4.5
0.70 | 3.8
0.38 | 3.6
0.34 | 3.5
0.21 | 3.7
0.26 | 4.0
0.74 | 7.2
0.99 | 5.6
1.92 | 4.4
0.62 | 4.3
0.92 | 3.7
0.66 | 3.6
0.55 | | IN. | 0.81 | 0.42
NITHLY MI | 0.39
EAN DATA | 0.24
A FOR WAT | 0.27 | 0.85 | 1.10 | 2.22
D VEAD (W | 0.69 | 1.06 | 0.76 | 0.62 | | MEAN
MAX | 19.9
60.5 | 23.4
67.8 | 16.7
48.9 | 14.7
43.7 | 21.3
56.3 | 23.9
44.9 | 35.1
104 | 27.3
79.2 | 30.0
81.6 | 28.3
66.8 | 34.8
82.3 | 25.8
69.5 | | (WY) | (1992) | (1986) | (1983) | (1988) | (2001) | (1993) | (1993) | (2000) | (1999) | (2000) | (1986) | (2000) | | MIN
(WY) | 6.81
(1995) | 7.11
(2003) | 3.96
(1990) | 3.96
(2003) | 4.95
(2003) | 8.87
(1996) | 14.1
(1989) | 9.07
(1992) | 11.4
(1985) | 12.6
(1996) | 11.8
(1999) | 8.41
(1995) | | | RY STATIS | STICS | | FOR 2002 C | | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 198 | 3 - 2003 | | ANNUAI | _ MEAN | MEAN | | 7,167
19 | 9.6 | | , , | 3.1 | | | 25.1 | 1006 | | LOWEST | Γ ANNUAL
CANNUAL | MEAN | | 500 | | 10 | 24 | | 0 | | 39.8
13.1 | 1986
2003 | | LOWEST | T DAILY M
DAILY M | EAN | | | 3.6 Dec | 1 | 20 | 3.5 Jan | 1 | (| a)2.9 Dec 2 | | | MAXIMU | JM PEAK F | | UM | (a)3 | 3.7 Dec | I | (a)
1,30 |)3.7 (b)Dec
00 Aug | ; 3 | (c)10,6 | 500 Au | c 23, 1989
g 6, 1986 | | | JM PEAK S
L RUNOFF | | | | 1.04 | | | 9.88 Aug
0.69 | ; 3 | (d) | 1.33 | g 6, 1986 | | | L RUNOFF
ENT EXCE | | | 41 | | | 2 | 9.43
29 | | | 18.14
48 | | | | ENT EXCE
ENT EXCE | | | | 7.5
4.5 | | | 5.5
3.8 | | | 9.4
5.6 | | | | | | | | | | | | | | | | ⁽a) Ice affected ⁽b) Also occurred Jan. 19 ⁽c) From rating curve extended above 600 ft³/s on basis of step-backwater analysis at peak gage height (d) From inside gage, 16.01 ft, from floodmarks ⁽e) Estimated due to ice effect or missing record # STREAMS TREIBUTARY TO LAKE MICHIGAN # 04087170 MILWAUKEE RIVER, AT MOUTH, AT MILWAUKEE, WI LOCATION.--Lat 43°01'28", long 87°53'54", in SW $\frac{1}{4}$ NE $\frac{1}{4}$, sec.33, T.7 N., R.22 E., Milwaukee County, Hydrologic Unit 04040003, at mouth. DRAINAGE AREA.--872 mi². PERIOD OF RECORD.--April 1994 to October 1995, October 2001 to September 2003. REMARKS.--Records estimated from sum of discharges measured at upstream stations 04087000, 04087120, and 04087159, plus the sum of 04087120 and 04087159 discharges, multiplied by an area/basin ration of 0.229. Records are poor (see page 11). | | | DISCHA | ARGE, CUB | IC FEET PI | ER SECOND
DAII |), WATER Y
LY MEAN V | | OBER 2001 | ГО ЅЕРТЕМ | IBER 2002 | | | |--|---|---|--|--|------------------------------|--|--|---|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e368 | e817 | e574 | e261 | e405 | e514 | e622 | e1,090 | e434 | e294 | e157 | e194 | | 2 | e330 | e547 | e552 | e262 | e309 | e457 | e770 | e1,260 | e401 | e268 | e146 | e1,120 | | 3 | e297 | e509 | e524 | e262 | e303 | e386 | e688 | e1,020 | e2,840 | e252 | e132 | e972 | | 4 | e285 | e462 | e505 | e263 | e290 | e361 | e680 | e913 | e2,940 | e233 | e239 | e632 | | 5 | e258 | e427 | e514 | e263 | e289 | e462 | e663 | e815 | e2,210 | e207 | e161 | e490 | | 6 | e241 | e406 | e523 | e263 | e293 | e565 | e631 | e751 | e1,730 | e194 | e136 | e368 | | 7 | e228 | e390 | e510 | e273 | e309 | e546 | e842 | e771 | e1,380 | e180 | e143 | e293 | | 8 | e213 | e367 | e571 | e276 | e324 | e956 | e1,980 | e749 | e1,090 | e415 | e138 | e252 | | 9 | e196 | e349 | e488 | e283 | e336 | e2,220 | e3,640 | e802 | e843 | e1,080 | e133 | e227 | | 10 | e391 | e334 | e450 | e278 | e712 | e2,280 | e2,780 | e526 | e989 | e552 | e128 | e209 | | 11 | e327 | e319 | e426 | e274 | e509 | e2,090 | e2,360 | e919 | e899 | e505 | e124 | e191 | | 12 | e392 | e310 | e431 | e271 | e456 | e1,930 | e2,000 | e1,730 | e739 | e429 | e1,800 | e183 | | 13 | e880 | e427 | e721 | e267 | e442 | e1,730 | e1,700 | e1,480 | e961 | e381 | e2,580 | e170 | | 14 | e697 | e361 | e594 | e322 | e427 | e1,580 | e1,480 | e1,340 | e1,170 | e370 | e1,310 | e161 | | 15 | e498 | e354 | e595 | e337 | e411 | e1,450 | e1,340 | e1,130 | e995 | e340 | e431 | e154 | | 16 | e456 | e341 | e577 | e301 | e426 | e1,300 | e1,160 | e975 | e850 | e311 | e302 | e146 | | 17 | e401 | e324 | e611 | e305 | e450 | e1,140 | e1,030 | e824 | e721 | e272 | e246 | e150 | | 18 | e366 | e313 | e592 | e299 | e464 | e1,040 | e973 | e736 | e625 | e245 | e193 | e404 | | 19 | e342 | e322 | e614 | e296 | e806 | e944 | e1,100 | e672 | e536 | e226 | e205 | e622 | | 20 | e313 | e305 | e547 | e284 | e1,180 | e998 | e919 | e620 | e466 | e230 | e182 | e408 | | 21 | e302 | e302 | e493 | e274 | e1,440 | e944 | e886 | e575 | e770 | e268 | e626 | e350 | | 22 | e844 | e309 | e441 | e287 | e1,220 | e880 | e904 | e539 | e649 | e207 | e1,840 | e327 | | 23 | e1,660 | e323 | e448 | e294 | e1,130 | e780 | e826 | e493 | e566 | e198 | e779 | e296 | | 24 | e1,550 | e538 | e429 | e299 | e1,020 | e735 | e829 | e464 | e495 | e177 | e554 | e254 | | 25 | e1,210 | e486 | e316 | e295 | e910 | e681 | e794 | e958 | e464 | e174 | e396 | e233 | | 26
27
28
29
30
31 | e1,070
e944
e829
e744
e670
e624 | e500
e530
e509
e593
e653 | e244
e252
e258
e256
e253
e262 | e297
e303
e314
e311
e313
e345 | e799
e700
e624

 | e633
e592
e589
e600
e572
e580 | e758
e847
e1,200
e1,310
e1,220 | e683
e645
e569
e1,000
e529
e474 | e483
e434
e370
e336
e310 | e771
e190
e181
e344
e196
e169 | e329
e290
e265
e246
e232
e214 | e216
e202
e186
e620
e233 | | TOTAL | 17,926 | 12,727 | 14,571 | 8,972 | 16,984 | 30,535 | 36,932 | 26,052 | 27,696 | 9,859 | 14,657 | 10,263 | | MEAN | 578 | 424 | 470 | 289 | 607 | 985 | 1,231 | 840 | 923 | 318 | 473 | 342 | | MAX | 1,660 | 817 | 721 | 345 | 1,440 | 2,280 | 3,640 | 1,730 | 2,940 | 1,080 | 2,580 | 1,120 | | MIN | 196 | 302 | 244 | 261 | 289 | 361 | 622 | 464 | 310 | 169 | 124 | 146 | | CFSM | 0.66 | 0.49 | 0.54 | 0.33 | 0.70 | 1.13 | 1.41 | 0.96 | 1.06 | 0.36 | 0.54 | 0.39 | | IN. | 0.76 | 0.54 | 0.62 | 0.38 | 0.72 | 1.30 | 1.58 | 1.11 | 1.18 | 0.42 | 0.63 | 0.44 | | STATIST | ICS OF MC | NTHLY MI | EAN DATA | FOR WAT | ER YEARS | 1994-1995, | 2002 BY W. | ATER YEAI | R (WY) | | | | | MEAN | 409 | 384 | 372 | 276 | 394 | 799 | 976 | 644 | 473 | 394 | 494 | 273 | | MAX | 578 | 424 | 470 | 289 | 607 | 985 | 1,231 | 840 | 923 | 684 | 662 | 342 | | (WY) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (1994) | (1995) | (2002) | | MIN | 177 | 343 | 274 | 263 | 182 | 613 | 634 | 357 | 227 | 179 | 348 | 178 | | (WY) | (1995) | (1995) | (1995) | (1995) | (1995) | (1995) | (1994) | (1994) | (1994) | (1995) | (1994) | (1994) | | SUMMA | RY STATIS | TICS | | | | | 2002 | WATER YE. | AR | WATER | YEARS 1994 | 4 - 2002 | | ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
ANNUAI
10 PERC'
50 PERC' | Γ ANNUAL
Γ ANNUAL
Γ DAILY M
Γ DAILY MI | MEAN EAN EAN AY MINIM (CFSM) (INCHES) EDS EDS | UM | | | | 3,64
12
13 | 40 Apr 9
24 Aug 11
38 Aug 5
0.71
9.69
00 | | 3,6
1,0 | 88 Jui | 2002
1994
r 9, 2002
n 19, 1994
o 15, 1994 | ⁽e) Estimated # STREAMS TREIBUTARY TO LAKE MICHIGAN # $04087170\;\; MILWAUKEE\;RIVER,\;AT\;MOUTH,\;AT\;MILWAUKEE,\;WI-Continued$ # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAII | LI MEAN V | ALUES | | | | | | |--|--|---|--|--|-----------------------------------|--|--------------------------------------|--|--------------------------------------|---------------------------------|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e247 | e229 | e127 | e187 | e128 | e170 | e438 | e1,580 | e401 | e177 | e592 | e68 | | 2 | e631 | e225 | e127 | e188 | e141 | e148 | e387 | e1,020 | e359 | e164 | e467 | e68 | | 3 | e434 | e216 | e146 | e197 | e160 | e137 | e369 | e923 | e341 | e150 | e720 | e67 | | 4 | e607 | e207 | e175 | e197 | e142 | e147 | e683 | e795 | e313 | e192 | e259 | e67 | | 5 | e404 | e215 | e173 | e200 | e135 | e147 | e619 | e1,750 | e288 | e362 | e243 | e65 | | 6 | e424 | e211 | e163 | e200 | e124 | e157 | e533 | e1,340 | e274 | e504 |
e368 | e63 | | 7 | e433 | e202 | e155 | e188 | e112 | e160 | e511 | e1,480 | e267 | e575 | e264 | e61 | | 8 | e371 | e204 | e155 | e190 | e120 | e158 | e556 | e1,520 | e1,160 | e394 | e207 | e74 | | 9 | e346 | e206 | e156 | e188 | e117 | e168 | e570 | e2,820 | e620 | e282 | e194 | e80 | | 10 | e319 | e212 | e171 | e167 | e126 | e177 | e568 | e2,070 | e499 | e266 | e196 | e78 | | 11 | e289 | e260 | e172 | e163 | e125 | e190 | e565 | e2,470 | e581 | e237 | e187 | e77 | | 12 | e260 | e230 | e178 | e121 | e134 | e207 | e526 | e2,580 | e542 | e206 | e197 | e162 | | 13 | e233 | e228 | e198 | e130 | e134 | e255 | e482 | e2,210 | e495 | e182 | e154 | e194 | | 14 | e221 | e232 | e203 | e128 | e144 | e331 | e454 | e1,860 | e445 | e178 | e137 | e441 | | 15 | e214 | e226 | e207 | e117 | e152 | e488 | e431 | e1,560 | e389 | e361 | e128 | e155 | | 16 | e205 | e224 | e207 | e116 | e152 | e468 | e421 | e1,220 | e344 | e189 | e124 | e216 | | 17 | e198 | e223 | e208 | e115 | e162 | e469 | e407 | e974 | e303 | e166 | e117 | e210 | | 18 | e276 | e250 | e580 | e115 | e164 | e541 | e397 | e780 | e271 | e146 | e106 | e155 | | 19 | e248 | e324 | e352 | e110 | e178 | e715 | e753 | e694 | e243 | e128 | e100 | e124 | | 20 | e226 | e258 | e340 | e108 | e191 | e657 | e548 | e898 | e213 | e120 | e98 | e108 | | 21 | e228 | e384 | e296 | e108 | e192 | e580 | e474 | e661 | e204 | e137 | e90 | e99 | | 22 | e226 | e308 | e233 | e110 | e178 | e574 | e475 | e621 | e185 | e123 | e85 | e331 | | 23 | e222 | e266 | e220 | e106 | e165 | e547 | e460 | e577 | e155 | e108 | e79 | e136 | | 24 | e298 | e254 | e207 | e111 | e165 | e511 | e442 | e527 | e156 | e104 | e76 | e106 | | 25 | e518 | e241 | e206 | e108 | e154 | e507 | e409 | e477 | e171 | e99 | e90 | e98 | | 26
27
28
29
30
31 | e308
e277
e271
e260
e248
e240 | e220
e170
e156
e158
e166 | e225
e236
e207
e207
e218
e208 | e108
e108
e110
e108
e108
e115 | e154
e156
e170
 | e448
e424
e557
e481
e478
e467 | e363
e336
e318
e298
e551 | e434
e398
e387
e358
e507
e811 | e188
e227
e319
e199
e169 | e91
e89
e86
e92
e99 | e89
e85
e78
e75
e74
e70 | e130
e122
e97
e87
e99 | | TOTAL | 9,682 | 6,905 | 6,656 | 4,325 | 4,175 | 11,464 | 14,344 | 36,302 | 10,321 | 6,200 | 5,749 | 3,838 | | MEAN | 312 | 230 | 215 | 140 | 149 | 370 | 478 | 1,171 | 344 | 200 | 185 | 128 | | MAX | 631 | 384 | 580 | 200 | 192 | 715 | 753 | 2,820 | 1,160 | 575 | 720 | 441 | | MIN | 198 | 156 | 127 | 106 | 112 | 137 | 298 | 358 | 155 | 86 | 70 | 61 | | CFSM | 0.36 | 0.26 | 0.25 | 0.16 | 0.17 | 0.42 | 0.55 | 1.34 | 0.39 | 0.23 | 0.21 | 0.15 | | IN. | 0.41 | 0.29 | 0.28 | 0.18 | 0.18 | 0.49 | 0.61 | 1.55 | 0.44 | 0.26 | 0.25 | 0.16 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1994-95, 200 | 02- 03, BY V | WATER YE | AR (WY) | | | | | MEAN | 385 | 333 | 320 | 231 | 313 | 656 | 851 | 776 | 441 | 345 | 417 | 237 | | MAX | 578 | 424 | 470 | 289 | 607 | 985 | 1,231 | 1,171 | 923 | 684 | 662 | 342 | | (WY) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2003) | (2002) | (1994) | (1995) | (2002) | | MIN | 177 | 230 | 215 | 140 | 149 | 370 | 478 | 357 | 227 | 179 | 185 | 128 | | (WY) | (1995) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (1994) | (1994) | (1995) | (2003) | (2003) | | SUMMA | RY STATIS | STICS | I | FOR 2002 C. | ALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 1994 | 4 - 2003 | | ANNUA:
HIGHES'
LOWES'
HIGHES'
LOWES'
ANNUA!
ANNUA!
10 PERC
50 PERC | T ANNUAL
Γ ANNUAL
Τ DAILY M
Γ DAILY M | MEAN IEAN EAN OAY MINIM (CFSM) (INCHES) EDS EDS | UM | | Apr
Aug
Aug
0.64
5.75 | 11 | 2,82
6
58
20 | 29
20 May
51 Sep | y 9
5 7
5 1 | 6
3
3,6 | 61 Ser | 2002
2003
r 9, 2002
o 7, 2003
o 1, 2003 | ⁽e) Estimated # STREAMS TRIBUTARY TO LAKE MICHIGAN # 04087204 OAK CREEK AT SOUTH MILWAUKEE, WI $LOCATION.--Lat~42^{\circ}55'30'', long~87^{\circ}52'12'', in~SW~\frac{1}{4}~NW~\frac{1}{4}~sec.2, T.5~N., R.22~E., \\Milwaukee~County, Hydrologic~Unit~04040002, on~left~bank~25~ft~downstream~from~15th~Avenue~bridge~in~South~Milwaukee~and~2.8~mi~upstream~from~mouth.$ DRAINAGE AREA.--25.0 mi². PERIOD OF RECORD.--October 1963 to current year. REVISED RECORDS.--WDR WI-80-1: 1979 (average discharge). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 631.40 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Low flows may occasionally be affected by construction and activity at gravel pit upstream. Gage-height telemeter at station. | una ac | avity at gra | | _ | BIC FEET PE | ER SECONE | | | DBER 2002 T | TO SEPTEN | MBER 2003 | | | |---|--|---|--|---|--|--|--|---|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.7
27
18
27
26 | 2.0
1.8
2.0
2.5
2.5 | e1.8
1.5
e1.5
e1.5
e1.5 | 1.7
1.6
1.5
e1.5
e1.5 | e1.5
e2.2
e2.8
e1.8
e1.4 | e1.8
e1.5
e1.4
e1.3
e1.2 | 6.6
5.7
4.9
28
47 | 108
30
15
14
112 | 14
8.7
7.8
7.3
6.3 | 2.8
2.3
2.1
2.3
9.0 | 1.4
1.6
9.1
20
5.3 | 0.57
0.54
0.53
0.49
0.47 | | 6
7
8
9
10 | 10
6.8
5.7
3.9
3.1 | 2.9
2.6
2.0
1.9
2.6 | e1.4
e1.4
e1.4
e1.4 | e1.7
1.8
1.9
2.4
1.9 | e1.3
e1.1
e1.0
e0.90
e0.82 | e1.1
e1.3
e1.1
e1.0
e1.0 | 21
14
16
20
34 | 40
62
94
184
71 | 6.0
6.0
34
27
11 | 27
37
26
21
8.0 | 3.4
18
6.1
3.2
2.0 | 0.45
0.44
0.44
0.44
0.46 | | 11
12
13
14
15 | 2.5
2.0
1.8
1.7
1.7 | 6.5
6.2
3.3
2.5
2.4 | e1.4
e1.4
e1.5
e1.5 | 1.4
1.2
1.2
e0.97
e0.90 | e0.77
e0.74
e0.73
e0.72
e0.72 | e6.0
e20
e30
e39
e50 | 28
18
13
9.4
8.3 | 40
45
25
22
30 | 7.5
5.9
5.2
4.8
4.6 | 6.0
6.7
4.2
3.3
34 | 1.6
1.5
1.4
1.3
1.1 | 0.49
2.4
9.3
15 | | 16
17
18
19
20 | 2.0
2.2
6.1
8.1
3.7 | 2.0
2.1
2.6
6.5
4.2 | e1.5
1.5
20
25
8.0 | e0.85
e0.80
e0.77
e0.76
e0.72 | e0.70
e0.70
e0.70
e0.80
e1.0 | e40
23
12
14
26 | 7.1
6.5
6.0
28
27 | 20
15
12
13
22 | 4.2
4.0
3.7
3.6
3.2 | 11
5.1
3.8
3.0
2.5 | 1.2
1.2
1.3
0.86
0.78 | 3.5
1.8
1.3
0.93
0.67 | | 21
22
23
24
25 | 2.5
2.0
1.9
2.1
20 | 8.2
8.0
3.9
2.8
2.3 | 4.7
4.1
3.3
e3.0
2.0 | e0.68
e0.65
e0.62
e0.62
e0.60 | e2.3
e2.0
e1.8
e1.6
e1.5 | 24
13
9.1
8.3
7.4 | 15
9.6
7.8
7.1
6.3 | 13
10
8.9
7.9
7.2 | 2.8
2.6
2.3
2.2
2.1 | 3.8
3.7
2.5
1.9
1.8 | 0.84
1.2
0.62
0.57
0.83 | 0.61
5.6
4.6
2.3
1.4 | | 26
27
28
29
30
31 | 13
5.1
3.4
2.2
2.2
2.0 | 2.1
e2.0
e1.9
2.0
1.9 | e1.9
e1.8
1.7
1.7
1.9
1.9 | e0.60
e0.60
e0.60
e0.60
e0.77 | e1.4
e1.5
 | 6.2
5.6
13
16
7.6
6.0 | 5.4
4.9
4.6
4.5
13 | 6.7
6.3
7.2
13
11
34 | 2.0
2.9
13
8.6
3.9 | 1.5
1.5
1.4
1.3
1.2 | 0.58
0.56
0.55
1.2
0.95
0.65 | 2.6
5.8
2.9
1.8
1.4 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 221.4
7.14
27
1.7
0.29
0.33 | 96.2
3.21
8.2
1.8
0.13
0.14 | 106.0
3.42
25
1.4
0.14
0.16 | 34.01
1.10
2.4
0.60
0.04
0.05 | 35.90
1.28
2.8
0.70
0.05
0.05 | 388.9
12.5
50
1.0
0.50
0.58 | 426.7
14.2
47
4.5
0.57
0.63 | 1,099.2
35.5
184
6.3
1.42
1.64 | 217.2
7.24
34
2.0
0.29
0.32 | 238.8
7.70
37
1.1
0.31
0.36 | 90.89
2.93
20
0.55
0.12
0.14 | 79.23
2.64
15
0.44
0.11
0.12 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 12.0
48.4
(1992)
1.86
(1976) | DNTHLY M
17.1
85.3
(1986)
1.83
(1977) | EAN DATA
18.3
65.3
(1983)
0.79
(1977) | A FOR WATI
14.5
77.3
(1974)
0.021
(1977) | ER YEARS
25.4
84.5
(2001)
1.28
(2003) | 1964 - 2003
46.2
149
(1979)
2.24
(1968) | , BY WATE
48.8
151
(1993)
9.14
(1968) | R YEAR (W
26.4
96.7
(2000)
2.15
(1977) | Y) 23.9 85.8 (1968) 2.15 (1988) | 15.5
95.8
(1969)
3.34
(1988) | 14.3
52.7
(1986)
1.89
(1970) | 17.6
110
(1972)
1.78
(1982) | | ANNUAL
ANNUAL
ANGHEST
LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMU
INSTANT
ANNUAL
ANNUAL
10 PERCE
50 PERCE | . MEAN T ANNUAL T ANNUAL T DAILY M DAILY M SEVEN-D JM PEAK F JM PEAK S | . MEAN MEAN IEAN EAN AY MINIM FLOW STAGE LOW FLOW (CFSM)
(INCHES) EDS | | 32
6 | 6.4
6.3
8 Apr
.2 Aug
.4 Dec | 9
11 | 3,03
18
26 | 0.44 Sep
0.46 Sep | 9
7-9
4 | 8 | 23.3
41.7
6.67
355
0.00
0.00
40 | 1964 - 2003
1974
1977
Mar 5, 1976
(b)
Jan 7, 1977
Aug 6, 1986
Aug 6, 1986
(b) | ⁽a) Also occurred Sept. 17(b) Several days during 1977 ⁽c) Ice affected ⁽e) Estimated due to ice effect or missing record # 04087220 ROOT RIVER NEAR FRANKLIN, WI LOCATION.--Lat 42°52′25″, long 87°59′45″, in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.22, T.5 N., R.21 E., Milwaukee County, Hydrologic Unit 04040002, on right bank 400 ft upstream from State Highway 100, 2.1 mi upstream from Root River Canal, 2.4 mi southeast of Franklin, 5.5 mi southeast of Hales Corners, and about 24 mi upstream from mouth. DRAINAGE AREA.--49.2 mi². PERIOD OF RECORD .-- October 1963 to current year. REVISED RECORD.--WDR WI-81-1: Drainage area. WDR WI-83-1: 1981. GAGE.--Water-stage recorder. Datum of gage is 674.5 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Flow affected by urbanization in the drainage basin. Gage-height telemeter at station. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of Mar. 30, 1960, reached a stage of 9.57 ft, discharge, 5,130 ft³/s, from rating curve extended above 2,000 ft³/s on basis of contracted-opening measurement of peak flow. | | | DISCH | ARGE, CUE | SIC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |--|--|--|--|--|--|---|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 16
39
47
37
60 | 5.0
4.9
6.1
7.7
5.7 | e8.0
e6.8
e7.1
e6.2
e5.7 | e5.1
e5.0
e5.0
e5.0
e5.0 | e4.1
e5.2
e7.0
e4.2
e3.4 | e3.1
e3.0
e2.8
e2.7
e2.6 | 15
15
13
27
67 | 200
126
49
32
174 | 44
22
18
16
14 | 5.2
4.2
5.7
3.3 | 4.5
4.3
12
59
14 | 1.6
1.5
1.4
1.3 | | 6
7
8
9
10 | 23
15
11
10
7.9 | 9.7
7.3
6.0
6.2 | e5.5
e5.3
e5.2
e5.2
e5.0 | e5.1
e5.4
e5.9
e5.7
e5.1 | e3.0
e2.6
e2.4
e2.1
e1.9 | e2.5
e2.4
e2.3
e2.3
e2.3 | 44
32
29
33
62 | 135
82
149
301
284 | 12
12
49
63
28 | 26
69
43
48
19 | 7.5
41
15
7.2
4.9 | 0.94
1.0
1.1
1.0
0.96 | | 11
12
13
14
15 | 7.6
6.2
5.6
5.0
7.2 | 13
23
13
9.5
9.2 | e5.1
e5.2
e5.3
e5.5
e6.0 | e4.7
e3.8
e3.4
e2.8
e2.6 | e1.8
e1.8
e1.7
e1.7
e1.6 | e3.0
e4.0
e12
e20
e60 | 71
52
37
30
25 | 111
155
97
60
67 | 19
15
13
11
9.7 | 15
18
11
6.0
36 | 3.7
3.6
3.6
3.2
2.6 | 0.96
0.97
13
22
34 | | 16
17
18
19
20 | 5.3
6.9
8.8
21 | 7.8
7.2
7.8
16
19 | e6.4
e7.0
e12
e46
e26 | e2.3
e2.1
e2.0
e1.9
e1.8 | e1.6
e1.5
e1.5
e1.9
e3.0 | e120
101
59
40
49 | 23
21
20
24
40 | 48
35
29
25
31 | 8.0
6.9
6.2
6.0
5.4 | 31
12
6.9
6.1
4.5 | 2.2
2.3
2.2
2.0
1.8 | 6.5
2.9
1.8
1.5
1.6 | | 21
22
23
24
25 | 6.0
5.3
6.8
5.8
25 | 16
33
18
11 | e17
e14
e11
e9.0
e6.8 | e1.7
e1.6
e1.5
e1.5
e1.4 | e5.0
e4.4
e4.0
e3.5
e3.3 | 44
30
23
21
17 | 29
21
18
18
16 | 28
19
17
16
14 | 4.9
4.6
4.7
4.1
4.0 | 5.5
7.1
4.0
3.2
3.2 | 1.7
1.7
1.5
1.5
1.5 | 1.5
6.8
13
3.8
2.3 | | 26
27
28
29
30
31 | 43
16
8.9
6.9
5.7
4.7 | 9.7
7.2
6.3
7.5
e9.0 | e6.6
e6.0
e5.7
e5.4
e5.2
e5.1 | e1.3
e1.3
e1.3
e1.6
e2.5 | e2.9
e2.9
e3.3
 | 16
13
15
34
22
16 | 13
11
10
9.8
12 | 13
13
16
65
27
78 | 7.9
7.9
26
25
9.4 | 3.5
3.5
2.9
2.5
2.5
3.2 | 1.5
2.2
2.1
2.0
1.7
1.6 | 1.6
3.2
4.2
2.5
3.8 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 484.6
15.6
60
4.7
0.32
0.37 | 324.8
10.8
33
4.9
0.22
0.25 | 276.3
8.91
46
5.0
0.18
0.21 | 96.7
3.12
5.9
1.3
0.06
0.07 | 83.3
2.98
7.0
1.5
0.06
0.06 | 745.0
24.0
120
2.3
0.49
0.56 | 837.8
27.9
71
9.8
0.57
0.63 | 2,496
80.5
301
13
1.64
1.89 | 476.7
15.9
63
4.0
0.32
0.36 | 421.0
13.6
69
2.5
0.28
0.32 | 215.6
6.95
59
1.5
0.14
0.16 | 139.83
4.66
34
0.94
0.09
0.11 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1964 - 2003 | , BY WATE | ER YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 23.8
95.5
(1992)
2.38
(1964) | 30.4
151
(1986)
4.26
(1964) | 34.3
118
(1983)
2.02
(1964) | 30.9
190
(1974)
2.47
(1977) | 48.1
161
(1971)
2.75
(1977) | 89.6
315
(1979)
13.6
(1968) | 88.5
316
(1973)
21.5
(1977) | 47.6
148
(2000)
5.32
(1977) | 45.8
164
(1999)
3.55
(1988) | 27.8
142
(1969)
3.09
(1988) | 26.2
72.3
(1987)
3.82
(1971) | 31.5
214
(1972)
3.05
(1971) | # 04087220 ROOT RIVER NEAR FRANKLIN, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEAR | S 1964 - 2003 | |--------------------------|---------------|-----------|-------------|----------|------------|----------------| | ANNUAL TOTAL | 11,597.8 | | 6,597.63 | | | | | ANNUAL MEAN | 31.8 | | 18.1 | | 43.6 | | | HIGHEST ANNUAL MEAN | | | | | 84.0 | 1974 | | LOWEST ANNUAL MEAN | | | | | 12.7 | 1977 | | HIGHEST DAILY MEAN | 662 | Apr 9 | 301 | May 9 | 2,390 | Apr 21, 1973 | | LOWEST DAILY MEAN | 3.0 | Aug 10 | 0.94 | Sep 6 | 0.44 | Aug 9,10, 1971 | | ANNUAL SEVEN-DAY MINIMUM | 3.7 | Aug 6 | 0.99 | Sep 6 | 0.99 | Sep 6, 2003 | | MAXIMUM PEAK FLOW | | | 449 | May 10 | (a)3,700 | Apr 21, 1973 | | MAXIMUM PEAK STAGE | | | 6.88 | May 10 | (b)9.43 | Jul 3, 2000 | | INSTANTANEOUS LOW FLOW | | | 0.88 | Sep 6 | 0.38 | Aug 10, 1971 | | ANNUAL RUNOFF (CFSM) | 0.65 | | 0.37 | • | 0.89 | • | | ANNUAL RUNOFF (INCHÉS) | 8.77 | | 4.99 | | 12.05 | | | 10 PERCENT EXCEEDS | 59 | | 44 | | 92 | | | 50 PERCENT EXCEEDS | 14 | | 6.8 | | 16 | | | 90 PERCENT EXCEEDS | 5.3 | | 1.7 | | 4.4 | | ⁽a) Gage height, 9.31 ft (b) Discharge, 2,420 ft³/s (e) Estimated due to ice effect or missing record #### STREAMS TRIBUTARY TO LAKE MICHIGAN # 04087233 ROOT RIVER CANAL NEAR FRANKLIN, WI LOCATION.--Lat 42°48'55", long 87°59'40", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.10, T.4 N., R.21 E., Racine County, Hydrologic Unit 04040002, on right bank 10 ft downstream from highway bridge 3.5 mi upstream from mouth, 5.5 mi southeast of intersection U.S. 45 and State Highway 100 in Franklin, and 8.7 mi southeast of Hales Corners. DRAINAGE AREA.--57.0 mi². PERIOD OF RECORD .-- October 1963 to current year. REVISED RECORD.--WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 670 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges and Sept. 16-25, which are poor (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | BIC FEET PE | | , WATER
LY MEAN V | | OBER 2002 | TO SEPTE | MBER 2003 | | | |--|---|--|---|---|---|---|---|--|--|--|--|--| | DAY
1
2
3
4
5 | OCT
4.5
7.8
13
13 | NOV
1.8
2.1
2.0
2.6
2.5 | DEC
1.9
2.3
2.4
2.0
1.9 | JAN
e2.9
e2.8
e2.7
e2.5
e2.6 | FEB
e3.0
e4.2
e5.0
e4.0
e3.2 | MAR
e1.5
e1.4
e1.3
e1.3
e1.2 | APR
19
17
15
17
62 | MAY 78 93 58 42 146 | JUN
33
25
22
19
16 | JUL
5.3
4.3
3.6
3.9
4.7 | AUG
3.4
4.7
11
90
35 | SEP
1.6
1.5
1.3
1.3 | | 6
7
8
9
10 | 9.2
6.3
4.8
3.6 | 2.6
2.7
2.3
2.4
2.5 | 1.7
e1.7
e1.7
e1.6
e1.6 | e2.7
e2.8
e3.2
e3.0
e2.9 | e2.5
e2.1
e1.8
e1.5
e1.2 | e1.2
e1.3
e1.3
e1.3
e1.2 | 53
41
34
32
79 | 134
91
117
257
233 | 14
14
20
31
22 | 6.9
55
36
56
33 | 26
36
17
12
8.7 | 1.0
1.1
1.1
1.0
0.91 | | 11
12
13
14
15 | 2.9
2.7
3.2
3.0
3.0 |
3.0
4.3
3.2
2.9
2.9 | e1.6
e1.7
e1.7
e1.8
e2.0 | e2.5
e2.3
e2.2
e1.9
e1.7 | e1.1
e1.0
e1.0
e0.99
e0.98 | e1.3
e1.5
e2.0
e5.0
e12 | 103
70
50
40
34 | 128
154
105
77
77 | 19
16
14
12
11 | 20
14
10
8.4
66 | 7.8
6.8
5.8
5.3
4.9 | 1.0
1.2
1.6
1.5
1.6 | | 16
17
18
19
20 | 2.8
2.6
3.2
3.8
3.4 | 2.8
2.6
2.7
3.0
3.2 | e2.2
e2.5
5.1
27
18 | e1.6
e1.5
e1.4
e1.3
e1.2 | e0.99
e1.0
e1.1
e1.7
e3.0 | e66
e40
e30
e24
e32 | 28
24
21
24
37 | 68
55
47
41
48 | 9.8
8.5
8.1
13 | 69
27
16
11
9.1 | 4.5
4.2
3.8
3.7
3.2 | 1.2
1.3
1.6
2.0
2.2 | | 21
22
23
24
25 | 2.8
2.8
2.5
2.4
3.4 | 3.2
3.7
3.3
3.0
2.9 | 11
8.1
5.9
5.0
e4.4 | e1.1
e1.0
e0.99
e0.97
e0.95 | e5.0
e3.5
e2.7
e2.0
e1.6 | e43
e30
e22
18
20 | 32
26
21
18
17 | 44
37
32
27
23 | 9.6
8.6
7.0
6.0
5.9 | 8.2
7.6
6.3
5.2
4.7 | 2.8
3.0
2.4
2.4
2.7 | 2.0
3.1
4.0
3.3
3.1 | | 26
27
28
29
30
31 | 6.7
4.7
3.6
3.1
3.1
2.6 | 2.5
e2.5
e2.4
e2.7
e2.5 | e3.7
e3.3
e3.2
e3.1
e3.6
e3.3 | e0.94
e0.94
e0.94
e0.95
e0.98
e1.2 | e1.4
e1.3
e1.7
 | 20
17
18
30
24
20 | 14
13
12
11
11 | 20
17
17
33
26
35 | 5.4
4.8
5.6
7.5
6.7 | 4.5
4.7
4.2
3.9
3.6
3.5 | 2.4
1.9
1.8
1.8
2.0 | e3.5
e4.0
e2.0
e1.7
e1.6 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 175.5
5.66
31
2.4
0.10
0.11 | 82.8
2.76
4.3
1.8
0.05
0.05 | 137.0
4.42
27
1.6
0.08
0.09 | 56.66
1.83
3.2
0.94
0.03
0.04 | 60.56
2.16
5.0
0.98
0.04
0.04 | 488.8
15.8
66
1.2
0.28
0.32 | 975
32.5
103
11
0.57
0.64 | 2,360
76.1
257
17
1.34
1.54 | 406.5
13.6
33
4.8
0.24
0.27 | 515.6
16.6
69
3.5
0.29
0.34 | 318.7
10.3
90
1.7
0.18
0.21 | 55.51
1.85
4.0
0.91
0.03
0.04 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | FICS OF MO
23.1
120
(2002)
1.05
(1964) | NTHLY M
34.5
154
(1993)
1.27
(1964) | EAN DATA
40.8
200
(1983)
0.86
(1964) | 33.7
219
(1974)
0.56
(1977) | ER YEARS
62.0
193
(2001)
0.69
(1977) | 1964 - 2003
105
352
(1979)
6.03
(1968) | , BY WATE
105
312
(1993)
10.9
(1977) | R YEAR (W
56.7
229
(2000)
2.47
(1977) | 49.2
156
(1996)
2.51
(1977) | 24.3
141
(1978)
2.18
(1991) | 19.8
138
(1978)
2.16
(1999) | 31.1
212
(1972)
1.28
(1971) | | ANNUAI
ANNUAI
HIGHES'
LOWEST
HIGHES'
ANNUAI
MAXIMU
MAXIMU
ANNUAI
10 PERCI
50 PERCI | | MEAN
MEAN
EAN
EAN
AY MINIM
LOW
TAGE
CFSM)
INCHES)
EDS | | 729
1
1
0
7
62
11 | Jun
.2 Jul
.6 Jul | 5
20 | 5,63
25
(b. 35 | | 9
0 10
1 24 | 1,4
(
(c)1,4
(d | a)0.40 De
b)0.45 Fe
140 Ma | 1974
1977
1977
ar 4, 1974
ac 19, 1963
b 8, 1977
ar 4, 1974
b 21, 1994 | ⁽a) Result of freezeup ⁽b) Ice affected ⁽c) Gage height, 9.88 ft ⁽d) Backwater from ice ⁽e) Estimated due to ice effect or missing record # STREAMS TRIBUTARY TO LAKE MICHIGAN # 04087240 ROOT RIVER AT RACINE, WI $LOCATION.--Lat~42^{\circ}45'05",~long~87^{\circ}49'25",~in~NW~\frac{1}{4}~NE~\frac{1}{4}~sec.6,~T.3~N.,~R.23~E.,~Racine~County,~Hydrologic~Unit~04040002,~on~left~bank~30~ft~downstream~from~State~Highway~38~bridge~in~Racine,~350~ft~downstream~from~Horlick~Dam,~and~5.2~mi~upstream~from~mouth.$ DRAINAGE AREA.--190 mi², of which 1.24 mi² is probably noncontributing. PERIOD OF RECORD .-- August 1963 to current year. REVISED RECORD.--WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 610 ft above NGVD of 1929, from topographic map. Prior to Feb. 5, 1964, nonrecording gage on bridge 30 ft upstream. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUI | BIC FEET PE | | O, WATER Y
LY MEAN V | | DBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |---|---|---|--|---|--|---|--|--|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 62
42
44
74
65 | 14
12
10
7.9
7.3 | 12
13
13
12
12 | 15
15
14
12
13 | 3.2
4.4
6.1
7.0
7.3 | 4.6
5.0
5.2
5.3
5.6 | 57
51
49
57
105 | 103
298
278
150
242 | 142
117
86
73
66 | 29
24
18
13
12 | 6.7
6.6
7.5
33
157 | 5.0
5.1
4.1
3.5
3.0 | | 6
7
8
9
10 | 76
49
31
25
23 | 7.5
8.4
16
18
15 | 11
10
10
9.5
9.4 | 12
12
13
14
13 | 7.5
8.2
8.1
6.9
5.9 | 5.3
5.5
5.7
6.0
5.4 | 170
143
116
106
134 | 416
413
371
562
653 | 58
52
58
94
116 | 15
70
137
135
126 | 90
63
109
66
44 | 2.7
2.5
2.2
1.7
1.5 | | 11
12
13
14
15 | 20
17
15
13
11 | 15
15
16
19
20 | 9.6
9.2
9.5
10 | 14
12
10
8.6
7.6 | 5.2
4.6
4.2
4.0
4.1 | 5.9
6.0
6.3
7.1 | 225
239
169
127
104 | 750
546
418
323
237 | 76
60
51
43
36 | 79
54
44
34
63 | 34
30
21
18
16 | 1.7
2.2
2.3
2.9 | | 16
17
18
19
20 | 10
11
11
11
12 | 18
17
15
15 | 12
12
16
24
69 | 7.0
5.8
4.8
e4.5
e4.2 | 4.1
4.0
4.2
4.5
4.9 | 49
169
139
91
79 | 89
78
67
65
84 | 210
166
134
116
116 | 31
29
27
27
26 | 146
126
64
41
31 | 14
11
9.2
7.5
6.8 | 28
32
23
16
11 | | 21
22
23
24
25 | 15
16
14
12
13 | 18
21
23
25
24 | 60
35
30
24
23 | e3.9
e3.7
e2.7
e2.0
e2.0 | 5.8
6.8
6.8
e6.7
e6.4 | 99
111
91
71
63 | 102
87
71
58
55 | 120
111
94
85
77 | 26
24
21
19
17 | 26
26
23
20
17 | 6.6
4.9
4.4
3.7
3.8 | 8.1
7.2
4.8
6.5 | | 26
27
28
29
30
31 | 14
26
32
24
20
16 | 21
19
16
16
15 | 20
17
16
15
15 | e2.0
e2.0
e1.8
e1.8
e2.1
2.7 | e6.0
5.4
4.8
 | 56
54
54
59
75
67 | 49
44
39
35
37 | 72
67
65
75
127
106 | 15
13
14
19
30 | 13
11
9.7
8.7
7.5
6.4 | 3.4
3.4
3.2
7.8
5.4
5.2 | 11
10
8.9
7.2
7.0 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 824
26.6
76
10
0.14
0.16 | 479.1
16.0
25
7.3
0.08
0.09 | 564.2
18.2
69
9.2
0.10
0.11 | 238.2
7.68
15
1.8
0.04
0.05 | 157.1
5.61
8.2
3.2
0.03
0.03 | 1,418.9
45.8
169
4.6
0.24
0.28 | 2,812
93.7
239
35
0.50
0.55 | 7,501
242
750
65
1.28
1.48 | 1,466
48.9
142
13
0.26
0.29 | 1,429.3
46.1
146
6.4
0.24
0.28 | 802.1
25.9
157
3.2
0.14
0.16 | 243.1
8.10
32
1.5
0.04
0.05 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 68.1
335
(1987)
2.79
(1964) | ONTHLY M
103
454
(1986)
8.90
(1964) | EAN DATA
120
568
(1983)
3.08
(1964) | 95.6
401
(1974)
2.21
(1977) | ER YEARS
177
641
(2001)
3.98
(1977) | 1963 - 2003
327
1,149
(1979)
30.6
(1968) | 347
1,071
(1993)
61.8
(1977) | R YEAR (W
190
649
(1990)
8.73
(1977) | Y) 150 493 (1996) 7.75 (1988) | 85.7
485
(1969)
5.18
(1988) | 64.5
237
(1987)
6.60
(1971) | 89.4
683
(1972)
2.58
(1963) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI INSTAN' ANNUAI ANNUAI 10 PERC 50 PERC | T ANNUAL
F ANNUAL
T DAILY M
F DAILY M
L SEVEN-E
UM PEAK I
UM PEAK S | MEAN MEAN MEAN EAN EAN STAGE LOW FLOW (CFSM) (INCHES) EDS | IUM | 1,230 | 1.5
) Jun
6.8 Aug
3.9 Jul
0.53
7.16 | 6
12 | 17,93
4
75
78 | 19.1
50 May
1.5 Sep
2.0 Jar
199 May
4.33 May
1.5 Sep
0.26
3.53 | 7 11
5 10
1 24
7 11 | 4,0
4,5 | 0.00 Jul 9
0.00 Jul
00 Ma
8.54 Ma | 3 - 2003
1993
1977
ur 5, 1974
9-15, 1988
ul 9, 1988
ur 5, 1974
9-15, 1988 | ⁽e) Estimated due to ice effect or missing record # 04087257 PIKE RIVER NEAR RACINE, WI LOCATION.--Lat 42°38'49", long 87°51'38", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.11, T.2 N., R.22 E., Kenosha County, Hydrologic Unit 04040002, on right bank just downstream from unnamed tributary, 1.7 mi
downstream from Pike Creek, 6.8 mi southwest of Racine Post Office and 9.0 mi upstream from mouth. DRAINAGE AREA.--38.5 mi². PERIOD OF RECORD.--October 1971 to current year. REVISED RECORDS.--WDR WI-76-1: 1975. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 620.09 ft above NGVD of 1929 (Southeastern Wisconsin Regional Planning Commission). REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Low flows considerably affected by effluent discharge in upper portion of basin, and by occasional regulation of small recreation dam 1.1 mi upstream. Gage-height telemeter at station. | 11 | 1 | , | • | U | | | 1 | U | C | | | | |------------------|---|----------------|----------------|-----------------------|------------------|-------------------------|-----------------|---------------------|----------------|----------------------|----------------|---------------------------| | | | DISCHA | ARGE, CU | BIC FEET PE | |), WATER '
LY MEAN ' | | OBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 15
39 | 10
9.9 | 7.1
7.4 | 6.2
e6.3 | e7.0
e7.2 | e6.1
e6.1 | 23
20 | 115
69 | 24
20 | 11
12 | 17
17 | 8.0
9.0 | | 3 | 39 | 9.9
9.9 | 8.3 | e6.3 | e7.2
e7.0 | e6.1
e6.3 | 20 | 69
45 | 20
19 | 11 | 25 | 9.0
11 | | 4 | 54 | 11 | e8.4 | e6.3 | e6.8 | e6.3 | 46 | 36 | 19 | 11 | 25 | 11 | | 5 | 44 | 13 | e8.0 | e6.2 | e6.6 | e6.5 | 84 | 212 | 17 | 22 | 15 | 11 | | 6
7 | 23
18 | 13
12 | e6.4
5.2 | e7.0
e8.0 | e6.4
e6.0 | e6.7
e7.0 | 46
39 | 113
70 | 16
16 | 65
89 | 15
15 | 9.9
9.1 | | 8 | 16 | 11 | 6.0 | e9.2 | e6.1 | e7.0 | 38 | 56 | 30 | 52 | 12 | 9.7 | | 9
10 | 14
13 | 11
9.8 | e7.2
8.5 | 11
11 | e6.0
e6.0 | e7.0
e7.3 | 43
74 | 206
119 | 25
19 | 43
27 | 10
11 | 10
10 | | 11 | 13 | 18 | 7.8 | 10 | e5.9 | e7.9 | 57 | 78 | 18 | 22 | 13 | 11 | | 12 | 12 | 14 | 8.1 | 8.1 | e5.9 | e9.0 | 42 | 93 | 16 | 17 | 12 | 16 | | 13
14 | 13
12 | 11
10 | 8.5
7.7 | e8.0
e7.8 | e5.9
e5.8 | e11
e14 | 31
27 | 61
60 | 15
14 | 15
14 | 12
11 | 20
16 | | 15 | 11 | 11 | 6.8 | e7.6 | e5.8 | 38 | 25 | 67 | 12 | 132 | 12 | 13 | | 16 | 11 | 9.7 | 7.4 | e7.3 | e5.8 | 33 | 23 | 50
42 | 12 | 41 | 12 | 12 | | 17
18 | 11
13 | 9.2
9.9 | 8.4
23 | e7.1
e7.0 | e5.9
e6.0 | 25
19 | 20
18 | 36 | 13
16 | 24
19 | 13
12 | 11
11 | | 19 | 11 | 13 | 39 | e6.9 | e6.1 | 21 | 20 | 33 | 18 | 16 | 12 | 9.8 | | 20 | 9.4 | 11 | 19 | e6.7 | e6.2 | 41 | 21 | 44 | 14 | 14 | 11 | 9.9 | | 21
22 | 9.8
10 | 15
14 | 14
12 | e6.4
e6.2 | e6.3
e6.5 | 53
33 | 19
18 | 33
27 | 13
11 | 14
14 | 12
12 | 10
16 | | 23 | 11 | 11 | e9.7 | e5.8 | e6.6 | 24 | 17 | 24 | 12 | 14 | 11 | 13 | | 24
25 | 11
18 | 9.5
9.4 | e9.0
e7.8 | e5.9
e6.0 | e6.6
e6.1 | 22
36 | 16
16 | 22
20 | 12
13 | 14
13 | 11
12 | 11
11 | | 26 | 15 | 9.6 | e7.5 | e6.0 | e6.1 | 29 | 14 | 18 | 13 | 13 | 13 | 11 | | 27 | 11 | 9.0 | e7.2 | e6.0 | e6.1 | 23 | 14 | 18 | 12 | 12 | 11 | 16 | | 28
29 | 10
10 | 7.4
7.6 | e6.8
6.6 | e6.2
e6.4 | e6.1 | 30
35 | 14
15 | 23
32 | 17
14 | 13
13 | 11
36 | 11
11 | | 30 | 11 | 8.3 | 7.3 | e6.6 | | 24 | 25 | 22 | 12 | 13 | 9.4 | 11 | | 31 | 11 | | 7.5 | e6.8 | 1740 | 22 | | 39 | 402 | 13 | 7.0 | 240.4 | | TOTAL
MEAN | 512.2
16.5 | 328.2
10.9 | 303.6
9.79 | 222.3
7.17 | 174.8
6.24 | 616.2
19.9 | 885
29.5 | 1,883
60.7 | 482
16.1 | 803
25.9 | 427.4
13.8 | 349.4
11.6 | | MAX | 54 | 18 | 39 | 11 | 7.2 | 53 | 84 | 212 | 30 | 132 | 36 | 20 | | MIN
CFSM | 9.4
0.43 | 7.4
0.28 | 5.2
0.25 | 5.8
0.19 | 5.8
0.16 | 6.1
0.52 | 14
0.77 | 18
1.58 | 11
0.42 | 11
0.67 | 7.0
0.36 | 8.0
0.30 | | IN. | 0.49 | 0.32 | 0.25
0.29 | 0.21 | 0.17 | 0.60 | 0.86 | 1.82 | 0.47 | 0.78 | 0.41 | 0.34 | | | | | | A FOR WATE | | | | | | | | | | MEAN
MAX | 19.9
91.3 | 29.2
126 | 32.0
101 | 26.3
97.1 | 39.1
109 | 68.3
258 | 72.4
185 | 45.8
157 | 38.8
150 | 21.1
129 | 20.2
92.5 | 26.6
131 | | (WY) | (2002) | (1986) | (1983)
2.35 | (1974) | (2001) | (1979) | (1993) | (2000) | (2000) | (1978) | (1978) | (1986) | | MIN (WY) | 4.40
(1972) | 3.62
(1972) | 2.35
(1977) | 2.05
(1977) | 3.74
(1977) | 14.3
(1996) | 12.1
(1977) | 4.57
(1977) | 8.32
(1988) | 4.93
(1976) | 4.35
(1976) | 3.25
(1976) | | , , | | , , | | | . , | . , | , , | | , , | , , | , , | ` ' | | SUMMAI
ANNUAI | RY STATIS | STICS | | FOR 2002 C.
10,139 | | YEAR | FOR 200
6,98 | 3 WATER Y
87 1 | EAR | WATER | YEARS 197 | 72 - 2003 | | ANNUAI | _ MEAN | | | 27 | | | | 19.1 | | | 36.6 | | | | IGHEST ANNUAL MEAN
OWEST ANNUAL MEAN | | | | | | | | | | 59.0
8.10 | 1993
1977 | | | OWEST ANNUAL MEAN
IGHEST DAILY MEAN
OWEST DAILY MEAN
NNUAL SEVEN-DAY MINIMUM | | | 540 | | | 21 | 12 May | | 1,1 | 40 Ma | y 18, 2000 | | | | | ПМ | 5
(a)7 | .2 Dec
.0 Dec | | (a) | 5.2 Dec
)5.9 Feb | | | | p 28, 1976
ov 10, 1971 | | | INNUAL SEVEN-DAY MINIMUM
IAXIMUM PEAK FLOW | | .0141 | (u) / | .o Dec | 3 | | 21 May | 9 | | 580 Ju | in 12, 2000 | | | JM PEAK S
L RUNOFF | | | 0 | .72 | | | 4.24 May 0.50 | 9 | (b)9.14 Feb 20, 1994 | | | | ANNUAL | L RUNOFF | (INCHÉS) | | 9 | .80 | | | 6.75 | | | 0.95
12.91 | | | | ENT EXCE
ENT EXCE | | | 45
16 | | | | 39
12 | | | 80
16 | | | | ENT EXCE | | | | .8 | | J | 6.3 | | | 5.9 | | | | | | | | | | | | | | | | ⁽a) Ice affected ⁽b) Backwater from ice ⁽e) Estimated due to ice effect or missing record UPPER MISSISSIPPI RIVER BASIN RECORDS Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. ST. CROIX RIVER BASIN # 05332500 NAMEKAGON RIVER NEAR TREGO, WI $LOCATION.--Lat~45^{\circ}56'53", long~91^{\circ}53'17", in~NW~\frac{1}{4}~SW~\frac{1}{4}~sec.17, T.40~N., R.12~W., Washburn~County, Hydrologic~Unit~07030002, at~powerplant~of~Northern~States~Power~Co., 4.0~mi~downstream~from~Potato~Creek, and 4.4~mi~northwest~of~Trego.$ DRAINAGE AREA.--488 mi². PERIOD OF RECORD.--October 1927 to September 1970. October 1987 to current year. REVISED RECORD.--WDR WI-88-1: Drainage area. GAGE .-- Headwater and tailwater read hourly. REMARKS.--Diurnal fluctuation caused by Trego powerplant. COOPERATION .-- Records of daily discharge furnished by Northern States Power Company and reviewed by Geological Survey. | | | DISCHA | ARGE, CUB | IC FEET PE | | , WATER Y
Y MEAN V | | OBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |--|--|---|---|---|---|---|---|---|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 591
591
487
591
591 | 682
682
682
682
682 | 482
422
422
422
422 | 487
487
382
382
382 | 350
350
350
380
380 | 380
380
380
380
380 | 520
520
520
520
520
520 | 600
570
570
570
616 | 660
580
580
580
580 | 635
645
645
570
570 | 400
400
400
430
430 | 310
310
310
310
310 | | 6
7
8
9
10 | 1,680
1,760
1,950
1,430
1,430 | 682
682
682
682
682 | 422
422
422
422
422 | 382
382
382
382
382 | 380
380
380
380
380 | 360
360
360
360
360 | 520
520
520
480
480 | 672
672
672
672
672 | 540
540
540
560
630 | 570
570
470
470
470 | 430
430
430
430
430 | 310
310
300
300
300 | | 11
12
13
14
15 | 1,270
1,270
1,070
766
766 | 682
682
682
591
591 | 422
422
422
422
422 | 382
382
382
318
318 | 380
380
360
360
360 | 360
360
360
360
360 | 480
460
460
485
485 | 1,250
1,250
1,530
1,360
1,300 | 665
765
740
740
640 | 470
470
470
470
470 | 375
375
350
350
365 | 275
275
275
275
275
310 | | 16
17
18
19
20 | 766
766
766
766
766 | 591
591
532
532
591 | 422
422
422
422
422 | 318
350
350
350
350 | 376
380
380
380
380 | 340
589
690
778
870 | 675
909
909
909
909 | 1,300
1,300
1,300
1,360
1,360 | 575
510
510
511
511 | 470
460
460
460
460 | 365
365
325
325
380 | 310
310
320
480
480 | | 21
22
23
24
25 | 766
769
769
766
682 | 591
591
591
591
591 | 422
487
487
487
487 | 365
365
365
365
365 | 380
380
380
380
380 | 525
525
525
560
560 | 944
944
930
930
930 | 790
790
1,190
1,190
1,190 | 511
500
511
511
500 | 400
400
400
400
400 | 360
320
320
320
350 | 480
480
380
360
360 | | 26
27
28
29
30
31 |
682
682
766
766
766
682 | 591
482
482
482
482 | 487
487
487
487
487
487 | 365
365
350
350
350
350 | 380
380
380
 | 560
520
520
520
520
520
520 | 930
930
930
930
856 | 1,190
1,190
670
670
660
660 | 453
453
453
453
453 | 400
400
370
370
370
400 | 350
320
320
320
320
320
320 | 360
360
360
340
340 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 28,169
909
1,950
487
1.86
2.15 | 18,359
612
682
482
1.25
1.40 | 13,792
445
487
422
0.91
1.05 | 11,485
370
487
318
0.76
0.88 | 10,486
374
380
350
0.77
0.80 | 14,622
472
870
340
0.97
1.11 | 21,055
702
944
460
1.44
1.61 | 29,786
961
1,530
570
1.97
2.27 | 16,755
558
765
453
1.14
1.28 | 14,585
470
645
370
0.96
1.11 | 11,405
368
430
320
0.75
0.87 | 10,200
340
480
275
0.70
0.78 | | STATIST | ΓICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1928 - 2003. | BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 448
909
(2003)
252
(1949) | 448
814
(1997)
288
(1934) | 390
581
(2002)
251
(1933) | 354
531
(1969)
245
(1933) | 350
512
(1969)
241
(1933) | 445
778
(1945)
282
(1934) | 731
1,827
(2001)
408
(1931) | 650
1,156
(1950)
389
(1934) | 559
1,093
(1944)
276
(1934) | 495
1,026
(1958)
235
(1934) | 420
728
(1999)
195
(1933) | 475
1,834
(1941)
214
(1933) | | SUMMA | RY STATIS | STICS | 1 | FOR 2002 C. | ALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 192 | 8 - 2003 | | ANNUA:
HIGHES'
LOWES'
HIGHES'
LOWES'
ANNUA!
ANNUA!
10 PERC
50 PERC | T ANNUAL
Γ ANNUAL
Τ DAILY M
Γ DAILY M | MEAN IEAN EAN OAY MINIM (CFSM) (INCHES) EDS EDS | UM | | Apr
Mar
Feb | 4-6 | 200,66
55
1,95
27
28
1
88
48
35 | 50 Oc
75 Sep
86 Sep
1.13
15.30 | t 8
0 11-14
0 8 | 6
3
5,2
1
1
7
4 | 13 (a)Au | 2002
1934
p 2, 1941
g 17, 1930
c 1, 1927 | ⁽a) Also occurred Sept. 7, 1930 # 05333500 ST. CROIX RIVER NEAR DANBURY, WI LOCATION.--Lat 46°04'30", long 92°14'50", in NW \(^1\)_4 SE \(^1\)_4 sec.33, T.42 N., R.15 W., Burnett County, Hydrologic Unit 07030001, St. Croix National Scenic Waterway, on left bank at downstream side of bridge on State Highway 35, 3.5 mi downstream from Namekagon River, 10 mi northeast of Danbury, and at mile 129.2. DRAINAGE AREA.--1,580 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--March 1914 to September 1981, October 1984 to current year. Prior to October 1933, published as "at Swiss". REVISED RECORDS.--WSP 1438: 1915(M), 1919-20, 1923-24(M), 1927(M), 1931(M), 1934, 1935-37(M). WSP 1628: 1918. WDR WI-85-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 882.21 ft above NGVD of 1929. Prior to Apr. 23, 1937, nonrecording gage 40 ft downstream at same datum. Apr. 23, 1937, to Jan. 5, 1939, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |----------------------------------|---|---|--|--|--------------------------|---|---|--|---|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1,440 | 1,490 | e1,000 | e1,000 | e860 | e880 | 1,310 | 1,750 | 1,650 | 1,750 | 958 | 683 | | 2 | 1,340 | 1,480 | e1,000 | e990 | e880 | e880 | 1,370 | 1,670 | 1,500 | 1,560 | 973 | 676 | | 3 | 1,350 | 1,460 | e960 | e900 | e890 | e870 | 1,340 | 1,650 | 1,400 | 1,680 | 971 | 652 | | 4 | 1,700 | 1,420 | e960 | e840 | e870 | e860 | 1,310 | 1,590 | 1,380 | 1,690 | 1,010 | 659 | | 5 | 2,580 | 1,410 | e920 | e800 | e840 | e850 | 1,290 | 1,800 | 1,340 | 1,650 | 969 | 679 | | 6 | 3,020 | 1,440 | e960 | e800 | e800 | e850 | 1,200 | 2,380 | 1,310 | 1,480 | 959 | 662 | | 7 | 3,450 | 1,380 | e940 | e800 | e780 | e860 | 1,150 | 2,400 | 1,400 | 1,390 | 963 | 660 | | 8 | 3,610 | 1,380 | e920 | e840 | e800 | e840 | 1,120 | 2,230 | 1,430 | 1,310 | 899 | 656 | | 9 | 3,590 | 1,400 | e900 | e840 | e800 | e820 | 1,130 | 2,560 | 1,390 | 1,260 | 859 | 642 | | 10 | 3,540 | 1,380 | e900 | e800 | e800 | e800 | 1,150 | 4,110 | 1,550 | 1,360 | 835 | 593 | | 11 | 3,140 | 1,380 | e900 | e780 | e800 | e830 | 1,200 | 4,480 | 2,160 | 1,480 | 850 | 608 | | 12 | 2,880 | 1,410 | e920 | e780 | e800 | e840 | 1,220 | 4,690 | 2,290 | 1,390 | 859 | 626 | | 13 | 2,720 | 1,370 | e950 | e770 | e800 | e860 | 1,220 | 4,560 | 2,170 | 1,330 | 823 | 692 | | 14 | 2,330 | 1,370 | e920 | e770 | e800 | e850 | 1,310 | 4,330 | 1,890 | 1,280 | 820 | 694 | | 15 | 1,990 | 1,330 | e920 | e720 | e800 | e860 | 1,300 | 3,950 | 1,720 | 1,260 | 801 | 694 | | 16 | 2,210 | 1,310 | e900 | e720 | e800 | e900 | 1,540 | 3,640 | 1,480 | 1,380 | 800 | 691 | | 17 | 2,020 | 1,280 | e900 | e770 | e800 | e1,200 | 1,830 | 3,160 | 1,380 | 1,310 | 773 | 702 | | 18 | 1,810 | 1,270 | e910 | e780 | e810 | e1,500 | 2,060 | 2,380 | 1,330 | 1,370 | 747 | 727 | | 19 | 1,870 | 1,250 | e920 | e780 | e850 | e1,800 | 2,230 | 2,350 | 1,280 | 1,270 | 727 | 989 | | 20 | 1,850 | 1,270 | e900 | e780 | e880 | e2,000 | 2,670 | 3,460 | 1,220 | 1,230 | 719 | 1,130 | | 21 | 1,750 | 1,300 | e940 | e790 | e900 | e1,700 | 3,110 | 3,900 | 1,120 | 1,280 | 726 | 1,010 | | 22 | 1,770 | 1,290 | e970 | e780 | e880 | e1,600 | 3,150 | 3,390 | 1,050 | 1,200 | 691 | 993 | | 23 | 1,810 | 1,280 | e970 | e770 | e850 | e1,500 | 3,110 | 3,250 | 1,320 | 1,210 | 701 | 931 | | 24 | 1,640 | 1,250 | e960 | e790 | e840 | e1,500 | 2,930 | 3,110 | 1,530 | 1,160 | 728 | 858 | | 25 | 1,580 | 1,240 | e970 | e780 | e800 | e1,400 | 2,320 | 2,420 | 1,910 | 1,100 | 714 | 816 | | 26
27
28
29
30
31 | 1,620
1,630
1,600
1,610
1,590
1,530 | 1,190
e1,200
e1,200
e1,100
e1,100 | e970
e970
e990
e1,000
e1,000
e1,000 | e780
e750
e780
e800
e820
e860 | e840
e840
e850
 | e1,300
e1,300
e1,300
1,320
1,320
1,310 | 2,340
2,060
1,900
1,850
1,800 | 2,090
2,050
1,880
1,770
1,700
1,680 | 2,220
2,100
2,010
2,210
1,980 | 1,100
1,030
997
933
899
938 | 721
699
694
687
676
675 | 833
782
762
803
807 | | TOTAL | 66,570 | 39,630 | 29,340 | 24,960 | 23,260 | 35,700 | 53,520 | 86,380 | 48,720 | 40,277 | 25,027 | 22,710 | | MEAN | 2,147 | 1,321 | 946 | 805 | 831 | 1,152 | 1,784 | 2,786 | 1,624 | 1,299 | 807 | 757 | | MAX | 3,610 | 1,490 | 1,000 | 1,000 | 900 | 2,000 | 3,150 | 4,690 | 2,290 | 1,750 | 1,010 | 1,130 | | MIN | 1,340 | 1,100 | 900 | 720 | 780 | 800 | 1,120 | 1,590 | 1,050 | 899 | 675 | 593 | | CFSM | 1.36 | 0.84 | 0.60 | 0.51 | 0.53 | 0.73 | 1.13 | 1.76 | 1.03 | 0.82 | 0.51 | 0.48 | | IN. | 1.57 | 0.93 | 0.69 | 0.59 | 0.55 | 0.84 | 1.26 | 2.03 | 1.15 | 0.95 | 0.59 | 0.53 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1914 - 2003 | BY WATE | R YEAR (W | /Y) | | | | | MEAN | 1,192 | 1,213 | 1,022 | 908 | 904 | 1,335 | 2,376 | 1,846 | 1,510 | 1,299 | 1,071 | 1,202 | | MAX | 2,489 | 2,216 | 1,910 | 1,555 | 1,518 | 2,930 | 4,944 | 4,023 | 3,797 | 3,230 | 2,223 | 4,759 | | (WY) | (1969) | (1997) | (1992) | (1997) | (1997) | (1973) | (2001) | (1950) | (1944) | (1958) | (1955) | (1941) | | MIN | 590 | 631 | 551 | 600 | 535 | 703 | 939 | 889 | 626 | 514 | 432 | 564 | | (WY) | (1933) | (1926) | (1933) | (1924) | (1936) | (1934) | (1931) | (1931) | (1934) | (1934) | (1934) | (1933) | # 05333500 ST. CROIX RIVER NEAR DANBURY, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1914 - 2003 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 569,541 | 496,094 | | | ANNUAL MEAN | 1,560 | 1,359 | 1,322 | | HIGHEST ANNUAL MEAN | | | 1,982 1986 | | LOWEST ANNUAL MEAN | | | 795 1934 | | HIGHEST DAILY MEAN | 7,360 Apr 15 | 4,690 May 12 | 10,600 Apr 24, 2001 | | LOWEST DAILY MEAN | (a)800 (b)Jan 2 | 593 Sep 10 | 405 (c)Aug 6, 1934 | | ANNUAL SEVEN-DAY MINIMUM | (a)814 Feb 26 | 635 Sep 6 | 417 Aug 12, 1934 | | MAXIMUM PEAK FLOW | | 4,800 May 12 | 11,000 Apr 24, 2001 | | MAXIMUM PEAK STAGE | | 4.57 May 12 | 8.72 Apr 24, 2001 | | INSTANTANEOUS LOW FLOW | | 574 Sep 10 | 393 Aug 6,13, 1934 | | ANNUAL RUNOFF (CFSM) | 0.99 | 0.86 | 0.84 | | ANNUAL RUNOFF (INCHES) | 13.41 | 11.68 | 11.37 | | 10 PERCENT EXCEEDS | 2,670 | 2,300 | 2,190 | | 50 PERCENT EXCEEDS | 1,270 | 1,160 | 1,080 | | 90 PERCENT EXCEEDS | 900 | 767 | 730 | ⁽a) Ice affected (b) Also occurred additional days (c) Also occurred Aug. 13, 16, 17, 1934 (e) Estimated due to ice effect or missing record # 05333500 ST. CROIX RIVER NEAR DANBURY, WI-Continued # WATER-QUALITY RECORDS PERIOD OF RECORD .-- June 1995 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: April to September 1997, December 1999 to current year. $INSTRUMENTATION. -- Continuous\ water\ temperature\ recorder\ April\ to\ September\ 1997\ and\ December\ 1999\ to\ current\ year.$ REMARKS.--Records represent water
temperature at sensor within 0.5°C. EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum temperature, 30.5°C, Aug. 6, 2001; minimum, 0.0°C on many days. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum temperature, 27.0°C, Aug. 16 and 18; minimum 0.0° on many days. # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | (| ОСТОВЕН | ₹ | N | OVEMBE | ER | D | ECEMBE | ER | Ţ | JANUARY | Y | | 1
2
3
4
5 | 16.0
14.5
12.0
12.0
12.0 | 13.5
12.0
10.0
11.5
10.5 | 14.5
13.0
11.0
12.0
11.0 | 3.5
4.5
4.0
4.0
3.5 | 2.0
2.5
2.5
2.5
2.0 | 2.5
3.5
3.5
3.0
2.5 | 0.0
0.0
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 11.5
10.0
10.0
9.5
9.5 | 10.0
9.0
9.0
8.5
8.5 | 11.0
9.5
9.5
9.0
9.0 | 3.5
4.5
4.5
5.0
5.0 | 2.5
2.0
3.0
3.5
4.0 | 3.0
3.0
4.0
4.0
4.5 | 0.0
0.0
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 11.5
11.5
10.0
9.0
9.5 | 9.5
10.0
8.0
7.5
8.0 | 10.5
11.0
9.0
8.5
9.0 | 4.0
3.0
2.0
2.5
1.5 | 3.0
2.0
1.0
1.0
0.5 | 4.0
3.0
1.5
2.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 8.0
7.0
7.0
6.5
6.5 | 6.5
6.5
6.0
5.5
5.0 | 7.0
6.5
6.5
6.0
5.5 | 1.5
1.5
2.0
2.5
2.0 | 0.5
0.0
0.5
1.0 | 1.0
1.0
1.0
1.5
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 5.5
5.0
4.5
4.0
5.0 | 4.5
4.0
3.5
2.5
4.0 | 5.0
4.5
4.0
3.5
4.5 | 2.0
1.5
2.0
1.0
0.0 | 1.0
1.0
1.0
0.0
0.0 | 1.5
1.0
1.5
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 4.5
5.0
5.5
5.5
5.0
4.0 | 4.0
3.5
4.5
5.0
4.0
3.0 | 4.5
4.0
5.0
5.0
5.0
3.5 | 0.0
0.0
0.0
1.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | | MONTH | 16.0 | 2.5 | 7.7 | 5.0 | 0.0 | 1.9 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | # 171 05333500 ST. CROIX RIVER NEAR DANBURY, WI—Continued # ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003}$ | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|---|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 7.0
5.5
2.5
1.0
5.0 | 3.0
2.5
0.5
0.5
0.0 | 5.0
4.5
1.5
0.5
2.5 | 15.5
15.5
16.0
15.0
13.0 | 11.5
11.5
11.5
13.0
11.5 | 13.5
13.5
13.5
14.0
12.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 7.0
5.5
7.0
9.0
11.0 | 2.0
3.0
1.5
3.5
5.5 | 4.0
4.0
4.0
6.0
8.0 | 12.5
14.0
14.0
13.0
12.0 | 11.0
11.5
12.5
11.0
10.5 | 11.5
13.0
13.5
12.0
11.0 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.5
0.5
1.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 12.0
11.0
12.0
15.0
14.0 | 7.0
7.0
7.0
9.5
10.5 | 9.0
9.0
9.0
12.0
12.5 | 11.5
13.0
14.0
13.5
15.0 | 10.5
10.0
11.5
12.5
12.0 | 11.0
11.5
13.0
13.0
13.5 | | 16
17
18
19
20 | 0.0
0.5
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 10.5
6.0
7.0
6.5
6.0 | 4.5
4.5
6.0
6.0
5.5 | 7.5
5.0
6.5
6.0
5.5 | 16.0
17.0
17.5
17.0
16.0 | 14.0
14.5
15.5
15.0
13.5 | 15.0
15.5
16.5
16.0
15.0 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.5
0.5
2.5
5.5 | 0.0
0.0
0.0
0.0
2.0 | 0.0
0.0
0.5
1.0
4.0 | 8.0
9.0
9.5
10.5
12.5 | 5.0
6.0
7.0
8.0
9.5 | 6.5
7.5
8.0
9.0
11.0 | 16.5
15.5
16.5
16.5
17.0 | 14.5
14.0
13.0
14.5
15.0 | 15.5
14.5
14.5
15.5
16.0 | | 26
27
28
29
30
31 | 0.5
0.0
0.0
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0 | 6.0
4.0
2.5
5.5
6.5
5.5 | 3.5
2.0
1.5
1.5
3.0
3.5 | 4.5
3.5
2.0
3.0
4.5
4.5 | 12.5
15.0
14.0
13.5
14.5 | 9.5
11.5
11.5
10.5
10.5 | 11.0
13.0
13.0
12.0
12.0 | 18.0
19.0
20.5
20.0
20.5
18.5 | 15.0
15.5
18.0
17.0
17.0
15.5 | 16.5
17.5
19.0
18.5
18.5
17.0 | | 31 | | | | 3.3 | 3.3 | 4.3 | | | | 10.5 | 13.3 | 17.0 | | | 0.5 | 0.0 | 0.0 | 6.5 | 0.0 | 0.9 | 15.0 | 0.0 | 7.5 | 20.5 | 10.0 | 14.5 | | MONTH | 0.5 | 0.0
JUNE | 0.0 | 6.5 | 0.0
JULY | 0.9 | | 0.0
AUGUST | | | 10.0
EPTEMBI | | | | 19.5
19.5
20.0
20.0
21.0 | | 0.0
17.5
18.0
18.0
18.0
19.0 | 23.5
25.0
26.0
25.5
25.5 | | 0.9
21.5
22.5
23.5
24.0
23.5 | | | | | | | | MONTH 1 2 3 4 | 19.5
19.5
20.0
20.0 | JUNE
15.5
16.5
16.5
17.0 | 17.5
18.0
18.0
18.0 | 23.5
25.0
26.0
25.5 | JULY
19.5
20.5
21.5
22.5 | 21.5
22.5
23.5
24.0 | 24.0
23.0
22.5
24.0 | 20.0
20.5
20.5
20.5
20.0 | 22.0
22.0
21.0
21.5 | 21.0
21.0
19.5
19.5 | 16.0
17.5
16.5
15.0 | 18.5
19.5
18.0
17.0 | | MONTH 1 2 3 4 5 6 7 8 9 | 19.5
19.5
20.0
20.0
21.0
19.5
17.5
19.0
20.5 | JUNE 15.5 16.5 16.5 17.0 16.5 17.0 16.5 16.5 16.0 16.5 | 17.5
18.0
18.0
18.0
19.0
18.5
17.0
17.5
18.5 | 23.5
25.0
26.0
25.5
25.5
26.0
25.5
25.0
22.5 | JULY 19.5 20.5 21.5 22.5 21.5 22.0 22.5 21.0 20.0 | 21.5
22.5
23.5
24.0
23.5
24.0
24.0
23.0
21.0 | 24.0
23.0
22.5
24.0
24.5
24.5
24.5
24.5
25.0 |
20.0
20.5
20.5
20.5
20.0
21.0
21.5
20.5
20.0 | 22.0
22.0
21.0
21.5
22.5
23.0
22.5
22.5
22.5 | 21.0
21.0
19.5
19.5
20.0
21.0
22.0
22.5
22.0 | 16.0
17.5
16.5
15.0
15.0
16.5
18.0
18.5
18.5 | 18.5
19.5
18.0
17.0
17.5
19.0
20.0
20.5
20.0 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 19.5
19.5
20.0
20.0
21.0
19.5
17.5
19.0
20.5
19.0
19.0
21.0
21.5 | JUNE 15.5 16.5 16.5 17.0 16.5 17.0 16.5 16.0 16.5 16.0 17.0 17.5 18.5 | 17.5
18.0
18.0
19.0
18.5
17.0
17.5
18.5
17.5
17.0
18.0
19.0
20.0 | 23.5
25.0
26.0
25.5
25.5
25.5
26.0
25.5
25.0
22.5
20.0
21.5
23.5
24.0
23.0 | JULY 19.5 20.5 21.5 22.5 21.5 22.0 22.5 21.0 20.0 18.5 17.5 19.0 20.0 21.5 | 21.5
22.5
23.5
24.0
23.5
24.0
23.0
21.0
19.5
19.5
21.0
22.0
22.0 | 24.0
23.0
22.5
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.0
24.5
25.0
25.0 | AUGUST 20.0 20.5 20.5 20.0 21.0 21.5 20.5 20.0 20.0 21.0 20.5 19.0 19.5 21.0 | 22.0
22.0
21.0
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | 21.0
21.0
19.5
19.5
20.0
21.0
22.0
22.5
22.0
21.5
22.0
21.5 | 16.0
17.5
16.5
16.5
15.0
15.0
16.5
18.0
18.5
18.5
18.5
19.0
17.5
15.5 | 18.5
19.5
18.0
17.0
17.5
19.0
20.0
20.5
20.0
19.5
20.0
20.0
20.0
18.0
17.0 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 19.5
19.5
20.0
21.0
21.0
19.5
17.5
19.0
20.5
19.0
21.0
21.0
21.5
23.0
24.5
24.5
24.5 | JUNE 15.5 16.5 16.5 17.0 16.5 17.0 16.5 16.0 16.5 16.0 17.0 17.5 18.5 18.5 19.5 20.0 19.5 | 17.5
18.0
18.0
19.0
18.5
17.0
17.5
18.5
17.5
17.0
18.0
19.0
20.0
20.5
22.0
22.0
22.0
22.0 | 23.5
25.0
26.0
25.5
25.5
25.5
26.0
25.5
25.0
22.5
20.0
21.5
23.5
24.0
23.5
24.5
24.5
24.5
23.5
22.5 | JULY 19.5 20.5 21.5 22.5 21.5 22.0 22.5 21.0 20.0 18.5 17.5 19.0 20.0 21.5 20.0 20.0 21.5 19.5 19.5 | 21.5
22.5
23.5
24.0
23.5
24.0
24.0
23.0
21.0
19.5
19.5
21.0
22.0
22.0
21.5
22.5
23.0
21.5
21.5 | 24.0
23.0
22.5
24.0
24.5
24.5
24.5
25.0
24.5
25.0
26.5
27.0
26.0
27.0
26.0 | AUGUST 20.0 20.5 20.5 20.0 21.0 21.5 20.0 20.0 20.0 21.0 20.5 19.0 19.5 21.0 21.5 22.5 22.0 22.0 24.0 | 22.0
22.0
21.0
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | 21.0
21.0
19.5
19.5
20.0
21.0
22.0
22.5
22.0
21.5
22.0
21.5
19.0
18.5
18.5
18.5
19.0
16.5 | 16.0
17.5
16.5
15.0
15.0
16.5
18.0
18.5
18.5
18.5
19.0
19.0
17.5
15.5
15.0 | 18.5
19.5
18.0
17.0
17.5
19.0
20.0
20.5
20.0
19.5
20.0
20.0
18.0
17.0
16.5
18.5
18.5
18.0
15.5 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 19.5
19.5
20.0
20.0
21.0
19.5
17.5
19.0
20.5
19.0
21.5
23.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | JUNE 15.5 16.5 16.5 17.0 16.5 17.0 16.5 16.0 16.5 16.0 17.0 17.5 18.5 18.5 19.5 20.0 19.5 19.0 20.5 21.0 21.5 | 17.5
18.0
18.0
19.0
18.5
17.0
17.5
18.5
17.5
17.0
18.0
19.0
20.0
22.0
22.0
22.0
22.0
21.5
22.5
22.5
22.5 | 23.5
25.0
26.0
25.5
25.5
25.5
22.5
20.0
21.5
23.5
24.0
23.0
23.5
24.5
24.5
23.5
24.0
23.5
24.5
23.5
24.0
23.5
24.5
24.5
23.5
24.0 | JULY 19.5 20.5 21.5 22.5 21.5 22.0 22.5 21.0 20.0 18.5 17.5 19.0 20.0 21.5 20.0 21.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 | 21.5
22.5
23.5
24.0
23.5
24.0
23.0
21.0
19.5
21.0
22.0
21.5
22.0
21.5
22.5
23.0
21.5
22.0
21.5
22.0
21.5 | 24.0
23.0
22.5
24.0
24.5
24.5
24.5
25.0
24.5
25.0
26.5
27.0
26.0
27.0
26.0
26.5
25.0
24.0
26.0
26.5 | AUGUST 20.0 20.5 20.5 20.0 21.0 21.5 20.0 20.0 21.0 20.5 19.0 19.5 21.0 21.5 22.5 22.0 24.0 23.5 22.0 19.5 20.5 20.5 20.5 | 22.0
22.0
21.0
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | 21.0
21.0
19.5
19.5
20.0
21.0
22.0
22.5
22.0
21.5
22.0
21.5
22.0
19.0
18.5
18.5
18.5
16.5
16.5
16.5
15.5
15.5 | 16.0
17.5
16.5
15.0
15.0
16.5
18.0
18.5
18.5
18.5
19.0
19.0
17.5
15.5
15.0
14.0
17.0
16.5
14.5
14.5
12.5 | 18.5
19.5
18.0
17.0
17.5
19.0
20.0
20.5
20.0
19.5
20.0
20.0
18.0
17.0
16.5
18.5
18.0
15.5
14.5 | # 05340500 ST. CROIX RIVER AT ST. CROIX FALLS, WI LOCATION.--Lat 45°24'25", long 92°38'49", in SW ½ NW ½ sec.30, T.34 N., R.18 W., Polk County, Hydrologic Unit 07030005, St. Croix National Scenic Riverway, on left bank, 1,500 ft downstream from powerplant of Northern States Power Co., in St. Croix Falls, and at mile 52.2. DRAINAGE AREA.--6,240 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1902 to current year. Prior to January 1910, monthly discharge only, published in WSP 1308. Prior to October 1939, published as "near St. Croix Falls." REVISED RECORDS.--WSP 1115: 1929. WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 689.94 ft above NGVD of 1929. Prior to July 1905, gage heights and discharge measurements were used by Loweth and Wolff, consulting engineers of St. Paul, Minn., to determine the flow. July 1905 to February 1940, records were computed from power generation at the St. Croix Falls Powerplant. February 1940 to Sept. 30, 1979, water-stage recorder at site 300 ft downstream at same datum REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Diurnal fluctuation caused by St. Croix Falls Powerplant 1,500 ft upstream. Gage-height telemeter and data-collection platform at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--|--|---|--|--|---|---|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 5,020
4,820
4,760
5,490
7,090 | 6,070
5,280
5,390
5,300
5,130 | 2,610
2,610
2,000
2,260
2,840 | 2,840
2,500
e2,600
2,410
2,610 | 2,090
2,110
e2,200
e2,200
e2,300 | 2,270
e2,100
2,150
2,230
e2,200 | 4,520
4,550
4,420
4,460
4,120 | 7,610
7,110
6,500
6,300
6,360 | 6,560
6,190
5,960
5,700
5,240 | 16,200
13,600
13,300
15,200
14,400 | 3,380
3,450
3,520
3,380
3,050 | 1,830
1,830
1,930
1,750
1,740 | | | 6
7
8
9
10 | 9,600
11,300
12,100
12,200
11,900 | 5,070
4,890
4,670
5,120
4,820 | 2,280
2,760
3,260
2,900
3,440 | 2,840
2,900
2,970
3,060
3,030 | e2,300
e2,200
e2,300
e2,200
e2,100 | e2,200
2,220
2,280
e2,000
e2,100 | 4,270
4,170
3,890
3,710
3,750 | 7,170
9,820
10,900
11,500
13,900 | 4,960
5,010
5,240
5,180
5,390 | 12,900
11,400
10,300
10,200
9,420 | 3,310
3,150
2,930
2,920
2,640 | 1,770
1,800
1,840
1,780
1,720 | | | 11
12
13
14
15 | 11,400
10,700
10,100
9,610
9,070 | 4,840
4,840
4,430
4,690
4,410 | 3,270
3,330
3,260
3,360
3,390 | 2,480
2,220
2,220
2,150
2,040 | e2,300
2,480
2,220
2,310
2,440 | 2,180
2,180
2,220
2,320
2,340 | 3,750
3,760
3,830
3,730
3,760 | 17,200
21,800
22,200
21,200
19,600 | 6,040
8,480
8,910
8,440
7,830 | 8,990
9,100
8,760
8,320
8,150 | 2,660
2,630
2,720
2,420
2,360 | 1,690
2,340
2,940
2,560
2,800 | | | 16
17
18
19
20 | 8,200
7,770
7,600
7,290
7,020 | 4,340
4,260
4,130
4,120
4,110 | 3,240
3,180
3,240
3,340
3,420 | 2,180
2,090
2,090
2,190
2,280 | 2,100
2,090
2,260
2,080
2,460 | 3,220
3,170
3,800
3,820
4,250 | 5,170
6,370
8,010
9,290
11,400 | 17,600
15,400
13,600
12,700
13,400 | 7,140
6,700
5,540
5,520
5,200 | 7,600
7,170
6,760
6,080
5,980 | 2,350
2,110
2,470
2,220
2,250 | 2,410
2,430
2,640
2,710
3,080 | | | 21
22
23
24
25 | 6,930
6,870
6,710
6,240
6,230 | 4,030
3,990
3,950
3,950
3,650 | 3,520
3,280
3,240
2,970
2,860 | 2,190
2,080
2,150
2,080
2,020 | 2,160
2,260
2,340
e2,300
e2,200 |
4,550
4,980
5,050
5,730
6,070 | 14,200
16,100
17,000
16,100
14,600 | 14,900
16,100
15,700
13,900
12,400 | 4,360
4,470
4,200
8,710
18,000 | 5,450
5,240
4,890
4,500
4,020 | 1,960
2,130
1,990
2,100
2,040 | 3,340
3,460
3,260
2,850
2,640 | | | 26
27
28
29
30
31 | 6,210
6,220
6,210
6,140
5,540
5,730 | 2,970
3,390
2,820
3,570
3,660 | 2,910
2,580
2,800
2,850
3,090
3,110 | 1,900
2,020
1,890
2,020
2,110
2,120 | 2,110
2,340
2,190
 | 5,880
6,220
5,250
4,990
4,430
4,710 | 12,600
11,100
10,000
8,910
8,240 | 11,000
9,290
8,540
7,820
7,300
6,880 | 19,500
19,300
18,600
17,500
17,100 | 4,130
3,740
3,890
3,670
3,250
3,410 | 2,100
2,110
2,100
1,940
1,930
1,750 | 2,810
2,630
2,770
2,530
2,440 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 242,070
7,809
12,200
4,760
1.25
1.44 | 131,890
4,396
6,070
2,820
0.70
0.79 | 93,200
3,006
3,520
2,000
0.48
0.56 | 72,280
2,332
3,060
1,890
0.37
0.43 | 62,640
2,237
2,480
2,080
0.36
0.37 | 109,110
3,520
6,220
2,000
0.56
0.65 | 229,780
7,659
17,000
3,710
1.23
1.37 | 385,700
12,440
22,200
6,300
1.99
2.30 | 256,970
8,566
19,500
4,200
1.37
1.53 | 250,020
8,065
16,200
3,250
1.29
1.49 | 78,070
2,518
3,520
1,750
0.40
0.47 | 72,320
2,411
3,460
1,690
0.39
0.43 | | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 3,775
14,270
(1969)
1,380
(1933) | 3,506
11,910
(1972)
1,342
(1911) | 2,604
5,821
(1984)
1,288
(1911) | A FOR WATE
2,198
4,279
(1984)
1,157
(1911) | R YEARS
2,170
6,021
(1984)
1,257
(1913) | 1902 - 2003,
4,232
14,420
(1945)
1,538
(1912) | BY WATER
10,330
29,600
(2001)
2,212
(1902) | R YEAR (W
7,547
21,840
(1950)
2,430
(1934) | Y) 5,732 19,510 (1944) 1,481 (1934) | 4,214
17,260
(1952)
1,014
(1934) | 2,942
9,777
(1955)
839
(1934) | 3,501
14,590
(1941)
1,152
(1933) | | | ANNUAI
ANNUAI
HIGHES | L MEAN
ΓANNUAL | MEAN | | FOR 2002 CA
2,191,780
6,005 | ALENDAR | YEAR | FOR 2003
1,984,05
5,43 | | EAR | WATER 3
4,4
8,5
1,7 | 69 | 02 - 2003
1986
1934 | | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) | | 32,300 Apr 15,16
1,940 Feb 7
2,260 Feb 6 | | 22,200 May 13
1,690 Sep 11
1,760 Sep 5
22,600 May 12
11.15 May 12
0.87 | | 11
5
12 | 59,5
7
60,9 | 00 A
75 J
54 J
00 A
25.88 A | pr 26, 2001
ful 17, 1910
ful 29, 1934
pr 25, 2001
pr 25, 2001 | | | | | | ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | | 13.
11,300
4,690 | 07 | | 1
12,00
3,76 | 0 | | 8,9
2,8 | 00 | | | 2,100 1,580 2,510 90 PERCENT EXCEEDS ⁽e) Estimated due to ice effect or missing record # ST. CROIX RIVER BASIN 173 # 05340500 ST. CROIX RIVER AT ST. CROIX FALLS, WI—Continued # WATER-QUALITY RECORDS PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: January 2000 to current year. INSTRUMENTATION.--Water temperature recorder since January 21, 2000, provides 15-minute readings. REMARKS.--Records represent water temperature at sensor, within 0.5°C, located near the orifice. EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 30.5°C, Aug. 7-9, 2001; minimum 0.0°C on many days. EXTREMES FOR CURRENT PERIOD .-- WATER TEMPERATURE: Maximum, 28.0°C, Aug. 20; minimum 0.0°C on many days. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |-------|------|---------|------|-----|--------|------|-----|--------|------|-----|-------|------| | | | ОСТОВЕР | ₹ | N | OVEMBE | ER | D | ECEMBE | ER | J | ANUAR | Y | | 1 | 14.5 | 12.5 | 14.0 | 4.0 | 2.5 | 3.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2 | 15.0 | 13.5 | 14.0 | 3.5 | 2.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3 | 13.5 | 12.0 | 13.0 | 3.5 | 2.0 | 3.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4 | 12.5 | 11.0 | 12.0 | 3.5 | 2.5 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5 | 11.5 | 10.5 | 11.0 | 3.5 | 2.5 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 6 | 11.0 | 9.5 | 10.5 | 3.5 | 2.5 | 3.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 7 | 10.0 | 8.0 | 9.0 | 4.0 | 2.5 | 3.0 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 8 | 9.0 | 8.0 | 8.5 | 4.0 | 3.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 9 | 9.0 | 8.0 | 8.5 | 4.5 | 3.0 | 4.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 10 | 9.5 | 8.0 | 9.0 | 4.5 | 3.5 | 4.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 11 | 10.5 | 9.0 | 9.5 | 4.5 | 3.5 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12 | 11.5 | 10.0 | 10.5 | 4.0 | 2.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 13 | 11.0 | 9.5 | 10.0 | 3.0 | 2.0 | 2.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 14 | 10.0 | 8.5 | 9.0 | 2.0 | 1.0 | 1.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 15 | 9.5 | 8.0 | 8.5 | 1.5 | 0.5 | 1.0 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 16 | 8.5 | 7.0 | 7.5 | 1.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 17 | 7.5 | 6.0 | 6.5 | 1.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 18 | 6.5 | 5.5 | 6.0 | 1.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 19 | 6.0 | 5.5 | 6.0 | 1.5 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 20 | 6.0 | 5.0 | 5.5 | 2.0 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 21 | 5.0 | 4.0 | 4.5 | 2.0 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 22 | 4.5 | 4.0 | 4.0 | 1.5 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 23 | 4.5 | 3.5 | 4.0 | 1.5 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 24 | 4.0 | 3.5 | 4.0 | 1.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 25 | 4.0 | 3.5 | 4.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 26 | 4.5 | 3.5 | 4.0 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 27 | 4.5 | 3.5 | 4.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 28 | 4.5 | 3.5 | 4.0 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 29 | 5.0 | 4.0 | 4.5 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 30 | 5.0 | 4.5 | 4.5 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 31 | 4.5 | 3.5 | 4.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | MONTH | 15.0 | 3.5 | 7.5 | 4.5 | 0.0 | 1.8 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | # $05340500\,$ ST. CROIX RIVER AT ST. CROIX FALLS, WI—Continued # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--
--|--|--|--| | | | FEBRUAR | T. | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 4.5
5.5
4.5
3.0
1.0 | 2.5
3.5
2.5
0.5
0.0 | 3.5
4.5
4.0
1.5
0.5 | 13.0
13.5
14.0
14.0
12.5 | 11.5
12.5
12.5
12.0
11.0 | 12.5
13.0
13.5
13.0
12.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 2.5
4.0
4.5
5.5
7.5 | 0.0
1.5
2.5
3.0
4.5 | 1.0
2.5
3.5
4.0
6.0 | 11.5
11.5
12.0
12.0
12.0 | 10.5
10.5
10.5
11.0
10.5 | 11.0
11.0
11.5
11.5
11.0 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 9.5
11.0
11.5
12.5
14.5 | 6.5
8.0
9.0
10.0
11.5 | 7.5
9.5
10.0
11.0
13.0 | 11.0
10.0
11.5
12.5
13.5 | 9.0
8.5
9.0
10.5
11.5 | 10.0
9.0
10.5
11.5
12.5 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 14.0
9.5
5.0
5.0
4.5 | 9.0
4.5
4.0
3.5
3.5 | 12.0
6.5
4.5
4.0
4.0 | 15.0
16.0
17.0
17.0
16.0 | 13.0
14.0
15.0
15.5
14.5 | 14.0
15.0
16.0
16.5
15.5 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.5
1.0
1.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.0 | 6.0
7.0
8.0
9.5
10.5 | 3.5
4.5
6.0
7.5
8.5 | 4.5
6.0
7.0
8.5
9.5 | 15.5
14.5
14.5
15.5
16.5 | 14.5
13.0
13.0
13.5
14.0 | 15.0
14.0
13.5
14.5
15.0 | | 26
27
28
29
30 | 0.0
0.0
0.5 | 0.0
0.0
0.0
 | 0.0
0.0
0.0 | 1.5
2.0
0.5
1.5
2.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.5
1.5 | 11.5
13.0
13.5
13.0
12.5 | 9.5
10.5
11.5
12.0
11.5 | 10.5
11.5
12.5
12.5
12.0 | 17.0
18.0
19.0
19.0
19.5 | 15.0
16.0
17.0
18.0
18.0 | 16.0
17.0
18.0
19.0
19.0 | | 31 | | | | 3.5 | 1.5 | 2.5 | | | | 19.0 | 17.5 | 18.0 | | | 0.5 | 0.0 | 0.0 | 3.5 | 0.0 | 0.2 | 14.5 | 0.0 | 6.0 | 10.5 | 8.5 | 13.0 | | MONTH | 0.5 | 0.0
JUNE | 0.0 | 3.5 | 0.0
JULY | 0.2 | 14.5 | 0.0
AUGUST | 6.9 | 19.5
Si | 8.5
EPTEMBI | 13.9
ER | | | 18.0
19.0
19.0
20.0
20.0 | | 0.0
17.5
18.0
18.5
19.0
19.0 | 3.5
22.0
23.5
24.5
24.5
25.5 | | 0.2
20.5
22.0
23.0
23.5
24.0 | | | | | | | | MONTH 1 2 3 4 | 18.0
19.0
19.0
20.0 | JUNE
17.0
17.0
17.5
18.0 | 17.5
18.0
18.5
19.0 | 22.0
23.5
24.5
24.5 | JULY
19.5
20.5
22.0
22.5 | 20.5
22.0
23.0
23.5 | 26.0
25.0
25.0
24.0 | 24.5
23.5
23.0
22.5 | 25.0
24.5
24.0
23.0 | SI
23.0 | 21.0
21.0
20.5
20.0 | 21.5
21.5
21.0
21.0 | | MONTH 1 2 3 4 5 6 7 8 9 | 18.0
19.0
19.0
20.0
20.0
20.0
19.0
18.0
19.0 | JUNE 17.0 17.0 17.5 18.0 18.5 18.0 17.5 17.0 17.0 | 17.5
18.0
18.5
19.0
19.0
19.0
18.0
17.5
18.0 | 22.0
23.5
24.5
24.5
25.5
25.0
25.5
25.0
24.5 | JULY 19.5 20.5 22.0 22.5 23.0 23.0 23.5 23.0 22.5 | 20.5
22.0
23.0
23.5
24.0
24.5
24.0 | 26.0
25.0
25.0
24.0
24.0
24.0
25.0
26.0
26.0 | AUGUST 24.5 23.5 23.0 22.5 22.0 22.5 23.0 24.0 24.5 | 25.0
24.5
24.0
23.0
23.0
23.0
24.0
25.0
25.0 | 23.0
22.5
22.0
22.5
21.5
21.5 | 21.0
21.0
20.5
20.0
19.5
19.5
20.0
20.5
21.5 | 21.5
21.5
21.0
21.0
20.5
20.5
21.0
21.5 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 18.0
19.0
19.0
20.0
20.0
20.0
19.0
19.0
19.0
19.0
19.0
20.5 | JUNE 17.0 17.0 17.5 18.0 18.5 18.0 17.5 17.0 17.0 17.0 18.0 17.0 18.0 | 17.5
18.0
18.5
19.0
19.0
19.0
18.0
17.5
18.0
18.5
18.0
17.5
19.0 | 22.0
23.5
24.5
24.5
25.5
25.0
25.5
25.0
24.5
22.5
21.0
22.5
23.0
22.5 | JULY 19.5 20.5 22.0 22.5 23.0 23.0 23.5 23.0 22.5 20.5 20.0 20.0 21.0 21.5 | 20.5
22.0
23.0
23.5
24.0
24.5
24.0
23.5
21.5
20.5
21.0
22.0
22.0 | 26.0
25.0
25.0
24.0
24.0
25.0
26.0
26.0
26.5
26.0
25.5
26.0 | AUGUST 24.5 23.5 23.0 22.5 22.0 22.5 23.0 24.0 24.5 24.5 24.5 24.0 24.0 24.0 | 25.0
24.5
24.0
23.0
23.0
24.0
25.0
25.0
25.5
25.5
25.5
25.5
25.0 | 23.0
22.5
22.0
22.5
21.5
21.5
22.0
23.0
24.0
23.5
23.5
22.5
21.5
21.5 | 21.0
21.0
21.0
20.5
20.0
19.5
19.5
20.0
20.5
21.5
22.0
21.5
21.0
20.5
19.5 | 21.5
21.5
21.0
21.0
20.5
20.5
21.0
21.5
22.5
22.5
22.5
22.0
21.0 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 18.0
19.0
20.0
20.0
20.0
19.0
18.0
19.0
19.0
20.5
21.5
23.0
23.5
24.5
24.5 | JUNE 17.0 17.0 17.5 18.0 18.5 18.0 17.5 17.0 17.0 18.0 17.0 18.0 17.0 18.0 19.5 21.0 22.5 23.0 22.5 | 17.5
18.0
18.5
19.0
19.0
19.0
18.0
17.5
18.0
17.5
17.5
19.0
20.5
22.0
23.5
23.5 | 22.0
23.5
24.5
24.5
25.5
25.0
25.5
25.0
24.5
22.5
21.0
22.5
23.0
22.5
22.5
22.5
24.5
24.5
24.5
24.5
24.5 | JULY 19.5 20.5 22.0 22.5 23.0 23.5 23.0 22.5 20.5 20.0 21.0 21.5 21.0 22.0 23.0 22.5 22.5 22.5 | 20.5
22.0
23.5
24.0
24.5
24.0
23.5
21.5
20.5
21.0
22.0
22.0
22.0
23.5
23.5
23.5
23.5 | 26.0
25.0
24.0
24.0
25.0
26.0
26.0
26.0
26.5
26.0
26.5
27.5
27.5
27.5
27.5 | AUGUST 24.5 23.5 23.0 22.5 22.0 22.5 23.0 24.0 24.5 24.5 24.0 24.0 24.0 24.5 25.0 25.0 26.0 26.0 | 25.0
24.5
24.0
23.0
23.0
25.0
25.0
25.5
25.5
25.5
26.5
26.5
26.5
26.5 |
23.0
22.5
22.0
22.5
21.5
21.5
22.0
23.0
24.0
23.5
22.5
21.5
20.5
20.0
20.0
19.5
19.0 | 21.0
21.0
21.0
20.5
20.0
19.5
19.5
20.0
20.5
21.5
22.0
21.5
21.0
20.5
19.5
18.5
18.0
17.5
17.0 | 21.5
21.5
21.0
21.0
20.5
20.5
21.0
21.5
22.5
22.5
22.5
22.5
22.0
21.0
20.5
19.5
19.5 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 18.0
19.0
19.0
20.0
20.0
20.0
19.0
19.0
19.0
19.0
20.5
21.5
23.5
24.5
24.5
24.5
24.5
24.5
24.5 | JUNE 17.0 17.0 17.0 17.5 18.0 18.5 18.0 17.5 17.0 17.0 18.0 17.2 18.0 19.5 21.0 22.5 23.0 22.5 22.0 21.5 21.5 22.0 | 17.5
18.0
18.5
19.0
19.0
19.0
18.0
17.5
18.0
17.5
17.5
17.5
17.5
19.0
20.5
23.0
23.5
23.5
23.5
23.5
23.5
23.5
23.0 | 22.0
23.5
24.5
24.5
25.5
25.0
25.5
25.0
24.5
22.5
21.0
22.5
22.5
23.0
22.5
24.5
24.5
24.0
24.0
24.0
24.0 | JULY 19.5 20.5 22.0 22.5 23.0 23.5 23.0 22.5 20.5 20.0 21.0 21.5 21.0 22.0 23.0 22.5 22.5 23.0 22.5 21.5 21.5 21.5 | 20.5
22.0
23.0
23.5
24.0
24.5
24.0
23.5
21.5
20.5
21.0
22.0
22.0
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | 26.0
25.0
24.0
24.0
24.0
26.0
26.0
26.5
26.0
26.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27 | AUGUST 24.5 23.5 23.0 22.5 22.0 22.5 23.0 24.0 24.5 24.5 24.5 24.0 24.0 24.5 25.0 26.0 26.0 26.5 26.0 25.0 24.0 24.0 | 25.0
24.5
24.0
23.0
23.0
25.0
25.0
25.5
25.5
25.5
26.5
26.5
26.5
27.0
26.0
27.0
26.0
27.0
26.0
27.0
26.0
27.0
26.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0 | 23.0
22.5
22.0
22.5
21.5
21.5
21.5
22.0
23.0
24.0
23.5
23.5
21.5
21.0
20.5
20.0
19.5
19.0
17.5
16.0
16.0
16.0 | 21.0
21.0
21.0
20.5
20.0
19.5
19.5
20.0
20.5
21.5
21.0
20.5
19.5
18.0
17.5
17.0
15.5
15.0
14.5
14.0 | 21.5
21.5
21.0
21.0
20.5
20.5
21.0
21.5
22.5
22.5
22.5
22.5
22.0
21.0
20.5
19.5
19.5
18.5
18.5
17.0
15.5
15.0
15.0 | # 175 LOCATION.--Lat 45°09'27", long 92°42'59", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.21, T.31 N., R.19 W., St. Croix County, Hydrologic Unit 07030005, at powerplant of Northern States Power Co., 3.5 mi downstream from Somerset. 05341500 APPLE RIVER NEAR SOMERSET, WI DRAINAGE AREA.--579 mi². PERIOD OF RECORD.--January 1901 to June 1914 (monthly discharge only), July 1914 to September 1970, October 1986 to current year. REVISED RECORDS.--WSP 1388: 1929, 1933. WDR-87-1: Drainage area. GAGE .-- Headwater and tailwater gages read hourly. REMARKS.--Records of daily discharge computed on the basis of gate openings, head, and plant efficiency. Flow regulated by many powerplants upstream, but service ponds are small and monthly flows are only slightly affected. COOPERATION .-- Records of daily discharge furnished by Northern States Power Company and reviewed by Geological Survey. | | | DISCH | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | ГО SEPTEN | MBER 2003 | | | |--|--|---------------------------------|--|---|-----------------------|--|--|--|---------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 571 | 695 | 357 | 354 | 376 | 360 | 602 | 685 | 651 | 704 | 449 | 273 | | 2 | 545 | 664 | 464 | 413 | 365 | 340 | 517 | 648 | 595 | 646 | 431 | 259 | | 3 | 577 | 702 | 337 | 332 | 382 | 337 | 585 | 650 | 592 | 747 | 435 | 297 | | 4 | 582 | 685 | 355 | 414 | 372 | 338 | 607 | 649 | 540 | 596 | 435 | 270 | | 5 | 792 | 610 | 468 | 510 | 364 | 347 | 595 | 715 | 540 | 589 | 439 | 267 | | 6 | 974 | 532 | 402 | 434 | 380 | 371 | 556 | 699 | 548 | 529 | 428 | 265 | | 7 | 932 | 546 | 516 | 395 | 362 | 379 | 573 | 698 | 576 | 524 | 424 | 299 | | 8 | 995 | 612 | 440 | 371 | 378 | 376 | 561 | 668 | 539 | 506 | 339 | 253 | | 9 | 1,030 | 521 | 407 | 392 | 373 | 288 | 523 | 886 | 525 | 525 | 445 | 223 | | 10 | 1,060 | 562 | 457 | 377 | 363 | 373 | 529 | 999 | 567 | 542 | 407 | 255 | | 11 | 1,070 | 568 | 459 | 254 | 366 | 397 | 471 | 1,300 | 502 | 585 | 384 | 266 | | 12 | 1,160 | 561 | 452 | 306 | 354 | 369 | 427 | 1,580 | 524 | 574 | 377 | 306 | | 13 | 986 | 583 | 483 | 369 | 341 | 334 | 424 | 1,870 | 633 | 628 | 352 | 310 | | 14 | 1,050 | 654 | 404 | 391 | 370 | 380 | 414 | 2,010 | 587 | 515 | 352 | 270 | | 15 | 903 | 521 | 406 | 364 | 319 | 394 | 469 | 2,450 | 526 | 648 | 345 | 306 | | 16 | 904 | 556 | 415 | 413 | 351 | 565 | 469 | 1,680 | 580 | 647 | 309 | 310 | | 17 | 770 | 434 | 457 | 375 | 353 | 508 | 736 | 1,660 | 435 | 727 | 305 | 266 | | 18 | 861 | 443 | 399 | 375 | 369 | 509 | 1,100 | 1,430 | 474 | 790 | 261 | 265 | | 19 | 860 | 467 | 473 | 337 | 373 | 949 | 1,090 | 1,240 | 445 | 769 | 254 | 400 | | 20 | 811 | 498 | 500 | 359 | 340 | 798 | 1,080 | 1,060 | 422 | 736 | 278 | 487 | | 21 | 848 | 404 | 392 | 350 | 398 | 651 | 1,020 | 1,050 | 351 | 605 | 330 | 471 | | 22 | 735 | 460 | 512 | 364 | 376 | 650 | 1,000 | 974 | 397 | 657 | 292 | 334 | | 23 | 677 | 487 | 421 | 345 | 327 | 623 | 901 | 999 | 387 | 608 | 283 | 358 | | 24 | 689 | 489 | 374 | 316 | 317 | 647 | 903 | 883 | 495 | 514 | 281 | 363 | | 25 | 704 | 497 | 395 | 356 | 385 | 605 | 923 | 887 | 616 | 506 | 291 | 420 | | 26
27
28
29
30
31 | 700
650
634
680
705
700 | 558
511
479
461
394 | 405
411
501
536
452
402 | 335
358
367
365
371
364 | 347
374
343
 | 573
577
567
627
563
615 | 884
744
750
646
498 | 984
929
749
704
748
654 | 576
710
656
751
747 | 462
448
433
435
407
426 | 290
299
279
303
282
279 | 327
415
325
289
345 | | TOTAL | 25,155 | 16,154 | 13,452 | 11,426 | 10,118 | 15,410 | 20,597 | 33,138 | 16,487 | 18,028 | 10,658 | 9,494 | | MEAN | 811 | 538 | 434 | 369 | 361 | 497 | 687 | 1,069 | 550 | 582 | 344 | 316 | | MAX | 1,160 | 702 | 536 | 510 | 398 | 949 | 1,100 | 2,450 | 751 | 790 | 449 | 487 | | MIN | 545 | 394 | 337 | 254 | 317 | 288 | 414 | 648 | 351 | 407 | 254 | 223 | | CFSM | 1.40 | 0.93 | 0.75 | 0.64 | 0.62 | 0.86 | 1.19 | 1.85 | 0.95 | 1.00 | 0.59 | 0.55 | | IN. | 1.62 | 1.04 | 0.86 | 0.73 | 0.65 | 0.99 | 1.32 | 2.13 | 1.06 | 1.16 | 0.68 | 0.61 | | STATIS | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1901 - 2003. | BY WATE | R YEAR (W | YY) | | | | | MEAN | 295 | 293 | 257
| 239 | 245 | 388 | 567 | 440 | 392 | 290 | 248 | 298 | | MAX | 811 | 727 | 616 | 519 | 479 | 730 | 1,361 | 1,069 | 1030 | 582 | 704 | 808 | | (WY) | (2003) | (1997) | (1997) | (1997) | (2000) | (1946) | (2001) | (2003) | (1905) | (2003) | (1995) | (1962) | | MIN | 104 | 135 | 123 | 124 | 120 | 151 | 197 | 140 | 81.7 | 69.9 | 74.2 | 89.8 | | (WY) | (1933) | (1934) | (1934) | (1938) | (1934) | (1934) | (1930) | (1934) | (1934) | (1934) | (1934) | (1933) | | SUMMA | RY STATIS | STICS |] | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 190 | 1 - 2003 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | FOR 2002 CALENDAR YEAR 213,145 584 1,490 May 13 252 Feb 5 323 Jan 30 1.01 13.69 949 521 348 | | | 200,117
548
2,450 May 15
223 Sep 9
261 Sep 5
0.95
12.86
893
473
310 | | | 5
1
2,6 | 7.0 (a)Au | 1996
1934
r 26, 2001
g 21, 1927
g 2, 1933 | ⁽a) Also occurred Sept. 30, 1929, July 19, 1932, and Aug. 2, 3, 1933 # ST. CROIX RIVER BASIN # 05342000 KINNICKINNICK RIVER NEAR RIVER FALLS, WI LOCATION.--Lat 44°49'51", long 92°43'59", in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.18, T.27 N., R.19 W., Pierce County, Hydrologic Unit 07030005, on left bank, 50 ft upstream from County Trunk Highway F, 1.9 mi upstream from mouth, 4.8 mi downstream from Lake Louise Dam, and 5.5 mi west of River Falls. DRAINAGE AREA.--165 mi². PERIOD OF RECORD.--October 1916 to September 1921 (monthly discharge for some periods published in WSP 1308), October 1998 to September 1999, July 2002 to current year. REVISED RECORDS.--WSP 1308. WDR WI-99-1: Drainage area. WDR WI-02-1: Statistics table. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 690 ft above NGVD of 1929, from topographic map. Prior to Oct. 1, 1921, recording gage near present site at different datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | KLWAK | KSRecord | | | | ER SECONI
DAII | | EAR OCTO | | | | эн. | | |---|---|---|---|---|---|---|---|---|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 116 | 127 | 120 | 113 | 111 | 103 | 111 | 104 | 115 | 128 | 123 | 110 | | 2 | 112 | 126 | 120 | 113 | 111 | 102 | 111 | 103 | 113 | 125 | 122 | 110 | | 3 | 113 | 126 | 120 | 113 | 112 | 103 | 108 | 101 | 113 | 152 | 119 | 109 | | 4 | 245 | 128 | 124 | 113 | 106 | 102 | 109 | 107 | 117 | 176 | 118 | 109 | | 5 | 266 | 129 | 126 | 114 | 111 | 105 | 106 | 143 | 120 | 154 | 118 | 110 | | 6 | 436 | 130 | 126 | 113 | 110 | 103 | 106 | 128 | 121 | 132 | 120 | 109 | | 7 | 389 | 130 | 124 | 115 | e110 | 102 | 105 | 111 | 130 | 139 | 120 | 108 | | 8 | 184 | 130 | 123 | 116 | e110 | 103 | 103 | 103 | 124 | 130 | 119 | 106 | | 9 | 158 | 130 | 119 | 116 | e110 | 105 | 105 | 159 | 121 | 127 | 118 | 107 | | 10 | 198 | 128 | 121 | 113 | 109 | 103 | 109 | 156 | 123 | 135 | 118 | 106 | | 11 | 191 | 128 | 123 | 109 | 109 | 105 | 110 | 937 | 121 | 135 | 117 | 105 | | 12 | 154 | 125 | 121 | 112 | 107 | 101 | 114 | 483 | 116 | 136 | 116 | 125 | | 13 | 152 | 125 | 119 | 110 | e110 | 103 | 112 | 194 | 126 | 128 | 116 | 114 | | 14 | 145 | 124 | 118 | 105 | 107 | 182 | 111 | 164 | 116 | 128 | 116 | 110 | | 15 | 139 | 126 | 118 | 106 | 104 | 476 | 121 | 151 | 113 | 213 | 115 | 109 | | 16 | 136 | 123 | 117 | e110 | 109 | 359 | 533 | 137 | 110 | 155 | 114 | 109 | | 17 | 135 | 123 | 117 | 106 | 106 | 185 | 348 | 131 | 110 | 132 | 114 | 110 | | 18 | 139 | 124 | 121 | e110 | 107 | 135 | 143 | 127 | 109 | 128 | 113 | 126 | | 19 | 138 | 124 | 123 | e110 | 106 | 121 | 126 | 133 | 106 | 126 | 121 | 141 | | 20 | 135 | 125 | 120 | e100 | 108 | 124 | 125 | 136 | 107 | 126 | 128 | 123 | | 21 | 139 | 124 | 119 | e99 | 109 | 120 | 127 | 127 | 106 | 126 | 117 | 115 | | 22 | 138 | 125 | 118 | e97 | 105 | 127 | 118 | 128 | 106 | 123 | 113 | 115 | | 23 | 133 | 124 | 116 | e96 | 105 | 115 | 114 | 131 | 110 | 121 | 112 | 113 | | 24 | 129 | 123 | 118 | e100 | e100 | 115 | 112 | 126 | 110 | 121 | 112 | 113 | | 25 | 134 | 121 | 114 | e100 | e100 | 110 | 113 | 122 | 1,130 | 121 | 113 | 111 | | 26
27
28
29
30
31 | 132
130
130
129
128
126 | 118
121
121
123
122 | 114
114
114
117
115
115 | e100
e110
e110
106
110
111 | e100
103
103
 | 108
119
166
135
115
112 | 112
110
107
106
105 | 119
117
118
115
118
117 | 406
169
144
140
133 | 124
121
120
119
119
118 | 113
112
111
111
110
110 | 113
115
113
113
112 | | TOTAL | 5,129 | 3,753 | 3,694 | 3,356 | 2,998 | 4,264 | 4,040 | 5,146 | 4,885 | 4,138 | 3,599 | 3,389 | | MEAN | 165 | 125 | 119 | 108 | 107 | 138 | 135 | 166 | 163 | 133 | 116 | 113 | | MAX | 436 | 130 | 126 | 116 | 112 | 476 | 533 | 937 | 1,130 | 213 | 128 | 141 | | MIN | 112 | 118 | 114 | 96 | 100 | 101 | 103 | 101 | 106 | 118 | 110 | 105 | | CFSM | 1.00 | 0.76 | 0.72 | 0.66 | 0.65 | 0.83 | 0.82 | 1.01 | 0.99 | 0.81 | 0.70 | 0.68 | | IN. | 1.16 | 0.85 | 0.83 | 0.76 | 0.68 | 0.96 | 0.91 | 1.16 | 1.10 | 0.93 | 0.81 | 0.76 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 96.4
165
(2003)
65.2
(1918) | 97.9
131
(1999)
62.5
(1917) | EAN DATA
90.4
119
(2003)
72.9
(1917) | 79.4
108
(2003)
60.0
(1918) | ER YEARS
80.0
115
(1999)
55.0
(1918) | 1917 - 2003
219
469
(1919)
87.9
(1921) | , BY WATE
102
135
(2003)
78.8
(1918) | R YEAR (W
99.4
166
(2003)
69.1
(1917) | 121
167
(1920)
74.3
(1921) | 85.9
133
(2003)
43.5
(1920) | 89.0
136
(2002)
27.4
(1920) | 85.7
126
(2002)
41.9
(1920) | | ANNUA:
ANNUA:
HIGHES:
LOWES:
HIGHES:
ANNUA:
MAXIMI
INSTAN:
ANNUA:
ANNUA:
10 PERC:
50 PERC: | T ANNUAL T ANNUAL T DAILY M T DAILY M L SEVEN-D UM PEAK F UM PEAK S | . MEAN MEAN IEAN EAN AY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | | | | | 48,39
13
1,13
(a)9
(a)9
2,13 | 33
30 Jun 2:
30 Jun 2:
30 Jun 2:
5.05 Jun 2:
0.80
0.91
122 | 5
3
0
5
5 | 2,8
(b)4,7 | 13 At
19 At
760 M
c)7.98 M | 17 - 2003
2003
1921
far 15, 1920
ug 30, 1920
ug 5, 1920
ar 15, 1920
ug 30, 1920 | ⁽a) Ice affected ⁽b) From rating curve extended above 1,000 ft³/s, based on contracted-opening measurement of peak flow ⁽c) Datum then in use ⁽e) Estimated due to ice effect or missing record Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. # **CHIPPEWA RIVER BASIN** # 05356000 CHIPPEWA RIVER AT BISHOPS BRIDGE, NEAR WINTER, WI $LOCATION.--Lat~45^{\circ}50^{\circ}57^{\circ},~long~91^{\circ}04^{\circ}44^{\circ},~in~SW~\frac{1}{4}~NE~\frac{1}{4}~sec.23,~T.39~N.,~R.6~W.,~Sawyer~County,~Hydrologic~Unit~07050001,~on~right~bank~15~ft~upstream~from~highway~bridge~on~County~Trunk~Highway~G,~3.2~mi~downstream~from~Lake~Chippewa~Dam,~and~3.7~mi~northwest~of~Winter.$ DRAINAGE AREA.--790 mi². PERIOD OF RECORD.--February 1912 to current year. March, April, 1912, and December 1912 to April 1913, monthly discharge only published in WSP 1308. Unpublished daily discharges stored from February 1912 to April 1913 from District records. $REVISED\ RECORDS.--WSP\ 1438:\ 1913(M),\ 1915-18(M),\ 1919,\ 1920-23(M),\ 1924,\ 1925(M),\ 1927(M),\ 1928,\ 1929-30(M),\ 1939(M).\ WDR\ WI-81-1:$ GAGE.--Water-stage recorder. Datum of gage is 1,256.78 ft above NGVD of 1929 (levels by Wilhelm Engineering Co.). See WSP 1708 or 1728 for history of changes prior to July 23, 1930. REMARKS.--Records good (see page 11). Flow regulated by Moose Lake and Lake Chippewa. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |--------------------------------------|---|---|---|---|---|---|---|---|---|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 493
760
945
1,040
1,020 | 1,010
1,000
1,010
1,000
1,000 | 763
762
761
760
760 | 751
748
744
743
743 | 277
277
277
277
277
278 | 273
273
275
272
274 | 306
309
303
299
299 |
1,530
1,240
1,240
1,240
1,250 | 480
480
481
480
600 | 830
579
489
486
486 | 481
481
479
480
481 | 327
331
346
361
361 | | | 6
7
8
9
10 | 1,330
2,730
3,780
3,760
3,730 | 1,010
1,010
960
930
929 | 759
758
757
756
751 | 742
713
657
655
653 | 277
280
277
278
277 | 276
273
274
274
274 | 299
299
299
299
297 | 1,250
1,250
1,240
1,280
1,460 | 692
695
689
686
703 | 486
485
484
486
493 | 481
480
481
481
481 | 360
359
360
357
355 | | | 11
12
13
14
15 | 3,720
3,710
3,700
2,680
1,910 | 928
850
799
798
797 | 753
749
749
749
749 | 650
648
646
645
644 | 277
278
276
274
274 | 277
277
277
279
281 | 298
299
299
300
302 | 2,320
4,110
5,470
5,430
5,410 | 698
694
699
699 | 487
486
486
486
486 | 398
320
319
273
239 | 354
353
350
346
351 | | | 16
17
18
19
20 | 1,910
1,900
1,900
1,900
1,890 | 796
795
794
793
722 | 749
745
751
755
754 | 644
644
641
638
636 | 275
277
278
276
277 | 289
297
292
287
292 | 357
343
331
350
401 | 5,400
5,400
5,390
5,090
4,580 | 698
701
824
925
926 | 486
485
485
487
487 | 325
327
327
328
328 | 338
317
325
335
317 | | | 21
22
23
24
25 | 1,890
1,880
1,880
1,880
1,390 | 770
769
772
769
768 | 755
753
753
752
752 | 632
629
621
618
618 | 274
274
276
277
278 | 291
296
297
295
294 | 498
592
581
573
1,400 | 3,800
2,930
1,860
1,130
1,130 | 925
923
1,200
1,280
1,030 | 483
479
480
480
480 | 327
326
327
326
326 | 317
317
316
316
315 | | | 26
27
28
29
30
31 | 1,010
1,010
1,010
1,010
1,010
1,010 | 767
767
767
766
762 | 751
751
751
750
750
750 | 618
615
611
407
276
274 | 275
272
272

 | 294
293
294
294
294
298 | 2,040
2,240
2,980
2,460
2,010 | 1,130
742
514
496
481
480 | 1,020
1,010
1,010
1,020
1,020 | 480
477
479
480
480
481 | 325
326
327
326
326
326 | 317
317
317
317
317 | | | TOTAL
MEAN
MAX
MIN | 59,788
1,929
3,780
493 | 25,608
854
1,010
722 | 23,358
753
763
745 | 19,504
629
751
274 | 7,735
276
280
272 | 8,826
285
298
272 | 21,663
722
2,980
297 | 76,273
2,460
5,470
480 | 23,986
800
1,280
480 | 15,444
498
830
477 | 11,578
373
481
239 | 10,069
336
361
315 | | | STATIST | | | EAN DATA | A FOR WATE | ER YEARS | 1912 - 2003 | B, BY WATE | ` | ŕ | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 677
2,896
(1986)
43.6
(1925) | 830
1,884
(1992)
143
(1925) | 968
1,910
(1992)
234
(2000) | 898
1,770
(1983)
201
(1922) | 761
1,550
(1928)
194
(1918) | 446
1,097
(1920)
117
(1923) | 573
3,453
(1922)
20.0
(1925) | 804
2,823
(1954)
24.2
(1923) | 794
2,950
(1939)
39.8
(1925) | 682
2,122
(1996)
40.3
(1925) | 618
2,235
(1972)
146
(1970) | 696
3,769
(1941)
140
(1970) | | | SUMMA | RY STATIS | TICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER ' | YEARS 191 | 2 - 2003 | | | ANNUA!
HIGHES | L TOTAL
L MEAN
T ANNUAL
Γ ANNUAL | | | 396,617
1,087 | | | 303,832
832 | | | 1,1 | 28
74
58 | 1996
1923 | | | LOWEST
ANNUAL
MAXIMU
MAXIMU | UM PEAK F
UM PEAK S | EAN
AY MINIM
LOW
TAGE | | 6,340
313
432 | Jul | 28 | 5,47
23
27
5,56 | 39 Au
73 Fe
60 Ma
9.60 Ma | y 13
g 15
b 27
y 12
y 12 | 7,5 | 14 (a)Apr 17
15 Ap
20 Sep
11.05 Sep | r 30, 1925
o 4, 1941
o 4, 1941 | | | 10 PERC
50 PERC | INNUAL SEVEN-DAY MINIMUM IAXIMUM PEAK FLOW IAXIMUM PEAK STAGE NSTANTANEOUS LOW FLOW 0 PERCENT EXCEEDS 0 PERCENT EXCEEDS 0 PERCENT EXCEEDS | | | 1,880
756
463 | | | (b)12
1,66
57
27 | 60
73 | v 20 | 1,4
5 | 14 (a)Apr 17
00
80
74 | 7-20, 1925 | | ⁽a) Also occurred May 1-5, 1925 ⁽b) Result of regulation #### CHIPPEWA RIVER BASIN # 05356078 GRINDSTONE CREEK AT COUNTY TRUNK HIGHWAY E NEAR RESERVE, WI $LOCATION.\text{--Lat } 45^{\circ}56'44'', long 91^{\circ}23'07'', in \ SW^{1}\!\!/_{\!\!4} \ SE^{1}\!\!/_{\!\!4} \ sec. 17, T. 40 \ N., R. 8 \ W., Sawyer County, Hydrologic Unit 07050001, on right bank at County Highway E near Reserve and 560 ft upstream of Grindstone Lake.$ DRAINAGE AREA.--3.99 mi². PERIOD OF RECORD.--October 2002 to September 2003 (discontinued). GAGE.--Water-stage recorder. Datum of gage is 1,288.83 ft above NGVD of 1988. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). | KEWIAKN | XSRecord | is good exce | pt those for e | stilliated dai | ny discharge | s, which are | poor (see pa | ige 11). | | | | | |---|--|--|--|---|---|--|--|--|--|--|---|--| | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.7
9.1
8.8
14
12 | 9.7
10
9.6
10
9.6 | 9.9
9.8
10
9.7
10 | 9.3
9.5
9.4
9.6
9.4 | 9.2
9.2
9.9
9.3
9.2 | 9.1
9.0
9.1
9.0
8.9 | 9.1
9.2
8.8
8.8
8.9 | 7.1
7.8
17
14
14 | 8.5
8.0
8.1
8.2
6.9 | 9.0
8.6
11
10
9.3 | 9.4
8.1
8.6
8.6
8.2 | 6.7
e6.8
e6.8
e6.8 | | 6
7
8
9
10 | 14
14
19
14
12 | 9.9
10
9.7
11 | 10
10
9.5
9.7
9.6 | 9.1
9.1
9.1
9.0
8.8 | 9.1
9.1
9.2
9.1
9.0 | 8.9
9.1
9.2
8.9
8.8 | 8.8
8.6
8.5
8.7
7.5 | 12
9.9
7.9
10
10 | 9.8
12
10
8.5
15 | 8.7
8.4
7.8
8.3 | 8.0
8.0
7.4
7.3
7.2 | e6.8
e6.8
7.3
e6.8
e6.8 | | 11
12
13
14
15 | 10
9.8
10
9.8
9.2 | 10
10
9.6
9.1 | 9.7
9.2
9.0
9.0
8.9 | 9.2
9.1
8.9
8.8
8.8 | 9.1
8.9
9.1
9.0
9.0 | 9.0
9.0
8.9
9.1
9.9 | 7.2
7.5
7.7
7.9
7.5 | 16
15
11
9.4
8.3 | 14
11
10
9.2
9.4 | 11
11
9.6
8.3
9.1 | 7.4
7.0
7.2
7.2
7.2 | e6.8
e6.8
7.1
e6.8
6.8 | | 16
17
18
19
20 | 9.0
9.4
10
10 | 9.8
10
9.4
10
9.8 | 9.2
8.9
10
10
9.1 | 8.9
9.2
9.2
9.1 | 8.9
9.1
9.2
9.2
9.3 | 10
10
10
9.3
9.5 | 13
12
11
11
12 | 7.6
7.7
7.5
8.4
11 | 8.4
9.8
7.6
7.9
8.2 | 9.0
9.6
9.9
9.5
9.1 | 7.3
7.3
7.1
6.9
7.1 | e6.8
e6.8
e6.8
16 | | 21
22
23
24
25 | 11
11
11
10
11 | 10
10
10
9.1
9.8 | 9.0
9.2
9.0
9.0
9.0 | 8.9
8.9
9.0
9.0
9.3 | 9.3
9.2
9.1
9.0
8.9 | 14
12
10
9.1
8.0 | 9.2
8.3
8.2
8.2 | 9.5
8.5
8.6
9.0
8.8 | 9.0
7.1
9.5
10
12 | 8.2
7.1
7.5
7.2
7.1 | 7.2
e6.8
e6.8
e6.8
e6.8 | 8.3
6.9
e6.8
8.2
7.3 | | 26
27
28
29
30
31 | 10
10
9.7
10
9.7
9.6 | 9.8
9.9
10
11
9.8 | 9.3
9.4
9.4
9.2
9.6
9.1 | 9.2
9.2
9.3
9.3
9.2
9.2 | 9.0
9.0
9.0
 | 8.0
8.3
9.5
9.0
8.6
8.3 | 7.8
7.4
7.0
7.5
7.0 | 7.9
7.5
7.9
7.7
8.5
9.7 | 9.8
8.7
9.8
10
8.7 | 8.0
8.2
8.1
7.8
9.4 | e6.8
e6.8
e6.8
e6.8
7.0 | 8.1
9.7
9.8
8.9
9.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 336.8
10.9
19
8.8
2.72
3.14 | 297.6
9.92
11
9.1
2.49
2.77 | 292.4
9.43
10
8.9
2.36
2.73 | 282.9
9.13
9.6
8.8
2.29
2.64 | 255.6
9.13
9.9
8.9
2.29
2.38 | 289.5
9.34
14
8.0
2.34
2.70 | 266.3
8.88
13
7.0
2.22
2.48 | 305.2
9.85
17
7.1
2.47
2.85 | 285.1
9.50
15
6.9
2.38
2.66 | 276.8
8.93
11
7.1
2.24
2.58 | 227.9
7.35
9.4
6.8
1.84
2.12 | 235.4
7.85
16
6.7
1.97
2.19 | | STATIST | ICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 2002 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.9
10.9
(2003)
10.9
(2003) | 9.92
9.92
(2003)
9.92
(2003) | 9.43
9.43
(2003)
9.43
(2003) | 9.13
9.13
(2003)
9.13
(2003) | 9.13
9.13
(2003)
9.13
(2003) | 9.34
9.34
(2003)
9.34
(2003) | 8.88
8.88
(2003)
8.88
(2003) | 9.85
9.85
(2003)
9.85
(2003) | 9.50
9.50
(2003)
9.50
(2003) | 8.93
8.93
(2003)
8.93
(2003) | 7.35
7.35
(2003)
7.35
(2003) | 9.01
10.2
(2002)
7.85
(2003) | #
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS # FOR 2003 WATER YEAR | 21 Oct
3.32 Oct | 1
1
8 | |--------------------|-------------| |--------------------|-------------| (e) Estimated due to ice effect or missing record #### 05356500 CHIPPEWA RIVER NEAR BRUCE, WI LOCATION.--Lat 45°27'08", long 91°15'39", in SW ½ SE ½ sec.5, T.34 N., R.7 W., Rusk County, Hydrologic Unit 07050001, on right bank 1.0 mi east of Bruce and 1.0 mi downstream from Thornapple River. DRAINAGE AREA.--1,650 mi². PERIOD OF RECORD .-- December 1913 to current year. REVISED RECORDS.--WSP 875: 1936-38. WSP 1308: 1922, 1937(M). WSP 1508: 1914-26(M), 1927, 1928-31(M), 1932, 1933(M), 1934-36, 1938. WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,059.62 ft above NGVD of 1929. Prior to May 28, 1935, nonrecording gage at railroad bridge 0.8 mi upstream at datum 2.30 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Flow from 48 percent of the drainage area regulated by Moose Lake and Lake Chippewa. Gage-height telemeter at station. DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1,840 e600 e640 1.250 3.050 496 1.530 e1,200 e1.000 1.510 1.760 832 e1,200 1.560 1,790 e1,000 492 2 e600 e600 1.840 2.2401.320 1,440 864 3 1,770 e950 e600 2.180 1.220 1,890 e1.100 e600 1.810 1.240 834 492 2,100 1,170 4 2.720 1.730 e1,000 e950 e580 e600 1.380 1,160 772 508 5 e1.000 2,410 5.610 1.680 e1,000 e600 e580 1.250 1.090 1.120 760 521 6 6,380 1,680 e1,000 e1,000 e600 e600 1,150 3,540 1,260 1,030 779 520 8,380 1,670 e1,000 e600 1,070 3,340 991 858 516 e1,100 e580 1,610 8 9,090 1,680 e1,000 e1,100 e580 e620 1,020 2,860 1,730 936 816 502 e1,000 3,260 1,890 854 8,420 1,600 e1.000 e600 e700 1.070 784 511 10 7,370 1,600 e1,100 e970 e600 e630 1,100 5,810 2,000 933 784 509 11 6,840 1,600 e1,200 e950 e600 e640 1,210 7,290 3,070 1,050 784 500 e1,200 5,680 1,570 e950 e660 14,100 2.630 506 e600 1.240 998 776 12 1,570 e1,100 e910 e700 929 5.390 1.200 2.060 530 528 13 e600 14.700 1,560 e1,200 11,900 5.140 e910 e610 e720 1.200 1.760 902 458 532 14 15 3,470 1,410 e1,100 e910 e600 e720 1.310 9,560 1.570 934 661 526 e1,100 7,980 16 3.070 1,350 e1,100 e910 e610 2.810 1.460 933 400 515 17 2.920 1,310 e1,200 e900 e610 e1,500 6,110 7,390 1,450 897 429 515 18 2.840 1,310 e1,300 e920 e610 e2,500 5,520 6,960 1,500 871 560 499 19 2,880 1,320 e1,500 e900 e610 e2,200 4,350 6,720 1,480 838 586 730 20 2,860 1,310 e1,300 e900 e1,900 4,750 6,920 1,430 847 599 813 e610 2,850 21 1,270 e1,200 e880 e630 e1,700 6,210 6,440 1,370 853 475 687 22 1,280 1,370 2,840 e1,100 e880 e630 e1,500 6,190 5,210 829 631 639 23 2,830 1,280 e1,100 e880 e610 e1,800 4,780 4,300 1,450 809 481 610 24 2,790 1,270 e900 e2,200 3,540 2,950 1,960 792 e1.100 e600 513 573 25 e1,200 e940 2,170 545 2.800 e1,100 e580 e2,100 2.720 2,150 803 534 26 2.250 e1.200 e1,100 e900 e600 e1.900 3,730 2.090 2.500 804 542 531 e900 2,240 2,100 27 2,100 e1,200 e1,100 e610 e1,800 3,760 2.010 781 522 535 28 494 550 e1,200 2,050 e1,200 e940 e620 e2,000 3.960 1,520 765 29 e850 2.000 e1.300 e1.200 e1,800 4.180 1.210 2.250 755 548 557 ---30 1.950 e1,200 e1,100 e700 e1,700 3,290 1,310 2,000 753 514 e550 31 1,810 e1,000 e600 --e1,300 1,500 794 494 TOTAL 120,310 43,750 35,100 28,600 16,880 38,610 85,000 155,020 52,600 29,401 19,614 16,508 MEAN 3,881 1,458 1,132 923 603 1,245 2,833 5,001 1,753 948 633 550 9,090 2,500 MAX 1,840 1,500 1,100 630 6,210 14,700 3.070 1,760 864 813 MIN 1.530 1,200 1,000 600 580 580 1.020 1.210 1.090 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1914 - 2003, BY WATER YEAR (WY) 1,352 1,285 1,456 1.739 1,274 1,052 MEAN 1.413 1.374 1,187 1.059 2.767 2.000 2.842 5.971 3,990 8,007 2.915 MAX 5.666 3.662 2.200 2.100 3.964 7.483 7.423 (1973)(1972)(WY) (1986)(1992)(1992)(1942)(1971)(1916)(1954)(1943)(1968)(1941)459 356 338 404 590 390 411 364 338 MIN 296 442 317 (1934)(1922)(1918)(1987)(1976)(1990)(1990)(1923)(1925)(1949)(1925)(1964)(WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1914 - 2003 641,393 ANNUAL TOTAL 842,128 2,307 1.494 ANNUAL MEAN 1.757 HIGHEST ANNUAL MEAN 1986 2,290 LOWEST ANNUAL MEAN 666 1934 14,700 17 300 Sep 1, 1941 HIGHEST DAILY MEAN Apr 13 May 13 24.900 Jun 10, 1932 LOWEST DAILY MEAN (a)480Mar 4 400 Aug 16 155 Aug 3, 1925 Sep 17, 1994 ANNUAL SEVEN-DAY MINIMUM 561 Mar 1 502 Aug 30 218 MAXIMUM PEAK FLOW 15,200 May 12 (b)29,000MAXIMUM PEAK STAGE 13.94 May 12 (c)20.46Sep 1, 1941 Aug 17 INSTANTANEOUS LOW FLOW 275 155 Jun 10, 1932 10 PERCENT EXCEEDS 5.190 3,540 2,710 50 PERCENT EXCEEDS 1,430 1,100 1,110 550 502 872 90 PERCENT EXCEEDS ⁽a) Ice affected ⁽b) From rating curve extended above 25,100 ft³/s, gage height 18.12 ft ⁽c) From floodmarks ⁽e) Estimated due to ice effect or missing record # 05357215 ALLEQUASH CREEK AT CTH M, NEAR BOULDER JUNCTION, WI $LOCATION.--Lat\ 46^{\circ}01'25", long\ 89^{\circ}39'10", in\ NW^{1}\!\!/_{4}\ NW^{1}\!\!/_{4}\ sec. 20, T.41\ N., R.7\ E., Vilas\ County, Hydrologic\ Unit\ 07050002, on\ right\ bank\ approximately\ 400\ ft\ downstream\ from\ County\ Trunk\ Highway\ M,\ 6.1\ mi\ south\ of\ Boulder\ Junction.$ DRAINAGE AREA.--8.43 mi². PERIOD OF RECORD .-- May 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,620 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). | KLWAKK | 5Records | s good excep | of those for t | istillated dai | iy discharge | s, which are | poor (see pa | igc 11). | | | | | | |------------------------------------|--|---|--|--|--|--|--|--|--|--|--|---|--| | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 13
14
13
16
17 | 10
e11
e11
e11 | e12
e12
e12
e11
e10 | e10
e10
e10
e10
e12 | e11
e11
e12
e12
e12 | e12
e13
e12
e12
e12 | e14
e14
e14
e14
e14 | 12
11
9.8
9.0
9.7 | 8.8
8.9
8.8
8.6
8.3 | 8.5
9.1
9.4
9.2
9.2 | 1.5
1.4
2.2
2.5
2.4 | 6.5
6.1
5.8
5.8
5.5 | | | 6
7
8
9
10 | 21
22
21
20
19 | 11
13
14
11
12 | e10
e11
e12
e12
e12 | e12
e12
e12
e12
e12 | e12
e12
e12
e12
e11 | e12
e12
e13
e14
e13 | e13
e12
e12
e12
e13 | 11
9.0
7.7
8.4
8.3 | 7.9
8.4
8.9
9.6
12 | 9.0
8.9
8.6
8.6
9.1 | 3.1
3.8
9.0
17
15 | 5.3
5.3
5.3
5.2
5.2 | | | 11
12
13
14
15 | 18
18
17
17
e17 | e12
e12
e12
e12
e12 | e12
e12
e12
e13
e13 | e12
e12
e11
e11
e12 | e11
e11
e11
e10
e10 | e13
e13
e13
e13
e13 | e13
e14
14
15
15 | 17
22
23
26
24 | 13
13
13
12
12 | 8.9
9.2
9.4
9.3 | 14
13
12
11
10 | 4.9
5.6
5.9
6.4
6.2 | | | 16
17
18
19
20 | e15
e14
e15
e16
e16 | e11
e11
e11
e11 | e12
e12
e13
e14
e14 | e12
e12
e12
e12
e12 | e11
e10
e10
e10
e10 | e14
e13
e13
e13
e14 | 17
18
19
19
23 | 21
19
18
17
17 | 11
11
11
10
9.6 | 9.1
9.0
8.8
8.6
9.0 | 9.8
9.1
8.5
8.0
8.6 | 6.2
5.9
5.9
6.4
6.8 | | | 21
22
23
24
25 | e16
e14
e12
e13
e13 | e11
e12
e12
e12
e11 | e13
e12
e12
e12
e11 | e12
e12
e11
e11 | e10
e11
e12
e11
e12 | e14
e14
e14
e14
e13 | 24
23
21
20
18 | 16
15
14
13
12 | 9.6
9.3
9.4
9.5
9.7 | 9.2
8.6
7.7
6.7
5.3 | 8.7
8.2
7.6
7.8
7.9 | 6.7
8.4
8.7
7.9
9.7 | | | 26
27
28
29
30
31 | e13
e12
e12
e12
e10
9.5 | e11
e12
e12
e10 | e11
e12
e12
e12
e12
e12 | e12
e12
e12
e12
e12
e12 | e10
e10
e10
 | e12
e12
e14
e14
e14
e14 | 17
16
15
14
13 | 12
11
10
9.7
9.7
9.7 | 9.0
8.5
8.3
8.2
8.4 | 4.2
3.4
2.3
1.5
1.9 | 7.7
7.6
7.3
7.2
6.9
6.6 | 11
12
14
13
14 | | | TOTAL
MEAN
MAX
MIN | 475.5
15.3
22
9.5 | 344
11.5
14
10 | 372
12.0
14
10 | 359
11.6
12
10 | 307
11.0
12
10 | 406
13.1
14
12 | 480
16.0
24
12 | 432.0
13.9
26
7.7 | 295.7
9.86
13
7.9 | 233.0
7.52
9.4
1.5 | 245.4
7.92
17
1.4 | 221.6
7.39
14
4.9 | | | | CS OF MC | NTHLY M | EAN DATA | FOR WAT | ER YEARS | 1991 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 11.6
22.7
(1992)
4.84
(2000) | 12.3
20.2
(1992)
8.55
(1999) | 11.2
14.5
(1998)
8.36
(2000) | 10.3
14.9
(1998)
8.77
(2002)
| 10.1
12.8
(1998)
8.80
(1992) | 11.2
15.8
(1997)
8.53
(1999) | 14.5
18.3
(1992)
9.50
(1999) | 12.5
19.3
(1996)
6.75
(2000) | 11.0
14.9
(1993)
6.53
(2001) | 12.0
17.1
(1997)
7.52
(2003) | 9.44
12.4
(1997)
6.91
(1998) | 9.51
14.8
(1994)
4.53
(1999) | | | SUMMAR | Y STATIS | TICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 199 | 1 - 2003 | | | MAXIMU
MAXIMU | MEAN ANNUAL ANNUAL DAILY M DAILY MI SEVEN-D M PEAK F M PEAK S ANEOUS I NT EXCEI | MEAN
EAN
EAN
AY MINIM
LOW
TAGE
LOW FLOW
EDS
EDS | | 29
6
6 | 2.2
0 Jun
5.5 Jul
6.9 Jul | 6,7,14-16 | (a)
(a)
(b)2
(d)
(a) | 11.4
26 May
)1.4 Aug
)1.8 Ju | 2
1 28
7 14
1 30 | | 0.93 Aug
1.1 Aug
)79 Oc
f)2.77 Ma | 1997
2001
t 5, 1991
g 8, 1992
g 2, 1992
t 5, 1991
r 25, 1996
g 7, 1992 | | ⁽a) Due to storage from beaver dam upstream of gage (b) Gage height, 1.73 ft (c) Gage height, 2.36 ft (d) Backwater from beaver dam (e) Estimated due to beaver activity, ice effect, or missing record (f) Lee jam ⁽f) Ice jam # CHIPPEWA RIVER BASIN # 05357225 STEVENSON CREEK, AT COUNTY TRUNK HIGHWAY M, NEAR BOULDER JUNCTION, WI LOCATION.--Lat $46^{\circ}03'41''$, long $89^{\circ}38'47''$, in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.5, T.41 N., R.7 E., Vilas County, Hydrologic Unit 07050002, at County Highway M, 3.6 mi south of Boulder Junction. DRAINAGE AREA.--7.96 mi². PERIOD OF RECORD .-- May 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,620 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). | KENIZ IKI | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |--|---|---|--|--|--|---|---|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.2
1.9
1.7
3.3
2.8 | 2.1
2.1
2.2
2.2
2.3 | e5.2
e5.0
e4.9
e4.7
e4.8 | e3.1
e3.0
e3.0
e3.0 | e3.1
e3.2
e3.2
e3.1
e3.1 | e2.8
e2.7
e2.7
e2.8
e2.8 | e3.6
3.7
3.5
3.5
3.4 | 2.9
2.5
2.2
1.9
1.8 | e2.0
e1.9
e1.9
e1.9
e1.8 | 2.9
4.4
24
20
16 | 4.5
4.4
4.9
4.6
4.3 | e3.3
e2.9
e2.2
e2.1
e2.2 | | 6
7
8
9
10 | 4.8
3.3
2.3
1.9
1.7 | 2.4
2.5
2.6
2.6
3.1 | e4.8
e4.8
e4.7
e4.7
e4.6 | e3.0
e3.0
e3.0
e3.0
e2.9 | e3.0
e2.9
e2.9
e2.9
e2.8 | e2.8
e2.8
e3.2
e3.1
e3.0 | 3.4
3.4
3.3
3.5
4.0 | 2.0
1.9
2.0
2.5
2.4 | e1.7
e5.3
e4.9
e5.6
e6.2 | 14
12
11
9.9
9.5 | 5.2
4.3
e4.4
e4.2
e4.1 | e2.3
e2.3
e2.3
e2.3
e2.4 | | 11
12
13
14
15 | 1.7
2.0
1.9
1.7
1.7 | 2.9
2.9
e4.7
e8.3
e8.0 | e4.5
e4.4
e4.3
e4.1
e4.0 | e2.9
e2.9
e2.8
e2.8
e2.8 | e2.9
e2.9
e2.9
e3.0
e3.0 | e3.1
e3.2
e3.1
e3.4
e4.7 | 3.9
3.7
3.5
3.8
3.9 | 8.9
6.4
3.0
2.4
2.2 | e6.6
e3.7
e3.2
e2.8
e2.4 | 9.6
8.3
7.4
6.6
6.3 | e3.9
e3.8
e3.7
e3.5
e3.4 | e3.1
e3.7
e4.5
e4.3
e3.5 | | 16
17
18
19
20 | 1.8
1.7
1.8
2.0
1.8 | e7.7
e7.5
e7.3
e7.1
e7.0 | e3.9
e3.9
e4.2
e4.4
e3.9 | e2.7
e2.8
e2.8
e2.8
e2.8 | e3.0
e3.0
e3.1
e3.1 | e3.8
e3.4
e3.2
e3.1
e3.1 | 3.8
3.6
3.7
4.4
7.0 | 2.1
2.2
2.1
2.1
2.6 | e2.2
e2.0
e1.9
e1.9
e1.8 | 5.7
5.5
5.0
4.7
4.7 | e3.4
e3.3
e3.3
e3.3
e3.7 | e2.9
e2.9
e3.4
e4.1
e3.7 | | 21
22
23
24
25 | 1.9
1.8
1.8
1.8
2.0 | e6.8
e6.6
e6.6
e6.4
e6.1 | e3.7
e3.6
e3.6
e3.6
e3.5 | e2.8
e2.8
e2.7
e2.8
e2.8 | e3.2
e3.1
e3.0
e2.9
e3.0 | e3.1
e3.1
e3.4
e3.7
e3.0 | 5.1
4.5
4.4
4.1
4.0 | 2.2
2.0
2.0
1.8
1.8 | e1.8
e1.8
e1.9
e5.9
e7.2 | 4.7
4.5
4.3
4.0
3.8 | e4.5
e5.1
e5.6
e4.3
e3.9 | e3.5
e4.2
e5.2
e3.9
e3.2 | | 26
27
28
29
30
31 | 2.3
2.2
2.1
2.1
2.0
2.1 | e5.9
e5.9
e5.8
e5.8
e5.5 | e3.4
e3.4
e3.3
e3.3
e3.3 | e2.9
e2.9
e3.0
e3.1
e3.1 | e2.9
e2.9
e2.8 | e3.0
e3.1
e3.2
e3.1
e3.1
e3.2 | 3.9
3.9
3.9
3.8
3.6 | 1.7
1.7
1.7
e1.8
e2.5
e2.1 | e6.3
e6.6
e5.7
e6.4
e4.5 | 3.8
3.7
3.6
3.3
4.3
4.9 | e3.7
e3.9
e4.0
e4.1
e3.8
e3.5 | e3.4
e3.8
e4.7
e5.2
e5.7 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 66.1
2.13
4.8
1.7
0.27
0.31 | 148.9
4.96
8.3
2.1
0.62
0.70 | 127.6
4.12
5.2
3.1
0.52
0.60 | 90.1
2.91
3.1
2.7
0.37
0.42 | 83.9
3.00
3.2
2.8
0.38
0.39 | 97.8
3.15
4.7
2.7
0.40
0.46 | 117.8
3.93
7.0
3.3
0.49
0.55 | 77.4
2.50
8.9
1.7
0.31
0.36 | 109.8
3.66
7.2
1.7
0.46
0.51 | 232.4
7.50
24
2.9
0.94
1.09 | 126.6
4.08
5.6
3.3
0.51
0.59 | 103.2
3.44
5.7
2.1
0.43
0.48 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 3.06
4.02
(1996)
1.35
(2000) | 3.48
6.28
(1994)
1.24
(2000) | EAN DATA
2.84
4.12
(2003)
1.65
(2001) | 2.61
3.53
(1998)
1.93
(1999) | 2.74
3.87
(1998)
1.70
(1997) | 1991 - 2003
2.96
4.34
(1992)
1.58
(1995) | 3.34
5.28
(2002)
1.29
(1995) | R YEAR (W
3.40
6.18
(1997)
1.34
(2000) | 3.32
6.73
(1991)
1.47
(1992) | 3.65
7.50
(2003)
2.27
(1998) | 3.31
4.84
(1997)
1.62
(1994) | 3.93
6.85
(1992)
2.53
(1995) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 1,37 (a) | CALENDAR
4.1
3.76
8.3 Nov
1.7 (b)Sep
1.8 Oct
0.47
6.42
5.6
3.6
2.1 | 14
25 | FOR 2003 WATER YEAR 1,381.6 3.79 24 Jul 3 1.7 (b)Oct 3 1.8 Oct 10 (c)29 Jul 3 (f)10.31 Sep 4 1.5 Oct 4 0.48 6.46 5.9 3.2 2.0 | | | (d) | 0.54 A
0.90 A
39 J
10.31 S | 2003
1995
(un 29, 1991
(ug 19, 1994
(un 29, 1991
(un 29, 1991
(un 29, 1991
(un 29, 1991)
(un 29, 1991) | ⁽a) Ice affected ⁽b) Also occurred additional days ⁽c) Gage height, 9.38 ft ⁽d) Gage height, 9.62 ft (e) Estimated due to ice effect or missing record ⁽f) Beaver dams # 05357245 TROUT RIVER AT TROUT LAKE NEAR BOULDER JUNCTION, WI $LOCATION.--Lat\ 46^{\circ}02'08",\ long\ 89^{\circ}42'20",\ in\ SE\ {}^{1}\!\!/_{4} (revised)\ NE\ {}^{1}\!\!/_{4}\ sec. 14,\ T.41\ N.,\ R.6\ E.,\ Vilas\ County,\ Hydrologic\ Unit\ 07050002,\ on\ right\ bank\ 20\ ft\ upstream\ from\ U.S.\ Highway\ 51\ bridge,\ approximately\ 500\ ft\ downstream\ from\ outlet\ of\ Trout\ Lake,\ 6.0\ mi\ southwest\ of\ Boulder\ Junction.$ DRAINAGE AREA.--46.2 mi². PERIOD OF RECORD.--May 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,620 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | |---|---|---|---|--|--|---|---|---|---|--|--|---|--|--| | DAY | OCT | NOV | DEC
| JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1
2
3
4
5 | 40
40
38
43
44 | 42
41
41
41
41 | 37
37
37
37
36 | 36
35
35
35
35 | 33
33
35
36
36 | 32
32
32
32
32
32 | 42
43
44
45
46 | 49
47
46
44
45 | 57
56
54
52
50 | 34
34
36
36
36 | 30
31
32
30
30 | 20
19
e18
e17
e17 | | | | 6
7
8
9
10 | 53
55
55
55
55
53 | 41
40
40
40
42 | 36
35
35
35
35
35 | 35
35
35
35
34 | 36
36
36
36
35 | 31
32
33
33
33 | 46
45
43
43
42 | 46
46
46
49
50 | 50
52
52
52
52
57 | 36
35
34
34
34 | 29
29
28
27
27 | e16
e16
17
17
17 | | | | 11
12
13
14
15 | 53
53
52
50
48 | 42
41
41
41
41 | 35
35
35
35
35
35 | 34
34
34
33
33 | 35
35
34
34
34 | 33
32
32
32
32
32 | 42
41
41
41
41 | 68
84
83
83
83 | 59
57
55
54
53 | 35
34
34
33
33 | 26
25
24
23
23 | 16
17
19
20
19 | | | | 16
17
18
19
20 | 46
45
46
46
45 | 40
40
40
40
40 | 35
35
37
39
39 | 33
32
33
33
33 | 33
33
33
33
33 | 33
33
34
33
35 | 45
48
50
51
57 | 83
82
81
82
83 | 51
50
48
46
44 | 32
33
31
30
32 | 23
22
21
20
24 | 19
18
17
17
17 | | | | 21
22
23
24
25 | 46
47
46
45
45 | 40
40
39
38
38 | 40
39
38
38
38 | 33
32
33
33
33 | 34
34
33
33
33 | 36
37
37
36
36 | 60
59
58
57
55 | 78
76
74
71
69 | 41
40
41
42
42 | 33
31
30
29
28 | 25
23
22
25
26 | 16
17
17
16
14 | | | | 26
27
28
29
30
31 | 45
45
44
44
44
44 | 38
37
37
37
37 | 38
37
37
37
37
36 | 33
33
33
33
33
33 | 32
32
32
 | 35
36
41
42
41
41 | 54
53
52
51
50 | 67
64
63
62
62
61 | 40
39
37
36
35 | 28
28
27
26
28
31 | 25
24
24
e23
22
20 | 15
16
16
16
15 | | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,455
46.9
55
38
1.02
1.17 | 1,196
39.9
42
37
0.86
0.96 | 1,135
36.6
40
35
0.79
0.91 | 1,044
33.7
36
32
0.73
0.84 | 952
34.0
36
32
0.74
0.77 | 1,069
34.5
42
31
0.75
0.86 | 1,445
48.2
60
41
1.04
1.16 | 2,027
65.4
84
44
1.42
1.63 | 1,442
48.1
59
35
1.04
1.16 | 995
32.1
36
26
0.69
0.80 | 783
25.3
32
20
0.55
0.63 | 511
17.0
20
14
0.37
0.41 | | | | STATIST | TICS OF MO | ONTHLY M | | | ER YEARS | 1991 - 2003. | , BY WATE | R YEAR (W | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 31.7
46.9
(2003)
12.2
(2000) | 36.0
55.4
(1997)
16.2
(2000) | 38.3
58.1
(1992)
22.5
(2000) | 38.4
60.1
(1997)
25.8
(1999) | 36.8
47.9
(1997)
28.1
(1999) | 36.5
44.9
(1992)
23.8
(1999) | 45.5
62.2
(2002)
31.9
(1999) | 51.4
74.5
(2002)
27.6
(2000) | 44.5
59.6
(1996)
28.4
(2000) | 43.6
57.0
(1996)
29.5
(2001) | 33.7
49.7
(1996)
20.3
(1998) | 28.8
44.4
(1997)
14.4
(1998) | | | | SUMMA | RY STATIS | STICS | I | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 199 | 1 - 2003 | | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | | FOR 2002 CALENDAR YEAR 16,256 44.5 96 May 9 (a)27 Feb 11-18 (a)27 Feb 11 0.000 0.000 64 40 30 | | | 14,054
38.5 84 May 12
14 Sep 25
15 Sep 24
88 May 12
1.88 May 12
13 Sep 25
0.000
0.00
54
36 | | | 1 | 9.9 Oct 2
10 Oct 2
101 Ma
1.99 Ma | 1996
2000
y 9, 2002
5,26,1999
tt 22, 1999
y 8, 2002
y 19, 1996
7,25,1999 | | | ⁽a) Ice affected ⁽e) Estimated due to ice effect or missing record # 05357254 TROUT RIVER AT COUNTY TRUNK HIGHWAY H NEAR BOULDER JUNCTION, WI LOCATION.--Lat 46°02'02", long 89°46'21", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.17, T.41 N., R.6 E., Vilas County, Hydrologic Unit 07050002, on left bank 18 ft upstream from County Trunk Highway H, 8.3 mi southwest of Boulder Junction. DRAINAGE AREA.--58.9 mi². PERIOD OF RECORD.--October 1998 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,610 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges and periods of variable backwater, Oct. 1 to Nov. 5 and June 18 to Sept. 30, which are poor (see page 11). | poor (s | see page 11, |). | | | | | | | | | | | |-------------|----------------|----------------|----------------|-----------------------|----------------|------------------------|----------------|----------------|----------------|----------------|----------------|----------------| | | | DISCHA | ARGE, CUB | IC FEET PE | |) , WATER
LY MEAN V | | OBER 200 | 2 TO SEPTEN | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 43 | 55 | e49 | e44 | e36 | e38 | e56 | 60 | 71 | 65 | 51 | 34 | | 2 | 43 | 55 | e47 | e43 | e37 | e38 | e56 | 59 | 68 | 65 | 50 | 33 | | 3 | 41 | 54 | e45 | e42 | e37 | e37 | e62 | 56 | 66 | 66 | 50 | 33 | | 4 | 43 | 55 | e45 | e41 | e36 | e37 | e100 | 54 | 64 | 67 | 48 | 31 | | 5 | 45 | 56 | e47 | e41 | e36 | e37 | e93 | 55 | 63 | 66 | 46 | 30 | | 6 | 49 | e56 | e47 | e41 | e36 | e37 | e72 | 57 | 65 | 65 | 44 | 29 | | 7 | 51 | e60 | e47 | e41 | e36 | e37 | e58 | 55 | 69 | 64 | 44 | 28 | | 8 | 49 | e61 | e47 | e42 | e36 | e38 | e56 | 56 | 69 | 63 | 42 | 28 | | 9 | 48 | e61 | e46 | e42 | e36 | e37 | 56 | 61 | 70 | 62 | 41 | 28 | | 10 | 51 | e65 | e45 | e41 | e36 | e37 | 57 | 65 | 77 | 62 | 39 | 28 | | 11 | 51 | e66 | e46 | e39 | e36 | e37 | 59 | 102 | 84 | 63 | 39 | 28 | | 12 | 52 | e66 | e47 | e39 | e36 | e38 | 57 | 137 | 78 | 60 | 37 | 29 | | 13 | 52 | e67 | e47 | e38 | e36 | e38 | 55 | 118 | 75 | 59 | 36 | 30 | | 14 | 51 | e68 | e47 | e38 | e36 | e38 | 56 | 107 | 73 | 59 | 36 | 29 | | 15 | 51 | e66 | e47 | e38 | e36 | e50 | 56 | 98 | 71 | 59 | 36 | 30 | | 16 | 50 | e66 | e47 | e38 | e37 | e70 | 61 | 92 | 69 | 56 | 36 | 28 | | 17 | 52 | e67 | e48 | e38 | e37 | e80 | 64 | 88 | 68 | 56 | 36 | 26 | | 18 | 52 | e68 | e49 | e38 | e38 | e70 | 67 | 85 | 70 | 55 | 34 | 26 | | 19 | 52 | e69 | e50 | e38 | e38 | e65 | 70 | 84 | 68 | 54 | 34 | 26 | | 20 | 51 | e70 | e50 | e37 | e38 | e66 | 88 | 92 | 66 | 55 | 36 | 25 | | 21 | 52 | e70 | e49 | e36 | e38 | e62 | 92 | 87 | 65 | 57 | 37 | 25 | | 22 | 53 | e70 | e47 | e36 | e37 | e60 | 86 | 83 | 62 | 56 | 36 | 26 | | 23 | 52 | e70 | e46 | e36 | e37 | e70 | 81 | 81 | 65 | 56 | 36 | 25 | | 24 | 54 | e70 | e44 | e36 | e37 | e56 | 77 | 79 | 66 | 54 | 39 | 25 | | 25 | 55 | e68 | e44 | e36 | e37 | e53 | 74 | 76 | 67 | 53 | 40 | 24 | | 26 | 55 | e67 | e44 | e36 | e37 | e53 | 72 | 73 | 68 | 51 | 38 | 25 | | 27 | 54 | e66 | e44 | e36 | e37 | e53 | 69 | 71 | 67 | 50 | 38 | 25 | | 28 | 52 | e65 | e45 | e36 | e38 | e52 | 69 | 71 | 67 | 49 | 38 | 25 | | 29 | 51 | e65 | e45 | e36 | | e51 | 65 | 69 | 67 | 48 | 36 | 25 | | 30
31 | 51
53 | e55
 | e45 | e36 | | e53
e54 | 64 | 71
75 | 66
 | 48
52 | 35
34 | 24 | | | | | e45 | e36 | | | | | | | | | | TOTAL | 1,559 | 1,917 | 1,441 | 1,195 | 1,028 | 1,542 | 2,048 | 2,417 | 2,064 | 1,795 | 1,222 | 828 | | MEAN | 50.3 | 63.9 | 46.5 | 38.5 | 36.7 | 49.7 | 68.3 | 78.0 | 68.8 | 57.9 | 39.4 | 27.6 | | MAX | 55 | 70 | 50 | 44 | 38 | 80 | 100 | 137 | 84 | 67 | 51 | 34 | | MIN | 41 | 54 | 44 | 36 | 36 | 37 | 55 | 54 | 62 | 48 | 34 | 24 | | CFSM
IN. | 0.85
0.98 | 1.08
1.21 | 0.79
0.91 | 0.65
0.75 | 0.62
0.65 | 0.84
0.97 | 1.16
1.29 | 1.32
1.53 | | 0.98
1.13 | 0.67
0.77 | 0.47
0.52 | | | | | | | | | | | | 1.13 | 0.77 | 0.52 | | | | | | FOR WATE | | | | | | 60.0 | (2.2 | 10.1 | | MEAN | 31.5 | 38.2 | 36.4 | 37.0 | 42.2 | 48.7 | 65.1 | 63.9 | 60.3 | 69.8 | 62.2 | 42.4 | | MAX | 50.3 | 63.9 | 46.5 | 42.0 | 48.4 | 53.7 | 91.8 | 94.1 | 74.6 | 83.8 | 85.3 | 54.0 | | (WY)
MIN | (2003)
20.0 | (2003)
23.2 | (2003)
27.2 | (2001)
32.9 | (2000)
36.7 | (2002)
40.5 | (2002)
49.1 | (2002)
41.3 | (2002)
49.4 | (2000)
57.9 | (2001)
39.4 | (2002)
27.6 | | (WY) | (2000) | (2000) | (1999) | (1999) | (2003) | (1999) | (1999) | (2000) | (1999) | (2003) | (2003) | (2003) | | , , | , , | | ` ′ | OD 2002 C | , í | , í | ` ′ | , , , | | , , | , , | | | ANNUAL | RY STATIS | STICS | 1 | FOR 2002 CA
22,351 | ALENDAK | IEAK | 19,05 | 3 WATER | IEAK | WAIEK | YEARS 199 | 9 - 2003 | | ANNUAL | | | | 61. | 2 | | | 52.2 | | | 49.9 | | | | Γ ANNUAL | MEAN | | 01. | .2 | | - | , 2.2 | | | 57.3 | 2002 | | | ANNUAL | | | | | | | | | | 41.9 | 1999 | | | T DAILY M | | | 143 | Apr | 19 | 13 | 37 M | ay 12 | | | r 19, 2002 | | | DAILY M | | | (a)33 | | 12-18 | | | ep 25,30 | - | | -29, 1999 | | | | AY MINIM | UM | (a)33 | Feb | | | | ep 24 | | 17 Oc | t 23, 1999 | | | JM PEAK I | | | (, | | | (b)14 | | ay 12 | (c)1 | | r 19, 2002 | | | JM PEAK S | | | | | | | | ar 15 | (-)- | | 1 9, 2000 | | | | LOW FLOW | 1 | | | | ` ź | | ep 23,25,30 | | 15 (d)Oct 2 | | | | L RUNOFF | | | | .04 | | | 0.89 | | | 0.85 | | | | L RUNOFF | | | | .12 | | | 2.04 | | | 11.50 | | | | ENT EXCE | | | 88 | | | | 1 | | | 75 | | | | ENT EXCE | | | 60 | | | | 51
| | | 46 | | | 90 PERC | ENT EXCE | EDS | | 37 | | | 3 | 36 | | | 29 | | ⁽a) Ice affected ⁽a) the affected (b) Gage height, 6.08 ft (c) Gage height, 6.12 ft (d) Also occurred Oct. 28, 29, 1999 (e) Estimated due to ice effect or missing record # 05357335 BEAR RIVER NEAR MANITOWISH WATERS, WI $LOCATION.--Lat\ 46^{\circ}02'56", long\ 89^{\circ}59'04", in\ SE\ {}^{1}\!\!/_{4}\ NW\ {}^{1}\!\!/_{4}\ sec.10, T.41\ N., R.4\ E., Iron\ County,\ Hydrologic\ Unit\ 07050002,\ on\ right\ bank\ 10\ ft\ upstream\ from\ East\ River\ Trail\ bridge,\ 2.3\ mi\ upstream\ from\ Little\ Bear\ Creek,\ 7.7\ mi\ southwest\ of\ Manitowish\ Waters,\ and\ 5.3\ mi\ upstream\ from\ mouth.$ DRAINAGE AREA.--81.3 mi². PERIOD OF RECORD .-- May 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,580 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges and periods of variable backwater, Oct. 1 to Nov. 23, Dec. 11-17, and June 25 to Sept. 30, which are poor (see page 11). | 50, WI | men are poo | DISCH. | | IC FEET PE | | D, WATER Y | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|---|---|---|---|---|---|---|---|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | LY MEAN V
MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 92
91
89
95
105 | 71
68
64
61
58 | e38
e39
e40
e40
e40 | e44
e45
e45
e45
e45 | e30
e29
e29
e28
e28 | e29
e29
e29
e29
e28 | e57
e58
e59
e60
e65 | 110
104
99
94
93 | 115
109
103
99
93 | 85
83
84
83
82 | 44
43
46
52
54 | 18
18
17
16
15 | | 6
7
8
9
10 | 123
141
165
182
174 | 55
53
50
50
52 | e40
e40
e40
e41
e43 | e45
e45
e46
e47
e46 | e28
e28
e28
e27
e27 | e28
e28
e29
e29
e30 | e75
e84
73
69
74 | 103
104
104
116
133 | 95
108
111
112
122 | 81
80
79
78
78 | 54
52
49
46
42 | 14
13
12
11
12 | | 11
12
13
14
15 | 165
157
150
142
132 | 54
53
51
48
46 | 46
48
49
49
48 | e44
e43
e43
e42
e41 | e27
e27
e27
e27
e27 | e30
e31
e31
e32
e40 | 82
82
80
81
85 | 197
304
314
298
272 | 137
133
139
132
117 | 80
78
75
73
73 | 38
34
30
29
28 | 12
12
12
12
12 | | 16
17
18
19
20 | 123
115
109
107
103 | 44
43
42
39
38 | 43
43
e45
e47
e48 | e40
e39
e38
e37
e36 | e27
e27
e28
e28
e28 | e52
e70
e63
e60
e62 | 99
112
120
131
174 | 245
219
200
189
193 | 105
98
93
90
87 | 70
67
64
62
61 | 27
26
25
24
24 | 12
13
13
13
12 | | 21
22
23
24
25 | 100
97
95
91
89 | 36
35
34
e32
e31 | e47
e46
e45
e45
e45 | e35
e35
e34
e34
e33 | e29
e29
e29
e28
e28 | e58
e58
e66
e68
e66 | 193
187
171
155
145 | 188
177
166
155
146 | 84
82
84
86
89 | 60
59
58
56
54 | 23
22
22
22
22
22 | 13
15
14
11
12 | | 26
27
28
29
30
31 | 89
87
84
81
79
75 | e31
e32
e34
e36
e37 | e46
e46
e46
e46
e46
e45 | e33
e32
e32
e31
e31
e30 | e28
e28
e28
 | e63
e62
e58
e57
e57 | 137
131
123
121
119 | 138
131
125
123
121
117 | 91
90
89
89
87 | 52
50
47
45
44
45 | 21
20
20
20
19
19 | 13
15
15
15
14 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3,527
114
182
75
1.40
1.61 | 1,378
45.9
71
31
0.56
0.63 | 1,370
44.2
49
38
0.54
0.63 | 1,216
39.2
47
30
0.48
0.56 | 782
27.9
30
27
0.34
0.36 | 1,429
46.1
70
28
0.57
0.65 | 3,202
107
193
57
1.31
1.47 | 5,078
164
314
93
2.01
2.32 | 3,069
102
139
82
1.26
1.40 | 2,086
67.3
85
44
0.83
0.95 | 997
32.2
54
19
0.40
0.46 | 406
13.5
18
11
0.17
0.19 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 58.4
130
(1995)
6.13
(1999) | ONTHLY M
67.3
151
(1992)
8.52
(1999) | EAN DATA
59.3
118
(2002)
8.20
(1999) | FOR WATE
49.1
105
(1992)
7.92
(1999) | ER YEARS
54.2
110
(1992)
12.2
(1999) | 77.3
187
(1992)
26.6
(1999) | , BY WATE
136
275
(2002)
44.1
(1999) | R YEAR (W
119
230
(2002)
36.9
(1998) | 7Y) 83.8 129 (1993) 54.4 (1992) | 78.8
131
(2001)
46.6
(1998) | 65.9
198
(2001)
8.08
(1998) | 52.5
159
(1994)
4.60
(1998) | | ANNUA: ANNUA: HIGHES: LOWES: HIGHES: LOWES: ANNUA: MAXIMI INSTAN ANNUA: ANNUA: 10 PERC 50 PERC | T ANNUAI F ANNUAL T DAILY M F DAILY M L SEVEN-E UM PEAK I UM PEAK S | . MEAN MEAN IEAN EAN EAN STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | UM | | .4
Apr
Feb
Jan
.21
.43 | 2 YEAR
- 17
- 2,3
- 30 | 24,54 | 57.2
14 Ma
11 Sej
12 Sej
17 Ma | y 13
p 9,24
p 8
y 13
ct 8 | 1
5
(d)5 | 4.0 (b)Se
4.0 Se
89 Se
3.62 Ap | 2 - 2003
2002
1999
p 23, 1994
p 9, 1998
p 19, 1998
p 23, 1994
r 17, 2002
p 20, 1998 | ⁽a) Ice affected ⁽a) Ice affected (b) Also occurred Sept. 19-23 (c) Gage height, 3.22 ft (d) Gage height, 3.47 ft (e) Estimated due to ice effect or missing record (f) Also occurred additional days #### 05358170 BUTTERNUT CREEK AT CUTOFF ROAD NEAR BUTTERNUT, WI LOCATION.--Lat 45°59'47", long 90°03'11", in SW ½ SE ½ SW ½ sec.28, T.41 N., R.1 W., Ashland County, Hydrologic Unit 07050002, on left bank downstream side of bridge on Cutoff Road. DRAINAGE AREA.--28.9 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 2002 to September 2003. GAGE.--Water-stage recorder. Side-looking velocity meter system. Elevation of gage is 1,490 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC AUG SEP JAN **FEB** MAR APR MAY JUN JUL e20 10 6.7 e2.3 20 12 4.9 e1.6 17 37 12 --e19 e6.0 e2.4 33 17 12 15 2 ---8.8 e1.6 23 6.7 3 e2.2 20 e19 6.9 ---4.9 e5.0 e1.6 29 15 13 14 25 4 e2.1 e18 44 e4.5 e1.7 17 14 13 11 3.8 5 --e18 5.2 e4.0 e2.0 e1.7 16 27 15 8.7 11 11 15 6 e17 5.6 e3.6 e2.0 e1.7 13 38 8.6 9.0 6.2 e16 5.3 e3.2 e1.9 e1.7 14 43 26 7.1 7.7 5.8 8 e18 7.0 e3.0 e1.9 e1.6 13 40 29 7.6 7.1 3.8 9 e2.8 24 e16 e1.8 e1.7 57 6.3 10 e3.7 34 101 35 5.5 5.6 1.9 e18 6.6 e1.6 11 e17 4.9 e3.2 e1.8 e1.8 67 222 64 9.7 5.4 0.66 e15 4.2 e2.8 e1.7 73 608 54 11 5.9 3.9 --e2.1 12 4.0 e2.5 e1.7 e2.6 61 588 35 8.5 6.0 5.6 13 e14 e2.2 354 26 6.0 6.9 16 e3.058 98 14 66 e1.7 e2.1 219 19 10 15 8.0 66 12 24 e1.6 e4.0 7.6 16 12 5.2 e1.9 e1.7 86 149 15 5.5 4.7 --e4.8 7.2 17 11 6.9 e1.8 e1.6 e6.0 88 103 13 5.6 6.9 5.1 18 ---9.0 e1.8 e1.8 e7.0 83 68 12 4.2 3.9 10 19 e10 22 e1.7 e2.4 e8.0 92 54 11 5.7 5.1 10 23 20 e13 e1.7 e3.2 e7.0 162 78 10 8.2 7.1 3.6 21 257 83 e21 18 e1.6 e2.6 e6.8 14 8.1 8.3 22 12 e2.4 306 9.7 12 13 e18 e1.6 e6.6 65 6.4 23 e17 10 e1.6 e2.2 237 49 13 8.7 4.5 12 e6.4 e1.9 24 e14 e1.6 e6.8 168 40 17 7.6 6.6 6.9 11 25 e14 7.8 e1.8 e7.4 120 34 18 6.3 11 e1.6 e8.0 e1.7 26 e13 5.1 e1.6 83 30 18 89 6.4 3.0 27 ---12 32 e1.5 e1.7 e8.4 63 25 18 6.5 5.2 12 28 8.9 39 23 6.9 5.8 9.4 --e1.5 e1.6 e9.051 16 29 9.6 8.2 e1.5 e10 46 22 17 7.1 59 12. 30 e1.7 21 9.4 8.8 --e11 40 16 7.16.7 6.9 31 ---93 e2.0---12 22 89 5.7 TOTAL 458.9 256.4 82.0 55.5 155.2 2,392 3,287 621.1 225.1 210.76 266.1 MEAN 15.3 8.27 2.65 1.98 5.01 79.7 106 20.7 8.58 7.26 7.03 24 23 3.2 12 306 608 64 14 15 13 MAX 6.7 8.9 3.2 1.5 4.2 3.9 MIN 1.6 1.6 13 21 0.66 0.53 0.29 0.09 0.07 0.17 0.25 **CFSM** 2.76 3.67 0.72 0.30 0.24 ---0.59 0.33 0.11 0.07 0.20 3.08 0.80 0.34 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2003 - 2003, BY WATER YEAR (WY) MEAN 15.3 8.27 2.65 1.98 5.01 106 20.7 8.58 7.26 7.03 MAX 15.3 8.27 2.65 1.98 5.01 79.7 106 20.7 8.58 7.26 7.03 (WY) ---(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)8.27 MIN 15.3 2.65 1.98 79.7 106 20.7 8.58 7.26 7.03 #### SUMMARY STATISTICS (WY) ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS FOR 2003 WATER YEAR (NOVEMBER-SEPTEMBER) (2003) (2003) (2003) (2003) (2003) (2003) 8,010.06 24.0 608 May 12 0.66 Sep 11 (a)1.6 Jan 23 10.31 52 8.6 1.8 - (a) Ice affected - (e) Estimated due to ice effect or missing record (2003) (2003) (2003) (2003) (2003) # 05358170 BUTTERNUT CREEK AT CUTOFF ROAD NEAR BUTTERNUT, WI-Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--November 2002 to September 2003. PERIOD OF DAILY RECORD .-- TOTAL-PHOSPHORUS DISCHARGE: November 2002 to September 2003.
INSTRUMENTATION.--Automatic, pumping, and refrigerated water sampler. REMARKS.--Total-phosphorus loads generally are good. For periods during which discharge records were estimated, load estimates are fair to poor. EXTREMES FOR CURRENT PERIOD (NOVEMBER 2002 TO SEPTEMPBER 2003).-- TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 128 lb, May 12; minimum daily, 0.18 lb, Mar. 10. # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--------------|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1
2
3
4
5 |

 | 2.67
2.55
2.55
2.41
2.40 | 1.56
1.36
0.75
0.69
0.82 | 1.18
1.07
0.89
0.80
0.72 | 0.46
0.48
0.44
0.42
0.41 | 0.22
0.22
0.21
0.22
0.21 | 6.11
8.38
7.42
6.37
5.93 | 8.38
7.34
6.35
5.53
5.86 | 3.71
3.29
2.90
2.79
2.98 | 4.79
4.92
5.19
5.27
3.58 | 3.84
4.81
4.39
3.40
3.59 | 1.72
2.35
2.44
1.36
3.78 | | 6
7
8
9
10 |

 | 2.26
2.12
2.37
2.11
2.36 | 0.89
0.85
1.14
1.22
1.09 | 0.65
0.58
0.54
0.51
0.67 | 0.41
0.39
0.39
0.37
0.37 | 0.21
0.20
0.19
0.19
0.18 | 4.98
5.18
4.89
7.09
13.0 | 8.14
9.25
8.74
12.7
21.7 | 3.06
5.41
6.16
5.08
8.08 | 3.55
2.93
3.16
1.95
2.30 | 2.91
2.48
2.27
2.03
1.78 | 2.22
2.09
1.38
1.03
0.71 | | 11
12
13
14
15 |

 | 2.22
1.96
1.87
2.14
3.07 | 0.83
0.70
0.67
1.11
1.34 | 0.58
0.51
0.46
0.40
0.39 | 0.38
0.36
0.36
0.35
0.32 | 0.20
0.26
0.36
0.46
0.68 | 24.7
25.1
19.9
17.8
19.7 | 54.1
128
102
60.9
33.2 | 16.1
14.5
10.1
7.97
6.21 | 4.09
4.56
3.26
3.61
3.55 | 1.74
1.87
1.91
1.90
2.44 | 0.24
1.43
2.10
2.58
4.62 | | 16
17
18
19
20 |

 | 1.56
1.43
1.46
1.32
1.78 | 0.88
1.18
1.53
3.70
3.83 | 0.35
0.33
0.33
0.32
0.32 | 0.33
0.30
0.33
0.43
0.56 | 0.92
1.28
1.67
2.13
2.08 | 23.3
25.4
23.2
30.7
74.6 | 20.1
15.6
10.5
8.64
13.0 | 5.12
4.87
4.77
4.54
4.14 | 2.38
1.83
1.36
1.88
2.69 | 1.77
2.23
1.26
1.66
2.34 | 1.79
1.93
3.73
3.81
1.32 | | 21
22
23
24
25 |

 | 2.90
2.52
2.40
2.00
2.01 | 3.07
2.13
1.78
1.83
1.36 | 0.30
0.30
0.30
0.31
0.31 | 0.45
0.40
0.36
0.30
0.28 | 2.20
2.16
2.11
2.27
2.49 | 109
91.2
60.1
39.5
28.5 | 13.6
10.6
8.08
6.74
5.88 | 3.75
3.86
4.96
6.75
7.20 | 4.68
3.77
2.84
2.50
2.05 | 2.67
2.12
1.51
2.20
1.92 | 3.03
4.81
4.44
2.47
3.94 | | 26
27
28
29
30
31 |

 | 1.83
1.78
1.32
1.43
1.41 | 0.89
0.56
0.69
1.44
1.54
1.63 | 0.31
0.29
0.29
0.29
0.33
0.40 | 0.26
0.25
0.23
 | 2.71
2.87
3.11
3.48
3.86
4.27 | 20.3
15.5
12.3
10.8
9.40 | 5.15
4.40
4.04
4.05
3.91
4.04 | 7.32
7.13
6.35
6.73
6.59 | 2.91
2.12
2.24
2.30
2.29
2.88 | 2.18
1.78
1.99
2.05
2.31
1.97 | 1.08
4.23
3.31
4.21
2.31 | | TOTAL | | 62.21 | 43.06 | 15.03 | 10.39 | 43.62 | 750.35 | 610.52 | 182.42 | 97.43 | 73.32 | 76.46 | # CHIPPEWA RIVER BASIN # 05358170 BUTTERNUT CREEK AT CUTOFF ROAD NEAR BUTTERNUT, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Dis-
charge,
cfs | Instantaneous discharge, cfs | Sam-
pling
method,
code | Phos-
phorus,
water,
fltrd,
mg/L | Phos-
phorus,
water,
unfltrd
mg/L | |----------------|--------------|------------------------|------------------------------|----------------------------------|--|---| | Date | Time | (00060) | (00061) | (82398) | (00666) | (00665) | | NOV 2002
14 | 1400 | | 19 | 70 | 0.020 | 0.024 | | DEC | | | | | | | | 11
JAN 2003 | 1345 | | 3.9 | 70 | 0.022 | 0.031 | | 15
FEB | 1600 | 2.1 | | 70 | 0.024 | 0.034 | | 13
MAR | 1315 | 1.7 | | 70 | 0.027 | 0.039 | | 11 | 0835 | 1.8 | | 70 | 0.019 | 0.020 | | 21
APR | 0700 | 6.8 | | 70 | 0.021 | 0.060 | | 11 | 0115 | | 55 | 50 | | 0.072 | | 11 | 0615 | | 60 | 50 | 0.026 | 0.069 | | 14 | 1455 | | 55 | 10 | | 0.056 | | 14 | 1500 | | 55 | 50 | 0.029 | 0.058 | | 15 | 1045 | | 65 | 50 | | 0.056 | | 16
16 | 0445
2245 | | 82
89 | 50
50 | 0.021 | 0.053
0.047 | | 17 | 1640 | | 88 | 10 | 0.021 | 0.047 | | 17 | 1645 | | 90 | 50 | | 0.058 | | 18 | 2230 | | 85 | 50 | | 0.049 | | 20 | 1030 | | 154 | 50 | | 0.087 | | 21 | 0430 | | 228 | 50 | | 0.090 | | 21 | 1615 | | 274 | 10 | | 0.076 | | 21 | 1630 | | 285 | 50 | | 0.072 | | 22 | 0700 | | 319 | 50 | | 0.056 | | 22 | 1205 | | 316 | 10 | | 0.056 | | 22 | 1235 | | 311 | 50 | 0.024 | 0.054 | | 23 | 1300 | | 228 | 50 | | 0.046 | | 24 | 1300 | | 164 | 50 | | 0.043 | | 25 | 1300 | | 118 | 50 | | 0.044 | | 26 | 1300 | | 81 | 50 | | 0.046 | | MAY | 4200 | | 20 | | | 0.020 | | 06 | 1300 | | 39 | 50 | | 0.039 | | 09 | 1600 | | 70 | 50 | | 0.042 | | 11
11 | 0400
2200 | | 111
390 | 50 | | 0.038 | | 12 | 1840 | | 702 | 50
50 | | 0.050
0.034 | | 12 | 1845 | | 702 | 50 | | 0.034 | | 13 | 0400 | | 681 | 50 | | 0.034 | | 13 | 1600 | | 541 | 50 | | 0.034 | | 14 | 1600 | | 327 | 50 | | 0.033 | | 15 | 1000 | | 224 | 50 | | 0.028 | | 16 | 1600 | | 141 | 50 | | 0.024 | | 17 | 1600 | | 96 | 50 | | 0.030 | | 18 | 0400 | | 79 | 50 | | 0.028 | | 20 | 1030 | | 80 | 50 | | 0.031 | | 22 | 0100 | | 74 | 50 | | 0.030 | | JUN | | | | | | 0.045 | | 11 | 1415 | | 66 | 50 | | 0.047 | | 18 | 1445 | | 12 | 50 | | 0.075 | | 23
JUL | 0945 | | 22 | 50 | | 0.073 | | 11 | 2330 | | 17 | 50 | | 0.078 | | 16 | 1408 | | 11 | 50 | 0.040 | 0.078 | | AUG | 1700 | | 11 | 50 | 0.040 | 0.001 | | 14 | 0652 | | -0.06 | 50 | | 0.059 | | SEP | | | | | | | | 16 | 1745 | | 4.9 | 50 | | 0.070 | #### 05358180 SPILLER CREEK AT COUNTY HIGHWAY B NEAR BUTTERNUT, WI LOCATION.--Lat 45°58'44", long 90°31'48", in SE \(\frac{1}{4}\) NE \(\frac{1}{4}\) NE \(\frac{1}{4}\) NE. 1. R.1 W., Price County, Hydrologic Unit 07050002, on right bank approximately 200 ft upstream of culvert on County Highway B, and approximately 2,000 ft upstream of Butternut Lake. DRAINAGE AREA.--9.1 mi² #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- November 2002 to September 2003. GAGE.--Water-stage recorder. Elevation of gage is approximately 1,495 ft above NGVD, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT AUG SEP NOV DEC JAN FEB MAR APR MAY JUN JUL e1.9 1.9 e6.5 e3.6 e1.9 4.3 10 7.3 4.1 3.0 14 5.8 5.4 e2.0 89 2.9 1.3 2 --e6.2 e3.6 e1.9 1.8 6.4 33 3 e5.9 e2.1 --e3.5 e2.1 1.8 8.0 5.1 3.4 2.8 1.2 1.3 4 e5.7 e3.4 e2.2 $e^{2.2}$ 1.8 e7.4 7.2 4.7 3.4 3.1 5 --e5.6 e3.4 e2.1 e2.0 1.7 e7.7 8.2 4.5 2.7 3.1 1.4 6 e5.3 e3.4 e2.0 e1.9 1.8 13 2.8 1.4 e5.0 e3.4 e2.0 e1.7 1.8 3.8 12 9.8 2.0 2.4 1.3 8 e5.0 e3.3 e2.1 e1.6 1.8 4.0 11 11 1.8 2.2 1.3 9 e5.0 e3.2 e2.2 8.3 1.7 2.0 1.3 e1.5 8.2 21 10 e5.1 e3.2 e2.1 1.7 22 36 13 2.2 1.9 1.3 e1.4 11 e5.1 e3.3 e2.0 e1.3 1.8 31 111 25 3.6 1.8 1.4 e3.3 e2.0 e1.3 24 16 2.9 e5.1 192 2.6 12 ---1.7 1.6 e5.1 e3.2 e1.9 e1.3 1.7 19 112 2.7 1.7 2.5 13 11 2.5 2.1 e5.0e3.1 e1.9 e1.3 18 74 1.5 14 e1.8 7.4 2.5 2.2 1.5 19 48 4.9 e1.9 e2.9 6.1 15 e3.0 e1.3 4.7 e1.9 e1.3 31 32 5.2 2.4 1.5 1.8 16 --e3.0e5.02.2 17 4.7 e2.9 e2.0 e1.4 e7.0 31 24 4.4 1.4 1.6 18 ---4.8 e3.2 e2.0 e1.6 e7.8 29 19 3.9 2.1 1.5 1.5 41 2.0 19 4.2 e3.5 e1.9 e1.8 e8.5 18 3.5 1.5 2.4 20 4.5 e3.3 e1.9 e2.1 e9.0 92 36 3.2 2.1 1.7 2.5 21 96 29 4.1 e3.1 e1.8 e9.5 3.7 1.8 4.0 e2.9 2.1 79 20 2.6 2.2 e1.7 e8.7 3.8 1.6 23 3.9 e2.7 2.1 52 4.2 3.2 1.6 e1.6 e8.7 16 1.6 33 2.2 24 e3.8 e2.5 e1.7 e9.1 13 4.8 1.7 25 1.9 e3.8 e2.3 e1.7 1.9 8.3 24 11 7.4 2.2 1.8 e3.7 9.6 3.3 26 e2.1 e1.6 2.1 6.3 20 9.3 2.2 1.8 2.0 27 --e3.6 e2.2 e1.5 1.9 5.1 17 8.7 7.1 1.8 2.9 2.9 28 e2.2 --e3.5 e1.6 1.9 e5.5 16 8.7 5.7 1.8 1.7 29 29 e3.4 e2.1 e1.6 e5.2 14 8.0 5 7 1.7 1.6 30 2.8 e3.5 e2.0 e1.7 --e4.4 12 82 5.3 1.8 1.6 31 e2.0e1.8 --e4.1 8.0 3.1 1.6 TOTAL 140.7 91.9 48.9 139.9 941.5 80.0 60.5 59.7 58.4 774.0 216.0 1.95 1.99 MEAN 4.69 2.96 1.88 1.75 4.51 25.8 30.4 7.20 2.58 6.5 2.2 2.2 9.5 96 25 4.1 3.3 MAX 3.6 192 3.1 1.3 3.8 7.2 1.5 2.6 MIN 3.4 2.0 1.7 1.7 1.4 1.2 0.22 0.52 0.50 2.84 3.34 0.79 **CFSM** 0.33 0.21 0.19 0.28 0.21 ---0.58 0.38 0.24 0.20 0.57 3.16 3.85 0.88 0.33 0.24 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2003 - 2003, BY WATER YEAR (WY) MEAN 4.69 2.96 1.88 4.51 25.8 30.4 7.20 2.58 1.95 1.99 25.8 2.58 MAX 4.69 2.96 1.88 1.75 4.51 30.4 7.20 1.95 1.99 (WY) ---(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)(2003)25.8 1.95MIN 4.69 2.96 30.4 7.202.581.99 #### SUMMARY STATISTICS (WY) ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90
PERCENT EXCEEDS (2003)FOR 2003 WATER YEAR (NOVEMBER-SEPTEMBER) (2003) (2003) (2003) (2003) - (a) Ice affected - (e) Estimated due to ice effect or missing record (2003) (2003) (2003) (2003) (2003) (2003) # 05358180 SPILLER CREEK AT COUNTY HIGHWAY B NEAR BUTTERNUT, WI-Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--November 2002 to September 2003. PERIOD OF DAILY RECORD.-TOTAL-PHOSPHORUS DISCHARGE: November 2002 to September 2003. $INSTRUMENTATION. \hbox{--} Automatic, pumping, refrigerated water sampler.\\$ REMARKS.--Total-phosphorus loads generally good. For periods during which discharge records were estimated, load estimates are fair to poor. EXTREMES FOR CURRENT PERIOD (NOVEMBER 2002 TO SEPTEMBER 2003).-TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 82.2 lb, May 11; minimum daily, 0.17 lb, Mar. 10 and 12. # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | 1
2
3
4
5 |

 | 0.78
0.78
0.74
0.72
0.71 | 0.53
0.54
0.53
0.52
0.52 | 0.33
0.35
0.37
0.39
0.37 | 0.34
0.34
0.38
0.40
0.36 | 0.23
0.22
0.21
0.21
0.19 | 1.07
1.45
1.33
1.83
1.90 | 2.16
1.81
1.60
1.43
1.59 | 0.92
0.79
0.61
0.56
0.51 | 1.45
1.16
1.18
1.15
0.92 | 0.75
0.71
0.68
0.72
0.72 | 0.29
0.27
0.26
0.28
0.29 | | 6
7
8
9
10 |

 | 0.67
0.64
0.64
0.64
0.65 | 0.53
0.53
0.52
0.51
0.51 | 0.35
0.36
0.37
0.39
0.38 | 0.34
0.31
0.29
0.27
0.25 | 0.19
0.19
0.18
0.18
0.17 | 1.82
0.95
0.98
2.79
15.2 | 2.54
2.27
1.99
5.05
8.31 | 0.61
1.55
1.86
1.22
2.34 | 0.80
0.65
0.60
0.57
0.72 | 0.64
0.55
0.48
0.43
0.41 | 0.29
0.28
0.27
0.27
0.28 | | 11
12
13
14
15 |

 | 0.66
0.66
0.66
0.68
0.64 | 0.53
0.53
0.52
0.51
0.49 | 0.36
0.36
0.35
0.35
0.35 | 0.23
0.23
0.23
0.23
0.22 | 0.18
0.17
0.18
0.19
0.38 | 16.0
9.89
7.09
6.23
6.54 | 82.2
59.0
21.4
12.3
7.75 | 8.81
6.05
3.88
2.59
2.12 | 1.15
0.89
0.78
0.67
0.66 | 0.39
0.34
0.35
0.30
0.29 | 0.29
0.57
0.54
0.47
0.50 | | 16
17
18
19
20 |

 | 0.62
0.62
0.65
0.56
0.61 | 0.49
0.48
0.53
0.58
0.55 | 0.35
0.37
0.37
0.35
0.35 | 0.22
0.23
0.25
0.28
0.32 | 0.82
1.44
2.03
2.79
3.73 | 16.3
10.4
9.58
15.7
40.3 | 4.63
3.54
2.96
2.95
7.88 | 1.79
1.50
1.38
1.27
1.12 | 0.62
0.58
0.56
0.54
0.57 | 0.31
0.28
0.30
0.31
0.36 | 0.40
0.36
0.34
0.52
0.55 | | 21
22
23
24
25 |

 | 0.56
0.55
0.54
0.53
0.54 | 0.52
0.49
0.46
0.42
0.39 | 0.33
0.31
0.29
0.31
0.31 | 0.31
0.30
0.29
0.26
0.25 | 4.69
4.27
4.19
4.30
3.62 | 26.3
18.0
11.9
7.49
5.50 | 5.02
3.26
2.49
1.96
1.66 | 1.00
0.90
1.44
1.66
2.70 | 0.99
1.03
0.85
0.65
0.58 | 0.37
0.32
0.34
0.34
0.38 | 0.71
0.49
0.35
0.48
0.40 | | 26
27
28
29
30
31 |

 | 0.53
0.52
0.51
0.50
0.52 | 0.36
0.38
0.38
0.36
0.35 | 0.29
0.27
0.29
0.29
0.31
0.33 | 0.28
0.25
0.24
 | 2.32
1.63
1.47
1.30
1.10
1.02 | 4.36
3.77
3.38
2.88
2.49 | 1.42
1.25
1.22
1.09
1.09
1.05 | 3.46
2.60
2.09
2.04
1.87 | 0.57
0.52
0.47
0.44
0.45
0.77 | 0.38
0.38
0.35
0.33
0.33 | 0.71
0.63
0.64
0.63
0.59 | | TOTAL | | 18.63 | 14.91 | 10.55 | 7.90 | 43.79 | 253.42 | 254.87 | 61.24 | 23.54 | 13.17 | 12.95 | # $05358180\,$ SPILLER CREEK AT COUNTY HIGH B NEAR BUTTERNUT, WI--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | ATER-QUALI | III DAI. | A, WAILK | ILAKOC | TODLK 20 | 02 10 SLI | ILMDLK | |----------------|--------------|-----------------------------------|--------------------------------------|-------------------------------|---|---| | Date | Time | Dis-
charge,
cfs
(00060) | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phosphorus, water, unfltrd mg/L (00665) | | NOV 2002 | 0900 | 5.0 | | 70 | 0.020 | 0.024 | | DEC
12 | 0935 | 3.3 | | 70 | 0.024 | 0.030 | | JAN 2003
16 | 0845 | 1.9 | | 70 | 0.028 | 0.034 | | FEB
13 | 1205 | 1.3 | | 70 | 0.029 | 0.033 | | MAR
11 | 0920 | | 2.0 | 70 | 0.017 | 0.018 | | 21
APR | 0800 | 9.5 | | 70 | 0.039 | 0.093 | | 10 | 1845 | | 35 | 50 | | 0.159 | | 10
11 | 2330
0415 | | 43
36 | 50
50 | 0.049 | 0.131
0.102 | | 11
11 | 2200 | | 29 | 50
50 | | 0.102 | | 14 | 1835 | | 18 | 10 | | 0.063 | | 14 | 1838 | | 18 | 50 | 0.035 | 0.062 | | 16
16 | 0330
0930 | | 21
33 | 50
50 | | 0.068
0.135 | | 16 | 2045 | | 38 | 50 | 0.061 | 0.133 | | 17 | 0330 | | 35 | 50 | | 0.061 | | 17 | 1305 | | 29 | 10 | | 0.060 | | 18
18 | 1745
2215 | | 30
35 | 50
50 | | 0.061
0.059 | | 19 | 1145 | | 39 | 50 | | 0.052 | | 19 | 2145 | | 48 | 50 | 0.044 | 0.093 | | 20 | 0015 | | 70 | 50 | | 0.167 | | 20
20 | 0145
0530 | | 84
90 | 50
50 | 0.047 | 0.132
0.083 | | 21 | 1245 | | 96 | 50 | | 0.049 | | 21 | 1355 | | 95 | 10 | | 0.047 | | 21 | 1400 | | 95 | 50 | 0.029 | 0.047 | | 21
22 | 2015
0230 | | 92
87 | 50
50 | | 0.046
0.045 | | 22 | 0230 | | 82 | 50 | | 0.043 | | 22 | 1450 | | 76 | 50 | 0.024 | 0.042 | | 22 | 1455 | | 76 | 10 | | 0.039 | | 23
23 | 0045
1045 | | 65
53 | 50
50 | | 0.046
0.040 | | 23 | 2045 | | 42 | 50 | | 0.040 | | MAY | 20.0 | | | 20 | | 0.0.0 | | 09 | 1915 | | 32 | 50 | | 0.052 | | 10
11 | 0845
0245 | | 39
31 | 50
50 | | 0.042
0.039 | | 11
11 | 0800 | | 56 | 50 | | 0.039 | | 11 | 1000 | | 96 | 50 | | 0.205 | | 12 | 1610 | | 181 | 50 | 0.030 | 0.039 | | 13
13 | 0800
1915 | | 122
95 | 50
50 | | 0.037 | | 14 | 2215 | | 63 | 50 | | 0.032 | | 15 | 0715 | | 52 | 50 | | 0.031 | | 16 | 0245 | | 35 | 50 | | 0.027 | | 20
21 | 0700
1115 | | 35
29 | 50
50 | | 0.045
0.031 | | JUN | 1113 | | 23 | 30 | | 0.031 | | 18 | 1230 | | 4.0 | 50 | | 0.063 | | 18 | 1235 | | 4.0 | 10 | | 0.068 | | JUL
11 | 1230 | | 27 | 50 | | 0.059 | | 11
15 | 1303 | | 3.7
2.6 | 50 | 0.038 | 0.039 | | 21 | 1515 | | 3.5 | 50 | | 0.050 | | AUG | | | | | | | | 01 | 0845 | | 2.8 | 50
50 | | 0.046 | | 14
SEP | 0900 | | 1.4 | 50 | | 0.037 | | 16 | 1555 | | 1.7 | 50 | | 0.041 | | | | | | | | | # 05358190 BUTTERNUT CREEK AT COUNTY HIGHWAY B NEAR PARK FALLS, WI $LOCATION.--Lat~45^{\circ}56'20'', long~90^{\circ}32'18'', in~SE~\frac{1}{4}~SW~\frac{1}{4}~SE~\frac{1}{4}~sec.18, T.40~N., R.1~W., Price~County, Hydrologic~Unit~07050002, on~right~bank~approximately~20~ft~downstream~of~bridge~on~County~Highway~B,~and~approximately~1,000~ft~downstream~of~Butternut~Lake.$ DRAINAGE AREA.--47.6 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 2002 to September 2003. GAGE.--Water-stage recorder. Elevation of gage is approximately 1,490 ft above NGVD, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. # DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|--|--|--|--|---|---|---|--|---|--| | 1
2
3
4
5 |

 | 42
41
39
37
36 | 23
23
22
e21
e19 | 20
19
18
17
17 | 10
10
12
13
13 | 11
11
11
11
11 | 36
37
38
37
36 | 78
68
60
54
54 | 40
37
34
31
29 | 25
23
24
23
21 | 7.5
8.1
7.6
8.1
7.5 | 3.1
2.6
2.3
1.8
1.8 | | 6
7
8
9
10 |

 | 35
32
33
32
35 | e19
e19
e18
e19
e20 | 17
16
16
16
16 | 13
13
13
13
13 | 11
12
12
12
12 | 33
32
29
28
32 | 55
56
57
64
80 | 29
33
35
35
41 | 20
18
17
15
16 | 7.3
7.5
6.9
6.8
6.8 | 1.7
1.7
1.6
1.5
1.6 | | 11
12
13
14
15 |

 | 35
35
35
34
34 | e19
19
19
19 | 15
15
14
14
13 | 12
12
12
12
12 | 12
12
12
12
13 | 45
57
64
69
75 | 155
376
563
531
418 | 50
55
55
52
45 |
17
16
15
15 | 6.8
5.9
5.5
5.4
5.7 | 1.4
1.8
2.1
2.9
3.6 | | 16
17
18
19
20 | 61
58
55 | 33
31
29
29
28 | 19
19
21
27
30 | 13
12
12
12
12 | 12
11
11
11 | 16
25
35
40
45 | 94
114
117
122
170 | 315
237
182
147
133 | 40
36
33
28
24 | 15
15
13
12
12 | 6.1
5.3
4.8
5.2
5.8 | 4.4
3.2
2.0
4.1
4.4 | | 21
22
23
24
25 | 57
57
52
50
48 | 28
27
26
26
25 | 31
30
29
28
27 | 12
11
11
11 | 12
12
11
11 | 48
48
47
48
50 | 242
303
312
276
229 | 119
109
97
85
74 | 21
19
21
23
26 | 14
13
12
11
10 | 6.5
6.1
5.2
5.0
5.1 | 4.3
5.4
6.0
5.8
5.6 | | 26
27
28
29
30
31 | 48
47
47
47
46
44 | 24
23
23
23
23
23 | 25
24
23
22
21
20 | 10
10
11
10
9.9
10 | 11
11
11
 | 50
50
53
48
42
38 | 182
145
122
101
87 | 65
57
54
48
47
45 | 29
30
28
28
27 | 11
11
9.6
8.4
7.8
7.6 | 4.5
3.5
3.4
3.7
3.1
3.0 | 5.8
8.0
9.5
9.9
11 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 717
51.2
61
44
1.08
0.56 | 933
31.1
42
23
0.65
0.73 | 694
22.4
31
18
0.47
0.54 | 420.9
13.6
20
9.9
0.29
0.33 | 329
11.8
13
10
0.25
0.26 | 858
27.7
53
11
0.58
0.67 | 3,264
109
312
28
2.29
2.55 | 4,483
145
563
45
3.04
3.50 | 1,014
33.8
55
19
0.71
0.79 | 462.4
14.9
25
7.6
0.31
0.36 | 179.7
5.80
8.1
3.0
0.12
0.14 | 120.9
4.03
11
1.4
0.08
0.09 | | STATIST | ICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 2003 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 51.2
51.2
(2003)
51.2
(2003) | 31.1
31.1
(2003)
31.1
(2003) | 22.4
22.4
(2003)
22.4
(2003) | 13.6
13.6
(2003)
13.6
(2003) | 11.8
11.8
(2003)
11.8
(2003) | 27.7
27.7
(2003)
27.7
(2003) | 109
109
(2003)
109
(2003) | 145
145
(2003)
145
(2003) | 33.8
33.8
(2003)
33.8
(2003) | 14.9
14.9
(2003)
14.9
(2003) | 5.80
5.80
(2003)
5.80
(2003) | 4.03
4.03
(2003)
4.03
(2003) | # SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS # FOR 2003 WATER YEAR | 13,475.9
38.7
563 May 13
1.4 Sep 11
1.6 Sep 5
631 May 13
6.41 May 13
1.0 Sep 12
0.81
10.53
68
20
5.4 | |--| |--| ⁽e) Estimated due to ice effect or missing record 193 # 05358190 BUTTERNUT CREEK AT COUNTY HIGHWAY B NEAR PARK FALLS, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 2002 to September 2003. PERIOD OF DAILY RECORD .-- TOTAL-PHOSPHORUS DISCHARGE: November 2002 to September 2003. REMARKS.--Water sampled manually. Total-phosphorus loads generally good. For periods during which discharge records were estimated, load estimates are fair to poor. EXTREMES FOR CURRENT PERIOD (NOVEMBER 2002 TO SEPTEMPBER 2003).-TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 128 lb, May 13; minimum daily, 0.30 lb, Sept. 11. # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAII | LY MEAN V | ALUES | | | | | | |-------|-----|--------|--------|-------|-------|-----------|--------|--------|--------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | 8.11 | 5.08 | 4.42 | 2.07 | 2.05 | 8.37 | 19.0 | 7.77 | 4.44 | 1.88 | 0.74 | | 2 | | 8.26 | 5.08 | 4.17 | 2.11 | 2.07 | 8.52 | 16.5 | 7.18 | 4.10 | 2.07 | 0.61 | | 3 | | 7.82 | 4.93 | 3.96 | 2.54 | 2.09 | 8.76 | 14.5 | 6.60 | 4.30 | 1.97 | 0.52 | | 4 | | 7.48 | 4.80 | 3.81 | 2.60 | 2.14 | 8.68 | 13.1 | 6.02 | 4.09 | 2.13 | 0.41 | | 5 | | 7.26 | 4.35 | 3.77 | 2.58 | 2.13 | 8.42 | 12.9 | 5.44 | 3.84 | 2.03 | 0.41 | | 6 | | 7.03 | 4.37 | 3.61 | 2.62 | 2.11 | 7.87 | 13.0 | 5.55 | 3.55 | 2.00 | 0.38 | | 7 | | 6.51 | 4.40 | 3.53 | 2.58 | 2.16 | 7.50 | 13.3 | 6.26 | 3.28 | 2.09 | 0.36 | | 8 | | 6.63 | 4.20 | 3.49 | 2.60 | 2.29 | 6.87 | 13.5 | 6.48 | 3.02 | 1.98 | 0.35 | | 9 | | 6.50 | 4.46 | 3.49 | 2.56 | 2.25 | 6.63 | 15.0 | 6.40 | 2.75 | 1.96 | 0.32 | | 10 | | 6.98 | 4.72 | 3.35 | 2.54 | 2.20 | 7.62 | 18.5 | 7.44 | 2.84 | 2.00 | 0.34 | | 11 | | 7.04 | 4.47 | 3.29 | 2.50 | 2.20 | 10.7 | 35.7 | 9.03 | 3.04 | 2.05 | 0.30 | | 12 | | 6.96 | 4.43 | 3.18 | 2.45 | 2.22 | 13.7 | 85.8 | 9.85 | 2.93 | 1.81 | 0.37 | | 13 | | 7.01 | 4.40 | 3.05 | 2.41 | 2.22 | 15.5 | 128 | 9.87 | 2.79 | 1.69 | 0.42 | | 14 | | 6.84 | 4.36 | 2.91 | 2.39 | 2.34 | 16.7 | 120 | 9.14 | 2.67 | 1.62 | 0.57 | | 15 | | 6.89 | 4.43 | 2.78 | 2.35 | 2.48 | 18.2 | 93.4 | 7.97 | 2.83 | 1.69 | 0.71 | | 16 | | 6.74 | 4.44 | 2.69 | 2.28 | 3.13 | 21.9 | 69.9 | 6.90 | 2.74 | 1.78 | 0.86 | | 17 | | 6.35 | 4.36 | 2.55 | 2.24 | 5.17 | 25.5 | 52.1 | 6.17 | 2.81 | 1.55 | 0.61 | | 18 | | 6.04 | 4.95 | 2.60 | 2.24 | 7.31 | 25.6 | 39.7 | 5.67 | 2.60 | 1.38 | 0.39 | | 19 | | 6.02 | 6.27 | 2.53 | 2.23 | 8.56 | 27.8 | 32.0 | 4.86 | 2.39 | 1.47 | 0.81 | | 20 | | 5.91 | 6.93 | 2.49 | 2.24 | 9.75 | 40.6 | 28.5 | 4.18 | 2.46 | 1.61 | 0.85 | | 21 | | 5.83 | 7.06 | 2.42 | 2.30 | 10.6 | 60.3 | 25.5 | 3.66 | 2.90 | 1.77 | 0.83 | | 22 | | 5.70 | 6.94 | 2.35 | 2.30 | 10.6 | 78.3 | 23.0 | 3.27 | 2.81 | 1.64 | 1.06 | | 23 | | 5.58 | 6.69 | 2.27 | 2.22 | 10.4 | 80.2 | 20.4 | 3.75 | 2.62 | 1.40 | 1.17 | | 24 | | 5.44 | 6.38 | 2.18 | 2.19 | 10.8 | 70.5 | 17.7 | 4.11 | 2.47 | 1.31 | 1.13 | | 25 | | 5.37 | 6.01 | 2.19 | 2.15 | 11.2 | 58.3 | 15.3 | 4.61 | 2.24 | 1.32 | 1.09 | | 26 | | 5.28 | 5.71 | 2.13 | 2.04 | 11.3 | 46.0 | 13.3 | 5.10 | 2.42 | 1.17 | 1.13 | | 27 | | 5.08 | 5.40 | 2.13 | 2.04 | 11.2 | 36.5 | 11.6 | 5.21 | 2.55 | 0.90 | 1.56 | | 28 | | 5.09 | 5.19 | 2.17 | 2.04 | 12.1 | 30.4 | 10.8 | 5.00 | 2.22 | 0.85 | 1.85 | | 29 | | 5.05 | 4.84 | 2.06 | | 11.0 | 25.0 | 9.60 | 4.91 | 1.99 | 0.93 | 1.92 | | 30 | | 5.10 | 4.66 | 2.03 | | 9.68 | 21.4 | 9.40 | 4.72 | 1.88 | 0.76 | 2.02 | | 31 | | | 4.53 | 2.07 | | 8.75 | | 8.87 | | 1.86 | 0.71 | | | TOTAL | | 191.90 | 158.84 | 89.67 | 65.41 | 184.50 | 802.34 | 999.87 | 183.12 | 89.43 | 49.52 | 24.09 | # CHIPPEWA RIVER BASIN # 05358190 BUTTERNUT CREEK AT COUNTY HIGHWAY B NEAR PARK FALLS, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Dis-
charge,
cfs
(00060) | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | |-----------|------|-----------------------------------|--------------------------------------|---|--|---| | | | (00000) | (00001) | (02370) | (00000) | (00003) | | NOV 2002 | | | | | | | | 14 | 1240 | | 34 | 70 | | 0.037 | | DEC | | | | | | | | 11 | 1050 | 19 | | 70 | 0.038 | 0.044 | | JAN 2003 | 1005 | | 1.2 | 70 | | 0.020 | | 15 | 1025 | | 13 | 70 | | 0.039 | | FEB | 0025 | | 10 | 70 | | 0.027 | | 13 | 0925 | | 12 | 70 | | 0.037 | | MAR
11 | 1000 | | 12 | 70 | | 0.034 | | 21 | 1000 | | 47 | 70
70 | | 0.034 | | APR | 1000 | | 47 | 70 | | 0.041 | | 15 | 0900 | | 75 | 10 | | 0.045 | | 18 | 0935 | == | 115 | 10 | | 0.043 | | 22 | 0830 | | 298 | 10 | | 0.048 | | MAY | 0050 | | 270 | 10 | | 0.040 | | 13 | 1625 | | 582 | 10 | | 0.042 | | JUN | 1020 | | 202 | 10 | | 0.0.2 | | 17 | 1650 | | 35 | 10 | | 0.032 | | JUL | | | | | | | | 15 | 1305 | | 17 | 10 | | 0.034 | | AUG | | | | | | | | 12 | 1925 | | 5.6 | 10 | | 0.057 | | SEP | | | | | | | | 16 | 1635 | | 4.4 | 10 | | 0.036 | | | | | | | | | #### CHIPPEWA RIVER BASIN #### 05360500 FLAMBEAU RIVER NEAR BRUCE, WI $LOCATION.--Lat\ 45^{\circ}22'21'', long\ 91^{\circ}12'34'', in\ Lot\ 7\ of\ SE\ \frac{1}{4}\ NW\ \frac{1}{4}\ sec.2,\ T.33\ N.,\ R.7\ W.,\ Rusk\ County,\ Hydrologic\ Unit\ 07050002,\ on\ right\ bank\ 2.5\ mi\ downstream\ from\ Thornapple\ Powerplant,\ 6.0\ mi\ upstream\ from\ mouth,\ and\ 7.0\ mi\ southeast\ of\ Bruce.$ DRAINAGE AREA.--1,860 mi². PERIOD OF RECORD .-- August 1951 to current year. REVISED RECORDS.--WDR WI-78-1: 1971. WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,056.34 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by several powerplants above station and by Rest Lake and Flambeau Flowage Reservoirs. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|---|--|--|--------------------------|--|---
--|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 2,140 | 2,530 | 1,150 | e1,100 | e670 | e700 | 1,110 | 2,730 | 2,400 | 1,280 | 790 | 564 | | | 2 | 2,580 | 2,470 | 1,250 | e1,000 | e680 | e690 | 1,180 | 2,700 | 2,000 | 1,170 | 711 | 577 | | | 3 | 2,640 | 2,250 | 1,010 | e1,100 | e820 | e670 | 1,570 | 2,400 | 2,190 | 1,070 | 855 | 600 | | | 4 | 2,660 | 1,420 | 1,060 | e1,000 | e840 | e690 | 1,480 | 1,910 | 1,850 | 1,130 | 916 | 549 | | | 5 | 4,140 | 1,350 | 1,330 | e980 | e800 | e730 | 1,190 | 2,520 | 1,560 | 1,070 | 833 | 552 | | | 6 | 7,560 | 1,440 | 1,220 | e1,100 | e740 | e800 | 1,100 | 2,800 | 1,560 | 966 | 1,110 | 538 | | | 7 | 8,430 | 2,140 | 1,300 | e1,200 | e750 | e700 | 1,080 | 2,800 | 1,670 | 1,070 | 1,020 | 563 | | | 8 | 8,770 | 1,760 | e1,500 | e1,100 | e700 | e700 | 1,090 | 2,490 | 1,870 | 859 | 812 | 509 | | | 9 | 7,740 | 1,320 | e1,300 | e980 | e740 | e780 | 1,010 | 3,070 | 1,890 | 734 | 659 | 498 | | | 10 | 6,160 | 1,420 | e1,200 | e980 | e780 | e780 | 1,010 | 3,950 | 2,170 | 802 | 702 | 463 | | | 11 | 4,960 | 1,980 | 1,360 | e960 | e790 | e960 | 897 | 7,190 | 2,890 | 1,150 | 796 | 472 | | | 12 | 4,750 | 1,860 | 1,230 | e880 | e780 | e860 | 1,430 | 13,500 | 3,140 | 984 | 575 | 555 | | | 13 | 4,540 | 1,200 | 1,300 | e860 | e720 | e720 | 1,510 | 16,000 | 2,500 | 1,030 | 545 | 524 | | | 14 | 4,400 | 1,890 | 1,410 | e850 | e760 | e790 | 1,600 | 14,700 | 2,620 | 956 | 620 | 558 | | | 15 | 3,280 | 1,550 | 1,130 | e840 | e800 | e880 | 1,630 | 9,690 | 2,250 | 961 | 680 | 519 | | | 16 | 4,040 | 1,480 | 1,110 | e830 | e780 | e940 | 3,680 | 6,560 | 1,510 | 807 | 824 | 489 | | | 17 | 3,080 | 1,510 | 1,040 | e880 | e700 | e960 | 5,560 | 6,440 | 1,900 | 832 | 681 | 496 | | | 18 | 3,680 | 1,540 | 1,210 | e940 | e720 | e1,400 | 6,310 | 6,660 | 1,410 | 844 | 680 | 515 | | | 19 | 2,830 | 1,370 | 1,590 | e900 | e760 | e1,800 | 6,020 | 5,420 | 1,710 | 771 | 550 | 813 | | | 20 | 3,100 | 1,200 | 1,630 | e890 | e820 | e2,000 | 6,080 | 5,650 | 1,460 | 872 | 719 | 578 | | | 21 | 3,550 | 1,740 | 1,280 | e830 | e820 | e1,600 | 8,940 | 5,040 | 1,040 | 1,020 | 472 | 583 | | | 22 | 3,240 | 1,290 | 1,170 | e880 | e760 | e1,500 | 9,230 | 4,710 | 817 | 677 | 594 | 609 | | | 23 | 2,610 | 1,180 | 1,180 | e900 | e770 | e1,400 | 7,830 | 4,010 | 1,020 | 862 | 682 | 549 | | | 24 | 2,660 | 1,560 | e1,200 | e920 | e800 | 1,380 | 6,660 | 3,790 | 1,100 | 895 | 532 | 487 | | | 25 | 2,780 | 1,560 | e1,200 | e920 | e640 | 1,480 | 5,700 | 3,060 | 1,460 | 827 | 540 | 688 | | | 26
27
28
29
30
31 | 2,730
2,720
2,870
3,220
2,490
2,700 | 1,170
1,250
1,330
1,320
1,430 | e1,100
e1,100
e1,100
e1,200
e1,200
e1,100 | e870
e700
e830
e870
e880
e850 | e670
e700
e700
 | 1,440
1,830
1,710
1,430
1,330
1,080 | 4,370
4,400
4,240
4,070
3,410 | 3,060
3,350
2,580
2,280
2,220
2,450 | 1,570
1,400
1,290
1,260
1,380 | 806
799
780
794
841
909 | 707
595
582
615
542
560 | 505
497
544
563
676 | | | TOTAL | 123,050 | 47,510 | 38,160 | 28,820 | 21,010 | 34,730 | 105,387 | 155,730 | 52,887 | 28,568 | 21,499 | 16,633 | | | MEAN | 3,969 | 1,584 | 1,231 | 930 | 750 | 1,120 | 3,513 | 5,024 | 1,763 | 922 | 694 | 554 | | | MAX | 8,770 | 2,530 | 1,630 | 1,200 | 840 | 2,000 | 9,230 | 16,000 | 3,140 | 1,280 | 1,110 | 813 | | | MIN | 2,140 | 1,170 | 1,010 | 700 | 640 | 670 | 897 | 1,910 | 817 | 677 | 472 | 463 | | | | | | | A FOR WATE | | | | , | * | | | | | | MEAN | 1,754 | 1,636 | 1,287 | 1,129 | 1,141 | 1,686 | 3,683 | 2,655 | 2,035 | 1,626 | 1,451 | 1,777 | | | MAX | 5,616 | 4,404 | 2,542 | 2,006 | 2,411 | 5,490 | 7,379 | 6,082 | 6,066 | 4,339 | 3,765 | 5,089 | | | (WY) | (1986) | (1992) | (1992) | (1973) | (1969) | (1973) | (2002) | (1954) | (1968) | (1968) | (1972) | (1994) | | | MIN | 363 | 430 | 382 | 451 | 474 | 971 | 1,013 | 758 | 572 | 596 | 553 | 420 | | | (WY) | (1977) | (1977) | (1977) | (1977) | (1977) | (1959) | (1990) | (1987) | (1988) | (1988) | (1998) | (1998) | | | SUMMA | RY STATIS | TICS | | FOR 2002 CA | LENDAR | YEAR | FOR 2003 | 3 WATER Y | EAR | WATER | YEARS 195 | 1 - 2003 | | | ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMU MAXIMU 10 PERC | L TOTAL L MEAN I ANNUAL I DAILY MI L SEVEN-D JM PEAK F JUM PEAK F JUM PEAK S ENT EXCEI ENT EXCEI | MEAN
EAN
EAN
AY MINIM
LOW
TAGE
EDS
EDS | IUM | 909,075
2,491
16,900
855
(a)1,020
5,050
1,500
1,100 | Apr
Jul
Feb | 7 | 673,98
1,84
16,00
46
51
17,40
1
4,02
1,11 | 7 0 May 3 Sep 1 Sep 0 May 0.39 May 0 | 10
8
13 | 23,2
(a)1
3
24,1
3,3
1,3 | 000
193
100 Se
90 De
109 Se
00 Se | 1973
1988
p 16, 1994
c 23, 1998
p 8, 1998
p 16, 1994 | | ⁽a) Ice affected ⁽e) Estimated due to ice effect or missing record #### 05362000 JUMP RIVER AT SHELDON, WI $LOCATION.--Lat\ 45^{\circ}18^{\circ}29^{\circ},\ long\ 90^{\circ}57^{\circ}23^{\circ},\ in\ SE\ \frac{1}{4}\ SW\ \frac{1}{4}\ sec.26,\ T.33\ N.,\ R.5\ W.,\ Rusk\ County,\ Hydrologic\ Unit\ 07050004,\ on\ right\ bank\ just\ downstream\ from\ highway\ bridge\ in\ Sheldon,\ 1,500\ ft\ upstream\ from\ Shoulder\ Creek\ and\ 11\ mi\ upstream\ from\ mouth.$ DRAINAGE AREA.--576 mi². PERIOD OF RECORD.--July 1915 to current year. REVISED RECORDS.--WSP 975: 1938. WSP 1438: 1916-17(M), 1919(M), 1920, 1921(M), 1922, 1923-26(M), 1927, 1928-31(M), 1932, 1933-37(M), 1945-46(M), 1948-50(M). WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,092.75 ft above NGVD of 1929. Prior to Feb. 9, 1939, Sept. 1, 1941, to Apr. 1, 1953, and Feb. 18, 1954, to Sept. 27, 1964, nonrecording gage at same site and datum. Apr. 2, 1953, to Feb. 18, 1954, nonrecording gage in creamery wellhouse 400 ft upstream at same datum. Feb. 9, 1939, to Aug. 31, 1941, and from Sept. 27, 1964, water-stage recorder at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--|--|--|---|--|---|--|---|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 1,590
1,910
1,600
1,990
4,230 | 543
484
448
423
402 | e180
e170
e160
e150
e150 | e100
e100
e90
e90
e92 | e50
e51
e50
e48
e46 | e63
e62
e61
e60
e60 | 856
1,180
1,190
e730
e540 | 720
646
578
498
483 | e260
e270
e260
e250
229 | 298
231
201
214
240 | 129
157
141
140
138 | 42
40
39
39
39 | | | 6
7
8
9
10 | 6,500
8,070
6,100
4,300
3,150 | 388
374
354
354
359 | e160
e160
e150
e150
e140 | e96
e100
e100
e96
e80 | e44
e44
e43
e43 | e62
e66
e64
e64
e68 | e500
e470
416
401
416 | 985
1,310
1,140
1,350
2,540 | 217
241
353
579
938 | 228
194
165
142
135 | 126
124
119
102
90 | 37
37
37
37
37 | | | 11
12
13
14
15 | 2,310
1,710
1,460
1,270
1,030 | 398
397
376
e360
e310 | e140
e140
e160
e150
e150 | e70
e60
e50
e47
e45 | e43
e43
e44
e44 | e74
e77
e80
e90
e110 | 467
514
522
518
613 | 5,940
11,200
8,110
4,540
2,640 | 2,000
2,070
1,440
932
647 | 137
152
163
145
136 | 80
73
70
64
61 | 36
39
44
48
51 | | | 16
17
18
19
20 | 851
731
643
663
695 | e290
e270
e270
e280
e230 | e140
e140
e150
e160
e150 | e45
e45
e45
e44 | e44
e44
e47
e50
e54 | e300
e1,200
e1,400
e1,000
e700 | 3,520
6,520
5,490
4,510
6,050 | 1,760
1,270
1,020
863
898 | 492
392
323
263
222 | 127
120
109
100
98 | 56
53
49
46
44 | 52
50
47
58
56 | | | 21
22
23
24
25 | 648
639
641
628
654 | e230
e230
e220
e210
e180 | e140
e140
e130
e120
e110 | e44
e43
e43
e44
e45 | e55
e54
e53
e52
e50 | e600
e670
e780
e900
e850 | 6,390
5,180
3,580
2,440
1,800 | 910
773
650
547
462 | 190
169
163
188
303 | 100
94
85
80
76 | 42
42
45
49
48 | 53
51
52
57
56 | | | 26
27
28
29
30
31 | 833
969
896
779
707
612 | e140
e170
e200
e200
e180 | e110
e110
e110
e120
e120
e110 | e46
e47
e48
e49
e50
e50 | e52
e54
e60
 | e700
652
696
727
754
761 | 1,410
1,150
1,020
906
801 | 382
329
296
267
244
253 | 343
304
274
299
351 | 74
69
65
62
70
89 | 48
48
48
47
45
42
 57
61
62
67
73 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 58,809
1,897
8,070
612
3.29
3.80 | 9,270
309
543
140
0.54
0.60 | 4,370
141
180
110
0.24
0.28 | 1,948
62.8
100
43
0.11
0.13 | 1,349
48.2
60
43
0.08
0.09 | 13,751
444
1,400
60
0.77
0.89 | 60,100
2,003
6,520
401
3.48
3.88 | 53,604
1,729
11,200
244
3.00
3.46 | 14,962
499
2,070
163
0.87
0.97 | 4,199
135
298
62
0.24
0.27 | 2,366
76.3
157
42
0.13
0.15 | 1,454
48.5
73
36
0.08
0.09 | | | STATIST | TICS OF MC | NTHLY MI | EAN DATA | FOR WATI | ER YEARS | 1915 - 2003. | BY WATE | R YEAR (W | Y) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 427
1,897
(2003)
27.5
(1949) | 432
2,022
(1992)
35.3
(1977) | 184
1,092
(1992)
34.7
(1934) | 103
392
(1946)
25.6
(1917) | 105
620
(1984)
21.4
(1924) | 727
3,184
(1973)
61.2
(1940) | 1,842
4,126
(1982)
360
(1946) | 862
2,514
(1973)
134
(1987) | 658
3,442
(1943)
54.6
(1934) | 267
1,293
(1968)
17.5
(1936) | 243
1,916
(1941)
21.9
(1933) | 446
4,145
(1941)
25.4
(1976) | | 197 # 05362000 JUMP RIVER AT SHELDON, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1915 - 2003 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 312,105 | 226,182 | | | ANNUAL MEAN | 855 | 620 | 523 | | HIGHEST ANNUAL MEAN | | | 923 1942 | | LOWEST ANNUAL MEAN | | | 214 1948 | | HIGHEST DAILY MEAN | 14,400 Apr 12 | 11,200 May 12 | 40,800 Aug 31, 1941 | | LOWEST DAILY MEAN | 110 (a)Aug 11 | 36 Sep 11 | (b)11 Dec 18, 1943 | | ANNUAL SEVEN-DAY MINIMUM | (c)113 Dec 25 | 37 Sep 5 | 14 (d)Jan 25, 1924 | | MAXIMUM PEAK FLOW | | 11,800 May 12 | (f)46,000 Aug 31, 1941 | | MAXIMUM PEAK STAGE | | 11.50 May 12 | (g)18.80 Aug 31, 1941 | | INSTANTANEOUS LOW FLOW | | 35 Sep 10-12 | (b)11 Dec 18, 1943 | | ANNUAL RUNOFF (CFSM) | 1.48 | 1.08 | 0.91 | | ANNUAL RUNOFF (INCHES) | 20.16 | 14.61 | 12.34 | | 10 PERCENT EXCEEDS | 1,950 | 1,330 | 1,300 | | 50 PERCENT EXCEEDS | 320 | 160 | 160 | | 90 PERCENT EXCEEDS | 120 | 45 | 47 | (a) Also occurred several days during periods of ice effect, estimated (b) Result of freezeup (c) Ice affected (d) Jan. 25, 1924, ice-affected, also occurred July 11, 1936 (e) Estimated due to ice effect or missing record (f) From rating curve extended above 13,000 ft³/s on basis of contracted-opening measurement of peak flow (g) From floodmark #### 05365500 CHIPPEWA RIVER AT CHIPPEWA FALLS, WI LOCATION.--Lat 44°55'37", long 91°24'33", in Lot 1, NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec. 12, T.28 N., R.9 W., Chippewa County, Hydrologic Unit 07050005, on right bank at Chippewa Falls, 1.0 mi downstream from Duncan Creek. DRAINAGE AREA.--5,650 mi². PERIOD OF RECORD.--June 1888 to September 1983, October 1986 to current year. Monthly discharge for some periods published in WSP 1308. REVISED RECORDS.--WSP 785: 1934(M). WSP 1508: 1897, 1905, 1918(M), 1924(M). WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 798.46 ft above NGVD of 1929. Prior to January 1914, nonrecording gage, and January 1914 to June 19, 1932, water-stage recorder at site 1 mi upstream at different datum. June 19, 1932, to current year, water-stage recorder at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Considerable regulation by Moose Lake, Lake Chippewa, Rest Lake, Flambeau Flowage, and Lake Wissota Reservoirs. Diurnal fluctuation caused by hydroelectric plant 1.1 mi upstream. Gage-height telemeter at station EXTREMES OUTSIDE OF PERIOD OF RECORD.--A stage of 26.94 ft occurred Sept. 10, 1884, site and datum in use June 1932. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|---|--|--|-----------------------------|--|--|--|---|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 6,870 | 5,770 | 3,350 | 3,030 | 1,360 | 1,550 | 5,450 | 8,770 | 5,000 | 5,200 | 2,500 | 1,360 | | | 2 | 9,120 | 6,540 | 2,790 | 2,440 | 1,430 | 1,370 | 6,110 | 7,570 | 5,210 | 4,450 | 2,530 | 1,370 | | | 3 | 9,510 | 6,400 | 2,560 | 2,510 | 2,720 | e1,400 | 8,210 | 7,170 | 4,690 | 3,900 | 2,160 | 1,320 | | | 4 | 9,610 | 5,170 | 2,050 | 2,750 | 2,180 | e1,300 | 7,450 | 5,770 | 4,510 | 4,420 | 1,800 | 1,250 | | | 5 | 14,700 | 5,140 | 3,450 | 2,840 | 1,820 | e1,300 | 4,550 | 7,720 | 4,940 | 3,100 | 2,110 | 1,190 | | | 6 | 30,200 | 4,930 | 3,620 | 3,210 | e1,700 | e1,500 | 4,370 | 8,880 | 4,370 | 2,580 | 2,280 | 1,170 | | | 7 | 36,500 | 5,060 | 3,570 | 3,910 | e1,400 | e1,700 | 4,390 | 10,600 | 5,240 | 2,860 | 2,460 | 1,210 | | | 8 | 36,200 | 6,210 | 2,960 | 4,160 | e1,300 | e1,600 | 4,410 | 10,900 | 5,900 | 3,010 | 2,620 | 1,200 | | | 9 | 31,900 | 5,860 | 3,180 | 3,910 | e1,300 | e1,600 | 4,430 | 9,860 | 6,360 | 2,690 | 2,010 | 1,200 | | | 10 | 25,600 | 4,130 | 2,020 | 3,220 | e1,400 | 1,570 | 3,570 | 13,900 | 8,130 | 2,190 | 1,810 | 1,200 | | | 11 | 20,100 | 5,010 | 1,590 | 2,140 | e1,500 | 1,710 | 3,480 | 28,100 | 9,690 | 2,510 | 1,790 | 1,190 | | | 12 | 17,000 | 4,720 | 3,860 | 2,000 | e1,700 | 1,950 | 3,950 | 48,200 | 10,900 | 2,520 | 1,780 | 1,210 | | | 13 | 16,900 | 5,900 | 3,100 | 1,780 | e1,700 | 1,320 | 5,050 | 53,900 | 10,900 | 3,050 | 1,700 | 1,210 | | | 14 | 14,100 | 4,890 | 4,610 | 2,030 | e1,300 | 1,990 | 5,250 | 47,100 | 7,790 | 2,970 | 1,620 | 1,200 | | | 15 | 10,700 | 4,790 | 3,740 | 2,070 | e1,400 | 2,500 | 6,050 | 35,800 | 6,950 | 4,170 | 1,500 | 1,190 | | | 16 | 9,470 | 4,200 | 3,420 | 1,400 | 1,660 | 5,160 | 15,400 | 25,100 | 5,090 | 3,420 | 1,360 | 1,190 | | | 17 | 9,550 | 4,270 | 3,460 | e1,500 | 1,760 | 10,400 | 33,100 | 19,300 | 4,550 | 2,390 | 1,170 | 1,230 | | | 18 | 9,540 | 3,920 | 3,420 | e1,600 | 1,780 | 9,860 | 34,400 | 16,800 | 5,220 | 2,380 | 1,180 | 1,220 | | | 19 | 9,480 | 4,080 | 4,370 | e1,700 | 1,770 | 9,500 | 30,200 | 16,900 | 4,660 | 2,020 | 1,180 | 3,060 | | | 20 | 9,520 | 4,370 | 5,010 | e1,700 | 1,610 | 9,430 | 26,700 | 16,600 | 3,260 | 1,950 | 1,180 | 2,430 | | | 21 | 9,150 | 3,930 | 4,120 | e1,600 | 1,460 | 9,020 | 31,700 | 16,600 | 3,320 | 2,860 | 1,170 | 1,560 | | | 22 | 8,860 | 3,990 | 4,250 | e1,600 | e1,600 | 6,150 | 34,200 | 15,700 | 3,800 | 2,350 | 1,170 | 1,500 | | | 23 | 8,340 | 4,130 | 2,770 | e1,600 | e1,700 | 7,640 | 27,900 | 9,480 | 3,750 | 2,200 | 1,160 | 1,570 | | | 24 | 7,950 | 3,520 | 3,000 | e1,700 | e1,500 | 7,130 | 22,400 | 9,380 | 4,100 | 2,140 | 1,260 | 1,590 | | | 25 | 7,270 | 3,580 | 3,050 | e1,900 | e1,600 | 6,910 | 14,800 | 9,390 | 6,020 | 1,980 | 1,480 | 1,590 | | | 26
27
28
29
30
31 | 9,000
8,750
8,610
7,790
7,770
7,580 | 4,130
3,400
3,250
3,940
3,800 | 3,490
3,030
2,760
3,360
3,620
3,360 | e1,900
e1,900
2,030
2,020
1,750
1,990 | 1,800
1,550
1,700
 | 6,330
6,350
7,870
8,450
6,380
6,370 | 12,800
12,700
12,700
11,300
10,300 | 7,170
7,530
6,490
4,960
5,430
5,290 | 5,610
5,750
6,300
5,040
4,860 | 2,430
1,770
1,760
1,700
1,700
1,940 | 1,320
1,320
1,330
1,350
1,360
1,350 | 1,520
1,480
1,590
1,480
1,460 | | | TOTAL | 427,640 | 139,030 | 102,940 | 69,890 | 45,700 | 147,310 | 407,320 | 496,360 | 171,910 | 84,610 | 51,010 | 42,940 | | | MEAN | 13,790 | 4,634 | 3,321 | 2,255 | 1,632 | 4,752 | 13,580 | 16,010 | 5,730 | 2,729 | 1,645 | 1,431 | | | MAX | 36,500 | 6,540 | 5,010 | 4,160 | 2,720 | 10,400 | 34,400 | 53,900 | 10,900 | 5,200 | 2,620 | 3,060 | | | MIN | 6,870 | 3,250 | 1,590 | 1,400 | 1,300 | 1,300 | 3,480 | 4,960 | 3,260 | 1,700 | 1,160 | 1,170 | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | R YEARS | 1888 - 2003. | BY WATE | R YEAR (W | Y) | | | | | | MEAN | 4,269 | 4,201 | 3,013 | 2,587 | 2,645 | 5,351 | 11,835 | 8,613 | 6,861 | 4,321 | 3,413 | 4,430 | | | MAX | 15,570 | 15,990 | 7,897 | 5,305 | 6,569 | 17,630 | 28,900 | 22,700 | 30,570 | 13,620 | 9,805 | 23,030 | | | (WY) | (1901) | (1992) | (1992) | (1973) | (1969) | (1973) | (1916) | (1903) | (1943) | (1968) | (1900) | (1941) | | | MIN | 798 | 800 | 950 | 831 | 800 | 1,210 | 2,210 | 1,688 | 1,162 | 1,172 | 1,124 | 929 | | | (WY) | (1977) | (1890) | (1893) | (1917) | (1895) | (1890) | (1895) | (1987) | (1988) | (1988) | (1894) | (1976) | | | SUMMA | RY STATIS | STICS | 1 | FOR 2002 CA | LENDAR | YEAR | FOR 2003 | 3 WATER Y | 'EAR | WATER | YEARS 188 | 8 - 2003 | | | ANNUAI
HIGHES'
LOWES'I | L TOTAL
L MEAN
T ANNUAL
T ANNUAL
T DAILY M | MEAN | | 2,922,550
8,007
60,500 | Apr | 13 | 2,186,66
5,99
53,90 | 1 | . 13 | 5,1
8,8
2,4
95,5 | 33
53 | 1903
1934
5 1, 1941 | | | LOWEST
ANNUAL
MAXIMU
MAXIMU
10 PERC | DAILY M | EAN
OAY MINIM
FLOW
STAGE
EDS | UM | 1,590
2,460
17,400
4,930 | Dec
Feb | 11 | 1,16
1,17
54,50 | 0 Aug
0 Aug
0 May
8.79 May
0 | ; 23
; 17
; 13 | 3
102,0 | 40 Fel
08 Jan
000 Seg
24.80 Seg
80 | 5 4,
1917
n 29, 1917
p 1, 1941
p 1, 1941 | | 1,360 1,340 2,780 90 PERCENT EXCEEDS ⁽e) Estimated due to ice effect or missing record #### 05365707 NORTH FORK EAU CLAIRE RIVER NEAR THORP, WI $LOCATION.--Lat\ 44^{\circ}58^{\circ}25^{\circ},\ long\ 90^{\circ}50^{\circ}57^{\circ},\ in\ NW\ ^{1}\!\!/_{4}\ sec.27,\ T.29\ N.,\ R.4\ W.,\ Clark\ County,\ Hydrologic\ Unit\ 07050006,\ on\ left\ bank\ 15\ ft\ downstream\ from\ town\ road,\ 0.3\ mi\ downstream\ from\ Goggle-Eye\ Creek,\ and\ 2.6\ mi\ northwest\ of\ Thorp.$ DRAINAGE AREA.--51.0 mi². PERIOD OF RECORD.--April 1986 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,115 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|--|--|--|---|---|--|---|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 177
103
67
576
348 | 36
33
29
27
27 | e8.0
e6.0
e5.3
e5.6
e6.0 | e3.0
e2.4
e1.9
e3.0
e4.0 | e0.80
e0.80
e0.68
e0.60
e0.50 | e0.70
e0.60
e0.60
e0.60
e0.60 | 59
55
45
e28
e23 | 31
27
24
21
58 | 9.9
8.6
7.7
6.8
5.9 | 7.2
5.5
6.3
9.0
7.6 | 1.9
4.5
5.2
3.2
2.4 | 0.28
0.26
0.20
0.22
0.21 | | | 6
7
8
9
10 | 696
507
358
186
147 | 28
27
27
26
26 | e6.4
e6.6
e6.6
e7.0
e7.8 | e4.0
e5.0
e5.0
e4.0
e2.3 | e0.46
e0.40
e0.44
e0.42
e0.42 | e0.64
e0.70
e0.70
e0.60
e0.80 | e18
e20
e19
e25
31 | 91
68
53
155
168 | 6.1
11
25
48
68 | 5.0
7.6
7.6
5.1
4.5 | 1.9
1.9
2.5
1.9
1.7 | 0.22
0.21
0.19
0.16
0.14 | | | 11
12
13
14
15 | 120
106
103
72
57 | 24
21
20
19
e17 | e8.0
e7.6
e7.0
e6.8
e6.0 | e1.0
e0.80
e0.70
e0.65
e0.60 | e0.42
e0.44
e0.46
e0.50
e0.54 | e5.0
e13
e30
e70
e200 | 35
37
36
37
46 | 1,180
889
379
130
82 | 108
67
39
26
18 | 5.8
5.4
3.8
3.1 | 1.8
1.4
1.4
1.1
0.91 | 0.12
0.81
1.3
0.79
0.88 | | | 16
17
18
19
20 | 47
41
40
46
41 | e14
e12
e12
e13
e13 | e6.0
e6.0
e7.0
e10
e9.0 | e0.58
e0.58
e0.57
e0.54
e0.52 | e0.60
e0.65
e0.72
e0.80
e0.90 | e280
e250
e230
e210
e160 | 1,040
926
611
385
766 | 61
48
40
35
48 | 12
9.7
7.4
5.8
4.7 | 7.5
4.7
3.4
2.6
2.1 | 0.69
0.51
0.41
0.35
1.0 | 0.86
0.72
0.54
2.2
1.6 | | | 21
22
23
24
25 | 41
54
66
65
94 | e12
e11
e10
e9.0
e8.5 | e8.0
e4.0
e3.2
e2.8
e3.3 | e0.48
e0.45
e0.40
e0.46
e0.52 | e0.70
e0.58
e0.50
e0.43
e0.40 | e130
e110
e80
e56
e40 | 470
260
135
92
72 | 40
31
27
23
19 | 3.9
3.4
5.5
19 | 2.6
1.8
1.5
1.2 | 0.98
0.63
0.53
0.51
0.48 | 1.3
1.4
1.2
1.1
0.94 | | | 26
27
28
29
30
31 | 140
105
75
58
49
42 | e8.0
e7.9
e7.0
e7.4
e9.0 | e3.5
e3.7
e4.0
e4.3
e4.3
e4.0 | e0.54
e0.50
e0.60
e0.70
e0.75
e0.80 | e0.44
e0.56
e0.70 | e20
e50
e220
e160
e110
e66 | 59
52
46
38
34 | 17
15
14
13
13 | 11
9.1
9.9
14
10 | 1.1
1.0
1.0
0.92
0.86
0.94 | 0.45
0.35
0.33
0.34
0.31
0.28 | 1.0
1.3
1.5
1.5
1.5 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4,627
149
696
40
2.93
3.37 | 540.8
18.0
36
7.0
0.35
0.39 | 183.8
5.93
10
2.8
0.12
0.13 | 47.34
1.53
5.0
0.40
0.03
0.03 | 15.86
0.57
0.90
0.40
0.01
0.01 | 2,496.54
80.5
280
0.60
1.58
1.82 | 5,500
183
1,040
18
3.59
4.01 | 3,812
123
1,180
12
2.41
2.78 | 597.4
19.9
108
3.4
0.39
0.44 | 130.82
4.22
13
0.86
0.08
0.10 | 41.86
1.35
5.2
0.28
0.03
0.03 | 24.65
0.82
2.2
0.12
0.02
0.02 | | | STATIST | CICS OF MC | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1986 - 2003 | BY WATE | R YEAR (W | YY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 31.0
149
(2003)
2.17
(1990) | 42.7
262
(1992)
3.57
(1990) | 15.0
79.7
(1992)
0.56
(1990) | 5.54
31.4
(1997)
0.28
(1990) | 12.9
86.6
(1998)
0.45
(1990) | 97.0
181
(1989)
9.95
(1996) | 133
332
(2001)
25.9
(1987) | 57.0
184
(1993)
5.29
(1987) | 70.3
338
(1993)
1.34
(1988) | 20.2
49.4
(1986)
0.31
(1988) | 46.1
172
(2002)
0.37
(1988) | 45.8
420
(1986)
0.81
(1988) | | | SUMMA | RY STATIS | STICS | | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 198 | 6 - 2003 | | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW | | | | 29,920.2
82.0
1,100 Apr 12
(a)2.8 Dec 24
(a)3.5 Dec 22 | | | 18,018.07
49.4
1,180 May 11
0.12 Sep 11
0.18 Sep 5 | | | 46.4
93.0
23.0
1999
3,670
Sep 22, 1986
0.03
Jul 31, 1988
0.07
Jul 28, 1988 | | | | | ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 20-
20-
20- | | | | 7.07 May | | | | p 22, 1986
p 22, 1986
0, 31,1988 | | ⁽a) Ice affected (b) From rating curve extended above 2,500 ft³/s on basis of step-backwater measurement of peak flow (e) Estimated due to ice effect or missing record #### 053674464 YELLOW RIVER AT BARRON, WI LOCATION.--Lat 45°23'43", long 91°49'48", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.27, T.34 N., R.12 W., Barron County, Hydrologic Unit 07050007, on left bank 1.0 mi southeast of intersection of U.S. Highway 8 and State Highway 25 in Barron, 0.5 mi downstream from Quaderer Creek, in Becker Park, and 7.3 mi upstream from mouth DRAINAGE AREA.--153 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 1,090 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow is regulated occasionally at small dam upstream. Gage-height telemeter at station. | | | DISCHA | ARGE, CUE | BIC FEET PE | |), WATER Y
LY MEAN V | | DBER 2002 | TO SEPTEM | MBER 2003 | | | |-----------------|-------------------------|------------------|------------------|------------------|------------------|-------------------------|----------------|------------------|----------------|----------------|----------------|---------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 110 | 120 | 98 | 97 | 94 | e84 | 219 | 134 | 115 | 100 | 90 | 69 | | 2 | 109 | 119 | 104 | 97 | 96 | e84 | 354 | 126 | 105 | 97 | 80 | 67 | | 3 4 | 109
262 | 119
118 | 90
101 | 90
102 | e95
e90 | e83
e83 | 260
159 | 119
116 | 110
107 | 134
142 | 76
81 | 67
67 | | 5 | 218 | 117 | 96 | 99 | e90 | e83 | 143 | 193 | 102 | 118 | 79 | 66 | | 6 | 533 | 107 | 98 | 98 | e90 | e83 | 135 | 230 | 104 | 108 | 77 | 66 | | 7
8 | 511
459 | 115
116 | 100
94 | 98
100 | e87
e90 | e83
e83 | 128
122 | 180
170 | 117
130 | 104
99 | 75
76 | 66
66 | | 9 | 384 | 115 | 92 | 100 | e90 | e86 | 117 | 252 | 130 | 99
95 | 75
75 | 66 | | 10 | 234 | 117 | 100 | 90 | e90 | e88 | 114 | 354 | 141 | 103 | 75 | 66 | | 11 | 259
203 | 116
114 | 100
101 | 84
93 | e90
e92 | 91
92 | 113 | 723
1,330 | 174
149 | 107
102 | 62
82 | 66
72 | | 12
13 | 189 | 122 | 101 | 93
92 | 94 | 92 | 112
108 | 882 | 132 | 91 | 52
59 | 76 | | 14 | 149 | 115 | 102 | 87 | 95 | 96 | 113 | 343 | 121 | 97 | 79 | 75 | | 15 | 155 | 111 | 102 | 86 | 94 | 123 | 121 | 374 | 113 | 121 | 70 | 71 | | 16
17 | 148
142 | 109
111 | 98
100 | 84
86 | 92
94 | 431
674 | 395
757 | 283
196 | 110
111 | 120
109 | 69
67 | 70
70 | | 18 | 141 | 112 | 114 | 88 | 94 | 600 | 506 | 209 | 108 | 102 | 67 | 81 | | 19
20 | 140
135 | 114
113 | 119
114 | 89
89 | 91
95 | 294
213 | 401
429 | 225
262 | 102
99 | 97
93 | 70
75 | 130
124 | | 21 | 138 | 113 | 108 | 87 | 97 | 193 | 445 | 238 | 96 | 92 | 79 | 93 | | 22 | 137 | 112 | 106 | 87 | 96 | 239 | 295 | 206 | 95 | 86 | 75 | 83 | | 23
24 | 136
132 | 113
111 | 96
98 | e84
85 |
e90
e88 | 328
218 | 269
220 | 173
169 | 97
106 | 84
81 | 68
69 | 82
83 | | 25 | 135 | 109 | 103 | 86 | e85 | 184 | 172 | 159 | 136 | 79 | 70 | 78 | | 26 | 139 | 90 | 92 | e84 | e85 | 161 | 175 | 148 | 150 | 81 | 72 | 80 | | 27
28 | 136
130 | 116
105 | 96
101 | 86
88 | e85
e84 | 179
137 | 167
158 | 139
132 | 121
112 | 80
75 | 74
73 | 81
81 | | 29 | 127 | 106 | 101 | 89 | | 140 | 148 | 125 | 112 | 76 | 71 | 82 | | 30
31 | 125
123 | 105 | 102
93 | 89
91 | | 144
155 | 140 | 124
118 | 106 | 78
87 | 68
68 | 83 | | TOTAL | 6,048 | 3,380 | 3,121 | 2,806 | 2,553 | 5,625 | 6,995 | 8,432 | 3,520 | 3,038 | 2,271 | 2,327 | | MEAN | 195 | 113 | 101 | 90.5 | 91.2 | 181 | 233 | 272 | 117 | 98.0 | 73.3 | 77.6 | | MAX
MIN | 533
109 | 122
90 | 119
90 | 102
84 | 97
84 | 674
83 | 757
108 | 1,330
116 | 174
95 | 142
75 | 90
59 | 130
66 | | CFSM | 1.28 | 0.74 | 0.66 | 0.59 | 0.60 | 1.19 | 1.52 | 1.78 | 0.77 | 0.64 | 0.48 | 0.51 | | IN. | 1.47 | 0.82 | 0.76 | 0.68 | 0.62 | 1.37 | 1.70 | 2.05 | 0.86 | 0.74 | 0.55 | 0.57 | | STATIST
MEAN | TICS OF MO
105 | NTHLY MI
114 | EAN DATA
86.0 | FOR WATE
78.3 | ER YEARS
93.0 | 1991 - 2003.
144 | BY WATE | R YEAR (W
141 | YY)
120 | 103 | 112 | 105 | | MAX | 204 | 184 | 112 | 90.5 | 93.0
179 | 226 | 587 | 272 | 222 | 146 | 170 | 191 | | (WY) | (1996) | (2001) | (2002) | (2003) | (2000) | (1995) | (2001) | (2003) | (1993) | (2000) | (1995) | (2002) | | MIN
(WY) | 74.4
(1992) | 74.2
(1995) | 72.0
(2000) | 63.2
(1995) | 64.0
(1995) | 84.6
(2001) | 99.9
(2000) | 85.7
(1998) | 73.9
(1994) | 80.6
(1994) | 67.5
(1994) | 75.1
(1998) | | SUMMA | RY STATIS | TICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 199 | 01 - 2003 | | ANNUA | L TOTAL | | | 59,297 | | | 50,11 | 6 | | | | | | ANNUA! | L MEAN
Γ ANNUAL | MEAN | | 162 | | | 13 | 7 | | | 21
58 | 2001 | | | ANNUAL | | | | | | | | | | 93.5 | 1994 | | | Γ DAILY M
Γ DAILY MI | | | 1,640
75 | | | 1,33 | | y 12
g 13 | | | or 8, 2001
1,15, 1993 | | | | AY MINIM | UM | 78 | Jul | | | | 5 5 | (a) | | g 18, 1994 | | | JM PEAK F | | | | | | 1,51 | 0 May | y 12 | (b)2,0 | 010 Ar | or 12, 2001 | | | JM PEAK S
TANEOUS | TAGE
LOW FLOW | 7 | | | | (a)1 | 6.58 May | y 12
g 13 | ſ: | | or 12, 2002
p 11, 1993 | | ANNUAL | L RUNOFF | (CFSM) | | | .06 | | ` ´ | 0.90 | ·- | (, | 0.79 | r, -//0 | | | L RUNOFF
ENT EXCE | | | 14
284 | .42 | | 1
21 | 2.19 | | 1 | 10.72
 74 | | | | ENT EXCE | | | 109 | | | 10 | 12 | | 1 | 90 | | | | ENT EXCE | | | 86 | | | | 5 | | | 70 | | ⁽a) Result of regulation ⁽b) Gage height, 7.22 ft ⁽e) Estimated due to ice effect or missing record #### CHIPPEWA RIVER BASIN 201 #### 053674464 YELLOW RIVER AT BARRON, WI-Continued #### WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: August 1991 to current year. INSTRUMENTATION.--Continuous water temperature recorder since Aug. 30, 1991. REMARKS.--Records represent water temperature at sensor within 0.5°C. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum temperature, 29.0°C, July 25, 30, 1999; minimum, 0.0°C, for many days. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum temperature, 25.0°C, July 4, 5, Aug. 16, 18-22, and 26; minimum, 0.0°C, on many days. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--|--|---------------------------------|---------------------------------| | | (| ОСТОВЕ | 3 | N | OVEMBE | ER | Б | ECEMBE | ER | | JANUAR | Y | | 1
2
3
4
5 | 15.0
14.5
13.5
13.0
11.5 | 13.0
13.5
12.5
11.0
10.0 | 14.0
14.0
13.0
12.0
10.5 | 4.5
4.0
4.0
4.0
4.0 | 3.5
3.0
3.0
3.5
3.5 | 4.0
3.5
3.5
3.5
3.5 | 1.0
0.5
0.5
0.5
0.0 | 0.5
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 0.5
0.5
1.0
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | | 6
7
8
9
10 | 11.0
9.5
9.0
9.5
9.5 | 9.5
7.5
7.5
8.0
9.0 | 10.5
8.5
8.0
9.0
9.0 | 4.0
5.0
5.0
5.5
6.0 | 3.5
3.5
4.0
4.5
5.5 | 4.0
4.0
4.5
5.0
5.5 | 0.0
0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
1.0
1.0
1.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | | 11
12
13
14
15 | 11.0
12.0
11.0
9.5
9.0 | 9.0
11.0
9.5
8.5
7.5 | 10.0
11.5
10.0
9.0
8.5 | 5.5
4.5
4.0
3.0
2.5 | 4.5
4.0
3.0
2.0
2.0 | 5.0
4.0
3.5
2.5
2.0 | 0.5
0.5
0.5
1.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.5 | 0.5
1.0
0.5
0.5
1.0 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | | 16
17
18
19
20 | 8.0
7.0
6.5
5.5
5.0 | 6.5
6.5
5.5
5.0
4.5 | 7.5
7.0
6.0
5.5
5.0 | 2.5
2.5
2.5
2.5
2.5 | 2.0
1.5
1.5
1.5
2.0 | 2.0
2.0
2.0
2.0
2.0 | 0.0
0.5
0.5
0.5
0.5 | 0.0
0.0
0.5
0.0
0.0 | 0.0
0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | | 21
22
23
24
25 | 4.5
4.5
4.5
5.0
5.0 | 4.0
3.5
3.5
4.0
5.0 | 4.0
4.0
4.0
4.5
5.0 | 2.5
2.0
2.5
1.5
1.0 | 2.0
1.5
1.5
1.0
0.5 | 2.0
2.0
2.0
1.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.5
0.5 | 1.0
1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | | 26
27
28
29
30
31 | 5.5
5.5
5.5
6.0
6.0
5.5 | 5.0
4.5
5.0
5.5
5.5
4.5 | 5.0
5.0
5.0
5.5
5.5
5.5 | 1.5
1.0
1.0
1.5
0.5 | 0.5
0.5
0.5
0.5
0.0 | 0.5
0.5
0.5
1.0
0.5 | 0.5
1.0
1.0
1.0
0.5
0.5 | 0.0
0.0
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
1.0 | | MONTH | 15.0 | 3.5 | 7.8 | 6.0 | 0.0 | 2.6 | 1.0 | 0.0 | 0.3 | 1.0 | 0.5 | 0.5 | # 053674464 YELLOW RIVER AT BARRON, WI—Continued # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|--|--|---|--|--|--|--| | | | FEBRUARY | 7 | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
0.5
0.5 | 2.0
1.5
1.5
1.5
1.5 | 0.5
0.5
0.5
0.5 | 1.5
1.0
1.0
1.0
1.0 | 5.5
5.5
4.5
2.5
3.0 | 4.0
4.5
2.5
1.0
1.0 | 5.0
5.0
3.0
2.0
2.0 | 15.0
15.0
15.0
14.5
12.5 | 12.5
13.0
13.5
12.5
11.0 | 13.5
13.5
14.0
13.5
11.5 | | 6
7
8
9
10 | 1.0
1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 2.0
2.0
1.5
1.5 | 0.5
0.5
0.5
0.5
0.5 | 1.0
1.0
0.5
0.5
1.0 | 4.0
4.5
6.0
7.0
8.5 | 2.0
3.5
3.5
5.0
6.0 | 3.0
4.0
4.5
6.0
7.5 | 11.0
12.0
13.5
13.5
12.5 | 10.0
10.0
11.5
12.5
11.5 | 10.5
11.0
12.5
13.0
12.0 | | 11
12
13
14
15 | 1.0
1.0
1.5
1.5 | 0.5
0.5
0.5
0.5
0.5 |
0.5
0.5
1.0
1.0 | 2.0
1.5
2.0
2.0
2.0 | 0.5
0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0
1.0 | 11.5
12.5
13.0
14.5
16.0 | 8.0
10.0
11.0
12.0
14.5 | 9.5
11.0
12.0
13.5
15.0 | 12.0
10.5
14.0
14.0
14.5 | 9.0
7.5
10.0
13.0
12.5 | 10.5
9.0
11.5
13.5
13.5 | | 16
17
18
19
20 | 1.5
1.5
1.5
1.5
2.0 | 0.5
0.5
0.5
0.5
1.0 | 1.0
1.0
1.0
1.0
1.0 | 1.5
1.5
1.0
1.5
1.5 | 0.5
0.5
0.5
0.5
1.0 | 1.0
1.0
1.0
1.0
1.0 | 14.5
5.5
3.0
5.0
5.0 | 5.5
2.0
2.0
3.0
5.0 | 11.0
3.0
2.5
4.0
5.0 | 16.5
17.0
18.0
18.0
16.5 | 13.5
15.0
16.5
16.5
15.0 | 15.0
16.0
17.0
17.5
15.5 | | 21
22
23
24
25 | 1.5
1.5
1.5
1.5 | 1.0
0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0
1.0 | 1.5
2.0
2.5
4.5
5.0 | 1.0
1.0
1.5
2.5
3.5 | 1.5
1.5
2.0
3.5
4.5 | 7.0
9.5
11.0
12.0
13.5 | 5.0
6.5
7.5
9.5
11.0 | 5.5
8.0
9.5
11.0
12.5 | 15.5
15.0
14.5
16.0
17.5 | 14.0
13.5
12.5
14.0
15.5 | 15.0
14.0
13.5
15.0
16.5 | | 26
27
28
29
30 | 2.0
2.0
2.0 | 0.5
1.0
1.0 | 1.0
1.0
1.5 | 5.5
5.0
4.0
3.5
4.5 | 4.0
4.0
3.0
2.5
3.0 | 5.0
4.5
3.5
3.0
4.0 | 13.5
14.5
15.0
15.0
14.5 | 12.0
13.5
13.5
14.0
13.5 | 12.5
14.0
14.0
14.5
14.0 | 18.0
19.0
19.5
20.0
20.0 | 16.0
17.0
18.0
18.5
18.0 | 17.0
17.5
19.0
19.0 | | 31 | | | | 5.0 | 4.0 | 4.5 | | | | 18.5 | 17.0 | 17.5 | | MONTH | 2.0 | 0.5 | 0.9 | 5.5 | 0.5 | 1.8 | 16.0 | 1.0 | 8.1 | 20.0 | 7.5 | 14.4 | | MONTH | 2.0 | 0.5
JUNE | 0.9 | 5.5 | 0.5
JULY | 1.8 | 16.0 | 1.0
AUGUST | 8.1 | | 7.5
EPTEMBI | 14.4
ER | | MONTH 1 2 3 4 5 | 2.0
18.0
18.5
19.5
20.0 | | 0.9
17.0
17.0
17.5
18.5
19.0 | 5.5
21.5
23.0
24.5
25.0
25.0 | | 20.5
22.0
23.0
24.0
24.0 | | | | | | | | 1
2
3
4 | 18.0
18.0
18.5
19.5 | JUNE
16.5
16.5
17.0
17.5 | 17.0
17.0
17.5
18.5 | 21.5
23.0
24.5
25.0 | JULY
20.0
21.0
21.5 | 20.5
22.0
23.0
24.0 | 23.0
23.5
23.0
22.5 | 22.0
22.0
21.5
21.0 | 22.5
22.5
22.0
21.5 | 20.5
20.0
19.5 | 19.0
19.0
19.0
18.5
18.0 | 19.5
19.5
19.0
18.5 | | 1
2
3
4
5
6
7
8 | 18.0
18.0
18.5
19.5
20.0
19.5
18.5
18.0
18.0 | JUNE 16.5 16.5 17.0 17.5 18.0 18.5 18.0 17.0 16.5 17.0 | 17.0
17.0
17.5
18.5
19.0
19.0
18.0
17.5
17.5 | 21.5
23.0
24.5
25.0
25.0
24.5
24.0
23.5
22.0 | JULY 20.0 21.0 21.5 23.5 23.5 23.0 23.0 22.0 20.5 | 20.5
22.0
23.0
24.0
24.0
23.5
23.5
22.5
21.5 | 23.0
23.5
23.0
22.5
22.0
22.5
23.5 | 22.0
22.0
21.5
21.0
21.0
21.0
21.5
21.5 | 22.5
22.5
22.0
21.5
21.5
21.5
22.0
22.0
22.5 | 20.5
20.0
19.5
19.5
19.5
19.5 | 19.0
19.0
18.5
18.0
17.5
18.0
18.5
19.0
19.5 | 19.5
19.5
19.0
18.5
18.5
18.5
19.5
19.5
20.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.0
18.5
19.5
20.0
19.5
18.5
18.0
18.0
17.5
19.5
21.5 | JUNE 16.5 16.5 17.0 17.5 18.0 18.5 18.0 17.0 16.5 17.0 16.5 17.0 16.5 17.0 17.5 18.5 | 17.0
17.0
17.5
18.5
19.0
19.0
18.0
17.5
17.5
17.5
17.0
17.0
18.5
20.0 | 21.5
23.0
24.5
25.0
25.0
24.5
24.0
23.5
22.0
20.5
20.0
21.0
21.5
21.0 | JULY 20.0 21.0 21.5 23.5 23.5 23.0 23.0 22.0 20.5 19.0 18.5 19.0 19.5 20.5 | 20.5
22.0
23.0
24.0
24.0
23.5
23.5
22.5
21.5
20.0
19.0
19.5
20.5
20.5 | 23.0
23.5
23.0
22.5
22.0
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | AUGUST 22.0 22.0 21.5 21.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 22.0 22.0 21.5 21.5 21.5 | 22.5
22.5
22.0
21.5
21.5
21.5
22.0
22.0
22.5
22.5
22.5
22.5
22.0
22.5 | 20.5
20.0
19.5
19.5
19.5
20.5
20.5
21.0
21.0
21.0
20.5
19.5 | 19.0
19.0
19.0
18.5
18.0
17.5
18.0
19.5
20.0
19.5
18.5
19.5
20.0 | 19.5
19.5
19.5
19.0
18.5
18.5
19.5
19.5
20.0
20.5
20.5
20.0
19.5
18.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18.0
18.0
18.5
19.5
20.0
19.5
18.5
18.0
18.0
17.5
19.5
21.5
22.5
23.0
23.5
24.5
24.0 | JUNE 16.5 16.5 17.0 17.5 18.0 18.5 18.0 17.0 16.5 17.0 16.5 17.0 21.0 22.0 22.5 22.0 | 17.0
17.0
17.5
18.5
19.0
19.0
18.0
17.5
17.5
17.5
17.0
17.0
18.5
20.0
21.0
22.0
22.5
23.0
23.0 | 21.5
23.0
24.5
25.0
25.0
24.5
24.0
23.5
22.0
20.5
21.0
22.0
22.0
22.5
22.5
22.5 | JULY 20.0 21.0 21.5 23.5 23.5 23.0 23.0 22.0 20.5 19.0 18.5 19.0 19.5 20.5 20.5 21.0 21.0 21.0 | 20.5
22.0
23.0
24.0
24.0
23.5
23.5
22.5
21.5
20.0
19.0
19.5
20.5
21.0
21.0
21.5
21.5
21.5 | 23.0
23.5
23.0
22.5
22.0
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | AUGUST 22.0 22.0 21.5 21.0 21.0 21.5 21.5 21.5 21.5 22.0 22.0 21.5 22.0 23.0 23.0 23.0 23.5 | 22.5
22.5
22.0
21.5
21.5
22.0
22.0
22.5
22.5
22.5
22.5
22.0
22.5
22.0
22.5
23.0
24.0
23.5
23.5
24.0 | 20.5
20.0
19.5
19.5
19.5
20.5
20.5
21.0
21.0
21.0
21.0
21.0
18.0
18.0
17.5
16.0 | 19.0
19.0
19.0
18.5
18.0
17.5
18.0
19.5
20.0
20.0
19.5
17.5
17.0
16.5
16.5
14.5 | 19.5
19.5
19.0
18.5
18.5
18.5
19.5
19.5
20.0
20.5
20.5
20.0
19.5
17.5
17.0
17.0
17.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 18.0
18.5
19.5
20.0
19.5
18.5
18.0
18.0
17.5
19.5
21.5
22.5
23.5
24.5
24.0
23.5
23.0
23.0
23.0
23.0
23.5 | JUNE 16.5 16.5 17.0 17.5 18.0 18.5 18.0 17.0 16.5 17.0 16.5 17.0 21.0 22.0 22.5 22.0 21.5 21.0 21.5 22.0 | 17.0
17.0
17.0
17.5
18.5
19.0
19.0
18.0
17.5
17.5
17.5
17.0
12.0
22.0
22.0
22.0
22.0
22.0
22.0
22 | 21.5
23.0
24.5
25.0
25.0
24.5
24.0
23.5
22.0
20.5
20.5
21.0
22.0
22.5
22.5
22.5
22.5
22.5
22.5
22 | JULY 20.0 21.0 21.5 23.5 23.5 23.0 22.0 20.5 19.0 18.5 19.0 19.5 20.5 20.5 21.0 21.0 21.0 21.5 21.5 20.5 20.5 20.5 20.5 | 20.5
22.0
23.0
24.0
24.0
23.5
22.5
21.5
20.0
19.0
19.5
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | 23.0
23.5
23.0
22.5
22.0
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23.0
23.5
24.0
25.0
25.0
25.0
25.0
25.0
24.0
24.5 | AUGUST 22.0 22.0 21.5 21.0 21.0 21.5 21.5 21.5 21.5 21.5 22.0 21.5 22.0 23.0 23.0 23.0 23.0 23.5 24.0 23.5 23.0 23.0 23.5 24.0 | 22.5
22.5
22.5
21.5
21.5
21.5
22.0
22.0
22.5
22.5
22.5
22.5
22.0
22.5
22.5 | 20.5
20.0
19.5
19.5
19.5
19.5
20.5
20.5
21.0
21.0
21.0
21.0
20.5
19.5
19.0
18.0
17.5
16.0
14.5
14.5 | 19.0
19.0
19.0
18.5
18.0
17.5
18.0
17.5
18.0
19.5
20.0
20.0
20.0
19.5
17.5
17.0
16.5
16.5
15.5
14.5
13.5 | ER 19.5 19.5 19.5 19.0 18.5 18.5 19.5 19.5 20.0 20.5 20.5 20.5 20.0 19.5 17.0 17.0 17.0 15.0 14.0 13.5 13.0 12.5 13.0 | 154 #### CHIPPEWA RIVER BASIN #### 05368000 HAY RIVER AT WHEELER, WI $LOCATION.--Lat\ 45^{\circ}02'52'',\ long\ 91^{\circ}54'39'',\ in\ SW\ {}^{1}\!\!{}^{\prime}_{4}\ SW\ {}^{1}\!\!{}^{\prime}_{4}\ sec.25,\ T.30\ N.,\ R.13\ W.,\ Dunn\ County,\ Hydrologic\ Unit\ 07050007,\ on\ right\ bank\ 25\ ft\ downstream\ from\ highway\ bridge\ in\ Wheeler,\ 1.8\ mi\ upstream\ from\ Otter\ Creek,\ and\ 2.4\ mi\ downstream\ from\ South\ Fork\ Hay\ River.$ DRAINAGE AREA.--418 mi². PERIOD OF RECORD.--October 1950 to current year. REVISED RECORDS.--WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 889.30 ft above NGVD of 1929. Prior to Mar. 25, 1951, nonrecording gage. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | EXTREMES OUTSI | DE OF PERI | OD OF REC | CORDMax | timum stage | since 1915, | 16.6 ft April | 1 1934, from | floodmarks. | | | | |
---|--|---|--|--|--|---|--|---------------------------------|--|--|---------------------------------|--| | DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | DAY OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 382 | 405 | e310 | e300 | e250 | e270 | 647 | 438 | 404 | 363 | 277 | 218 | | | 2 360 | 404 | e320 | e290 | e260 | e260 | 731 | 427 | 390 | 353 | 274 | 216 | | | 3 344 | 401 | e300 | e280 | e260 | e250 | 655 | 414 | 383 | 433 | 272 | 213 | | | 4 486 | 397 | e330 | e300 | e260 | e260 | 515 | 407 | 379 | 553 | 266 | 213 | | | 5 1,070 | 394 | e320 | e290 | e250 | e250 | 431 | 618 | 372 | 542 | 261 | 212 | | | 6 1,320 | 394 | e320 | e280 | e250 | e260 | 402 | 1,020 | 372 | 419 | 266 | 211 | | | 7 1,670 | 389 | e330 | e280 | e240 | e270 | 388 | 777 | 402 | 382 | 275 | 213 | | | 8 1,630 | 389 | e310 | e280 | e250 | e270 | 373 | 597 | 402 | 364 | 258 | 211 | | | 9 1,040 | 387 | e310 | e270 | e250 | e260 | 365 | 705 | 416 | 355 | 253 | 209 | | | 10 828 | 387 | e330 | e260 | e260 | e270 | 359 | 1,290 | 422 | 365 | 248 | 209 | | | 11 750 | 381 | e320 | e250 | e260 | e280 | 358 | 1,450 | 456 | 395 | 245 | 207 | | | 12 670 | 372 | 314 | e240 | e260 | e290 | 358 | 2,560 | 416 | 367 | 241 | 213 | | | 13 634 | 368 | 312 | e230 | e260 | e300 | 356 | 2,580 | 386 | 347 | 238 | 226 | | | 14 584 | 367 | 310 | e220 | e260 | e320 | 357 | 1,500 | 368 | 341 | 236 | 222 | | | 15 551 | 361 | 309 | e220 | e260 | e340 | 376 | 1,020 | 356 | 905 | 234 | 219 | | | 16 523 | 355 | 302 | e230 | e250 | e590 | 881 | 752 | 346 | 1,460 | 232 | 216 | | | 17 502 | 355 | 304 | e220 | e250 | e2,000 | 2,590 | 668 | 338 | 762 | 229 | 214 | | | 18 483 | 355 | 315 | e210 | e260 | e1,500 | 2,680 | 618 | 327 | 519 | 227 | 213 | | | 19 495 | 353 | 340 | e210 | e270 | 828 | 1,360 | 583 | 314 | 437 | 226 | 291 | | | 20 476 | 352 | 326 | e210 | e280 | 622 | 1,030 | 684 | 305 | 400 | 231 | 297 | | | 21 476 | 348 | 316 | e210 | e280 | 549 | 998 | 652 | 300 | 372 | 234 | 256 | | | 22 477 | 340 | 306 | e200 | e270 | 800 | 870 | 569 | 296 | 348 | 228 | 244 | | | 23 480 | 342 | e290 | e210 | e260 | 823 | 671 | 562 | 330 | 332 | 226 | 237 | | | 24 473 | 339 | e290 | e220 | e250 | 647 | 616 | 537 | 398 | 318 | 225 | 233 | | | 25 474 | 335 | e300 | e210 | e240 | 549 | 571 | 501 | 508 | 308 | 222 | 231 | | | 26 474
27 447
28 429
29 417
30 406
31 402 | 321
327
326
e320
e320 | e290
e300
e300
e300
e300
e280 | e220
e220
e210
e220
e230
e240 | e250
e260
e270
 | 486
458
505
605
541
576 | 532
506
483
463
448 | 474
455
433
427
425
420 | 732
489
417
401
381 | 303
297
287
280
277
274 | 224
222
219
223
219
218 | 228
231
230
229
229 | | | TOTAL 19,753 | 10,884 | 9,604 | 7,460 | 7,220 | 16,229 | 21,370 | 24,563 | 11,806 | 13,458 | 7,449 | | | | MEAN 637 | 363 | 310 | 241 | 258 | 524 | 712 | 792 | 394 | 434 | 240 | | | | MAX 1,670 | 405 | 340 | 300 | 280 | 2,000 | 2,680 | 2,580 | 732 | 1,460 | 277 | | | | MIN 344 | 320 | 280 | 200 | 240 | 250 | 356 | 407 | 296 | 274 | 218 | | | | CFSM 1.52 | 0.87 | 0.74 | 0.58 | 0.62 | 1.25 | 1.70 | 1.90 | 0.94 | 1.04 | 0.57 | | | | IN. 1.76 | 0.97 | 0.85 | 0.66 | 0.64 | 1.44 | 1.90 | 2.19 | 1.05 | 1.20 | 0.66 | | | | STATISTICS OF MC
MEAN 269
MAX 637
(WY) (2003)
MIN 139
(WY) (1959) | ONTHLY MI
265
704
(1971)
138
(1959) | EAN DATA
229
470
(1966)
122
(1959) | FOR WATE
203
412
(1981)
97.2
(1959) | ER YEARS
231
657
(1981)
85.2
(1959) | 1951 - 2003
481
1,021
(1983)
155
(1956) | 644
2,054
(1965)
166
(1959) | R YEAR (W
374
792
(2003)
153
(1958) | 7Y) 353 778 (1993) 153 (1959) | 276
667
(1979)
135
(1964) | 270
568
(2001)
126
(1964) | Ì41 | | | SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1951 - 2003 ANNUAL TOTAL 170,677 156,587 323 ANNUAL MEAN 468 429 323 HIGHEST ANNUAL MEAN 152 1959 LOWEST ANNUAL MEAN 2,360 Apr 13 2,680 Apr 18 13,000 Mar 31, 1967 LOWEST DAILY MEAN (a)200 Feb 4 (a)200 Jan 22 80 Feb 20, 1959 ANNUAL SEVEN-DAY MINIMUM (a)217 Feb 1 (a)210 Jan 17 82 Feb 16, 1959 MAXIMUM PEAK FLOW 3,560 Apr 17 (b)13,600 Mar 31, 1967 MAXIMUM PEAK STAGE 11.12 Apr 17 15.04 Mar 31, 1967 INSTANTANEOUS LOW FLOW (a) (c)55 Mar 13, 1954 ANNUAL RUNOFF (INCHES) 15.19 13.94 10.51 10 PERCENT EXCEEDS 762 670 498 50 PERCENT EXCEEDS 360 330 243 | | | | | | | | | | 2002
1959
Mar 31, 1967
Feb 20, 1959
Feb 16, 1959
Mar 31, 1967
Mar 31, 1967 | | | ⁽a) Ice affected 250 90 PERCENT EXCEEDS ⁽a) the affected (b) From rating curve extended above 9,000 ft³/s (c) Result of freezeup (e) Estimated due to ice effect or missing record #### 05369000 RED CEDAR RIVER AT MENOMONIE, WI LOCATION.--Lat $44^{\circ}53'02''$, long $91^{\circ}55'57''$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.26, T.28 N., R.13 W., Dunn County, Hydrologic Unit 07050007, on right bank at Menomonie, 900 ft downstream from powerplant of Northern States Power Co., and 1,000 ft downstream from Wilson Creek. DRAINAGE AREA.--1,770 mi². PERIOD OF RECORD.--June 1907 to September 1908, May 1913 to current year. Monthly discharge only for June 1907 to September 1908, published in WSP 1308. Unpublished daily discharge from June 1907 to September 1908 in District files. REVISED RECORDS.--WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 780.00 ft above NGVD of 1929 (Northern States Power Co. bench mark). Prior to Sept. 3, 1908, nonrecording gage at site 1 mi downstream at different datum. May 9, 1913, to Sept. 30, 1923, water-stage recorder at same site at datum 0.42 ft lower than present datum. REMARKS.--Records good (see page 11). Flow regulated by powerplants at Menomonie and Cedar Falls. Gage-height telemeter at station. | | | DISCH | ARGE, CUI | BIC FEET PEI | |), WATER Y
LY MEAN V | | DBER 2002 T | ГО ЅЕРТЕМ | MBER 2003 | | | |---|--|---|--|--|---------------------------|--|---|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1,980 | 1,710 | 1,100 | 1,040 | 1,110 | 926 | 2,180 | 644 | 1,160 | 1,690 | 1,120 | 871 | | 2 | 1,760 | 1,770 | 1,260 | 1,000 | 1,070 | 1,090 | 2,120 | 1,210 | 1,660 | 1,540 | 1,050 | 874 | | 3 | 1,830 | 1,670 | 1,020 | 1,030 | 1,190 | 1,010 | 2,280 | 1,680 | 1,300 | 1,730 | 1,130 | 855 | | 4 | 2,430 | 1,790 | 894 | 1,070 | 1,020 | 978 | 2,440 | 1,830 | 1,330 | 1,930 | 1,080 | 797 | | 5 | 3,670 | 1,800 | 1,160 | 1,160 | 1,060 | 941 | 1,820 | 3,360 | 1,400 | 1,860 | 1,080 | 907 | | 6 | 4,530 | 1,670 | 1,000 | 1,300 | 1,060 | 1,010 | 1,540 | 3,220 | 1,460 | 1,750 | 1,090 | 844 | | 7 | 5,230 | 1,620 | 994 | 1,410 | 993 | 1,050 | 1,570 | 3,130 | 1,570 | 1,630 | 1,160 | 800 | | 8 | 5,350 | 1,740 | 1,200 | 1,170 | 1,050 | 1,110 | 1,310 | 2,100 | 1,490 | 1,480 | 1,080 | 801 | | 9 | 5,310 | 1,700 | 1,100 | 1,400 | 1,010 | 879 | 1,350 | 2,750 | 1,680 | 1,280 | 999 | 816 | | 10 | 4,980 | 1,570 | 933 | 1,190 | 1,060 | 956 | 1,420 | 3,910 | 2,100 | 1,440 | 974 | 824 | | 11 | 4,380 | 1,620 | 1,240 | 850 | 1,070 | 1,060 | 1,450 | 5,580 | 2,470 | 1,500 | 1,050 | 815 | | 12 | 3,340 | 1,640 | 1,380 | 716 | 959 | 1,120 | 1,390 | 7,050 | 2,440 | 1,490 | 935 | 904 | | 13 | 3,280 | 1,590 | 1,400 | 831 | 1,090 | 1,080 | 1,330 | 9,830 | 1,690 | 1,390 | 868 | 876 | | 14 | 2,840 | 1,510 | 1,400 | 965 | 1,010 | 1,090 | 1,310 | 9,040 | 1,730 | 1,300 | 949 | 898 | | 15 | 2,850 | 1,650 | 1,350 | 936 | 1,030 | 1,670 | 1,510 | 7,130 | 1,660 | 2,780 | 944 | 898
| | 16 | 2,520 | 1,500 | 1,450 | 980 | 999 | 3,300 | 3,690 | 5,660 | 1,650 | 3,010 | 947 | 855 | | 17 | 1,940 | 1,490 | 1,210 | 1,110 | 994 | 4,320 | 4,760 | 4,600 | 1,410 | 2,780 | 902 | 777 | | 18 | 2,330 | 1,560 | 1,560 | 1,070 | 1,100 | 5,470 | 7,540 | 3,830 | 1,680 | 1,870 | 871 | 1,070 | | 19 | 2,320 | 1,540 | 1,490 | 1,040 | 1,060 | 5,580 | 6,450 | 3,280 | 1,270 | 1,680 | 908 | 1,250 | | 20 | 2,450 | 1,580 | 1,600 | 1,040 | 995 | 3,950 | 4,970 | 3,060 | 1,270 | 1,510 | 931 | 1,440 | | 21 | 2,150 | 1,390 | 1,270 | 1,010 | 1,110 | 2,620 | 4,550 | 3,360 | 1,390 | 1,630 | 960 | 1,190 | | 22 | 1,870 | 1,580 | 1,470 | 1,010 | 1,080 | 2,480 | 4,540 | 2,950 | 1,210 | 1,220 | 963 | 1,230 | | 23 | 1,910 | 1,380 | 1,060 | 941 | 1,060 | 2,780 | 4,260 | 2,630 | 1,910 | 1,290 | 947 | 1,040 | | 24 | 2,200 | 1,560 | 967 | 912 | 1,060 | 2,510 | 3,870 | 2,510 | 1,920 | 1,230 | 933 | 1,090 | | 25 | 2,180 | 1,470 | 1,140 | 963 | 961 | 1,930 | 3,570 | 2,380 | 3,350 | 1,170 | 886 | 1,080 | | 26
27
28
29
30
31 | 2,070
1,850
1,730
1,860
1,850
1,700 | 1,230
1,130
1,330
1,610
1,410 | 1,130
999
1,190
1,380
1,450
1,250 | 1,050
928
1,000
1,010
1,000
1,010 | 989
1,050
1,040
 | 1,640
1,960
2,440
2,190
2,120
1,960 | 3,050
2,460
2,370
2,250
1,350 | 2,240
2,250
2,320
1,310
617
666 | 2,940
2,120
1,780
1,800
1,860 | 1,110
1,090
1,110
1,070
1,080
1,090 | 828
952
886
861
825
791 | 1,080
1,060
986
947
1,000 | | TOTAL | 86,690 | 46,810 | 38,047 | 32,142 | 29,280 | 63,220 | 84,700 | 106,127 | 52,700 | 48,730 | 29,900 | 28,875 | | MEAN | 2,796 | 1,560 | 1,227 | 1,037 | 1,046 | 2,039 | 2,823 | 3,423 | 1,757 | 1,572 | 965 | 962 | | MAX | 5,350 | 1,800 | 1,600 | 1,410 | 1,190 | 5,580 | 7,540 | 9,830 | 3,350 | 3,010 | 1,160 | 1,440 | | MIN | 1,700 | 1,130 | 894 | 716 | 959 | 879 | 1,310 | 617 | 1,160 | 1,070 | 791 | 777 | | | | | | A FOR WATE | | | | ` | 1 | | | | | MEAN | 1,159 | 1,174 | 990 | 906 | 974 | 1,916 | 2,356 | 1,532 | 1,493 | 1,139 | 1,000 | 1,205 | | MAX | 2,806 | 2,521 | 2,316 | 1,317 | 2,047 | 4,142 | 6,819 | 3,423 | 3,702 | 2,926 | 2,237 | 3,091 | | (WY) | (1969) | (1992) | (1966) | (1973) | (1966) | (1973) | (1965) | (2003) | (1943) | (1968) | (1995) | (1938) | | MIN | 528 | 566 | 541 | 532 | 536 | 921 | 664 | 612 | 425 | 421 | 383 | 493 | | (WY) | (1933) | (1937) | (1933) | (1959) | (1959) | (1956) | (1930) | (1934) | (1934) | (1934) | (1934) | (1933) | | SUMMA | RY STATIS | STICS | | FOR 2002 CA | ALENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 19 | 07 - 2003 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMU
MAXIMU
10 PERCO
50 PERCO | | MEAN EAN EAN AY MINIM TLOW TTAGE EDS EDS | IUM | 779,381
2,135
9,240
642
1,040
3,720
1,670
1,190 | Apr
Sep
Dec | 17 | 647,22
1,77
9,83
61
82
10,90
3,28
1,35
92 | 73
60 May
7 May
17 Sep
100 May
7.20 May
60 | 30 4 13 | 29,0
1
3
(a)40,0
(b)
2,2
1,0 | 116
111
1000 A
100 N
110 S
1000 A
116.00 A | 2002
1931
pr 4, 1934
ov 8, 1907
ep 8, 1934
pr 4, 1934
pr 4, 1934 | ⁽a) From rating curve extended above 27,000 ft³/s on basis of computed flow over Cedar Falls Dam, 6 mi upstream (b) From floodmarks #### CHIPPEWA RIVER BASIN #### 05369500 CHIPPEWA RIVER AT DURAND, WI $LOCATION.--Lat~44^{\circ}37'42", long~91^{\circ}58'08" (revised), in~SE~\frac{1}{4}~SW~\frac{1}{4}~sec. 21, T.25~N., R.13~W., Pepin~County, Hydrologic~Unit~07050005, on~left~bank~in~Durand, 75~ft~downstream~from~bridge~on~U.S.~Highway~10, and~9.5~mi~downstream~from~Red~Cedar~River.$ DRAINAGE AREA.--9,010 mi². PERIOD OF RECORD .-- July 1928 to current year. REVISED RECORDS.--WSP 785: 1930, 1934(M). WSP 875: 1930 (monthly and yearly runoff). WSP 925: 1938. WSP 1508: 1929(M), 1932. WDR WI-82-1: Drainage area. WDR WI-99-1: 1995(m). GAGE.--Water-stage recorder. Datum of gage is 694.59 ft above NGVD of 1929. Prior to Dec. 9, 1930, nonrecording gage at bridge 400 ft downstream at same datum REMARKS.--Records good except those for estimated daily discharges and Sept. 4-10, which are fair (see page 11). Flow regulated by powerplants, Moose Lake, Lake Chippewa, Rest Lake, Flambeau Flowage, and Lake Wissota on Chippewa and Flambeau Rivers. Gage-height telemeter and data-collection platform at station. EXTREMES OUTSIDE OF PERIOD OF RECORD.--A stage of 18.4 ft, from flood marks (levels by U.S. Army Corps of Engineers) occurred Sept. 12, 1884, and has not been exceeded since. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | Discin | ARGE, COL | JIC TEET TEI | | LY MEAN V | ALUES | DER 2002 | TO SEL TEN | MDLK 2003 | | | |-------------|------------------------|------------------|------------------|------------------|------------------|--------------------|------------------|-------------------|------------------|-----------------|-----------------|--------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 12,000 | 10,800 | 6,550 | e6,000 | e3,700 | e3,500 | 10,900 | 13,300 | 8,150 | 8,180 | 4,210 | 2,880 | | 2 3 | 12,100
13,800 | 9,730
10,900 | e5,500
e5,300 | e5,400
e4,700 | e3,500
e3,500 | e3,500
e3,300 | 10,200
10,800 | 11,600
11,500 | 8,710
8,240 | 7,760
7,790 | 4,210
4,550 | 2,920
2,990 | | 4 | 14,700 | 10,100 | e4,800 | e4,800 | e4,000 | e3,200 | 13,500 | 11,200 | 7,720 | 7,230 | 4,550 | 3,030 | | 5 | 16,100 | 9,080 | e4,300 | e5,000 | e3,800 | e3,100 | 10,100 | 11,300 | 7,720 | 7,780 | 4,160 | 2,970 | | 6 | 25,000 | 9,020 | e6,000 | e5,300 | e3,700 | e3,100 | 8,140 | 14,700 | 7,690 | 6,350 | 4,170 | 2,950 | | 7
8 | 36,900
42,300 | 8,550
8,800 | e5,800
e5,500 | 5,820
6,570 | e3,600
e3,400 | e3,200
e3,400 | 7,950
7,620 | 15,900
16,700 | 8,130
8,590 | 5,940
5,780 | 4,350
4,550 | 2,850
2,800 | | 9 | 43,600 | 9,820 | e5,600 | 6,480 | e3,200 | e3,400 | 7,520 | 16,300 | 9,410 | 5,620 | 4,720 | 2,770 | | 10 | 41,100 | 9,530 | e5,500 | 6,400 | e3,200 | e3,300 | 7,520 | 17,400 | 10,300 | 5,590 | 4,120 | 2,790 | | 11 | 33,800 | 7,640 | e5,200 | e5,200 | e3,200 | e3,300 | 6,770 | 26,200 | 13,000 | 5,430 | 4,050 | 2,790 | | 12
13 | 26,700
24,300 | 8,390
8,670 | 5,120
5,920 | e3,900
e3,500 | e3,300
e3,300 | e3,500
e3,800 | 6,790
7,300 | 38,600
51,700 | 14,500
15,000 | 5,230
5,330 | 3,980
3,450 | 2,880
2,910 | | 14 | 22,700 | 8,920 | 6,230 | e3,400 | e3,400 | e3,600 | 7,990 | 62,400 | 13,800 | 5,640 | 3,360 | 2,880 | | 15 | 19,500 | 8,210 | 7,540 | e3,700 | e3,300 | e3,900 | 8,450 | 59,300 | 10,900 | 6,740 | 3,380 | 2,880 | | 16 | 16,500 | 8,090 | 6,630 | e3,700 | e3,300 | e5,100 | 11,900 | 47,500 | 9,600 | 8,440 | 3,310 | 2,880 | | 17
18 | 14,800
14,700 | 7,490
7,620 | 5,880
6,490 | e3,200
e3,600 | e3,300
e3,300 | e11,000
e17,000 | 27,200
39,200 | 33,700
26,400 | 8,630
7,950 | 7,830
6,160 | 3,260
3,090 | 2,800
2,880 | | 19 | 14,700 | 6,960 | 6,640 | e3,600 | e3,400 | 17,800 | 45,400 | 23,700 | 7,910 | 5,470 | 3,060 | 3,780 | | 20 | 14,600 | 6,960 | 7,900 | e3,600 | e3,500 | 16,700 | 43,200 | 22,700 | 7,150 | 5,090 | 3,110 | 4,910 | | 21 | 14,400 | 7,300 | 7,210 | e3,600 | e3,500 | 14,900 | 37,900 | 22,200 | 5,940 | 5,010 | 3,070 | 4,470 | | 22
23 | 13,800
13,400 | 6,900
7,460 | e6,900
e6,900 | e3,600
e3,600 | e3,500
e3,500 | 12,800
11,800 | 41,100
43,300 | 22,200
20,000 | 6,110
6,860 | 5,310
4,880 | 3,060
3,050 | 3,900
3,510 | | 24 | 13,400 | 7,160 | e5,200 | e3,600 | e3,500 | 12,800 | 36,800 | 14,100 | 7,010 | 4,730 | 3,030 | 3,600 | | 25 | 12,600 | 6,550 | e5,700 | e3,500 | e3,400 | 11,200 | 28,200 | 14,900 | 8,640 | 4,560 | 3,050 | 3,330 | | 26 | 12,300 | 6,500 | e5,900 | e3,700 | e3,400 | 11,000 | 21,300 | 13,300 | 10,200 | 4,440 | 2,990 | 3,330 | | 27
28 | 13,800
13,200 | 6,930
5,770 | e6,300
e5,500 | e3,700
e3,700 | e3,500
e3,500 | 10,000
11,800 | 19,200
18,000 | 12,100
12,300 | 9,590
8,780 | 4,340
4,270 | 2,920
3,120 | 3,340
3,270 | | 29 | 12,900 | 6,330 | e5,200 | e3,700 | | 13,700 | 17,600 | 10,400 | 9,040 | 4,140 | 2,990 | 3,200 | | 30 | 12,300 | 7,410 | 6,120 | e3,700 | | 13,900 | 15,500 | 8,000 | 7,990 | 3,920 | 2,930 | 3,200 | | 31 | 12,400 | | 6,420 | e3,600 | | 11,800 | | 8,100 | | 4,030 | 2,880 | | | TOTAL | 604,000 | 243,590 | 185,750 | 133,870 | 96,700 | 254,400 | 577,350 | 689,700 | 273,260 | 179,010 | 110,770 | 95,690 | | MEAN
MAX | 19,480
43,600 | 8,120
10,900 | 5,992
7,900 | 4,318
6,570 | 3,454
4,000 | 8,206
17,800 | 19,240
45,400 | 22,250
62,400 | 9,109
15,000 | 5,775
8,440 | 3,573
4,720 | 3,190
4,910 | | MIN | 12,000 | 5,770 | 4,300 | 3,200 | 3,200 | 3,100 | 6,770 | 8,000 | 5,940 | 3,920 | 2,880 | 2,770 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | R YEARS | 1928 - 2003. | BY WATE | R YEAR (W | Y) | | | | | MEAN | 6,618 | 6,848 | 5,401 | 4,788 | 5,075 | 9,600 | 16,190 | 10,700 | 9,414 | 6,370 | 5,207 | 7,017 | | MAX | 20,360
(1986) | 20,190
(1992) | 11,600
(1966) | 8,181 | 11,160
(1984) | 25,120
(1973) | 34,170 | 28,220
(1954) | 37,730 | 19,070 | 12,180 | 27,950
(1941) | | (WY)
MIN | 2,103 | 2,209 | 2,335 | (1984)
2,289 | 2,404 | 3,645 | (1967)
4,718 | 3,336 | (1943)
2,699 | (1968)
2,271 | (1995)
2,026 | 1,954 | | (WY) | (1977) | (1977) | (1934) | (1934) | (1990) | (1931) | (1931) | (1931) | (1934) | (1934) | (1934) | (1948) | | SHMMA | RY STATIS | STICS | | FOR 2002 CA | I ENDAR | VEAR | FOR 2003 | 3 WATER Y | /EAR | WATER | YEARS 192 | 28 - 2003 | | | L TOTAL | 31105 | | 4,372,330 | ILL: ID: III | ILI | 3,444,09 | | Litte | WITTER | TL/MO 1/2 | 2003 | | ANNUAI | | | | 11,980 | | | 9,43 | 6 | | 7,7 | | | | | Γ ANNUAI
Γ
ANNUAL | | | | | | | | | 11,5
3,9 | | 1942
1931 | | | T DAILY M | | | 73,600 | Apr | 15 | 62,40 | 0 May | 14 | 117,0 | 92
00 Aı | or 2, 1967 | | LOWEST | DAILY M | EAN | | (a)3,500 | Jan | 20 | 2,77 | 0 Ser | 9 | 1,1 | 00 No | ov 24, 1950 | | | | DAY MINIM | UM | (a)4,610 | Feb | 2 | 2,83 | 0 Ser | 7 | 1,5 | | ct 28, 1948 | | | JM PEAK I
JM PEAK S | | | | | | 64,40
1 | 0 May
3.77 May | | 123,0 | | or 2, 1967
or 2, 1967 | | INSTAN | TANEOUS | LOW FLOY | V | | | | 2,74 | 0 Ser | 9,10 | 1,0 | 20 No | ov 24, 1950 | | 10 PERC | ENT EXCE | EDS | | 23,200 | | | 17,70 | | | 14,4 | | | | | ENT EXCE
ENT EXCE | | | 8,390
5,290 | | | 6,42
3,20 | | | 5,6
3,0 | | | | JU I LIKE | LIVI LACE | டம் | | 5,290 | | | 3,20 | U | | 3,0 | 00 | | ⁽a) Ice affected ⁽e) Estimated due to ice effect or missing record #### CHIPPEWA RIVER BASIN #### 05369900 EAU GALLE RIVER NEAR WOODVILLE, WI $LOCATION.--Lat\ 44^{\circ}54'18" (revised),\ long\ 92^{\circ}15'51",\ in\ SW\ ^{1}\!\!/_{4}\ SE\ ^{1}\!\!/_{4}\ sec.\ 13,\ T.28\ N.,\ R.16 (revised)\ W.,\ St.\ Croix\ County,\ Hydrologic\ Unit\ 07050005,\ on\ left\ bank\ 20\ ft\ downstream\ from\ bridge\ on\ County\ Trunk\ Highway\ N,\ 1.3\ mi\ downstream\ from\ Carr\ Creek,\ and\ 2.9\ mi\ south\ of\ Woodville.$ DRAINAGE AREA.--39.4 mi². PERIOD OF RECORD.--July 1978 to September 1983, July 2001 to current year. REVISED RECORDS.--WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,058.66 ft above NGVD of 1929. July 1978 to September 1983, incorrectly published as 1,508.66 ft. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAI | LY MEAN V | /ALUES | | | | | | |--|---|--|---|---|--|---|---|---|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
9.0
8.0
518
136 | 11
11
11
10
11 | 6.5
6.3
5.9
5.9 | 4.4
4.4
4.4
4.6
4.4 | 3.3
3.5
e3.4
e3.3
e3.3 | 2.8
2.6
e2.6
e2.6
e2.6 | 40
28
17
11
8.4 | 8.8
8.2
7.7
7.9
150 | 7.9
7.7
7.5
7.3
7.1 | 7.9
7.3
70
70
27 | 6.0
5.6
5.4
5.3
5.1 | 3.3
3.2
3.1
3.1
3.3 | | 6
7
8
9
10 | 756
166
76
42
124 | 11
11
11
11
10 | 6.0
6.1
5.8
5.8
5.9 | 4.4
4.8
4.9
4.6
4.4 | e3.2
e3.2
e3.2
e3.1
e3.1 | e2.6
e2.5
e2.5
e2.4
2.5 | 8.0
7.8
6.8
6.7
6.7 | 57
23
16
282
80 | 7.2
7.0
7.1
6.8
7.4 | 12
8.9
7.8
7.4
7.4 | 5.2
5.0
4.7
4.6
4.5 | 3.4
3.7
3.6
3.5
3.6 | | 11
12
13
14
15 | 55
36
33
22
19 | 9.6
9.2
8.9
8.8
8.3 | 5.9
5.9
5.7
5.8
5.6 | 4.3
4.4
4.2
4.1
4.0 | e3.1
e3.0
e3.1
e3.1 | 2.6
2.5
2.4
62
408 | 7.0
7.4
7.4
8.0
14 | 844
119
35
26
25 | 7.2
7.1
6.4
5.9
5.7 | 7.0
7.3
6.7
7.0
255 | 4.3
4.2
4.1
3.9
3.9 | 3.6
4.0
3.8
3.9
4.1 | | 16
17
18
19
20 | 17
16
16
18
16 | 7.9
7.9
7.9
7.8
7.8 | 5.6
5.6
6.0
6.8
6.6 | 4.0
3.9
3.9
3.9
3.8 | 3.1
3.2
3.2
3.2
3.2 | 259
84
43
26
22 | 666
172
41
28
38 | 19
15
14
13
21 | 5.7
5.8
5.8
5.6
5.4 | 32
14
9.4
8.3
7.7 | 4.1
3.9
3.6
3.5
3.7 | 4.1
4.1
4.7
4.8
4.1 | | 21
22
23
24
25 | 17
22
23
18
16 | 7.8
7.9
7.8
7.5
7.1 | 5.9
5.6
5.3
5.0
5.1 | 3.7
3.6
3.5
3.5
3.5 | 3.1
3.0
2.8
2.7 | 55
96
30
24
18 | 46
27
18
15
13 | 15
13
16
14
12 | 5.3
5.3
5.7
6.0
402 | 7.4
7.0
6.8
6.9 | 3.6
3.4
3.3
3.2
3.5 | 3.9
3.9
3.9
4.0
3.6 | | 26
27
28
29
30
31 | 16
14
13
13
12
11 | 6.8
6.8
6.9
7.0
6.5 | 5.0
5.0
5.0
4.9
5.0
4.7 | 3.3
e3.4
3.4
3.3
3.3
3.3 | 2.9
2.8
2.8
 | 13
17
112
51
39
49 | 12
11
10
9.6
9.1 | 9.8
9.3
8.9
9.3
8.3 | 69
19
11
22
11 | 6.8
6.5
6.2
6.1
6.6
6.1 | 3.6
3.4
3.7
3.7
3.1
3.4 | 4.0
3.8
3.6
3.7
3.5 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2,270.0
73.2
756
8.0
1.86
2.14 | 264.2
8.81
11
6.5
0.22
0.25 | 176.1
5.68
6.8
4.7
0.14
0.17 | 123.6
3.99
4.9
3.3
0.10
0.12 | 87.1
3.11
3.5
2.7
0.08
0.08 | 1,441.2
46.5
408
2.4
1.18
1.36 | 1,299.9
43.3
666
6.7
1.10
1.23 | 1,898.2
61.2
844
7.7
1.55
1.79 | 689.9
23.0
402
5.3
0.58
0.65 | 653.4
21.1
255
6.1
0.53
0.62 | 128.5
4.15
6.0
3.1
0.11
0.12 | 112.9
3.76
4.8
3.1
0.10
0.11 | | STATIST | TICS OF MC | NTHLY M | EAN DATA | FOR WAT | ER YEARS | 1978 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 15.0
73.2
(2003)
2.51
(1982) | 8.85
34.3
(1983)
1.23
(1982) | 5.77
14.2
(2002)
0.84
(1982) | 2.14
3.99
(2003)
0.69
(1982) | 9.22
42.7
(1981)
0.80
(1979) | 60.3
95.7
(1982)
20.8
(1981) | 45.3
76.7
(1983)
18.5
(1981) | 27.4
61.2
(2003)
3.48
(1980) | 27.7
72.5
(1980)
3.08
(1982) | 14.2
46.6
(1978)
2.44
(1981) | 15.4
47.0
(1980)
2.38
(1982) | 17.4
84.0
(1980)
1.90
(1981) | # 05369900 EAU GALLE RIVER NEAR WOODVILLE, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALEN | NDAR YEAR | FOR 2003 W | ATER YEAR | WATER YEARS | S 1978 - 2003 | |--------------------------|----------------|-----------|------------|-----------|-------------|---------------| | ANNUAL TOTAL | 10,875.3 | | 9,145.0 | | | | | ANNUAL MEAN | 29.8 | | 25.1 | | 20.5 | | | HIGHEST ANNUAL MEAN | | | | | 27.9 | 1980 | | LOWEST ANNUAL MEAN | | | | | 11.0 | 1981 | | HIGHEST DAILY MEAN | 756 | Oct 6 | 844 | May 11 | 1,540 | Mar 30, 1982 | | LOWEST DAILY MEAN | 2.2 | Feb 10 | 2.4 | (a)Mar 13 | ((b)0.60 | Dec 30, 1981 | | ANNUAL SEVEN-DAY MINIMUM | 2.4 | Feb 7 | (b)2.5 | Mar 7 | (b)0.63 | Jan 5, 1982 | | MAXIMUM PEAK FLOW | | | 2,360 | May 11 | (c)5,280 | Jun 7, 1980 | | MAXIMUM PEAK STAGE | | | 9.78 | May 11 | (d)11.07 | Jun 7, 1980 | | INSTANTANEOUS LOW FLOW | | | (b) | • | (f)0.55 | Dec 30, 1981 | | ANNUAL RUNOFF (CFSM) | 0.76 | | 0.64 | | 0.52 | | | ANNUAL RUNOFF (INCHÉS) | 10.27 | | 8.63 | | 7.07 | | | 10 PERCENT EXCEEDS | 59 | | 37 | | 33 | | | 50 PERCENT EXCEEDS | 8.3 | | 6.7 | | 3.9 | | | 90 PERCENT EXCEEDS | 2.8 | | 3.2 | | 1.2 | | ⁽a) Also occurred Mar. 9, ice affected (b) Ice affected (c) From rating curve extended above 1,000 ft³/s, based on contracted-opening measurement of peak flow (d) From floodmarks (e) Estimated due to ice effect or missing record (f) Result of freezeup #### 05370000 EAU GALLE RIVER AT SPRING VALLEY, WI LOCATION.--Lat 44°51'15", long 92°14'17", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.6, T.27 N., R.15 W., Pierce County, Hydrologic Unit 07050005, on right bank 370 ft downstream from flood control dam, 1,900 ft upstream from Mines Creek, at Spring Valley. DRAINAGE AREA.--64.0 mi². PERIOD OF RECORD .-- March 1944 to current year. REVISED RECORDS.--WDR WI-67-1: 1966. WDR WI-81-1: Drainage area. WDR WI-92-1: 1975-79(M), 1977, 1978. WDR WI-01-1: Drainage area. GAGE.--Water-stage recorder, crest-stage gage, and rock v-notch sharp-crested weir. Datum of gage is 900.00 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to July 31, 1957, nonrecording gage at site 850 ft downstream at datum of 912.45 ft above NGVD of 1929. Aug. 1, 1957, to June 6, 1966, nonrecording gage at downstream site at datum of 910.45 ft above NGVD of 1929. June 7, 1966, to Oct. 31, 1968, nonrecording gage at downstream site at datum of 909.45 ft above NGVD of 1929. Nov. 1, 1968 to Sept. 3, 2003, water-stage recorder, crest-stage gage, and metal v-notch sharpcrested weir at site 400 ft downstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Low flow slightly regulated and high flow completely regulated by flood-control dam 770 ft upstream. Data-collection platform at station. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Maximum stage since at least 1894, that of Sept. 18, 1942, 19.98 ft, with datum at 909.45 ft above NGVD of 1929, from floodmarks, discharge, 33,000 ft³/s estimated by U.S. Army Corps of Engineers on basis of slope-area measurement by Geological Survey of peak discharge of 39,000 ft³/s at Elmwood, drainage area, 91.9 mi². | | | DISCH. | ARGE, CUE | BIC FEET PI | | D, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | MBER 2003 | | | |------------------------------------|---|--|--|--|--|---|---
---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 28
28
26
307
358 | 31
30
30
29
30 | 23
23
22
22
22 | 21
20
20
21
21 | 20
20
21
20
20 | 18
18
18
19 | 59
52
42
35
29 | 27
25
24
25
110 | 25
26
26
26
26 | 35
33
36
65
67 | 21
22
22
22
22
21 | e18
e19
e17
e14
15 | | 6
7
8
9
10 | 716
440
169
95
95 | 26
25
30
31
30 | 22
22
22
22
22
22 | 20
20
21
20
20 | 20
19
19
19
19 | 18
18
19
18 | 26
24
24
23
23 | 128
59
48
282
209 | 27
29
29
29
30 | 45
39
35
31
29 | 21
21
21
21
20 | 17
18
18
16
14 | | 11
12
13
14
15 | 109
68
50
53
61 | 27
27
26
25
25 | 22
22
22
22
22
22 | 19
20
20
19
19 | 19
19
19
19 | 18
18
18
49
399 | 22
21
22
22
22
25 | 898
567
131
72
63 | 30
29
27
25
25 | 27
26
26
26
142 | 20
20
20
20
20
19 | 14
16
16
15
14 | | 16
17
18
19
20 | 53
40
36
34
35 | 25
25
25
25
25
25 | 21
21
23
23
23 | 19
19
19
20
19 | 18
18
19
19 | 481
181
88
57
45 | 753
509
106
65
48 | 51
47
42
34
26 | 27
28
25
22
22 | 97
51
38
32
28 | 19
19
19
19 | 14
13
15
22
18 | | 21
22
23
24
25 | 36
37
42
42
39 | 24
22
21
20
22 | 23
22
22
21
21 | 19
19
18
18
19 | 19
19
18
18 | 48
124
72
50
41 | 54
56
48
41
46 | 40
41
51
52
33 | 22
22
24
30
332 | 26
24
23
22
22 | 19
18
18
18
18 | 18
18
17
17 | | 26
27
28
29
30
31 | 36
41
39
35
33
32 | 23
23
23
23
22
 | 21
21
21
21
21
21 | 19
19
19
19
19
20 | 18
18
18
 | 35
36
123
102
68
67 | 48
32
29
28
27 | 29
29
23
22
25
22 | 170
68
44
35
34 | 22
22
22
21
21
21 | e18
e18
e19
e18
e18 | 18
18
18
18
18 | | TOTAL
MEAN
MAX
MIN | 3,213
104
716
26 | 770
25.7
31
20 | 678
21.9
23
21 | 605
19.5
21
18 | 531
19.0
21
18 | 2,302
74.3
481
18 | 2,339
78.0
753
21 | 3,235
104
898
22 | 1,314
43.8
332
22 | 1,154
37.2
142
21 | 606
19.5
22
18 | 500
16.7
22
13 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1969 - 2003 | BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 27.4
104
(2003)
10.4
(1970) | 27.2
86.2
(1971)
7.24
(1969) | 18.8
39.7
(1978)
4.22
(1969) | 15.5
23.0
(1997)
5.21
(1969) | 22.3
71.6
(1981)
5.77
(1969) | 73.5
164
(1989)
10.1
(1970) | 69.8
258
(2001)
16.6
(2000) | 40.3
104
(2003)
12.4
(1977) | 44.7
148
(1980)
11.6
(1969) | 27.8
94.1
(1978)
12.5
(1988) | 29.1
90.1
(1995)
5.95
(1969) | 30.7
153
(1986)
9.81
(1969) | # 05370000 EAU GALLE RIVER AT SPRING VALLEY, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEA | RS 1969 - 2003 | |--------------------------|---------------|-----------|-------------|----------|-----------|-----------------| | ANNUAL TOTAL | 18,507 | | 17,247 | | | | | ANNUAL MEAN | 50.7 | | 47.3 | | 35.6 | | | HIGHEST ANNUAL MEAN | | | | | 56.1 | 2001 | | LOWEST ANNUAL MEAN | | | | | 21.2 | 1988 | | HIGHEST DAILY MEAN | 716 | Oct 6 | 898 | May 11 | 2,190 | Mar 28, 1989 | | LOWEST DAILY MEAN | 15 | Feb 12 | 13 | Sep 17 | (a)0.00 | Aug 12-16, 1971 | | ANNUAL SEVEN-DAY MINIMUM | 16 | Feb 10 | 15 | Sep 11 | (b)0.91 | Sep 15, 1969 | | MAXIMUM PEAK FLOW | | | 1,450 | Apr 16 | (c)3,030 | Jun 7, 1980 | | MAXIMUM PEAK STAGE | | | 17.36 | Apr 16 | (c)19.90 | Jun 7, 1980 | | INSTANTANEOUS LOW FLOW | | | (d) | • | (a)0.00 | Aug 11-16, 1971 | | 10 PERCENT EXCEEDS | 95 | | 66 | | 49 | | | 50 PERCENT EXCEEDS | 25 | | 23 | | 19 | | | 90 PERCENT EXCEEDS | 17 | | 18 | | 12 | | ⁽a) Flow shut off at flood-control dam upstream due to request by Wisconsin Department of Natural Resources for eradication of rough fish to improve ⁽a) Flow shut off at flood-control dam upstream due to request by Wisconsin Department of Natural Resources for eradication of rough fish to improve sport fishing (b) Result of work at dam (c) Peak discharge and stage prior to construction of flood-control reservoir occurred Apr. 15, 1954, and was 7,000 ft³/s and 12.50 ft (datum then in use), respectively (d) Unknown (e) Estimated due to ice effect or missing record Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. # 441459091392800 EAGLE CREEK RAIN GAGE E3-1006 NEAR FOUNTAIN CITY, WI LOCATION.--Lat 44°14′59", long 91°39′28", in NE $^{1}\!\!/_{4}$ SE $^{1}\!\!/_{4}$ sec.36, T.21 N., R.11 W., Buffalo County, Hydrologic Unit 07040003, on Eagle Valley Road, 0.3 mi west of junction with Glencoe-Waumandee Road, near Fountain City. PERIOD OF RECORD.-October 1990 to June 1996, October 2002 to September 2003 (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 for Jan. 4, 5, 6, 29, 31, Feb. 5, 13, 18, 26, and Mar. 5, 7, 11, 12 because recorded precipitation interpreted as collector snowmelt. EXTREMES FOR PERIOD OF RECORD.-- Maximum daily rainfall, 6.71 in., Aug. 13, 1995. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.64 in., Sept. 18. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|------|------|------|------|------|------|------|------|------|------|------|------| | 1 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | | 2 3 | | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 | 0.83 | 0.01 | 0.00 | | 4 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 0.00 | 0.28 | 0.00 | 0.00 | | 5 | | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | | 6 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.60 | 0.19 | 0.02 | 0.00 | | 7 | | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.02 | 0.11 | 0.01 | 0.00 | | 8 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 1.15 | 0.03 | 0.00 | 0.00 | | 9
10 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.37 | 0.01 | 0.05 | 0.00 | 0.00 | | 10 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.78 | 0.11 | 0.00 | 0.00 | | 11 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.13 | 0.00 | 0.01 | 0.00 | 0.00 | | 12 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 0.71 | | 13 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | | 14 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.92 | 0.00 | 0.01 | 0.00 | 0.00 | | 15 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.38 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | | 0.01 | 0.35 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.09 | 0.00 | 0.00 | 1.64 | | 19 | | 0.01 | 0.00 | 0.00 | 0.00 | 0.35 | 0.49 | 0.23 | 0.00 | 0.00 | 0.02 | 0.06 | | 20 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | | 0.06 | 0.00 | 0.00 | 0.14 | 0.20 | 0.02 | 0.00 | 0.00 | 0.05 | 0.00 | 0.05 | | 22 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | | 24 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 0.00 | | 25 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.31 | 0.00 | 0.22 | 0.00 | | 26 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.07 | 0.01 | 0.20 | | 27 | | 0.00 | 0.01 | 0.00 | 0.00 | 0.53 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.01 | | 28 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.13 | 0.03 | 0.00 | 0.00 | 0.00 | | 29 | | 0.00 | 0.00 | 0.00 | | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.01 | 0.01 | 0.19 | 0.00 | 0.12 | 0.00 | 0.01 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.02 | | 0.27 | 0.00 | | | TOTAL | | 0.14 | 0.42 | 0.00 | 0.39 | 1.36 | 1.37 | 5.04 | 3.60 | 2.13 | 0.44 | 2.73 | #### 441356091405500 EAGLE CREEK RAIN GAGE E2-1005 NEAR FOUNTAIN CITY, WI $LOCATION.--Lat\ 44^{\circ}13'56", long\ 91^{\circ}40'55", in\ SW\ {}^{1}\!\!{}^{\prime}_{4}\ sec.3, T.20\ N., R.11\ W., Buffalo\ County, Hydrologic\ Unit\ 07040003, on\ Schaffner\ Valley\ Road, 1.7\ mi\ north\ of\ junction\ with\ CTH\ G,\ near\ Fountain\ City.$ PERIOD OF RECORD.-October 1990 to June 1996, October 2002 to September 2003 (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 for Jan. 31 and Mar. 7 because recorded precipitation interpreted as collector snowmelt. Rainfall missing for period Oct. 21-29. EXTREMES FOR PERIOD OF RECORD .-- Maximum daily rainfall, 5.46 in., Aug. 13, 1995. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.66 in., Sept. 18. | | | | | | 2 | | 12020 | | | | | | |-------|------|------
------|------|------|------|-------|------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | | 3 | | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.89 | 0.01 | 0.00 | | 4 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.76 | 0.00 | 0.32 | 0.00 | 0.00 | | 5 | | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00 | | 3 | | 0.04 | | 0.00 | | 0.00 | | | | 0.00 | 0.00 | 0.00 | | 6 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.52 | 0.18 | 0.16 | 0.00 | | 7 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.01 | 0.15 | 0.00 | 0.00 | | 8 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.89 | 0.02 | 0.00 | 0.00 | | 9 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0.00 | 0.06 | 0.00 | 0.00 | | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.74 | 0.07 | 0.00 | 0.00 | | 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.35 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.10 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.62 | | 13 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.02 | | 14 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.84 | 0.00 | 0.00 | 0.00 | 0.01 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | | 16 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.06 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.00 | 0.00 | 1.66 | | 19 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.26 | 0.75 | 0.23 | 0.00 | 0.00 | 0.03 | 0.05 | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | | 0.04 | 0.00 | 0.00 | 0.09 | 0.18 | 0.03 | 0.00 | 0.00 | 0.08 | 0.00 | 0.06 | | 22 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | | 24 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | | 25 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.18 | 0.00 | | 26 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.06 | 0.00 | 0.14 | | 27 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.88 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.03 | | 28 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.00 | 0.16 | 0.12 | 0.00 | 0.00 | 0.00 | | 29 | | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.03 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.01 | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | | 0.23 | 0.00 | | | TOTAL | | 0.08 | 0.40 | 0.00 | 0.30 | 1.83 | 2.45 | 5.12 | 3.30 | 2.06 | 0.39 | 2.62 | # 441527091365300 JOOS VALLEY CREEK RAIN GAGE J3-1003 NEAR ARCADIA, WI $LOCATION.\text{--Lat } 44^{\circ}15^{\circ}27^{\circ}, long\ 91^{\circ}36^{\prime}53^{\circ}, in\ NE\ \frac{1}{4}\ NW\ \frac{1}{4}\ sec. 32,\ T.21\ N.,\ R.10\ W.,\ Buffalo\ County,\ Hydrologic\ Unit\ 07040003,\ on\ Hannon\ Road,\ 0.1\ mi\ north\ of\ junction\ with\ Pausy\ Pass,\ near\ Arcadia.$ PERIOD OF RECORD.-October 1990 to June 1996, October 2002 to September 2003 (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 for Jan. 7, 31, and Mar. 7 because recorded precipitation interpreted as collector snowmelt. EXTREMES FOR PERIOD OF RECORD.-- Maximum daily rainfall, 7.53 in., Aug. 13, 1995. EXTREMES FOR CURRENT YEAR.-- Maximum daily rainfall, 1.61 in., Sept. 18. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|------|------|------|------|------|------|------|------|------|------|------| | 1 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | | 2 | | | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.56 | 0.00 | | 3 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.73 | 0.00 | 0.00 | | 4 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.52 | 0.00 | 0.22 | 0.00 | 0.00 | | 5 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.64 | 0.00 | 0.00 | 0.00 | 0.00 | | 6 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.52 | 0.14 | 0.12 | 0.00 | | 7 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.01 | 0.17 | 0.00 | 0.00 | | 8 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.83 | 0.01 | 0.00 | 0.00 | | 9 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.46 | 0.00 | 0.05 | 0.00 | 0.00 | | 10 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.68 | 0.05 | 0.00 | 0.00 | | 11 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.54 | | 13 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | | 14 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.39 | 0.00 | 0.01 | 0.00 | 0.00 | | 15 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 1.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 1.61 | | 19 | | 0.00 | 0.01 | 0.00 | 0.00 | 0.24 | 0.66 | 0.17 | 0.00 | 0.00 | 0.01 | 0.07 | | 20 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.09 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | | 21 | | 0.00 | 0.00 | 0.00 | 0.04 | 0.20 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | | 22 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.52 | 0.00 | 0.00 | 0.00 | | 25 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.19 | 0.00 | | 26 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.00 | 0.14 | | 27 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.92 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | | 28 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.07 | 0.01 | 0.00 | 0.00 | 0.00 | | 29 | | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | | 30 | | 0.00 | 0.00 | 0.00 | | 0.00 | 0.02 | 0.25 | 0.00 | 0.15 | 0.00 | 0.00 | | 31 | | | 0.00 | 0.00 | | 0.00 | | 0.00 | | 0.21 | 0.00 | | | TOTAL | | | 0.34 | 0.00 | 0.07 | 1.67 | 2.23 | 4.95 | 2.94 | 1.78 | 0.90 | 2.43 | #### 441402091375900 JOOS VALLEY CREEK RAIN GAGE J2-1002 NEAR FOUNTAIN CITY, WI LOCATION.--Lat 44°14'02", long 91°37'59", in NE ${}^{1\!\!/}_{4}$ sec.1, T.20 N., R.11 W., Buffalo County, Hydrologic Unit 07040003, on Slaby Farm entrance road, just off Joos Valley road, and approximately 3.1 mi northeast of the junction of Joos Valley Road and CTH G, near Fountain City. PERIOD OF RECORD.-October 1990 to June 1996, October 2002 to September 2003 (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 for Jan. 4, 6, 31, Feb. 1, and Mar. 7, 11 because recorded precipitation interpreted as collector snowmelt. Prior to October 1992, precipitation data published under number 441402091395900. Rainfall data missing for period July 18 to Sept. 12. EXTREMES FOR PERIOD OF RECORD .-- Maximum daily rainfall, 6.36 in., Aug. 13, 1995. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.66 in., Sept. 18. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|------|------|------|------|------|-----|------| | 1 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 2 | | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 3 | | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.90 | | | | 4 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.85 | 0.00 | 0.34 | | | | 5 | | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.44 | 0.00 | 0.00 | | | | 6 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.61 | 0.19 | | | | 7 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.03 | 0.30 | | | | 8 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | 0.90 | 0.01 | | | | 9 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.08 | | | | 10 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.72 | 0.45 | 0.67 | 0.13 | | | | 11 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | | | | 12 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 13 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.04 | | 14 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.35 | 0.00 | 0.00 | | 0.00 | | 15 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | | 0.00 | | 16 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 1.25 | 0.00 | 0.00 | 0.00 | | 0.00 | | 17 | | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.32 | 0.00 | 0.00 | 0.00 | | 0.00 | | 18 | | 0.00 | 0.32 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.06 | | | 1.66 | | 19 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.68 | 0.18 | 0.00 | | | 0.05 | | 20 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.08 | 0.00 | 0.00 | | | 0.00 | | 21 | | 0.03 | 0.00 | 0.00 | 0.11 | 0.19 | 0.05 | 0.00 | 0.00 | | | 0.05 | | 22 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | | 23 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | | 24 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.48 | | | 0.00 | | 25 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | | | 0.00 | | 26 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | | | 0.21 | | 27 | | 0.00 | 0.00 | 0.00 | 0.00 | 1.09 | 0.00 | 0.00 | 0.07 | | | 0.01 | | 28 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.15 | 0.03 | | | 0.00 | | 29 | | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00
 0.01 | | | 0.04 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.02 | 0.27 | 0.00 | | | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | | | | | | TOTAL | | 0.08 | 0.36 | 0.00 | 0.37 | 2.12 | 3.39 | 5.46 | 3.20 | | | | # 05378183 JOOS VALLEY CREEK NEAR FOUNTAIN CITY, WI LOCATION.--Lat 44°12'54", long 91°39'54" in NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.14, T.20 N., R.11 W., Buffalo County, Hydrologic Unit 07040003, on left bank at bridge on private road, 6.3 mi northeast of Fountain City. DRAINAGE AREA.--5.89 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1990 to July 1996, October 2002 to September 2003. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 800 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | KEMAKI | XSRECOIC | | | | ER SECONI | es, which are
D, WATER Y
LY MEAN V | YEAR OCTO | | | | .on. | | |---|--|--|--|---|---|---|--|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e4.0
e3.5
e3.0
e10
e5.5 | 2.6
2.8
2.8
2.8
2.9 | 2.8
2.7
2.6
2.6
2.4 | 2.6
2.5
2.5
2.7
2.9 | 3.0
3.0
2.8
2.5
2.5 | 2.8
2.5
2.6
2.5
2.4 | 4.3
4.1
4.0
3.8
3.7 | 3.6
3.3
3.2
3.8
7.3 | 3.9
3.7
3.5
2.9
2.5 | 3.3
3.2
4.8
4.3
3.6 | 2.9
2.8
3.0
3.0
2.9 | 2.5
2.4
2.4
2.4
2.4 | | 6
7
8
9
10 | e6.0
e4.4
3.7
2.8
4.3 | 2.9
2.9
3.0
3.0
3.1 | 2.4
2.4
2.2
2.4
2.4 | 2.7
2.9
2.9
2.9
2.5 | 2.4
2.4
e2.3
e2.3
e2.3 | 2.6
2.4
2.3
2.3
2.4 | 3.4
3.4
3.3
3.3
3.3 | 4.5
4.5
4.2
6.6
5.0 | 3.4
3.4
6.2
4.6
6.3 | 3.6
4.0
3.5
3.4
3.6 | 3.1
3.0
2.7
2.7
2.6 | 2.4
2.2
2.1
2.1
2.2 | | 11
12
13
14
15 | 3.7
3.6
2.8
2.6
2.5 | 3.0
3.0
3.0
3.0
2.9 | 2.5
2.5
2.4
2.4
2.5 | 2.6
2.7
2.7
2.6
e2.3 | e2.4
e2.2
e2.3
e2.3
e2.2 | 3.1
2.9
3.2
34
30 | 3.2
3.2
3.2
3.2
3.4 | 12
7.1
5.7
12
7.9 | 4.8
4.6
4.5
4.0
3.9 | 3.5
3.3
3.1
3.1
3.0 | 2.5
2.4
2.4
2.4
2.4 | 2.3
3.4
3.0
2.7
2.4 | | 16
17
18
19
20 | 2.3
2.3
2.6
2.4
2.5 | 2.9
2.9
2.9
2.9
2.9 | 2.6
2.4
3.0
2.7
2.6 | e2.4
e2.4
e2.5
e2.5 | e2.3
2.5
2.5
2.6
11 | 20
8.9
5.1
4.9
7.2 | 10
7.5
5.5
7.6
7.6 | 6.2
5.7
5.4
5.4
5.2 | 3.8
3.8
3.7
3.5
3.4 | 3.0
3.0
2.9
2.9
2.9 | 2.4
2.4
2.4
2.6
2.7 | 2.5
2.3
3.2
4.9
2.6 | | 21
22
23
24
25 | 3.2
2.8
2.6
2.6
2.8 | 2.8
2.7
2.8
2.7
2.6 | 2.5
2.5
2.4
e2.4
e2.3 | e2.3
e2.1
e1.9
e2.1
e2.5 | 11
4.6
2.8
2.5
e2.4 | 9.9
5.3
4.4
4.2
4.0 | 5.8
5.0
4.7
4.5
4.3 | 4.8
4.7
4.7
4.6
4.7 | 3.3
3.3
3.4
4.2
4.0 | 2.8
2.8
2.6
2.5
2.6 | 2.4
2.7
2.5
2.5
3.0 | 2.4
2.5
2.3
2.1
2.0 | | 26
27
28
29
30
31 | 3.0
2.9
2.9
2.8
2.8
2.6 | 2.6
2.6
2.7
3.0
2.7 | 2.3
2.4
2.5
2.7
2.8
2.5 | e2.4
e2.5
e2.5
e2.5
2.8
2.8 | e2.4
2.6
2.7
 | 3.8
17
13
5.4
4.6
4.4 | 4.2
4.0
3.7
3.6
3.7 | 4.9
4.6
4.6
4.4
4.7
4.2 | 3.8
3.7
3.7
3.6
3.3 | 2.7
2.6
2.4
2.4
2.5
2.8 | 3.0
2.7
2.6
2.5
2.5
2.5 | 2.2
2.3
2.1
2.1
2.2 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 105.5
3.40
10
2.3
0.58
0.67 | 85.4
2.85
3.1
2.6
0.48
0.54 | 77.8
2.51
3.0
2.2
0.43
0.49 | 78.6
2.54
2.9
1.9
0.43
0.50 | 88.8
3.17
11
2.2
0.54
0.56 | 220.1
7.10
34
2.3
1.21
1.39 | 134.5
4.48
10
3.2
0.76
0.85 | 169.5
5.47
12
3.2
0.93
1.07 | 116.7
3.89
6.3
2.5
0.66
0.74 | 96.7
3.12
4.8
2.4
0.53
0.61 | 82.2
2.65
3.1
2.4
0.45
0.52 | 74.6
2.49
4.9
2.0
0.42
0.47 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 3.68
5.01
(1994)
2.40
(1991) | ONTHLY M
4.11
6.24
(1992)
2.09
(1991) | 3.40
4.65
(1994)
1.92
(1991) | A FOR WAT
3.06
4.15
(1994)
1.89
(1991) | 3.61
6.85
(1994)
2.05
(1991) | 1990 - 2003
6.15
8.25
(1995)
3.66
(1991) | 5.49
10.0
(1993)
3.98
(1996) | CR YEAR (W
4.79
7.26
(1993)
2.95
(1996) | 4.06
7.96
(1993)
2.88
(1995) | 3.76
7.99
(1993)
2.66
(1990) | 4.70
7.06
(1993)
2.65
(2003) | 4.07
5.89
(1993)
2.49
(2003) | | ANNUAI
ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
MAXIMI
INSTAN'
ANNUAI
ANNUAI
10 PERC'
50 PERC' | L MEAN T ANNUAI T ANNUAL T DAILY M T DAILY M L SEVEN-D UM PEAK I UM PEAK I | MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | | | | | 1,33 | 33 WATER
V
30.4
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64
3.64 | 4
3
4
4
4 | (a)1,48 | 1.5 D
1.6 D
30 A
12.14 A | 90 - 2003
1993
1991
ug 14, 1995
ec 27, 1990
ec 22, 1990
ug 14, 1995
ug 14, 1995
ec 3, 1990 | ⁽a) From rating curve extended above 86 ft³/s on basis of step-backwater method (b) Result of freezeup ⁽c) Also occurred Dec. 5, 1995 ⁽e) Estimated due to ice effect or missing record #### 05378183 JOOS VALLEY CREEK NEAR FOUNTAIN CITY, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1990 to June 1996, October 2002 to September 2003. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: July 1990 to June 1996, October 2002 to September 2003. SUSPENDED-SOLIDS DISCHARGE: July 1990 to June 1996, October 2002 to September 2003. TOTAL-PHOSPHORUS DISCHARGE: July 1990 to June 1996, October 2002 to September 2003. DISSOLVED OXYGEN: July 1990 to September 1992. INSTRUMENTATION .-- Water-quality sampler July 1990 to June 1996 and October 2002 to September 2003; continuous water-temperature recorder July 1990 to June 1996 and October 2002 to September 2003; dissolved-oxygen recorder July 1990 to September 1992. REMARKS.--Records represent water temperature at sensor within 0.5°C. Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples are point samples unless otherwise indicated. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum observed, 31.0°C, June 27-28, 1991 and July 13, 1995; minimum observed, 0.0°C on many days during 1991, 1992, 1993, 1995, 1996, and 2003 winter pends. SUSPENDED-SOLIDS DISCHARGE; Maximum daily, 4,570 tons, Aug. 14, 1995; minimum daily, 0.04 ton, Nov. 8-9, 1990, Aug. 2-12, 1995, Oct. 1-4, 13-22, 1995, May 9, 1996, and Sept. 23-30, 2003. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 7,350 lb, Aug. 14, 1995; minimum daily, 0.22 lb, Nov. 9, 1990. DISSOLVED OXYGEN: Maximum observed, 15.8 mg/L, Apr. 26, 1991; minimum observed, 4.3 mg/L, June 28, 1991. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum observed, 24.0°C, July 2, 5; minimum observed, 0.0°C on many days. SUSPENDED-SOLIDS DISCHARGE: Maximum daily, 235 tons, Mar. 14; minimum daily 0.04 ton, Sept. 23-30. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 775 lb, Mar. 14; minimum daily, 0.41 lb, Dec. 8. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|----------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--|---------------------------------|--|--| | | (| ОСТОВЕР | 2 | N | OVEMBE | ER | Б | ECEMBE | ER | Į | JANUARY | 7 | | 1
2
3
4
5 |

 |

 |

 | 6.0
6.5
7.0
7.0
6.0 | 2.5
2.5
2.5
4.5
4.5 | 4.0
4.0
4.5
5.5
5.0 | 2.0
2.0
0.5
1.0
0.5 | 0.0
0.0
0.0
0.5
0.0 | 1.0
1.5
0.5
0.5
0.5 | 1.0
2.0
1.0
2.5
3.0 | 0.0
0.0
0.0
0.0
2.5 | 0.5
1.0
0.5
1.0
2.5 | | 6
7
8
9
10 | 14.0
13.0
14.5 | 9.0
8.0
9.5 | 11.0
10.5
11.5 | 8.0
8.5
9.0
9.0
10.0 | 5.0
4.0
6.0
5.5
8.0 | 6.0
6.0
7.5
7.5
8.5 | 0.5
1.5
0.5
0.5
1.5 | 0.0
0.5
0.0
0.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | 3.0
4.5
5.0
3.0
0.5 | 1.5
1.5
2.0
0.5
0.0 | 2.0
2.5
3.5
2.0
0.0 | | 11
12
13
14
15 | 15.0
12.5
10.5
11.0
11.0 | 9.5
9.5
6.5
6.0
7.5 | 12.0
12.0
8.5
8.5
9.0 | 8.0
6.5
6.0
5.5
4.0 | 4.5
2.5
3.0
3.5
1.5 | 6.5
4.5
4.5
5.0
3.0 | 3.0
4.5
3.5
3.5
4.0 | 0.5
2.5
0.5
1.0
2.0 | 1.5
3.5
2.0
2.0
3.0 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.5
0.5
0.5
0.5 | | 16
17
18
19
20 | 8.5
9.0
10.0
8.0
7.0 | 4.5
6.5
7.5
6.5
5.5 | 7.0
7.5
8.5
7.5
6.0 | 4.5
4.5
4.5
5.5
6.0 | 2.5
1.5
2.0
1.5
3.5 | 3.5
3.0
3.0
3.5
4.5 | 2.5
3.0
5.5
5.0
3.0 | 0.5
1.5
3.0
3.0
1.0 | 1.0
2.5
4.0
4.0
2.0 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | | 21
22
23
24
25 | 7.0
7.5
8.0
7.0
7.5 | 5.5
6.0
5.5
5.5
6.5 | 6.5
6.5
6.5
6.5
7.0 | 5.0
5.0
6.0
4.0
3.5 | 3.5
2.5
3.5
2.5
0.5 | 4.5
3.5
4.5
3.0
2.0 | 1.5
2.0
0.5
0.5
1.0 | 0.0
0.5
0.0
0.0
0.0 | 1.0
1.0
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.5
0.0 | 0.5
0.5
0.5
0.5
0.5 | | 26
27
28
29
30
31 | 8.0
7.0
8.5
8.5
9.0
7.5 | 6.5
5.0
6.0
7.0
6.0
4.0 | 7.5
6.5
7.0
7.5
7.5
6.0 | 2.0
2.0
3.0
5.0
3.5 | 0.5
0.5
0.5
3.0
0.0 | 1.0
1.0
1.5
3.5
1.5 | 0.5
0.5
2.0
3.5
4.0
1.0 | 0.0
0.0
0.5
1.0
1.0 | 0.5
0.5
1.0
2.5
3.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.5
0.0
0.5
0.5 | 0.0
0.5
0.5
0.5
0.5
0.5 | | MONTH | 15.0 | 4.0 | 8.1 | 10.0 | 0.0 | 4.2 | 5.5 | 0.0 | 1.4 | 5.0 | 0.0 | 0.8 | # 05378183 JOOS VALLEY CREEK NEAR FOUNTAIN CITY, WI—Continued ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002\ TO\ SEPTEMBER\ 2003}$ | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|--
--|--|--|--| | | F | EBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.5
2.0
2.0
1.5
1.0 | 0.5
1.0
1.5
0.5
0.0 | 1.0
1.5
2.0
1.0
0.5 | 2.0
2.5
0.5
1.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 1.0
1.0
0.5
0.5
0.5 | 13.5
11.5
6.5
3.0
7.0 | 4.0
6.0
3.0
1.0
0.5 | 8.5
8.5
4.5
2.5
3.5 | 16.5
17.0
17.5
12.0
9.5 | 8.0
8.5
7.5
8.5
8.5 | 12.0
12.5
12.5
9.5
9.0 | | 6
7
8
9
10 | 1.5
0.5
1.0
0.5
0.5 | 0.5
0.0
0.5
0.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | 1.5
3.0
1.5
0.5 | 0.0
0.5
0.0
0.0
0.0 | 0.5
1.5
0.5
0.0
0.5 | 7.0
4.5
11.0
12.0
13.0 | 0.5
2.0
1.0
2.5
3.5 | 4.0
3.0
5.5
7.0
8.0 | 14.5
14.0
13.5
16.0
14.5 | 9.0
10.0
8.0
10.5
9.0 | 11.5
12.0
11.0
12.5
11.5 | | 11
12
13
14
15 | 0.5
0.5
0.5
1.0
1.0 | 0.0
0.0
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 1.0
3.0
5.0
5.5
6.0 | 0.0
0.5
2.0
0.0
0.0 | 0.5
2.0
3.0
2.0
2.0 | 15.5
15.0
15.5
19.5
20.5 | 5.5
5.5
6.5
9.5
12.5 | 10.0
10.5
11.0
14.0
16.0 | 11.5
17.0
18.5
13.5
18.5 | 9.0
7.5
8.0
10.0
8.5 | 10.0
12.0
13.0
11.0
13.0 | | 16
17
18
19
20 | 1.0
1.5
2.5
2.5
3.0 | 0.5
0.5
1.0
1.0
0.0 | 0.5
0.5
1.5
1.5 | 6.5
8.0
7.5
6.5
5.5 | 1.0
2.0
5.0
4.5
3.5 | 3.0
5.0
6.5
6.0
4.5 | 15.0
6.5
8.0
8.5
8.0 | 5.0
4.5
5.0
6.0
7.0 | 8.5
5.5
6.5
7.0
7.5 | 19.5
18.5
19.5
16.5
17.5 | 9.0
10.5
11.0
13.5
9.5 | 14.0
14.5
15.0
15.0
13.0 | | 21
22
23
24
25 | 2.0
2.0
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
1.0
0.5
0.0
0.0 | 4.5
8.0
11.0
11.0
11.0 | 3.0
3.0
3.0
7.0
4.0 | 4.0
5.0
7.0
8.5
7.5 | 12.0
15.0
16.0
15.0
17.0 | 6.5
4.5
5.5
7.0
7.5 | 8.5
9.5
10.5
10.5
11.5 | 16.0
13.0
17.5
18.0
19.5 | 8.5
8.5
9.0
9.5
9.5 | 12.0
11.0
13.0
13.5
14.5 | | 26
27
28
29
30
31 | 0.5
1.0
1.5 | 0.0
0.0
0.0
 | 0.5
0.5
0.5
 | 11.5
7.5
3.5
8.5
9.0
8.0 | 4.0
3.0
2.5
2.0
1.5
2.5 | 7.5
4.5
3.0
4.5
5.0
5.5 | 17.5
15.5
17.5
15.5
12.5 | 7.5
10.0
8.5
8.5
10.0 | 12.5
13.0
13.0
12.0
11.0 | 19.5
20.5
21.0
19.0
20.0
19.0 | 10.5
10.5
13.5
11.0
13.0
11.5 | 15.0
15.5
16.5
15.0
16.0
15.0 | | 31 | | | | 8.0 | 2.3 | | | | | | | | | MONTH | 3.0 | 0.0 | 0.7 | 11.5 | 0.0 | 3.3 | 20.5 | 0.5 | 8.8 | 21.0 | 7.5 | 13.0 | | MONTH | 3.0 | 0.0
JUNE | 0.7 | 11.5 | 0.0
JULY | 3.3 | 20.5 | 0.5
AUGUST | 8.8 | | 7.5
EPTEMBE | 13.0
ER | | MONTH 1 2 3 4 5 | 3.0
20.0
16.0
18.5
20.0
19.5 | | 0.7
15.0
14.0
15.0
15.5
16.0 | 23.5
24.0
23.5
23.0
24.0 | | 3.3
19.0
20.0
20.5
20.0
20.0 | | | 8.8
18.5
18.5
17.0
16.5
16.5 | | | | | 1
2
3
4 | 20.0
16.0
18.5
20.0 | JUNE
10.5
11.5
11.5
12.0 | 15.0
14.0
15.0
15.5 | 23.5
24.0
23.5
23.0 | JULY
15.0
16.0
18.0
18.0 | 19.0
20.0
20.5
20.0 | 21.5
20.5
19.0
19.0 | AUGUST
16.0
16.0
16.0
15.0 | 18.5
18.5
17.0
16.5 | SI
18.5
19.0
17.0
17.5 | 12.5
12.5
12.5
14.0
11.5 | 15.0
15.5
15.5
14.5 | | 1
2
3
4
5
6
7
8
9 | 20.0
16.0
18.5
20.0
19.5
16.5
15.0
17.5
20.5
18.5 | JUNE 10.5 11.5 11.5 12.0 12.0 13.0 12.0 12.5 12.0 14.0 | 15.0
14.0
15.0
15.5
16.0
14.0
13.5
14.5
16.0
16.0 | 23.5
24.0
23.5
23.0
24.0
20.5
21.0
19.0
18.5 | JULY 15.0 16.0 18.0 18.0 17.0 17.0 16.5 15.0 15.0 14.5 | 19.0
20.0
20.5
20.0
20.0
18.5
18.5
17.0
16.5 | 21.5
20.5
19.0
19.0
18.5
20.5
21.5
20.5
21.5
18.0
21.0 | AUGUST 16.0 16.0 16.0 15.0 14.5 15.5 16.0 15.5 15.0 | 18.5
18.5
17.0
16.5
16.5
18.0
18.5
18.0
16.5 | SI
18.5
19.0
17.0
17.5
18.0
20.0
20.5
20.5
20.0
20.0 | 12.5
12.5
14.0
11.5
11.5
13.5
14.5
14.5
15.0 | 15.0
15.5
15.5
14.5
15.0
16.5
17.5
17.5
17.5
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.0
16.0
18.5
20.0
19.5
16.5
15.0
17.5
20.5
18.5
16.0
19.0
21.5
22.0 | JUNE 10.5 11.5 11.5 12.0 12.0 13.0 12.0 12.5 12.0 14.0 13.0 13.0 14.0 14.0 | 15.0
14.0
15.0
15.5
16.0
14.0
13.5
14.5
16.0
16.0
14.5
15.0
17.0
18.0 | 23.5
24.0
23.5
23.0
24.0
20.5
21.0
19.0
18.5
17.0
19.5
22.0
22.5
19.5 | JULY 15.0 16.0 18.0 18.0 17.0 17.0 16.5 15.0 14.5 13.0 14.5 14.0 14.5 16.0 | 19.0
20.0
20.5
20.0
20.0
18.5
18.5
17.0
16.5
15.5
16.0
17.5
18.5
18.0 | 21.5
20.5
19.0
19.0
18.5
20.5
21.5
20.5
21.5
18.0
21.0
21.0
22.0
21.5 | AUGUST 16.0 16.0 15.0 14.5 15.5 16.0 15.5 15.0 15.0 14.5 15.0 16.0 | 18.5
18.5
17.0
16.5
16.5
18.0
18.0
16.5
17.5
18.0
18.0 | SI
18.5
19.0
17.0
17.5
18.0
20.0
20.5
20.5
20.0
20.0
21.0
18.5
16.0
16.5 | 12.5
12.5
12.5
14.0
11.5
11.5
13.5
14.5
14.5
15.0
16.0 | 15.0
15.5
15.5
14.5
15.0
16.5
17.5
17.5
17.5
18.0
18.5
17.5
15.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20.0
16.0
18.5
20.0
19.5
16.5
15.0
17.5
20.5
18.5
16.0
19.0
21.5
22.0
23.5
23.0
22.5
23.5
22.5 | JUNE 10.5 11.5 11.5 12.0 12.0 13.0 12.0 12.5 12.0 14.0 13.0 14.0 14.5 14.0 14.5 16.0 14.0 | 15.0
14.0
15.0
15.5
16.0
14.0
13.5
14.5
16.0
16.0
14.5
15.0
17.0
18.5
19.0
18.5
19.5
18.0 | 23.5
24.0
23.5
23.0
24.0
20.5
21.0
19.0
18.5
17.0
19.5
22.0
22.5
19.5
22.0
21.5
21.0
22.0
22.0 | JULY 15.0 16.0 18.0 18.0 17.0 17.0 16.5 15.0 14.5 13.0 14.5 16.0 16.0 14.5 15.5 15.0 14.5 | 19.0
20.0
20.5
20.0
20.0
18.5
18.5
17.0
16.5
15.5
16.0
17.5
18.5
18.0
19.0 | 21.5
20.5
19.0
19.0
18.5
20.5
21.5
20.5
21.5
22.0
21.0
22.0
21.5
22.5
23.0
21.5
23.0
22.0 | AUGUST 16.0 16.0 16.0 15.0 14.5 15.5 16.0 15.5 15.0 15.0 17.0 17.0 17.0 18.5 | 18.5
18.5
17.0
16.5
16.5
18.0
18.5
18.0
16.5
17.5
18.0
18.5
19.0
19.5
20.0
20.0 | SI
18.5
19.0
17.0
17.5
18.0
20.0
20.5
20.5
20.0
20.0
21.0
18.5
16.0
16.5
17.0
18.0
19.5
18.5
14.5 | 12.5
12.5
14.0
11.5
11.5
13.5
14.5
14.5
15.0
16.0
16.5
15.5
14.5
11.5
11.5 | 15.0
15.5
15.5
14.5
15.0
16.5
17.5
17.5
17.5
18.0
18.5
17.5
15.5
15.0
14.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 20.0
16.0
18.5
20.0
19.5
16.5
15.0
17.5
20.5
18.5
16.0
19.0
21.5
22.0
23.5
23.5
22.5
22.5
22.0
21.0
20.5
23.5 | JUNE 10.5 11.5 11.5 12.0 12.0 13.0 12.5 12.0 14.0 13.0 14.0 14.5 14.0 14.5 16.0 14.0 12.5 | 15.0
14.0
15.0
15.5
16.0
14.0
13.5
14.5
16.0
16.0
17.0
17.0
18.0
18.5
19.5
18.0
17.5
17.5
18.0
19.5 | 23.5
24.0
23.5
23.0
24.0
20.5
21.0
19.0
18.5
17.0
19.5
22.0
22.5
19.5
22.0
22.0
21.5
21.0
22.0
21.5
21.0
22.0
21.5
21.0
22.0
22.0
21.0 | JULY 15.0 16.0 18.0 18.0 17.0 17.0 16.5 15.0 15.0 14.5 13.0 14.5 16.0 16.0 14.5 15.5 15.0 14.5 15.5 15.0 14.5 15.5 15.0 14.5 15.5 15.0 14.5 16.5 | 19.0
20.0
20.5
20.0
20.0
18.5
18.5
17.0
16.5
15.5
16.0
17.5
18.5
18.0
19.0
18.5
18.5
18.5
18.5
18.5
18.5 | 21.5
20.5
19.0
19.0
18.5
20.5
21.5
20.5
21.5
21.0
21.0
22.0
21.5
22.5
23.0
22.0
23.5
21.5
23.0
22.0
23.5
23.5
23.5
23.5
23.0
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | AUGUST 16.0 16.0 16.0 15.0 14.5 15.5 16.0 15.5 15.0 15.0 17.0 17.0 17.0 17.0 18.5 18.0 18.5 15.5 16.5 | 18.5
18.5
17.0
16.5
16.5
18.0
18.0
18.5
18.0
18.5
19.0
19.5
20.0
20.5
20.0
20.5
18.5
18.0 | 18.5
19.0
17.0
17.5
18.0
20.0
20.5
20.5
20.0
21.0
18.5
16.0
16.5
17.0
18.5
14.5
15.5
15.5
13.0
15.0
15.0
13.5 |
12.5
12.5
12.5
14.0
11.5
11.5
13.5
14.5
14.5
15.0
16.0
16.5
15.5
14.5
13.5
11.5
11.5
12.0
9.0
10.5
12.0
9.0
11.0 | 15.0
15.5
15.5
14.5
15.0
16.5
17.5
17.5
17.5
17.5
18.0
18.5
17.5
15.0
14.0
14.5
16.5
16.5
13.5
12.5 | DAY TOTAL 64.57 16.87 15.16 19.01 299.20 1,704.2 60.21 168.55 49.23 30.77 20.15 23.30 OCT NOV DEC JAN FEB # WAUMANDEE CREEK BASIN # 05378183 JOOS VALLEY CREEK NEAR FOUNTAIN CITY, WI-Continued # SUSPENDED SOLIDS, DRIED AT 105 DEGREES CELSIUS, WATER, UNFILTERED, TONS PER DAY WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES MAR APR MAY JUN JUL AUG SEP | DAY | OCI | NOV | DEC | JAN | FEB | MAK | APK | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|-------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 0.08 | 0.14 | 0.07 | 0.09 | 0.10 | 0.16 | 0.19 | 0.09 | 0.13 | 0.26 | 0.06 | 0.05 | | 2 | 0.07 | 0.14 | 0.06 | 0.09 | 0.10 | 0.14 | 0.17 | 0.08 | 0.12 | 0.25 | 0.06 | 0.05 | | 3 | 0.06 | 0.14 | 0.06 | 0.09 | 0.09 | 0.13 | 0.15 | 0.07 | 0.10 | 0.53 | 0.07 | 0.05 | | 4 | 3.4 | 0.13 | 0.06 | 0.10 | 0.08 | 0.12 | 0.13 | 0.18 | 0.08 | 0.40 | 0.07 | 0.05 | | 5 | 0.47 | 0.13 | 0.05 | 0.11 | 0.08 | 0.11 | 0.12 | 1.1 | 0.07 | 0.26 | 0.07 | 0.05 | | 6 | 0.62 | 0.13 | 0.05 | 0.10 | 0.08 | 0.12 | 0.10 | 0.18 | 0.11 | 0.24 | 0.07 | 0.05 | | 7 | 0.22 | 0.12 | 0.05 | 0.11 | 0.07 | 0.10 | 0.09 | 0.13 | 0.12 | 0.24 | 0.07 | 0.05 | | 8 | 0.13 | 0.12 | 0.05 | 0.12 | 0.07 | 0.09 | 0.08 | 0.21 | 0.69 | 0.19 | 0.07 | 0.05 | | 9 | 0.06 | 0.12 | 0.05 | 0.12 | 0.07 | 0.09 | 0.08 | 1.2 | 0.26 | 0.17 | 0.07 | 0.05 | | 10 | 0.21 | 0.12 | 0.05 | 0.11 | 0.07 | 0.09 | 0.07 | 0.53 | 0.73 | 0.16 | 0.07 | 0.05 | | 11 | 0.13 | 0.11 | 0.05 | 0.12 | 0.07 | 0.11 | 0.07 | 4.9 | 0.30 | 0.14 | 0.07 | 0.05 | | 12 | 0.11 | 0.11 | 0.05 | 0.13 | 0.06 | 0.10 | 0.07 | 0.72 | 0.26 | 0.12 | 0.06 | 0.07 | | 13 | 0.07 | 0.10 | 0.05 | 0.13 | 0.06 | 0.10 | 0.07 | 0.24 | 0.27 | 0.10 | 0.06 | 0.06 | | 14 | 0.07 | 0.10 | 0.05 | 0.13 | 0.06 | 235 | 0.07 | 8.9 | 0.26 | 0.09 | 0.06 | 0.06 | | 15 | 0.07 | 0.10 | 0.05 | 0.11 | 0.06 | 102 | 0.09 | 1.9 | 0.27 | 0.08 | 0.06 | 0.05 | | 16 | 0.07 | 0.09 | 0.06 | 0.11 | 0.06 | 14 | 5.6 | 0.70 | 0.29 | 0.07 | 0.06 | 0.05 | | 17 | 0.07 | 0.09 | 0.05 | 0.11 | 0.06 | 1.8 | 1.3 | 0.60 | 0.32 | 0.06 | 0.06 | 0.05 | | 18 | 0.08 | 0.09 | 0.07 | 0.11 | 0.06 | 0.18 | 0.32 | 0.55 | 0.34 | 0.06 | 0.06 | 0.18 | | 19 | 0.08 | 0.09 | 0.06 | 0.11 | 0.06 | 0.32 | 1.0 | 0.54 | 0.32 | 0.06 | 0.07 | 0.57 | | 20 | 0.09 | 0.09 | 0.06 | 0.11 | 22 | 1.5 | 0.84 | 0.50 | 0.31 | 0.06 | 0.07 | 0.06 | | 21 | 0.12 | 0.08 | 0.06 | 0.10 | 5.1 | 5.9 | 0.24 | 0.43 | 0.30 | 0.06 | 0.06 | 0.05 | | 22 | 0.11 | 0.08 | 0.06 | 0.09 | 0.56 | 0.27 | 0.18 | 0.39 | 0.29 | 0.06 | 0.06 | 0.05 | | 23 | 0.11 | 0.08 | 0.06 | 0.08 | 0.19 | 0.14 | 0.15 | 0.35 | 0.30 | 0.06 | 0.06 | 0.04 | | 24 | 0.11 | 0.07 | 0.06 | 0.08 | 0.17 | 0.12 | 0.14 | 0.32 | 0.36 | 0.05 | 0.06 | 0.04 | | 25 | 0.13 | 0.07 | 0.06 | 0.10 | 0.16 | 0.11 | 0.13 | 0.30 | 0.34 | 0.06 | 0.07 | 0.04 | | 26
27
28
29
30
31 | 0.14
0.14
0.15
0.16
0.15
0.14 | 0.07
0.07
0.07
0.07
0.07 | 0.07
0.07
0.07
0.08
0.09
0.08 | 0.09
0.09
0.09
0.09
0.10
0.10 | 0.15
0.16
0.16
 | 0.10
39
14
0.81
0.25
0.21 | 0.12
0.11
0.10
0.09
0.09 | 0.28
0.24
0.23
0.20
0.19
0.16 | 0.32
0.31
0.30
0.29
0.26 | 0.06
0.06
0.05
0.05
0.05
0.06 | 0.07
0.06
0.06
0.05
0.05
0.05 | 0.04
0.04
0.04
0.04
0.04 | | TOTAL | 7.62 | 2.99 | 1.86 | 3.22 | 30.01 | 417.17 | 11.96 | 26.41 | 8.42 | 4.16 | 1.96 | 2.12 | | | PHOS | SPHORUS, V | WATER, UN | IFILTERED | | PER DAY, V
LY MEAN V | | EAR OCTOB | ER 2002 TO |) SEPTEMB | ER 2003 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1.4 | 0.55 | 0.53 | 0.59 | 0.65 | 1.5 | 1.1 | 1.1 | 0.71 | 1.2 | 0.72 | 0.65 | | 2 | 1.2 | 0.57 | 0.49 | 0.58 | 0.65 | 1.4 | 1.1 | 1.0 | 0.64 | 1.2 | 0.68 | 0.64 | | 3 | 1.0 | 0.58 | 0.48 | 0.58 | 0.59 | 1.4 | 1.0 | 1.0 | 0.58 | 1.8 | 0.72 | 0.64 | | 4 | 31 | 0.58 | 0.48 | 0.63 | 0.52 | 1.4 | 0.94 | 1.8 | 0.47 | 1.6 | 0.72 | 0.63 | | 5 | 4.0 | 0.60 | 0.45 | 0.68 | 0.52 | 1.4 | 0.90 | 8.3 | 0.43 | 1.3 | 0.70 | 0.62 | | 6 | 5.4 | 0.59 | 0.44 | 0.64 | 0.50 | 1.5 | 0.82 | 1.8 | 0.75 | 1.3 | 0.74 | 0.61 | | 7 | 1.8 | 0.59 | 0.45 | 0.70 | 0.49 | 1.4 | 0.79 | 1.0 | 0.75 | 1.4 | 0.70 | 0.56 | | 8 | 1.3 | 0.60 | 0.41 | 0.72 | 0.46 | 1.4 | 0.77 | 1.5 | 6.0 | 1.2 | 0.64 | 0.53 | | 9 | 0.95 | 0.61 | 0.43 | 0.71 | 0.45 | 1.4 | 0.73 | 9.2 | 2.1 | 1.2 | 0.62 | 0.53 | | 10 | 1.4 | 0.63 | 0.44 | 0.63 | 0.45 | 1.5 | 0.73 | 2.4 | 6.4 | 1.2 | 0.60 | 0.54 | | 11 | 1.2 | 0.60 | 0.45 | 0.67 | 0.46 | 1.9 | 0.72 | 29 | 2.5 | 1.2 | 0.59 | 0.56 | | 12 | 1.1 | 0.59 | 0.45 | 0.71 | 0.42 | 1.8 | 0.70 | 7.8 | 2.1 | 1.1 | 0.54 | 0.85 | | 13 | 0.87 | 0.59 | 0.44 | 0.71 | 0.43 | 2.0 | 0.70 | 4.0 | 1.3 | 1.0 | 0.54 | 0.73 | | 14 | 0.79 | 0.59 | 0.45 | 0.68 | 0.43 | 775 | 0.72 | 52 | 1.3 | 0.99 | 0.54 | 0.66 | | 15 | 0.74 | 0.57 | 0.46 | 0.60 | 0.41 | 439 | 0.79 | 21 | 1.3 | 0.95 | 0.56 | 0.61 | | 16
17
18
19
20 | 0.67
0.65
0.72
0.65
0.65 | 0.57
0.57
0.57
0.57
0.56 | 0.49
0.46
0.57
0.52
0.52 | 0.62
0.61
0.61
0.63
0.62 | 0.42
0.44
0.45
0.46
133 | 149
30
4.2
4.5 | 16
6.3
2.2
5.3
5.5 | 3.7
2.4
2.1
2.1
1.9 | 1.4
1.5
1.6
1.5
1.4 | 0.93
0.91
0.87
0.86
0.86 | 0.57
0.57
0.58
0.63
0.65 | 0.62
0.57
1.8
5.5
0.66 | | 21 | 0.82 | 0.54 | 0.49 | 0.56 | 126 | 20 | 2.1 | 1.7 | 1.4 | 0.81 | 0.61 | 0.56 | | 22 | 0.69 | 0.52 | 0.51 | 0.51 | 23 | 4.8 | 1.4 | 1.5 | 1.4 | 0.79 | 0.67 | 0.54 | | 23 | 0.63 | 0.54 | 0.50 | 0.45 | 1.5 | 2.9 | 1.2 | 1.4 | 1.4 | 0.74 | 0.64 | 0.49 | | 24 | 0.62 | 0.51 | 0.49 | 0.50 | 1.3 | 2.7 | 1.1 | 1.3 | 1.7 | 0.70 | 0.65 | 0.44 | | 25 | 0.65 | 0.50 | 0.48 | 0.58 | 1.2 | 2.4 | 1.1 | 1.3 | 1.6 | 0.70 | 0.78 | 0.43 | | 26
27
28
29
30
31 | 0.68
0.63
0.63
0.60
0.58
0.55 | 0.50
0.50
0.51
0.56
0.51 | 0.49
0.51
0.54
0.58
0.61
0.55 | 0.56
0.57
0.57
0.56
0.62
0.61 | 1.2
1.4
1.4
 | 2.2
121
99
10
2.3
1.2 | 1.1
1.1
1.1
1.1
1.1 | 1.3
1.1
1.1
0.96
0.96
0.83 | 1.5
1.4
1.4
1.3 | 0.74
0.68
0.62
0.61
0.62
0.69 | 0.79
0.71
0.69
0.67
0.68
0.65 | 0.48
0.49
0.44
0.46
0.46 | | TOTAL | C 1 55 | 16.07 | 15.16 | 10.01 | 200.20 | 1.704.2 | 60.21 | 160.55 | 40.22 | 20.77 | 20.15 | 22.20 | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Dicharge, | Instantaneous
discharge,
cfs | Sampling method, code | Residue
total at 105 deg. C,
suspended, mg/L | Ammonia
water, fltrd,
mg/L as N | Phosphorus,
water, fltrd,
mg/L | mg/L | |-----------------------------|--------------|-----------|------------------------------------|-----------------------|--|---------------------------------------|--------------------------------------|----------------| | | | (00060) | (00061) | (82398) | (00530) | (00608) | (00666) | (00665) | | OCT 2002
08
29
NOV | 1505
1730 |
 | 5.0
2.8 | 10
10 | 7
21 | 0.035
<0.013 | 0.040
0.017 | 0.064
0.039 | | 13 | 0855 | | 3.0 | 10 | 13 | < 0.013 | 0.015 | | | DEC
12 | 1246 | | 2.4 | 10 | 7 | < 0.013 | 0.017 | 0.033 | | JAN 2003
14 | 1438 | | 2.8 | 10 | 18 | < 0.013 | 0.020 | 0.049 | | FEB
18 | 1406 | | 2.4 | 10 | 9 | 0.043 | 0.016 | 0.033 | | 20
20 | 1350
1435 | | 4.6
8.8 | 50
50 | 90
402 | 0.316
0.652 | | 0.318
0.802 | | 20 | 1535 | | 15 | 50
50 | 760 | 1.25
0.885 | | 1.84 | | 20
20 | 1625
1920 | | 26
23 | 50
50 | 1,530
456 | 0.886 | | 2.68
2.12 | | 20 | 2010 | | 27 | 50 | 720 | 1.06 | | 2.37 | | 20
20 | 2025
2035 | | 32
34 | 50
50 | 1,040
1,350 | 1.33
1.44 | | 2.84
3.21 | | 20 | 2135 | | 31 | 50 | 1,030 | 1.65 | | 2.78 | | 21
21 | 0010
0430 | | 21
12 | 50
50 | 366
174 | 2.32
2.54 | | 2.82
3.03 | | 21 | 1334 | | 6.9 | 10 | 72 | 2.22 | | 2.06 | | 21 | 1402 | | 7.2 | 50 | 80 | 2.25 | | 2.10 | | 21
21 | 1505
1845 | | 8.5
13 | 50
50 | 126
242 | 1.81
1.63 | | 2.07
1.19 | | 22 | 0420 | | 5.8 | 50 | 53 | 1.91 | | 2.41 | | 25
MAR | 1246 | 2.4 | | 10 | 25 | 0.078 | | 0.095 | | 13 | 1226 | | 2.5 | 10 | 12 | 0.049 | 0.082 | 0.117 | | 14
14 | 1210
1340 | | 4.8
25 | 50
50 | 49
1,550 | 0.236
0.877 | | 0.370
2.51 | | 14 | 1450 | | 56 | 50 | 2,770 | 0.884 | | 3.90 | | 14 | 1520 | | 89 | 50 | 5,410 | 0.971 | | 6.30 | | 15
15 | 1314
1315 | | 23
24 | 10
50 | 338
2,760 | 2.16
2.02 | | 2.00
3.90 | | 15 | 1435 | | 87 | 50 | 2,470 | 1.99 | | 3.41 | | 15
16 | 2105
0315 | | 32
13 | 50
50 | 528
116 | 1.45
1.28 | | 2.14
1.41 | | 16 | 1655 | | 31 | 50 | 432 | 0.963 | | 1.49 | | 17 | 0140 | | 12 | 50 | 180 | 0.792 | | 1.06 | | 21
27 | 1540
0805 | | 20
6.0 | 50
50 | 558
186 | 0.297
0.154 | | 0.695
0.221 | | 27 | 1228 | | 25 | 10 | 820 | 0.210 | 0.290 | 0.890 | | 27
28 | 1230 | | 25
19 | 50
50 | 720
988 | 0.200
1.13 | 0.286 | 0.965
2.05 | | 28 |
0030
1230 | | 19 | 50
50 | 178 | 0.903 | | 1.29 | | APR | 1202 | | 2.4 | 10 | 0 | -0.012 | 0.010 | 0.041 | | 10
16 | 1302
0145 | | 3.4
5.8 | 10
50 | 8
245 | <0.013
0.092 | 0.019 | 0.041
0.280 | | 16 | 1345 | | 12 | 50 | 130 | 0.103 | | 0.268 | | 18
19 | 0145
0540 | | 6.0
7.9 | 50
50 | 23
58 | 0.036
0.053 | | 0.085
0.140 | | 20 | 1740 | | 6.7 | 50 | 17 | 0.029 | | 0.082 | | 23
MAY | 1054 | | 4.8 | 10 | 12 | < 0.013 | 0.015 | 0.046 | | 05 | 0135 | | 8.7 | 50 | 101 | 0.162 | | 0.258 | | 08 | 1245 | | 4.2 | 10 | 18 | < 0.013 | 0.010 | 0.034 | | 09
11 | 0315
0230 |
 | 9.1
9.5 | 50
50 | 100
84 | 0.226
0.141 | | 0.413
0.370 | | 11 | 1430 | | 14 | 50 | 133 | 0.119 | | 0.409 | | 14
14 | 1000
1245 |
 | 8.8
20 | 50
50 | 62
364 | 0.191
0.340 | 0.155
0.461 | 0.292
0.886 | | 15 | 0045 | | 9.9 | 50 | 125 | 0.739 | 0.542 | 0.954 | | 20 | 1110 | | 5.2 | 10 | 36 | < 0.013 | 0.012 | 0.067 | | JUN
04 | 1214 | | 3.2 | 10 | 10 | 0.015 | 0.029 | 0.029 | | 18
JUL | 1010 | | 3.9 | 10 | 34 | 0.106 | 0.029 | 0.078 | | 02 | 1140 | | 3.5 | 10 | 29 | 0.055 | 0.035 | 0.070 | | 17
31 | 1418 | | 3.1 | 10
10 | 8
8 | 0.017 | 0.034 | 0.057 | | AUG | 1110 | | 2.6 | 10 | ٥ | 0.024 | 0.025 | 0.046 | | 14 | 0745 | | 2.4 | 10 | 10 | 0.014 | 0.020 | 0.042 | | 28
SEP | 1120 | | 2.6 | 10 | 8 | 0.030 | 0.030 | 0.050 | | 11 | 1514 | | 2.3 | 10 | 8 | < 0.013 | | 0.046 | | 19
22 | 0040
1135 | | 11
2.6 | 50
10 | 85
7 | 0.073
0.018 | 0.029 | 0.385
0.040 | | | 1133 | | 2.0 | 10 | , | 0.010 | 0.02) | 0.040 | #### 05378183 JOOS VALLEY CREEK NEAR FOUNTAIN CITY, WI-Continued #### PRECIPITATION QUANTITY PERIOD OF RECORD.-October 1990 to June 1996, October 2002 to September 2003 (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 for Jan. 4, 5, 29, 31, Feb. 11, 26, and Mar. 5, 7, 8, 11 because recorded precipitation interpreted as collector snowmelt. Rainfall data missing for period June 24 to July 17. EXTREMES FOR PERIOD OF RECORD .-- Maximum daily rainfall, 4.26 in., Aug. 13, 1995. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.59 in., Sept. 18. | | | | | | 2.1. | | 12020 | | | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 |

 | 0.00
0.00
0.00
0.00
0.06 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.36
0.04
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.11 | 0.00
0.00
0.00
0.87
0.48 | 0.00
0.00
0.00
0.00
0.00 |

 | 0.02
0.08
0.01
0.00
0.01 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.03
0.00
0.38 | 0.00
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.06
0.00
0.00
0.00 | 0.01
0.15
0.34
0.29
0.41 | 0.70
0.01
0.86
0.01
0.69 |

 | 0.56
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.01
0.32
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.03
0.00
0.00 | 0.00
0.00
0.00
0.00
0.16 | 1.27
0.00
0.00
1.06
0.00 | 0.00
0.00
0.00
0.00
0.00 |

 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.61
0.04
0.00
0.00 | | 16
17
18
19
20 | 0.01
0.03
0.21
0.00
0.05 | 0.00
0.00
0.01
0.00
0.00 | 0.00
0.04
0.38
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.10
0.02
0.00
0.32
0.11 | 1.26
0.25
0.00
0.80
0.07 | 0.00
0.00
0.00
0.21
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.04
0.01 | 0.00
0.00
1.59
0.05
0.00 | | 21
22
23
24
25 | 0.32
0.00
0.00
0.04
0.11 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.16
0.00
0.00
0.00
0.00 | 0.21
0.00
0.00
0.00
0.00 | 0.04
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.03
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.30 | 0.07
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.03
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.00
1.18
0.40
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.01 | 0.00
0.00
0.11
0.00
0.30
0.00 |

 | 0.01
0.00
0.00
0.00
0.06
0.24 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.13
0.02
0.00
0.02
0.01 | | TOTAL | | 0.12 | 0.42 | 0.00 | 0.56 | 2.37 | 2.77 | 5.50 | | | 1.04 | 2.54 | # 05378185 EAGLE CREEK, AT COUNTY HIGHWAY G, NEAR FOUNTAIN CITY, WI LOCATION.--Lat 44°12'34", long 91°40'42" in SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.15, T.20 N., R.11 W., Buffalo County, Hydrologic Unit 07040003, on right bank at CTH "G" and 5.7 mi north of Fountain City. DRAINAGE AREA.--14.3 mi². # WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1990 to July 1996, October 2002 to September 2003. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 770 ft above NGVD of 1929, from topographic map. | | _ | recorder and | _ | | | | | | | _ | | | |------------------|------------------------|-------------------|------------------|------------------|------------------|---------------------|----------------------------|-------------------------|----------------|----------------|----------------|-------------------------| | KEMAKI | XSRecord | ls good excep | | | | | rair (see pag
YEAR OCT(| | | | on. | | | | | Discin | intol, col | He i LLi i i | | LY MEAN V | | JBER 2002 | TO SET TEN | IDER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | e9.0
e8.5 | 7.3
7.3 | 6.8
6.8 | 8.3
7.1 | 6.8
7.2 | 7.6
7.3 | 12
11 | 8.4
8.5 | 7.0
7.0 | 5.9
5.7 | 5.7
5.4 | 4.5
4.4 | | 3 | e8.0 | 7.4 | 6.4 | e6.9 | 7.3 | 7.6 | 11 | 8.1 | 6.9 | 8.8 | 5.7 | 4.4 | | 4
5 | e24
e14 | 7.6
7.9 | 6.5
6.1 | e7.2
e7.4 | 7.0
7.5 | 7.2
7.7 | 10
10 | 9.4
17 | 7.0
7.2 | 7.9
6.4 | 5.5
5.4 | 4.5
4.4 | | 6 | e16 | 7.8 | 6.1 | e7.3 | 6.8 | 7.9 | 9.6 | 12 | 8.5 | 6.7 | 5.8 | 4.5 | | 7
8 | e12
e10 | 7.7
7.9 | 6.3
5.8 | 7.7
7.5 | e6.6
e6.5 | 7.8
7.5 | 9.6
9.3 | 11
9.7 | 8.5
13 | 7.4
6.5 | 5.5
5.3 | 4.3
4.2 | | 9
10 | 8.9
11 | 7.9
7.9 | 6.0
6.5 | 7.3
6.7 | e6.4
e6.3 | e7.4
8.2 | 8.7
8.4 | 14
11 | 9.3
13 | 6.5
6.8 | 5.2
5.3 | 4.2
4.1 | | 11 | 9.6 | 7.6 | 6.8 | e6.6 | e6.4 | 8.9 | 8.2 | 26 | 9.7 | 6.6 | 5.2 | 3.9 | | 12
13 | 10
9.3 | 7.5
7.6 | 7.0
6.9 | e7.0
6.8 | e6.3
e6.3 | 8.5
9.3 | 8.2
8.2 | 15
13 | 8.9
8.3 | 6.3
6.0 | 5.0
4.9 | 5.5
5.0 | | 14
15 | 8.7
8.3 | 7.6
7.4 | 7.1
7.1 | e6.4
e5.8 | e6.2
e6.2 | 75
64 | 8.4
8.9 | 22
16 | 7.9
7.5 | 5.9
6.1 | 4.9
4.7 | 4.8
4.6 | | 16 | 8.1 | 7.3 | 7.3 | e5.8 | e6.3 | 40 | 23 | 13 | 7.3 | 6.0 | 4.7 | 4.6 | | 17
18 | 8.1
8.7 | 7.3
7.4 | 7.6
8.9 | e6.0
e6.0 | 6.7
6.8 | 19
12 | 18
14 | 12
11 | 7.1
6.9 | 5.9
5.6 | 4.6
4.5 | 4.4
5.6 | | 19
20 | 8.1
8.0 | 7.4
7.1 | 8.2
7.8 | e6.0
e5.8 | 7.3
26 | 12
16 | 18
18 | 11
11 | 6.5
6.4 | 5.6
5.7 | 4.7
4.8 | 9.9
4.7 | | 21
22 | 9.1
8.5 | 7.2
7.1 | 7.7
7.5 | e5.6
e5.2 | 26
12 | 21
14 | 14
12 | 9.7
9.6 | 6.2
6.3 | 5.6
5.5 | 4.5
4.4 | 4.5
4.7 | | 23 | 7.9 | 7.1 | 7.2 | e5.4 | 8.4 | 12 | 11 | 9.2 | 6.4 | 5.3 | 4.4 | 4.6 | | 24
25 | 7.8
8.0 | 7.1
6.9 | e7.0
e7.0 | e5.8
e6.2 | 7.6
e7.4 | 12
11 | 10
9.7 | 8.7
8.3 | 7.8
7.6 | 5.2
5.1 | 4.3
4.9 | 4.5
4.6 | | 26
27 | 7.9
7.6 | 6.8
6.8 | e6.8
7.0 | e5.8
e5.8 | e7.2
7.6 | 11
32 | 9.2
9.0 | 8.0
7.8 | 7.3
6.7 | 5.5
5.4 | 5.1
4.6 | 5.0
5.3 | | 28
29 | 7.6
7.6 | 6.8
7.1 | 7.3
7.5 | e6.0
e6.0 | 7.5 | 30
15 | 8.8
8.2 | 8.0
7.5 | 6.7
6.5 | 5.2
5.2 | 4.6
4.5 | 5.1
4.8 | | 30
31 | 7.5
7.3 | 6.9 | 8.0
8.1 | e6.2
6.5 | | 13
12 | 8.2 | 8.1
7.5 | 6.1 | 5.4
5.7 | 4.5
4.5 | 4.9 | | TOTAL | 295.1 | 220.7 | 219.1 | 200.1 | 236.6 | 523.9 | 332.6 | 351.5 | 231.5 | 187.4 | 153.1 | 144.5 | | MEAN
MAX | 9.52
24 | 7.36
7.9 | 7.07
8.9 | 6.45
8.3 | 8.45
26 | 16.9
75 | 11.1
23 | 11.3
26 | 7.72
13 | 6.05
8.8 | 4.94
5.8 | 4.82
9.9 | | MIN | 7.3 | 6.8 | 5.8 | 5.2 | 6.2 | 7.2 | 8.2 | 7.5
0.79 | 6.1 | 5.1 | 4.3 | 3.9 | | CFSM
IN. | 0.67
0.77 | 0.51
0.57 | 0.49
0.57 | 0.45
0.52 | 0.59
0.62 |
1.18
1.36 | 0.78
0.87 | 0.91 | 0.54
0.60 | 0.42
0.49 | 0.35
0.40 | 0.34
0.38 | | STATIST
MEAN | CICS OF MO
8.62 | ONTHLY M
9.23 | EAN DATA
7.89 | FOR WAT:
7.03 | ER YEARS
8.25 | 1991 - 2003
12.9 | , BY WATE
12.8 | R YEAR (W
11.8 | YY)
10.3 | 9.55 | 10.6 | 9.70 | | MAX | 11.9 | 13.0 | 10.9 | 9.65 | 14.3 | 16.9 | 21.2 | 16.4 | 21.4 | 19.7 | 17.8 | 14.2 | | (WY)
MIN | (1994)
6.44 | (1992)
5.58 | (1994)
4.90 | (1994)
4.70 | (1994)
5.09 | (2003)
7.98 | (1993)
10.0 | (1991)
8.82 | (1993)
7.48 | (1993)
6.05 | (1993)
4.94 | (1993)
4.82 | | (WY) | (1991) | (1991) | (1991) | (1991) | (1991) | (1991) | (1996) | (1992) | (1995) | (2003) | (2003) | (2003) | | SUMMA
ANNUAI | RY STATIS
L TOTAL | STICS | | | | | FOR 200
3,09 | 3 WATER 5
96.1 | YEAR | WATER | YEARS 199 | 1 - 2003 | | ANNUAI
HIGHES | L MEAN
ΓANNUAL | MEAN | | | | | | 8.48 | | | 10.1
13.5 | 1993 | | LOWEST | ANNUAL
ΓDAILY M | MEAN | | | | | 7 | 75 Mar 1 | 4 | 1 | 7.75 | 1991
g 14, 1995 | | LOWEST | DAILY M | EAN | | | | | , | 3.9 Sep 1 | 1 | , | 3.9 (a)De | c 3, 1990 | | | J SEVEN-L
JM PEAK I | OAY MINIM
FLOW | ·UM | | | | 27 | 4.2 Sep 3 | .4 | (b)2,4 | 100 Au | p 5, 2003
g 14, 1995 | | | JM PEAK S
ΓANEOUS | STAGE
LOW FLOW | V | | | | | 6.48 Mar 1
3.6 Sep 1 | | (| | g 14, 1995
c 3, 1990 | | ANNUAI | L RUNOFF
L RUNOFF | (CFSM) | | | | | | 0.59
8.05 | | ` | 0.70
9.55 | | | 10 PERC | ENT EXCE
ENT EXCE | ÈDS | | | | | | 7.3 | | | 14
8.4 | | | | ENT EXCE | | | | | | | 4.8 | | | 5.9 | | - (a) Also occurred Sept. 11, 2003 (b) From rating curve extended above 380 ${\rm ft}^3/{\rm s}$ on basis of step-backwater method - (c) Result of freezeup (e) Estimated due to ice effect or missing record #### 05378185 EAGLE CREEK, AT COUNTY HIGHWAY G, NEAR FOUNTAIN CITY, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1990 to June 1996, October 2002 to September 2003. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: July 1990 to June 1996, October 2002 to September 2003. SUSPENDED-SOLIDS DISCHARGE: July 1990 to June 1996, October 2002 to September 2003. TOTAL-PHOSPHORUS DISCHARGE: July 1990 to June 1996, October 2002 to September 2003. DISSOLVED OXYGEN: July 1990 to September 1992. INSTRUMENTATION .-- Water-quality sampler July 1990 to June 1996 and October 2002 to September 2003; continuous water-temperature recorder July 1990 to June 1996 and October 2002 to September 2003; dissolved-oxygen recorder July 1990 to September 1992. REMARKS.--Records represent water temperature at sensor within 0.5°C. Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples are point samples unless otherwise indicated. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum observed, 28.0°C, July 14, 1995; minimum observed, 0.0°C on many days during 1991, 1992, 1993, 1994, 1995, 1996, and 2003 winter periods. 595, and 2003 with periods. SUSPENDED-SOLIDS DISCHARGE; Maximum daily, 4,750 tons, Aug. 14, 1995; minimum daily, 0.07 ton, Sept. 11, 2003. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 9,370 lb, Aug. 14, 1995; minimum daily, 0.74 lb, Jan. 25, 1991. DISSOLVED OXYGEN: Maximum observed, 14.9 mg/L, Apr. 12, 1992; minimum observed, 4.2 mg/L, July 21, 1991. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum observed, 23.0°C, July 29, 30; minimum observed, 0.0°C on many days. SUSPENDED-SOLIDS DISCHARGE: Maximum daily, 721 tons, Mar. 14; minimum daily 0.07 ton, Sept. 11. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 1,800 lb, Mar. 14; minimum daily, 1.1 lb, Sept. 11. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | (| OCTOBER | 2 | N | OVEMBE | ER | D | ECEMBE | R | J | ANUARY | 7 | | 1
2
3
4
5 |

 |

 |

 | 6.0
6.0
6.5
6.0 | 4.5
4.5
4.0
5.0
5.0 | 5.0
5.0
5.0
5.5
5.5 | 2.5
2.5
1.5
2.0
1.5 | 1.5
1.5
1.0
1.0 | 2.0
2.0
1.0
1.5
1.5 | 2.0
2.5
2.0
3.0
3.5 | 0.0
0.0
0.0
0.5
3.0 | 1.0
1.5
0.5
2.0
3.0 | | 6
7
8
9
10 |

11.5
12.5 | 9.0
9.5 |

10.5
11.0 | 7.0
7.5
8.0
8.0
8.5 | 5.5
5.5
6.5
6.5
8.0 | 6.0
6.5
7.0
7.5
8.5 | 1.5
2.0
1.5
1.0
2.0 | 0.5
1.5
0.5
0.5
1.0 | 1.0
1.5
1.0
1.0 | 3.0
4.5
5.0
3.5
0.5 | 2.0
2.0
2.5
0.5
0.0 | 2.5
3.0
4.0
2.5
0.0 | | 11
12
13
14
15 | 12.5
12.5
10.5
10.0
10.0 | 10.0
10.5
8.5
7.5
8.5 | 11.5
12.0
9.5
8.5
9.0 | 8.0
6.5
6.0
6.0
5.0 | 6.0
4.5
5.0
5.0
3.5 | 7.0
5.5
5.5
5.5
4.0 | 3.0
4.0
3.5
3.0
3.5 | 1.5
3.0
2.5
2.0
3.0 | 2.0
3.5
3.0
2.5
3.0 | 0.0
0.5
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 8.5
9.0
8.5
7.5 | 7.0
8.0
7.5
6.5 | 8.0
8.5
8.0
6.5 | 4.5
4.5
4.5
5.0
5.5 | 3.5
3.5
3.0
3.5
4.0 | 4.0
4.0
4.0
4.0
4.5 | 3.5
3.5
5.0
5.0
4.0 | 2.0
2.5
3.5
4.0
2.5 | 2.5
3.0
4.0
4.5
3.5 | 1.0
0.5
1.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.5
0.5 | | 21
22
23
24
25 | 7.0
7.5
7.5
7.0
7.5 | 6.5
6.5
6.0
6.5
7.0 | 6.5
7.0
6.5
6.5
7.0 | 5.0
5.0
5.5
5.0
3.5 | 4.5
4.0
4.0
3.5
2.5 | 5.0
4.5
4.5
4.0
3.5 | 2.5
2.5
2.0
1.5
2.0 | 2.0
2.0
1.0
0.5
0.5 | 2.5
2.0
1.5
1.0 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 8.0
7.5
8.0
8.0
8.0
7.5 | 7.0
6.0
6.5
7.0
7.0
6.0 | 7.5
6.5
7.0
7.5
7.5
7.0 | 3.0
2.5
3.0
4.5
4.0 | 2.0
1.5
2.0
3.0
1.5 | 2.5
2.0
2.5
4.0
3.0 | 1.5
2.0
3.5
4.0
4.5
2.0 | 0.0
0.0
1.5
1.5
2.0
0.0 | 0.5
1.0
2.5
3.0
3.5
1.0 | 0.0
0.5
1.5
1.5
2.0
3.0 | 0.0
0.0
0.5
0.0
0.5
1.5 | 0.0
0.0
1.0
0.5
1.0
2.0 | | MONTH | 12.5 | 6.0 | 8.2 | 8.5 | 1.5 | 4.8 | 5.0 | 0.0 | 2.1 | 5.0 | 0.0 | 0.8 | > 05378185 EAGLE CREEK, AT COUNTY HIGHWAY G, NEAR FOUNTAIN CITY, WI—Continued ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003}$ | DAM | 3.5.437 | | | | | | 1EAR OCT | | | | 3 (13) | 3.65.437 | |---|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | 1
2
3
4
5 | 2.5
3.0
3.0
1.5
1.5 | 2.0
2.5
1.5
0.0
0.0 | 2.5
2.5
2.5
0.5
0.5 | 2.5
2.5
1.0
1.0 | 1.0
1.0
0.5
0.5
0.5 | 2.0
1.5
0.5
1.0
0.5 | 12.5
10.5
7.0
3.5
6.0 | 4.0
6.0
3.5
1.5
1.0 | 8.0
8.0
4.5
3.0
3.5 | 15.0
16.0
16.0
11.5
9.5 | 8.0
8.5
7.0
8.0
8.0 | 11.5
12.0
11.5
9.0
8.5 | | 6
7
8
9
10 | 2.0
0.0
1.5
0.5
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.5
0.0
0.5 | 2.0
2.5
2.0
0.5
1.0 | 0.5
1.5
0.5
0.0
0.0 | 1.0
2.0
1.5
0.5 | 7.0
4.5
10.0
11.0
13.0 | 1.0
2.5
1.5
2.5
3.5 | 4.0
3.5
5.5
6.5
7.5 | 14.0
13.5
12.5
14.5
13.5 |
8.5
10.0
7.5
10.0
8.5 | 10.5
11.5
10.5
12.0
11.0 | | 11
12
13
14
15 | 1.0
1.0
2.5
2.0
2.0 | 0.0
0.0
0.0
0.0
0.5 | 0.5
0.0
1.0
1.0
1.0 | 2.5
3.0
3.5
3.5
5.0 | 0.5
1.5
2.5
0.5
0.5 | 1.5
2.0
3.0
2.0
2.0 | 14.0
13.5
16.0
19.0 | 5.5
5.5
6.5
9.0 | 9.5
9.5
11.0
13.5 | 11.0
15.5
16.5
12.5
16.5 | 9.0
7.5
7.5
10.0
8.5 | 9.5
11.0
12.0
11.0
12.0 | | 16
17
18
19
20 | 2.5
3.0
4.0
4.0
4.0 | 0.0
0.0
1.5
1.0
0.5 | 1.0
1.0
2.5
2.0
2.0 | 6.0
7.0
7.0
6.5
6.0 | 1.0
2.5
5.0
4.5
4.0 | 3.0
5.0
6.0
6.0
4.5 | 14.5
12.0
12.5
11.5 | 9.5
10.0
9.0
9.5 | 11.0
11.0
10.5
10.5 | 17.0
16.5
18.5
16.0
15.5 | 9.5
10.5
10.5
13.0
10.0 | 13.0
13.5
14.0
14.0
12.5 | | 21
22
23
24
25 | 2.0
2.0
1.0
0.5
0.5 | 0.5
1.0
0.5
0.0
0.0 | 1.5
1.0
0.5
0.5
0.5 | 4.5
7.5
10.0
10.0
10.0 | 3.5
3.5
3.5
7.0
4.0 | 4.0
5.0
6.5
8.0
7.0 | 16.0
17.0
18.5
15.0
16.5 | 9.0
7.0
7.0
8.0
8.0 | 11.5
11.5
12.0
11.5
11.5 | 14.0
12.0
15.5
15.5
17.5 | 8.5
8.5
9.0
9.5
9.5 | 11.0
10.5
12.0
12.5
13.0 | | 26
27
28
29
30
31 | 1.0
2.0
2.5
 | 0.0
0.0
0.5
 | 0.5
1.0
1.5
 | 10.5
7.0
3.5
7.5
8.5
7.5 | 4.0
3.5
2.5
2.5
2.0
2.5 | 7.0
5.0
3.0
4.5
5.0
5.0 | 16.5
15.0
16.5
14.5
12.0 | 7.5
9.5
8.5
8.0
9.5 | 11.5
12.5
12.0
11.5
10.5 | 17.0
18.0
18.0
17.0
18.0
16.5 | 10.5
10.5
13.0
11.5
12.5
11.5 | 13.5
14.0
15.5
14.5
15.0
14.0 | | | | | | | | | | | | | | | | MONTH | 4.0 | 0.0 | 1.0 | 10.5 | 0.0 | 3.4 | 19.0 | 1.0 | 9.2 | 18.5 | 7.0 | 12.1 | | MONTH | 4.0 | 0.0
JUNE | 1.0 | 10.5 | 0.0
JULY | 3.4 | | 1.0
AUGUST | | | 7.0
EPTEMBE | | | MONTH 1 2 3 4 5 | 4.0
17.5
14.5
16.5
17.5
17.0 | | 1.0
13.5
13.0
13.5
14.5
14.5 | 20.5
21.5
21.5
21.0
22.0 | | 3.4
17.0
18.0
19.0
18.5
18.5 | | | | | | | | 1
2
3
4 | 17.5
14.5
16.5
17.5 | JUNE
10.5
11.5
11.5 | 13.5
13.0
13.5
14.5 | 20.5
21.5
21.5
21.0 | JULY
14.0
14.5
16.5
16.5 | 17.0
18.0
19.0
18.5 | 21.0
19.5
18.0 | AUGUST
16.5
15.5
15.0
14.5 | 18.5
17.5
16.5
15.5 | SI
16.5
16.5
15.5
15.5 | 12.5
12.5
12.5
14.0
12.0 | 14.0
14.5
14.5
13.5 | | 1
2
3
4
5
6
7
8
9 | 17.5
14.5
16.5
17.5
17.0
15.5
14.5
16.0
19.5 | JUNE 10.5 11.5 11.5 12.0 12.0 12.5 12.0 12.1 12.0 12.1 12.0 11.5 | 13.5
13.0
13.5
14.5
14.5
13.5
13.5
13.0
13.5
15.0 | 20.5
21.5
21.5
21.0
22.0
19.0
19.0
17.5
16.5 | JULY 14.0 14.5 16.5 16.5 15.5 15.5 14.5 14.0 | 17.0
18.0
19.0
18.5
18.5
17.0
17.0
15.5
15.5 | 21.0
19.5
18.0
17.5
17.5
19.0
20.0
19.0 | AUGUST 16.5 15.5 15.0 14.5 14.0 14.5 15.0 15.0 14.5 | 18.5
17.5
16.5
15.5
15.5
16.5
17.0
17.0
16.5 | SI
16.5
16.5
15.5
15.5
16.0

20.0
20.0 | 12.5
12.5
12.5
14.0
12.0
11.5

14.5
14.5 | 14.0
14.5
14.5
13.5
13.5
13.5
17.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 17.5
14.5
16.5
17.5
17.0
15.5
14.5
16.0
19.5
17.5
15.0
17.5 | JUNE 10.5 11.5 11.5 12.0 12.0 12.5 12.0 12.0 13.5 13.5 13.0 10.5 13.0 13.0 | 13.5
13.0
13.5
14.5
14.5
13.5
13.0
13.5
15.0
15.5
14.0
16.0
16.5 | 20.5
21.5
21.5
21.0
22.0
19.0
19.0
17.5
16.5
15.5
17.5
19.0
19.5
17.5 | JULY 14.0 14.5 16.5 16.5 15.5 15.5 14.0 14.0 12.5 13.5 14.0 15.0 | 17.0
18.0
19.0
18.5
18.5
17.0
17.0
15.5
14.5
15.0
16.0
16.5 | 21.0
19.5
18.0
17.5
17.5
19.0
20.0
19.0
19.0
19.0
19.0
19.0
19.5
20.0 | AUGUST 16.5 15.5 15.0 14.5 14.0 14.5 15.0 15.0 14.5 14.0 14.0 14.0 14.0 15.5 | 18.5
17.5
16.5
15.5
15.5
16.5
17.0
17.0
16.5
15.5
16.5
16.5
16.5
16.5 | SI
16.5
16.5
15.5
15.5
16.0

20.0
20.0
19.0 | 12.5
12.5
12.5
14.0
12.0
11.5

14.5
14.5
15.5 | 14.0
14.5
14.5
13.5
13.5
13.5
17.0
17.0
17.5
15.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 17.5
14.5
16.5
17.5
17.0
15.5
14.5
16.0
19.5
17.5
19.0
21.0
21.0
21.5
20.5
20.5 | JUNE 10.5 11.5 11.5 12.0 12.0 12.5 12.0 12.0 11.5 13.0 10.5 13.0 13.5 13.0 13.5 13.0 13.5 13.5 | 13.5
13.0
13.5
14.5
14.5
13.5
13.0
13.5
15.0
15.5
14.0
16.0
16.5
17.0 | 20.5
21.5
21.5
21.0
22.0
19.0
19.0
17.5
16.5
15.5
17.5
19.0
19.5
19.0
19.0
19.0 | JULY 14.0 14.5 16.5 16.5 15.5 15.5 14.0 14.0 12.5 13.5 14.0 15.5 14.1 15.1 15.5 14.1 15.1 15.5 | 17.0
18.0
19.0
18.5
18.5
17.0
17.0
15.5
15.5
14.5
15.0
16.0
16.5
17.5
16.5
17.0
17.0
17.0
16.5 | 21.0
19.5
18.0
17.5
17.5
19.0
20.0
19.0
19.0
19.0
19.5
20.0
20.5
21.0
20.5 | AUGUST 16.5 15.5 15.0 14.5 14.0 14.5 15.0 14.5 14.0 14.0 14.0 14.0 14.0 15.5 16.0 16.0 16.0 15.5 16.5 | 18.5
17.5
16.5
15.5
15.5
16.5
17.0
16.5
15.5
16.5
16.5
16.5
17.5
18.0
18.0
18.5 | SI
16.5
16.5
15.5
15.5
16.0

20.0
20.0
19.0

16.5
16.5
16.5
16.5 | 12.5
12.5
12.0
12.0
11.5

14.5
14.5
15.5
15.0
12.0
11.5
15.0
12.0 | 14.0
14.5
14.5
13.5
13.5
13.5
17.0
17.0
17.5

15.5
15.0
14.0
14.5
16.5
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 17.5
14.5
16.5
17.5
17.0
15.5
14.5
16.0
19.5
17.5
15.0
21.0
21.0
21.0
21.0
20.5
21.0
20.5
19.5
19.5 | JUNE 10.5 11.5 11.5 12.0 12.0 12.5 12.0 12.0 13.5 13.5 13.0 10.5 13.0 13.5 13.0 13.5 14.0 15.0 12.5 12.0 12.5 14.0 15.0 15.5 | 13.5
13.0
13.5
14.5
14.5
13.5
13.0
13.5
15.0
15.5
14.0
16.0
16.5
17.0
17.5
18.0
16.5
16.0
16.5
17.0 | 20.5
21.5
21.5
21.0
22.0
19.0
19.0
17.5
16.5
15.5
17.5
19.0
19.5
17.5
20.0
19.0
19.5
19.5
18.5
18.5 | JULY 14.0 14.5 16.5 16.5 15.5 15.5 14.5 14.0 12.5 13.5 14.0 15.0 15.5 14.5 14.0 15.0 15.5 14.5 14.0 15.0 15.5 14.5 14.0 15.0 15.5 | 17.0
18.0
19.0
18.5
18.5
17.0
17.0
15.5
15.5
14.5
16.5
17.5
16.5
17.0
17.0
16.5
17.0
16.5
17.0 | 21.0
19.5
18.0
17.5
17.5
19.0
20.0
19.0
19.0
19.0
19.5
20.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5 | AUGUST 16.5 15.5 15.0 14.5 14.0 14.5 15.0 15.0 14.5 14.0 14.0 14.0 14.0 15.5 16.0 16.0 16.0 16.5 16.5 17.0 15.0 14.5 15.0 14.5 15.0 | 18.5
17.5
16.5
15.5
15.5
16.5
17.0
17.0
16.5
15.5
16.5
16.5
16.5
16.5
18.0
18.0
17.5
18.0
18.5
18.5
18.5
17.5 | SI
16.5
16.5
15.5
15.5
16.0

20.0
20.0
19.0

16.5
16.5
16.5
16.5
17.5
18.0
15.0
15.0
14.5
14.5
13.0 | 12.5
12.5
12.5
14.0
12.0
11.5
14.5
14.5
15.5
15.0
14.0
12.0
15.0
12.0
9.5
10.5
12.0
9.5 | 14.0
14.5
14.5
13.5
13.5
13.5
17.0
17.0
17.5
15.5
15.0
14.0
14.5
16.5
16.5
13.5
12.0
12.0 | TOTAL 172.2 50.4 61.8 52.1 893.6 4,651.4 247.9 295.1 82.7 98.2 55.6 53.4 # 05378185 EAGLE CREEK, AT COUNTY HIGHWAY G, NEAR FOUNTAIN CITY, WI-Continued # SUSPENDED SOLIDS, DRIED AT 105 DEGREES CELSIUS, WATER, UNFILTERED, TONS PER DAY WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | | DAII | LY MEAN V | ALUES | | | | | | |---|---|---|--|--|--|--|--|--|---|---
---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.31
0.30
0.28
37
3.4 | 0.24
0.27
0.29
0.32
0.36 | 0.66
0.66
0.62
0.65
0.61 | 0.92
0.79
0.78
0.81
0.84 | 0.64
0.66
0.66
0.63
0.67 | 0.40
0.39
0.40
0.38
0.40 | 0.82
0.68
0.58
0.48
0.40 | 0.54
0.52
0.47
1.4
6.8 | 0.11
0.09
0.08
0.08
0.09 | 0.87
0.88
2.1
2.0
0.94 | 0.50
0.49
0.53
0.53
0.53 | 0.09
0.08
0.08
0.08
0.08 | | 6
7
8
9
10 | 6.2
1.7
0.77
0.46
1.2 | 0.39
0.41
0.45
0.49
0.53 | 0.62
0.64
0.59
0.62
0.67 | 0.83
0.88
0.85
0.84
0.76 | 0.60
0.57
0.56
0.54
0.53 | 0.40
0.40
0.38
0.37
0.41 | 0.33
0.28
0.24
0.19
0.16 | 0.94
0.87
0.65
3.0
1.7 | 0.37
0.37
2.5
0.56
2.5 | 0.97
1.1
0.92
0.89
0.92 | 0.59
0.58
0.58
0.59
0.62 | 0.08
0.08
0.08
0.08
0.08 | | 11
12
13
14
15 | 0.64
0.77
0.56
0.28
0.27 | 0.55
0.59
0.63
0.64
0.63 | 0.71
0.73
0.72
0.75
0.75 | 0.76
0.81
0.79
0.74
0.67 | 0.53
0.51
0.51
0.49
0.49 | 0.44
0.42
0.45
721
482 | 0.15
0.15
0.15
0.16
0.19 | 59
5.4
1.4
23
2.2 | 0.67
0.46
0.35
0.38
0.42 | 0.88
0.82
0.78
0.76
0.77 | 0.63
0.62
0.63
0.62
0.53 | 0.07
0.10
0.10
0.09
0.09 | | 16
17
18
19
20 | 0.26
0.26
0.27
0.25
0.24 | 0.63
0.63
0.64
0.65
0.63 | 0.78
0.81
0.95
0.88
0.84 | 0.66
0.67
0.66
0.66
0.63 | 0.49
0.51
0.51
0.55
116 | 187
31
1.4
2.5
7.5 | 43
15
3.3
14
14 | 0.85
0.75
0.69
0.67
0.87 | 0.47
0.53
0.59
0.59
0.60 | 0.75
0.72
0.67
0.65
0.64 | 0.46
0.40
0.34
0.31
0.27 | 0.09
0.08
0.54
2.9
0.09 | | 21
22
23
24
25 | 0.27
0.25
0.23
0.22
0.23 | 0.65
0.64
0.65
0.65
0.63 | 0.83
0.81
0.78
0.76
0.77 | 0.60
0.55
0.56
0.60
0.63 | 39
7.1
3.4
2.4
1.7 | 20
2.4
1.0
0.88
0.76 | 2.8
1.2
1.1
0.99
0.90 | 0.51
0.45
0.39
0.33
0.28 | 0.61
0.64
0.68
0.87
0.88 | 0.62
0.58
0.55
0.52
0.51 | 0.22
0.19
0.17
0.14
0.14 | 0.08
0.09
0.09
0.08
0.09 | | 26
27
28
29
30
31 | 0.22
0.21
0.21
0.21
0.22
0.23 | 0.63
0.63
0.65
0.68
0.66 | 0.75
0.77
0.80
0.83
0.88
0.91 | 0.58
0.57
0.59
0.58
0.59
0.62 | 0.84
0.44
0.40
 | 0.65
75
47
2.9
1.2
0.97 | 0.80
0.74
0.68
0.60
0.56 | 0.24
0.21
0.19
0.16
0.15
0.13 | 0.88
0.84
0.88
0.88 | 0.53
0.50
0.47
0.46
0.46
0.48 | 0.13
0.10
0.09
0.09
0.08
0.09 | 0.09
0.10
0.10
0.09
0.09 | | TOTAL | 57.92 | 16.44 | 23.15 | 21.82 | 181.93 | 1,590.40 | 104.63 | 114.76 | 19.83 | 24.71 | 11.79 | 5.86 | | | PHOS | SPHORUS, V | WATER, UI | NFILTERED | | PER DAY, V
LY MEAN V | | AR OCTOB | ER 2002 TC |) SEPTEMB | ER 2003 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.0
2.8
2.6
75 | 1.4
1.5 | 1.8 | 2.3 | 1.6 | 1.2 | | | | | | | | | 11 | 1.5
1.6
1.6 | 1.8
1.7
1.8
1.7 | 2.0
1.9
2.0
2.0 | 1.6
1.6
1.6
1.6 | 4.3
4.1
4.3
4.1
4.3 | 2.4
2.3
2.2
2.1
2.1 | 2.0
1.9
1.8
3.9
22 | 1.3
1.2
1.2
1.2
1.3 | 3.0
3.0
6.5
5.3
3.8 | 1.8
1.8
1.9
1.9 | 1.3
1.2
1.2
1.3
1.3 | | 6
7
8
9
10 | | 1.5
1.6 | 1.7
1.8 | 1.9
2.0 | 1.6
1.6
1.6 | 4.1
4.3
4.1 | 2.3
2.2
2.1 | 1.9
1.8
3.9 | 1.2
1.2
1.2 | 3.0
6.5
5.3 | 1.8
1.9
1.9 | 1.2
1.2
1.3 | | 7
8
9 | 11
18
6.3
3.3
2.9 | 1.5
1.6
1.6
1.6
1.7
1.7 | 1.7
1.8
1.7
1.7
1.8
1.6
1.7 | 1.9
2.0
2.0
2.0
2.1
2.0
2.0 | 1.6
1.6
1.6
1.5
1.4
1.4 | 4.1
4.3
4.1
4.3
4.5
4.4
4.3
4.2 | 2.3
2.2
2.1
2.1
2.0
2.0
1.9
1.8 | 1.9
1.8
3.9
22
4.2
3.9
2.0 | 1.2
1.2
1.2
1.3
1.7
1.7
8.4
2.4 | 3.0
6.5
5.3
3.8
3.9
4.7
3.8
3.7 | 1.8
1.9
1.9
1.9
2.1
2.1
2.1
2.1 | 1.2
1.3
1.3
1.3
1.2
1.2
1.2 | | 7
8
9
10
11
12
13
14 | 11
18
6.3
3.3
2.9
4.6
2.9
3.3
2.7
2.5 | 1.5
1.6
1.6
1.6
1.7
1.7
1.7
1.7
1.7 | 1.7
1.8
1.7
1.7
1.8
1.6
1.7
1.9
2.0
2.0
2.1 | 1.9
2.0
2.0
2.1
2.0
2.1
2.0
1.8
1.8
1.9
1.8 | 1.6
1.6
1.6
1.5
1.4
1.4
1.3
1.3
1.3
1.3 | 4.1
4.3
4.1
4.3
4.5
4.4
4.3
4.2
4.7
5.0
4.8
5.3
1.800 | 2.3
2.2
2.1
2.1
2.0
2.0
1.9
1.8
1.7
1.7
1.7 | 1.9 1.8 3.9 22 4.2 3.9 2.0 10 3.7 100 17 8.3 57 | 1.2
1.2
1.2
1.3
1.7
1.7
8.4
2.4
8.4
2.8
2.3
2.3
2.3 | 3.0
6.5
5.3
3.8
3.9
4.7
3.8
3.7
3.9
3.8
3.6
3.5
3.4 | 1.8
1.9
1.9
1.9
2.1
2.1
2.1
2.2
2.2
2.2 | 1.2
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.1
1.6 | | 7
8
9
10
11
12
13
14
15 | 11
18
6.3
3.3
2.9
4.6
2.9
3.3
2.7
2.5
2.3
2.2
2.1
2.2
2.0 | 1.5
1.6
1.6
1.6
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7 | 1.7
1.8
1.7
1.8
1.6
1.7
1.9
2.0
2.0
2.1
2.0
2.1
2.2
2.5
2.4 | 1.9
2.0
2.0
2.1
2.0
2.0
1.8
1.8
1.9
1.8
1.7
1.6
1.5
1.6
1.6 | 1.6
1.6
1.6
1.6
1.5
1.4
1.4
1.3
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.3
1.5
358 | 4.1
4.3
4.1
4.3
4.5
4.4
4.3
4.2
4.7
5.0
4.8
5.3
1,800
1,450
669
140
11 | 2.3
2.2
2.1
2.1
2.0
2.0
1.9
1.8
1.7
1.7
1.7
1.7
1.7
1.9
82
32
11 | 1.9 1.8 3.9 22 4.2 3.9 2.0 10 3.7 100 17 8.3 57 20 6.7 2.7 2.6 2.6 2.6 | 1.2
1.2
1.2
1.3
1.7
1.7
8.4
2.4
8.4
2.8
2.3
2.3
2.3
2.3
2.3
2.4
2.4
2.5 | 3.0
6.5
5.3
3.8
3.9
4.7
3.8
3.7
3.9
3.8
3.6
3.5
3.4
3.5
3.4
3.5 | 1.8 1.9 1.9 1.9 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.1 2.0 1.9 1.8 1.8 | 1.2
1.2
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.2
1.4
1.4
1.4
1.3
3.7 | | 7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 11
18
6.3
3.3
2.9
4.6
2.9
3.3
2.7
2.5
2.3
2.2
2.0
1.9
2.2
2.0
1.9 | 1.5 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 | 1.7
1.8
1.7
1.8
1.6
1.7
1.9
2.0
2.0
2.1
2.0
2.1
2.2
2.5
2.4
2.2
2.2
2.1
2.0
2.1 | 1.9
2.0
2.0
2.1
2.0
2.1
2.0
1.8
1.8
1.9
1.8
1.7
1.6
1.5
1.6
1.6
1.5
1.4
1.3
1.3 | 1.6
1.6
1.6
1.6
1.5
1.4
1.4
1.3
1.3
1.3
1.3
1.2
1.2
1.2
1.3
1.5
358 | 4.1
4.3
4.1
4.3
4.5
4.4
4.3
4.2
4.7
5.0
4.8
5.3
1.800
1,450
669
140
11
12
27
56
14
6.8
6.6 | 2.3
2.2
2.1
2.1
2.0
2.0
1.9
1.8
1.7
1.7
1.7
1.7
1.7
1.9
82
32
11
29
29
9.3
4.6
3.7
3.3 | 1.9 1.8 3.9 22 4.2 3.9 2.0 10 3.7 100 17 8.3 57 20 6.7 2.7 2.6 2.6 3.9 2.2 2.1 2.0 1.8 | 1.2
1.2
1.2
1.3
1.7
1.7
8.4
2.4
8.4
2.8
2.3
2.3
2.3
2.3
2.3
2.4
2.4
2.5
2.4
2.4
2.5
2.4
3.3 | 3.0
6.5
5.3
3.8
3.9
4.7
3.8
3.7
3.9
3.8
3.6
3.5
3.4
3.5
3.4
3.5
2.9
2.7
2.5
2.3
2.2 | 1.8 1.9 1.9 1.9 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.1 2.0 1.9 1.8 1.8 1.6 1.5 1.5 1.4 | 1.2
1.2
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.1
1.6
1.4
1.4
1.3
1.3
3.7
14
1.3 | # $05378185\;\; EAGLE\; CREEK,\; AT\; COUNTY\; HIGHWAY\; G,\; NEAR\; FOUNTAIN\; CITY,\; WI-Continued$ WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | | | | | | |--|--|--------------------------------------|---|--|---|--|---|---|--|--| | Date | Time | Discharge,
cfs
(00060) | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Residue total
at 105 deg. C,
suspended, mg/L
(00530) | Ammonia
water, fltrd,
mg/L as N
(00608) | Phosphorus,
water, fltrd,
mg/L
(00666) | Phosphorus,
water, unfltrd
mg/L
(00665) | | | | OCT
2002
08
29 | 1340
1520 | 10 |
7.7 | 10
10 | 13
10 | 0.022
<0.013 | 0.036
0.019 | 0.061
0.036 | | | | NOV
13 | 0818 | | 7.7 | 10 | 31 | 0.023 | 0.017 | | | | | DEC
12 | 1138 | | 6.9 | 10 | 39 | < 0.013 | 0.020 | 0.054 | | | | JAN 2003
14
FEB | 1212 | 6.4 | | 10 | 43 | 0.017 | 0.021 | 0.050 | | | | 18
20
20
20
21
21
21
21
21
21
21 | 1128
1435
1630
1725
1815
0025
0250
1248
1306
1750
0430 |

 | 6.8
12
32
54
67
48
33
17
18
28 | 10
50
50
50
50
50
50
50
10
50
50 | 28
503
1,810
2,530
3,080
1,140
800
227
276
582
210 | 0.032
0.180
0.839
0.778
0.923
1.98
2.21
1.83
1.78
1.52
1.70 | 0.015 | 0.036
0.523
2.28
3.36
3.54
3.16
3.11
1.89
1.91
2.20
2.02 | | | | 25
MAR
13
14
14
14 | 1158
1334
1220
1410
1525
1605 | 7.4

 | 7.7
13
79
187
243 | 10
10
50
50
50
50 | 92
18
240
4,740
5,020
5,880 | 0.082
0.046
0.252
1.09
1.46
1.49 | 0.071

 | 0.170
0.105
0.630
4.70
5.47
6.30 | | | | 14
14
14
14
15
15
15
15 | 1745
1835
2030
2235
1159
1200
1400
1525
2015 | | 247
277
248
137
67
21
22
86
179
87 | 50
50
50
50
50
10
50
50
50 | 4,380
3,670
1,910
1,740
1,190
1,990
3,010
3,280
3,160 | 2.64
2.77
3.07
2.77
2.07
1.95
1.58
1.48
1.75 | | 4.90
5.17
3.46
3.42
2.28
3.01
4.37
4.64
4.80 | | | | 16
16
17
20
21
27
27
27
27
27
27 | 0655
1700
0500
0000
1605
0845
1120
1144
1145
1930
2145 |

 | 22
68
18
24
35
16
35
38
38
49
59 | 50
50
50
50
50
50
50
50
10
50
50 | 1,650
1,670
1,350
560
884
247
864
1,050
1,020
936
1,380 | 1.32
0.747
0.835
0.371
0.373
0.133
0.500
0.380
0.290
0.479
0.691 |

0.226
0.194 | 3.46
2.85
2.62
0.638
0.930
0.277
0.946
1.25
0.983
1.35
1.65 | | | | 28
28
APR
10 | 0135
1330
1502 |

 | 39
39
26
8.2 | 50
50
50 | 864
288 | 0.691
0.879
0.604
0.021 | 0.021 | 1.65
1.55
0.927
0.038 | | | | 16
16
18
19
20
23
MAY | 0225
0540
0540
2005
2005
1432 |

 | 16
33
15
20
15
12 | 50
50
50
50
50
50 | 500
1,170
128
88
169
38 | 0.093
0.183
0.034
0.044
0.084
0.015 |

0.018 | 0.495
1.00
0.162
0.131
0.238
0.063 | | | | 05
05
08
09
11
11
14
14
14
14
14
14
14
14 | 0010
1240
1250
0305
0055
0340
0515
1715
1035
1210
1335
2150
1045 |

 | 16
18
9.8
17
17
26
35
26
17
25
35
21 | 50
50
10
50
50
50
50
50
50
50
50
50
50 | 238
149
24
120
224
604
684
928
99
552
734
195
22 | 0.090
0.173
0.013
0.130
0.036
0.092
0.224
0.084
0.065
0.072
0.072
0.158
<0.013 | 0.014
 | 0.269 0.273 0.036 0.268 0.283 0.656 1.11 0.461 0.146 0.556 0.701 0.345 0.043 | | | | 04
18 | 1052
1045 | | 7.1
7.1 | 10
10 | 4
32 | 0.020
0.099 | 0.031
0.034 | 0.031
0.067 | | | | JUL
02
17
31 | 1105
1544
1100 |

 | 6.0
6.2
5.5 | 10
10
10 | 57
45
31 | 0.056
0.041
0.033 | 0.041
0.044
0.033 | 0.097
0.107
0.057 | | | # 05378185 EAGLE CREEK, AT COUNTY HIGHWAY G, NEAR FOUNTAIN CITY, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Residue total
at 105 deg. C,
suspended,
mg/L
(00530) | Ammonia
water, fltrd,
mg/L as N
(00608) | Phosphorus,
water, fltrd,
mg/L
(00666) | Phosphorus,
water, unfltrd
mg/L
(00665) | |----------|------|---|--|--|--|---|--| | AUG 2003 | | | | | | | | | 14 | 0730 | 5.0 | 10 | 49 | 0.021 | 0.028 | 0.086 | | 28 | 1105 | 4.7 | 10 | 7 | 0.030 | 0.037 | 0.052 | | SEP | | | | | | | | | 11 | 1252 | 4.0 | 10 | 7 | < 0.013 | | 0.053 | | 19 | 0040 | 16 | 50 | 283 | 0.107 | | 0.546 | | 22 | 1105 | 4.7 | 10 | 7 | 0.025 | 0.034 | 0.049 | # 05378185 EAGLE CREEK, AT COUNTY HIGHWAY G, NEAR FOUNTAIN CITY, WI—Continued #### PRECIPITATION QUANTITY PERIOD OF RECORD.-October 1990 to June 1996, October 2002 to September 2003 (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. $REMARKS.--Rainfall\ estimated\ to\ be\ 0.00\ for\ Jan.\ 28,\ 31,\ Feb.\ 5,\ and\ Mar.\ 8\ because\ recorded\ precipitation\ interpreted\ as\ collector\ snowmelt.$ EXTREMES FOR PERIOD OF RECORD.-- Maximum daily rainfall, 4.85 in., Aug. 13, 1995. EXTREMES FOR CURRENT YEAR.-- Maximum daily rainfall, 2.01 in., Sept. 18. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 2 2 | | 0.00 | 0.00 | 0.00 | 0.00
0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00
0.01 | 0.00 | | 3
4
5 |
 | 0.00
0.00
0.05 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.03
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.01 | 0.00
0.85
0.42 | 0.00
0.00
0.00 | 0.74
0.57
0.00 | 0.01
0.00
0.00 | $0.00 \\ 0.00 \\ 0.00$ | | 6
7
8
9
10 | 0.00
0.00
0.00
0.01 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.01
0.00
0.00
0.00 | 0.01
0.16
0.37
0.32
0.44 | 0.61
0.01
0.84
0.01
0.71 | 0.23
0.50
0.02
0.09
0.16 | 0.36
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.01
0.00
0.01
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 1.20
0.00
0.00
1.08
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.66
0.04
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.01
0.00 | 0.00
0.01
0.29
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.07
0.00
0.00
0.25
0.04 | 1.04
0.23
0.00
0.76
0.01 | 0.00
0.00
0.00
0.21
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.03
0.00 | 0.00
0.00
2.01
0.05
0.00 | | 21
22
23
24
25 | 0.02
0.00
0.00
0.00
0.00 | 0.03
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.12
0.00
0.00
0.00
0.00 | 0.10
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.01
0.50
0.30 | 0.02
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.30 | 0.07
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.00
0.95
0.24
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.01 | 0.00
0.00
0.17
0.00
0.25
0.00 | 0.02
0.05
0.06
0.00
0.00 | 0.01
0.00
0.00
0.00
0.14
0.28 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.13
0.03
0.00
0.02
0.01 | | TOTAL | | 0.09 | 0.30 | 0.00 | 0.45 | 1.65 | 2.17 | 5.48 | 3.12 | 2.76 | 0.71 | 3.02 | #### 05378500 MISSISSIPPI RIVER AT WINONA, MN LOCATION.--Lat 44°03'21", long 91°38'16", in sec. 23, T.107 N., R.7 W., Winona County, Hydrologic Unit 07040003, on right bank at Winona pumping station in Winona, 9.5 mi upstream from Trempealeau River, and at mile 725.7 upstream from the Ohio River. DRAINAGE AREA.--59,200 mi² (approximately). PERIOD OF RECORD.--June 1928 to current year. Gage-height records collected in this vicinity since 1878 are contained in reports of Mississippi River Commission. GAGE.--Water-stage recorder. Datum of gage is 639.64 ft above sea level (NGVD of 1929). June 10,1928 to Apr. 15, 1931, nonrecording gage at site 800 ft upstream. Prior to Oct. 1, 1929, at datum 0.20 ft higher and Oct. 1, 1929 to Apr. 15, 1931, at datum
0.12 ft lower. Apr. 16, 1931 to Nov. 12, 1934, nonrecording gage at present site and datum. Since Mar. 31, 1937, auxiliary water-stage recorder 2.7 mi upstream at tailwater of navigation dam 5A. REMARKS.-- Records are good to fair for Oct. 1 to 31 and Apr. 19 to July 23, fair to poor for Nov. 1 to Apr. 18, and poor for Aug. 25 to Sep. 30 (see page 11). Some regulation by reservoirs, navigation dams, and power plants at low and medium stages. Daily discharges for some days were based in part on instantaneous discharges obtained from the U.S. Army Corps of Engineers for Lock and Dam 5A. EXTREMES FOR PERIOD OF RECORD.--Minimum gage height, -3.38 ft, Aug. 31, 1934 (prior to dam construction in 1936); minimum gage height since 1938, after completion of dam, 1.95 ft, Jan. 27, 1944. #### DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | 2.11 | | | | | | | | |----------------|------------|-----------|-----------|---------|----------|-------------|-----------|-----------|-----------|-----------|-----------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 38,900 | 45,200 | 23,200 | e22,200 | e14,200 | e13,600 | 37,300 | 66,900 | 51,200 | 56,000 | 23,000 | 12,000 | | 2 | 39,400 | 43,700 | 23,000 | e22,200 | e14,200 | e13,800 | 35,100 | e62,500 | 47,500 | 60,900 | 22,200 | 12,200 | | 3 | 39,300 | 40,900 | e21,500 | e21,300 | e14,600 | e13,800 | 32,300 | e60,000 | 45,100 | 61,600 | 21,700 | 10,700 | | 4 | 40,300 | 39,700 | e19,900 | e19,400 | e15,400 | e13,800 | 32,300 | e56,100 | 44,100 | 63,100 | 22,700 | 9,930 | | 5 | 42,000 | 38,800 | e18,200 | e18,400 | e15,400 | e13,700 | 34,500 | e53,000 | 41,600 | 64,000 | 22,400 | e9,200 | | 6 | 47,700 | 37,800 | e17,200 | e18,500 | e15,300 | e13,700 | 34,100 | e50.000 | 39,400 | 64,000 | 21.000 | e9,400 | | 7 | 53,100 | 37,800 | e15,900 | e18,500 | e15,200 | e13,000 | 30,300 | e45,700 | 38,900 | 63,600 | 19,900 | e9,600 | | 8 | 57,100 | 36,500 | e16,000 | e18,500 | e15,200 | e12,700 | 28,600 | 45,600 | 38,700 | 62,600 | 20,000 | e9,700 | | 9 | 64,700 | 35,600 | e17,400 | e18,800 | e15,100 | e12,700 | 28,000 | 46,800 | 37,400 | 58,800 | 20,000 | e10,800 | | 10 | 70,900 | 34,600 | e16,200 | e19,000 | e15,000 | e12,800 | 26,400 | 48,600 | 36,900 | 56,500 | 19,700 | e10,700 | | | , | | | * | * | | | | | , | | | | 11 | 75,900 | 35,100 | e19,700 | e15,700 | e15,000 | e12,800 | 25,800 | 54,600 | 37,500 | 55,700 | 18,900 | e10,000 | | 12 | 77,700 | 35,300 | e27,400 | e17,800 | e14,600 | e12,800 | 26,700 | 63,900 | 39,600 | 52,900 | 17,500 | e11,000 | | 13 | 77,600 | 34,100 | e27,800 | e15,400 | e14,300 | e12,900 | 27,000 | 72,600 | 42,000 | 50,300 | 17,100 | 12,900 | | 14 | 73,300 | 33,500 | e25,800 | e14,100 | e14,000 | e13,300 | 26,700 | 83,900 | 43,400 | 47,200 | 16,300 | 14,900 | | 15 | 70,700 | 33,400 | e23,500 | e14,400 | e14,000 | e16,800 | 25,900 | 99,200 | 44,300 | 46,500 | 16,200 | 15,300 | | 16 | 67,900 | 33,200 | e23.100 | e14.400 | e14.100 | 23,300 | 26,200 | 114.000 | 43,600 | 47,500 | 16,400 | 14,500 | | 17 | 64,400 | 32,400 | e23,200 | e14,400 | e14,100 | 31,000 | 31,600 | 119,000 | 43,100 | 47,700 | 16,100 | 13,100 | | 18 | 59,300 | 31,100 | e22,900 | e13,900 | e14,100 | 33,600 | 41,300 | 115,000 | 41,600 | 48,300 | 13,100 | 11,900 | | 19 | 56,800 | 30,400 | e24,000 | e14,000 | e14,200 | 35,800 | 49,300 | 106,000 | 39,800 | 46,600 | 12,100 | 13,000 | | 20 | 55,500 | 29,800 | e24,500 | e14,300 | e14,100 | 38,300 | 60,300 | 97,800 | 38,900 | 44,100 | 14,400 | 13,200 | | | | | | | | | | | | | | | | 21
22
23 | 53,200 | 29,400 | e24,800 | e14,400 | e14,500 | 37,300 | 67,400 | 90,300 | 36,000 | 43,600 | 17,800 | 13,300 | | 22 | 52,900 | 28,900 | e25,700 | e14,400 | e14,900 | 36,900 | 70,500 | 85,400 | 32,700 | 40,400 | 17,300 | 12,900 | | 23 | 52,000 | 28,400 | e26,100 | e14,800 | e15,300 | 37,100 | 72,500 | 82,600 | 30,200 | 38,800 | 14,700 | 15,000 | | 24 | 50,700 | 28,800 | e24,700 | e14,700 | e15,200 | 36,000 | 76,100 | 80,500 | 29,200 | 35,600 | 11,600 | 14,200 | | 25 | 49,400 | 28,700 | e22,300 | e14,600 | e15,100 | 35,200 | 80,400 | 78,000 | 31,500 | 34,900 | 11,000 | 13,200 | | 26 | 48,100 | 27,500 | e20,400 | e14,600 | e14,900 | 35,400 | 81,600 | 74,700 | 35,600 | 34,200 | 10,800 | 10,900 | | 27 | 47,800 | 26,100 | e17,800 | e14,500 | e14,800 | 35,600 | 78,100 | 72,500 | 42,200 | 30,000 | 11,400 | 10,500 | | 28 | 46,700 | 26,200 | e16,800 | e13,800 | e14,700 | 36,700 | 74,800 | 70,100 | 46,400 | 29,200 | 11,700 | 11,600 | | 29 | 45,900 | 25,100 | e17,100 | e13,800 | | 38,000 | 71,900 | 67,600 | 49,600 | 28,900 | 11,400 | 11,600 | | 30 | 45,800 | 23,800 | e18,100 | e13,800 | | 39,200 | 68,800 | 63,400 | 54,100 | 25,600 | 11,800 | 10,700 | | 31 | 46,100 | | e22,400 | e13,800 | | 38,900 | | 56,400 | | 23,700 | 12,300 | | | TOTAL | 1,711,100 | 991,200 | 666,600 | 502,400 | 411,500 | 770,500 | 1,401,800 | 2,282,700 | 1,222,100 | 1,462,800 | 512,500 | 357,930 | | MEAN | 55,200 | 33,040 | 21,500 | 16,210 | 14,700 | 24,850 | 46,730 | 73,640 | 40,740 | 47,190 | 16,530 | 11,930 | | MAX | 77,700 | 45,200 | 27,800 | 22,200 | 15,400 | 39,200 | 81,600 | 119,000 | 54,100 | 64,000 | 23,000 | 15,300 | | MIN | 38,900 | 23,800 | 15,900 | 13,800 | 14,000 | 12,700 | 25,800 | 45,600 | 29,200 | 23,700 | 10,800 | 9,200 | | AC-FT | 3,394,000 | 1,966,000 | 1,322,000 | 996,500 | 816,200 | 1,528,000 | 2,780,000 | 4,528,000 | 2,424,000 | 2,901,000 | 1,017,000 | 710,000 | | CFSM | 0.93 | 0.56 | 0.36 | 0.27 | 0.25 | 0.42 | 0.79 | 1.24 | 0.69 | 0.80 | 0.28 | 0.20 | | IN. | 1.08 | 0.62 | 0.42 | 0.32 | 0.26 | 0.48 | 0.88 | 1.43 | 0.77 | 0.92 | 0.32 | 0.22 | | | | | | | | | | | | *** | | | | STATIST | FICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1928 - 2003 | , BY WATE | R YEAR (W | /Y) | | | | | MEAN | 22,810 | 23,190 | 17,920 | 15,470 | 15,730 | 30,420 | 62,450 | 49,970 | 40,070 | 32,520 | 21,920 | 22,490 | | MAX | 85,950 | 50,040 | 40,440 | 30,480 | 35,900 | 86,420 | 152,600 | 119,800 | 100,200 | 118,800 | 67,560 | 69,490 | | (WY) | (1987) | (1972) | (1992) | (1983) | (1984) | (1983) | (1965) | (2001) | (1993) | (1993) | (1993) | (1986) | | MIN | 6,774 | 7,367 | 6,286 | 6,742 | 7,874 | 9,023 | 12,810 | 11,930 | 8,450 | 7,063 | 5,391 | 6,790 | | (WY) | (1934) | (1934) | (1934) | (1940) | (1977) | (1934) | (1931) | (1931) | (1934) | (1934) | (1934) | (1933) | | | | | | | | | | | | | | | #### UPPER MISSISSIPPI RIVER MAIN STEM #### 05378500 MISSISSIPPI RIVER AT WINONA, MN—Continued | SUMMARY STATISTICS | FOR 2002 CALEN | DAR YEAR | FOR 2003 WA | TER YEAR | WATER YEARS | S 1928 - 2003 | |--------------------------|----------------|----------|-------------|----------|-------------|---------------| | ANNUAL TOTAL | 15,381,800 | | 12,293,130 | | | | | ANNUAL MEAN | 42,140 | | 33,680 | | 29,610 | | | HIGHEST ANNUAL MEAN | | | | | 56,850 | 1986 | | LOWEST ANNUAL MEAN | | | | | 9,742 | 1934 | | HIGHEST DAILY MEAN | 124,000 | Apr 19 | 119,000 | May 17 | 264,000 | Apr 20, 1965 | | LOWEST DAILY MEAN | 15,900 | Dec 7 | 9,200 | Sep 5 | 2,250 | Dec 29, 1933 | | ANNUAL SEVEN-DAY MINIMUM | 17,200 | Dec 5 | 9,900 | Sep 3 | 3,210 | Dec 27, 1933 | | MAXIMUM PEAK FLOW | | | 119,000 | May 17 | 268,000 | Apr 19, 1965 | | MAXIMUM PEAK STAGE | | | 13.11 | May 17 | (a)20.77 | Apr 19, 1965 | | INSTANTANEOUS LOW FLOW | | | | · | (b)1,940 | Dec 12, 1980 | | ANNUAL RUNOFF (AC-FT) | 30,510,000 | | 24,380,000 | | 21,450,000 | | | ANNUAL RUNOFF (CFSM) | 0.71 | | 0.57 | | 0.50 | | | ANNUAL RUNOFF (INCHES) | 9.67 | | 7.72 | | 6.80 | | | 10 PERCENT EXCEEDS | 66,100 | | 64,500 | | 60,700 | | | 50 PERCENT EXCEEDS | 41,500 | | 28,400 | | 21,400 | | | 90 PERCENT EXCEEDS | 18,500 | | 13,000 | | 10,000 | | a From highwater mark.b Result of ice jam upstream.e Estimated. #### 053793305 TRAVERSE VALLEY CREEK, NORTH TRIBUTARY, NEAR INDEPENDENCE, WI $LOCATION.--Lat\ 44^{\circ}23'55", long\ 91^{\circ}33'05"\ in\ NE\ {}^{1}\!\!{}^{\prime}_{4}\ SE\ {}^{1}\!\!{}^{\prime}_{4}\ sec.11, T.22\ N., R.10\ W., Buffalo\ County, Hydrologic\ Unit\ 07040005,\ 100\ ft\ upstream\ of\ culvert\ crossing\ at\ County\ Highway\ X\ at\ Bragger\ family\ farm,\ 6.7\ mi\ west-northwest\ of\ Independence.$ DRAINAGE AREA.--0.65 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 2001 to current year. GAGE.--Water-stage recorder. Water levels are controlled by a 4.5 ft H flume. Elevation of gage is 970 ft above NGVD of 1929, from topographic map. REMARKS.--Records good (see page 11). Gage-height telemeter at station. | KLMAK. | ixo. Record | 13 good (see | page 11). O | age neight t | cicincter at s | uuton. | | | | | | | |--|--|---|--|--|---|--|---|--|---|--|--|---| | | | DISCH | ARGE, CUI | BIC FEET P | ER SECONI
DAII | D, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.176
0.163
0.158
0.518
0.197 | 0.156
0.156
0.157
0.156
0.157 | 0.140
0.136
0.131
0.134
0.132 | 0.127
0.127
0.126
0.128
0.130 | 0.132
0.134
0.133
0.129
0.127 | 0.141
0.107
0.106
0.105
0.102 | 0.171
0.168
0.165
0.160
0.154 | 0.144
0.141
0.138
0.157
0.214 |
0.163
0.161
0.162
0.159
0.158 | 0.123
0.123
0.199
0.158
0.135 | 0.132
0.130
0.131
0.128
0.127 | 0.107
0.106
0.106
0.105
0.104 | | 6
7
8
9
10 | 0.207
0.183
0.176
0.166
0.213 | 0.157
0.159
0.164
0.164
0.165 | 0.133
0.136
0.129
0.131
0.136 | 0.128
0.133
0.137
0.133
0.123 | 0.124
0.123
0.123
0.121
0.121 | 0.105
0.107
0.104
0.102
0.101 | 0.150
0.148
0.146
0.144
0.143 | 0.178
0.172
0.164
0.225
0.199 | 0.183
0.169
0.197
0.164
0.190 | 0.134
0.155
0.132
0.133
0.139 | 0.129
0.125
0.123
0.122
0.123 | 0.104
0.105
0.105
0.105
0.104 | | 11
12
13
14
15 | 0.191
0.188
0.170
0.169
0.167 | 0.159
0.155
0.154
0.153
0.148 | 0.138
0.139
0.136
0.137
0.140 | 0.115
0.119
0.116
0.114
0.113 | 0.122
0.118
0.119
0.119
0.116 | 0.136
0.144
0.160
2.23
2.49 | 0.142
0.141
0.141
0.141
0.157 | 0.547
0.315
0.252
0.315
0.271 | 0.165
0.159
0.156
0.154
0.150 | 0.132
0.128
0.125
0.133
0.136 | 0.121
0.119
0.119
0.118
0.118 | 0.103
0.126
0.112
0.109
0.106 | | 16
17
18
19
20 | 0.161
0.164
0.171
0.164
0.160 | 0.148
0.147
0.149
0.149
0.150 | 0.134
0.136
0.156
0.148
0.143 | 0.115
0.114
0.116
0.116
0.115 | 0.115
0.117
0.121
0.119
0.527 | 1.07
0.266
0.159
0.194
0.226 | 0.420
0.288
0.234
0.269
0.295 | 0.235
0.214
0.196
0.198
0.183 | 0.148
0.146
0.161
0.145
0.138 | 0.128
0.132
0.129
0.128
0.131 | 0.118
0.118
0.115
0.119
0.120 | 0.106
0.104
0.149
0.135
0.109 | | 21
22
23
24
25 | 0.171
0.165
0.162
0.163
0.169 | 0.149
0.146
0.149
0.145
0.142 | 0.138
0.136
0.132
0.129
0.129 | 0.113
0.109
0.107
0.118
0.120 | 0.460
0.151
0.114
0.107
0.107 | 0.430
0.184
0.157
0.154
0.146 | 0.249
0.217
0.200
0.185
0.175 | 0.176
0.174
0.168
0.165
0.162 | 0.135
0.137
0.138
0.147
0.151 | 0.130
0.127
0.125
0.124
0.125 | 0.118
0.114
0.113
0.112
0.119 | 0.110
0.109
0.106
0.106
0.104 | | 26
27
28
29
30
31 | 0.169
0.166
0.166
0.166
0.163
0.158 | 0.140
0.138
0.142
0.149
0.139 | 0.126
0.129
0.134
0.134
0.137
0.129 | 0.119
0.123
0.126
0.124
0.127
0.132 | 0.109
0.112
0.152
 | 0.143
0.381
0.414
0.205
0.181
0.175 | 0.166
0.161
0.156
0.148
0.149 | 0.160
0.161
0.167
0.165
0.174
0.164 | 0.138
0.131
0.139
0.144
0.127 | 0.129
0.126
0.123
0.122
0.121
0.144 | 0.115
0.111
0.112
0.110
0.108
0.108 | 0.109
0.107
0.104
0.104
0.103 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 5.680
0.18
0.518
0.158
0.28
0.33 | 4.542
0.15
0.165
0.138
0.23
0.26 | 4.198
0.14
0.156
0.126
0.21
0.24 | 3.763
0.12
0.137
0.107
0.19
0.22 | 4.172
0.15
0.527
0.107
0.23
0.24 | 10.725
0.35
2.49
0.101
0.53
0.61 | 5.583
0.19
0.420
0.141
0.29
0.32 | 6.294
0.20
0.547
0.138
0.31
0.36 | 4.615
0.15
0.197
0.127
0.24
0.26 | 4.129
0.13
0.199
0.121
0.20
0.24 | 3.695
0.12
0.132
0.108
0.18
0.21 | 3.272
0.11
0.149
0.103
0.17
0.19 | | STATIST | TICS OF M | ONTHLY M | IEAN DATA | A FOR WAT | ER YEARS | 2001 - 2003 | , BY WATE | R YEAR (W | /Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.18
0.18
(2003)
0.17
(2002) | 0.17
0.18
(2002)
0.15
(2003) | 0.16
0.18
(2002)
0.14
(2003) | 0.14
0.17
(2002)
0.12
(2003) | 0.18
0.21
(2002)
0.15
(2003) | 0.30
0.35
(2003)
0.25
(2002) | 0.20
0.21
(2002)
0.19
(2003) | 0.21
0.21
(2002)
0.20
(2003) | 0.30
0.45
(2002)
0.15
(2003) | 0.18
0.22
(2002)
0.13
(2003) | 0.15
0.19
(2002)
0.12
(2003) | 0.17
0.21
(2002)
0.11
(2003) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 200 | 1 - 2003 | | ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM INSTAN ANNUA | UM PEAK I
UM PEAK I | , MEAN MEAN MEAN DAY MINIM FLOW STAGE LOW FLOW (CFSM) ((INCHES) | | | 8.450
0.21
4.52 Jun
0.126 Dec
0.130 Dec
0.33
4.49
0.26 | 26 | | 0.101 Ma
0.104 Sej
10.2 Ma
1.78 Ma | r 15
r 10
p 5
r 14
r 14
r 5 | | 0.101 Ma
0.104 Se
104.2 Ju
4.73 Ju | 2002
2003
n 3, 2002
ar 10, 2003
n 3, 2002
n 3, 2002
n 5, 2003 | | 50 PERC | ENT EXCE
ENT EXCE | EEDS | | | 0.18
0.14 | | | 0.14
0.11 | | | 0.17
0.12 | | ## $053793305\ \ TRAVERSE\ VALLEY\ CREEK,\ NORTH\ TRIBUTARY,\ NEAR\ INDEPENDENCE,\ WI--Continued$ #### WATER-QUALITY RECORDS PERIOD OF RECORD.--September 2001 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: September 2001 to current year. INSTRUMENTATION.--Continuous water temperature recorder and water-quality sampler since September 2001. REMARKS.--Records represent water temperature at sensor within 0.5°C. Max, Min, and Mean water temperature estimated Aug. 2. Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples collected during periods of non-stormflow are grab samples. Samples during storms are composite samples collected by an automatic point sampler. The sample volume is the stream discharge that occurs between the time of the first sample and the last sample. The storm volume is the stream discharge that occurs between the storm and the end of the storm. An approximate storm load (in pounds) can be computed by multiplying the storm volume (in thousands of cubic feet) by the constituent (in mg/L) by a factor of 0.0624. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum temperature, 19.0°C, June 30 and July 1, 2002, and Apr. 15, 2003; minimum, 0.0°C, Feb. 20, Mar. 10 and 14, 2003. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum temperature, 19.0°C, Apr. 15; minimum, 0.0°C, Feb. 20, Mar. 10 and 14. TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|-----------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | ОСТОВЕР | ₹ | N | OVEMBE | ER | D | ECEMBE | ER | Ţ | JANUARY | 7 | | 1
2
3
4
5 | 14.5
11.5
11.5
12.5
12.0 | 11.0
10.5
10.5
10.0
9.0 | 12.5
11.0
11.0
11.5
10.5 | 8.0
8.5
9.0
8.5
7.0 | 5.0
5.0
5.0
5.5
5.5 | 6.0
6.0
6.5
6.5
6.5 | 5.5
4.5
4.0
4.5
4.0 | 2.0
2.0
1.5
3.0
2.0 | 4.0
3.5
2.5
3.5
2.5 | 4.0
4.5
4.5
4.5
5.0 | 2.0
2.0
1.5
2.5
4.0 | 3.0
3.0
3.0
3.5
4.5 | | 6
7
8
9
10 | 11.5
10.0
13.0
12.5
13.5 | 9.5
8.0
9.0
8.5
9.0 | 10.5
9.0
10.5
9.5
10.5 | 9.0
9.5
10.0
9.5
11.0 | 5.5
5.5
7.0
6.5
8.0 | 7.0
7.5
8.0
8.0
9.0 | 4.5
5.0
3.5
4.0
6.0 | 1.5
3.0
1.0
1.0
3.0 | 3.0
3.5
2.5
2.5
4.0 | 5.5
6.5
7.0
5.0
3.0 | 3.0
3.0
4.0
2.0
1.0 | 3.5
4.5
5.0
4.0
2.0 | | 11
12
13
14
15 | 13.0
12.0
11.0
11.5
11.5 | 9.5
9.0
7.5
7.5
7.5 | 11.0
10.5
9.0
9.0
9.0 | 8.0
8.5
7.5
7.0
6.5 | 5.5
5.0
5.0
5.0
4.0 | 7.0
6.5
6.5
6.5
5.0 | 6.0
6.5
5.5
6.0
6.0 | 3.0
3.5
3.0
3.0
4.0 | 4.5
5.0
4.0
4.5
5.0 | 2.0
2.5
2.0
2.0
2.0 | 1.0
1.0
1.0
1.0
1.0 | 1.5
1.5
1.5
1.0
1.0 | | 16
17
18
19
20 | 10.0
9.5
10.5
9.0
8.0 | 6.0
7.5
8.0
7.5
7.0 | 8.0
8.5
9.0
8.5
7.5 | 6.5
7.0
7.0
8.0
8.0 | 5.0
4.0
4.0
5.0
5.5 | 5.5
5.0
5.5
6.0
6.5 | 4.0
5.0
7.0
6.0
5.0 | 2.5
3.5
4.5
4.5
3.5 | 3.5
4.0
5.5
5.5
4.5 | 3.0
2.0
3.0
2.0
2.0 | 1.0
1.0
1.0
1.0
1.0 | 1.5
1.0
1.5
1.5 | | 21
22
23
24
25 | 8.0
8.5
8.5
9.0
8.5 | 7.0
7.0
6.5
7.0
7.5 | 7.5
7.5
7.5
7.5
8.0 | 7.0
7.0
8.0
6.0
5.5 | 5.5
4.5
5.0
4.0
3.0 | 6.0
5.5
6.0
5.0
4.5 | 4.5
4.5
4.0
3.5
4.0 | 3.0
3.0
2.0
1.5
1.5 | 4.0
4.0
2.5
2.5
3.0 | 2.0
2.0
2.0
1.5
2.5 | 0.5
0.5
0.5
1.0
1.5 | 1.0
1.0
1.0
1.0
2.0 | | 26
27
28
29
30
31 | 9.5
8.5
9.5
9.0
9.5
8.5 | 7.0
6.0
7.0
7.5
7.0
5.5 | 8.0
7.5
8.0
8.0
8.0
7.0 | 5.0
5.0
6.0
7.0
4.5 | 3.0
3.0
3.5
4.5
2.0 | 4.0
3.5
4.5
6.0
3.5 | 4.5
5.0
6.0
6.0
6.5
4.5 | 1.5
2.0
3.5
3.0
3.0
2.0 | 2.5
3.0
4.5
4.5
4.5
3.0 | 2.0
2.0
3.0
3.0
3.0
4.0 | 0.5
1.0
1.5
1.5
2.0
2.5 | 1.0
1.5
2.0
2.0
2.5
3.5 | | MONTH | 14.5 | 5.5 | 9.1 | 11.0 | 2.0 | 6.0 | 7.0 | 1.0 | 3.7 | 7.0 | 0.5 | 2.2 | ## 053793305 TRAVERSE VALLEY CREEK, NORTH TRIBUTARY, NEAR INDEPENDENCE,
WI--Continued ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002\ TO\ SEPTEMBER\ 2003}$ | | | | | EK, DEGKE | | | | | | | | | |--|--|--|--|--|---|--|--|--|--|--|--|--| | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | 4.0
4.0
4.0
3.0
3.0 | 3.0
3.0
2.0
0.5
0.5 | 3.5
3.5
3.5
1.5
1.5 | 5.0
3.5
2.0
3.0
3.0 | 1.5
0.5
0.5
0.5
0.5 | 2.5
1.5
1.0
1.5
1.5 | 13.0
10.0
4.0
2.5
7.0 | 3.5
4.0
2.0
1.0
0.5 | 7.0
6.5
3.0
1.5
2.5 | 15.0
14.5
15.0
9.5
9.0 | 6.5
6.5
5.5
6.0
7.5 | 9.5
9.0
9.0
7.5
8.0 | | 6
7
8
9
10 | 3.0
2.0
3.5
2.0
2.5 | 0.5
0.5
0.5
0.5
0.5 | 1.5
1.0
2.0
1.0
1.5 | 4.0
4.5
3.0
2.5
2.5 | 0.5
1.5
0.5
0.5
0.0 | 2.0
2.5
1.5
1.0 | 6.5
4.0
11.0
11.5
13.5 | 0.5
0.5
0.5
0.5
0.5 | 2.5
2.0
3.0
3.5
5.0 | 11.5
11.5
12.0
13.0
12.0 | 7.5
7.5
6.5
8.0
7.0 | 9.0
9.0
9.0
10.0
9.0 | | 11
12
13
14
15 | 2.5
2.0
4.0
3.5
3.5 | 0.5
0.5
1.0
1.0 | 1.5
1.0
2.0
2.0
2.0 | 5.5
5.0
6.0
5.5
5.0 | 1.0
2.0
1.5
0.0
0.5 | 3.0
3.0
3.0
1.5
2.0 | 16.0
16.0
14.0
18.5
19.0 | 2.5
2.0
2.0
7.0
9.5 | 7.0
6.5
7.0
11.5
13.0 | 9.5
13.0
13.5
11.5
14.0 | 8.0
7.0
7.0
8.0
7.0 | 8.5
9.5
9.5
9.0
9.5 | | 16
17
18
19
20 | 3.5
4.0
5.5
5.5
6.5 | 0.5
0.5
1.5
1.0
0.0 | 1.5
2.0
3.0
3.0
2.5 | 5.0
9.0
6.5
6.5
6.0 | 1.0
2.5
4.5
4.0
3.5 | 3.0
5.0
5.5
5.5
4.5 | 9.5
6.5
7.0
7.5
7.5 | 5.0
5.0
5.5
5.5
6.5 | 7.0
5.5
6.0
6.5
7.0 | 14.0
14.0
15.0
13.0
14.5 | 7.5
7.5
8.0
9.5
7.5 | 10.0
10.5
11.0
11.0
10.0 | | 21
22
23
24
25 | 4.0
3.5
2.0
2.0
2.0 | 1.0
0.5
0.5
0.5
0.5 | 2.0
2.0
1.0
1.0 | 5.5
7.0
12.0
9.5
11.0 | 3.5
3.0
2.0
4.0
1.5 | 4.0
5.0
6.0
6.5
5.0 | 10.0
11.5
12.0
11.5
12.5 | 5.5
4.5
4.5
5.0
6.0 | 7.0
7.5
7.5
8.0
8.5 | 13.5
10.5
14.0
14.0
14.5 | 6.5
7.0
8.0
7.5
8.0 | 9.5
8.5
10.0
10.5
10.5 | | 26
27
28
29
30
31 | 3.0
4.5
5.5
 | 0.5
0.5
1.5
 | 1.5
2.0
2.5
 | 12.0
5.0
4.5
7.5
7.5
8.0 | 1.5
2.5
2.5
3.0
2.5
1.5 | 5.0
4.0
4.0
4.5
4.5
4.5 | 13.0
12.5
13.5
13.5
10.0 | 5.5
7.0
6.5
6.0
7.0 | 8.5
9.0
9.0
9.0
8.0 | 14.5
15.0
15.0
14.5
16.0
14.5 | 8.0
8.5
9.5
9.0
9.5
9.0 | 10.5
11.0
11.5
11.0
11.5
11.0 | | | | | | | | | | | | | | | | MONTH | 6.5 | 0.0 | 1.9 | 12.0 | 0.0 | 3.4 | 19.0 | 0.5 | 6.5 | 16.0 | 5.5 | 9.8 | | | 6.5 | 0.0
JUNE | 1.9 | 12.0 | 0.0
JULY | 3.4 | | 0.5
AUGUST | | | 5.5
EPTEMBI | | | | 15.0
13.0
14.5
15.0
15.5 | | 1.9
11.0
10.5
11.0
11.5
11.5 | 12.0
16.0
17.5
17.0
15.5
16.5 | | 3.4
12.5
13.0
14.0
13.0
13.0 | | | | | | | | MONTH 1 2 3 4 | 15.0
13.0
14.5
15.0 | JUNE
8.0
8.5
9.0
9.0 | 11.0
10.5
11.0
11.5 | 16.0
17.5
17.0
15.5 | JULY
10.5
11.0
11.5
11.5 | 12.5
13.0
14.0
13.0 | 14.5
14.0
14.0
13.0 | AUGUST
11.5
11.5
11.0
11.0 | 12.5
12.5
12.0
12.0 | SE
14.0
14.5
13.5
14.0 | 10.5
10.5
10.5
11.0
10.5 | 12.0
12.0
12.0 | | MONTH 1 2 3 4 5 6 7 8 9 | 15.0
13.0
14.5
15.0
15.5
11.5
13.5
14.0 | JUNE 8.0 8.5 9.0 9.0 9.0 10.0 9.5 9.5 9.0 | 11.0
10.5
11.0
11.5
11.5
10.5
10.5
11.0
11.5 | 16.0
17.5
17.0
15.5
16.5
14.5
15.0
14.5
13.0 | JULY 10.5 11.0 11.5 11.5 11.5 11.5 11.5 11.0 11.0 | 12.5
13.0
14.0
13.0
13.0
12.5
13.0
12.5
12.0 | 14.5
14.0
14.0
13.0
13.0
15.0
14.5
14.5 | AUGUST 11.5 11.5 11.0 11.0 11.0 11.5 11.5 11. | 12.5
12.5
12.0
12.0
12.0
12.5
12.5
12.5
12.5 | SE
14.0
14.5
13.5
14.0
14.0
14.5
15.0
15.0 | 10.5
10.5
11.0
10.5
9.5
11.0
11.5
11.5
11.5 | 12.0
12.0
12.0
11.5
11.5 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 15.0
13.0
14.5
15.0
15.5
11.5
13.5
14.0
14.5
12.0
13.5
15.5
15.5 | JUNE 8.0 8.5 9.0 9.0 9.0 10.0 9.5 9.5 9.0 10.0 9.5 9.5 10.0 | 11.0
10.5
11.0
11.5
11.5
10.5
11.0
11.5
11.0
11.0 | 16.0
17.5
17.0
15.5
16.5
14.5
13.0
12.0
14.5
15.5
15.5
15.5 | JULY 10.5 11.0 11.5 11.5 11.5 11.5 11.5 11.5 | 12.5
13.0
14.0
13.0
13.0
12.5
13.0
12.5
12.0
11.5
12.0
12.5
12.5
12.5 | 14.5
14.0
13.0
13.0
15.0
14.5
14.0
14.5
13.0
15.0
14.5
15.0
14.5 | AUGUST 11.5 11.5 11.0 11.0 11.0 11.5 11.5 11. | 12.5
12.5
12.0
12.0
12.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | 14.0
14.5
13.5
14.0
14.0
14.5
15.0
15.0
15.5
13.5
13.5
13.5 | 10.5
10.5
10.5
11.0
10.5
9.5
11.0
11.5
11.5
11.5
12.0
12.5
11.5
11.5 | 12.0
12.0
12.0
12.0
11.5
11.5
12.5
12.5
12.5
12.5
13.0
13.5
13.0
12.0 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 15.0
13.0
14.5
15.0
15.5
11.5
11.5
14.0
14.5
12.0
13.5
15.5
16.0
16.5
16.0
16.5 | JUNE 8.0 8.5 9.0 9.0 9.0 10.0 9.5 9.5 9.0 10.0 9.5 10.0 10.0 10.5 10.0 11.0 11.0 | 11.0
10.5
11.0
11.5
11.5
10.5
10.5
11.0
11.5
11.0
12.0
12.5
12.5
12.5
13.0
12.0 | 16.0
17.5
17.0
15.5
16.5
14.5
15.0
14.5
13.0
12.0
14.5
15.5
15.5
15.5
15.0
15.0 | JULY 10.5 11.0 11.5 11.5 11.5 11.5 11.5 11. | 12.5
13.0
14.0
13.0
13.0
12.5
13.0
12.5
12.0
11.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | 14.5
14.0
13.0
13.0
15.0
14.5
14.0
14.5
13.0
15.0
14.5
15.0
14.5
15.0
14.5
15.0 | AUGUST 11.5 11.0 11.0 11.0 11.0 11.5 11.5 11. | 12.5
12.5
12.0
12.0
12.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | SE
14.0
14.5
13.5
14.0
14.0
14.5
15.0
15.0
14.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | 10.5
10.5
11.0
10.5
9.5
11.0
11.5
11.5
11.5
12.0
12.5
11.5
10.5
10.5 | 12.0
12.0
12.0
12.0
11.5
11.5
12.5
12.5
12.5
12.5
13.0
13.0
12.0
11.5
11.5
11.5 | | MONTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 15.0
13.0
14.5
15.0
15.5
11.5
11.5
13.5
14.0
14.5
12.0
13.5
15.5
15.5
16.0
16.5
16.0
16.0
16.0
15.5 | JUNE 8.0 8.5 9.0 9.0 9.0 10.0 9.5 9.5 9.0 10.0 10.0 10.0 10.5 10.0 11.0 10.0 9.5 9.5 10.1 11.0 11.0 11.5 | 11.0
10.5
11.5
11.5
10.5
10.5
11.0
11.5
11.0
11.5
12.0
12.0
12.5
12.5
12.5
12.0
12.0
12.0
12.0
12.0
12.0 | 16.0
17.5
17.0
15.5
16.5
14.5
15.0
14.5
13.0
12.0
14.5
15.5
15.5
15.0
14.0
15.5
15.0
14.5
15.5
15.0
14.0
15.5
15.0
14.5 | JULY 10.5 11.0 11.5 11.5 11.5 11.5 11.5 11. | 12.5
13.0
14.0
13.0
13.0
12.5
13.0
12.5
12.0
11.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | 14.5
14.0
13.0
13.0
15.0
14.5
14.0
14.5
13.0
15.0
14.5
15.0
14.5
15.0
16.0
15.0
16.0
15.0
16.0 | AUGUST 11.5 11.5 11.0 11.0 11.0 11.5 11.5 11. | 12.5
12.5
12.0
12.0
12.0
12.5
12.5
12.5
12.5
12.5
12.5
13.0
13.0
13.5
13.5
13.5
13.5
13.5
13.5 |
14.0
14.5
13.5
14.0
14.0
14.5
15.0
15.0
15.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | 10.5
10.5
10.5
11.0
10.5
9.5
11.0
11.5
11.5
11.5
12.0
12.5
11.5
10.5
10.5
10.5
10.0
9.0
9.5
10.0
9.5 | 12.0
12.0
12.0
11.5
11.5
12.5
12.5
12.5
12.5
13.0
13.5
13.0
12.0
12.0
11.5
11.5
11.5
11.5 | TREMPEALEAU RIVER BASIN ### 053793305 TRAVERSE VALLEY CREEK, NORTH TRIBUTARY, NEAR INDEPENDENCE, WI--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | | Specif. | ANC, | | Residue | Residue | | Ammonia | Ammonia | | |------------------|------|--------------------------------------|-------------------------------|---|--|--|--|--|--|---|---|--|--| | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | conductance,
wat unf
lab,
uS/cm
25 degC
(90095) | wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Chloride,
water,
fltrd,
mg/L
(00940) | on
evap.
at
105degC
wat unf
mg/L
(00500) | total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Residue
vola-
tile,
sus-
pended,
mg/L
(00535) | org-N,
water,
fltrd,
mg/L
as N
(00623) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | | OCT 2002 | | | | | | | | | | | | | | | 25 | 1400 | 0.17 | 70 | 8.3 | 499 | 243 | 5.9 | 312 | 6 | <2 | < 0.14 | < 0.14 | < 0.013 | | NOV
13
DEC | 1305 | 0.15 | 70 | 8.2 | 507 | 244 | 5.8 | 316 | 6 | <2 | 0.34 | < 0.14 | < 0.013 | | 12
JAN 2003 | 1603 | 0.14 | 70 | 8.2 | 501 | 239 | 6.0 | 318 | 8 | <2 | 0.40 | 0.14 | < 0.013 | | 14
FEB | 1704 | 0.12 | 70 | 7.9 | 494 | 242 | 5.9 | 308 | 6 | | 0.18 | < 0.14 | < 0.013 | | 18
MAR | 1035 | 0.12 | 70 | 8.2 | 491 | 238 | 5.8 | 300 | 3 | <2 | 0.33 | < 0.14 | < 0.013 | | 13
APR | 1024 | 0.11 | 70 | 8.2 | 493 | 236 | 5.6 | 304 | 5 | <2 | 0.40 | 0.32 | 0.036 | | 30
MAY | 1325 | 0.14 | 70 | 8.3 | 496 | 242 | 6.5 | 336 | 19 | 3 | < 0.14 | 0.23 | 0.023 | | 20
JUN | 1215 | 0.18 | 70 | 8.3 | 499 | 245 | 6.0 | 326 | 13 | 2 | 0.49 | 0.15 | 0.017 | | 18
JUL | 1105 | 0.15 | 70 | 8.3 | 500 | 245 | | 328 | 15 | 4 | 0.16 | < 0.14 | 0.021 | | 17
AUG | 1105 | 0.13 | 70 | 8.2 | 502 | 245 | 6.2 | 326 | 14 | 3 | 0.19 | 0.20 | 0.018 | | 14 | 1305 | 0.11 | 70 | 8.0 | 500 | 247 | 5.8 | 332 | 6 | <2 | 0.32 | < 0.14 | < 0.013 | | Date | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | |-----------|---|--|--| | OCT 2002 | | | | | 25 | 2.36 | 0.015 | 0.024 | | NOV | 2.50 | 0.013 | 0.024 | | 13 | 2.40 | 0.015 | 0.015 | | DEC | | | | | 12 | 2.30 | 0.015 | 0.024 | | JAN 2003 | | | | | 14 | 2.36 | 0.018 | 0.025 | | FEB | | | | | 18 | 2.41 | 0.009 | 0.013 | | MAR | | | | | 13 | 2.24 | 0.022 | 0.030 | | APR | 2.25 | 0.046 | 0.000 | | 30 | 2.25 | 0.016 | 0.033 | | MAY
20 | 2.28 | 0.017 | 0.029 | | JUN | 2.20 | 0.017 | 0.029 | | 18 | 1.60 | 0.016 | 0.032 | | ии.
Ли | 1.00 | 0.010 | 0.032 | | 17 | 1.97 | 0.019 | 0.038 | | AUG | 1.77 | 0.017 | 0.050 | | 14 | 2.08 | 0.016 | 0.027 | | | | | | #### 053793305 TRAVERSE VALLEY CREEK, NORTH TRIBUTARY, NEAR INDEPENDENCE, WI--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 COMPOSITE SAMPLES | Beginning
date | Beginning
time | Ending
date | Ending
time | Sampling method, code (82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Chloride,
water,
fltrd,
mg/L
(00940) | Residue
on
evap.
at
105degC
wat unf
mg/L
(00500) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Residue
vola-
tile,
sus-
pended,
mg/L
(00535) | Ammonia
+ org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | |-------------------|-------------------|----------------|----------------|-------------------------------|---|--|--|--|---|---|---|--|--| | OCT 2002 | 0006 | 20021001 | 0==1 | | | 201 | 0.0 | | | 4.420 | 424 | 0.55 | | | 04-04
FEB 2003 | 0326 | 20021004 | 0754 | 50 | 7.5 | 206 | 92 | 3.2 | 1,350 | 1,130 | 134 | 0.55 | 5.4 | | 20-21 | 1500 | 20030221 | 2315 | 50 | 7.0 | 391 | 133 | 20.4 | 452 | 146 | 30 | 4.7 | 3.4 | | MAR | | | | | | | | | | | | | | | 14-15
MAR | 1130 | 20030315 | 0358 | 50 | 6.8 | 250 | 83 | 12.6 | 1,300 | 1,080 | 144 | 4.4 | 11 | | 15-16 | 1121 | 20030316 | 0436 | 50 | 7.0 | 285 | 87 | 18.3 | 1,400 | 1,170 | 108 | 4.7 | 10 | | MAR | | | | | | | | | | | | | | | 16-17 | 1024 | 20030317 | 1219 | 50 | 7.4 | 356 | 120 | 21.2 | 980 | 708 | 68 | 3.9 | 6.6 | | MAR
21-21 | 1115 | 20030321 | 1951 | 50 | 7.9 | 389 | 133 | 19.6 | 1,220 | 904 | 88 | 1.8 | 4.5 | | MAY | 1113 | 20030321 | 1731 | 30 | 1.5 | 307 | 133 | 17.0 | 1,220 | 704 | 00 | 1.0 | 4.5 | | 11-11 | 0237 | 20030511 | 0821 | 50 | 7.8 | 354 | 162 | 4.7 | 992 | 796 | 124 | 0.67 | 4.1 | | MAY
11-11 | 1102 | 20030511 | 1806 | 50 | 8.2 | 469 | 218 | 6.6 | 346 | 48 | 10 | 0.38 | 0.64 | | MAY | 1102 | 20030311 | 1800 | 30 | 0.2 | 409 | 218 | 0.0 | 340 | 40 | 10 | 0.58 | 0.04 | | 14-14 | 0919 | 20030514 | 1,03 | 50 | | | | 5.8 | 340 | 49 | 10 | 0.17 | 0.63 | | JUL | | | | | | | | | | | | | | | 03-03
SEP | 0356 | 20030703 | 0751 | 50 | 8.1 | 343 | 162 | 4.4 | 630 | 410 | 69 | 0.44 | 2.9 | | 18-19 | 2001 | 20030919 | 0105 | 50 | 8.2 | 413 | 190 | 6.8 | 364 | 116 | 22 | 0.89 | 1.6 | | | | | | | | | | | | | | | | | Date | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | Tria-
zine
screen,
wat unf
ELISA,
ug/L as
atrazin
(34757) | Suspended sediment concentration mg/L (80154) | Runoff
volume
thousands
of cubic
feet
(99904) | |--------------|--|---|--|---|--|---|--| | OCT 2002 | | | | | | | | | 04-04 | 0.021 | 1.38 | 0.419 | 1.93 | | | 28 | | FEB 2003 | | | ***** | | | | | | 20-21 | 1.09 | 2.80 | 1.17 | 1.70 | | 149 | 78 | | MAR | | | | | | | | | 14-15 | 1.36 | 1.02 | 1.25 | 2.65 | | 1,090 | 190 | | MAR | | | | | | | | | 15-16 | 1.58 | 1.46 | 1.54 | 2.69 | | 1,200 | 210 | | MAR | 1 41 | 2.20 | 1 17 | 1.02 | | 720 | 0.6 | | 16-17
MAR | 1.41 | 2.30 | 1.17 | 1.83 | | 730 | 86 | | MAK
21-21 | 0.400 | 5.42 | 0.300 | 0.960 | | 938 | 24 | | MAY | 0.400 | 3.42 | 0.300 | 0.900 | | 930 | 24 | | 11-11 | 0.110 | 3.18 | 0.105 | 0.747 | 0.3 | 754 | 18 | | MAY | 0.110 | 5.10 | 0.100 | 0., ., | 0.2 | , | 10 | | 11-11 | 0.033 | 2.52 | 0.052 | 0.112 | 0.2 | 44 | 14 | | MAY | | | | | | | | | 14-14 | 0.018 | 2.31 | 0.039 | 0.108 | | 49 | 14 | | JUL | | | | | | | | | 03-03 | 0.035 | 1.77 | 0.113 | 0.591 | | 410 | 6.3 | | SEP | 0.012 | 1.50 | 0.107 | 0.274 | | 116 | | | 18-19 | < 0.013 | 1.58 | 0.197 | 0.374 | | 116 | 6.0 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | STORM
BEGINNING
DATE | STORM
BEGINNING
TIME | STORM
ENDING
DATE | STORM
ENDING
TIME | STORM RUNOFF
VOLUME, THOUSANDS
OF CUBIC FEET | PEAK
DISCHARGE
(CFS) | NUMBER OF
SUBSAMPLES | |----------------------------|----------------------------|-------------------------|-------------------------|--|----------------------------|-------------------------| | 10-04-02 | 0300 | 10-04-02 | 0810 | 28.40 | 6.11 | 40 | | 02-20-03 | 1415 | 02-22-03 | 0245 | 81.181 | 1.94 | 41 | | 03-14-03 | 0945 | 03-15-03 | 0759 | 196.404 | 10.24 | 39 | | 03-15-03 | 0800 | 03-16-03 | 0759 | 221.988 | 10.12 | 32 | | 03-16-03 | 0800 | 03-17-03 | 0930 | 87.782 | 3.16 | 16 | | 03-21-03 | 0845 | 03-21-03 | 2330 | 30.983 | 1.17 | 11 | | 05-11-03 | 0130 | 05-11-03 | 0900 | 19.768 | 2.07 | 20
 | 05-11-03 | 1030 | 05-11-03 | 1800 | 14.705 | 0.64 | 16 | | 05-14-03 | 0630 | 05-14-03 | 1930 | 16.701 | 0.50 | 16 | | 07-03-03 | 0335 | 07-03-03 | 0745 | 6.696 | 1.43 | 12 | | 09-18-03 | 1855 | 09-19-03 | 0200 | 7.430 | 0.45 | 10 | | | | | | | | | #### 053793305 TRAVERSE VALLEY CREEK, NORTH TRIBUTARY, NEAR INDEPENDENCE, WI—Continued PERIOD OF RECORD.--September 2001 to current year. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 Jan. 7, 31, Feb. 2, 21, Mar. 16-17, and Apr. 5-6 because recorded precipitation interpreted as collector snowmelt. EXTREMES FOR PERIOD OF RECORD.-- Maximum daily rainfall, 2.36 in., June 3, 2002. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.80 in., Sept. 18. # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|--------------|--------------|------|------|------|--------------|------|--------------|------|------|--------------|------| | 1 2 | 0.00
0.13 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.03
0.02 | 0.00 | | 2 3 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 1.36 | 0.20 | 0.00 | | 4 | 1.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.77 | 0.00 | 0.54 | 0.00 | 0.00 | | 5 | 0.06 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.69 | 0.00 | 0.00 | 0.00 | 0.00 | | 6 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.65 | 0.16 | 0.11 | 0.00 | | 7 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | 0.48 | 0.00 | 0.00 | | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.80 | 0.01 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.01 | 0.23 | 0.00 | 0.00 | | 10 | 0.54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0.55 | 0.13 | 0.00 | 0.00 | | 11 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.44 | 0.00 | 0.06 | 0.00 | 0.00 | | 12 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.73 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.84 | 0.00 | 0.38 | 0.00 | 0.00 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | | 18 | 0.21 | 0.00 | 0.42 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.40 | 0.00 | 0.00 | 1.80 | | 19 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.78 | 0.42 | 0.00 | 0.00 | 0.00 | 0.11 | | 20 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.13 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | | 21 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 0.00 | | 25 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.05 | 0.00 | | 26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | 0.00 | 0.09 | | 27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.88 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.03 | | 28 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.03 | 0.06 | 0.62 | 0.00 | 0.00 | 0.00 | | 29 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.22 | 0.00 | 0.01 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | | 0.69 | 0.00 | | | TOTAL | 3.33 | 0.03 | 0.44 | 0.00 | 0.00 | 1.85 | 2.94 | 5.53 | 3.96 | 4.10 | 0.42 | 2.81 | CAL YR 2002 TOTAL 32.76 WTR YR 2003 TOTAL 25.41 #### 053793306 TRAVERSE VALLEY CREEK, SOUTH TRIBUTARY, NEAR INDEPENDENCE, WI LOCATION.--Lat 44°23'44", long 91°33'13" in SE ½ sec.11, T.22 N., R.10 W., Buffalo County, Hydrologic Unit 07040005, 1,300 ft upstream of confluence with north unnamed tributary at Bragger family farm, 6.7 mi west-northwest of Independence. DRAINAGE AREA.--0.35 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 2001 to current year. GAGE.--Water-stage recorder. Water levels are controlled by a 3.0 ft H flume. Elevation of gage is 965 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG SEP 0.053 0.046 0.030 0.026 0.031 0.027 0.030 0.024 0.027 0.023 0.021 0.016 0.048 0.050 0.033 0.025 0.031 0.030 0.024 0.028 0.0200.016 0.0230.0233 0.048 0.025 0.022 0.022 0.048 0.025 0.031 0.029 0.029 0.047 0.0210.016 0.027 4 0.144 0.048 0.025 0.025 0.030 0.021 0.027 0.028 0.029 0.0200.016 0.049 5 0.059 0.026 0.027 0.028 0.021 0.026 0.039 0.028 0.024 0.020 0.016 0.021 6 0.068 0.0480.025 0.026 0.027 0.020 0.0250.033 0.032 0.025 0.016 0.056 0.048 0.026 0.027 0.026 0.019 0.024 0.030 0.031 0.029 0.021 0.016 8 0.055 0.050 0.025 0.028 0.026 0.018 0.023 0.028 0.036 0.023 0.021 0.016 9 0.050 0.025 0.027 0.026 0.039 0.029 0.0520.016 0.023 0.023 0.0210.016 10 0.050 0.026 0.026 0.023 0.034 0.034 0.024 0.021 0.071 0.026 0.017 0.016 11 0.056 0.047 0.029 0.025 0.026 0.060 0.024 0.095 0.030 0.023 0.020 0.016 0.059 0.047 0.029 0.025 0.026 0.042 0.023 0.048 0.027 0.023 0.020 0.020 12 0.052 0.047 0.025 0.025 0.043 0.024 0.039 0.027 0.022 0.020 0.018 13 0.027 0.052 0.025 0.025 0.027 0.023 0.059 0.026 0.022 0.020 0.018 0.047 1.22 14 1.72 0.052 15 0.045 0.026 0.025 0.027 0.027 0.043 0.026 0.020 0.020 0.017 16 0.051 0.045 0.025 0.024 0.027 1.37 0.082 0.039 0.025 0.022 0.021 0.017 17 0.0510.0450.026 0.024 0.028 0.236 0.044 0.037 0.027 0.023 0.020 0.016 18 0.057 0.046 0.034 0.023 0.029 0.090 0.039 0.036 0.030 0.023 0.019 0.030 19 0.051 0.047 0.028 0.023 0.029 0.087 0.050 0.039 0.026 0.022 0.020 0.023 20 0.050 0.046 0.028 0.023 0.261 0.072 0.051 0.034 0.025 0.022 0.019 0.017 21 0.045 0.027 0.150 0.207 0.045 0.029 0.024 0.022 0.058 e0.022 0.019 0.018 0.029 $0.02\overline{1}$ 22 0.044 e0.022 0.024 0.050 0.027 0.040 0.048 0.040 0.018 0.017 23 0.025 0.049 0.046 0.026 e0.021 0.026 0.048 0.036 0.029 0.020 0.017 0.017 24 0.050 0.043 0.025 e0.023 0.025 0.052 0.034 0.029 0.027 0.020 0.017 0.017 25 0.051 0.041 0.025 e0.024 0.025 0.041 0.032 0.029 0.027 0.020 0.018 0.015 e0.025 26 0.049 0.038 0.025 0.026 0.036 0.030 0.029 0.025 0.020 0.018 0.014 27 0.030 0.029 0.0490.035 0.026 e0.026 0.026 0.1280.023 0.020 0.0170.014 28 0.0490.036 0.1270.025 0.016 0.028 e0.0270.026 0.028 0.030 0.020 0.015 29 0.025 0.0490.043 0.028 e0.0280.038 0.027 0.028 0.019 0.017 0.015 30 0.048 0.037 0.028 0.029 ---0.0320.027 0.030 0.023 0.020 0.016 0.015 0.048 0.026 0.031 ---0.031 0.028 0.023 0.015 TOTAL 1.737 1.355 0.832 0.782 1.133 5.932 0.976 1.088 0.819 0.717 0.594 0.509 MEAN 0.056 0.045 0.027 0.025 0.040 0.19 0.033 0.035 0.027 0.023 0.019 0.017 0.050 0.031 1.72 0.082 0.095 0.036 0.021 MAX 0.144 0.034 0.261 0.047 0.030 MIN 0.048 0.035 0.025 0.021 0.025 0.016 0.023 0.022 0.023 0.019 0.015 0.014 **CFSM** 0.16 0.13 0.08 0.07 0.12 0.55 0.09 0.10 0.08 0.07 0.05 0.05 0.06 0.05 IN. 0.18 0.14 0.09 0.08 0.63 0.10 0.12 0.09 0.08 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2001 - 2003, BY WATER YEAR (WY) 0.077 0.042 0.036 0.038 MEAN 0.050 0.049 0.035 0.028 0.0440.13 0.044 0.048 0.052 0.046 0.19 0.051 MAX 0.056 0.0420.030 0.056 0.062 0.13 0.061 0.052 (2002)(WY) (2003)(2002)(2002)(2002)(2002)(2003)(2002)(2002)(2002)(2002)(2002)0.020 MIN 0.0440.0470.0290.026 0.0420.061 0.0320.035 0.028 0.0220.019 (WY) (2002)(2003)(2003)(2003)(2003)(2002)(2003)(2003)(2003)(2003)(2003)(2003)SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 2001 - 2003 ANNUAL TOTAL 20.570 16.720 0.0460.051 ANNUAL MEAN 0.056 2002 HIGHEST ANNUAL MEAN 0.057 LOWEST ANNUAL MEAN 0.046 2003 1.72 HIGHEST DAILY MEAN 1.23 Mar 15, 2003 Jun 3 Mar 15 1.72 LOWEST DAILY MEAN (a)0.025Jan 1-3 0.014 Sep 26,27 0.014 Sep 26,27, 2003 ANNUAL SEVEN-DAY MINIMUM 0.025 Dec 3 0.015 Sep 24 0.015 Sep 24, 2003 Jun 3, 2002 MAXIMUM PEAK FLOW 6.67 Mar 15 31.9 MAXIMUM PEAK STAGE 1.55 3.04 3, 2002 Mar 15 Jun Sep 26, 2003 INSTANTANEOUS LOW FLOW 0.013 Sep 26 0.013 ANNUAL RUNOFF (CFSM) 0.16 0.13 0.15 ANNUAL RUNOFF (INCHES) 2.19 1.78 1.99 10 PERCENT EXCEEDS 0.07 0.05 0.07 50 PERCENT EXCEEDS 0.05 0.03 0.04 0.02 0.02 90 PERCENT EXCEEDS ⁽a) Also occurred Jan. 7, 19, Dec. 3-4, 6, 8-9, 13-14, 16, 24-26 ⁽e) Estimated due to ice effect or missing record # 053793306 TRAVERSE VALLEY CREEK, SOUTH TRIBUTARY, NEAR INDEPENDENCE, WI—Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- October 2001 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: October 2001 to current year. INSTRUMENTATION.--Continuous water temperature recorder and water-quality sampler since October 2001. REMARKS.--Records represent water temperature at sensor within 0.5°C. Max, Min, and Mean water temperature estimated May 8. Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples collected during periods of non-stormflow are grab samples. Samples during storms are composite samples collected by an automatic point sampler. The sample volume is the stream discharge that occurs between the time of the first sample and the last sample. The storm volume is the stream discharge that occurs between the storm and the end of the storm. An approximate storm load (in pounds) can be computed by multiplying the storm volume (in thousands of cubic feet) by the constituent (in mg/L) by a factor of 0.0624. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum temperature, 19.5°C, June 26, 30, and July 21, 2002; minimum, 0.0°C, Feb. 20 and Mar.
14-16, 2003. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum temperature, 16.5°C, Apr. 14; minimum, 0.0°C, Feb. 20 and Mar. 14-16. 3.6.4.7. 3.60.7. 3.60.43.7 #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |-------------|------|--------|------|-----|--------|------------|-----|--------|------|-----|-------|------------| | | (| ОСТОВЕ | 2 | N | OVEMBE | ER | D | ECEMBE | ER | J | ANUAR | Y | | 1 | 14.0 | 11.0 | 12.5 | 5.0 | 4.5 | 4.5 | 6.0 | 3.5 | 5.0 | 5.5 | 4.5 | 5.0 | | 2 | 12.0 | 10.5 | 11.0 | 6.0 | 4.0 | 4.5 | 4.5 | 3.5 | 4.0 | 5.5 | 4.0 | 4.5 | | 2
3
4 | 11.0 | 10.5 | 10.5 | 6.0 | 4.0 | 5.0 | 5.0 | 3.5 | 4.5 | 5.5 | 3.5 | 4.5 | | | 13.0 | 10.0 | 11.5 | 6.0 | 4.5 | 5.0
5.5 | 6.0 | 5.0 | 5.0 | 5.5 | 4.0 | 5.0 | | 5 | 11.0 | 9.0 | 10.0 | 6.0 | 4.5 | 3.3 | 5.0 | 3.5 | 4.5 | 6.0 | 5.0 | 5.5 | | 6 | 11.0 | 9.0 | 10.0 | 7.0 | 4.5 | 6.0 | 5.5 | 4.0 | 5.0 | 5.0 | 4.5 | 5.0 | | 7 | 9.0 | 7.5 | 8.5 | 7.5 | 4.5 | 6.5 | 6.0 | 4.5 | 5.5 | 6.5 | 5.0 | 5.5 | | 8 | 11.5 | 8.5 | 10.0 | 8.5 | 6.0 | 7.5 | 4.5 | 3.0 | 4.0 | 6.5 | 5.5 | 5.5 | | 9 | 10.5 | 7.5 | 9.0 | 8.5 | 6.0 | 7.5 | 5.5 | 3.0 | 4.5 | 5.5 | 4.0 | 5.0 | | 10 | 12.0 | 8.5 | 10.0 | 9.0 | 7.5 | 8.0 | 6.5 | 4.5 | 5.5 | 4.0 | 3.0 | 3.5 | | 11 | 12.0 | 9.0 | 10.5 | 7.5 | 5.0 | 6.5 | 6.5 | 4.5 | 5.5 | 4.0 | 2.5 | 3.0 | | 12 | 11.5 | 8.5 | 10.5 | 6.5 | 4.5 | 5.5 | 6.5 | 4.5 | 5.5 | 4.5 | 3.0 | 3.5 | | 13 | 9.0 | 7.0 | 8.0 | 6.5 | 4.0 | 5.5 | 6.0 | 4.5 | 5.5 | 4.0 | 2.5 | 3.5 | | 14 | 9.5 | 6.5 | 8.0 | 6.0 | 4.0 | 5.5 | 6.5 | 4.5 | 5.5 | 3.5 | 2.5 | 3.0 | | 15 | 9.5 | 6.5 | 8.0 | 5.0 | 3.5 | 4.0 | 6.5 | 5.0 | 6.0 | 4.0 | 2.5 | 3.0 | | 16 | 8.0 | 5.0 | 6.5 | 5.0 | 4.0 | 4.5 | 5.5 | 4.0 | 5.0 | 4.0 | 3.0 | 3.5 | | 17 | 8.5 | 6.5 | 7.5 | 4.5 | 3.5 | 4.0 | 6.0 | 5.5 | 5.5 | 3.5 | 2.5 | 3.0 | | 18 | 9.5 | 6.5 | 8.0 | 5.0 | 3.5 | 4.0 | 6.5 | 4.5 | 6.0 | 4.0 | 2.5 | 3.5 | | 19 | 8.0 | 7.0 | 7.5 | 5.0 | 4.0 | 4.5 | 6.5 | 5.5 | 6.0 | 4.5 | 2.5 | 3.5 | | 20 | 7.0 | 6.0 | 6.5 | 6.0 | 4.0 | 5.0 | 6.0 | 5.0 | 5.5 | 4.0 | 2.5 | 3.0 | | 21 | 6.5 | 5.5 | 6.0 | 5.5 | 4.5 | 5.0 | 5.5 | 4.5 | 5.0 | 3.5 | 2.0 | 2.5 | | 22 | 7.5 | 6.0 | 6.5 | 5.0 | 4.0 | 4.5 | 5.5 | 4.5 | 5.0 | 3.0 | 2.0 | 2.5 | | 23 | 7.5 | 5.5 | 6.5 | 5.5 | 4.0 | 5.0 | 5.0 | 4.0 | 4.5 | 3.0 | 1.5 | 2.5 | | 24 | 9.5 | 5.5 | 6.5 | 4.5 | 4.0 | 4.0 | 5.5 | 4.0 | 4.5 | 4.0 | 3.0 | 3.5 | | 25 | 7.5 | 6.5 | 7.0 | 4.5 | 3.5 | 4.0 | 5.5 | 4.0 | 4.5 | 4.5 | 3.0 | 3.5
3.5 | | 26 | 8.0 | 6.5 | 7.0 | 5.0 | 3.5 | 4.0 | 5.0 | 3.5 | 4.0 | 3.0 | 2.0 | 2.5 | | 27 | 7.5 | 5.0 | 6.5 | 5.5 | 3.5 | 4.0 | 5.5 | 4.0 | 5.0 | 4.5 | 2.0 | 3.5 | | 28 | 8.0 | 6.0 | 7.0 | 5.5 | 4.0 | 4.5 | 6.0 | 4.5 | 5.5 | 4.5 | 3.0 | 4.0 | | 29 | 8.0 | 6.5 | 7.5 | 5.0 | 4.0 | 4.5 | 6.5 | 4.5 | 5.5 | 4.0 | 2.5 | 3.0 | | 30 | 8.0 | 6.0 | 7.0 | 4.0 | 3.5 | 3.5 | 6.5 | 4.5 | 5.5 | 5.0 | 3.5 | 4.5 | | 31 | 6.5 | 4.5 | 5.5 | | | | 4.5 | 4.0 | 4.5 | 5.5 | 2.5 | 4.5 | | MONTH | 14.0 | 4.5 | 8.3 | 9.0 | 3.5 | 5.1 | 6.5 | 3.0 | 5.1 | 6.5 | 1.5 | 3.8 | ## 053793306 TRAVERSE VALLEY CREEK, SOUTH TRIBUTARY, NEAR INDEPENDENCE, WI—Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|--|---|--|--|--|--|--|--|--|---|--| | | | FEBRUARY | T. | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 4.0
3.5
3.5
2.0
3.5 | 3.0
2.0
2.0
1.5
1.0 | 3.5
3.5
3.0
1.5
2.5 | 5.5
4.0
4.0
4.5
4.5 | 2.5
1.5
1.5
2.0
1.0 | 3.5
2.5
3.0
3.0
2.5 | 11.5
9.5
4.5
4.0
7.0 | 4.0
4.5
3.5
3.0
2.5 | 7.0
6.5
4.0
3.5
4.5 | 15.0
16.0
16.0
10.5
9.0 | 7.0
6.0
5.5
6.0
7.0 | 10.0
9.5
9.5
7.5
8.0 | | 6
7
8
9
10 | 3.0
3.0
4.0
4.0
3.5 | 1.0
0.5
1.5
1.0 | 2.0
2.0
3.0
2.5
2.0 | 5.5
5.5
4.0
3.0
4.0 | 1.5
2.5
1.5
0.5
0.5 | 3.5
4.0
2.5
1.5
2.0 | 7.5
5.0
11.0
12.0
13.0 | 2.0
2.5
2.5
2.5
3.0 | 4.0
3.5
5.5
6.0
7.0 | 14.0
13.0
13.0
13.5
12.5 | 7.5
7.0
7.0
7.5
7.0 | 9.0
9.0
9.5
9.5
9.0 | | 11
12
13
14
15 | 4.0
3.0
4.0
4.5
4.0 | 1.5
1.5
2.5
2.5
2.0 | 2.5
2.0
3.0
3.5
3.0 | 6.0
3.5
6.5
5.0
1.5 | 0.5
1.5
0.5
0.0
0.0 | 3.0
2.5
3.0
1.5
0.5 | 14.0
14.0
13.5
16.5
16.0 | 4.5
4.0
4.0
7.0
8.5 | 8.0
8.0
8.0
10.5
11.0 | 9.0
11.5
12.5
11.5
13.0 | 8.0
7.0
7.0
7.5
7.0 | 8.5
9.0
9.0
8.5
9.0 | | 16
17
18
19
20 | 4.0
4.5
5.5
5.5
6.0 | 1.5
2.0
2.5
2.5
0.0 | 2.5
3.0
4.0
4.0
2.5 | 1.0
2.5
3.0
8.5
6.0 | 0.0
0.5
1.5
1.0 | 0.5
1.5
2.5
3.5
3.5 | 9.0
6.5
7.0
7.5
7.5 | 5.0
5.0
5.5
5.5
6.5 | 6.5
5.5
6.0
6.5
6.5 | 13.0
13.0
13.5
12.0
13.0 | 7.0
7.5
7.5
8.5
7.0 | 9.5
9.5
10.0
9.5
9.0 | | 21
22
23
24
25 | 2.0
4.0
3.5
3.5
4.0 | 0.5
1.5
2.0
1.5
1.5 | 1.0
2.5
2.5
2.0
2.5 | 4.5
6.0
8.0
6.5
7.5 | 1.0
2.5
4.0
3.0
4.0 | 2.5
4.0
5.0
5.0
5.0 | 10.0
11.5
12.0
12.0
13.5 | 5.5
5.0
5.0
5.5
6.0 | 7.0
7.5
8.0
8.0
9.0 | 12.5
10.0
13.0
13.5
13.5 | 6.5
7.0
7.5
7.0
7.0 | 9.0
8.0
9.5
9.5
9.5 | | 26
27
28
29
30 | 5.0
5.5
6.0
 | 1.5
2.5
2.5 | 2.5
3.5
4.0 | 8.5
5.0
3.5
9.5
10.0 | 4.0
1.5
1.0
2.0
1.5 | 5.5
3.5
2.5
4.5
5.0 | 14.0
12.5
15.5
13.5
11.0 | 5.5
7.0
6.5
6.0
7.0 | 9.0
9.5
10.0
9.0
8.0 | 13.0
14.0
13.5
13.0
14.0 | 7.5
7.5
8.0
8.0
8.0 | 9.5
10.0
10.0
9.5
10.0 | | 31 | | | | 8.5 | 2.5 | 5.0 | | | | 13.0 | 8.0 | 10.0 | | MONTH | 6.0 | 0.0 | 2.7 | 10.0 | 0.0 | 3.1 | 16.5 | 2.0 | 7.1 | 16.0 | 5.5 | 9.2 | | MONTH | 6.0 | 0.0
JUNE | 2.7 | 10.0 | 0.0
JULY | 3.1 | 16.5 | 2.0
AUGUST | 7.1 | 16.0
S | 5.5
EPTEMBI | 9.2
ER | | MONTH 1 2 3 4 5 | 13.0
11.0
13.0
13.0
13.5 | | 9.5
9.0
10.0
10.0
10.0 | 12.5
14.5
15.5
12.0
12.0 | | 3.1
10.5
11.0
12.0
11.0
11.0 | | | | | | | | 1
2
3
4 | 13.0
11.0
13.0
13.0 | JUNE
7.5
8.0
8.5
8.0 | 9.5
9.0
10.0
10.0 | 12.5
14.5
15.5
12.0 | JULY
9.5
9.5
10.0
10.0 | 10.5
11.0
12.0
11.0 | 12.5
12.0
12.0
11.5 | 10.5
10.5
10.5
10.5
10.0 | 11.0
11.0
11.0
11.0 | 12.0
12.0
11.5
12.0 | 10.0
9.5
10.0
9.5 | ER
11.0
11.0
11.0 | | 1
2
3
4
5
6
7
8
9 | 13.0
11.0
13.0
13.0
13.5
10.0
10.5
12.0
13.0 | JUNE 7.5 8.0 8.5 8.0 8.0 8.5 9.0 8.5 8.5 8.5 | 9.5
9.0
10.0
10.0
10.0
9.5
9.5
10.0 | 12.5
14.5
15.5
12.0
12.0
11.5
12.5
11.5 | JULY 9.5 9.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10 | 10.5
11.0
12.0
11.0
11.0
10.5
11.0 | 12.5
12.0
12.0
11.5
11.5 | AUGUST 10.5 10.5 10.5 10.0 10.0 10.5 10.5 10. | 11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0 | 12.0
12.0
11.5
12.0
12.0
12.0 | 10.0
9.5
10.0
9.5
9.0
10.0
10.5
10.5
10.5 | 11.0
11.0
11.0
10.5
10.5
11.0
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.0
11.0
13.0
13.5
10.0
10.5
12.0
13.0
12.5
11.0
12.0
13.0 | JUNE 7.5 8.0 8.5 8.0 8.0 8.5 9.0 8.5 9.0 8.5 9.0 9.0 | 9.5
9.0
10.0
10.0
10.0
9.5
10.0
10.0
9.5
10.0
10.5
10.5 | 12.5
14.5
15.5
12.0
12.0
11.5
12.5
11.5
10.5
11.5
12.0
12.0
11.5 | JULY 9.5 9.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 | 10.5
11.0
12.0
11.0
11.0
10.5
10.5
10.5
10.5
10.5
10 | 12.5
12.0
12.0
11.5
11.5
13.0
12.5
12.5
12.0
13.0
12.5
13.0
12.5 | AUGUST 10.5 10.5 10.5 10.0 10.0 10.5 10.5 10. | 11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0 | 12.0
12.0
11.5
12.0
12.0
12.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | 10.0
9.5
10.0
9.5
9.0
10.0
10.5
10.5
10.5
11.0
11.5
10.5
10 |
11.0
11.0
11.0
10.5
10.5
11.0
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 13.0
11.0
13.0
13.0
13.5
10.0
10.5
12.0
13.0
12.5
11.0
12.0
13.0
13.0
13.0
13.0 | JUNE 7.5 8.0 8.5 8.0 8.5 9.0 8.5 8.5 9.0 8.5 9.0 9.0 9.0 9.0 9.0 9.0 8.5 | 9.5
9.0
10.0
10.0
10.0
9.5
10.0
10.0
10.0
10.5
10.5
10.5
10.5
10.5
10.5 | 12.5
14.5
15.5
12.0
12.0
11.5
12.5
11.5
10.5
11.5
12.0
12.0
12.0
12.0
12.5
12.5
12.5 | JULY 9.5 9.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10 | 10.5
11.0
12.0
11.0
11.0
10.5
10.5
10.5
10.5
10.5
10 | 12.5
12.0
12.0
11.5
11.5
13.0
12.5
12.5
12.0
13.0
12.5
13.0
12.5
13.0
12.5
13.0 | AUGUST 10.5 10.5 10.0 10.0 10.5 10.5 10.5 10. | 11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0 | 12.0
12.0
11.5
12.0
12.0
12.0
12.5
12.5
12.5
12.5
11.5
12.0
11.5
12.0
12.5
12.0 | 10.0
9.5
10.0
9.5
9.0
10.0
10.5
10.5
10.5
11.0
11.5
10.5
10 | 11.0
11.0
11.0
10.5
10.5
11.0
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 13.0
11.0
13.0
13.5
10.0
10.5
12.0
13.0
12.5
11.0
12.0
13.0
13.0
13.0
13.0
13.0
12.5
13.0
12.5
13.0 | JUNE 7.5 8.0 8.5 8.0 8.0 8.5 9.0 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 9.5 9.5 9.5 9.5 | 9.5
9.0
10.0
10.0
10.0
9.5
10.0
10.0
10.0
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.0
10.0 | 12.5
14.5
15.5
12.0
12.0
11.5
12.5
11.5
10.5
11.5
12.0
12.0
11.5
12.5
12.0
12.0
13.0
12.5
13.0 | JULY 9.5 9.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10 | 10.5
11.0
12.0
11.0
11.0
10.5
10.5
10.5
10.5
10.5
10 | 12.5
12.0
12.0
11.5
11.5
13.0
12.5
12.5
12.0
13.0
12.5
13.0
12.5
13.0
12.5
13.5
13.0
12.5
13.5
13.5
13.5 | AUGUST 10.5 10.5 10.0 10.0 10.5 10.5 10.5 10. | 11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0 | 12.0
12.0
11.5
12.0
12.0
12.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5
11.5
12.0
11.5
12.0
11.5
12.0
11.5 | 10.0
9.5
10.0
9.5
9.0
10.0
10.5
10.5
10.5
10.5
10.5
10.5
10 | 11.0
11.0
11.0
10.5
10.5
11.0
11.0
11.0 | TREMPEALEAU RIVER BASIN ### 053793306 TRAVERSE VALLEY CREEK, SOUTH TRIBUTARY, NEAR INDEPENDENCE, WI—Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Chloride,
water,
fltrd,
mg/L
(00940) | Residue
on
evap.
at
105degC
wat unf
mg/L
(00500) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Residue
vola-
tile,
sus-
pended,
mg/L
(00535) | Ammonia
+ org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | |----------------|-------|--------------------------------------|---|---|--|--|--|---|---|---|--|---|--| | OCT 2002 | 1.420 | 0.05 | 70 | 0.2 | 500 | 262 | | 222 | 2 | 2 | 0.14 | 0.22 | 0.012 | | 25
NOV | 1420 | 0.05 | 70 | 8.2 | 523 | 262 | 6.0 | 322 | 3 | <2 | < 0.14 | 0.23 | < 0.013 | | 13 | 1245 | 0.05 | 70 | 8.2 | 529 | 262 | 5.3 | 320 | <2 | <2 | 0.47 | < 0.14 | 0.021 | | DEC | | | | | | | | | | | | | | | 12
JAN 2003 | 1554 | 0.03 | 70 | 8.0 | 524 | 255 | 5.1 | 324 | 3 | <2 | 0.39 | < 0.14 | < 0.013 | | 14 | 1722 | 0.02 | 70 | 7.8 | 515 | 258 | 5.4 | 316 | 7 | | 0.18 | < 0.14 | < 0.013 | | FEB | 1020 | 0.02 | 70 | 0.2 | 510 | 057 | | 216 | .0 | .0 | 0.26 | .0.14 | 0.022 | | 18
MAR | 1020 | 0.02 | 70 | 8.3 | 513 | 257 | 5.5 | 316 | <2 | <2 | 0.26 | < 0.14 | 0.023 | | 13 | 1042 | 0.02 | 70 | 8.2 | 524 | 255 | 6.4 | 318 | 2 | <2 | 0.59 | 0.43 | 0.061 | | APR | 1015 | 0.02 | 70 | 0.2 | 510 | 250 | 6.5 | 220 | 4 | .0 | .0.14 | 0.22 | 0.020 | | 30
MAY | 1215 | 0.03 | 70 | 8.2 | 519 | 258 | 6.5 | 330 | 4 | <2 | < 0.14 | 0.22 | 0.030 | | 20 | 1235 | 0.03 | 70 | 8.1 | 531 | 259 | 6.9 | 326 | 4 | <2 | 0.27 | 0.15 | 0.021 | | JUN | 1105 | 0.02 | 70 | | | | | | 16 | 2 | 0.10 | 0.22 | 0.021 | | 18
JUL | 1125 | 0.03 | 70 | | | | | | 16 | 3 | 0.19 | 0.22 | 0.031 | | 17 | 1045 | 0.02 | 70 | 8.1 | 525 | 262 | 6.1 | 324 | 5 | <2 | 0.22 | < 0.14 | 0.023 | | AUG
14 | 1320 | 0.02 | 70 | 8.0 | 522 | 264 | 5.4 | 334 | 2 | <2 | 0.39 | < 0.14 | < 0.013 | | 17 | 1320 | 0.02 | 70 | 0.0 | 322 | 204 | 5.4 | 334 | 2 | ~2 | 0.59 | \0.14 | \0.013 | | | Nitrite | | | |----------------|---------|---------|---------| | | + | | | | | nitrate | Phos- | Phos- | | | water | phorus, | phorus, | | | fltrd, | water, | water, | | | mg/L | fltrd, | unfltrd | | Date | as N | mg/L | mg/L | | | (00631) | (00666) | (00665) | | OCT 2002 | | | | | 25 | 1.44 | 0.029 | 0.049 | | NOV | | | | | 13 | 1.54 | 0.026 | 0.026 | | DEC | | | | | 12 | 1.65 | 0.027 | 0.045 | | JAN 2003
14 | 1.76 | 0.024 | 0.048 | | FEB | 1.70 | 0.024 | 0.048 | | 18 | 1.69 | 0.016 | 0.024 | | MAR | 1.07 | 0.010 | 0.021 | | 13 | 1.55 | 0.081 | 0.100 | | APR | | | | | 30 | 1.50 | 0.018 | 0.037 | | MAY | 1.00 | 0.024 | 0.040 | | 20
JUN | 1.99 | 0.024 | 0.040 | | 18 | 1.61 | 0.029 | 0.069 | | JUL | 1.01 | 0.027 | 0.007 | | 17 | 1.56 | 0.025 | 0.050 | | AUG | | | | | 14 | 1.38 | 0.026 | 0.047 | | | | | | #### 053793306 TRAVERSE VALLEY CREEK, SOUTH TRIBUTARY, NEAR INDEPENDENCE, WI—Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 #### COMPOSITE SAMPLES | | | | | | CO | MPOSITE | SAMPLES | | | | | | | |-------------------------------|-------------------|----------------|----------------|---|---|--|--|--|---|---|---|---|---| | Beginning
date | Beginning
time | Ending
date | Ending
time | Sam-
pling
method,
code
(82398) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Chloride,
water,
fltrd,
mg/L
(00940) | Residue
on
evap.
at
105degC
wat unf
mg/L
(00500) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Residue
vola-
tile,
sus-
pended,
mg/L
(00535) | Ammonia
+
org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | | OCT 2002
04-04
FEB 2003 | 0308 | 20021004 | 0806 | 50 | 7.7 | 270 | 122 | 4.5 | 716 | 528 | 128 | 0.53 | 4.1 | | 20-21 | 1434 | 20030221 | 2207 | 50 | 7.1 | 313 | 103 | 15.7 | 338 | 88 | 16 | 2.7 | 2.0 | | MAR
14-14 | 1239 | 20030314 | 1453 | 50 | 6.8 | 214 | 58 | 19.4 | 870 | 682 | 88 | 2.2 | 6.6 | | MAR
14-15 | 1717 | 20030315 | 0238 | 50 | 7.0 | 213 | 67 | 11.0 | 378 | 192 | 34 | 2.5 | 4.7 | | MAR
15-15
MAR | 1106 | 20030315 | 1529 | 50 | 6.9 | 175 | 57 | 7.9 | 794 | 632 | 66 | 2.9 | 6.1 | | 16-17 | 0954 | 20030317 | 1405 | 50 | 7.2 | 224 | 72 | 11.6 | 650 | 442 | 40 | 3.1 | 5.1 | | MAR
21-21
MAY | 1221 | 20030321 | 2147 | 50 | 8.1 | 284 | 102 | 6.6 | 308 | 89 | 12 | 1.8 | 2.4 | | 11-11 | 0252 | 20030511 | 0843 | 50 | 8.0 | 434 | 199 | 6.7 | 438 | 176 | 26 | 0.42 | 1.2 | | MAY
11-11 | 1049 | 20030511 | 1817 | 50 | 8.1 | 534 | 237 | 9.7 | 408 | 71 | 9 | 0.37 | 0.75 | | MAY
14-14 | 0925 | 20030514 | 1948 | 50 | 8.3 | 487 | 231 | 7.7 | 336 | 31 | 5 | 0.33 | 0.44 | | JUL
03-03
SEP | 0352 | 20030703 | 0703 | 50 | 8.0 | 336 | 157 | 5.9 | 524 | 312 | 56 | 0.92 | 2.4 | | 18-18 | 2103 | 20030918 | 2355 | 50 | 8.2 | 465 | 199 | 13.0 | 378 | 74 | 15 | 1.1 | 1.4 | | Date | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | Triazine
screen,
wat unf
ELISA,
ug/L as
atrazin
(34757) | Suspended
sediment concentration mg/L (80154) | Runoff
volume
thousands
of cubic
feet
(99904) | |--------------|--|---|--|---|---|---|--| | OCT 2002 | | | | | | | | | 04-04 | < 0.013 | 1.09 | 0.522 | 1.72 | | 538 | 7.4 | | FEB 2003 | | | | | | | | | 20-21
MAR | 0.270 | 2.17 | 1.75 | 2.14 | | 89 | 32 | | MAK
14-14 | 0.244 | 0.985 | 0.866 | 2.39 | | 694 | 32 | | MAR | 0.244 | 0.703 | 0.000 | 2.37 | | 074 | 32 | | 14-15 | 0.851 | 1.26 | 1.35 | 1.85 | | 195 | 29 | | MAR | | | | | | | | | 15-15
MAD | 0.872 | 0.913 | 1.49 | 1.64 | | 643 | 85 | | MAR
16-17 | 1.20 | 1.47 | 1.49 | 2.68 | | 468 | 110 | | MAR | 1.20 | 1.47 | 1.77 | 2.00 | | 400 | 110 | | 21-21 | 0.430 | 3.95 | 0.440 | 0.619 | | 89 | 15 | | MAY | | | | | | | | | 11-11 | 0.027 | 2.70 | 0.075 | 0.340 | 0.1 | 172 | 3.4 | | MAY
11-11 | 0.032 | 5.25 | 0.055 | 0.132 | | 65 | 2.4 | | MAY | 0.032 | 3.23 | 0.055 | 0.132 | | 03 | 2.7 | | 14-14 | 0.021 | 2.79 | 0.052 | 0.122 | | 33 | 3.1 | | JUL | | | | | | | | | 03-03 | 0.104 | 0.985 | 0.143 | 0.852 | | 308 | 2.0 | | SEP
18-18 | < 0.013 | 1.07 | 0.375 | 0.711 | | 79 | 1.1 | ## 053793306 TRAVERSE VALLEY CREEK, SOUTH TRIBUTARY, NEAR INDEPENDENCE, WI—Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | STORM
BEGINNI9NG
DATE | STORM
BEGINNING
TIME | STORM
ENDING
DATE | STORM
ENDING
TIME | STORM RUNOFF
VOLUME, THOUSANDS
OF CUBIC FEET | PEAK
DISCHARGE
(CFS) | NUMBER OF
SUBSAMPLES | |-----------------------------|----------------------------|-------------------------|-------------------------|--|----------------------------|-------------------------| | 10-04-02 | 0300 | 10-04-02 | 0830 | 7.629 | 1.41 | 22 | | 02-20-03 | 1315 | 02-21-03 | 2230 | 33.653 | 1.02 | 42 | | 03-14-03 | 1045 | 03-14-03 | 1600 | 56.782 | 6.29 | 29 | | 03-14-03 | 1601 | 03-15-03 | 0714 | 50.440 | 5.33 | 10 | | 03-15-03 | 0715 | 03-15-03 | 1529 | 87.186 | 6.67 | 38 | | 03-16-03 | 0845 | 03-17-03 | 0800 | 110.169 | 4.38 | 27 | | 03-21-03 | 1030 | 03-21-03 | 2330 | 16.399 | 0.73 | 13 | | 05-11-03 | 0130 | 05-11-03 | 0900 | 3.741 | 0.26 | 16 | | 05-11-03 | 1030 | 05-11-03 | 1745 | 2.350 | 0.10 | 12 | | 05-14-03 | 0650 | 05-14-03 | 1930 | 3.413 | 0.16 | 16 | | 07-03-03 | 0335 | 07-03-03 | 0730 | 2.151 | 0.40 | 12 | | 09-18-03 | 1855 | 09-19-03 | 0115 | 1.754 | 0.14 | 8 | ## PERIOD OF RECORD.-September 2001 to current year. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 for Jan. 30, Feb. 2, Mar. 11, 16, 23, and Apr. 5-6 because recorded precipitation interpreted as collector snowmelt. Rainfall estimated for May 8 due to equipment malfunction. EXTREMES FOR PERIOD OF RECORD .-- Maximum daily rainfall, 2.31 in., June 3, 2002. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.76 in., Sept. 18. | | | PRE | CIPITATIO | N, TOTAL, | | ATER YEA | | ER 2002 TO | SEPTEMBE | ER 2003 | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | 2 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | | 3 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.34 | 0.22 | 0.00 | | 4 | 1.37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.73 | 0.00 | 0.49 | 0.00 | 0.00 | | 5 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.58 | 0.00 | 0.00 | 0.00 | 0.00 | | 6 | 0.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.62 | 0.13 | 0.13 | 0.00 | | 7 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.49 | 0.00 | 0.00 | | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.29 | 0.81 | 0.00 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.16 | 0.00 | 0.00 | | 10 | 0.54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.31 | 0.58 | 0.17 | 0.00 | 0.00 | | 11 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.40 | 0.00 | 0.07 | 0.00 | 0.00 | | 12 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.72 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.81 | 0.00 | 0.36 | 0.00 | 0.00 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.02 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.23 | 0.00 | 0.43 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.41 | 0.00 | 0.00 | 1.76 | | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.79 | 0.45 | 0.00 | 0.00 | 0.00 | 0.11 | | 20 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 0.00 | | 25 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.04 | 0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.00
0.86
0.39
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.08
0.00
0.22
0.00 | 0.04
0.03
0.67
0.17
0.00 | 0.01
0.00
0.00
0.00
0.00
0.69 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.08
0.03
0.02
0.00
0.00 | 1.92 2.91 5.35 4.04 3.91 0.45 2.76 3.47 0.04 0.46 0.00 0.00 TOTAL e Estimated #### 442405091333300 TRAVERSE VALLEY CREEK TRIBUTARY, RAIN GAGE #1, NEAR INDEPENDENCE, WI LOCATION.--Lat 44°24′05", long 91°33′33", in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.11, T.22 N., R.10 W., Buffalo County, Hydrologic Unit 07040005, at hilltop of point 0.5 mi northwest of Bragger family farm and 7.0 mi west-northwest of Independence. PERIOD OF RECORD .-- May 2002 to current year. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rainfall estimated to be 0.00 for Jan. 31, Feb. 2, 10, Mar. 13, 16-17, and Apr. 6 because recorded precipitation interpreted as collector snowmelt. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.20 in., June 3, 2002. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.80 in., Sept. 18. # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | | | | | | Ditt | ie i sem vi | ILCLO | | | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | | 2 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | | 3 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.27 | 0.21 | 0.00 | | 4 | 1.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.79 | 0.00 | 0.46 | 0.00 | 0.00 | | 5 | 0.07 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.67 | 0.00 | 0.00 | 0.00 | 0.00 | | 6 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.70 | 0.14 | 0.18 | 0.00 | | 7 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.54 | 0.00 | 0.00 | | 8 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.83 | 0.00 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.00 | 0.28 | 0.00 | 0.00 | | 10 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | 0.58 | 0.12 | 0.00 | 0.00 | | 11 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.24 | 0.00 | 0.09 | 0.00 | 0.00 | | 12 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.68 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.93 | 0.00 | 0.43 | 0.00 | 0.00 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.22 | 0.00 | 0.44 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.47 |
0.00 | 0.00 | 1.80 | | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.71 | 0.29 | 0.00 | 0.00 | 0.00 | 0.10 | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | | 22 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | | 24 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | | 25 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.02
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.00
0.84
0.26
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.05
0.00
0.22
0.00 | 0.03
0.04
0.61
0.11
0.00 | 0.00
0.00
0.00
0.00
0.01
0.74 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.09
0.03
0.01
0.00
0.00 | | TOTAL | 3.61 | 0.06 | 0.46 | 0.00 | 0.00 | 1.71 | 3.03 | 5.33 | 4.07 | 4.08 | 0.50 | 2.75 | #### 442436091331800 TRAVERSE VALLEY CREEK TRIBUTARY, RAIN GAGE #2, NEAR INDEPENDENCE, WI LOCATION.--Lat $44^{\circ}24^{\circ}36^{\circ}$, long $91^{\circ}33^{\circ}18^{\circ}$, in NE $\frac{1}{4}$ sec.2, T.22 N., R.10 W., Buffalo County, Hydrologic Unit 07040005, in hillside rock quarry at end of small gravel road intersecting with Schneider Road, 1.0 mi north-northwest of Bragger family farm and 7.1 mi west-northwest of Independence. PERIOD OF RECORD .-- May 2002 to current year. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Data deleted Mar. 1 to Apr. 30 due to malfunctioning gage. Rainfall estimated to be 0.00 for Jan. 7 and 14 because recorded precipitation interpreted as collector snowmelt. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.09 in., June 3, 2002. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.80 in., Sept. 18. # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|-----|-----|------|------|------|------|------| | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | | 3 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 1.35 | 0.20 | 0.00 | | 4 | 1.34 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.88 | 0.00 | 0.60 | 0.00 | 0.00 | | 5 | 0.08 | 0.04 | 0.00 | 0.00 | 0.00 | | | 0.82 | 0.00 | 0.00 | 0.00 | 0.00 | | 6 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.01 | 0.70 | 0.13 | 0.15 | 0.00 | | 7 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.17 | 0.00 | 0.58 | 0.00 | 0.00 | | 8 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.31 | 0.79 | 0.00 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.41 | 0.00 | 0.29 | 0.00 | 0.00 | | 10 | 0.64 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.35 | 0.61 | 0.07 | 0.00 | 0.00 | | 11 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | | | 1.68 | 0.00 | 0.06 | 0.00 | 0.00 | | 12 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.01 | 0.00 | 0.75 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.94 | 0.00 | 0.43 | 0.00 | 0.00 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.01 | 0.00 | 0.03 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.21 | 0.00 | 0.46 | 0.00 | 0.00 | | | 0.00 | 0.59 | 0.00 | 0.00 | 1.80 | | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.35 | 0.00 | 0.00 | 0.00 | 0.10 | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | | 21 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | 0.03 | 0.00 | 0.02 | | 22 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | | 24 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.41 | 0.00 | 0.00 | 0.00 | | 25 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.27 | 0.00 | 0.08 | 0.00 | | 26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.04 | 0.01 | 0.00 | 0.09 | | 27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.03 | 0.00 | 0.00 | 0.03 | | 28 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.05 | 0.64 | 0.00 | 0.00 | 0.02 | | 29 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | | | 0.00 | | 0.81 | 0.00 | | | TOTAL | 3.57 | 0.05 | 0.49 | 0.00 | 0.00 | | | 6.24 | 4.17 | 4.38 | 0.54 | 2.83 | #### 05379400 TREMPEALEAU RIVER AT ARCADIA, WI $LOCATION.--Lat\ 44^\circ 15'15", long\ 91^\circ 30'19"\ in\ SW\ {}^1_{\!\!\!\!4}\ sec. 32,\ T.21\ N.,\ R.9\ W.,\ Trempealeau\ County,\ Hydrologic\ Unit\ 07040005,\ on\ upstream\ side\ of\ River\ Street\ bridge,\ 300\ ft\ north\ of\ State\ Highwasy\ 95\ and\ 93\ bridge,\ on\ left\ bank\ in\ village\ of\ Arcadia.$ DRAINAGE AREA.--552 mi². PERIOD OF RECORD.--July 1960 to September 1977, July 2001 to current year. REVISED RECORDS.--WDR WI-70-1: 1968-69: 1975-77(M). GAGE.--Water-stage recorder. Datum of gage is 719.59 ft above NGVD of 1929. July 1960 to September 1977, non-recording gage at site 300 ft downstream at datum 0.02 ft higher. REMARKS.--Records good except those for periods July 29 to Aug. 6, Aug. 17-24, Aug. 31 to Sept. 1, and Sept. 3-15, which are fair, and those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | | D, WATER Y
LY MEAN V | | BER 2002 | TO SEPTEM | MBER 2003 | | | |-------------|------------------------|------------------|---------------|-----------------------|---------------|-------------------------|--------------------|----------------|---------------|---------------|------------------|--------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 615 | 385 | e320 | e310 | e240 | e260 | 466 | 480 | 395 | 349 | 317 | 217 | | 2 3 | 501
439 | 377
368 | e320
e320 | e290
e260 | e240
e230 | e260
e260 | 458
441 | 463
437 | 379
370 | 336
422 | 319
325 | 214
212 | | 4 5 | 656 | 353 | e320 | e230 | e220 | e260 | 416 | 414 | 362 | 468 | 319 | 210 | | 6 | 833
639 | 356
368 | e320
e320 | e250
e260 | e210
e210 | e260
e260 | 388
365 | 553
749 | 359
369 | 435
399 | 297
288 | 214
216 | | 7 | 576 | 374 | e300 | e270 | e210 | e260 | 362 | 634 | 438 | 403 | 290 | 216 | | 8
9 | 506
480 | 376
382 | e290
e270 | e270
e270 | e220
e220 | e250
e240 | 356
357 | 605
696 | 512
571 | 402
380 | 280
269 | 218
212 | | 10 | 514 | 386 | e240 | e260 | e220 | e240 | 364 | 762 | 582 | 379 | 260 | 212 | | 11
12 | 613
541 | 379
366 | e250
e270 | e240
e210 | e230
e230 | e240
e250 | 368
382 | 1,130
1,330 | 611
537 | 383
386 | 258
261 | 212
220 | | 13 | 501 | 358 | e270
e290 | e200 | e230 | e300 | 402 | 1,330
957 | 467 | 365 | 258 | 258 | | 14
15 | 462
431 | 357
350 | e320
e310 | e210
e210 | e230
e240 | e500
e1,100 | 421
451 | 945
993 | 429
401 | 346
352 | 257
254 | 272
261 | | 16 | 412 | 342 | e300 | e210 | e240 | e1,400 | 790 | 804 | 380 | 358 | 260 | 248 | | 17
18 | 403
415 | 340
337 | e300
e300 | e220
e220 | e250
e260 | e1,500
913 | 1,170
872 | 660
603 | 364
355 | 341
328 | 257
260 | 238
244 | | 19
20 | 431
426 | 332
331 | e280
e300 | e230
e230 | e270
e310 | 634
637 | 735
1,050 | 573
619 | 361
337 | 317
310 | 266
259 | 339
307 | | 21 | 439 | 333 | e300 | e230 | e300 | 645 | 1,050 | 645 | 321 | 309 | 252 | 273 | | 22
23 | 468
462 | 337
344 | e300
e300 | e230
e230 | e290
e280 | 580
477 | 844
675 | 567
511 | 312
311 | 309
303 | 246
239 | 256
248 | | 24 | 442 | 344 | e300 | e230 | e270 | 455 | 607 | 485 | 345 | 296 | 238 | 243 | | 25
26 | 434
436 | 341
337 | e300
e290 | e230
e220 | e270
e270 | 445
423 | 570
552 | 463
441 | 359
357 | 292
296 | 239
244 | 233
234 | | 27 | 433 | 335 | e280 | e220 | e270 | 523 | 538 | 428 | 344 | 288 | 239 | 237 | | 28
29 | 422
412 | e330
e320 | e280
e290 | e220
e220 | e270 | 1,210
1,100 | 521
507 | 423
405 | 349
387 | 277
292 | 232
225 | 237
234 | | 30
31 | 403
394 | e320 | e300
e300 | e230
e240 | | 679
508 | 494 | 411
417 | 382 | 310
298 | 222
217 | 228 | | TOTAL | | 10,558 | 9,180 | 7,350 | 6,930 | 17,069 | 16,972 | 19,603 | 12,046 | 10,729 | 8,147 | 7,163 | | MEAN | 488 | 352 | 296 | 237 | 248 | 551 | 566 | 632 | 402 | 346 | 263 | 239 | | MAX
MIN | 833
394 | 386
320 | 320
240 | 310
200 | 310
210 | 1,500
240 | 1,170
356 | 1,330
405 | 611
311 | 468
277 | 325
217 | 339
210 | | CFSM
IN. | 0.88
1.02 | 0.64
0.71 | 0.54
0.62 | 0.43
0.50 | 0.45
0.47 | 1.00
1.15 | 1.02
1.14 | 1.15
1.32 | 0.73
0.81 | 0.63
0.72 | 0.48
0.55 | 0.43
0.48 | | 114. | 1.02 | 0.71 | 0.02 | 0.30 | 0.47 | 1.13 | 1.14 | 1.32 | 0.01 | 0.72 | 0.55 | 0.40 | | | TICS OF MO | ONTHLY MI | EAN DATA | | ER YEARS | 1960 - 2003, | BY WATER | | | 221 | 225 | 2.55 | | MEAN
MAX | 321
634 | 319
625 | 278
402 | 253
565 | 297
663 | 702
1,437 | 659
1,839 | 454
1,203 | 404
787 | 331
654 | 325
1,060 | 357
817 | | (WY)
MIN | (1973)
175
| (1973)
190 | (1973)
148 | (1973)
157 | (1976)
153 | (1973)
250 | (1965)
259 | (1973)
228 | (2002)
165 | (1968)
139 | (1975)
124 | (1972)
190 | | (WY) | (1965) | (1965) | (1968) | (1968) | (1968) | (1964) | (1964) | (1964) | (1964) | (1964) | (1964) | (1977) | | | RY STATIS
L TOTAL | STICS | I | FOR 2002 C
173,312 | ALENDAR | YEAR | FOR 2003
140,88 | 3 WATER Y | YEAR | WATER | YEARS 196 | 0 - 2003 | | ANNUA | L MEAN | | | 475 | | | 38 | | | | 91 | | | | T ANNUAL
Γ ANNUAL | | | | | | | | | | 03
06 | 1973
1964 | | HIGHES | T DAILY M | IEAN | | 1,710 | | | (a)1,50 | | r 17 | 8,0 | 10 Ap | r 7, 1965 | | | Γ DAILY M
L SEVEN-D | EAN
DAY MINIM | UM | (a)240
(a)273 | | | (a)20
(a)21 | | n 13
n 12 | 1 | 15 Au | g 9, 1964
g 4, 1964 | | | UM PEAK I
UM PEAK S | | | | | | (c) | 7.28 Ma | r 17 | (b)12,0 | 00 Au
8.64 Au | g 23, 1975
g 23, 1975 | | INSTAN | TANEOUS | LOW FLOW | 7 | | . 0.6 | | | | | 1 | 10 (d)Au | g 8, 1964 | | ANNUA | L RUNOFF
L RUNOFF | (INCHÉS) | | |).86
.68 | | | 0.70
9.49 | | | 0.71
9.61 | | | | ENT EXCE | | | 681
428 | | | 61:
33 | | | | 12
96 | | | | ENT EXCE | | | 310 | | | 23 | | | | 90 | | ⁽a) Ice affected ⁽b) Based on calculation by USACE ⁽c) Result of ice jam (d) Also occurred Aug. 9,19, 1964 ⁽e) Estimated due to ice effect or missing record #### 05379500 TREMPEALEAU RIVER AT DODGE, WI LOCATION.--Lat $44^{\circ}07'54''$, long $91^{\circ}33'12''$ (revised) in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.10, T.19 N., R.10 W., Trempealeau County, Hydrologic Unit 07040005, near left bank on downstream side of County Trunk Highways J and P bridge in Dodge, 9.0 mi upstream from mouth. DRAINAGE AREA.--643 mi². PERIOD OF RECORD.--December 1913 to September 1919, April 1934 to current year. REVISED RECORDS.--WSP 1238: Drainage area. WSP 1388: 1919(M). WSP 1438: 1914, 1915-18(M), 1934-44(M), 1946-49(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 661.42 ft above NGVD of 1929. Prior to July 14, 1977, nonrecording gage at same site and datum. Prior to Sept. 16, 1966, datum 2.00 ft higher. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter and data-collection platform at | out to the | | | | | | | | | | | | | |---|--|--|---|--|---|---|---|---|---------------------------------|---|---|---| | | | DISCHA | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 7 | TO SEPTEM | 1BER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 633 | 478 | 430 | e330 | e260 | e280 | 579 | 520 | 489 | 409 | 345 | 262 | | 2 | 588 | 476 | e420 | e320 | e260 | e280 | 545 | 507 | 474 | 392 | 344 | 262 | | 3 | 521 | 471 | e360 | e290 | e260 | e280 | 533 | 496 | 463 | 432 | 337 | 259 | | 4 | 627 | 470 | e230 | e260 | e250 | e280 | 518 | 490 | 456 | 509 | 341 | 259 | | 5 | 914 | 471 | e240 | e270 | e240 | e280 | 497 | 591 | 447 | 478 | 337 | 261 | | 6 | 784 | 476 | e270 | e290 | e240 | e280 | 481 | 780 | 456 | 440 | 328 | 260 | | 7 | 705 | 474 | e300 | e300 | e240 | e270 | 475 | 768 | 506 | 449 | 324 | 259 | | 8 | 619 | 474 | e310 | e300 | e240 | e270 | 469 | 697 | 569 | 435 | 322 | 257 | | 9 | 575 | 473 | e320 | e300 | e230 | e270 | 459 | 751 | 626 | 428 | 310 | 255 | | 10 | 585 | 471 | e330 | e300 | e230 | e260 | 454 | 818 | 655 | 422 | 302 | 252 | | 11 | 670 | 466 | e340 | e280 | e230 | e270 | 454 | 997 | 679 | 419 | 295 | 251 | | 12 | 667 | 459 | e350 | e270 | e230 | e280 | 456 | 1,400 | 631 | 414 | 291 | 270 | | 13 | 624 | 455 | e350 | e250 | e230 | e450 | 456 | 1,380 | 558 | 409 | 289 | 300 | | 14 | 586 | 457 | e350 | e240 | e230 | e800 | 457 | 1,070 | 512 | 390 | 285 | 300 | | 15 | 549 | 457 | e360 | e240 | e230 | e1,100 | 470 | 1,240 | 484 | 385 | 283 | 293 | | 16 | 522 | 460 | e360 | e240 | e230 | e1,500 | 659 | 1,050 | 460 | 396 | 283 | 290 | | 17 | 508 | 457 | e360 | e240 | e240 | e1,800 | 1,160 | 837 | 448 | 388 | 280 | 282 | | 18 | 511 | 456 | e370 | e240 | e260 | e2,000 | 1,120 | 740 | 438 | 374 | 276 | 280 | | 19 | 519 | 453 | e370 | e240 | e280 | 1,290 | 876 | 689 | 437 | 364 | 277 | 385 | | 20 | 515 | 451 | e350 | e240 | e300 | 815 | 994 | 690 | 423 | 364 | 286 | 383 | | 21 | 522 | 452 | e330 | e240 | e310 | 794 | 1,200 | 714 | 409 | 364 | 276 | 335 | | 22 | 536 | 452 | e330 | e240 | e300 | 760 | 1,030 | 685 | 402 | 361 | 271 | 318 | | 23 | 542 | 452 | e330 | e240 | e300 | 650 | 810 | 616 | 399 | 356 | 268 | 306 | | 24 | 524 | 449 | e330 | e240 | e300 | 589 | 700 | 581 | 426 | 350 | 265 | 300 | | 25 | 517 | 447 | e320 | e240 | e300 | 561 | 642 | 557 | 438 | 342 | 270 | 295 | | 26
27
28
29
30
31 | 514
513
510
495
490
487 | 442
e440
e430
e430
438 | e310
e310
e300
e300
e330
e350 | e240
e240
e240
e240
e250
e260 | e290
e280
e300
 | 532
588
1,060
1,390
998
678 | 604
577
558
540
529 | 534
516
510
498
498
503 | 436
420
408
421
428 | 341
342
337
326
329
330 | 280
274
269
269
265
262 | 292
298
302
304
301 | | TOTAL 17 | 7,872 | 13,737 | 10,310 | 8,110 | 7,290 | 21,655 | 19,302 | 22,723 | 14,398 | 12,075 | 9,104 | 8,671 | | MEAN | 577 | 458 | 333 | 262 | 260 | 699 | 643 | 733 | 480 | 390 | 294 | 289 | | MAX | 914 | 478 | 430 | 330 | 310 | 2,000 | 1,200 | 1,400 | 679 | 509 | 345 | 385 | | MIN | 487 | 430 | 230 | 240 | 230 | 260 | 454 | 490 | 399 | 326 | 262 | 251 | | CFSM | 0.90 | 0.71 | 0.52 | 0.41 | 0.40 | 1.09 | 1.00 | 1.14 | 0.75 | 0.61 | 0.46 | 0.45 | | IN. | 1.03 | 0.79 | 0.60 | 0.47 | 0.42 | 1.25 | 1.12 | 1.31 | 0.83 | 0.70 | 0.53 | 0.50 | | STATISTIC
MEAN
MAX
(WY)
MIN
(WY) | 2S OF MC
381
1,314
(1955)
169
(1951) | 393
856
(1992)
180
(1950) | EAN DATA
328
953
(1983)
139
(1959) | FOR WATE
285
679
(1973)
117
(1959) | ER YEARS
341
878
(1981)
119
(1959) | 1914 - 2003,
804
2,325
(1936)
289
(1968) | 687
2,146
(1965)
301
(1964) | R YEAR (W
495
1,320
(1973)
195
(1934) | Y) 512 1,516 (1993) 183 (1964) | 428
1,332
(1993)
163
(1964) | 371
1,050
(1975)
138
(1964) | 412
1,239
(1992)
153
(1948) | | SUMMARY
ANNUAL I
ANNUAL I
HIGHEST I
LOWEST D
ANNUAL S
MAXIMUM
ANNUAL I
ANNUAL I
10 PERCEN
50 PERCEN | FOTAL MEAN ANNUAL ANNUAL ANNUAL BEVEN-D FEAK F FEAK S RUNOFF TEXCEI TEXCEI | MEAN MEAN EAN EAN AY MINIMI LOW TAGE (CFSM) (INCHES) EDS EDS | | FOR 2002 CA
200,267
549
1,800
(a)230
(a)286
0,
11,
782
493
360 | Jun
Dec
Dec
85 | 6 4 | 165,24
45
(a)2,00
(a)23
(a)23
2,42 | 00 Man
00 Dec
00 Feb
00 Man
9.40 Man
0.70
9.56
8 | 18
4
9
18 | 4
8
2
12,9
(a)
(a)1
17,4
(b) | 98 Ja
06 Ja
00 Ap | 4 - 2003
1973
1964
or 4, 1956
n 10, 1938
n 7, 1938
or 4, 1956
or 4, 1956 | ⁽a) Ice affected(b) Datum then in use(e) Estimated due to ice effect or missing record #### 05381000 BLACK RIVER AT NEILLSVILLE, WI $LOCATION.--Lat\ 44^{\circ}33^{\circ}35^{\circ}, long\ 90^{\circ}36^{\circ}54^{\circ}, in\ NW\ _{4}^{1}\ SW\ _{2}^{1}\ sec.15, T.24\ N., R.2\ W., Clark\ County, Hydrologic\ Unit\ 07040007, on\ right\ bank\ at\ downstream\ side\ of\ bridge\ on\ Business\ U.S.\ Highway\ 10\ in\ Neillsville,\ 1.0\ mi\ downstream\ from\ O'Neill\ Creek,\ and\ 2.6\ mi\ upstream\ from\ Cunningham\ Creek.$ DRAINAGE AREA.--749 mi². PERIOD OF RECORD.--April 1905 to March 1909, October 1913 to September 1999, October 2000 to current year. Monthly discharge for some periods published in WSP 1308. Unfinalized 2000 water year records in District data files. REVISED RECORDS.--WSP 1308: 1914. WSP 1438: 1905, 1906-8(M), 1914-17(M), 1918-19, 1920-25(M), 1926-27, 1928-29(M), 1930, 1931(M), 1932, 1933(M), 1934, 1935(M), 1936. WSP 1508: 1950. WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 962.34 ft above NGVD of 1929. Prior to Oct. 24, 1934, nonrecording gage; Oct. 24, 1934, to June 16, 1977, water-stage recorder; June 17, 1977, to Nov. 19, 1977, nonrecording gage at site 150 ft downstream at datum 1.58 ft lower. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | DBER 2002 | TO SEPTEN | MBER 2003 | | | |--|--|---|--|--|---|--|---
---|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1,740
1,610
1,250
2,820
4,040 | 583
515
468
447
417 | e160
e150
e140
e130
e140 | e70
e70
e70
e70
e70 | e16
e15
e13
e13 | e28
e27
e27
e27
e27 | 1,050
1,010
1,000
862
587 | 543
495
452
412
586 | 202
186
169
159
145 | 180
159
146
137
130 | 81
83
131
158
155 | 23
24
23
22
22 | | 6
7
8
9
10 | 3,350
4,230
3,640
2,950
2,370 | 418
410
403
391
384 | e140
e140
e140
e140
e150 | e72
e74
e80
e78
e70 | e13
e13
e13
e13
e14 | e27
e28
e30
e30
e30 | 497
458
417
408
494 | 949
1,110
1,110
1,880
2,570 | 147
204
392
343
587 | 125
125
120
114
117 | 171
134
111
95
86 | 21
22
21
21
19 | | 11
12
13
14
15 | 2,190
1,670
1,500
1,240
973 | 368
354
348
338
326 | e150
e140
e140
e130
e120 | e62
e60
e55
e44
e30 | e14
e14
e15
e16
e17 | e40
e80
e200
e300
e1,000 | 732
853
787
704
712 | 4,310
8,840
6,840
4,120
2,390 | 729
822
693
510
377 | 118
112
109
105
194 | 84
73
65
60
55 | 17
27
42
43
41 | | 16
17
18
19
20 | 769
633
578
564
540 | 306
292
273
266
267 | e120
e120
e130
e140
e140 | e30
e26
e22
e18
e16 | e18
e19
e20
e22
e24 | e2,500
e2,800
e2,700
e2,400
2,320 | 7,360
11,800
8,610
6,200
7,290 | 1,530
1,020
765
641
1,020 | 289
233
196
168
146 | 141
111
97
87
81 | 50
45
41
38
37 | 42
40
41
56
55 | | 21
22
23
24
25 | 555
662
832
915
1,030 | 262
258
252
248
e190 | e140
e130
e120
e110
e100 | e15
e15
e15
e15
e15 | e23
e22
e21
e20
e20 | 1,870
1,580
1,290
1,270
1,050 | 6,190
4,600
3,070
2,100
1,490 | 785
680
596
497
423 | 129
118
109
111
138 | 77
73
68
64
63 | 36
36
34
33
31 | 53
56
52
47
45 | | 26
27
28
29
30
31 | 1,710
1,860
1,450
1,080
837
691 | e160
e160
e170
e180
e170 | e90
e80
e80
e80
e80
e80 | e15
e16
e16
e16
e16 | e21
e23
e25
 | 840
907
3,360
2,960
2,010
1,360 | 1,110
887
758
664
595 | 360
314
278
249
236
223 | 198
198
199
190
183 | 59
61
59
54
51
57 | 32
33
29
28
26
24 | 46
48
49
52
51 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 50,279
1,622
4,230
540
2.17
2.50 | 9,624
321
583
160
0.43
0.48 | 3,850
124
160
80
0.17
0.19 | 1,256
40.5
80
15
0.05
0.06 | 490
17.5
25
13
0.02
0.02 | 33,118
1,068
3,360
27
1.43
1.64 | 73,295
2,443
11,800
408
3.26
3.64 | 46,224
1,491
8,840
223
1,99
2.30 | 8,270
276
822
109
0.37
0.41 | 3,194
103
194
51
0.14
0.16 | 2,095
67.6
171
24
0.09
0.10 | 1,121
37.4
56
17
0.05
0.06 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | FICS OF MC
400
2,101
(1983)
20.7
(1934) | NTHLY MI
455
2,345
(1992)
27.1
(1977) | EAN DATA
193
1,133
(1966)
35.9
(1934) | FOR WATE
108
615
(1973)
10.0
(1918) | R YEARS
134
1,348
(1984)
5.00
(1918) | 1905 - 2003,
1,236
3,960
(1973)
56.7
(1940) | , BY WATEI
1,998
5,025
(1951)
270
(1946) | R YEAR (W
874
3,538
(1973)
77.4
(1934) | 824
4,689
(1905)
43.0
(1964) | 308
1,538
(1978)
14.9
(1933) | 257
1,293
(1928)
10.5
(1933) | 522
4,304
(1938)
5.77
(1933) | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM MAXIM INSTAN ANNUA ANNUA 10 PERC 50 PERC | RY STATIS L TOTAL L MEAN T ANNUAL T DAILY MI L SEVEN-D UM PEAK S TANEOUS L RUNOFF LENT EXCEI ENT EXCEI | MEAN MEAN EAN EAN AY MINIMI LOW TAGE LOW FLOW (CFSM) (INCHES) EDS EDS | UM | FOR 2002 CA
361,551
991
14,500
(a)64
(a)67
1.
17.
2,510
469
86 | Jun
Jan
Jan | 23
13 | 232,81
63
11,80
(a)1
(a)1
13,30 | 8 0 Ap 3 Fet 3 Fet 0 Ap 3.49 Ap 1) 0.85 1.56 0 0 | r 17
5 3-9
5 3
7 16
r 16 | 60
1,21
16
38,20
48,80
2 | 3
0
0 Se
0.70 (b)Au
1.0 Au
0 Se
3.80 Se
0.60 Au
0.81
0.99 | 1942
1931
p 10, 1938 | ⁽a) Ice affected ⁽b) Also occurred Aug. 11, 14-16, 1936 ⁽e) Estimated due to ice effect or missing record #### 05382000 BLACK RIVER NEAR GALESVILLE, WI $LOCATION.--Lat~44^{\circ}03'37'', long~91^{\circ}17'14'' in~NW~\frac{1}{4}~SW~\frac{1}{4}~sec.1,~T.18~N.,~R.8~W.,~LaCrosse~County,~Hydrologic~Unit~07040007,~on~left~bank~1,000~ft~upstream~from~bridge~on~U.S.~Highway~53,~3.5~mi~southeast~of~Galesville,~and~4.8~mi~downstream~from~Fleming~Creek.$ DRAINAGE AREA.--2,080 mi² PERIOD OF RECORD.--December 1931 to current year. REVISED RECORDS.--WSP 1438: 1932-34, 1935-36(M). WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 658.43 ft above NGVD of 1929. Prior to Apr. 2, 1941, nonrecording gage on bridge 1,000 ft downstream at same datum. Apr. 3, 1941, to Oct. 1, 1971, water- stage recorder at site 1,030 ft downstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow partly regulated by Hatfield Dam Powerplant where drainage area is 1,290 mi² and storage capacity is 272,000,000 ft³. Water diverted periodically from basin into Lemonweir River basin for cranberry culture. | | | | | platform at st | | valer diverte | d periodicariy | y mom basiii i | into Lemony | ven Kivei da | SIII IOI CIA | ilberry culture | |---|---|---|--|--|---|--|---|--|---|---|---|--| | | | DISCH | ARGE, CUI | BIC FEET PE | | D, WATER '
LY MEAN ' | | OBER 2002 | TO SEPTEN | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1,540
2,700
2,740
2,680
3,190 | 1,890
1,670
1,380
1,350
1,320 | e680
e650
e580
e450
e400 | e530
e520
e460
e420
e440 | e440
e430
e430
e410
e390 | e420
e420
e420
e420
e420 | 4,190
3,410
3,000
2,750
2,500 | 2,450
2,310
2,040
1,800
1,920 | 1,300
1,240
1,180
1,140
1,100 | 874
795
807
857
811 | 454
470
465
469
485 | 426
400
394
419
377 | | 6
7
8
9
10 | 4,840
5,460
5,490
5,760
5,570 | 1,270
1,230
1,170
1,170
1,160 | e430
e480
e500
e500
e530 | e460
e490
e490
e490
e490 | e390
e370
e350
e340
e340 | e400
e400
e390
e390
e380 | 2,220
1,860
1,720
1,690
1,650 | 2,190
3,180
3,390
3,620
4,170 | 1,040
1,070
1,090
1,350
2,320 | 708
751
759
761
773 | 488
516
580
559
487 | 364
357
348
343
335 | | 11
12
13
14
15 | 4,770
4,270
3,900
3,390
3,040 | 1,130
1,110
1,090
1,070
1,020 | e550
e570
e570
e570
e580 | e450
e440
e410
e400
e400 | e340
e340
e340
e340
e340 | e390
e400
e580
e800
e1,000 | 1,630
1,770
1,990
2,000
1,920 | 5,570
6,240
7,830
12,000
12,200 | 2,550
3,480
3,320
2,910
2,490 | 783
711
696
675
665 | 453
439
432
422
420 | 329
379
427
415
391 | | 16
17
18
19
20 | 2,500
2,210
1,940
1,770
1,630 | 998
985
963
988
920 | e590
e580
e590
e580
e570 | e400
e400
e400
e400
e400 | e340
e350
e380
e410
e440 | e1,500
e2,400
e4,200
5,370
4,670 | 2,060
3,700
7,080
15,200
16,500 | 8,740
5,730
4,130
3,240
2,940 | 2,000
1,530
1,250
1,210
1,070 | 729
728
853
792
671 | 413
389
375
371
367 | 375
360
351
405
400 | | 21
22
23
24
25 | 1,610
1,620
1,700
1,960
2,150 | 840
846
844
836
869 | e540
e530
e530
e530
e520 | e400
e400
e400
e400
e400 | e460
e430
e430
e430
e430 | 4,150
3,690
3,240
2,940
2,760 | 12,700
12,900
12,300
9,800
7,180 | 3,170
3,170
2,740
2,550
2,400 | 956
924
860
817
831 | 632
627
608
537
497 | 368
352
345
344
368 | 396
404
399
394
388 | | 26
27
28
29
30
31 | 2,240
2,620
3,250
3,110
2,640
2,190 | 870
839
770
715
e690 |
e500
e500
e490
e490
e530
e570 | e400
e400
e400
e400
e410
e430 | e420
e410
e410
 | 2,660
2,470
2,650
4,160
5,480
5,200 | 5,180
4,090
3,450
3,000
2,670 | 2,120
1,890
1,680
1,530
1,470
1,380 | 843
862
801
754
810 | 488
496
478
469
464
465 | 395
369
380
480
467
455 | 383
393
391
387
390 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 94,480
3,048
5,760
1,540
1.47
1.69 | 32,003
1,067
1,890
690
0.51
0.57 | 16,680
538
680
400
0.26
0.30 | 13,330
430
530
400
0.21
0.24 | 10,930
390
460
340
0.19
0.20 | 64,750
2,089
5,480
380
1.00
1.16 | 152,110
5,070
16,500
1,630
2.44
2.72 | 119,790
3,864
12,200
1,380
1.86
2.14 | 43,098
1,437
3,480
754
0.69
0.77 | 20,960
676
874
464
0.33
0.37 | 13,377
432
580
344
0.21
0.24 | 11,520
384
427
329
0.18
0.21 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MC
1,285
5,231
(1987)
277
(1959) | 0NTHLY M
1,402
4,401
(1935)
337
(1949) | 982
3,468
(1992)
320
(1959) | 725
2,661
(1932)
268
(1959) | ER YEARS
774
3,664
(1984)
263
(1959) | 1932 - 2003
2,968
9,521
(1973)
406
(1934) | 4,689
12,210
(1967)
1,269
(2000) | R YEAR (W
2,546
7,993
(1960)
591
(1934) | 2,321
11,880
(1993)
427
(1988) | 1,269
4,361
(1978)
322
(1933) | 946
4,421
(1995)
293
(1964) | 1,501
9,373
(1938)
306
(1948) | | ANNUAI
ANNUAI
HIGHES'
LOWES'I | L MEAN
Γ ANNUAL
Γ ANNUAL | MEAN
MEAN | | FOR 2002 CA
846,457
2,319 | | | 593,02
1,62 | 25 | | 1,7
3,4 | 783
156
599 | 932 - 2003
1993
1977 | | LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN'
ANNUAL | F DAILY M DAILY M SEVEN-D JM PEAK F JM PEAK S TANEOUS RUNOFF RUNOFF | EAN
DAY MINIM
FLOW
STAGE
LOW FLOV
(CFSM) | | | Dec | 5 | 32 | 29 Sep
40 Feb
00 Apı
12.76 Apı | 9
r 20
r 20 | (b)65,5 | 180 I
218 A
500 A
16.64 | Apr 1, 1967
Dec 20, 1932
Aug 10, 1933
Apr 1, 1967
Jun 21, 1993
Dec 20, 1931 | | 10 PERC
50 PERC | ENT EXCE
ENT EXCE
ENT EXCE | EDS
EDS | | 4,790
1,540
586 | | | 3,69
71
38 | 00
15 | | 8 | 11.03
950
880
890 | | ⁽a) Ice affected ⁽b) Gage height, 14.63 ft, at location 1,000 ft downstream ⁽e) Estimated due to ice effect or missing record #### 05382325 LA CROSSE RIVER AT SPARTA, WI LOCATION.--Lat 43°56'15", long 90°48'38", in SE ½ NE ½ sec.23, T.17 N., R.4 W., Monroe County, Hydrologic Unit 07040006, on left bank, 800 ft downstream from bridge on South Water Street, in Sparta, 0.35 mi downstream from Beaver Creek. DRAINAGE AREA.--167 mi². PERIOD OF RECORD.--July 1992 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 760.73 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. Occasional regulation from two dams upstream from gage. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |--|--|---|---|---|---|---|---------------------------------------|--|---------------------------------------|---|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 136 | 142 | 122 | 119 | 119 | 111 | 143 | 139 | 133 | 111 | 102 | 102 | | | | 2 | 140 | 140 | 125 | 119 | 120 | 110 | 140 | 132 | 131 | 108 | 99 | 99 | | | | 3 | 150 | 138 | 117 | 117 | e110 | 104 | 137 | 130 | 131 | 126 | 99 | 97 | | | | 4 | 208 | 138 | 123 | 119 | e110 | e100 | 136 | 132 | 130 | 139 | 99 | 96 | | | | 5 | 190 | 138 | 122 | 119 | e100 | e100 | 135 | 158 | 128 | 122 | 100 | 96 | | | | 6 | 176 | 141 | 115 | 119 | e110 | e100 | 133 | 159 | 130 | 118 | 98 | 95 | | | | 7 | 164 | 139 | 125 | 120 | e110 | e100 | 136 | 156 | 137 | 127 | 97 | 94 | | | | 8 | 158 | 139 | 121 | 121 | e110 | e100 | 137 | 157 | 156 | 118 | 97 | 94 | | | | 9 | 153 | 138 | 110 | 121 | e100 | e98 | 141 | 200 | 142 | 116 | 97 | 94 | | | | 10 | 161 | 138 | 127 | 118 | e110 | e100 | 141 | 176 | 157 | 126 | 95 | 92 | | | | 11 | 167 | 136 | 124 | 99 | e110 | e110 | 139 | 196 | 152 | 119 | 93 | 91 | | | | 12 | 168 | 134 | 125 | e100 | e100 | 115 | 137 | 208 | 143 | 113 | 94 | 103 | | | | 13 | 162 | 134 | 125 | e100 | e110 | 118 | 138 | 176 | 135 | 109 | 94 | 106 | | | | 14 | 154 | 133 | 125 | e100 | e110 | 151 | 135 | 195 | 128 | 107 | 92 | 112 | | | | 15 | 150 | 131 | 126 | e100 | e110 | 203 | 137 | 199 | 124 | 122 | 92 | 105 | | | | 16 | 147 | 131 | 124 | e100 | 109 | 222 | 165 | 172 | 121 | 117 | 90 | 101 | | | | 17 | 147 | 131 | 124 | e100 | 110 | 291 | 162 | 158 | 119 | 110 | 90 | 97 | | | | 18 | 151 | 130 | 133 | e100 | 115 | 173 | 153 | 153 | 124 | 106 | 90 | 95 | | | | 19 | 151 | 131 | 133 | e100 | 114 | 149 | 168 | 154 | 118 | 105 | 88 | 115 | | | | 20 | 149 | 131 | 130 | e100 | 124 | 145 | 193 | 167 | 115 | 104 | 88 | 105 | | | | 21 | 157 | 131 | 128 | e100 | 162 | 148 | 178 | 159 | 113 | 103 | 85 | 105 | | | | 22 | 158 | 129 | 126 | 101 | 159 | 145 | 161 | 150 | 112 | 103 | 85 | 109 | | | | 23 | 153 | 129 | 124 | e100 | 120 | 138 | 149 | 147 | 112 | 101 | 86 | 105 | | | | 24 | 151 | 128 | 119 | 104 | 114 | 137 | 144 | 143 | 131 | 101 | 85 | 102 | | | | 25 | 153 | 127 | 123 | 106 | e100 | 134 | 141 | 140 | 123 | 97 | 95 | 98 | | | | 26
27
28
29
30
31 | 157
152
149
147
145
144 | 124
123
124
126
126 | 119
118
123
122
123
122 | e100
101
107
111
112
117 | e100
e100
112
 | 131
155
187
166
149
142 | 138
136
134
132
137 | 138
136
137
135
142
139 | 129
119
123
123
117 | 96
96
95
95
97
104 | 119
98
110
147
113
104 | 100
101
99
100
104 | | | | TOTAL | 4,848 | 3,980 | 3,823 | 3,350 | 3,178 | 4,332 | 4,356 | 4,883 | 3,856 | 3,411 | 3,021 | 3,012 | | | | MEAN | 156 | 133 | 123 | 108 | 114 | 140 | 145 | 158 | 129 | 110 | 97.5 | 100 | | | | MAX | 208 | 142 | 133 | 121 | 162 | 291 | 193 | 208 | 157 | 139 | 147 | 115 | | | | MIN | 136 | 123 | 110 | 99 | 100 | 98 | 132 | 130 | 112 | 95 | 85 | 91 | | | | CFSM | 0.94 | 0.79 | 0.74 | 0.65 | 0.68 | 0.84 | 0.87 | 0.94 | 0.77 | 0.66 | 0.58 | 0.60 | | | | IN. | 1.08 | 0.89 | 0.85 | 0.75 | 0.71 | 0.96 | 0.97 | 1.09 | 0.86 | 0.76 | 0.67 | 0.67 | | | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 149
184
(1996)
122
(2001) | DNTHLY M
147
179
(1996)
124
(1998) | EAN DATA
135
160
(1995)
117
(2001) | FOR WATE
128
142
(1995)
108
(2003) | ER YEARS
140
168
(1994)
114
(2003) | 1992 - 2003,
167
213
(1996)
133
(2000) | 192
324
(1993)
126
(2000) | R YEAR (W
179
279
(1993)
153
(2000) | 205
323
(1993)
129
(2003) | 168
288
(1993)
110
(2003) | 152
205
(1998)
97.5
(2003) | 151
216
(1994)
100
(2003) | | | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMU MAXIMU ANNUAI ANNUAI 10 PERCI 50 PERCI | JMMARY STATISTICS FOR 2002 CALENDAR YEAR S4,896 NNUAL MEAN 150 | | | | | 4
4 | 46,05
12
29
8
8
51 | 6 Ma 5 (b)Aug 7 Aug 2 Ma 5.51 Ma 0.76 0.26 8 3 | r 17 | 1
2
1
1,0
(c)
(c)
(c) |)72 Ma
)84 Ma
270 Ju | 1993
2003
2003
3n 28, 1998
3y 10, 2000
3y 4, 2000 | | | ⁽a) Ice affected ⁽b) Also occurred Aug. 22 and 24 ⁽c) Regulation at dam upstream ⁽e) Estimated due to ice effect or missing record #### 05383075 LA CROSSE RIVER NEAR LA CROSSE, WI LOCATION.--Lat 43°51'39", long 91°12'37", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.16, T.16 N., R.7 W., La Crosse County, Hydrologic Unit 07040006, on left bank just downstream from Great River State Trail, 3.9 mi northeast of post office in La Crosse. DRAINAGE AREA.--471 mi². PERIOD OF RECORD.--October 1999 to current year. Published as "at La Crosse" prior to October 2000. GAGE.--Water-stage recorder. Elevation of gage is 650 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | |---| | DAILY MEAN VALUES* | | | | | | | DAIL | LY MEAN V | ALUES* | | | | | | |--|---|---------------------------------|--|--|--------------------------|--|--
--|---------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 312 | 336 | 286 | 294 | e300 | e270 | 375 | 369 | 320 | 312 | 244 | 233 | | 2 | 290 | 293 | 332 | 288 | e300 | e270 | 378 | 338 | 365 | 269 | 243 | 237 | | 3 | 330 | 277 | 298 | 287 | e300 | e260 | 363 | 313 | 346 | 284 | 241 | 231 | | 4 | 531 | 324 | 287 | 288 | e290 | e260 | 399 | 356 | 327 | 410 | 242 | 252 | | 5 | 510 | 295 | 288 | 287 | e270 | e260 | 333 | 415 | 322 | 370 | 240 | 230 | | 6 | 523 | 324 | 307 | 286 | e270 | e260 | 336 | 391 | 330 | 336 | 241 | 226 | | 7 | 497 | 334 | 291 | 288 | e270 | e270 | 373 | 422 | 334 | 340 | 241 | 219 | | 8 | 474 | 284 | 290 | 301 | e270 | e270 | 364 | 488 | 413 | 344 | 238 | 205 | | 9 | 344 | 308 | 324 | 304 | e250 | e250 | 318 | 474 | 409 | 360 | 239 | 204 | | 10 | 360 | 333 | 290 | 290 | e270 | e260 | 357 | 526 | 400 | 328 | 231 | 196 | | 11 | 370 | 341 | 287 | e210 | e240 | e290 | 374 | 591 | 396 | 288 | 211 | 200 | | 12 | 344 | 314 | 289 | e230 | e250 | e290 | 330 | 550 | 492 | 354 | 211 | 249 | | 13 | 427 | 319 | 335 | e240 | e270 | e300 | 339 | 527 | 340 | 323 | 210 | 231 | | 14 | 328 | 326 | 311 | e240 | e280 | e320 | 309 | 569 | 329 | 267 | 210 | 232 | | 15 | 343 | 333 | 294 | e240 | e280 | e400 | 351 | 569 | 364 | 271 | 245 | 228 | | 16 | 340 | 288 | 294 | e240 | e270 | e760 | 385 | 698 | 327 | 300 | 209 | 234 | | 17 | 288 | 275 | 334 | e240 | e270 | e900 | 404 | 520 | 315 | 295 | 208 | 229 | | 18 | 323 | 325 | 307 | e240 | e280 | 862 | 485 | 377 | 312 | 254 | 207 | 238 | | 19 | 322 | 293 | 356 | e240 | e290 | 602 | 418 | 400 | 308 | 252 | 207 | 265 | | 20 | 328 | 270 | 357 | e240 | e310 | 514 | 535 | 515 | 308 | 251 | 207 | 230 | | 21 | 333 | 272 | 326 | e240 | e380 | 496 | 522 | 406 | 300 | 249 | 205 | 229 | | 22 | 363 | 299 | 297 | e250 | e330 | 384 | 505 | 390 | 269 | 262 | 205 | 245 | | 23 | 334 | 396 | 345 | e250 | e290 | 436 | 497 | 394 | 281 | 264 | 204 | 246 | | 24 | 336 | 281 | 312 | e250 | e270 | 354 | 443 | 390 | 290 | 249 | 203 | 252 | | 25 | 339 | 331 | 295 | e250 | e250 | 431 | 369 | 396 | 336 | 248 | 225 | 230 | | 26
27
28
29
30
31 | 344
333
463
287
275
327 | 291
283
283
323
291 | 307
307
293
292
292
330 | e250
e250
e270
e280
e280
e290 | e270
e280
e270
 | 374
433
449
513
502
494 | 379
330
370
369
332 | 351
381
341
348
358
324 | 342
271
309
330
285 | 249
253
254
246
243
244 | 216
208
213
237
275
273 | 229
228
226
226
225 | | TOTAL | 11,318 | 9,242 | 9,553 | 8,133 | 7,870 | 12,734 | 11,642 | 13,487 | 10,070 | 8,969 | 6,989 | 6,905 | | MEAN | 365 | 308 | 308 | 262 | 281 | 411 | 388 | 435 | 336 | 289 | 225 | 230 | | MAX | 531 | 396 | 357 | 304 | 380 | 900 | 535 | 698 | 492 | 410 | 275 | 265 | | MIN | 275 | 270 | 286 | 210 | 240 | 250 | 309 | 313 | 269 | 243 | 203 | 196 | | STATIST | TCS OF MO | ONTHLY M | IEAN DAT | A FOR WAT | ER YEARS | 2000 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | MEAN | 333 | 323 | 302 | 282 | 319 | 395 | 422 | 416 | 500 | 342 | 300 | 308 | | MAX | 365 | 330 | 321 | 308 | 356 | 421 | 561 | 481 | 651 | 463 | 354 | 385 | | (WY) | (2003) | (2000) | (2002) | (2001) | (2002) | (2001) | (2001) | (2001) | (2000) | (2000) | (2000) | (2001) | | MIN | 304 | 308 | 277 | 262 | 281 | 356 | 310 | 344 | 336 | 289 | 225 | 230 | | (WY) | (2001) | (2003) | (2001) | (2003) | (2003) | (2000) | (2000) | (2002) | (2003) | (2003) | (2003) | (2003) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 2 | 000 - 2003 | | LOWEST
HIGHEST
LOWEST | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY M | MEAN
IEAN
EAN | | 126,934
348
893
(a)240 | 3 Jun
) Jan | 18 | 116,91
32
(a)90 | 20
00 Mai
06 Sep | 10 | 1, | 196 | 2001
2003
May 20, 2000
Sep 10, 2003 | | MAXIMU
MAXIMU
INSTAN
10 PERC
50 PERC | INUAL SEVEN-DAY MINIMUM
AXIMUM PEAK FLOW
AXIMUM PEAK STAGE
STANTANEOUS LOW FLOW
PERCENT EXCEEDS
PERCENT EXCEEDS
PERCENT EXCEEDS | | | 259
482
320
269 | 4
5 | 13 | 20
(b)1,03
(c)
19
43
29
23 | 30 Mai
17.47 Mai
13 Sep
132 | r 18
r 16 | 2,0 | 070
9.18 | Aug 18, 2003
Jun 29, 1998
Jun 29, 1998
Oct 28, 1999 | ⁽a) Ice affected ⁽a) the affected (b) Gage height, 6.09 ft (c) Result of ice jam (e) Estimated due to ice effect or missing record #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA LOCATION.--Lat 43°01'29", long 91°10'21", in SE½ SE½ SE½ SE.22, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank in city park at east end of Main Street in McGregor, 2.6 mi upstream from Wisconsin River, 4.3 mi downstream from Yellow River, and at mile 633.4 upstream from Ohio River. DRAINAGE AREA.--67,500 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- August 1936 to current year. REVISED RECORDS .-- WDR IA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 604.84 ft above NGVD of 1929. Prior to June 1, 1937, and since June 2, 1939, auxiliary water-stage recorder; June 1, 1937 to June 1, 1939, auxiliary nonrecording gage 14.1 mi upstream in tailwater of dam 9, at datum 5.30 ft lower. REMARKS.--Records good except those for estimated daily discharges, which are poo (see page 11). Minor flow regulation caused by navigation dams. U.S. Geological Survey satellite and telephone modem data collection platform at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1828, that of Apr. 24, 1965. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | 2 | 31 1/12/11 (| 112020 | | | | | | |----------|------------------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 38,300 | 48,600 | 28,600 | 26,500 | e18.900 | e19.900 | 48,600 | 84,300 | 71,400 | 55,800 | 25,900 | 13,600 | | 2 | 39,900 | 47,700 | 24,200 | 26,800 | e19,000 | e18,900 | 48,900 | 80,500 | 64,100 | 57,800 | 25,400 | 14,800 | | 3 | 41,500 | 46,900 | 23,400 | 26,800 | e19,100 | e18,900 | 46,900 | 76,600 | 58,200 | 62,300 | 23,500 | 13,900 | | 4 | 43,000 | 45,800 | e23,700 | 25,800 | e19,300 | e18,400 | 40,300 | 71,300 | 54,100 | 66,900 | 23,900 | 13,200 | | 5 | 44,100 | 41,400 | e23,800 | 24,100 | e19,200 | e18,400 | 37,300 | 66,200 | 50,700 | 67,600 | 24,600 | 10,800 | | 6 | 44.700 | 40,900 | e23,800 | 23,500 | e19,700 | e18,200 | 36,900 | 60,800 | 47,100 | 67,700 | 25,000 | e9,830 | | 7 | 44,700
47,400 | 40,900 | e24,000 | 23,600 | e20,400 | e18,200 | 38,800 | 56,800 | 44,800 | 69,600 | 24,100 | e9,830 | | 8 | 53,300 | 40,300 | e23,800 | 23,300 | e20,400 | e17,700 | 39,000 | 54,500 | 45,200 | 69,800 | 22,300 | 11,300 | | 9 | 60,300 | 39,500 | e22,800 | 22,600 | e20,300 | e17,700 | 33,500 | 56,200 | e46,000 | 67,800 | 21,500 | 14,000 | | 10 | 68,000 | 38,000 | e21,500 | 22,800 | e20,300 | e17,700 | 28,600 | 59,000 | e44,500 | 66,500 | 20,700 | 14,600 | | | 00,000 | | | | | 617,700 | | | 644,500 | | * | * | | 11 | 72,400 | 38,200 | e23,200 | e22,900 | e20,200 | e17,700 | 27,400 | 62,900 | e44,500 | 65,700 | 20,300 | 14,500 | | 12 | 77,200 | 38,500 | 29,300 | e21,600 | e20,200 | e17,800 | 32,300 | 65,700 | 43,300 | 63,300 | 20,600 | 15,000 | | 13 | 81,600 | 38,200 | 32,700 | e21,700 | e19,700 | e17,500 | 33,000 | 69,500 | 45,400 | 61,600 | 18,100 | 17,800 | | 14 | 83,900 | 37,400 | 34,300 | e19,400 | e19,100 | e17,900 | 33,100 | 74,900 | 47,600 | 59,300 | 16,600 | 18,500 | | 15 | 85,800 | 37,500 | 33,000 | e19,300 | e18,800 | e19,300 | e31,900 | 81,400 | 49,900 | 55,900 | 16,500 | 17,700 | | 16 | 84.800 | 36,700 | 28,500 | e19.200 | e18.600 | e21.000 | 31,600 | 88,500 | 52,200 | 52,500 | 17.200 | 19,700 | | 17 | 82,600 | 35,200 | 25,000 | e19,000 | e18,500 | 33,700 | 32,200 | 95,300 | 52,400 | 52,000 | 18,600 | 17,700 | | 18 | 80,000 | 34,000 | 26,200 | e19,000 | e18,200 | 42,200 | 38,300 | 102,000 | 50,500 | 51,900 | 16,500 | 15,100 | | 19 | 76,700 | 33,700 | 28,500 | e19,100 | e17,900 | 47,500 | 46,700 | 109,000 | 47,900 | 52,100 | 14,000 | 16,600 | | 20 | 72,400 | 33,700 | 29,800 | e18,800 | e18,100 | 48,100 | 61,300 | 113,000 | 45,400 | 52,100 | e12,000 | 18,100 | | 21 | 67.000 | 33,800 | 30,000 | e18.900 | e19,100 | 48,800 | 69,600 | 112,000 | 42,700 | 50,500 | e16,200 | 18,300 | | 22 | 62,100 | 31,800 | 30,100 | e18,800 | e20,200 | 49,700 | 74,300 | 106.000 | 40,200 | 47,000 | 20,700 | 17,900 | | 22
23 | 57,900 | 30,600 | 30,100 | e18,800 | e21,200 | 49,800 | 78,100 | 99,700 | 35,000 | 43,900 | 22,100 | 18,700 | | 24 | 56,600 | 31,000 | 28,400 | e18,800 | e22,000 | 48,200 | 83,100 | 95,000 | 32,900 | 41,000 | 19,800 | 17,800 | | 25 | 55,300 | 32,300 | 27,100 | e18,800 | e22,200 | 46,200 | 85,200 | 91,100 | 33,900 | 39,500 | 12,700 | 19,900 | | | | | | | | | | | | | | | | 26 | 53,900 | 32,500 | 26,000 | e18,800 | e22,200 | 44,600 | 87,600 | 88,900 | 35,900 | 36,700 | e10,900 | 17,600 | | 27 | 51,600 | 31,700 | 25,200 | e18,900 | e21,800 | 42,000 | 89,300 | 86,500 | 37,000 | 37,300 | e11,300 | 12,300 | | 28 | 49,500 | 28,200 | 24,600 | e19,000 | e21,400 | 42,400 | 89,900 | 84,300 | 42,900 | 35,400 | 11,800 | e13,500 | | 29 | 48,800 | 26,800 | 24,500 | e18,900 | | 43,900 | 88,600 | 80,800 | 50,400 | 31,100 | e10,100 | e13,200 | | 30 | 48,600 | 27,600 | 24,900 | e19,000 | | 46,300 | 86,600 | 78,500 | 54,000 | 28,100 | 11,000 | 16,400 | | 31 | 48,900 | | 26,400 | e19,100 | | 47,700 | | 75,800 | | 24,600 | 12,500 | | | TOTAL | 1,878,100 | 1,099,400 | 827,500 | 653,600 | 555,900 | 976,100
 1,598,900 | 2,527,000 | 1,410,100 | 1,633,300 | 566,400 | 461,840 | | MEAN | 60,580 | 36,650 | 26,690 | 21,080 | 19,850 | 31,490 | 53,300 | 81,520 | 47,000 | 52,690 | 18,270 | 15,390 | | MAX | 85,800 | 48,600 | 34,300 | 26,800 | 22,200 | 49,800 | 89,900 | 113,000 | 71,400 | 69,800 | 25,900 | 19,900 | | MIN | 38,300 | 26,800 | 21,500 | 18,800 | 17,900 | 17,500 | 27,400 | 54,500 | 32,900 | 24,600 | 10,100 | 9,510 | | AC-FT | 3,725,000 | 2,181,000 | 1,641,000 | 1,296,000 | 1,103,000 | 1,936,000 | 3,171,000 | 5,012,000 | 2,797,000 | 3,240,000 | 1,123,000 | 916,100 | | CFSM | 0.90 | 0.54 | 0.40 | 0.31 | 0.29 | 0.47 | 0.79 | 1.21 | 0.70 | 0.78 | 0.27 | 0.23 | | IN. | 1.04 | 0.61 | 0.46 | 0.36 | 0.31 | 0.54 | 0.88 | 1.39 | 0.78 | 0.90 | 0.31 | 0.25 | | STATIST | ΓICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1936 - 2003 | , BY WATE | R YEAR (W | /Y) | | | | | MEAN | 28,910 | 29,450 | 22,490 | 19,490 | 20,240 | 39,240 | 75,890 | 62,620 | 50,030 | 41,760 | 28,390 | 28,740 | | MAX | 114,600 | 64,840 | 59,200 | 35,700 | 48,540 | 103,800 | 164,800 | 138,700 | 112,600 | 142,200 | 84,430 | 72,890 | | (WY) | (1987) | (1983) | (1992) | (1983) | (1984) | (1983) | (1965) | (2001) | (1993) | (1993) | (1993) | (1986) | | MIN | 9,874 | 10,870 | 9,506 | 7,665 | 9,934 | 13,190 | 27,780 | 18,240 | 13,420 | 11,220 | 10,330 | 10,650 | | (WY) | (1937) | (1938) | (1937) | (1940) | (1940) | (1940) | (1990) | (1977) | (1988) | (1988) | (1964) | (1940) | | | | | | | | | | | | | | | #### $05389500 \ MISSISSIPPI \ RIVER \ AT \ MCGREGOR, IA-Continued$ | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEAR | S 1936 - 2003 | |--------------------------|---------------|-----------|-------------|----------|------------|---------------| | ANNUAL TOTAL | 17,259,600 | | 14,188,140 | | | | | ANNUAL MEAN | 47,290 | | 38,870 | | 37,320 | | | HIGHEST ANNUAL MEAN | | | | | 64,720 | 1993 | | LOWEST ANNUAL MEAN | | | | | 17,400 | 1977 | | HIGHEST DAILY MEAN | 122,000 | Apr 22 | 113,000 | May 20 | 276,000 | Apr 24, 1965 | | LOWEST DAILY MEAN | 17,200 | Mar 4 | 9,510 | Sep 7 | 6,200 | Dec 9, 1936 | | ANNUAL SEVEN-DAY MINIMUM | 20,200 | Feb 3 | 11,500 | Aug 25 | 6,490 | Dec 7, 1936 | | MAXIMUM PEAK FLOW | | | 115,000 | May 20 | 276,000 | Apr 24, 1965 | | MAXIMUM PEAK STAGE | | | 16.88 | May 20 | 25.38 | Apr 24, 1965 | | ANNUAL RUNOFF (AC-FT) | 34,230,000 | | 28,140,000 | · | 27,040,000 | • | | ANNUAL RUNOFF (CFSM) | 0.70 | | 0.58 | | 0.55 | | | ANNUAL RUNOFF (INCHES) | 9.51 | | 7.82 | | 7.51 | | | 10 PERCENT EXCEEDS | 77,700 | | 75,300 | | 75,900 | | | 50 PERCENT EXCEEDS | 44,100 | | 32,700 | | 27,900 | | | 90 PERCENT EXCEEDS | 23,800 | | 17,700 | | 13,400 | | ⁽e) Estimated due to ice effect or missing record #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA-Continued #### WATER-QUALITY RECORDS LOCATION. -- Samples collected from right bank dock 1.2 mi upstream from discharge station. Prior to April 1981, and March 7 to Sept. 30, 1997, samples collected at bridge on U.S. Highway 18, 1.2 mi upstream from gage. April 1981 to March 6, 1997, samples collected from right bank dock, 0.3 mi downstream from discharge station. PERIOD OF RECORD .-- July 1975 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: July 1975 to current year. WATER TEMPERATURES: July 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: July 1975 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 633 microsiemens Nov. 3, 1996; minimum daily, 190 microsiemens Sept. 29, 1980. WATER TEMPERATURES: Maximum daily, 31.0°C June 28, 2002; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,350 mg/L Mar. 19, 1986; minimum daily mean, 1 mg/L on many days in 1977-92 and 1999. SEDIMENT LOADS: Maximum daily, 363,000 tons Mar. 19, 1986; minimum daily, 31 tons Dec. 25, 1976. #### EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum daily, 490 microsiemens Feb. 2, 9, 19; minimum daily, 267 microsiemens May 20. WATER TEMPERATURES: Maximum daily, 27.0°C, Aug. 18, 26; minimum daily, 0.0°C many days Dec.- Mar. SEDIMENT CONCENTRATIONS: Maximum daily mean, 49 mg/L July 14; minimum daily mean, 4 mg/L Dec. 25, 26, Jan. 5, 6, Mar. 8-10, 12. SEDIMENT LOADS: Maximum daily, 8,690 tons Apr. 21; minimum daily, 191 tons Mar. 8-10. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | Suspnd. | Sus- | | |----------|------|---------|---------|---------|---------|---------| | | | | | sedi- | pended | Sus- | | | | Instan- | | ment, | sedi- | pended | | | | taneous | Temper- | sieve | ment | sedi- | | | | dis- | ature, | diametr | concen- | ment | | | | charge, | water, | percent | tration | load, | | Date | Time | cfs | deg C | <.063mm | mg/L | tons/d | | | | (00061) | (00010) | (70331) | (80154) | (80155) | | NOV 2002 | | | | | | | | 07 | 1215 | 43,500 | | 96 | 40 | 4,700 | | MAR 2003 | 1213 | 43,300 | | 70 | 40 | 4,700 | | 17 | 1330 | 42,100 | 2.0 | 83 | 16 | 1,820 | | APR | | , | | | | -, | | 16 | 1200 | 36,400 | 14.4 | 99 | 46 | 4,520 | | MAY | | | | | | | | 20 | 1300 | 154,000 | 17.8 | 26 | 100 | 41,600 | | JUN | | | | | | | | 12 | 1000 | 47,300 | 20.0 | 98 | 25 | 3,190 | | AUG | | | | | | | | 05 | 1110 | 23,600 | | 32 | 37 | 2,360 | | SEP | | | | | | | | 15 | 1530 | 17,100 | | 99 | 13 | 600 | #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA—Continued # SPECIFIC CONDUCTANCE, WATER, UNFILTERED, LABORATORY, MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY INSTANTANEOUS VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|---------------------------|-----------------------|-----------------------|-----------------------| | 1
2
3
4
5 | 330
326
 | 368
366 | 413
340
362 |

441 | 490
310
476 | 465
392
442 | 420
423
 | 362

369 | 432

428
442
 | 422
428

 |

396
391 | 398
400
402
 | | 6
7
8
9
10 | 324
320
314 | 379

 |

434
441 | 442
442

 |

490
480 |

482
 | 394
392
387 | 381 |
440
438
438 | 403
388
375 | 400

 | 410
406
412 | | 11
12
13
14
15 |

275
278 | 376
377

382 | 438

 |
465
462 | 479

 | 484
487

 |

368
357 | 370
364
364
 | 425

 |

375
 | 396
393
392
 |

404 | | 16
17
18
19
20 | 312 | 395
385
390 | 413
351
410
 | 467

466 | 481
484

490 | 435
429
420 | 364

 | 310
294
267 | 418
398
390
 | 386
388

385 | 387
393
394 | 405
407
 | | 21
22
23
24
25 | 357
361
360
 |

396 | 428
426
433 | 414
393

 |
474
477
 | 399
378
366 | 348
300
276
 | 380 | 450
434
434 | 381
386

 |

393 | 406
404

409 | | 26
27
28
29
30
31 | 335
370
360 | 393
380

 |
432
434
434 | 454
363
487
 | 480

 |

414 | 291
312
330 | 386
388
403
 |

425 | 395
390
395 | 391
392

 | 416
420
385 | #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA—Continued # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY INSTANTANEOUS VALUES | | DAILT INSTANTANEOUS VALUES | | | | | | | | | | | | | |----------------------------------|----------------------------|-----------------------|---------------------------|--------------------------|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 21.0
20.0
 | 10.0
5.0 | 0.0
0.0
0.0
0.0 |

1.0 | 1.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 8.0
9.0
 | 15.0

13.0 | 20.0

19.0
19.0 | 24.0
25.0
 | 25.0
25.0 | 23.0
22.0
23.0 | | | 6
7
8
9
10 | 15.0
15.0
15.0 | 5.0

 |

0.0
0.0 | 1.0
1.0
 | 0.0
0.0 |

0.0 | 4.0
5.0
6.0 | 15.0

 | 20.0
20.0
22.0 | 26.0
25.0
24.0 | 25.0

 | 23.0
24.0
23.0 | | | 11
12
13
14
15 | 13.0
13.0 | 8.0
8.0

6.0 | 0.0

 | 0.0
0.0 | 0.0 | 1.0
1.0
 | 14.0
15.0 | 14.0
15.0
15.0 | 20.0

 | 24.0 | 26.0
25.0
25.0
 |

21.0 | | | 16
17
18
19
20 | 12.0 | 4.0
4.0
4.0 | 0.0
1.0
2.0
 | 0.0

0.0 | 0.0
0.0

0.0 | 2.0
3.0
2.0 | 14.4

 | 17.0
17.0
17.8 | 25.0
26.0
26.0
 | 25.0
25.0

25.0 | 27.0
23.0
26.0 | 21.0
21.0
 | | | 21
22
23
24
25 | 11.0
10.0
10.0
 |

3.0 | 0.0
0.0
0.0 | 0.0
0.0
 | 0.0
0.0 | 4.0
6.0
6.0 | 12.0
12.0
11.0
 |

18.0 | 25.0
26.0
25.0 | 24.0
24.0

 |

26.0 | 18.0
16.0

16.0 | | | 26
27
28
29
30
31 | 10.0
8.0
8.0 | 2.0
2.0

 |

0.0
1.0
1.0 | 0.0
0.0
0.0
0.0 | 0.0

 |

6.0 | 15.0
15.0
14.0 | 18.0
20.0
20.0
 |

24.0 | 26.0
26.0
26.0 | 27.0
26.0

 |
13.0
13.0
11.0 | | #### $05389500 \ MISSISSIPPI \ RIVER \ AT \ MCGREGOR, IA-Continued$ #### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Day | Mean
concen-
tration
(mg/l) | Load
(tons/
day) | |---|--------------------------------------|---|--------------------------------------|---|--------------------------------------|--|--------------------------------------|--|--------------------------------------|------------------------------------|--------------------------------------|--| | | OCTO | OBER | NOVE | MBER | DECE | MBER | JANU | ARY | FEBRU | JARY | MAI | RCH | | 1
2
3
4
5 | 25
27
27
28
28 | 2,560
2,880
3,070
3,230
3,380 | 21
22
22
22
22
21 | 2,800
2,780
2,760
2,710
2,360 | 15
16
13
12
14 | 1,130
1,010
818
768
900 | 6
8
7
6
4 | 452
565
524
397
279 | 6
5
8
10
10 | 306
256
413
521
518 | 7
7
7
6
6 | 376
357
357
298
298 | | 6
7
8
9
10 | 29
31
34
36
39 | 3,500
3,980
4,860
5,920
7,190 | 21
29
31
30
30 | 2,310
3,190
3,320
3,200
3,030 | 15
13
10
7
8 | 964
842
643
431
464 | 4
5
5
5
6 | 257
304
325
327
352 | 9
8
6
5
5 | 479
441
329
274
274 | 5
5
4
4
4 | 246
243
191
191
191 | | 11
12
13
14
15 | 42
42
37
31
26 | 8,190
8,820
8,140
7,090
5,930 | 29
23
20
19
17 | 2,960
2,370
2,080
1,930
1,730 | 8
10
13
17
14 | 501
760
1,190
1,560
1,240 | 8
9
7
7
7 | 495
525
410
367
365 | 6
6
6
5 | 327
327
319
309
254 | 5
4
5
8
11 | 239
192
236
387
573 | | 16
17
18
19
20 | 20
19
20
21
23 | 4,490
4,230
4,360
4,430
4,410 | 15
13
13
13
13 | 1,460
1,200
1,240
1,210
1,180 | 9
9
9
10
12 | 720
637
604
742
934 | 7
7
8
8
9 | 363
359
410
413
457 | 5
5
5
4
5 | 251
250
246
193
244 | 13
16
19
19
22 | 737
1,470
2,200
2,490
2,800 | | 21
22
23
24
25 | 24
23
25
25
25 | 4,280
3,920
3,950
3,870
3,660 | 13
13
13
13
13 | 1,180
1,120
1,070
1,090
1,150 | 12
10
8
6
4 | 997
843
681
465
313 | 8
8
9
9 | 408
406
457
457
457 | 6
7
8
9
8 | 309
382
458
535
480 | 24
21
18
18
16 | 3,180
2,880
2,410
2,290
1,950 | | 26
27
28
29
30
31
TOTAL | 24
23
22
21
21
21 | 3,450
3,190
2,960
2,790
2,760
2,800
138,290 | 16
12
11
12
13 | 1,440
1,020
839
882
998

56,609 | 4
5
5
6
5
5 | 316
339
361
387
351
363
22,274 | 9
9
9
8
7
7 | 457
459
462
408
359
361
12.637 | 7
7
7
 | 420
412
404

9,931 | 14
12
13
15
17
19 | 1,660
1,410
1,540
1,800
2,120
2,420
37,732 | | TOTAL | | 130,270 | | 50,007 | | 22,217 | | 12,037 | | 7,731 | | 31,132 | 257 # 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA—Continued #### SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | | , , | | | | | | | | |----------------------------------|--------------------------------------|---|--------------------------------------|--|--------------------------------------|---|--------------------------------------|--|--------------------------------------|---|--------------------------------------|---| | Day | Mean
concen-
tration
(mg/l) | Load
(tons/
day) | | | AP | RIL | M. | AY | JU: | NE | JU | LY | AUG | SUST | SEPTE | MBER | | 1
2
3
4
5 | 21
21
23
26
30 | 2,780
2,730
2,890
2,870
3,030 | 26
27
27
31
35 | 5,980
5,780
5,620
5,970
6,310 | 35
35
35
39
41 | 6,800
6,070
5,480
5,680
5,550 | 48
44
42
41
40 | 7,160
6,870
7,090
7,430
7,320 | 23
23
23
23
24 | 1,610
1,580
1,460
1,500
1,570 | 28
24
22
21
20 | 1,030
961
832
756
648 | | 6
7
8
9
10 | 34
37
34
23
20 | 3,360
3,870
3,610
2,050
1,540 | 29
29
31
33
35 | 4,840
4,390
4,510
4,960
5,520 | 42
43
44
37
35 | 5,330
5,250
5,380
4,600
4,210 | 39
38
35
36
39 | 7,150
7,120
6,590
6,670
7,020 | 22
23
23
24
24 | 1,470
1,460
1,390
1,370
1,360 | 20
22
21
22
22 | 648
754
765
845
854 | | 11
12
13
14
15 | 21
22
24
26
36 | 1,570
1,950
2,100
2,280
3,100 | 37
38
33
27
24 | 6,230
6,760
6,100
5,470
5,330 | 32
28
29
30
32 | 3,840
3,250
3,530
3,910
4,320 | 42
44
47
49
46 | 7,380
7,550
7,760
7,850
6,960 | 25
25
23
21
19 | 1,360
1,380
1,140
952
857 | 21
21
22
23
23 | 824
847
1,040
1,140
1,120 | | 16
17
18
19
20 | 42
41
43
45
47 | 3,580
3,550
4,440
5,690
7,830 | 22
20
18
19
20 | 5,280
5,130
5,070
5,560
6,210 | 34
38
37
36
36 | 4,780
5,320
5,010
4,630
4,370 | 41
39
39
40
40 | 5,770
5,470
5,500
5,570
5,600 | 19
20
20
19
23 | 890
983
887
732
838 | 25
22
20
20
21 | 1,320
1,060
826
914
1,040 | | 21
22
23
24
25 | 46
36
28
26
24 | 8,690
7,300
6,050
5,760
5,530 | 21
21
22
23
24 | 6,220
6,140
5,980
5,900
5,850 | 35
35
35
35
30 | 4,080
3,820
3,310
3,070
2,770 | 38
37
35
33
31 | 5,170
4,690
4,200
3,700
3,350 | 25
25
26
27
27 | 925
1,420
1,570
1,450
1,050 | 22
23
21
20
19 | 1,090
1,190
1,120
942
1,020 | | 26
27
28
29
30
31 | 22
20
19
21
25 | 5,240
4,890
4,520
4,910
5,810 | 24
24
23
26
29
32 | 5,760
5,600
5,330
5,600
6,150
6,610 | 33
36
40
43
46 | 3,200
3,630
4,610
5,870
6,760 | 29
27
25
23
17
22 | 2,920
2,760
2,440
1,950
1,260
1,400 | 24
21
22
23
25
27 | 842
703
719
714
749
913 | 19
19
19
18
17 | 902
682
605
646
713 | | TOTAL | | 123,520 | | 176,160 | | 138,430 | | 169,670 | | 35,844 | | 27,134 | | YEAR | 948.231 | | | | | | | | | | | | YEAR 948,231 Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. ## **UPPER WISCONSIN RIVER BASIN** #### 05391000 WISCONSIN RIVER AT RAINBOW LAKE, NEAR LAKE TOMAHAWK, WI $LOCATION.--Lat~45^{\circ}49'50'', long~89^{\circ}33'08'', in~NE~\frac{1}{4}~NE~\frac{1}{4}~sec.36, T.39~N., R.7~E., Oneida~County, Hydrologic~Unit~07070001, on~right~bank~500~ft~downstream~from~Gilmore~Creek, 0.4~mi~downstream~from~Rainbow~Lake, and 2.3~mi~northeast~of~Lake~Tomahawk.$ DRAINAGE AREA.--757 mi². PERIOD OF RECORD.--July 1936 to current year. Prior to October 1955, published as "at Rainbow Reservoir, near Lake Tomahawk." REVISED RECORDS.--WSP 895: 1937(M). WSP 1508: 1944. WDR WI-83-1: Drainage area. WDR WI-80-1: Datum. GAGE.--Water-stage recorder. Datum of gage is 1,569.05 ft above NGVD of 1929 (levels by Wisconsin Valley Improvement Co.). REMARKS.--Records good (see page 11). Flow regulated by Rainbow Lake and 12 smaller reservoirs upstream from station. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |---|--|---|--|--|-----------------------|--|--|--|---------------------------------|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 518 | 797 | 894 | 830 | 693 | 479 | 324 | 320 | 687 | 591 | 481 | 471 | | | | 2 | 475 | 790 | 890 | 828 | 686 | 479 | 332 | 320 | 621 | 587 | 455 | 462 | | | | 3 | 484 | 785 | 890 | 822 | 686 | 482 | 333 | 320 | 580 | 582 | 458 | 453 | | | | 4 | 521 | 871 | 887 | 822 | 682 | 455 | 333 | 323 | 568 | 581 | 458 | 452 | | | | 5 | 534 | 926 | 873 | 819 | 684 | 460 | 332 | 323 | 565 | 578 | 458 | 448 | | | | 6 | 550 | 904 | 868 | 814 | 676 | 462 | 333 | 327 | 566 | 569 | 462
 446 | | | | 7 | 726 | 890 | 873 | 814 | 670 | 442 | 333 | 320 | 569 | 563 | 463 | 441 | | | | 8 | 852 | 884 | 873 | 809 | 651 | 452 | 326 | 389 | 566 | 563 | 496 | 440 | | | | 9 | 847 | 882 | 874 | 805 | 645 | 473 | 322 | 570 | 586 | 568 | 516 | 438 | | | | 10 | 1,160 | 907 | 872 | 804 | 636 | 456 | 326 | 665 | 554 | 570 | 514 | 434 | | | | 11 | 1,430 | 929 | 866 | 798 | 631 | 436 | 326 | 1,030 | 548 | 539 | 514 | 433 | | | | 12 | 1,580 | 943 | 864 | 796 | 623 | 422 | 329 | 1,620 | 544 | 520 | e516 | 432 | | | | 13 | 1,630 | 945 | 864 | 789 | 614 | 423 | 336 | 1,500 | 549 | 517 | e516 | 430 | | | | 14 | 1,620 | 939 | 866 | 786 | 605 | 413 | 340 | 1,430 | 549 | 513 | e514 | 429 | | | | 15 | 1,390 | 934 | 864 | 781 | 598 | 393 | 346 | 1,440 | 549 | 508 | 513 | 429 | | | | 16 | 1,220 | 934 | 865 | 777 | 592 | 390 | 347 | 1,440 | 548 | 509 | 511 | 428 | | | | 17 | 1,190 | 931 | 865 | 774 | 585 | 358 | 337 | 1,580 | 597 | 510 | 509 | 425 | | | | 18 | 1,090 | 927 | 865 | 771 | 575 | 312 | 315 | 1,670 | 623 | 509 | 500 | 424 | | | | 19 | 1,030 | 926 | 870 | 768 | 564 | 280 | 321 | 1,660 | 622 | 510 | 490 | 421 | | | | 20 | 1,030 | 925 | 873 | 761 | 555 | 267 | 335 | 1,540 | 663 | 512 | 494 | 418 | | | | 21 | 1,020 | 921 | 866 | 757 | 546 | 273 | 339 | 1,280 | 695 | 515 | 497 | 415 | | | | 22 | 987 | 918 | 864 | 750 | 540 | 278 | 339 | 1,160 | 702 | 516 | 498 | 411 | | | | 23 | 961 | 918 | 859 | 745 | 533 | 285 | 340 | 1,120 | 704 | 516 | 496 | 413 | | | | 24 | 941 | 916 | 856 | 732 | 525 | 291 | 341 | 1,070 | 704 | 519 | 496 | 410 | | | | 25 | 855 | 907 | 856 | 717 | 511 | 294 | 344 | 966 | 643 | 522 | 494 | 406 | | | | 26
27
28
29
30
31 | 806
806
805
804
797
797 | 899
899
899
897
892 | 846
839
837
839
834
831 | 716
714
706
702
701
694 | 496
491
483
 | 294
300
305
309
310
315 | 353
352
347
332
319 | 917
926
928
858
748
711 | 604
601
602
595
591 | 523
523
523
524
528
532 | 490
489
486
483
478
476 | 406
404
402
402
407 | | | | TOTAL | 29,456 | 27,035 | 26,783 | 23,902 | 16,776 | 11,588 | 10,032 | 29,471 | 18,095 | 16,640 | 15,221 | 12,830 | | | | MEAN | 950 | 901 | 864 | 771 | 599 | 374 | 334 | 951 | 603 | 537 | 491 | 428 | | | | MAX | 1,630 | 945 | 894 | 830 | 693 | 482 | 353 | 1,670 | 704 | 591 | 516 | 471 | | | | MIN | 475 | 785 | 831 | 694 | 483 | 267 | 315 | 320 | 544 | 508 | 455 | 402 | | | | STATIST | TICS OF MO | | EAN DATA | A FOR WATE | R YEARS | 1936 - 2003. | , BY WATE | R YEAR (W | YY) | | | | | | | MEAN | 653 | 694 | 775 | 822 | 813 | 642 | 414 | 715 | 725 | 668 | 586 | 596 | | | | MAX | 1,445 | 1,250 | 1,178 | 1,108 | 1,161 | 1,044 | 1,330 | 1,798 | 1,863 | 1,387 | 1,472 | 1,282 | | | | (WY) | (1952) | (1939) | (1955) | (1943) | (1952) | (1939) | (1973) | (1973) | (1939) | (1968) | (1938) | (1980) | | | | MIN | 263 | 170 | 330 | 371 | 417 | 316 | 138 | 173 | 228 | 237 | 243 | 268 | | | | (WY) | (1988) | (1949) | (1949) | (1990) | (1977) | (2000) | (1949) | (1949) | (1987) | (1988) | (1988) | (1948) | | | | SUMMA | RY STATIS | STICS | | FOR 2002 CA | LENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 193 | 36 - 2003 | | | | LOWEST
HIGHEST
LOWEST
ANNUAI
MAXIMU
MAXIMU
10 PERCT
50 PERCT | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY M | MEAN
IEAN
EAN
OAY MINIM
FLOW
STAGE
EDS
EDS | IUM | 279,488
766
1,840
283
320
1,080
683
519 | Apr
Apr
Apr | 12 | 237,82
65
1,67
26
28
1,67
93
56 | 70 May
57 Ma:
51 May
70 May
4.38 May
60 | r 20 | 1,0
3
2,8
1
3,5 | 59
20 Se
35 Ar
07 Ar
70 Se
7.59 Se | 1939
1990
19 5, 1941
19 6, 1955
19 5, 1941
19 5, 1941 | | | ⁽e) Estimated due to ice effect or missing record #### WISCONSIN RIVER BASIN #### 05393500 SPIRIT RIVER AT SPIRIT FALLS, WI LOCATION.--Lat 45°26'57", long 89°58'45" (revised), in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.10, T.34 N., R.4 E., Lincoln County, Hydrologic Unit 07070001, on right bank 40 ft downstream of bridge 0.2 mi south of Spirit Falls, 0.6 mi upstream from Squaw Creek, and 2.0 mi downstream from Richie Creek. DRAINAGE AREA.--81.6 mi². PERIOD OF RECORD.--April 1942 to current year. REVISED RECORDS.--WSP 1308: 1943(M), 1948-50(M). WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,461.63 ft above NGVD of 1929. Prior to Oct. 4, 1982, nonrecording gage 40 ft upstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC. IAN EED MAD ADD MAY HIM ALC SEP | | | | | | | | | | | | | | |---|---|---|---|--|--|---|---|--|---|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1
2
3
4
5 | 477
449
250
305
677 | e82
e78
e76
e74
73 | e19
e18
e17
e16
e16 | e17
e16
e14
e13
e13 | e12
e12
e12
e12
e11 | e12
e12
e12
e13
e13 | e200
e210
e170
e170
e170 | 124
112
99
89
120 | 128
84
64
51
43 | 33
30
34
38
41 | 26
23
28
27
24 | 7.4
6.5
6.0
5.7
5.5 | | | | 6
7
8
9
10 | 812
1,180
702
487
382 | 72
69
68
68
69 | e16
e16
e15
e14
e14 | e13
e13
e13
e13 | e10
e9.2
e8.8
e8.8
e8.6 | e14
e14
e14
e14 | e170
e160
e160
e160
e200 | 364
342
264
350
641 | 43
89
128
280
342 | 31
27
24
22
23 | 20
16
14
13
12 | 5.4
5.2
5.1
4.9
4.8 | | | | 11
12
13
14
15 | 296
241
241
203
158 | 72
68
65
62
55 | e14
e15
e16
e17
e17 | e11
e11
e11
e11
e11 | e8.8
e8.8
e8.8
e8.8 | e15
e15
e16
e16
e17 | e270
e360
e470
626
707 | 1,030
1,710
839
465
330 | 733
452
220
145
106 | 34
31
25
22
22 | 9.6
8.8
8.3
7.9 | 4.6
6.4
14
13 | | | | 16
17
18
19
20 | 132
109
99
112
118 | 54
48
45
44
41 | e17
e17
e17
e23
e24 | e9.6
e10
e9.8
e9.8
e9.8 | e9.6
e10
e11
e12
e12 | e18
e24
e33
e45
e60 | 753
1,060
722
678
1,030 | 257
201
165
140
190 | 81
65
56
47
41 | 22
19
18
16
15 | 7.6
7.3
7.1
7.0
17 | 9.7
8.1
7.2
7.8
9.3 | | | | 21
22
23
24
25 | 107
103
99
83
74 | 42
e39
e37
e35
e30 | e23
e22
e20
e18
e17 | e9.8
e9.8
e10
e10 | e12
e12
e11
e11
e11 | e80
e130
e160
e200
e230 | 1,060
696
452
328
265 | 170
132
112
95
81 | 35
31
30
45
44 | 17
17
15
13
12 | 27
16
12
12
10 | 9.4
9.0
9.6
14
19 | | | | 26
27
28
29
30
31 | 109
e120
e110
e100
e96
e88 | e28
e27
e26
e24
e22 | e16
e16
e16
e16
e17
e18 | e10
e10
e10
e10
e11
e12 | e11
e12
e12
 | e190
e140
e150
e160
e170
e180 | 218
181
163
145
133 | 70
61
55
50
52
160 | 38
36
34
47
41 | 11
11
9.5
8.8
14
23 | 9.4
8.6
8.6
9.6
8.7
8.0 | 15
15
19
23
20 | | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 8,519
275
1,180
74
3.37
3.88 | 1,593
53.1
82
22
0.65
0.73 | 537
17.3
24
14
0.21
0.24 | 353.6
11.4
17
9.6
0.14
0.16 | 295.0
10.5
12
8.6
0.13
0.13 | 2,181
70.4
230
12
0.86
0.99 | 12,087
403
1,060
133
4.94
5.51 | 8,870
286
1,710
50
3.51
4.04 | 3,579
119
733
30
1.46
1.63 | 678.3
21.9
41
8.8
0.27
0.31 | 424.5
13.7
28
7.0
0.17
0.19 | 300.6
10.0
23
4.6
0.12
0.14 | | | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 75.4
306
(1986)
4.05
(1977) | 74.4
338
(1992)
5.31
(1977) | 38.7
293
(1976)
4.07
(1977) | A FOR WATE
20.4
71.8
(1960)
3.00
(1977) | ER YEARS
20.0
69.8
(1984)
3.61
(1977) | 1942 - 2003
108
467
(1946)
14.6
(1956) | 330
697
(1951)
55.6
(1946) | R YEAR (W
152
408
(1973)
23.0
(1987) | 99.1
398
(1943)
6.01
(1988) | 46.9
209
(1968)
4.09
(1964) | 37.9
359
(1995)
3.13
(1944) | 74.5
396
(1942)
3.05
(1976) | | | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM' INSTAN ANNUA ANNUA 10 PERC 50 PERC | UM PEAK I
UM PEAK S | L MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | UM | | Apr
Dec
Dec | 12
9-11 | 39,41
10
1,71
1,98 | 0 May
4.6 Sey
5.1 Sey
0 May
6.54 May
1.32
7.97 | y 12
o 11
o 5
y 12 | 3,3
(b)4,1 | 1.0 Au
1.4 Au
180 So
10.00
So | 42 - 2003
1973
1957
ep 18, 1942
ug 11, 1964
ug 5, 1964
ep 18, 1942
ep 18, 1942
ug 11, 1964 | | | ⁽a) Ice affected ⁽b) From rating curve extended above 2,500 ft³/s ⁽e) Estimated due to ice effect or missing record Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. ## **CENTRAL WISCONSIN RIVER BASIN** #### 05394500 PRAIRIE RIVER NEAR MERRILL, WI LOCATION.--Lat 45°14′09", long 89°38′59", in SW ${}^1\!\!/_4$ sec. 20, T.32 N., R.7 E., Lincoln County, Hydrologic Unit 07070002, on left bank 40 ft upstream from bridge on County Trunk Highway C, 1.5 mi upstream from Meadow Creek, 4.5 mi northeast of Merrill, and 8.0 mi upstream from mouth. DRAINAGE AREA.--184 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1914 to September 1931, August 1939 to current year. Monthly discharge for some periods published in WSP 1308. REVISED RECORDS.--WSP 1308: 1915-17(M), 1919-21(M), 1923-31(M), 1942-43(M), 1945(M), 1948-50(M). WDR WI-77-1: Drainage area. WDR WI-79-1: 1972. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,297.22 ft above NGVD of 1929. Prior to Oct. 9, 1968, nonrecording gage 40 ft downstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | YEAR OCTO | DBER 2002 | TO SEPTEN | MBER 2003 | | | |---|---|---|--|---|---|---|---|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 222 | 173 | e88 | e76 | e66 | e64 | 204 | 229 | 276 | 102 | 102 | 77 | | 2 | 198 | 162 | e96 | e74 | e66 | e62 | 251 | 215 | 217 | 100 | 114 | 76 | | 3 | 174 | 156 | e96 | e72 | e64 | e60 | 216 | 199 | 187 | 100 | 130 | 75 | | 4 | 292 | 152 | 96 | e72 | e62 | e58 | 153 | 189 | 172 | 112 | 138 | 75 | | 5 | 462 | 150 | 98 | e74 | e60 | e58 | 126 | 236 | 159 | 109 | 122 | 75 | | 6 | 508 | 152 | 98 | e76 | e60 | e60 | 166 | 464 | 151 | 98 | 113 | 75 | | 7 | 515 | 150 | e96 | e80 | e60 | e64 | 149 | 471 | 167 | 95 | 105 | 75 | | 8 | 479 | 148 | e86 | e82 | e62 | e62 | 124 | 394 | 202 | 93 | 99 | 75 | | 9 | 420 | 148 | e84 | e76 | e62 | e62 | 133 | 384 | 249 | 91 | 94 | 75 | | 10 | 362 | 157 | e88 | e65 | e62 | e66 | 211 | 440 | 320 | 92 | 91 | 74 | | 11 | 311 | 169 | 94 | e67 | e62 | e74 | 292 | 809 | 447 | 98 | 91 | 74 | | 12 | 277 | 162 | 97 | e64 | e62 | e75 | 314 | 1,310 | 364 | 95 | 87 | 91 | | 13 | 274 | 152 | 102 | e60 | e62 | 82 | 287 | 1,150 | 272 | 91 | 84 | 121 | | 14 | 249 | 147 | 104 | e58 | e62 | 83 | 260 | 807 | 214 | 88 | 82 | 130 | | 15 | 220 | 138 | 102 | e56 | e62 | 91 | 283 | 550 | 180 | 93 | 84 | 122 | | 16 | 197 | 133 | e86 | e56 | e62 | 121 | 980 | 411 | 158 | 90 | 80 | 109 | | 17 | 179 | 120 | e96 | e56 | e62 | 315 | 1,360 | 327 | 142 | 87 | 79 | 99 | | 18 | 174 | e120 | e100 | e56 | e64 | 514 | 1,210 | 287 | 132 | 86 | 78 | 92 | | 19 | 192 | e120 | e110 | e56 | e66 | 442 | 1,070 | 266 | 123 | 84 | 77 | 91 | | 20 | 206 | 120 | e110 | e54 | e68 | 325 | 1,160 | 367 | 114 | 84 | 88 | 89 | | 21 | 203 | 121 | e100 | e54 | e68 | 307 | 1,250 | 373 | 109 | 85 | 94 | 88 | | 22 | 200 | 121 | e94 | e54 | e66 | 291 | 1,060 | 310 | 104 | 85 | 85 | 96 | | 23 | 203 | 121 | e90 | e54 | e64 | 236 | 771 | 264 | 102 | 86 | 81 | 97 | | 24 | 199 | 117 | e88 | e54 | e60 | 241 | 564 | 235 | 115 | 85 | 83 | 100 | | 25 | 200 | e100 | e86 | e56 | e60 | 220 | 437 | 213 | 117 | 82 | 83 | 108 | | 26
27
28
29
30
31 | 245
268
245
217
199
186 | e100
e100
e98
e110
e100 | e84
e84
e86
e88
e88
e74 | e58
e60
e62
e64
e66
e66 | e62
e64
e64
 | 184
156
208
242
220
196 | 361
313
287
263
242 | 199
181
175
172
209
395 | 109
104
106
112
108 | 86
99
105
93
88
93 | 81
79
79
81
79
77 | 110
111
113
112
109 | | TOTAL | 8,276 | 4,017 | 2,889 | 1,978 | 1,764 | 5,239 | 14,497 | 12,231 | 5,332 | 2,875 | 2,840 | 2,814 | | MEAN | 267 | 134 | 93.2 | 63.8 | 63.0 | 169 | 483 | 395 | 178 | 92.7 | 91.6 | 93.8 | | MAX | 515 | 173 | 110 | 82 | 68 | 514 | 1,360 | 1,310 | 447 | 112 | 138 | 130 | | MIN | 174 | 98 | 74 | 54 | 60 | 58 | 124 | 172 | 102 | 82 | 77 | 74 | | CFSM | 1.45 | 0.73 | 0.51 | 0.35 | 0.34 | 0.92 | 2.63 | 2.14 | 0.97 | 0.50 | 0.50 | 0.51 | | IN. | 1.67 | 0.81 | 0.58 | 0.40 | 0.36 | 1.06 | 2.93 | 2.47 | 1.08 | 0.58 | 0.57 | 0.57 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MO
167
527
(1942)
70.8
(1990) | ONTHLY M
167
388
(1920)
76.7
(1951) | EAN DATA
113
199
(1992)
66.1
(1990) | FOR WATE
91.8
169
(1960)
60.5
(1925) | ER YEARS
90.0
158
(1930)
63.0
(2003) | 1914 - 2003
187
676
(1973)
68.2
(1956) | 435
899
(1916)
106
(1990) | R YEAR (W
259
723
(1960)
98.8
(1931) | 209
598
(1993)
70.6
(1988) | 137
401
(1978)
68.3
(1989) | 131
494
(1926)
68.1
(1957) | 171
656
(1941)
65.1
(1989) | | ANNUAI
ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
MAXIMI
INSTAN'
ANNUAI
ANNUAI
10 PERC'
50 PERC' | T ANNUAI T ANNUAL T DAILY M T DAILY M L SEVEN-E UM PEAK I UM PEAK S | MEAN MEAN MEAN EAN EAN AY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | IUM | | Apr
Feb
Jan
.09 | 13
1 | 64,75
17
1,36
(a)5
(a)5
1,42
4
1
32
10 | 7 0 Ap 4 Jan 5 Jan 0 Ap 5.74 Ap 4 Ma 0.96 3.09 6 | r 17
1 20-24
1 18
r 17
r 17
r 17 | (b)5,8 | 35 O
52 D
300 Au
c)9.45 Au | 1942
1931
1931
19 31, 1941
ct 26, 1947
ec 28, 1948
19 31, 1941
1g 31, 1941
ct 26, 1947 | ⁽a) Ice affected ⁽b) Based on rating curve extended above 2,200 ft³/s ⁽c) From floodmarks ⁽e) Estimated due to ice effect or missing record #### 05394500 PRAIRIE RIVER NEAR MERRILL, WI-Continued #### WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: October 1998 to current year. INSTRUMENTATION.--Continuous water temperature recorder since October 1998. Sensor located near midstream. REMARKS.--Records represent water temperature at sensor within 0.5°C. Record was complete in the 2003 water year, except partial days Jan. 15 and 16. EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum temperature, 29.0°C, July 1, 2002; minimum, 0.0°C on many days. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum temperature, 25.0°C, July 3, 5; minimum 0.0°C, many days in winter. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|---------------------------------| | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | | 1
2
3
4
5 | 16.0
14.0
12.5
13.0
12.0 | 12.5
11.5
10.5
11.5
10.0 | 14.0
13.0
11.5
12.0
11.0 | 3.0
3.5
4.0
4.5
2.5 | 1.0
1.0
1.0
2.0
2.0 | 2.0
2.0
2.0
2.5
2.0 | 0.5
1.5
1.5
1.5
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.5
2.0
2.5
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.0 | | 6
7
8
9
10 | 10.5
9.0
9.5
10.5
9.0 | 9.0
7.5
7.5
8.0
7.5 | 10.0
8.0
8.5
9.0
8.5 | 3.5
4.5
5.0
6.5
6.5 | 2.0
1.5
2.5
4.0
5.5 | 2.5
3.0
3.5
5.0
6.0 | 1.0
1.0
1.5
1.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | 2.5
2.0
2.0
1.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
1.0
1.0
0.5
0.5 | | 11
12
13
14
15 | 11.0
10.5
9.0
8.0
8.5 | 7.5
9.0
6.5
5.0
6.0 | 9.5
10.0
7.5
6.5
6.5 | 5.5
3.5
3.0
3.0
1.5 | 3.0
2.0
1.0
1.0
0.5 | 4.5
2.5
2.5
2.5
1.0 | 2.0
0.5
0.5
1.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 2.0
2.5
2.5
2.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | | 16
17
18
19
20 | 6.0
6.5
4.5
4.5
6.5 | 3.5
3.5
3.5
4.0
3.5 | 5.0
4.5
4.0
4.0
4.5 | 2.5
1.5
1.0
2.5
1.5 | 0.0
0.0
0.0
0.0
0.0 | 1.0
0.5
0.5
1.0
1.0 | 1.0
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.5
0.5
0.0 | 2.5
1.5
1.5
2.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | | 21
22
23
24
25 | 4.5
3.5
5.5
4.5
4.0 |
2.0
2.5
2.5
2.5
3.5 | 3.0
3.0
3.5
3.5
4.0 | 2.0
2.0
3.0
1.5
1.5 | 1.0
1.0
1.0
0.0
0.0 | 1.5
1.5
1.5
0.5
0.0 | 0.5
0.5
1.5
1.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.0 | 2.5
2.5
2.5
1.5
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | | 26
27
28
29
30
31 | 5.0
4.0
5.0
5.0
5.0
5.0 | 4.0
2.5
1.5
3.0
3.0
2.0 | 4.0
3.5
3.5
4.0
4.0
3.5 | 1.5
0.5
0.5
1.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.0 | 2.0
2.0
1.0
1.5
1.0
2.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5
0.5 | 2.5
1.5
1.5
2.5
2.0
1.5 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | | MONTH | 16.0 | 1.5 | 6.7 | 6.5 | 0.0 | 1.8 | 2.0 | 0.0 | 0.2 | 2.5 | 0.0 | 0.5 | #### 05394500 PRAIRIE RIVER NEAR MERRILL, WI—Continued ${\tt TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002\ TO\ SEPTEMBER\ 2003}$ | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.5
1.0
1.0
1.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.5
0.5 | 2.0
1.5
1.0
1.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 7.0
4.5
2.5
0.5
2.5 | 2.0
2.0
0.0
0.0
0.0 | 4.0
3.5
1.0
0.0
1.0 | 12.5
12.5
12.5
10.5
8.5 | 6.0
6.5
6.0
6.5
6.5 | 9.0
9.0
9.0
8.5
7.5 | | 6
7
8
9
10 | 2.0
2.5
1.5
2.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 2.0
1.5
1.5
1.5
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.5
0.5 | 5.0
3.0
7.5
9.0
8.5 | 0.0
0.0
0.0
1.0
2.5 | 2.0
1.5
3.0
5.0
5.5 | 7.0
6.5
10.5
9.5
9.5 | 5.5
5.5
6.0
7.5
6.0 | 6.0
6.0
8.5
8.5
8.0 | | 11
12
13
14
15 | 2.5
2.0
2.0
2.0
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 1.5
1.5
1.5
1.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 8.5
8.5
9.0
12.5
13.0 | 3.0
3.0
3.0
5.0
9.0 | 5.5
5.5
6.0
8.5
11.0 | 9.5
9.5
12.5
11.5
13.0 | 6.5
5.5
7.5
10.0
9.0 | 8.0
7.5
10.0
11.0
11.0 | | 16
17
18
19
20 | 2.5
2.5
1.5
2.0
2.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.5
0.5 | 1.5
2.0
0.5
1.5
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.5
0.5 | 9.5
1.0
1.5
2.5
3.5 | 1.0
0.5
0.5
1.0
2.5 | 4.0
0.5
1.0
1.5
3.0 | 13.0
13.5
15.0
14.0
14.0 | 10.0
10.0
10.5
13.0
11.0 | 11.5
12.0
13.0
13.0
12.5 | | 21
22
23
24
25 | 1.5
1.5
2.0
1.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 1.0
2.0
5.0
5.0
6.0 | 0.0
0.5
0.5
1.0
1.0 | 0.5
1.5
2.5
3.0
3.0 | 3.0
5.5
7.0
8.0
10.5 | 2.0
1.0
2.5
4.0
6.0 | 2.5
3.0
5.0
6.5
8.0 | 13.5
11.5
15.0
17.0
17.5 | 9.5
9.5
8.5
10.0
11.0 | 11.5
10.5
11.5
13.5
14.5 | | 26
27
28
29
30 | 2.5
2.5
2.0 | 0.0
0.0
0.0
 | 0.5
0.5
0.5
 | 5.5
3.0
2.5
4.0
4.0 | 1.0
1.5
0.5
0.0
0.0
0.5 | 3.5
2.0
1.5
1.5
2.0 | 10.0
10.0
12.0
11.5
9.5 | 5.5
6.5
7.0
6.5
7.5 | 8.0
8.5
9.5
9.0
8.5 | 18.5
20.0
17.0
19.5
17.5 | 11.5
13.0
14.5
12.5
13.5 | 15.0
16.5
16.0
15.5
15.5 | | 31 | | | | 5.0 | 0.5 | 2.5 | | | | 15.5 | 11.5 | 13.5 | | MONTH | 2.5 | 0.0 | 0.4 | 6.0 | 0.0 | 1.0 | 13.0 | 0.0 | 17 | 20.0 | 5.5 | 11.1 | | MONTH | 2.5 | 0.0
JUNE | 0.4 | 6.0 | 0.0
JULY | 1.0 | 13.0 | 0.0
AUGUST | 4.7 | 20.0
SF | 5.5
EPTEMBI | 11.1
ER | | MONTH 1 2 3 4 5 | 2.5
16.5
17.0
19.0
18.5
18.5 | 0.0
JUNE
11.0
12.0
13.5
13.0
14.5 | 0.4
14.0
15.0
16.0
16.5 | 23.5
22.5
25.0
23.5
25.0 | 0.0
JULY
16.0
17.0
17.5
19.0
18.0 | 1.0
19.5
19.5
21.0
21.0
21.5 | | 0.0
AUGUST
17.0
17.0
16.5
16.5
16.5 | | | 5.5
EPTEMBI
12.5
13.0
14.0
13.0
11.5 | | | 1
2
3
4 | 16.5
17.0
19.0
18.5 | JUNE
11.0
12.0
13.5
13.0 | 14.0
15.0
16.0 | 23.5
22.5
25.0
23.5 | JULY
16.0
17.0
17.5
19.0 | 19.5
19.5
21.0
21.0 | 21.5
19.5
18.5
21.0 | 17.0
17.0
16.5
16.5 | 19.0
18.0
17.5
18.0 | 19.0
19.5
17.5
19.0 | 12.5
13.0
14.0
13.0 | 15.5
16.5
16.0
15.5 | | 1
2
3
4
5
6
7
8
9 | 16.5
17.0
19.0
18.5
18.5
16.0
15.5
14.0
15.0 | JUNE 11.0 12.0 13.5 13.0 14.5 13.5 13.0 12.5 12.0 | 14.0
15.0
16.0
16.5
14.5
14.0
13.5
13.5 | 23.5
22.5
25.0
23.5
25.0
22.0
23.5
21.0
18.0 | JULY 16.0 17.0 17.5 19.0 18.0 18.0 17.0 17.0 17.0 15.5 | 19.5
19.5
21.0
21.0
21.5
20.0
20.0
18.5
17.0 | 21.5
19.5
18.5
21.0
22.0
22.5
22.0
21.5
22.5 | AUGUST 17.0 17.0 16.5 16.5 16.5 17.5 17.0 17.0 15.5 | 19.0
18.0
17.5
18.0
19.0
19.5
19.0
19.0 | 19.0
19.5
17.5
19.0
18.5 | 12.5
13.0
14.0
13.0
11.5
13.0
14.5
16.5
17.0 | 15.5
16.5
16.0
15.5
15.0
16.0
17.5
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 16.5
17.0
19.0
18.5
18.5
16.0
15.5
14.0
15.0
13.5
17.0
18.0
19.5
21.5 | JUNE 11.0 12.0 13.5 13.0 14.5 13.5 13.0 12.5 12.0 13.0 14.0 15.5 16.0 | 14.0
15.0
16.0
16.5
14.5
14.0
13.5
13.5
13.0
14.5
16.0
17.5
18.5 | 23.5
22.5
25.0
23.5
25.0
22.0
23.5
21.0
18.0
16.5
18.0
20.0
23.0
20.5 | JULY 16.0 17.0 17.5 19.0 18.0 17.0 17.0 15.5 15.0 13.5 15.5 17.0 | 19.5
19.5
21.0
21.0
21.5
20.0
20.0
18.5
17.0
15.5
15.5
17.0
19.0 | 21.5
19.5
18.5
21.0
22.0
22.5
22.0
21.5
22.5
22.0
23.0
23.5
23.5 | AUGUST 17.0 17.0 16.5 16.5 16.5 17.0 17.0 15.5 16.5 17.0 17.0 15.5 16.0 17.0 | 19.0
18.0
17.5
18.0
19.0
19.0
19.0
19.0
19.0
19.5
19.0
19.5
20.0 | 19.0
19.5
17.5
19.0
18.5
19.5
20.5
22.0
22.0
22.0
22.0
18.5
17.5
16.5 | 12.5
13.0
14.0
13.0
11.5
13.0
11.5
13.0
14.5
16.5
17.0
17.0
17.0
15.5
14.5 | 15.5
16.5
16.0
15.5
15.0
16.0
17.5
19.0
19.0
19.5
19.0
17.0
16.5
15.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 16.5
17.0
19.0
18.5
18.5
16.0
15.5
14.0
15.0
13.5
17.0
18.0
19.5
22.5
22.5
23.0
22.5
23.5
22.0 | JUNE 11.0 12.0 13.5 13.0 14.5 13.5 13.0 12.5 12.0 13.0 12.6 16.0 16.5 16.0 16.5 17.5 16.0 | 14.0
15.0
16.0
16.5
14.5
14.0
13.5
13.5
13.0
14.5
16.0
17.5
18.5
19.5
19.5
20.0
19.0 | 23.5
22.5
25.0
23.5
25.0
22.0
23.5
21.0
18.0
16.5
18.0
20.0
23.0
20.5
22.0
23.5
21.5
22.5
22.5 | JULY 16.0 17.0 17.5 19.0 18.0 17.0 17.0 15.5 15.0 13.5 13.5 15.5 17.0 17.5 15.0 18.0 15.0 15.5 | 19.5
19.5
21.0
21.0
21.5
20.0
20.0
18.5
17.0
15.5
17.0
19.0
19.0
19.0
19.0
19.0 |
21.5
19.5
18.5
21.0
22.0
22.5
22.0
21.5
22.5
22.0
23.0
23.5
23.5
23.0
24.5
24.0
24.0
24.5 | AUGUST 17.0 17.0 16.5 16.5 16.5 17.5 17.0 15.5 16.5 17.0 15.5 16.0 17.0 18.0 18.5 18.5 17.5 18.5 | 19.0
18.0
17.5
18.0
19.0
19.5
19.0
19.0
19.0
19.5
19.0
20.5
21.5
21.5
21.5 | 19.0
19.5
17.5
19.0
18.5
19.5
20.5
22.0
22.0
22.0
22.0
18.5
17.5
16.5
17.0
18.0
19.5
16.5 | 12.5
13.0
14.0
13.0
11.5
13.0
14.5
16.5
17.0
17.0
16.0
15.5
14.5
12.0 | 15.5
16.5
16.0
15.5
15.0
16.0
17.5
19.0
19.0
19.5
19.0
17.5
19.0
17.5
15.5
15.5
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 16.5
17.0
19.0
18.5
18.5
16.0
15.5
14.0
15.0
13.5
17.0
18.0
21.5
22.5
23.5
22.0
22.0
22.0
23.0
23.5
21.5
21.5
22.5 | JUNE 11.0 12.0 13.5 13.0 14.5 13.5 13.0 12.5 12.0 13.0 14.0 15.5 16.0 16.5 17.5 16.0 14.5 14.5 15.5 17.5 17.5 17.5 | 14.0
15.0
16.0
16.0
16.5
14.5
14.0
13.5
13.5
13.0
14.5
16.0
17.5
18.5
19.5
19.5
20.0
19.0
18.0
18.5
19.5
19.5
19.5
20.0 | 23.5
22.5
25.0
23.5
25.0
22.0
23.5
21.0
18.0
20.0
23.0
20.5
22.0
23.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JULY 16.0 17.0 17.5 19.0 18.0 17.0 17.0 15.5 15.0 13.5 15.5 17.0 17.5 15.0 17.5 15.0 17.5 15.0 17.5 15.0 17.5 15.0 17.5 | 19.5
19.5
21.0
21.0
21.5
20.0
20.0
18.5
17.0
15.5
15.5
17.0
19.0
19.0
19.0
19.0
19.0
19.5
19.0
20.5 | 21.5
19.5
18.5
21.0
22.0
22.5
22.0
21.5
22.5
22.0
23.0
23.5
23.5
23.0
24.5
24.0
24.5
24.0
24.5
24.0
24.5
23.0
19.0
22.5 | AUGUST 17.0 17.0 16.5 16.5 16.5 17.0 17.0 15.5 16.5 17.0 15.5 16.0 17.0 18.0 18.5 17.5 18.5 17.5 19.5 20.0 17.0 16.0 15.5 | 19.0
18.0
17.5
18.0
19.0
19.0
19.0
19.0
19.0
19.5
20.0
20.5
21.5
21.5
22.0
20.0
17.5
19.0 | 19.0
19.5
17.5
19.0
18.5
19.5
20.5
22.0
22.0
22.0
22.0
18.5
17.5
16.5
15.0
17.0
18.0
19.5
16.5
15.5 | 12.5
13.0
14.0
13.0
11.5
13.0
11.5
13.0
14.5
16.5
17.0
17.0
17.0
17.0
16.0
15.5
14.5
12.0
11.0
13.0
14.5
12.0
10.0
10.0 | 15.5
16.5
16.0
15.5
15.0
16.0
17.5
19.0
19.0
19.5
19.0
17.0
16.5
15.5
13.5
14.0
15.5
12.5
12.5
13.0
12.5 | ### 05395000 WISCONSIN RIVER AT MERRILL, WI LOCATION.--Lat 45°10'41", long 89°40'52", on line between secs.12 and 13, T.31 N., R.6 E., Lincoln County, Hydrologic Unit 07070002, on left bank 300 ft downstream from U.S. Highway 51 bridge at east end of Merrill, and 0.5 mi downstream from Prairie River. DRAINAGE AREA.--2,760 mi². PERIOD OF RECORD.--December 1902 to current year. Monthly discharge data for some periods from December 1902 to September 1909 published in WSP 1308. Mostly seasonal unpublished daily discharge records from December 1902 to September 1905 in District files. REVISED RECORDS.--WSP 1308: 1904-7, 1909-11, 1913. WSP 1508: 1908, 1915-16(M), 1917, 1920-21(M), 1925(M), 1930, 1935-36. WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,228.85 ft above NGVD of 1929. Prior to June 18, 1903, nonrecording gage at different datum. June 18, 1903, to Sept. 10, 1914, non recording gage at present datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by 20 reservoirs and 9 powerplants upstream from station. Gage-height telemeter at station. DICCHARGE CURIC EET DER GECOND WATER VEAR OCTORER 2002 TO GERTEMBER 2002 | | | DISCH | ARGE, CU | BIC FEET PEI | | O, WATER Y
LY MEAN V | | BER 2002 T | TO SEPTEM | MBER 2003 | | | |--|---|---|--|---|------------------------------|--|--|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3,440 | 3,160 | 2,380 | 2,430 | e1,700 | e1,700 | e2,100 | 2,570 | 3,240 | 2,130 | 1,790 | 1,160 | | 2 | 4,570 | 3,110 | 2,530 | 2,010 | e1,600 | e2,000 | e2,200 | 2,440 | 3,130 | 2,030 | 1,490 | 1,420 | | 3 | 4,490 | 2,880 | 2,600 | 2,310 | e2,100 | e1,800 | e2,300 | 2,370 | 2,680 | 1,840 | 1,770 | 1,350 | | 4 | 5,100 | 2,920 | 2,830 | 2,340 | e2,200 | e1,300 | 1,950 | 2,120 | 2,210 | 1,590 | 1,840 | 1,230 | | 5 | 5,190 | 3,140 | 2,490 | 2,130 | e1,900 | e1,300 | 1,400 | 2,990 | 2,200 | 1,830 | 2,410 | 1,210 | | 6 | 6,870 | 3,080 | 2,570 | 2,160 | e1,900 | e1,500 | 1,880 | 4,030 | 2,210 | 1,850 | 1,640 | 1,240 | | 7 | 8,550 | 2,940 | 2,590 | 2,280 | e1,900 | e1,400 | 2,120 | 4,300 | 2,640 | 2,060 | 1,840 | 1,160 | | 8 | 8,960 | 3,020 | 2,330 | 2,150 | e1,900 | e1,500 | 1,850 | 4,200 | 2,910 | 1,770 | 1,600 | 1,260 | | 9 | 7,900 | 3,190 | 2,510 | 2,180 | e2,000 | e1,400 | 1,820 | 5,280 | 3,610 | 1,640 | 1,770 | 1,240 | | 10 | 7,040 | 3,100 | 2,390 | 2,230 | e1,800 | e1,600 | 2,360 | 6,630 | 4,630 | 1,890 | 1,570 | 1,340 | | 11 | 6,360 | 3,140 | 2,370 | 2,250 | e1,900 | e1,500 | 2,870 | 11,400 | 6,530 | 1,890 | 1,640 | 1,170 | | 12 | 5,880 | 3,050 | 2,300 | 2,050 | e1,800 | e1,600 | 3,020 | 17,500 | 6,310 | 1,690 | 1,490 | 1,390 | | 13 | 5,760 | 3,120 | 2,760 | 2,150 | e1,700 | e1,700 | 2,800 | 14,500 | 4,860 | 1,730 | 1,540 | 1,880 | | 14 | 5,660 | 3,150 | 2,520 | 2,210 | e1,800 | e1,600 | 2,760 | 10,700 | 3,680 | 2,020 | 1,590 | 1,680 | | 15 | 5,760 | 3,040 | 2,210 | 2,230 | e1,500 | e1,800 | 2,990 | 8,170 | 3,130 | 1,880 | 1,380 | 1,190 | | 16 | 4,630 | 3,230 | 2,510 | 2,170 | e1,400 | e2,000 | 8,690 | 6,390 | 2,920 | 1,730 | 1,440 | 1,360 | | 17 | 4,510 | 3,120 | 2,560 | 2,130 | e1,600 | e2,600 | 10,800 | 6,120 | 2,620 | 1,690 | 1,370 | 1,490 | | 18 | 4,280 | 2,920 | 2,540 | 2,030 | e1,700 | e3,300 | 11,200 | 5,180 | 2,500 | 1,710 | 1,580 | 1,210 | | 19 | 3,500 | 2,810 | 2,620 | e2,300 | e1,800 | e3,100 | 9,600 | 5,050 | 2,010 | 1,520 | 1,540 | 1,250 | | 20 | 3,760 | 2,930 | 2,470 | e2,200 | e1,600 | e2,900 | 10,500 | 5,720 | 1,940 | 1,570 | e1,500 | 1,230 | | 21 | 3,770 | 3,050 | 2,470 | e2,100 | e1,600 | e2,900 | 11,900 | 5,310 | 2,200 | 1,910 | e1,440 | 1,060 | | 22 | 4,220 | 2,810 | 2,430 | e2,100 | e1,700 | e2,700 | 10,400 | 4,280 | 1,940 | 1,750 | e1,400 | 1,300 | | 23 | 4,090 | 2,740 | 2,460 | e2,200 | e1,500 | e2,100 | 7,410 | 3,570 | 2,140 | 1,720 | e1,350 | 1,420 | | 24 | 4,030 | 2,760 | 2,570 | e1,800 | e1,600 | e2,100 | 6,760 | 3,550 | 2,300 | 1,540 | e1,450 | 1,290 | | 25 | 3,640 | 2,520 | 2,510 | e1,500 | e1,700 | e2,000 | 5,100 | 3,270 | 2,250 | 1,420 | e1,450 | 1,290 | | 26
27
28
29
30
31 | 3,910
4,190
4,260
3,510
3,580
3,340 | 2,820
2,720
2,400
2,440
2,750 | 2,430
2,330
2,420
2,230
2,280
2,200 | e1,500
e1,600
e1,800
e2,400
e2,000
e1,800 | e1,600
e1,500
e1,600 | e2,100
e1,900
e1,900
e2,100
e1,700
e1,900 | 4,470
4,030
3,830
3,240
3,360 | 2,990
3,150
3,180
2,720
2,690
3,590 | 1,720
1,930
2,280
2,150
1,980 | 1,630
1,880
2,160
1,790
1,760
2,060 | 1,560
1,440
1,340
1,330
1,390
1,120 | 1,130
1,510
1,360
1,540
1,620 | | TOTAL | 154,750 | 88,060 | 76,410 | 64,740 | 48,600 | 61,000 | 145,710 | 165,960 | 86,850 | 55,680 | 48,060 | 39,980 | | MEAN | 4,992 | 2,935 | 2,465 | 2,088 | 1,736 | 1,968 | 4,857 | 5,354 | 2,895 | 1,796 | 1,550 | 1,333 | | MAX | 8,960 | 3,230 | 2,830 | 2,430 | 2,200 | 3,300 | 11,900 | 17,500 | 6,530 | 2,160 | 2,410 | 1,880 | | MIN | 3,340 | 2,400 | 2,200 | 1,500 | 1,400 | 1,300 | 1,400 | 2,120 | 1,720 | 1,420 | 1,120 | 1,060 | | | TICS OF MC | ONTHLY M | EAN DAT | A FOR WATE | R YEARS | | | R YEAR (W | | | | | | MEAN | 2,547 | 2,395 | 2,091 | 1,985 | 1,931 | 2,579 | 4,751 | 3,682 | 3,089 | 2,342 | 2,079 | 2,522 | | MAX | 8,654 | 4,632 | 3,887 | 3,138 | 3,063 | 6,275 | 11,500 | 8,931 | 9,923 | 5,862 | 5,451 | 9,069 | | (WY) | (1912) | (1939) | (1992) | (1939) | (1932) | (1935) | (1916) | (1904) | (1905) | (1968) | (1912) | (1903) | | MIN | 760 | 775 | 913 | 957 | 961 | 1,071 | 1,348 | 1,082 | 810 | 724 | 719 | 873 | | (WY) | (1977) | (1977) | (1977) | (1990) | (1990) | (1908) | (1990) | (1987) | (1988) | (1988) | (1934) | (1987) | | ANNUAI
ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
MAXIMU
MAXIMU
10 PERCI
50 PERCI | L MEAN
Γ ANNUAL
Γ ANNUAL
Γ DAILY M
Γ DAILY MI | MEAN
MEAN
EAN
EAN
AY MINIM
FLOW
STAGE
EDS
EDS | IUM | FOR 2002 CA
1,225,320
3,357
19,900
1,540
(a)1,840
6,920
2,450
1,900 | ALENDAR
Apr
Aug
Feb | 13
10 | 1,035,80
2,83
17,50
1,06
1,23
17,80 | 8
0 May
0 Sep
0 Sep
0 May
1.56 May
0 | 12
21
5 | 2,6
4,5
1,3
36,4 | 558
448
400 S
90 S
94 S
400 A
18.26 A
130 |
1904
1977
1997 1, 1941
1997 26, 1908
1998 21, 1908
1998 1, 1941
1998 1, 1941 | ⁽a) Ice affected ⁽b) From rating curve extended above 20,000 ft³/s ⁽e) Estimated due to ice effect or missing record ### 05397500 EAU CLAIRE RIVER AT KELLY, WI LOCATION.--Lat 44°55'06", long 89°33'00", on line between secs.9 and 10, T.28 N., R.8 E., Marathon County, Hydrologic Unit 07070002, on right bank 50 ft downstream from County Highway SS bridge, 0.7 mi northeast of Kelly, 1.3 mi upstream from Big Sandy Creek, 4.5 mi upstream from mouth, and 5.0 mi southeast of Wausau. DRAINAGE AREA.--375 mi². PERIOD OF RECORD.--January 1914 to November 1926, August 1939 to current year. REVISED RECORDS.--WSP 1508: 1915, 1916-17(M), 1919-26(M), 1940(M), 1945(M), 1950(M). WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,177.88 ft above NGVD of 1929. Prior to Sept. 17, 1953, nonrecording gage at site 50 ft upstream at datum 1.00 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | | | | R SECONE | | YEAR OCTO | - | - | MBER 2003 | | | |--|---|--|--|---|---|---|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 295 | 295 | e120 | e100 | e75 | e80 | 538 | 326 | 325 | 114 | 91 | 56 | | 2 | 280 | 269 | e120 | e100 | e72 | e78 | 561 | 305 | 289 | 107 | 107 | 55 | | 3 | 241 | 250 | e120 | e97 | e70 | e75 | 527 | 283 | 245 | 104 | 114 | 55 | | 4 | 840 | 236 | e120 | e96 | e70 | e74 | 341 | 267 | 217 | 100 | 121 | 55 | | 5 | 1,540 | 226 | e120 | e100 | e67 | e75 | 271 | 367 | 191 | 98 | 104 | 55 | | 6 | 1,170 | 225 | e120 | e110 | e67 | e72 | 297 | 911 | 172 | 94 | 96 | 55 | | 7 | 1,350 | 224 | e120 | e110 | e67 | e70 | 311 | 1,000 | 182 | 94 | 93 | 54 | | 8 | 1,100 | 219 | e120 | e100 | e67 | e68 | 263 | 899 | 232 | 92 | 95 | 54 | | 9 | 892 | 216 | e130 | e100 | e67 | e67 | 247 | 805 | 319 | 88 | 87 | 54 | | 10 | 692 | 217 | e140 | e95 | e67 | e68 | 303 | 907 | 509 | 87 | 80 | 54 | | 11 | 565 | 227 | e140 | e87 | e67 | e69 | 422 | 1,430 | 866 | 91 | 78 | 54 | | 12 | 481 | 228 | e140 | e82 | e67 | e70 | 505 | 2,110 | 746 | 90 | 75 | 61 | | 13 | 423 | 229 | e140 | e80 | e70 | e72 | 505 | 1,860 | 568 | 86 | 73 | 83 | | 14 | 376 | 211 | e130 | e75 | e70 | e73 | 454 | 1,450 | 377 | 81 | 69 | 107 | | 15 | 332 | 202 | e130 | e75 | e73 | e77 | 443 | 847 | 277 | 82 | 67 | 105 | | 16 | 294 | 190 | e130 | e72 | e74 | e80 | 2,020 | 561 | 227 | 78 | 65 | 93 | | 17 | 270 | 171 | e140 | e72 | e78 | e86 | 2,590 | 450 | 195 | 77 | 63 | 80 | | 18 | 258 | 162 | e140 | e72 | e78 | e90 | 2,280 | 390 | 176 | 74 | 61 | 72 | | 19 | 266 | e160 | e130 | e70 | e80 | e92 | 1,810 | 352 | 163 | 70 | 59 | 68 | | 20 | 284 | e160 | e120 | e68 | e80 | e97 | 1,610 | 362 | 151 | 70 | 59 | 66 | | 21 | 298 | e160 | e120 | e67 | e76 | e100 | 1,580 | 394 | 139 | 68 | 60 | 66 | | 22 | 298 | e150 | e120 | e67 | e75 | e110 | 1,430 | 360 | 130 | 68 | 62 | 73 | | 23 | 319 | e140 | e110 | e67 | e72 | e130 | 1,130 | 317 | 123 | 68 | 59 | 81 | | 24 | 341 | e140 | e110 | e70 | e69 | e160 | 807 | 283 | 129 | 67 | 58 | 86 | | 25 | 353 | e140 | e110 | e70 | e68 | e190 | 605 | 260 | 151 | 66 | 58 | 78 | | 26
27
28
29
30
31 | 484
552
516
449
384
334 | e130
e140
e140
e140
e130 | e120
e120
e120
e120
e110
e100 | e70
e70
e74
e75
e75
e75 | e68
e72
e77

 | e220
e260
e350
e550
559
528 | 518
454
414
383
350 | 241
224
210
205
207
293 | 138
122
120
123
122 | 66
70
74
68
64
66 | 58
58
57
56
56
56 | 74
77
82
83
81 | | TOTAL | 16,277 | 5,727 | 3,830 | 2,541 | 2,003 | 4,690 | 23,969 | 18,876 | 7,724 | 2,522 | 2,295 | 2,117 | | MEAN | 525 | 191 | 124 | 82.0 | 71.5 | 151 | 799 | 609 | 257 | 81.4 | 74.0 | 70.6 | | MAX | 1,540 | 295 | 140 | 110 | 80 | 559 | 2,590 | 2,110 | 866 | 114 | 121 | 107 | | MIN | 241 | 130 | 100 | 67 | 67 | 67 | 247 | 205 | 120 | 64 | 56 | 54 | | CFSM | 1.40 | 0.51 | 0.33 | 0.22 | 0.19 | 0.40 | 2.13 | 1.62 | 0.69 | 0.22 | 0.20 | 0.19 | | IN. | 1.61 | 0.57 | 0.38 | 0.25 | 0.20 | 0.47 | 2.38 | 1.87 | 0.77 | 0.25 | 0.23 | 0.21 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | FICS OF MC
208
900
(1942)
46.9
(1949) | ONTHLY M
230
784
(1920)
68.6
(1977) | EAN DATA
138
650
(1966)
48.2
(1926) | FOR WATE
90.1
217
(1946)
31.5
(1926) | ER YEARS
90.0
227
(1981)
41.0
(1957) | 1914 - 2003
346
1,456
(1973)
51.1
(1956) | 742
1,672
(1922)
149
(1990) | R YEAR (W
366
1,146
(1960)
94.4
(1977) | 7Y) 299 1,119 (1943) 52.8 (1988) | 160
691
(1978)
64.6
(1989) | 150
789
(1926)
51.9
(1948) | 205
1,095
(1941)
48.5
(1989) | | ANNUAL ANNUAL HIGHES'I LOWEST HIGHES'I LOWEST ANNUAL MAXIMU INSTAN'I ANNUAL ANNUAL 10 PERCI 50 PERCI | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | Apr
Aug
Aug
1.79 | 13
10 | 92,57
25
2,59
5
3,06
5 | 0 Ap
4 Sej
4 Sej
0 Ap
6.29 Ap
4 Sej
9.18 | r 17
p 7-11
p 5
r 16
r 16
p 2-12 | 2
4
7,1
(a)
(a)
(c)8,3
(d) |)25 (b)Ja
)26 Ja
800 Au
)10.14 Ma | 4 - 2003
1942
1925
g 21, 1926
n 6, 1926
n 10, 1926
g 21, 1926
ur 24, 1991
ul 17, 1944 | ⁽a) Ice affected ⁽b) Also occurred Jan. 10-15, 17, 18, 1926, ice affected, and Oct. 3, 1948 (c) From rating curve extended above 6,000 ft³/s, gage height, 8.4 ft, from graph based on gage readings ⁽d) Ice jam ⁽e) Estimated due to ice effect or missing record ⁽f) Probably result of temporary regulation ### 05398000 WISCONSIN RIVER AT ROTHSCHILD, WI LOCATION.--Lat 44°53'09", long 89°38'05", in sec.26, T.28 N., R.7 E., Marathon County, Hydrologic Unit 07070002, on left bank at Rothschild, 0.5 mi downstream from Rothschild Dam, 1.7 mi north of bridge on U.S. Highway 51, 2.0 mi downstream from Eau Claire River, and 5.0 mi upstream from Black Creek DRAINAGE AREA.--4,020 mi². PERIOD OF RECORD.--October 1944 to current year. REVISED RECORDS.--WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,125.86 ft above NGVD of 1929. Prior to Oct. 1, 1975, at datum 10.00 ft higher. Auxiliary water-stage recorder in Mosinee Pond 8 mi downstream. Prior to July 23, 1964, nonrecording auxiliary gage at same site and datum, read hourly. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by 20 reservoirs and 12 powerplants upstream from station. Gage-height telemeter at station. EXTREMES OUTSIDE THE PERIOD OF RECORD.--Flood of Sept. 1, 1941, reached stage of 22.3 ft, datum then in use, from tailwater data at Rothschild dam, discharge, 75,000 ft³/s from rating curve extended above 45,000 ft³/s. ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------------------|-------------------------|-------------------|-------------------|--------------------------|------------------|-----------------------|---------------------|--------------------|------------------|-----------------|-----------------|---------------------------| | 1 | 5,520 | 4,530 | e2,400 | e2,400 | e2,000 | e1,500 | 4,540 | 4,180 | 4,480 | 2,400 | 2,190 | 1,160 | | 2 3 | 5,970
5,760 | 4,280
4,160 | e2,500
e2,400 | e2,100
e2,200 | e1,900
e1,900 | e1,500
e1,900 | 4,850
4,720 | 3,890
3,630 | 4,190
3,480 | 2,480
2,160 | 1,620
1,790 | 1,270
1,350 | | 4 | 9,300 | 3,850 | e2,700 | e2,300 | e2,100 | e1,400 | 3,470 | 3,380 | 2,980 | 2,180 | 1,920 | 1,160 | | 5 | 12,500 | 4,190 | e2,500 | e2,300 | e1,900 | e1,400 | 2,290 | 4,260 | 3,020 | 1,970 | 2,440 | 1,260 | | 6
7 | 11,200
13,000 | 4,100
4,040 | e2,500
e2,700 | e2,300
e2,400 | e1,900
e2,000 | e1,400
e1,500 | 2,180
2,890 | 8,160
8,160 | 2,540
3,430 | 2,070
2,100 | 2,100
1,810 | 1,300
1,160 | | 8 | 13,000 | 3,940 | e2,700
e2,300 | e2,400 | e1,900 | e1,400 | 2,470 | 6,990 | 3,550 | 2,330 | 1,620 | 1,100 | | 9
10 | 11,900 | 4,070 | e2,200 | e2,300 | e2,000
e1,800 | e1,500 | 2,230 | 8,260 | 4,500 | 1,780 | 1,800 | 1,340 | | | 10,100 | 3,910 | e2,400 | e2,100 | | e1,600 | 3,920 | 12,200 | 5,670 | 2,060 | 1,580 | 1,120 | | 11
12 | 9,320
8,400 | 4,010
4,010 | e2,600
e2,500 | e2,000
e1,900 | e1,900
e2,000 | e1,500
1,400 | 4,850
5,100 |
15,700
32,500 | 8,830
8,960 | 2,040
2,090 | 1,510
1,580 | 1,420
1,360 | | 13 | 8,200 | 3,850 | e2,600 | e1,900 | e2,000 | 1,730 | 4,500 | 26,300 | 7,100 | 1,840 | 1,650 | 2,020 | | 14
15 | 7,690
7,580 | 3,930
3,800 | e2,900
e2,500 | e1,900
e1,900 | e2,000
e1,900 | 1,250
1,810 | 4,200
4,470 | 17,000
11,900 | 5,000
4,120 | 2,010
2,150 | 1,690
1,800 | 1,930
1,650 | | 16 | 5,980 | 3,800 | e2,300 | e1,900 | e1,500 | 3,040 | 16,300 | 9,040 | 3,730 | 2,000 | 1,130 | 1,390 | | 17 | 5,660 | 3,760 | e2,600 | e1,900 | e1,400 | 7,300 | 29,700 | 8,170 | 3,590 | 1,570 | 1,250 | 1,710 | | 18
19 | 5,370
4,930 | 3,590
3,440 | e2,800
e2,900 | e2,000
e1,900 | e1,700
e1,800 | 8,790 | 22,000 | 7,050
6,740 | 2,960
2,790 | 2,080
1,510 | 1,330
1,490 | 1,300 | | 20 | 5,080 | 3,440 | e2,900
e2,800 | e1,900
e1,900 | e1,600 | 7,110
5,930 | 18,400
18,500 | 7,230 | 2,790 | 1,700 | 1,490 | 1,260
1,360 | | 21 | 4,990 | 3,640 | e2,700 | e1,900 | e1,500 | 5,750 | 20,600 | 7,230 | 2,640 | 1,820 | 1,400 | 1,230 | | 22 | 5,350 | e3,400 | e2,500 | e1,900 | e1,500 | 5,630 | 17,700 | 5,990 | 2,440 | 1,950 | 1,340 | 1,400 | | 23
24 | 5,500
5,490 | e3,300
e3,200 | e2,200
e2,400 | e2,000
e2,100 | e1,700
e1,500 | 4,700
4,450 | 12,300
10,200 | 5,240
4,850 | 2,360
2,930 | 1,620
1,890 | 1,280
1,390 | 1,680
1,450 | | 25 | 5,310 | e2,900 | e2,500 | e1,800 | e1,600 | 4,100 | 8,040 | 4,640 | 2,800 | 1,440 | 1,340 | 1,350 | | 26 | 6,360 | e3,100 | e2,500 | e1,700 | e1,700 | 3,830 | 6,920 | 3,930 | 2,540 | 1,500 | 1,460 | 1,460 | | 27
28 | 7,220
6,570 | e3,100
e2,800 | e2,500
e2,600 | e1,700
e1,600 | e1,500
e1,400 | 3,460
4,390 | 6,150
5,780 | 4,160
3,980 | 1,970
2,700 | 1,850
2,090 | 1,450
1,290 | 1,530
1,500 | | 29 | 5,330 | e2,700 | e2,500 | e2,200 | | 6,660 | 5,190 | 3,710 | 2,700 | 1,950 | 1,250 | 1,910 | | 30
31 | 5,250
4,860 | e2,800 | e2,500
e2,100 | e2,300
e2,000 | | 4,700
4,220 | 5,080 | 3,370
4,490 | 2,560 | 1,710
1,930 | 1,390
1,110 | 1,820 | | | | | | | | | | | | | | | | TOTAL
MEAN | 228,690
7,377 | 109,640
3,655 | 78,100
2,519 | 63,200
2,039 | 49,600
1,771 | 106,850
3,447 | 259,540
8,651 | 256,330
8,269 | 112,910
3,764 | 60,270
1,944 | 48,420
1,562 | 43,050
1,435 | | MAX | 13,000 | 4,530 | 2,900 | 2,400 | 2,100 | 8,790 | 29,700 | 32,500 | 8,960 | 2,480 | 2,440 | 2,020 | | MIN | 4,860 | 2,700 | 2,100 | 1,600 | 1,400 | 1,250 | 2,180 | 3,370 | 1,970 | 1,440 | 1,110 | 1,120 | | STATIST
MEAN | TICS OF MO
3,266 | ONTHLY M
3,266 | EAN DAT.
2,714 | A FOR WATE
2,436 | R YEARS
2,378 | 1945 - 2003.
4,148 | , BY WATEI
7,580 | R YEAR (W
4,713 | Y)
3,848 | 2,807 | 2,461 | 3,132 | | MAX | 10,020 | 7,262 | 5,484 | 3,787 | 4,051 | 13,300 | 14,640 | 13,930 | 11,920 | 7,219 | 6,973 | 9,079 | | (WY)
MIN | (1986)
837 | (1986)
863 | (1992)
973 | (1973)
1,025 | (1984)
1,024 | (1973)
1,613 | (1967)
2,081 | (1960)
1,515 | (1993)
924 | (1978)
933 | (1995)
932 | (1980)
1,000 | | (WY) | (1949) | (1977) | (1977) | (1990) | (1977) | (1956) | (1990) | (1987) | (1988) | (1988) | (1988) | (1989) | | CID O (1) | D. 17. C. 27. A. 27. C. | TTT CC | | EOD 2002 G | LENDAR | MEAD | EOD 200 | 2 III A IDDD 3 | /E + D | | VE + DG 104 | | | ANNUA | RY STATIS
L TOTAL | STICS | | FOR 2002 CA
1,751,610 | LENDAK | YEAR | 1,416,60 | 3 WATER Y
0 | EAR | WAIEK | YEARS 194 | 15 - 2003 | | ANNUAL | | MEAN | | 4,799 | | | 3,88 | 1 | | 3,56 | | 1072 | | | Γ ANNUAL
CANNUAL | | | | | | | | | 5,95
1,68 | | 1973
1977 | | HIGHES | ΓDAILY M | IEAN | | 34,400 | Apr | | 32,50 | | | 44,50 | 0 Ma | ar 31, 1967 | | | DAILY M | EAN
DAY MINIM | UM | 1,760
(a)2,090 | Jul
Feb | | 1,11
1,22 | | | 57
75 | | n 16, 1988
ov 28, 1976 | | MAXIMU | JM PEAK I | FLOW | | (-) / | | | 35,60 | 0 May | 12 | 49,20 | 0 (b)Ar | or 12, 1965 | | MAXIMU
10 PERC | JM PEAK S
ENT EXCE | EDS | | 10,200 | | | 7,41 | 5.57 May
0 | 12 | (c)1
6,55 | 8.46 (b)Ap
0 | or 12, 1965 | | 50 PERC | ENT EXCE | EDS | | 3,300 | | | 2,48 | 0 | | 2,60 | 0 | | | 90 PERC | ENT EXCE | EDS | | 2,200 | | | 1,40 | 0 | | 1,50 | 0 | | ⁽a) Ice affected ⁽b) Also occurred Mar. 31, 1967 ⁽c) Datum then in use ⁽e) Estimated due to ice effect or missing record ### 05399500 BIG EAU PLEINE RIVER AT STRATFORD, WI (Previously published as Big Eau Pleine River near Stratford, WI) LOCATION.--Lat 44°49'19", long 90°04'46", NE $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.13, T.27 N., R.3 E., Marathon County, Hydrologic Unit 07070002, on left bank 15 ft upstream from bridge on State Highway 97, 1.0 mi north of Stratford, and 1.4 mi downstream from small tributary. DRAINAGE AREA.--224 mi². PERIOD OF RECORD.--July 1914 to December 1925, April 1937 to current year. Monthly discharge for some periods published in WSP 1308. Published as "near Stratford, WI" prior to October 2002. REVISED RECORDS.--WSP 1308: 1917, 1920-22, 1926, 1946, 1948, 1950. WSP 1508: 1915-25(M), 1937, 1946(M), 1948(M). GAGE.--Water-stage recorder. Datum of gage is 1,154.24 ft above NGVD of 1929. July 24, 1914, to Dec. 31, 1925, nonrecording gage at site 0.5 mi upstream at different datum. Apr. 30, 1937, to Sept. 15, 1938, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of June 5, 1914, reached a stage of 20.7 ft, from floodmarks; discharge, 40,000 ft³/s, former site and datum. | | | DISCHA | ARGE, CUE | BIC FEET PE | | D, WATER '
LY MEAN ' | | OBER 2002 | TO SEPTEM | IBER 2003 | | | |--|---|--|---|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 473
245
179
1,800
1,170 | 122
105
94
89
85 | e26
e24
e22
e20
e21 | e22
e21
e18
e16
e17 | e3.2
e3.4
e3.5
e3.5
e3.0 | e2.4
e2.6
e2.3
e2.1
e2.1 | e260
e240
e190
e130
e100 | 84
75
67
60
174 | 36
33
31
29
27 | 24
21
21
19
17 | 8.0
5.7
7.1
12
10 | 1.7
1.6
1.6
1.6
1.5 | | 6
7
8
9
10 | 808
949
694
519
494 | 88
86
82
78
77 | e22
e22
e21
e19
e20 | e17
e18
e20
e22
e20 | e2.9
e2.8
e2.5
e2.3
e2.0 | e2.1
e2.2
e2.5
e2.6
e2.5 | e90
e86
e80
121
284 | 433
264
241
1,370
887 | 28
33
41
42
87 | 20
18
17
17
19 | 8.2
6.4
6.8
6.2 | 1.4
1.3
1.3
1.3
1.1 | | 11
12
13
14
15 | 526
352
447
262
185 | 74
68
64
62
59 | e23
e24
e24
e24
e23 | e17
e14
e12
e10
e9.0 | e1.9
e1.9
e1.9
e2.0
e2.1 | e2.4
e2.6
e3.0
e3.3
e3.6 | 317
274
216
186
203 | 3,470
3,050
904
384
236 | 138
99
72
56
46 | 20
19
15
12 | 37
9.6
6.6
5.6
6.1 | 1.1
1.7
3.2
8.0
10 | | 16
17
18
19
20 | 144
117
113
123
114 | 55
52
e48
e47
e45 | e22
e19
e22
e27
e33 | e8.4
e8.0
e7.4
e6.2
e5.6 | e2.1
e2.1
e2.2
e2.6
e2.9 | e270
e860
e660
e580
e360 | 7,400
3,730
1,980
1,300
2,490 | 167
131
110
101
152 | 38
32
29
27
24 | 10
12
12
9.9
8.4 | 4.2
4.1
4.2
3.3
4.1 | 7.4
6.7
5.6
5.2
4.6 | | 21
22
23
24
25 | 111
128
231
307
419 | e45
e43
e42
e43
e44 | e28
e23
e21
e20
e20 | e5.0
e4.5
e4.1
e3.8
e3.6 | e3.2
e3.4
e2.9
e2.7
e2.3 | e320
e370
e290
e240
e200 | 1,620
738
376
250
192 | 176
110
86
74
66 | 21
19
18
20
27 | 8.0
7.5
7.0
6.4
5.9 | 3.7
3.1
2.8
2.6
2.5 | 4.0
4.8
5.5
5.8
5.3 | | 26
27
28
29
30
31 | 1,190
614
347
247
187
149 | e37
e33
e30
e29
e29 | e20
e20
e21
e22
e23
e23 | e3.4
e3.1
e2.9
e2.9
e2.9
e3.0 | e2.2
e2.1
e2.2
 | e150
e110
e1,400
e1,100
e470
e310 | 156
132
116
102
91 | 57
51
46
42
41
39 | 26
21
25
27
27 | 6.0
5.8
5.6
5.7
3.6
4.9 | 2.4
2.1
2.0
2.1
1.9
1.7 | 5.3
5.9
6.6
6.5
7.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 13,644
440
1,800
111
1.80
2.08 | 1,855
61.8
122
29
0.25
0.28 | 699
22.5
33
19
0.09
0.11 | 327.8
10.6
22
2.9
0.04
0.05 | 71.8
2.56
3.5
1.9
0.01
0.01 | 7,728.3
249
1,400
2.1
1.02
1.18 | 23,450
782
7,400
80
3.20
3.58 | 13,148
424
3,470
39
1.74
2.00 | 1,179
39.3
138
18
0.16
0.18 | 389.7
12.6
24
3.6
0.05
0.06 | 196.1
6.33
37
1.7
0.03
0.03 | 124.9
4.16
10
1.1
0.02
0.02 | | STATIST | ΓICS OF MC | NTHLY M | EAN DATA | FOR WAT | ER YEARS | 3 1914 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 110
728
(1942)
2.26
(1954) |
128
695
(1992)
4.34
(1954) | 48.1
446
(1966)
2.50
(1990) | 19.7
138
(1973)
0.40
(1977) | 34.6
372
(1984)
0.52
(1977) | 406
1,202
(1976)
8.77
(1956) | 600
1,551
(1951)
51.7
(1946) | 234
1,016
(1973)
15.8
(1977) | 215
1,203
(1980)
5.16
(1988) | 76.2
642
(1978)
2.71
(1988) | 80.6
691
(2002)
2.58
(1937) | 162
1,572
(1938)
1.50
(1953) | ### 05399500 BIG EAU PLEINE RIVER AT STRATFORD, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | ΓER YEAR | WATER YEARS 1914 - 2003 | | | |--------------------------|---------------|-----------|-------------|-----------|-------------------------|-----------------|--| | ANNUAL TOTAL | 114,600 | | 62,813.6 | | | | | | ANNUAL MEAN | 314 | | 172 | | 177 | | | | HIGHEST ANNUAL MEAN | | | | | 355 | 1980 | | | LOWEST ANNUAL MEAN | | | | | 47.6 | 1977 | | | HIGHEST DAILY MEAN | 7,690 | Jun 22 | 7,400 | Apr 16 | 26,100 | Sep 9, 1938 | | | LOWEST DAILY MEAN | (a)14 | Feb 5 | 1.1 | Sep 10,11 | (a)0.00 | (b)Jan 22, 1961 | | | ANNUAL SEVEN-DAY MINIMUM | (a)15 | Jan 31 | 1.3 | Sep 5 | (a)0.00 | Jan 22, 1961 | | | MAXIMUM PEAK FLOW | | | 10,500 | Apr 16 | (c)41,000 | Sep 9, 1938 | | | MAXIMUM PEAK STAGE | | | 16.69 | Apr 16 | (d)24.50 | | | | INSTANTANEOUS LOW FLOW | | | 0.97 | Sep 10-12 | 0.00 | (f)Aug 17, 1947 | | | ANNUAL RUNOFF (CFSM) | 1.29 | | 0.71 | * | 0.72 | | | | ANNUAL RUNOFF (INCHÉS) | 17.47 | | 9.58 | | 9.84 | | | | 10 PERCENT EXCEEDS | 717 | | 355 | | 374 | | | | 50 PERCENT EXCEEDS | 90 | | 22 | | 25 | | | | 90 PERCENT EXCEEDS | 18 | | 2.4 | | 4.9 | | | (a) Ice affected (b) Also occurred Jan. 23 to Feb. 5, 1961 (c) Based on rating curve extended above 24,000 ft³/s (d) From floodmarks (e) Estimated due to ice effect or missing record (f) Also occurred Jan. 22 to Feb. 5, 1961, ice-affected period ### 05400760 WISCONSIN RIVER AT WISCONSIN RAPIDS, WI LOCATION.--Lat 44°23'41", long 89°49'31", in SW $\frac{1}{4}$ sec.8, T.22 N., R.6 E., Wood County, Hydrologic Unit 07070003, at Consolidated Water Power Company, 0.2 mi upstream from U.S. Highway 13 bridge in Wisconsin Rapids. DRAINAGE AREA.--5,420 mi². PERIOD OF RECORD.--May 1914 to March 1950 published as Wisconsin River near Nekoosa (05400980), October 1957 to current year. October 1957 to September 1981, published under station number 05400800 with same name. REVISED RECORDS .-- WSP 1308: 1915(M). GAGE.--Water-stage recorders on headwater and tailwater. Elevation of powerplant pond is 1,010 ft and datum of powerplant gages is 0.00 ft above NGVD of 1929 (levels by Wisconsin Valley Improvement Co.). May 1914 to March 1950, at site 9.6 mi downstream at different datum. March 1950 to Sept. 30, 1981, at Centralia Powerplant at Nekoosa Papers, Inc., 2.6 mi downstream. March 1950 to Dec. 31, 1973, datum was 887.83 ft above NGVD of 1929. Jan. 1, 1974, changed to present datum. REMARKS.--Discharge computed from powerplant records on basis of load-discharge rating of hydroelectric units as developed by manufacturer and taintergate ratings based on theoretical formulas. Flow regulated by 22 reservoirs and many powerplants upstream from station. Water diverted periodically from pond on Wisconsin Rapids powerplant into Cranberry Creek, a tributary of Yellow River, for cranberry culture. Mean monthly diversions, in cubic feet per second, for water year October 2002 to September 2003 were as follows: January, 81.7; February, 20.0; August, 22.3; and September, 96.7. COOPERATION.--Figures of daily discharges were provided by Consolidated Water Power Company and Wisconsin Valley Improvement Company. Records were reviewed by the Geological Survey. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAY OCT NOV DEC IAN FER MAR APR MAY IUN IUI AUG SEP | | | | | | | | | | | | | | |----------------------------------|---|---|--|--|-----------------------------|--|---|--|---|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 7,560 | 6,080 | 3,310 | 3,120 | 2,620 | 2,300 | 5,750 | 6,060 | 3,820 | 2,690 | 3,230 | 1,470 | | | | 2 | 7,010 | 5,580 | 3,020 | 2,880 | 2,620 | 2,100 | 5,650 | 5,280 | 4,590 | 2,960 | 2,660 | 1,430 | | | | 3 | 7,550 | 5,280 | 3,090 | 2,900 | 2,970 | 2,020 | 4,230 | 3,510 | 3,980 | 2,380 | 2,170 | 1,400 | | | | 4 | 13,800 | 5,250 | 3,030 | 2,890 | 2,760 | 2,420 | 5,100 | 3,950 | 3,130 | 3,020 | 2,770 | 1,440 | | | | 5 | 19,400 | 4,900 | 2,760 | 2,920 | 2,800 | 2,400 | 3,740 | 5,300 | 3,330 | 2,390 | 3,560 | 1,440 | | | | 6 | 18,000 | 5,250 | 2,960 | 3,190 | 2,490 | 2,020 | 2,790 | 8,340 | 3,340 | 2,500 | 3,530 | 1,480 | | | | 7 | 17,900 | 4,760 | 3,170 | 2,640 | 2,330 | 2,040 | 2,920 | 11,000 | 3,500 | 2,340 | 2,730 | 1,470 | | | | 8 | 17,600 | 5,180 | 3,480 | 3,090 | 2,490 | 2,390 | 3,780 | 9,770 | 4,660 | 2,710 | 2,090 | 1,370 | | | | 9 | 16,700 | 5,160 | 3,050 | 2,540 | 2,740 | 2,060 | 2,880 | 11,200 | 4,930 | 2,810 | 2,330 | 1,340 | | | | 10 | 13,700 | 4,750 | 2,810 | 3,010 | 2,730 | 1,900 | 2,900 | 16,800 | 8,010 | 2,200 | 2,390 | 1,330 | | | | 11 | 11,400 | 4,860 | 2,770 | 3,260 | 2,300 | 1,980 | 4,800 | 21,400 | 10,200 | 2,890 | 2,260 | 1,340 | | | | 12 | 10,700 | 4,720 | 2,850 | 3,260 | 2,440 | 2,120 | 5,210 | 35,600 | 11,100 | 2,160 | 2,080 | 2,070 | | | | 13 | 8,730 | 4,810 | 3,370 | 3,040 | 2,910 | 2,400 | 3,850 | 41,100 | 9,010 | 2,610 | 2,030 | 2,270 | | | | 14 | 8,010 | 5,150 | 3,480 | 2,420 | 2,830 | 2,300 | 3,860 | 28,400 | 5,230 | 2,280 | 2,120 | 2,490 | | | | 15 | 8,950 | 4,800 | 3,460 | 2,470 | 2,380 | 2,260 | 5,100 | 17,300 | 4,430 | 3,020 | 2,380 | 2,400 | | | | 16 | 8,440 | 4,360 | 3,200 | 2,630 | 2,270 | 3,310 | 16,400 | 11,500 | 4,170 | 2,420 | 2,350 | 1,950 | | | | 17 | 6,160 | 4,350 | 2,560 | 2,420 | 2,380 | 6,600 | 33,900 | 10,500 | 3,690 | 2,210 | 2,300 | 2,000 | | | | 18 | 6,560 | 3,820 | 3,630 | 2,360 | 2,380 | 7,620 | 35,000 | 7,690 | 3,630 | 2,210 | 2,050 | 1,690 | | | | 19 | 6,070 | 4,100 | 3,680 | 2,430 | 2,530 | 9,400 | 28,400 | 8,550 | 3,250 | 2,260 | 1,910 | 1,780 | | | | 20 | 5,260 | 3,580 | 3,490 | 2,520 | 2,410 | 9,000 | 25,400 | 8,660 | 2,760 | 2,360 | 1,930 | 2,050 | | | | 21 | 5,640 | 4,280 | 3,520 | 2,640 | 2,440 | 7,400 | 28,100 | 8,390 | 2,970 | 2,370 | 1,880 | 1,410 | | | | 22 | 5,800 | 4,330 | 3,530 | 2,630 | 2,440 | 7,020 | 26,000 | 8,610 | 2,930 | 2,340 | 1,840 | 1,280 | | | | 23 | 5,460 | 4,270 | 3,530 | 2,240 | 2,380 | 6,510 | 18,100 | 6,160 | 2,800 | 2,300 | 1,800 | 1,520 | | | | 24 | 6,650 | 4,440 | 3,310 | 2,520 | 2,300 | 6,010 | 13,600 | 5,430 | 2,950 | 2,570 | 1,480 | 1,700 | | | | 25 | 6,740 | 3,690 | 3,240 | 2,790 | 2,270 | 5,230 | 10,600 | 5,620 | 2,740 | 2,360 | 1,550 | 2,250 | | | | 26
27
28
29
30
31 | 8,500
9,690
9,040
7,440
6,910
6,360 | 4,040
3,610
3,650
3,460
3,460 | 2,990
2,870
3,110
3,470
3,300
3,090 | 2,630
2,260
2,200
2,340
2,440
3,200 | 1,860
2,550
2,560
 | 4,980
4,820
5,540
7,280
7,660
5,760 | 9,470
8,180
7,790
7,450
7,100 | 4,310
4,330
4,460
4,230
3,800
3,740 | 3,790
2,680
3,080
3,110
2,680 | 2,190
2,230
2,230
2,400
2,840
2,430 | 1,920
2,350
1,990
1,840
1,500
1,470 | 1,790
1,610
2,060
2,020
2,150 | | | | TOTAL | 297,730 | 135,970 | 99,130 | 83,880 | 70,180 | 136,850 | 338,050 | 330,990 | 130,490 | 76,680 | 68,490 | 52,000 | | | | MEAN | 9,604 | 4,532 | 3,198 | 2,706 | 2,506 | 4,415 | 11,270 | 10,680 | 4,350 | 2,474 | 2,209 | 1,733 | | | | MAX | 19,400 | 6,080 | 3,680 | 3,260 | 2,970 | 9,400 | 35,000 | 41,100 | 11,100 | 3,020 | 3,560 | 2,490 | | | | MIN | 5,260 | 3,460 | 2,560 | 2,200 | 1,860 | 1,900 | 2,790 | 3,510 | 2,680 | 2,160 | 1,470 | 1,280 | | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1914 - 2003 | BY WATE | R YEAR (W | YY) | | | | | | | MEAN | 4,139 | 4,344 | 3,302 | 3,030 | 3,148 | 6,295 | 11,070 | 6,951 | 6,078 | 3,538 | 3,147 | 4,284 | | | | MAX | 13,070 | 10,270 | 7,928 | 5,589 | 6,368 | 19,180 | 25,940 | 19,730 | 19,560 | 10,820 | 9,199 | 17,670 | | | | (WY) | (1987) | (1920) | (1966) | (1973) | (1984) | (1973) | (1922) | (1960) | (1943) | (1978) | (1926) | (1938) | | | | MIN | 1,075 | 1,072 | 1,141 | 1,272 | 1,333 | 1,547 | 2,579 | 1,669 | 1,308 | 1,123 | 1,173 | 1,227 | | | | (WY) | (1977) | (1977) | (1990) | (1990) | (1977) | (1924) | (1990) | (1987) | (1988) | (1988) | (1934) | (1976) | | | ### 05400760 WISCONSIN RIVER AT WISCONSIN RAPIDS, WI—Continued | SUMMARY STATISTICS | FOR 2002 CALE | ENDAR YEAR | FOR 2003 W | ATER YEAR | WATER YEAR | RS 1914 - 2003 | |---|--|------------------|---|---------------------------|--|--| | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN | 2,362,930
6,474
40,400 | Apr 13 | 1,820,440
4,988
41,100 | May 13 | 4,936
8,499
2,107
63,600 | 1973
1977
Jun 21, 1993 | | LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW 10 PERCENT
EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 1,990
2,730
14,000
4,200
2,820 | Jan 19
Jan 16 | 1,280
1,400
43,800
9,020
3,090
2,010 | Sep 22
Sep 5
May 13 | 165
790
(a)70,400
9,570
3,350
1,790 | Aug 12, 1934
Jun 18, 1988
Sep 12, 1938 | ⁽a) From rating curve extended above $58,000 \text{ ft}^3/\text{s}$ ### 05401050 TENMILE CREEK NEAR NEKOOSA, WI $LOCATION.--Lat~44^{\circ}15'45", long~89^{\circ}48'37"~in~NE~\frac{1}{4}~NE~\frac{1}{4}~sec. 32, T. 21~N., R. 6~E., Wood~County, Hydrologic~Unit~07070003, on~left~bank~upstream~from~bridge~on~State~Highway~13, 5.8~mi~southeast~of~Nekoosa.$ DRAINAGE AREA.--73.3 mi². PERIOD OF RECORD.--Occasional low-flow measurements, water years 1962-63. October 1963 to September 1979, October 1987 to September 1994, February 1998 to current year. REVISED RECORDS.--WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 967.39 ft above NGVD of 1929. Prior to May 13, 1964, and June 2, 1988 to May 2, 1989, non-recording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Approximately 40 mi of drainage ditches and 22 check dams are used to control the water table in the basin. Sprinkler irrigation from ground-water sources affects natural flow of creek. Gage-height telemeter at station. | at stati | ion. | DISCHA | ARGE, CUB | IC FEET PI | | D, WATER Y
LY MEAN V | | DBER 2002 | ГО SEPTEN | MBER 2003 | | | |---|--|---|---|---|--|--|---|--|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 46
45
46
52
50 | 58
55
56
55
54 | 36
38
36
34
34 | 35
33
31
31
31 | e21
e21
e21
e21
e20 | 21
21
21
21
21 | 60
62
66
66
59 | 66
64
60
59
67 | 66
65
65
64
63 | 49
48
48
48
45 | 29
29
31
31
30 | 20
20
20
20
20
20 | | 6
7
8
9
10 | 50
49
47
50
48 | 53
53
53
52
52 | 36
41
41
37
37 | 32
35
38
36
30 | e21
e22
e22
e20
e22 | 21
21
21
20
e20 | 66
62
62
68
75 | 71
70
70
75
77 | 63
65
70
71
78 | 44
46
45
43
45 | 28
27
27
27
29 | 19
19
19
19 | | 11
12
13
14
15 | 43
43
42
40
39 | 51
51
50
51
50 | 37
38
40
41
41 | e24
e21
e20
e20
e20 | e22
e20
e21
e21
e22 | 21
21
21
21
22 | 71
65
64
62
59 | 84
96
101
96
93 | 88
88
85
81
76 | 46
44
42
41
45 | 30
27
25
25
24 | 19
21
22
25
22 | | 16
17
18
19
20 | 39
40
44
51
48 | 49
47
47
50
50 | 39
39
42
44
44 | e20
e20
e20
20
e20 | e22
e21
e22
23
23 | 23
38
49
54
50 | 67
72
72
72
72
75 | 88
85
83
82
84 | 71
70
67
65
61 | 41
39
38
37
36 | 24
24
23
22
22 | 21
21
21
21
21 | | 21
22
23
24
25 | 44
45
44
44
56 | 50
49
49
48
43 | 41
40
37
32
32 | e20
e20
e21
e21
e21 | 23
22
22
22
22
e22 | 57
60
58
75
74 | 76
74
73
72
72 | 80
77
76
73
72 | 59
58
56
57
55 | 35
34
34
33
32 | 22
22
22
21
21 | 19
21
21
21
21 | | 26
27
28
29
30
31 | 57
58
58
58
56
57 | 41
42
37
37
37 | 32
36
38
39
40
37 | e22
e22
e22
e23
21
22 | e21
21
21
 | 71
71
72
68
68
68 | 69
69
67
64
65 | 71
71
71
69
70
70 | 53
51
52
53
51 | 31
31
29
29
28
29 | 21
21
21
21
20
20 | 20
20
19
19
19 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,489
48.0
58
39
0.66
0.76 | 1,470
49.0
58
37
0.67
0.75 | 1,179
38.0
44
32
0.52
0.60 | 772
24.9
38
20
0.34
0.39 | 602
21.5
23
20
0.29
0.31 | 1,270
41.0
75
20
0.56
0.64 | 2,026
67.5
76
59
0.92
1.03 | 2,371
76.5
101
59
1.04
1.20 | 1,967
65.6
88
51
0.89
1.00 | 1,215
39.2
49
28
0.53
0.62 | 766
24.7
31
20
0.34
0.39 | 609
20.3
25
19
0.28
0.31 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MC
51.1
129
(1973)
21.5
(1977) | 52.2
100
(1973)
19.5
(1977) | EAN DATA
47.8
107
(1966)
14.6
(1965) | FOR WAT
35.3
79.8
(1973)
12.6
(1965) | ER YEARS
34.7
90.5
(1966)
11.2
(1965) | 1964 - 2003
65.8
192
(1973)
16.1
(1964) | 102
170
(1979)
47.3
(1964) | R YEAR (W
89.8
205
(1973)
44.7
(1977) | 79.7
156
(1993)
37.4
(1964) | 62.2
139
(1993)
23.6
(1988) | 47.6
98.1
(1990)
17.4
(1964) | 51.2
100
(1965)
20.3
(2003) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMU INSTAN' ANNUAI ANNUAI 10 PERCI 50 PERCI | L MEAN T ANNUAL T ANNUAL T DAILY M T DAILY M L SEVEN-D JM PEAK F JM PEAK S | MEAN MEAN EAN EAN AY MINIM FLOW TAGE LOW FLOW (CFSM) (INCHES) EDS EDS | UM | 25,762
70
333
31
34 | 0.6 Jun Jan Feb 0.96 0.7 7 | 23
3 | 15,73
4
10
1
1
10
1
7
4 | 3.1
01 May
9 Sep
9 Sep | 7 13
5 6
5 5
7 13
7 13 | 1
4
4 | 10 (a)Fel
10 Fel
56 Ma
6.82 Jun | 1973
1964
r 31, 1979
o 13, 1964
o 22, 1964
r 31, 1979
n 23, 2002
c 16, 1964 | ⁽a) Also occurred Feb. 14, 15, Feb. 22 to Mar. 2, 1964, and Feb. 2-4, 11, 12, 1965 ⁽b) Also occurred Mar. 9, 10 ⁽e) Estimated due to ice effect or missing record ### 05402000 YELLOW RIVER AT BABCOCK, WI $LOCATION.--Lat\ 44^{\circ}18'08", long\ 90^{\circ}07'19" \ in\ SE\ \frac{1}{4}\ NE\ \frac{1}{4}\ sec.15,\ T.21\ N.,\ R.3\ E.,\ Wood\ County,\ Hydrologic\ Unit\ 07070003,\ on\ right\ bank,\ 600\ ft\ upstream\ of\ bridge\ on\ State\ Highway\ 80\ at\ Babcock,\ 2.0\ mi\ upstream\ from\ Hemlock\ Creek.$ DRAINAGE AREA.--215 mi². PERIOD OF RECORD.--March 1944 to September 1996, September 1997 to current year. REVISED RECORDS.--WSP 1308: 1944(M), 1946-47(M), 1949(M). WDR WI-77-1: Drainage area. WDR WI-82-1: 1981 (P). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 954.75 ft above NGVD of 1929. Prior to Oct. 28, 1948, nonrecording gage at site 600 ft downstream at same datum. Oct. 28, 1948 to Apr. 9, 1996, water-stage recorder at site 600 ft downstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). There is a large recreation dam about 5.0 mi upstream. Gage-height telemeter at station. | | | DISCHA | ARGE, CU | BIC FEET PE | | D, WATER Y
LY MEAN V | | DBER 2002 | TO SEPTEM | IBER 2003 | | | |--|--|--|---|--|---|---|--|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 164
303
395
477
1,760 | 146
106
101
93
84 | e32
30
26
20
15 | e14
e14
e12
e12
e12 | e4.9
e4.6
e4.1
e4.0
e4.0 | e5.0
e5.0
e5.2
e5.2
e5.2 | 320
209
178
157
134 | 97
85
77
69
75 | 43
43
38
35
31 | 19
18
19
19 | 8.3
8.0
7.7
7.9
7.4 | 3.8
3.7
3.7
3.7
3.7 | | 6
7
8
9
10 | 1,020
750
451
346
297 | 79
76
78
77
77 | 14
e15
e18
e20
e24 | e13
e14
e14
e13
e11 | e4.0
e4.0
e4.0
e4.0
e4.3 | e5.3
e5.2
e5.2
e5.2
e5.5 | 102
90
86
81
76 | 243
379
303
295
679 | 29
31
43
71
118 | 18
18
25
23
19 | 8.5
12
12
13
12 | 3.4
3.2
3.2
3.2
3.2 | | 11
12
13
14
15 | 275
276
223
240
217 | 73
67
64
60
56 |
e26
e24
e22
e20
e20 | e10
e9.4
e8.8
e8.0
e7.0 | e4.3
e4.3
e4.2
e4.3
e4.5 | e5.5
e6.0
e10
e15
e26 | 73
77
81
85
89 | 664
1,220
1,010
661
345 | 235
222
162
110
90 | 19
19
16
15
19 | 13
14
11
9.2
8.1 | 3.2
5.0
5.4
5.8
5.2 | | 16
17
18
19
20 | 163
112
106
104
102 | 54
51
49
49 | e19
e18
e19
e21
e22 | e6.2
e5.3
e5.0
e5.0
e5.0 | e4.6
e4.6
e4.6
e5.0
e5.8 | e200
e700
802
607
369 | 164
1,980
2,040
1,210
1,250 | 197
147
124
104
98 | 70
55
46
39
31 | 22
19
19
16
14 | 8.0
7.7
7.3
6.7
6.2 | 4.3
4.1
3.8
3.8
3.6 | | 21
22
23
24
25 | 111
119
138
210
257 | 45
44
42
42
40 | e23
e23
e22
e20
e18 | e5.0
e5.0
e4.7
e4.6
e4.6 | e5.8
e5.6
e5.0
e4.6
e4.6 | 323
371
289
243
203 | 1,990
1,490
829
473
294 | 100
113
107
92
80 | 26
23
21
21
23 | 14
14
12
10
9.1 | 5.8
5.5
5.4
5.2
4.7 | 3.8
5.2
4.7
4.3
3.9 | | 26
27
28
29
30
31 | 374 e40 e16
613 38 e15
431 36 e15
315 33 e15
237 e33 e15
178 e15 | | | e4.5
e4.6
e4.8
e4.9
e4.9 | e4.6
e4.6
e4.9
 | 152
158
348
1,480
1,110
646 | 217
161
142
125
110 | 67
58
53
48
42
51 | 22
20
19
22
22 | 8.4
8.1
8.2
8.2
7.5
7.8 | 4.5
4.2
4.1
4.0
4.1
3.9 | 4.0
4.4
4.5
4.5
4.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 10,764
347
1,760
102
1.62
1.86 | 1,879
62.6
146
33
0.29
0.33 | 622
20.1
32
14
0.09
0.11 | 251.2
8.10
14
4.5
0.04
0.04 | 127.8
4.56
5.8
4.0
0.02
0.02 | 8,115.5
262
1,480
5.0
1.22
1.40 | 14,313
477
2,040
73
2.22
2.48 | 7,683
248
1,220
42
1.15
1.33 | 1,761
58.7
235
19
0.27
0.30 | 481.3
15.5
25
7.5
0.07
0.08 | 239.4
7.72
14
3.9
0.04
0.04 | 122.6
4.09
5.8
3.2
0.02
0.02 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MO
108
561
(1987)
3.68
(1949) | NTHLY ME
112
508
(1983)
4.62
(1977) | EAN DATA
62.4
374
(1966)
7.35
(1951) | A FOR WATE
26.0
132
(1973)
5.03
(1945) | ER YEARS
46.1
373
(1966)
4.56
(2003) | 1944 - 2003
377
1,353
(1973)
8.13
(1956) | 551
1,319
(1952)
85.9
(1946) | R YEAR (W
235
1,183
(1973)
28.0
(1977) | 193
1,516
(1993)
8.56
(1988) | 67.0
453
(1978)
4.68
(1988) | 51.9
371
(1980)
4.01
(1988) | 123
1,169
(1986)
2.23
(1948) | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM' MAXIM' INSTAN ANNUA ANNUA 10 PERC 50 PERC | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE NSTANTANEOUS LOW FLOW ANNUAL RUNOFF (FSM) ANNUAL RUNOFF (INCHES) HO PERCENT EXCEEDS HO PERCENT EXCEEDS | | | 1.01
13.69
505
170
170
170
170
170
170
170
170
170
170 | | | FOR 2003 WATER YEAR 46,359.8 127 2,040 | | | 162
376
1973
37.4
10,300 Apr 2, 1952
1.4 (b)Sep 14, 1948
1.4 Sep 13, 1948
11,600 Apr 2, 1952
17.38 Apr 2, 1952
0.94 Aug 11, 1985
0.76
10.27
364
31
8.0 | | | ⁽a) Result of freezeup ⁽b) Also occurred Sept. 15-19, 25, 26, 1948 (c) Also occurred Sept. 7-12, 18, 20, 21 ⁽e) Estimated due to ice effect or missing record ### 05404000 WISCONSIN RIVER NEAR WISCONSIN DELLS, WI LOCATION.--Lat 43°36'22", long 89°45'25" in NW ½ sec.14, T.13 N., R.6 E., Sauk County, Hydrologic Unit 07070003, on right bank 0.5 mi downstream from Dell Creek and 1.8 mi southeast of Wisconsin Dells. DRAINAGE AREA.--8,090 mi². PERIOD OF RECORD .-- October 1934 to current year. REVISED RECORDS.--WSP 1728: 1936(M). WSP 1914: 1951, 1953-55. WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 801.48 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1963, water-stage recorder at same site at datum 5.00 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Flow regulated by 24 reservoirs above station. In 1938, when the maximum of record occurred, there were 21 reservoirs above station, the two large reservoirs, Petenwell and Castle Rock, were not in existence. Diurnal fluctuation is caused by powerplant of Alliant Energy Company at Wisconsin Dells. Gage-height telemeter at station. | | | DISCH | ARGE, CUE | SIC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | IBER 2003 | | | |------------------|----------------------|------------------|------------------|----------------------|------------------|-------------------------|--------------------|------------------|------------------|------------------|------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 6,620 | 9,290 | 4,390 | 4,870 | e5,700 | e3,500 | 7,900 | 10,500 | 6,550 | 3,940 | 3,500 | 2,650 | | 2 3 | 8,030 | 8,330 | 5,530 | 5,000 | e5,000 | 3,460 | 6,190 | 9,550 | 5,050 | 3,470 | 3,900 | 2,840 | | 3
4 | 8,290
9,810 | 6,840
7,050 | 4,930
4,590 | 4,420
4,080 | e4,300
e5,000 | 3,320
2,820 | 7,020
5,800 | 8,060
4,370 | 6,220
7,060 | 3,350
3,660 | 3,900
3,180 | 2,690
2,760 | | 5 | 17,100 | 7,400 | 4,140 | 4,240 | e5,300 | 3,190 | 4,830 | 5,380 | 5,340 | 3,720 | 3,280 | 2,540 | | 6 | 20,300 | 6,870 | 3,940 | 4,180 | e4,400 | 3,150 | 5,600 | 7,540 | 6,610 | 4,430 | 4,950 | e1,500 | | 7
8 | 21,100
18,100 | 6,750
6,310 | 4,950
5,490 | 5,290
5,500 | e4,000
e3,100 | 2,840
3,110 | 3,460
3,140 | 9,190
15,400 | 6,310
5,830 | 3,770
3,970 | 5,390
3,520 | e1,400
e1,400 | | 9 | 20,700 | 6,500 | 4,660 | 5,590 | e4,000 | 3,510 | 3,380 | 16,200 | 6,430 | 4,050 | 2,530 | e1,800 | | 10 | 21,400 | 6,650 | 5,100 | 5,750 | e5,200 | 3,350 | 3,270 | 14,200 | 7,300 | 4,060 | 2,500 | 2,350 | | 11 | 16,500 | 7,030 | 4,360 | 5,590 | e4,700 | e2,700 | 3,330 | 19,300 | 12,300 | 4,070 | 3,150 | 2,650 | | 12
13 | 14,700
12,100 | 6,880
5,990 | 4,290
4,600 | 6,720
5,960 | e3,000
e4,500 | e2,400
e2,500 | 3,690
4,340 | 26,500
31,800 | 19,100
13,600 | 3,500
3,240 | 3,570
3,040 | 2,600
2,970 | | 14 | 9,800 | 6,410 | 4,620 | 5,190 | e4,700 | e2,700 | 4,190 | 39,800 | 12,800 | 3,220 | 2,640 | 2,840 | | 15 | 10,000 | 6,530 | 5,190 | 5,130 | e5,300 | e3,200 | 4,570 | 40,300 | 7,960 | 4,150 | 2,890 | 2,730 | | 16 | 10,800 | 6,460 | 5,610 | 4,230 | e3,500 | 3,750 | 7,350 | 27,100 | 6,440 | 4,950 | 2,810 | 2,830 | | 17
18 | 11,300
9,690 | 6,110
4,770 | 5,170
3,970 | 5,710
5,310 | e4,000
e4,100 | 4,490
5,680 | 15,900
25,700 | 12,500
11,500 | 5,740
5,450 | 3,800
3,160 | 2,740
2,750 | 2,760
2,660 | | 19 | 7,780 | 5,010 | 4,860 | e4,300 | e3,500 | 6,270 | 30,600 | 11,900 | 5,070 | 3,290 | 2,700 | 2,760 | | 20 | 8,240 | 5,290 | 5,570 | e4,600 | e4,500 | 6,920 | 32,400 | 13,600 | 4,920 | 3,260 | 2,720 | 2,710 | | 21 | 6,800 | 6,020 | 5,110 | e5,200 | 3,920 | 8,960 | 31,200 | 12,400 | 3,760 | 2,880 | 2,710 | 2,730 | | 22
23 | 7,240
8,840 | 4,920
6,170 | 5,060
5,250 | e5,700
e4,400 | 3,210
3,770 | 9,790
9,260 | 29,800
30,200 | 12,100
11,600 | 3,460
3,670 | 2,980
3,300 | 2,740
2,670 | 2,750
2,730 | | 23 | 7,650 | 4,630 | 5,360 | e5,800 | 3,770 | 8,040 | 27,600 | 10,100 | 3,890 | 3,030 | 2,690 | 2,750 | | 25 | 8,190 | 5,640 | 4,880 | e5,000 | 3,030 | 7,860 | 17,400 | 8,770 | 3,600 | 3,110 | 2,700 | 2,660 | | 26 | 8,880 | 5,910 | 4,950 | e4,600 | 3,220 | 7,770 | 16,000 | 7,870 | 3,800 | 3,060 | 2,740 | 2,530 | | 27
28 | 9,760 | 4,410
4,760 | 4,190
4,430 | e5,300 | 3,250
3,440 | 8,100
4,980 | 12,500
9,620 | 5,310 | 4,470 | 2,820 | 2,740
2,670 | 2,650
2,760 | | 28
29 | 11,200
12,000 | 4,760 | 4,430 | e5,000
e3,200 | 3,440 | 5,860 | 10,600 | 5,490
5,750 | 4,390
4,490 | 2,830
2,870 | 2,990 | 2,760 | | 30 | 12,100 | 4,230 | 4,560 | e3,100 | | 7,040 | 10,500 | 6,100 | 4,660 | 2,970 | 2,780 | 2,380 | | 31 | 10,900 | | 4,750 | e3,800 | | 7,940 | | 5,890 | | 2,920 | 2,980 | | | TOTAL | 365,920 | 184,120 | 148,790 | 152,760 | 115,570 | 158,460 | 378,080 | 426,070 | 196,270 | 107,830 | 96,070 | 76,190 | | MEAN
MAX | 11,800
21,400 | 6,137
9,290 | 4,800
5,610 | 4,928
6,720 | 4,128
5,700 | 5,112
9,790 | 12,600
32,400 | 13,740
40,300 | 6,542
19,100 | 3,478
4,950 | 3,099
5,390 | 2,540
2,970 | | MIN | 6,620 | 4,230 | 3,940 | 3,100 | 3,000 | 2,400 | 3,140 | 4,370 | 3,460 | 2,820 | 2,500 | 1,400 | | STATIST | | | EAN DATA | FOR WATE | ER YEARS | 1935 - 2003 | , BY WATE | | | | | | | MEAN | 5,909 | 6,205 | 5,083 | 4,782 | 5,040 | 8,052 | 13,030 | 9,561 | 8,691 | 5,376 | 4,375 | 5,850 | | MAX
(WY) | 19,120
(1987) | 13,900
(1983) | 10,740
(1966) | 7,831
(1992) | 9,614
(1984) | 25,620
(1973) | 25,050
(1951) | 26,990
(1960) | 27,090
(1993) | 13,350
(1978) | 10,700
(1995) | 25,900
(1938) | | MIN | 1,683 | 1,688 | 1,746 | 2,434 | 2,432 | 2,945 | 2,939 | 3,361 | 1,826 | 1,713 | 1,634 | 1,754 | | (WY) | (1977) | (1977) | (1990) | (1945) | (1945) | (1940) | (1964) | (1977) | (1988) | (1988) | (1988) | (1976) | | | RY STATIS | STICS | | FOR 2002 CA | | YEAR | | 3 WATER Y | /EAR | WATER | YEARS 19 | 935 - 2003 | | ANNUAI | | | | 3,221,470 | | | 2,406,13 | | | (0 | 26 | | | ANNUAI
HIGHES | ΣΜΕΑΝ
ΓANNUAL | MEAN | | 8,826 | | | 6,59 | 92 | | 6,8
12,4 |
20 | 1973 | | | ANNUAL | | | | | | | | | 2,9 | 93 | 1977 | | | Γ DAILY M | | | 38,300 | | 15,16 | 40,30 | | | 71,2 | | Sep 14, 1938 | | | DAILY M | EAN
DAY MINIM | IIM | (a)3,500
(a)4,080 | | | (b)1,40
(b)1,95 | | 7,8
5 | 1,0
1,2 | | ug 19, 1936
ug 10, 1988 | | | JM PEAK I | | | (u)=,000 | 100 | | 42,50 | 00 May | / 15 | 72,2 | 00 S | sep 14, 1938 | | MAXIMU | JM PEAK S | STAGE | | 10.000 | | | 1 | 15.11 May | | (c) | 23.83 S | ep 14, 1938 | | | ENT EXCE
ENT EXCE | | | 18,900
6,460 | | | 12,10
4,87 | | | 12,2
5,1 | | | | | ENT EXCE | | | 4,360 | | | 2,74 | | | 2,9 | | | | | | | | | | | | | | | | | ⁽a) Ice affected ⁽b) Regulation at dam upstream ⁽c) Present datum ⁽e) Estimated due to ice effect or missing record **LOWER WISCONSIN RIVER BASIN** ### 05404116 SOUTH BRANCH BARABOO RIVER AT HILLSBORO, WI $LOCATION.--Lat~43^{\circ}39'10'', long~90^{\circ}20'09'', in~NE~\frac{1}{4}~sec.35, T.14~N., R.1~E., Vernon~County, \\ Hydrologic~Unit~07070004, on~left~bank~220~ft~upstream~from~County~Highway~FF~at~Hillsboro, and 6.3~mi~upstream~from~mouth.$ DRAINAGE AREA.--39.1 mi². PERIOD OF RECORD .-- July 1988 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 927.28 ft above NGVD of 1929 (levels by Mid-State Associates, Baraboo, WI). REMARKS.--Records (see page 11). Flows are occasionally regulated by dam 0.35 mi upstream. Gage-height telemeter at station. | | | DISCHA | ARGE, CUE | BIC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | го ѕертем | MBER 2003 | | | |--|---|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 18
20
27
81
26 | 17
17
17
16
18 | 15
15
14
14
14 | 13
13
12
13
14 | 12
13
14
13
12 | 11
11
11
11
10 | 20
20
20
19
18 | 28
20
18
17
24 | 13
13
13
12
12 | 11
11
13
15
18 | 9.1
8.5
9.6
10
9.1 | 1.0
4.6
9.4
9.1
9.1 | | 6
7
8
9
10 | 22
20
19
19 | 19
18
18
18
18 | 13
15
14
12
14 | 13
13
14
14
12 | 12
12
12
12
12 | 11
11
11
10
10 | 18
19
19
22
21 | 23
33
27
59
31 | 12
14
18
14
17 | 24
19
15
16
39 | 8.9
9.2
8.5
8.2
7.7 | 8.9
8.9
9.0
8.9
8.9 | | 11
12
13
14
15 | 19
18
18
17
17 | 21
18
17
17
17 | 14
15
15
15
15 | 11
11
11
11
9.6 | 12
11
11
11
11 | 11
13
14
40
97 | 21
20
20
20
20
20 | 154
72
30
41
30 | 14
13
12
12
11 | 19
15
13
12
15 | 7.4
7.4
7.4
7.1
7.2 | 8.8
14
17
26
14 | | 16
17
18
19
20 | 16
17
18
17 | 17
17
17
18
17 | 15
14
18
18
16 | 10
10
10
10
10 | 11
11
11
12
20 | 82
50
30
23
31 | 22
22
20
25
33 | 23
21
19
19
23 | 9.9
9.7
9.7
9.9
9.1 | 12
12
10
9.8
10 | 7.1
6.8
6.7
6.7
6.8 | 11
10
9.6
11
10 | | 21
22
23
24
25 | 18
18
17
17
21 | 17
17
17
16
16 | 15
15
13
14
14 | 9.9
8.9
7.8
7.0
7.1 | 59
43
14
12
11 | 37
27
23
23
21 | 26
22
20
19
18 | 18
17
16
15 | 8.9
9.2
12
12 | 12
10
10
9.9
9.8 | 7.1
6.1
6.0
6.3
7.3 | 11
14
12
11
10 | | 26
27
28
29
30
31 | 21 16 22 15 19 14 18 15 18 16 17 15 17 | | 13
13
14
14
15
14 | 8.8
9.6
10
10
11 | 11
11
11
 | 20
32
32
25
20
19 | 18
17
17
17
22 | 14
14
14
13
14 | 12
12
21
14
12 | 9.7
9.8
9.4
9.0
9.6
9.0 | 7.6
6.6
32
70
21
8.0 | 11
11
11
10
9.8 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 647
20.9
81
16
0.53
0.62 | 510
17.0
21
14
0.43
0.49 | 449
14.5
18
12
0.37
0.43 | 336.7
10.9
14
7.0
0.28
0.32 | 417
14.9
59
11
0.38
0.40 | 777
25.1
97
10
0.64
0.74 | 615
20.5
33
17
0.52
0.59 | 876
28.3
154
13
0.72
0.83 | 370.3
12.3
21
8.9
0.32
0.35 | 417.0
13.5
39
9.0
0.34
0.40 | 337.4
10.9
70
6.0
0.28
0.32 | 320.0
10.7
26
1.0
0.27
0.30 | | STATIST | ICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1988 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 15.5
26.1
(1994)
6.79
(1990) | 17.4
28.6
(1993)
8.14
(1991) | 14.1
22.9
(1993)
4.42
(1990) | 13.6
26.8
(1996)
8.95
(1991) | 18.7
31.5
(1999)
6.91
(1989) | 33.3
50.8
(1989)
14.5
(2000) | 35.0
70.9
(1993)
8.47
(1990) | 25.8
52.5
(1993)
13.2
(1989) | 32.2
75.3
(1990)
8.38
(1989) | 18.5
52.3
(1993)
5.83
(1989) | 16.1
28.2
(1993)
6.69
(1988) | 21.3
95.3
(1992)
6.12
(1990) | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL 10 PERCE | . MEAN
FANNUAL
FANNUAL
FDAILY M
DAILY M | MEAN MEAN MEAN EAN EAN AY MINIM FLOW STAGE (CFSM) (INCHES) EDS | | | Apr
Dec
Dec
Dec | 28
9 | 6,07
1
15
(a)
22 | 6.6
54 May
)1.0 Sep
6.5 Aug | / 11
5 | 1,1
(i
(k
(c)4,0
(d) | a)1.0 Se
b)1.4 Ju
10 Ju | 1993
1989
ep 16, 1992
ep 1, 2003
ul 22, 1994
un 29, 1990
un 29, 1990 | 15 90 PERCENT EXCEEDS ⁽a) Result of gate regulation at dam 0.35 mi upstream (b) Result of closing dam gates to fill lake 0.35 mi upstream (c) From rating curve extended above 1,100 ft³/s, on basis of contracted-area measurement (d) From floodmark on gage house ### 05404500 DEVILS LAKE NEAR BARABOO, WI LOCATION.--Lat 43°25'35", long 89°43'40", in SW 4 SE 4 sec.13, T.11 N., R.6 E., Sauk County, Hydrologic Unit 07070004, in Devils Lake State Park, 3.5 mi south of Baraboo. DRAINAGE AREA.--4.79 mi². Area of Devils Lake, 361 acres. ### GAGE-HEIGHT RECORD PERIOD OF RECORD.--June 1922 to August 1930, June to August 1932, June 1934 to September 1981 (fragmentary). October 1981 to September 1984, data unpublished in district files. October 1984 to current year. REVISED RECORDS.--WDR WI-78-1: Drainage area. 8.80 8.50 8.34 8.19 8.14 GAGE.--Water-stage recorder installed July 17, 1991. Datum of gage is 955.00 ft, above NGVD of 1929. REMARKS.--Lake has no surface outlet. Water removed from lake by pumping or siphon Oct. 1-15 and Sept. 8-30. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 14.13 ft, July 18, 1993; minimum observed, 1.49 ft Feb. 8, 1965. EXTREMES FOR CURRENT YEAR.--Maximum recorded gage height, 9.50 ft, Oct. 4; minimum recorded, 7.08 ft, Sept. 30. | | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC IAN FEB MAR APR MAY IUN IUI. AUG SEP | | | | | | | | | | | | | | |-------------|--|------|------|------|------|------|------|------|------|------|------|------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 9.42 | 8.78 | 8.50 | 8.34 | 8.21 | 8.13 | 8.26 | 8.19 | 8.54 | 8.39 | 8.10 | 7.72 | | | | 2 | 9.41 | 8.77 | 8.49 | 8.33 | 8.21 | 8.13 | 8.25 | 8.18 | 8.52 | 8.37 | 8.09 | 7.70 | | | | 3 | 9.39 | 8.76 | 8.48 | 8.32 | 8.22 | 8.12 | 8.24 | 8.17 | 8.50 | 8.36 | 8.07 | 7.67 | | | | 2
3
4 | 9.43 | 8.74 | 8.47 | 8.32 | 8.22 | 8.13 | 8.25 | 8.16 | 8.48 | 8.36 | 8.06 | 7.64 | | | | 5 | 9.43 | 8.74 | 8.46 | 8.32 | 8.22 | 8.14 | 8.26 | 8.19 | 8.47 | 8.38 | 8.04 | 7.62 | | | | 6 | 9.38 | 8.73 | 8.46 | 8.32 | 8.22 | 8.14 | 8.25 | 8.21 | 8.46 | 8.38 | 8.03 | 7.60 | | | | 7 | 9.33 | 8.73 | 8.45 | 8.32 | 8.22 | 8.13 | 8.26 | 8.22 | 8.47 | 8.37 | 8.01 | 7.58 | | | | 8 | 9.29 | 8.71 | 8.44 | 8.31 | 8.21 | 8.14 | 8.27 | 8.22 | 8.48 | 8.35 | 7.99 | 7.57 | | | | 9 | 9.24 | 8.71 | 8.43 | 8.31 | 8.21 | 8.14 | 8.26 | 8.32 | 8.47 | 8.33 | 7.97 | 7.53 | | | | 10 | 9.20 | 8.70 | 8.43 | 8.30 | 8.21 | 8.14 | 8.25 | 8.36 | 8.48 | 8.39 | 7.95 | 7.49 | | | | 11 | 9.16 | 8.71 | 8.42 | 8.29 | 8.20 | 8.13 | 8.25 | 8.46 | 8.47 | 8.39 | 7.93 | 7.45 | | | | 12 | 9.12 | 8.70 | 8.41 | 8.28 | 8.20 | 8.13 | 8.25 | 8.55 | 8.45 | 8.37 | 7.91 | 7.42 | | | | 13 | 9.07 | 8.69 | 8.41 | 8.27 | 8.19 | 8.13 | 8.24 | 8.56 | 8.44 | 8.35 | 7.89 | 7.50 | | | | 14 | 9.02 | 8.68 | 8.41 | 8.27 | 8.19 | 8.13 | 8.23 | 8.61 | 8.43 | 8.33 | 7.88 | 7.64 | | | | 15 | 8.96 | 8.66 | 8.40 | 8.26 | 8.19 | 8.14 | 8.22 | 8.65 | 8.41 | 8.41 | 7.86 | 7.63 | | | | 16 | 8.94 | 8.65 | 8.39 | 8.26 | 8.18 | 8.17 | 8.22 | 8.66 | 8.40 | 8.40 | 7.85 | 7.60 | | | | 17 | 8.93 | 8.64 | 8.39 | 8.25 | 8.18 | 8.20 | 8.21 | 8.66 | 8.38 | 8.38 | 7.83 | 7.57 | | | | 18 | 8.93 | 8.63 | 8.42 | 8.24 | 8.17 | 8.20 | 8.20 | 8.67 | 8.37 | 8.36 | 7.80 | 7.52 | | | | 19 | 8.91 | 8.63 | 8.42 | 8.24 | 8.17 | 8.21 | 8.20 | 8.67 | 8.48 | 8.33 | 7.78 | 7.47 | | | | 20 | 8.90 | 8.62 | 8.42 | 8.23 | 8.17 | 8.23 | 8.23 | 8.68 | 8.45 | 8.31 | 7.75
 7.44 | | | | 21 | 8.89 | 8.61 | 8.41 | 8.23 | 8.16 | 8.24 | 8.22 | 8.68 | 8.43 | 8.31 | 7.73 | 7.40 | | | | 22 | 8.87 | 8.60 | 8.40 | 8.22 | 8.16 | 8.24 | 8.21 | 8.66 | 8.40 | 8.28 | 7.71 | 7.39 | | | | 23 | 8.86 | 8.59 | 8.39 | 8.21 | 8.15 | 8.24 | 8.20 | 8.65 | 8.38 | 8.26 | 7.69 | 7.37 | | | | 24 | 8.85 | 8.57 | 8.38 | 8.21 | 8.15 | 8.24 | 8.19 | 8.64 | 8.37 | 8.24 | 7.66 | 7.33 | | | | 25 | 8.87 | 8.56 | 8.37 | 8.20 | 8.15 | 8.24 | 8.17 | 8.62 | 8.39 | 8.22 | 7.64 | 7.28 | | | | 26 | 8.86 | 8.55 | 8.37 | 8.20 | 8.14 | 8.24 | 8.16 | 8.60 | 8.43 | 8.19 | 7.62 | 7.24 | | | | 27 | 8.85 | 8.54 | 8.36 | 8.19 | 8.14 | 8.25 | 8.15 | 8.59 | 8.40 | 8.17 | 7.60 | 7.20 | | | | 28 | 8.85 | 8.53 | 8.36 | 8.19 | 8.14 | 8.27 | 8.13 | 8.57 | 8.43 | 8.15 | 7.60 | 7.17 | | | | 29 | 8.83 | 8.52 | 8.35 | 8.19 | | 8.27 | 8.12 | 8.55 | 8.42 | 8.13 | 7.79 | 7.14 | | | | 30 | 8.82 | 8.50 | 8.35 | 8.19 | | 8.27 | 8.14 | 8.54 | 8.41 | 8.11 | 7.77 | 7.12 | | | | 31 | 8.80 | | 8.34 | 8.21 | | 8.26 | | 8.55 | | 8.11 | 7.74 | | | | | MEAN | 9.06 | 8.65 | 8.41 | 8.26 | 8.18 | 8.19 | 8.22 | 8.49 | 8.44 | 8.31 | 7.85 | 7.47 | | | | MAX | 9.43 | 8.78 | 8.50 | 8.34 | 8.22 | 8.27 | 8.27 | 8.68 | 8.54 | 8.41 | 8.10 | 7.72 | | | 8.12 8.12 8.16 8.37 8.11 7.60 7.12 ### 05404500 DEVILS LAKE NEAR BARABOO, WI--Continued ### PRECIPITATION QUANTITY PERIOD OF RECORD.-October 1996 to current year (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established on July 17, 1991. Prior to Oct. 1, 1996, record was not published. Rainfall estimated to be 0.00 for Jan. 7, 29, 31, Feb. 2, 3, and Mar. 5 because recorded precipitation interpreted as snowmelt. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 5.01 in., June 1, 2000. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 2.75 in., Aug. 28. ### PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | TANT | | MAD | ADD | MAN | TITAL | 11.11 | ALIC | CED | |----------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|----------------|----------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.00
0.53 | $0.00 \\ 0.00$ | 0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.00
0.00 | $0.00 \\ 0.00$ | 0.07
0.00 | 0.00 | | $0.00 \\ 0.00$ | 0.00 | | 2 3 | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 4 | 1.37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.11 | 0.00 | | 0.00 | 0.00 | | 5 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.47 | 0.00 | | 0.00 | 0.00 | | 6 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.36 | | 0.00 | 0.00 | | 7 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.22 | 0.00 | | 0.00 | 0.00 | | 8
9 | 0.03
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.28
0.00 | 0.08
0.77 | 0.36
0.00 | | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | | 10 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | 0.39 | | 0.00 | 0.00 | | 11 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.69 | 0.01 | | 0.00 | 0.00 | | 12 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.41 | | 13
14 | 0.00 | 0.00
0.03 | 0.00 | 0.00
0.00 | $0.00 \\ 0.00$ | 0.02
0.00 | $0.00 \\ 0.00$ | 0.00
0.56 | 0.00
0.00 | | 0.00 | 2.40
0.67 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | | 0.00 | 0.00 | | 17 | 0.04 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18
19 | 0.23
0.00 | $0.08 \\ 0.01$ | 0.34
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.00
0.24 | $0.00 \\ 0.17$ | 0.00
0.27 | 2.03
0.01 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.00
0.05 | | 20 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.17 | 0.01 | 0.00 | 0.00 | 0.07 | 0.00 | | 21 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.07 | 0.00 | 0.00 | 0.30 | 0.00 | 0.27 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | | 23
24 | 0.02
0.11 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.00
0.10 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | | 25 | 0.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.13 | 0.00 | | 26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.03 | | 27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.01 | | 28
29 | 0.05
0.00 | $0.00 \\ 0.00$ | 0.00 | $0.00 \\ 0.00$ | 0.00 | 0.29
0.00 | $0.00 \\ 0.00$ | 0.05
0.00 | | $0.00 \\ 0.00$ | 2.75
0.00 | 0.01
0.09 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.36 | | 0.00 | 0.00 | 0.09 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.21 | | 0.51 | 0.00 | | | TOTAL | 2.96 | 0.43 | 0.43 | 0.00 | 0.00 | 1.17 | 2.05 | 4.50 | | | 3.05 | 3.97 | ### 05405000 BARABOO RIVER NEAR BARABOO, WI $LOCATION.--Lat~43^{\circ}28'51'', long~89^{\circ}38'09'', in~NW~\frac{1}{4}~NW~\frac{1}{4}~sec.35, T.12~N., R.7~E., Sauk~County, Hydrologic~Unit~07070004, on~left~bank~50~ft~downstream~from~highway~bridge,~0.3~mi~downstream~from~Rowley~Creek~and~5.3~mi~east~of~Baraboo.$ DRAINAGE AREA.--609 mi² PERIOD OF RECORD.--December 1913 to March 1922. September 1942 to current year. REVISED RECORDS.--WSP 455: 1915. WSP 505: 1917(M). WSP 1438: 1914, 1915(M), 1916-17, 1918-20(M), 1944(M), 1949(M). WSP 1914: 1948, 1950, 1956. WDR WI-75-1: 1968. WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 788.21 ft above NGVD of 1929. Dec. 18, 1913, to Mar. 31, 1922, nonrecording gage at bridge 2.3 mi upstream at datum 7.6 ft higher. Sept. 24, 1942, to June 10, 1963, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. EXTREMES OUTSIDE THE PERIOD OF RECORD.--Flood of Aug. 6, 1935, reached a stage of 15.8 ft from floodmarks, site and datum in use in 1922, discharge, 5,100 ft³/s. | discha | ige, 5,100 i | | ARGE, CUB | IC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |--------------|------------------------|---------------|----------------|-----------------------|----------------|-------------------------|-------------------|---------------------|---------------|---------------|----------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 368 | 321 | 230 | 259 | 230 | e230 | 453 | 417 | 288 | 275 | 196 | 476 | | 2 3 | 421
359 | 310
301 | 263
204 | 231
e220 | 230
e230 | e220
e220 | 387
375 | 517
515 | 293
280 | 237
217 | 195
192 | 312
230 | | 4 | 429 | 297 | e230 | e230 | e230 | e210 | 383 | 444
399 | 266 | 214 | 201 | 196 | | 5
6 | 470
536 | 298
303 | e230
e230 | 272
277 | e220
e220 | e220
e200 | 385
361 | 399
420 | 259
256 | 236
249 | 206
206 | 188
190 | | 7 | 568 | 313 | e220 | 272 | e220 | e210 | 351 | 461 | 261 | 269 | 203 | 186 | | 8
9 | 528
408 | 326
332 | e220
e220 | 266
269 | e220
e220 | e210
e220 | 358
364 | 505
622 | 290
311 | 276
276 | 190
183 | 190
182 | | 10 | 348 | 330 | e220 | 233 | e220 | e220 | 397 | 723 | 352 | 375 | 179 | 179 | | 11
12 | 326
330 | 347
346 | 227
232 | e220
e220 | e220
e220 | e220
221 | 449
459 | 930
1,330 | 354
346 | 389
396 | 176
175 | 177
184 | | 13 | 322 | 393 | 245 | e210 | e220 | 228 | 431 | 1,340 | 339 | 350 | 173 | 258 | | 14
15 | 310
300 | 407
355 | 258
267 | e210
e210 | e220
e220 | 276
435 | 408
394 | 1,290
1,310 | 311
279 | 275
341 | 171
170 | 365
406 | | 16 | 286 | 322 | 271 | e200 | e220 | e680 | 395 | 1,190 | 260 | 339 | 169 | 402 | | 17
18 | 281
294 | 305
293 | 271
297 | e190
e190 | e220
e220 | e800
955 | 412
421 | 928
692 | 244
233 | 326
285 | 165
166 | 347
269 | | 19 | 295 | 288 | 319 | e190 | e220 | 1,140 | 438 | 538 | 334 | 245 | 162 | 224 | | 20 | 301 | 283 | 362 | e190 | e230 | 1,090 | 450 | 485 | 249 | 226 | 161 | 204 | | 21
22 | 311
307 | 288
290 | 365
335 | e190
e190 | e250
e280 | 854
626 | 491
534 | 470
468 | 224
211 | 217
211 | 163
158 | 204
235 | | 23
24 | 303
320 | 290
286 | e240
e190 | e190
e190 | e400
e520 | 617
581 | 529
460 | 427
377 | 203
205 | 208
203 | 154
152 | 233
247 | | 25 | 342 | 282 | e220 | e190 | e580 | 502 | 391 | 349 | 227 | 194 | 158 | 258 | | 26
27 | 346
370 | 273
255 | e250
290 | e180
e180 | e430
e300 | 466
453 | 352
330 | 325
307 | 243
263 | 186
184 | 156
157 | 231
208 | | 28 | 398 | 200 | 277 | e190 | e250 | 469 | 317 | 293 | 285 | 182 | 167 | 199 | | 29
30 | 387
357 | 276
271 | 261
267 | e200
217 | | 535
600 | 304
321 | 283
280 | 271
296 | 182
180 | 423
439 | 198
199 | | 31 | 337 | | 270 | 231 | | 559 | | 287 | | 203 | 534 | | | | 11,258 | 9,181 | 7,981 | 6,707 | 7,460 | 14,467 | 12,100 | 18,922 | 8,233 | 7,946 | 6,300 | 7,377 | | MEAN
MAX | 363
568 | 306
407 | 257
365 | 216
277 | 266
580 | 467
1,140 | 403
534 | 610
1,340 | 274
354 | 256
396 | 203
534 | 246
476 | | MIN | 281 | 200 | 190 | 180 | 220 | 200 | 304 | 280 | 203 | 180 | 152 | 177 | | CFSM
IN. | 0.60
0.69 | 0.50
0.56 | 0.42
0.49 | 0.36
0.41 | 0.44
0.46 | 0.77
0.88 | 0.66
0.74 | 1.00
1.16 | 0.45
0.50 | 0.42
0.49 | 0.33
0.38 | 0.40
0.45 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATI | ER YEARS |
1914 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX | 284
842 | 328
942 | 247
519 | 248
945 | 338
1,135 | 794
1,759 | 714
2,588 | 448
1,518 | 448
1,455 | 324
1,495 | 264
1,018 | 316
1,285 | | (WY) | (1973) | (1986) | (1993) | (1946) | (1966) | (1948) | (1993) | (1973) | (2000) | (1993) | (1980) | (1965) | | MIN
(WY) | 117
(1959) | 116
(1959) | 76.2
(1959) | 78.3
(1959) | 89.3
(1959) | 170
(1964) | 253
(1946) | 138
(1958) | 112
(1958) | 112
(1965) | 95.8
(1958) | 100
(1958) | | | | ` / | , , | , , | ` , | ` , | ` / | , , | . , | | , , | ` ' | | | RY STATIS
L TOTAL | STICS | J | FOR 2002 C
163,164 | | YEAR | FOR 200
117,93 | 3 WATER Y
32 | EAR | WATER | YEARS 19 | 14 - 2003 | | ANNUAI | L MEAN | MEAN | | 447 | | | 32 | | | | 396 | 1002 | | | Γ ANNUAL
Γ ANNUAL | | | | | | | | | | 324
158 | 1993
1958 | | | Γ DAILY M
Γ DAILY M | | | 1,650
(a)190 | | | 1,34
15 | | | 7,5 | | ar 26, 1917
oct 6, 1950 | | ANNUAI | L SEVEN-D | AY MINIM | IUM | (a)222 | | | 15 | 57 Aug | g 21 | |)72 D | ec 8, 1958 | | | JM PEAK I
JM PEAK S | | | | | | 1,38 | 80 May
11.90 May | | (b)7,9 | | ar 26, 1917
ul 18, 1993 | | ANNUAI | L RUNOFF | (CFSM) | | |).73
).97 | | | 0.53
7.20 | | | 0.65
8.83 | , | | 10 PERC | L RUNOFF
ENT EXCE | EDS | | 766 | ó | | 48 | 37 | | | 780 | | | | ENT EXCE
ENT EXCE | | | 346
258 | | | 27
19 | | | | 250
140 | | | , o I Little | | | | 230 | - | | 1, | - | | | | | ⁽a) Ice affected ⁽b) Estimated gage height, 17.50 ft, site and datum then in use, from rating curve extended above 6,000 ft³/s ⁽e) Estimated due to ice effect or missing record ### 05405855 LAKE WISCONSIN TRIBUTARY #3 NEAR PRAIRIE DU SAC, WI $LOCATION.--Lat~43\times20'10'', long~89\times42'23'', in~NW~^{1}\!\!/_{4}~NE~^{1}\!\!/_{4}~sec. 19, T.10~N., R.7~E., Sauk~County, \\ Hydrologic~Unit~07070005, on~USDA~Dairy~Forage~Research~station, \\ 2.7~mi~northeast~of~Prairie~du~Sac.$ DRAINAGE AREA.--0.0028 mi² (1.78 acres). ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1997 to September 2003 (discontinued). GAGE.--Water-stage recorder and a 3-inch Parshall flume. Elevation of gage is 850 ft(revised) above NGVD of 1929, from topographic man. REMARKS.--Records are good (see page 11). Periods of flow are reported; for all other periods, there was no flow. | START DATE | START TIME | END DATE | END TIME | VOLUME
(cubic feet) | PEAK DISCHARGE (ft ³ /s) | |------------|------------|----------|----------|------------------------|-------------------------------------| | 02/19/03 | 1845 | 02/19/03 | 2245 | 51.8 | 0.010 | | 02/19/03 | 2330 | 02/20/03 | 0630 | 881 | 0.124 | | 02/20/03 | 0815 | 02/20/03 | 1730 | 1,071 | 0.076 | | 02/21/03 | 0900 | 02/21/03 | 1930 | 2,281 | 0.196 | | 02/22/03 | 1100 | 02/22/03 | 1515 | 60.5 | 0.010 | | 02/23/03 | 0800 | 02/23/03 | 1645 | 138 | 0.109 | | 02/24/03 | 0900 | 02/24/03 | 1545 | 389 | 0.058 | | 02/25/03 | 1045 | 02/25/03 | 1730 | 717 | 0.089 | | 02/26/03 | 0845 | 02/26/03 | 1510 | 1,002 | 0.102 | | 03/14/03 | 1230 | 03/15/03 | 0515 | 1.668 | 0.187 | ### 05405855 LAKE WISCONSIN TRIBUTARY #3 NEAR PRAIRIE DU SAC, WI—Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1997 to current year. INSTRUMENTATION.--Water-quality sampler November 1997 to current year. REMARKS.-- Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples are storm-composite samples collected by an automatic point sampler. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Beginning
Date | Beginning
Time | Ending
date | Ending
time | Sampling method, code (82398) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Residue
vola-
tile,
sus-
pended,
mg/L
(00535) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Runoff
volume
millions of
cubic feet
(99905) | |-------------------|-------------------|----------------|----------------|-------------------------------|---|---|---|--|---|--|--|--| | FEB
21-21 | 1045 | 20030221 | 1300 | 50 | 33 | 25 | 55 | 6.25 | 1.95 | 3.19 | 1.10 | 2.25x10 ⁻³ | | MAR
14-14 | 1259 | 20030314 | 1500 | 50 | 67 | 41 | 94 | 36.5 | 0.828 | 4.38 | 6.06 | 1.67x10 ⁻³ | ### 05405855 LAKE WISCONSIN TRIBUTARY #3 NEAR PRAIRIE DU SAC, WI--Continued ### PRECIPITATION QUANTITY PERIOD OF RECORD.--November 1997 to September 2003 (discontinued). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established Nov. 1, 1997. Rainfall estimated to be 0.00 for Nov. 5, 7, 10-11, 18-19, 29, Dec. 2, 20-21, Jan. 29-30, Feb. 1-3, 6, 11-12, 24, 26, and Mar. 4-5 because recorded precipitation interpreted as collector snowmelt. Precipitation deleted June 18 to July 2 and Sept. 12-15 because rain gage was plugged with debris. EXTREMES FOR PERIOD OF RECORD .-- Maximum daily rainfall, 3.97 in., June 1, 2000. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 1.50 in., July 15. ## PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|------|------|------|------|------|------|------| | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | | 0.00 | 0.00 | | 2 | 0.61 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | | 0.00 | 0.00 | | 2 3 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.16 | 0.05 | 0.00 | | 4 | 1.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.05 | 0.00 | 0.37 | 0.00 | 0.00 | | 5 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.46 | 0.00 | 0.33 | 0.01 | 0.00 | | 6 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.29 | 0.18 | 0.00 | 0.00 | | 7 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.30 | 0.00 | 0.11 | 0.00 | 0.00 | | 8 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.07 | 0.58 | 0.13 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.55 | 0.00 | 0.01 | 0.00 | 0.00 | | 10 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.21 | 0.11 | 0.67 | 0.00 | 0.00 | | 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | 0.01 | 0.00 | 0.00 | 0.00 | | 12 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | | 13 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 | 0.00 | | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 1.50 | 0.00 | | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | 17 | 0.06 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.29 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.24 | 0.12 | | 0.00 | 0.00 | 0.07 | | 20 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.12 | 0.00 | | 0.18 | 0.13 | 0.00 | | 21 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.06 | 0.00 | | 0.19 | 0.00 | 0.13 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.05 | | 23 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | | 0.00 | 0.00 | 0.00 | | 24 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | | 25 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.13 | 0.00 | | 26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.05 | | 27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | | 28 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.23 | | 0.00 | 0.90 | 0.02 | | 29 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.01 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.01 | | 30 | 0.01 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.91 | 0.24 | | 0.82 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.02 | | 0.23 | | 0.02 | 0.00 | | | TOTAL | 3.02 | 0.01 | 0.31 | 0.00 | 0.00 | 0.91 | 2.29 | 4.83 | | | 1.22 | | | | | | | | | | | | | | | | ### 05405857 LAKE WISCONSIN TRIBUTARY #2 NEAR PRAIRIE DU SAC, WI $LOCATION.--Lat~43\times20'06'', long~89\times42'20'', in~NW~\frac{1}{4}~NE~\frac{1}{4}~sec.19, T.10~N., R.7~E., Sauk~County, Hydrologic~Unit~07070005, on~USDA~Dairy~Forage~Research~station, 2.6~mi~northeast~of~Prairie~du~Sac.$ DRAINAGE AREA.--0.0089 mi² (5.71 acres). ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1997 to September 2003 (discontinued). GAGE.--Water-stage recorder and a 3-inch Parshall flume. Elevation of gage is 840 ft above NGVD of 1929, from topographic map. REMARKS.--Records are good (see page 11). Periods of flow are reported; for all other periods, there was no flow. | START DATE | START TIME | END DATE | END TIME | VOLUME
(cubic feet) | PEAK DISCHARGE
(ft ³ /s) | |------------|------------|----------|----------|------------------------|--| | 10/04/02 | 0835 | 10/04/02 | 0915 | 104 | 0.146 | | 02/19/03 | 1430 | 02/19/03 | 1800 | 138 | 0.024 | | 02/20/03 | 1130 | 02/20/03 | 1900 | 838 | 0.082 | | 02/21/03 | 1115 | 02/21/03 | 1600 | 17.3 | 0.003 | | 03/14/03 | 1115 | 03/14/03 | 2030 | 2.834 | 0.319 | | 03/15/03 | 1045 | 03/15/03 | 1515 | 77.7 | 0.013 |
 07/15/03 | 0105 | 07/15/03 | 0230 | 147 | 0.095 | ### 05405857 LAKE WISCONSIN TRIBUTARY #2 NEAR PRAIRIE DU SAC, WI—Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1997 to current year. INSTRUMENTATION.--Water-quality sampler November 1997 to current year. REMARKS.-- Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples are storm-composite samples collected by an automatic point sampler. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Beginning
Date | Beginning
Time | Ending
date | Ending time | Sampling method, code (82398) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Residue
vola-
tile,
sus-
pended,
mg/L
(00535) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | Runoff
volume
millions of
cubic feet
(99905) | |-------------------|-------------------|----------------|-------------|-------------------------------|---|---|---|--|---|--|---|--| | FEB | | ******* | 4504 | | 224 | 0.4 | | 0.50 | | | 0.04 | 120 10-6 | | 19-19 | 1454 | 20030219 | 1726 | 50 | 236 | 84 | 41 | 8.79 | 3.27 | 7.52 | 8.24 | 138x10 ⁻⁶ | | FEB | | | | | | | | | | | | 6 | | 20-20 | 1314 | 20030220 | 1606 | 50 | 84 | 40 | 20 | 4.90 | 1.06 | 3.88 | 4.66 | 838x10 ⁻⁶ | | JUL | | | | | | | | | | | | | | 15-15 | 0115 | 20030715 | 0210 | 50 | 240 | 38 | 3.1 | 0.152 | 0.726 | 0.884 | 1.31 | 147x10 ⁻⁶ | ### 05405857 LAKE WISCONSIN TRIBUTARY #2 NEAR PRAIRIE DU SAC, WI--Continued ### PRECIPITATION QUANTITY PERIOD OF RECORD.--November 1997 to September 2003 (discontinued). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established Nov. 6, 1997. Rainfall estimated to be 0.00 for Nov. 5, 11, 17-19, 30, Dec. 2-3, Jan. 5, 29, 30, Feb. 2-3, 25-26, and Mar. 5, 8, 11-13 because recorded precipitation interpreted as collector snowmelt. Precipitation deleted June 6-10, and June 17 to July 1 because rain gage was plugged with debris. EXTREMES FOR PERIOD OF RECORD .-- Maximum daily rainfall, 3.30 in., Apr. 3, 1999. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 2.24 in., Sept. 13. ## PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | 1
2
3
4
5 | 0.00
0.66
0.02
1.43
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.02
0.33 | 0.12
0.01
0.00
0.04
0.44 | 0.00
0.00
0.01
0.01
0.00 | 0.00
0.16
0.37
0.34 | 0.00
0.00
0.04
0.00
0.01 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.05
0.00
0.02
0.00
0.13 | 0.00
0.00
0.00
0.00
0.03 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.18
0.08
0.00
0.00 | 0.00
0.31
0.10
0.53
1.24 |

 | 0.20
0.12
0.13
0.01
0.67 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.04
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.63
0.00
0.00
0.59
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.01
0.00
0.00
0.00
1.56 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.41
2.24
0.61
0.00 | | 16
17
18
19
20 | 0.00
0.06
0.34
0.00
0.03 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.04
0.30
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.24
0.03 | 0.04
0.01
0.00
0.26
0.15 | 0.00
0.00
0.00
0.12
0.00 | 0.00

 | 0.00
0.00
0.00
0.00
0.18 | 0.00
0.00
0.00
0.00
0.11 | 0.00
0.00
0.00
0.08
0.00 | | 21
22
23
24
25 | 0.03
0.00
0.01
0.10
0.37 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.06
0.00
0.01
0.00
0.00 | 0.06
0.00
0.00
0.00
0.00 | 0.00
0.00
0.01
0.00
0.00 |

 | 0.19
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.13 | 0.16
0.03
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.01
0.05
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00

 | 0.00
0.25
0.29
0.00
0.00
0.02 | 0.00
0.00
0.00
0.00
0.92 | 0.00
0.00
0.23
0.00
0.23
0.27 |

 | 0.00
0.00
0.00
0.00
0.56
0.02 | 0.00
0.00
0.99
0.00
0.00 | 0.05
0.00
0.02
0.00
0.00 | | TOTAL | 3.37 | 0.03 | 0.34 | 0.00 | 0.00 | 0.90 | 2.05 | 4.89 | | | 1.28 | 3.60 | ### 05405859 LAKE WISCONSIN TRIBUTARY #1 NEAR PRAIRIE DU SAC, WI $LOCATION.--Lat~43\times19'59'', long~89\times42'23'', in~SW~\frac{1}{4}~NE~\frac{1}{4}~sec. 19, T. 10~N., R. 7~E., Sauk~County, Hydrologic~Unit~07070005, on~USDA~Dairy~Forage~Research~station, 2.5~mi~northeast~of~Prairie~du~Sac.$ DRAINAGE AREA.--0.0037 mi² (2.38 acres). ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1997 to September 2003 (discontinued). GAGE.--Water-stage recorder and a 3-inch Parshall flume. Elevation of gage is 845 ft(revised) above NGVD of 1929, from topographic map. REMARKS.--Records are good (see page 11). Periods of flow are reported; for all other periods, there was no flow. Gage-height telemeter at station. | START DATE | START TIME | END DATE | END TIME | VOLUME
(cubic feet) | PEAK DISCHARGE
(ft ³ /s) | |------------|------------|----------|----------|------------------------|--| | 02/20/03 | 1315 | 02/20/03 | 2015 | 527 | 0.033 | | 02/21/03 | 1015 | 02/21/03 | 1815 | 441 | 0.037 | | 03/14/03 | 1115 | 03/14/03 | 1915 | 1,668 | 0.162 | | 03/15/03 | 1000 | 03/15/03 | 1800 | 441 | 0.037 | | 03/16/03 | 0945 | 03/16/03 | 1715 | 147 | 0.007 | | 03/17/03 | 0945 | 03/17/03 | 1300 | 26 | 0.003 | | 07/15/03 | 0100 | 07/15/03 | 0230 | 320 | 0.204 | ### 05405859 LAKE WISCONSIN TRIBUTARY #1 NEAR PRAIRIE DU SAC, WI—Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1997 to current year. INSTRUMENTATION.--Water-quality sampler November 1997 to current year. REMARKS.-- Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples are storm-composite samples collected by an automatic point sampler. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | | Residue
total | Residue | Ammonia
+ | | Nitrite
+ | | | | |-------------------|-------------------|----------------|----------------|--|---|--|--|--|---|--|---|--| | Beginning
Date | Beginning
Time | Ending
date | Ending
time | Sampling
method,
code
(82398) | at 105
deg. C,
sus-
pended,
mg/L
(00530) | vola-
tile,
sus-
pended,
mg/L
(00535) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | Runoff
volume
millions of
cubic feet
(99905) | | FEB | 1200 | ******* | 1610 | | • | | | 1.10 | 4.04 | 1.00 | 2.15 | 10 - 6 | | 20-20
FEB | 1200 | 20030220 | 1610 | 50 | 29 | 21 | 6.2 | 1.18 | 1.86 | 1.98 | 2.45 | 527×10^{-6} | | 21-21 | 1259 | 20030221 | 1530 | 50 | 30 | 20 | 5.7 | 0.582 | 1.17 | 1.63 | 2.00 | 441x10 ⁻⁶ | | MAR | | | | | | | | | | | | | | 14-14 | 1229 | 20030314 | 1456 | 50 | 95 | 18 | 6.0 | 0.954 | 1.26 | 1.52 | 2.02 | 1.67×10^{-3} | | JUL
15-15 | 0155 | 20030715 | 0225 | 50 | 273 | 43 | 4.0 | 0.095 | 0.723 | 1.00 | 1.57 | 320x10
⁻⁶ | ### 05405859 LAKE WISCONSIN TRIBUTARY #1 NEAR PRAIRIE DU SAC, WI--Continued ### PRECIPITATION QUANTITY PERIOD OF RECORD.--November 1997 to September 2003 (discontinued). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established Nov. 1, 1997. Rainfall estimated to be 0.00 for Nov. 5, 10-11, 30, Dec. 2-3, 5, Jan. 5, 7, 28, 31, Feb. 2-3, 6, 11, and Mar. 4-5, 11-12 because recorded precipitation interpreted as collector snowmelt. Precipitation deleted Oct. 3-5 and July 7-15 because rain rage was plugged with debris. EXTREMES FOR PERIOD OF RECORD .-- Maximum daily rainfall, 5.30 in., Aug. 2, 2001. EXTREMES FOR CURRENT YEAR .-- Maximum daily rainfall, 2.25 in., Sept. 13. ## PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|--------------|----------------|--------------|----------------|----------------|----------------|----------------|--------------|--------------|----------------|----------------|----------------| | | | | | | | | | | | | | | | 1 2 | 0.00
0.62 | $0.00 \\ 0.00$ | 0.00
0.00 | 0.00
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.12
0.00 | 0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | | 3 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | | 4 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.37 | 0.00 | 0.00 | | 5 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0.42 | 0.00 | 0.36 | 0.00 | 0.00 | | 6 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.23 | 0.00 | 0.00 | | 7 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.29 | 0.00 | | 0.00 | 0.00 | | 8
9 | 0.05
0.03 | $0.00 \\ 0.00$ | 0.00
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.15
0.00 | 0.08
0.49 | 0.60
0.00 | | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | | 10 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.16 | 0.00 | | 0.00 | 0.00 | | | | | | | | | | | | | | | | 11
12 | 0.00
0.05 | $0.00 \\ 0.00$ | 0.00
0.00 | 0.00
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.69
0.00 | 0.00 | | $0.00 \\ 0.00$ | 0.00
0.40 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 2.25 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.56 | 0.00 | | 0.00 | 0.58 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.07 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18
19 | 0.32
0.00 | $0.00 \\ 0.00$ | 0.27
0.00 | 0.00 | $0.00 \\ 0.00$ | 0.00
0.21 | 0.00
0.25 | 0.00
0.12 | 1.08
0.01 | 0.00
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.08$ | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.23 | 0.12 | 0.00 | 0.00 | 0.00 | 0.08 | | | | | | | | | | | | | | | | 21
22 | 0.03
0.00 | 0.00
0.00 | 0.00 | 0.00 | $0.00 \\ 0.00$ | 0.07
0.00 | 0.07
0.00 | 0.00
0.00 | 0.00 | 0.20
0.01 | 0.14
0.00 | 0.16
0.03 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | | 25 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.56 | 0.00 | 0.13 | 0.00 | | 26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | | 27 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | | 28
29 | 0.04
0.01 | $0.00 \\ 0.00$ | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.28
0.00 | $0.00 \\ 0.00$ | 0.20
0.00 | 0.86
0.00 | $0.00 \\ 0.00$ | 0.99
0.00 | 0.02
0.00 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.87 | 0.00 | 0.00 | 0.61 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.02 | | 0.27 | | 0.02 | 0.00 | | | TOTAL | | 0.00 | 0.31 | 0.00 | 0.00 | 0.85 | 1.96 | 4.71 | 3.96 | | 1.31 | 3.57 | ### 054064775 BLACK EARTH CREEK TRIBUTARY AT COUNTY TRUNK HIGHWAY KP AT CROSS PLAINS, WI LOCATION.—Lat $43^{\circ}06'43''$, long $89^{\circ}39'26''$ in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 3, T.7 N., R.7 E., Dane County, Hydrologic Unit 07070005, 0.7 mi east of Garfoot Road and 0.2 mi west of Bourbon Road at Cross Plains. DRAINAGE AREA.--0.2 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1998 to current year. GAGE.--Water-stage recorder in a 2-ft H-flume. Elevation of gage is 873 ft, from topographic map. Unpublished discharge data from June 1998 to September 1999 available in district office. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CU | BIC FEET I | PER SECONI
DAII | D, WATER LY MEAN | | OBER 2002 | TO SEPTE | MBER 2003 | | | |----------|-----------------------|----------------|----------------|----------------|----------------------|------------------|----------------|---------------|----------------|--------------|----------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 4 | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | | 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.57 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.44 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.01 | 0.00 | 0.25 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19
20 | 0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.00
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.00 | $0.00 \\ 0.00$ | 0.00
0.00 | 0.00
0.00 | $0.00 \\ 0.00$ | | 21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.00 | 0.00 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 29 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | | 0.00 | 0.00 | | | TOTAL | 0.27 | 0.00 | 0.00 | 0.00 | 0.20 | 0.57 | 0.19 | 1.64 | 0.00 | 0.77 | 0.00 | 0.67 | | MEAN | 0.009 | 0.000 | 0.000 | 0.000 | 0.007 | 0.018 | 0.006 | 0.053 | 0.000 | 0.025 | 0.000 | 0.022 | | MAX | 0.27 | 0.00 | 0.00 | 0.00 | 0.20 | 0.39 | 0.19 | 0.57 | 0.00 | 0.36 | 0.00 | 0.44 | | MIN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CFSM | 0.04 | 0.00 | 0.00 | 0.00 | 0.04 | 0.09 | 0.03 | 0.26 | 0.00 | 0.12 | 0.00 | 0.11 | | IN. | 0.05 | 0.00 | 0.00 | 0.00 | 0.04 | 0.11 | 0.04 | 0.31 | 0.00 | 0.14 | 0.00 | 0.12 | | STATIST | TCS OF MO | ONTHLY M | EAN DAT | A FOR WA | TER YEARS | 1998 - 2003 | B, BY WATE | ER YEAR (W | /Y) | | | | | MEAN | 0.002 | 0.001 | 0.000 | 0.000 | 0.017 | 0.005 | 0.011 | 0.053 | 0.052 | 0.007 | 0.051 | 0.015 | | MAX | 0.009 | 0.004 | 0.001 | 0.001 | 0.027 | 0.018 | 0.021 | 0.17 | 0.18 | 0.025 | 0.29 | 0.057 | | (WY) | (2003) | (2002) | (2002) | (2001) | (2000) | (2003) | (2001) | (2000) | (2000) | (2003) | (2001) | (2001) | | MIN | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.000 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | (WY) | (1999) | (1999) | (1999) | (1999) | (2001) | (1999) | (2002) | (1999) | (2003) | (1998) | (2002) | (1998) | | SUMMAI | RY STATIS | STICS | | FOR 2002 | CALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 19 | 98 - 2003 | | | L MEAN
ΓANNUAI | | | | 3.00
0.008 | | | 4.31
0.012 | | | 0.019
0.038 | 2001 | | | ANNUAL | | | | 0.74 Inc | 4 | | 0.57 Max | . 11 | | 0.004 | 1999 | | | Γ DAILY M
`DAILY M | | | | 0.74 Jun
0.00 Jan | | | | y 11
t 1 | | | ug 2, 2001
un 26, 1998 | | | | DAY MINIM | TIM | | 0.00 Jan | | | | t 5 | | | un 20, 1998
un 30, 1998 | | | JM PEAK I | | I O IVI | | 0.00 Jan | 1 | | 0.00 00 | i J | | | ar 20, 1998 | | | JM PEAK | | | | | | | | | | | ar 20, 1999 | | | L RUNOFF | | | | 0.041 | | | 0.059 | | | 0.095 | 20, 1777 | | | | (INCHES) | | | 0.56 | | | 0.80 | | | 1.29 | | | | ENT EXCE | | | | 0.00 | | | 0.00
 | | 0.00 | | | | ENT EXCE | | | | 0.00 | | | 0.00 | | | 0.00 | | | | ENT EXCE | | | | 0.00 | | | 0.00 | | | 0.00 | | | | | | | | | | | | | | | | # 054064775 BLACK EARTH CREEK TRIBUTARY AT COUNTY TRUNK HIGHWAY KP AT CROSS PLAINS, WI—Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- July 1998 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: August 2000 to current year. INSTRUMENTATION.--Continuous water temperature recorder August 2000 to current year. REMARKS.--Water temperature recorder located near H-flume represent water temperature at sensor within 0.5°C. Unpublished water temperature data from August 2000 to September 2002 are available in the District Office. ### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum observed, 33.5°C, June 1, 2002; minimum observed, 0.0°C on many days during winter period. ### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum observed, 31.5°C, Aug. 26; minimum observed, 0.0°C on many days during winter period. ### TEMPERATURE, WATER, DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|---|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | ОСТОВЕ | 2 | N | OVEMBE | ER | D | ECEMBE | ER | J | JANUARY | 7 | | 1 | 22.5 | 16.0 | 19.0 | 3.5 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2 | 18.0 | 13.5 | 16.0 | 7.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3 | 15.0 | 11.5 | 14.0 | 7.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4 | 19.0 | 14.0 | 16.5 | 4.5 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | 5 | 16.0 | 11.5 | 13.5 | 5.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 6 | 17.0 | 8.0 | 12.0 | 6.5 | 1.5 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 7 | 13.0 | 3.0 | 8.0 | 10.0 | 0.0 | 5.0 | 0.5 | 0.0 | 0.0 | 4.0 | 0.0 | 1.0 | | 8 | 15.0 | 8.0 | 11.5 | 12.5 | 5.0 | 8.5 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 2.0 | | 9 | 13.0 | 5.5 | 9.5 | 14.5 | 4.5 | 9.5 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.5 | | 10 | 16.5 | 6.0 | 11.5 | 13.5 | 5.5 | 10.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 11 | 17.0 | 8.0 | 11.5 | 6.5 | 3.0 | 4.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12 | 14.5 | 6.5 | 11.0 | 5.0 | 1.0 | 3.0 | 1.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 13 | 9.5 | 2.0 | 5.0 | 7.5 | 0.0 | 4.0 | 2.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 14 | 11.0 | 1.5 | 6.0 | 6.0 | 2.5 | 4.0 | 2.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 15 | 11.5 | 1.5 | 6.0 | 4.5 | 0.0 | 2.0 | 4.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | | 16 | 7.5 | 0.0 | 3.0 | 4.5 | 0.0 | 1.5 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 17 | 7.5 | 2.0 | 4.5 | 1.5 | 0.0 | 0.0 | 1.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 18 | 11.0 | 2.5 | 7.5 | 3.5 | 0.0 | 1.5 | 6.0 | 1.0 | 3.5 | 0.0 | 0.0 | 0.0 | | 19 | 8.5 | 2.5 | 6.0 | 7.0 | 0.0 | 2.0 | 3.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | | 20 | 8.5 | 0.0 | 5.0 | 7.5 | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 21 | 10.5 | 4.0 | 7.5 | 3.5 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 22 | 6.5 | 3.0 | 4.5 | 2.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 23 | 8.0 | 2.5 | 5.0 | 5.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 24 | 7.5 | 3.5 | 5.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 25 | 8.5 | 5.5 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 26
27
28
29
30
31 | 9.0
7.0
8.5
10.0
7.5
5.0 | 5.0
0.5
3.5
0.0
0.0 | 6.5
4.5
5.5
6.0
2.5
1.5 | 0.0
0.0
1.0
6.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
2.5
0.0 | 0.0
0.5
2.0
2.0
7.5
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
2.5
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | | MONTH | 22.5 | 0.0 | 8.2 | 14.5 | 0.0 | 2.5 | 7.5 | 0.0 | 0.4 | 5.5 | 0.0 | 0.1 | 054064775 BLACK EARTH CREEK TRIBUTARY AT COUNTY TRUNK HIGHWAY KP AT CROSS PLAINS, WI—Continued | | TEMPE | RATURE, W | ATER, DE | GREES CEI | LSIUS—CO | NTINUED V | WATER YEA | AR OCTO | BER 2002 TO |) SEPTEMBI | ER 2003 | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 0.0
0.5
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 10.0
9.5
3.5
3.5
0.5 | 1.0
2.0
1.0
0.0
0.0 | 5.5
5.0
2.5
1.0
0.0 | 16.5
14.5
12.5
12.0
13.5 | 9.5
9.0
7.5
5.5
9.5 | 12.0
11.5
10.0
9.0
11.0 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 | 18.0 | 9.5
10.5 | 13.5 | | 7
8
9
10 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.5
2.5
1.5
5.0 | 0.0
0.0
0.0
0.0 | 0.0
0.5
0.5
1.5 | 12.5
13.0
21.0
18.0 | 10.0
11.0
11.5
13.5 | 11.5
12.0
15.5
15.5 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
4.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
1.0 | 11.0
9.5
10.5
17.5
21.0 | 0.0
0.0
0.0
6.0
12.0 | 3.5
4.0
5.0
11.5
16.0 | 15.5
17.0
15.5
15.5
15.5 | 9.5
8.5
10.0
12.5
11.0 | 12.5
11.5
12.5
13.5
12.5 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 5.0
4.0
4.5
3.5
6.0 | 0.0
0.0
1.5
0.5
1.5 | 2.0
2.0
2.5
1.5
3.5 | 14.0
13.0
10.0
14.5
14.0 | 4.5
4.0
5.0
5.0
8.0 | 8.0
7.5
7.5
10.0
11.0 | 15.5
18.5
19.5
19.0
16.5 | 12.5
9.0
9.5
15.0
7.0 | 13.5
13.5
14.5
16.5
12.0 | | 21
22
23
24
25 | 0.5
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 4.5
7.5
9.0
12.5
9.5 | 1.0
0.0
0.0
3.5
0.0 | 2.5
3.5
3.0
7.5
3.5 | 9.5
14.0
12.5
15.0
13.5 | 4.5
2.0
1.5
3.5
4.0 | 7.5
7.0
7.0
9.0
9.0 | 16.5
17.5
18.0
18.0
19.0 | 5.0
4.5
7.5
5.5
7.5 | 10.5
11.0
13.0
11.5
13.5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 9.0
9.0
5.5
2.5
5.0
6.0 | 0.0
2.5
0.0
0.0
0.0
0.0 | 3.5
4.5
3.0
0.5
1.5
2.0 | 15.0
19.0
21.5
17.5
11.0 | 2.0
5.5
6.5
5.0
8.5 | 8.5
12.0
14.0
10.5
10.0 | 20.5
21.5
22.0
21.0
21.0
18.0 | 7.0
8.5
10.5
7.5
10.0
8.5 | 13.5
15.0
15.5
14.5
15.0
13.5 | | MONTH | 1.5 | 0.0 | 0.0 | 12.5 | 0.0 | 1.5 | 21.5 | 0.0 | 6.5 | 22.0 | 4.5 | 12.9 | | | | JUNE | | | JULY | | | AUGUST | ı | | EPTEMBI | ER | | 1
2
3
4
5 | 18.5
18.5
19.5
22.0
22.0 | 6.5
7.5
12.0
10.0
10.5 | 12.5
13.5
15.0
15.5
16.0 | 24.5
26.0
29.0
27.0
26.5 | 15.5
16.5
19.0
20.5
21.0 | 20.0
21.0
23.5
23.5
23.0 | 27.5
26.5
26.5
25.5
27.0 | 19.5
17.5
18.0
17.5
16.5 | 23.0
22.0
21.0
21.5
21.5 | 23.5
23.5
24.5
22.5
23.5 | 12.0
10.0
13.0
12.5
10.5 | 17.0
16.5
18.5
16.5
16.5 | | 6
7
8
9
10 | 19.0
22.0
20.0
21.0
21.0 | 12.5
12.5
13.0
10.5
14.0 | 15.0
16.5
16.5
15.5
17.5 | 24.0
28.0
25.5
23.5
22.0 | 20.0
21.0
21.5
19.0
17.5 | 24.0
24.0
23.0
21.0
20.0 | 28.0
27.0
26.0
27.0
27.5 | 19.0
18.0
18.0
16.5
15.5 | 23.0
22.0
21.5
21.0
21.5 | 27.0
27.0
26.5
27.0
27.0 | 13.5
14.5
15.5
16.0
17.5 | 19.5
20.0
20.5
21.5
21.5 | | 11
12
13
14
15 | 19.0
22.5
23.0
25.5
23.5 | 13.0
13.0
14.0
14.0
14.5 | 16.5
17.5
18.0
19.5
18.5 | 22.5
23.5
24.5
25.5
26.0 | 17.0
15.0
15.5
17.5
20.5 | 19.5
19.0
20.0
21.5
23.5 | 24.5
26.5
27.0
27.5
30.0 | 18.5
17.5
16.5
17.5
19.5 | 21.0
22.0
21.5
22.5
24.0 | 28.0
23.0
22.0
21.0
16.5 | 18.0
19.0
19.5
16.0
11.0 | 22.0
21.0
20.5
19.0
14.5 | | 16
17
18
19
20 | 24.0
23.5
29.0
22.0
22.0 | 13.5
14.0
18.0
12.5
9.5 | 19.0
19.0
22.5
18.0
16.0 | 24.0
28.5
23.0
24.0
27.0 | 19.5
18.5
16.5
14.0
18.0 | 21.5
22.5
20.0
19.0
23.0 | 30.0
27.0
28.0
28.5
30.5 | 19.0
17.0
16.5
20.0
20.5 | 24.0
22.0
22.0
23.5
25.0 | 19.0
19.5
20.0
16.5
16.5 | 11.0
12.5
14.5
9.0
7.0 |
15.0
16.0
17.5
13.5
11.5 | | 21
22
23
24
25 | 23.0
25.5
29.0
29.0
31.0 | 12.0
14.0
16.5
20.0
21.0 | 17.5
19.0
22.0
24.0
24.0 | 25.5
22.5
23.5
24.5
26.0 | 22.0
16.5
14.0
15.5
16.5 | 23.5
20.5
18.5
19.5
21.5 | 29.5
27.0
27.5
30.0
30.5 | 20.5
17.5
15.0
17.5
21.5 | 25.0
21.5
21.5
23.5
25.0 | 18.5
18.0
16.5
19.5
14.5 | 9.5
10.0
7.5
9.5
7.5 | 14.5
15.0
12.0
14.5
11.0 | | 26
27
28
29
30
31 | 23.0
28.0
22.0
24.0
24.0 | 15.0
14.0
17.5
15.0
15.0 | 19.5
20.5
19.5
19.5
19.5 | 27.5
28.0
26.0
26.0
27.5
27.0 | 20.5
22.0
18.5
17.0
20.5
19.5 | 24.0
25.0
22.5
21.5
23.5
22.5 | 31.5
27.0
31.5
24.0
23.5
22.0 | 19.0
16.5
16.5
18.5
16.0
13.5 | 25.0
21.5
23.5
21.0
19.0
17.5 | 16.5
13.5
12.5
14.5
13.0 | 10.5
8.5
9.0
3.0
2.0 | 12.5
11.0
10.5
9.0
7.5 | | | | | | -1.0 | 17.0 | | | | | | | | # 054064775 BLACK EARTH CREEK TRIBUTARY AT COUNTY TRUNK HIGHWAY KP AT CROSS PLAINS, WI—Continued PRECIPITATION QUANTITY PERIOD OF RECORD.-July 1998 to current year. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established July 1998. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 6.52 in., Aug 2, 2001. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.13 in., Sept. 13. # PRECIPITATION, TOTAL, INCHES $\,$ WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|------|------|------|------|------|------|------| | 1 | 0.10 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.41 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | | 3 | 0.03 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 4 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | 0.00 | 0.22 | 0.00 | 0.00 | | 5 | 0.00 | 0.09 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.35 | 0.00 | 0.30 | 0.00 | 0.00 | | 6 | 0.06 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.12 | 0.00 | 0.26 | 1.17 | 0.01 | 0.00 | | 7 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.42 | 0.01 | 0.36 | 0.00 | 0.00 | | 8 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.18 | 0.71 | 0.29 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.01 | 0.01 | 0.00 | 0.00 | | 10 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.24 | 0.02 | 0.15 | 0.00 | 0.00 | | 11 | 0.00 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.79 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.13 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.61 | 0.00 | 0.00 | 0.00 | 0.64 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.94 | 0.00 | 0.01 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | | 17 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.00 | 0.25 | 0.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.00 | | 19 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.17 | 0.19 | 0.05 | 0.01 | 0.00 | 0.00 | 0.02 | | 20 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.11 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | | 21 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.05 | 0.03 | 0.00 | 0.00 | 0.97 | 0.00 | 0.06 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.12 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 0.00 | | 25 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.00 | 0.03 | 0.00 | | 26 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | | 27 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.37 | 0.00 | 0.22 | 1.02 | 0.05 | 0.46 | 0.00 | | 29 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.02 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 2.06 | 0.35 | 0.00 | 0.00 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.18 | | 0.02 | | 0.06 | | 0.00 | 0.00 | | | TOTAL | 2.36 | 0.91 | 0.57 | 0.24 | 0.10 | 0.79 | 2.65 | 4.26 | 3.19 | 4.46 | 0.93 | 3.81 | | | | | | | | | | | | | | | ### 054064785 BLACK EARTH CREEK TRIBUTARY AT CROSS PLAINS, WI LOCATION.--Lat 43°06'42", long 89°39'52" in SE $^1\!\!/_4$ NE $^1\!\!/_4$ sec.4, T.7 N., R.7 E., Dane County, Hydrologic Unit 07070005, 0.1 mi east of CTH KP on Bourbon Road at Cross Plains. DRAINAGE AREA.--0.27 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- June 1998 to current year. GAGE.--Water-stage and velocity recorders located in a 4.5 ft diameter circular, concrete storm sewer. Elevation of gage is 863 ft above sea level from topographic map. Unpublished discharge data from July 1998 to September 2002 available in district office. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Periods of backwater measured via velocity meter. Gageheight telemeter at station. | | | DISCH | ARGE, CU | BIC FEET P | | O, WATER '
LY MEAN ' | | OBER 2002 | TO SEPTE | MBER 2003 | | | |---|---|--|---|--|--|--|---|---|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 0.01
0.04
0.00
0.18 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.01
0.00 | 0.01
0.00
0.00
0.01 | 0.00
0.00
0.00
0.00 | 0.00
0.01
0.01
0.03 | 0.00
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.05 | 0.00 | 0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.01 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.05
0.01
0.06
e0.19 | 0.03
0.00
0.09
0.00
0.00 | e0.20
0.05
0.04
0.00
0.01 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.02
0.15
0.09 | 0.00
0.00
0.00
0.00
0.00 | 0.02
0.00
0.00
0.09
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
e0.18 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.09
0.35
0.11
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.01
0.00
0.00 | 0.00
0.00
0.01
0.00
0.00 | 0.00
0.01
0.07
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.03 | 0.02
0.00
0.00
0.01
0.00 | 0.00
0.00
0.00
0.03
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.03
0.00
0.00 | 0.03
0.00
0.00
0.00
0.00 | 0.02
0.00
0.00
0.00
0.01 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00
0.00
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.03
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.03
0.02 | 0.13
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.01
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.00
0.00
0.03
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.24 | 0.00
0.00
0.02
0.00
0.04
0.00 | 0.00
0.00
0.14
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.05
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 0.26
0.008
0.18
0.00
0.03
0.04 | 0.05
0.002
0.04
0.00
0.01
0.01 | 0.08
0.003
0.07
0.00
0.01
0.01 | 0.00
0.000
0.00
0.00
0.00
0.00 | 0.06
0.002
0.03
0.00
0.01
0.01 | 0.33
0.011
0.15
0.00
0.04
0.05 | 0.30
0.010
0.24
0.00
0.04
0.04 | 0.54
0.017
0.19
0.00
0.06
0.07 |
0.34
0.011
0.14
0.00
0.04
0.05 | 0.74
0.024
0.20
0.00
0.09
0.10 | 0.10
0.003
0.05
0.00
0.01
0.01 | 0.56
0.019
0.35
0.00
0.07
0.08 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | OCS OF MO
0.006
0.012
(1999)
0.003
(2000) | ONTHLY M
0.004
0.007
(2001)
0.000
(2000) | 0.001
0.003
(2002)
0.000
(1999) | A FOR WAT
0.002
0.008
(2001)
0.000
(1999) | ER YEARS
0.006
0.013
(2001)
0.000
(2000) | 1998 - 2003
0.003
0.011
(2003)
0.000
(1999) | 0.019
0.028
(2000)
0.010
(2003) | ER YEAR (W
0.021
0.043
(2000)
0.012
(1999) | 0.025
0.054
(2000)
0.011
(2003) | 0.017
0.028
(1999)
0.005
(2001) | 0.025
0.075
(2001)
0.003
(2003) | 0.017
0.031
(2001)
0.005
(1999) | | ANNUAI
ANNUAI
HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAI
MAXIMU
MAXIMU
INSTANT
ANNUAI
ANNUAI | MEAN ANNUAL ANNUAL DAILY M ASE SEVEN-L JM PEAK JM PEAK ANEOUS RUNOFF RUNOFF | . MEAN . MEAN IEAN EAN DAY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) | | , | 3.50
0.010
0.20 Jun
0.00 Jan
0.00 Jan
0.036
0.48 | 4 | FOR 200 | 0.00 Oc
0.00 Oc
0.034
0.46 | YEAR 2 13 t | WATER | 0.00
0.00
71 A
6.15 A
0.00 A
0.045
0.61 | 2001
2003
2003
2003
2003
2012
2012
2012 | | 50 PERCI | ENT EXCE
ENT EXCE
ENT EXCE | EDS | | | 0.03
0.00
0.00 | | | 0.02
0.00
0.00 | | | 0.03
0.00
0.00 | | e Estimated ### 054064785 BLACK EARTH CREEK TRIBUTARY AT CROSS PLAINS, WI-Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD .-- July 1998 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: June 1999 to current year. SUSPENDED-SOLIDS DISCHARGE: October 1998 to September 2002. TOTAL PHOSPHORUS DISCHARGE: April 1999 to September 2002. INSTRUMENTATION.--Refrigerated water-quality sampler October 1998 to September 2002; continuous water temperature recorder June 1999 to current REMARKS.--Water temperature records represent water temperature at sensor within 0.5°C. Chemical analyses by the Wisconsin State Laboratory of Hygiene. Samples are point samples unless otherwise noted. Suspended-solids and total-phosphorus discharge extremes represent total event load. Unpublished water-quality data from July 1998 to September 2002 are available in the District Office. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum observed, 30.5°C, Aug. 2, 2003; minimum observed, 0.0°C on many days during winter periods. SUSPENDED-SOLIDS DISCHARGE: Maximum event load, 1.2 tons Aug. 1-3, 2001; minimum event load, 0.003 ton, Apr. 19, 2000. TOTAL-PHOSPHORUS DISCHARGE: Maximum event load, 4.7 lb, Aug. 1-3, 2001; minimum event load, 0.02 lb, Apr. 19, 2001. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum observed, 30.5°C, Aug. 2; minimum observed, 0.0°C on many days during winter period. ### TEMPERATURE, WATER, DEGREES CELSIUS WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|---|--|---|---------------------------------|---------------------------------|---------------------------------|--|--|--|---|--|--| | | (| ОСТОВЕН | 3 | N | OVEMBE | ER | D | ECEMBE | R | J | IANUARY | 7 | | 1 | 20.0 | 17.0 | 17.5 | 6.0 | 3.0 | 4.5 | 4.0 | 0.0 | 1.5 | 2.5 | 1.0 | 2.0 | | 2 | 19.0 | 14.5 | 17.0 | 7.5 | 3.5 | 5.5 | 4.0 | 1.5 | 3.0 | 3.0 | 1.5 | 2.0 | | 3 | 16.5 | 15.5 | 16.0 | 7.0 | 3.0 | 5.5 | 3.5 | 0.0 | 1.0 | 2.5 | 0.0 | 1.0 | | 4 | 18.5 | 14.5 | 16.5 | 7.5 | 4.5 | 6.0 | 2.0 | 0.0 | 0.5 | 2.5 | 0.0 | 1.5 | | 5 | 15.5 | 13.0 | 14.0 | 8.5 | 6.0 | 7.0 | 0.0 | 0.0 | 0.0 | 3.0 | 2.0 | 2.5 | | 6 | 15.5 | 12.5 | 14.0 | 8.0 | 6.0 | 6.5 | 1.5 | 0.0 | 0.5 | 2.5 | 1.0 | 2.0 | | 7 | 14.0 | 10.5 | 12.0 | 9.0 | 5.0 | 7.0 | 2.5 | 0.0 | 1.5 | 3.5 | 1.0 | 2.0 | | 8 | 14.5 | 12.0 | 13.5 | 9.5 | 8.0 | 9.0 | 1.5 | 0.0 | 0.5 | 5.0 | 2.5 | 3.5 | | 9 | 14.5 | 11.5 | 13.5 | 10.0 | 8.0 | 9.5 | 0.5 | 0.0 | 0.5 | 4.0 | 1.0 | 2.5 | | 10 | 15.0 | 11.5 | 14.0 | 10.0 | 8.5 | 9.5 | 3.0 | 0.0 | 1.5 | 1.0 | 0.0 | 0.0 | | 11 | 15.0 | 12.5 | 14.0 | 9.0 | 5.5 | 7.5 | 3.0 | 1.0 | 2.0 | 0.0 | 0.0 | 0.0 | | 12 | 14.5 | 11.5 | 13.5 | 7.5 | 6.0 | 6.5 | 3.5 | 2.5 | 3.0 | 0.5 | 0.0 | 0.0 | | 13 | 11.5 | 9.0 | 10.5 | 8.5 | 5.0 | 7.0 | 4.0 | 2.5 | 3.0 | 0.0 | 0.0 | 0.0 | | 14 | 13.0 | 8.0 | 10.5 | 8.5 | 6.5 | 7.5 | 4.0 | 2.5 | 3.0 | 0.0 | 0.0 | 0.0 | | 15 | 12.5 | 8.5 | 10.5 | 8.5 | 6.5 | 7.0 | 4.0 | 2.5 | 3.5 | 0.0 | 0.0 | 0.0 | | 16 | 11.5 | 6.5 | 9.0 | 8.0 | 3.5 | 6.5 | 3.5 | 2.5 | 3.5 | 0.0 | 0.0 | 0.0 | | 17 | 12.0 | 8.5 | 9.5 | 7.0 | 2.0 | 4.0 | 4.0 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | | 18 | 11.0 | 7.5 | 9.5 | 7.5 | 2.5 | 4.5 | 7.0 | 0.5 | 5.0 | 0.0 | 0.0 | 0.0 | | 19 | 10.0 | 8.0 | 9.5 | 7.0 | 4.5 | 6.0 | 5.0 | 3.5 | 4.0 | 0.0 | 0.0 | 0.0 | | 20 | 10.5 | 7.0 | 9.0 | 7.5 | 3.5 | 5.5 | 3.5 | 1.5 | 2.5 | 0.0 | 0.0 | 0.0 | | 21 | 11.0 | 9.5 | 10.0 | 6.0 | 3.5 | 5.0 | 2.0 | 1.0 | 1.5 | 0.0 | 0.0 | 0.0 | | 22 | 9.5 | 8.5 | 9.0 | 5.5 | 4.0 | 5.0 | 1.5 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | | 23 | 10.5 | 8.5 | 9.5 | 6.0 | 4.0 | 5.0 | 1.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 24 | 11.0 | 9.0 | 10.0 | 5.0 | 3.0 | 4.0 | 2.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 25 | 11.0 | 7.5 | 9.0 | 5.0 | 0.5 | 2.5 | 1.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | | 26
27
28
29
30
31 | 10.0
9.5
10.0
10.0
9.5
7.5 | 9.0
7.0
8.5
8.0
5.5
4.5 | 9.5
8.5
9.5
10.0
7.5
6.5 | 3.5
3.0
3.5
5.5
4.5 | 0.0
0.0
0.0
3.5
0.0 | 1.5
1.0
2.0
4.5
2.0 | 2.0
2.0
3.0
4.0
4.5
3.0 | 0.0
0.0
1.0
1.0
2.5
0.5 | 0.5
1.5
2.0
3.0
4.0
2.0 | 0.0
0.0
0.0
0.0
0.0
0.0
1.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | | MONTH | 20.0 | 4.5 | 11.4 | 10.0 | 0.0 | 5.5 | 7.0 | 0.0 | 2.0 | 5.0 | 0.0 | 0.6 | ### 054064785 BLACK EARTH CREEK TRIBUTARY AT CROSS PLAINS, WI—Continued | | TEMPER | RATURE, V | VATER, DE | GREES CEI | SIUS—CO | NTINUED V | VATER YEA | AR OCTOR | BER 2002 TO |) SEPTEMBI | ER 2003 | | |---|--|--|--|--|---|--|--|---
--|---|--|--| | DAY | MAX | MIN | MEAN | | | F | FEBRUARY | <i>T</i> | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.5
1.5
1.5
0.0
0.0 | 0.0
1.0
0.0
0.0
0.0 | 0.5
1.0
1.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 4.5
4.5
4.0
3.0
3.0 | 2.5
3.5
2.5
0.5
0.0 | 3.5
3.5
3.0
2.5
1.0 | 10.5
9.5
8.5
11.0
11.0 | 9.5
7.5
5.0
8.0
9.5 | 10.0
9.0
7.5
8.5
10.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
1.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 2.0
2.0
3.5
9.0
4.0 | 0.0
1.5
0.0
0.0
0.0 | 1.0
1.5
2.0
2.5
2.5 | 10.0
13.0
12.5
12.5
17.5 | 9.5
9.5
9.5
10.5
10.0 | 9.5
10.5
10.0
11.5
11.5 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.5
1.0
2.0
6.0
6.0 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.5
1.0
2.5 | 4.0
4.5
5.0
9.0
8.0 | 1.5
3.0
2.0
5.0
6.5 | 3.0
3.5
3.5
6.0
7.0 | 14.0
11.0
10.5
14.5
11.5 | 9.5
9.5
8.5
10.0
10.5 | 11.5
10.0
10.0
12.0
11.0 | | 16
17
18
19
20 | 0.0
0.0
0.5
0.0
3.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | 7.0
4.5
2.5
3.5
2.0 | 1.5
2.0
2.0
1.5
1.5 | 3.0
3.0
2.0
2.0
2.0 | 7.5
6.5
6.5
15.5
13.0 | 5.5
5.5
5.5
5.5
8.0 | 6.5
6.0
6.0
8.0
9.0 | 11.5
11.5
12.0
16.0
13.0 | 9.0
9.5
10.5
11.5
10.0 | 10.5
11.0
11.5
12.0
12.0 | | 21
22
23
24
25 | 2.5
0.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.0
0.0
0.0
0.0
0.0 | 3.5
2.0
3.0
3.0
3.0 | 1.5
1.5
1.5
2.5
2.0 | 2.0
2.0
2.0
2.5
2.5 | 8.0
7.0
7.0
8.0
9.0 | 6.5
5.5
5.5
6.5
6.0 | 7.0
6.5
6.5
7.0
7.5 | 12.0
11.5
12.0
12.5
13.0 | 8.5
8.0
10.0
8.0
9.5 | 10.5
10.5
11.0
11.0
11.5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 2.5
4.5
6.0
2.5
2.5
3.5 | 1.5
2.5
2.0
0.0
0.0
0.0 | 2.5
3.0
4.0
1.5
1.0
2.0 | 8.0
9.5
8.5
8.5
12.0 | 5.0
7.0
8.0
7.0
8.0 | 7.0
8.0
8.0
8.0
9.5 | 13.0
12.0
23.0
13.5
24.0
15.0 | 9.5
10.5
11.5
11.0
11.5
11.5 | 11.5
11.5
13.5
12.5
13.5
13.5 | | | | | | | 0.0 | 2.0 | | | | 15.0 | 11.5 | | | MONTH | 3.0 | 0.0 | 0.1 | 7.0 | 0.0 | 1.3 | 15.5 | 0.0 | 5.2 | 24.0 | 5.0 | 11.0 | | MONTH | 3.0 | 0.0
JUNE | 0.1 | | | | | | 5.2 | 24.0 | 5.0
EPTEMBE | 11.0 | | MONTH 1 2 3 4 5 | 3.0
13.0
12.5
13.0
13.0
13.0 | | 0.1
12.0
12.0
12.0
12.0
12.0 | | 0.0 | | | 0.0 | 5.2 | 24.0 | 5.0 | 11.0 | | 1
2
3
4 | 13.0
12.5
13.0
13.0 | JUNE
10.0
10.5
11.5
11.5 | 12.0
12.0
12.0
12.0 | 7.0
17.5
23.5
23.5
23.0 | 0.0
JULY
15.0
15.5
16.5
17.5 | 1.3
16.5
17.0
18.0
18.5 | 15.5
18.5
30.5
20.0
19.5 | 0.0
AUGUST
18.0
17.0
17.5
17.0 | 5.2
18.5
19.0
18.5
18.5 | 24.0
S
18.5
19.0
20.0
19.0 | 5.0
EPTEMBE
15.5
14.5
16.0
15.5 | 11.0
ER
17.5
17.0
18.0
17.5 | | 1
2
3
4
5
6
7
8
9 | 13.0
12.5
13.0
13.0
13.0
13.5
22.5
14.0 | JUNE 10.0 10.5 11.5 11.0 12.5 13.0 13.0 12.5 | 12.0
12.0
12.0
12.0
12.5
14.0
13.5
15.0
13.5 | 7.0
17.5
23.5
23.5
23.0
24.0
26.5
22.5
22.0
18.5 | 0.0
JULY
15.0
15.5
16.5
17.5
18.0
18.0
18.5
17.5
17.5 | 1.3
16.5
17.0
18.0
18.5
19.0
19.5
19.5
19.0
18.0 | 18.5
30.5
20.0
19.5
19.0
19.5
19.0
18.5 | 0.0
AUGUST
18.0
17.0
17.5
17.0
17.0
18.0
17.0
17.5
16.5 | 5.2
18.5
19.0
18.5
18.5
18.0
18.5
18.5
18.5 | 24.0
S
18.5
19.0
20.0
19.0
18.5
19.0
19.0
18.5
18.5 | 5.0
EPTEMBE
15.5
14.5
16.0
15.5
15.0
16.0
16.5
17.5
17.5 | 11.0
ER
17.5
17.0
18.0
17.5
16.5
17.5
18.0
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.0
12.5
13.0
13.0
13.0
13.5
22.5
14.0
14.5
14.5
14.5
14.5 | JUNE 10.0 10.5 11.5 11.5 11.0 12.5 13.0 13.0 12.5 13.5 13.5 13.5 | 12.0
12.0
12.0
12.0
12.5
14.0
13.5
15.0
13.5
14.0
14.0
14.0
14.0 | 7.0
17.5
23.5
23.5
23.0
24.0
26.5
22.5
22.0
18.5
20.0
18.5
18.0
18.5 | 0.0
JULY
15.0
15.5
16.5
17.5
18.0
18.0
18.5
17.5
17.5
17.0
16.5
15.5
15.5
16.5 | 1.3 16.5 17.0 18.0 18.5 19.0 19.5 19.5 19.0 18.0 17.5 17.0 17.0 17.5 | 15.5
18.5
30.5
20.0
19.5
19.0
19.5
19.0
18.5
19.0
19.0
19.0
19.0
19.0 | 0.0 AUGUST 18.0 17.0 17.5 17.0 17.0 18.0 17.0 17.5 16.5 16.5 17.5 16.5 17.5 16.5 17.5 | 5.2
18.5
19.0
18.5
18.5
18.5
18.5
17.5
17.5
18.0
18.0
18.5 | 24.0
\$ 18.5
19.0
20.0
19.0
18.5
19.0
19.5
18.5
18.5
19.0
23.0
22.5
19.5 | 5.0
EPTEMBE
15.5
14.5
16.0
15.5
15.0
16.0
16.5
17.5
18.0
18.0
18.0
18.5
16.0 | 11.0
ER
17.5
17.0
18.0
17.5
16.5
17.5
18.0
18.0
18.5
20.0
20.5
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 13.0
12.5
13.0
13.0
13.0
13.5
22.5
14.0
14.5
14.5
14.5
15.0
15.0
15.0
23.0
21.5 | JUNE 10.0 10.5 11.5 11.0 12.5 13.0 13.0 12.5 13.5 13.5 13.5 13.5 13.5 14.0 13.0 14.5 13.0 | 12.0
12.0
12.0
12.0
12.5
14.0
13.5
15.0
13.5
14.0
14.0
14.0
14.5
14.5
14.5 | 7.0
17.5
23.5
23.5
23.0
24.0
26.5
22.5
22.0
18.5
20.0
18.5
23.0
23.0
23.0
18.5
23.0 | 0.0 JULY 15.0 15.5 16.5 17.5 18.0 18.0 18.5 17.5 17.0 16.5 15.5 16.5 17.5 16.0 17.0 16.5 15.0 | 1.3 16.5 17.0 18.0 18.5 19.0 19.5 19.0 18.0 18.0 17.5 17.0 17.5 18.5 17.5 18.0 18.0 18.0 | 15.5
18.5
30.5
20.0
19.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
28.0
20.5
19.0 | 0.0 AUGUST 18.0 17.0 17.5 17.0 17.0 18.0 17.0 17.5 16.5 16.5 17.5 16.5 17.5 18.0 18.5
18.0 17.5 18.0 | 5.2
18.5
19.0
18.5
18.5
18.5
18.5
17.5
17.5
18.0
18.0
18.5
18.0
18.5
18.5
18.5
18.5 | 24.0
S
18.5
19.0
20.0
19.0
18.5
19.0
18.5
18.5
18.5
18.5
19.0
23.0
22.5
19.5
17.5 | 5.0
EPTEMBE
15.5
14.5
16.0
15.5
15.0
16.0
16.5
17.5
18.0
18.0
18.0
14.5
15.0
15.5
16.0
14.5 | 11.0
ER
17.5
17.0
18.0
17.5
16.5
17.5
18.0
18.0
18.0
18.5
20.0
20.5
18.0
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 13.0
12.5
13.0
13.0
13.0
13.5
22.5
14.0
14.5
14.5
14.5
15.0
15.0
23.0
21.5
15.5
15.5
15.5
16.0
22.5 | JUNE 10.0 10.5 11.5 11.5 11.0 12.5 13.0 13.0 12.5 13.5 13.5 13.5 13.5 13.5 14.0 13.0 14.5 13.0 12.0 13.0 14.5 15.5 | 12.0
12.0
12.0
12.0
12.5
14.0
13.5
15.0
13.5
14.0
14.0
14.5
14.5
14.5
14.0
15.5
15.5
14.0
14.0 | 7.0 17.5 23.5 23.5 23.0 24.0 26.5 22.5 22.0 18.5 20.0 18.5 18.0 18.5 23.0 23.0 19.0 18.5 18.0 18.5 18.0 18.5 18.0 18.5 18.0 18.5 | 0.0 JULY 15.0 15.5 16.5 17.5 18.0 18.0 18.5 17.5 17.0 16.5 15.5 16.5 17.5 16.0 17.0 16.5 15.0 17.0 18.0 18.0 18.0 17.0 16.5 15.0 17.0 | 1.3 16.5 17.0 18.0 18.5 19.0 19.5 19.5 19.0 18.0 17.5 17.0 17.5 18.5 17.5 18.0 18.0 16.5 18.0 19.5 18.0 17.5 18.0 17.5 18.0 19.5 18.0 19.5 18.0 17.0 17.0 | 18.5
30.5
20.0
19.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
28.0
20.5
19.0
26.0
21.0
20.0
20.5 | 0.0 AUGUST 18.0 17.0 17.5 17.0 17.0 18.0 17.5 16.5 16.5 17.5 16.5 17.5 18.0 18.5 18.0 17.5 18.0 18.5 18.0 17.5 18.0 18.5 | 5.2
18.5
19.0
18.5
18.5
18.5
18.5
17.5
17.5
18.0
18.5
18.0
18.5
18.5
18.0
18.5
18.0
18.5
19.5
19.5
19.0
19.5
19.0
19.5
19.0
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
1 | 24.0 S 18.5 19.0 20.0 19.0 18.5 19.0 19.0 18.5 18.5 18.5 18.5 19.0 23.0 22.5 19.5 17.5 18.0 17.5 18.0 17.5 17.0 18.5 17.0 15.5 16.0 | 5.0 EPTEMBE 15.5 14.5 16.0 15.5 15.0 16.0 16.5 17.5 18.0 18.0 18.0 18.5 16.0 14.5 15.5 12.0 14.5 14.5 12.5 13.0 | 11.0 ER 17.5 17.0 18.0 17.5 16.5 17.5 18.0 18.0 18.0 18.5 18.5 20.0 20.5 18.0 16.0 16.5 17.0 17.5 16.0 14.5 16.5 16.5 | # 054064785 BLACK EARTH CREEK TRIBUTARY AT CROSS PLAINS, WI—Continued PRECIPITATION QUANTITY PERIOD OF RECORD.-July 1998 to current year. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established July 1998. Unpublished precipitation data from July 1998 to September 2002 available in District office. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 5.73 in., Aug. 2, 2001. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.20 in., Sept. 13. ### PRECIPITATION, TOTAL, INCHES WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | 1
2
3 | 0.10
0.42
0.02 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.01
0.05
0.01 | 0.00
0.00
0.00 | 0.00
0.00
0.15 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.10
0.00 | 0.00
0.00
0.00 | | 4
5 | 1.15
0.00 | 0.00
0.08 | 0.00
0.00 | 0.00
0.05 | 0.00
0.00 | 0.00
0.01 | 0.01
0.00 | 0.10
0.30 | 0.00
0.00 | 0.20
0.30 | 0.00
0.00
0.00 | 0.00
0.00 | | 6
7
8
9 | 0.07
0.01
0.01
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.01
0.00
0.00
0.00 | 0.00
0.05
0.00
0.00 | 0.06
0.01
0.01
0.00 | 0.00
0.40
0.20
0.30 | 0.20
0.00
0.80
0.00 | 1.30
0.30
0.30
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 10
11
12 | 0.00
0.00
0.01 | 0.03
0.36
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00 | 0.00
0.00
0.00 | 1.10
0.30
0.00 | 0.00
0.00
0.00 | 0.10
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.70 | | 12
13
14
15 | 0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.60
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.90 | 0.00
0.00
0.00
0.00 | 2.20
0.70
0.00 | | 16
17 | 0.00
0.00
0.10 | 0.00
0.00
0.00 | 0.00
0.00
0.09 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.90
0.00
0.00 | 0.20
0.00 | 0.00 | | 18
19
20 | 0.14
0.00
0.00 | 0.21
0.01
0.00 | 0.44
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.13
0.01 | 0.00
0.27
0.19 | 0.00
0.00
0.00 | 0.20
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.10 | 0.00
0.00
0.00 | | 21
22 | 0.00
0.00
0.00 | 0.06
0.00 | 0.00
0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.05
0.00 | 0.10
0.00 | 0.00
0.00 | 0.00
0.00 | 0.70
0.00 | 0.00
0.00 | 0.00
0.10 | | 23
24
25 | 0.00
0.08
0.37 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.10
0.00
0.00 | 0.00
0.20
0.40 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | 26
27 | 0.00
0.01 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.08 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 0.00 | | 28
29
30 | 0.04
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00 | 0.37
0.01
0.00 | 0.00
0.00
1.80 | 0.20
0.00
0.40 | 1.00
0.00
0.00 | 0.00
0.00
0.00 | 0.40
0.00
0.00 | 0.00
0.00
0.00 | | 31 | 0.00 | | 0.00 | 0.15 | | 0.01 | | 0.10 | | 0.00 | 0.00 | | | TOTAL | 2.53 | 0.75 | 0.53 | 0.20 | 0.08 | 0.73 | 2.60 | 4.10 | 2.80 | 4.10 | 0.80 | 3.70 | ### 05406500 BLACK EARTH CREEK AT BLACK EARTH, WI $LOCATION.--Lat~43^{\circ}08'03", long~89^{\circ}43'56" in ~SW~^{1}\!\!/_{\!\!4}~sec.25, ~T.8~N., ~R.6~E., ~Dane~County, ~Hydrologic~Unit~07070005, on~right~bank, ~0.8~mi~east~of~Black~Earth~and~2.1~mi~upstream~from~Vermont~Creek.$ DRAINAGE AREA.--45.6 mi², of which 2.8 mi² probably is noncontributing. PERIOD OF RECORD.--February 1954 to current year. REVISED RECORDS.--WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 812.95 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges and May 1 to Sept. 30, which are fair (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUB | IC FEET PI | | D, WATER Y
LY MEAN V | | OBER 2002 T | го ѕертем | 1BER 2003 | | |
---|--|---|---|---|--|--|--|--|---|---|---|--| | DAY
1
2
3
4
5 | OCT 34 34 38 60 56 | NOV
33
33
32
32
32
32 | DEC
32
32
31
32
32 | JAN 32 31 32 31 31 | FEB 29 29 29 29 29 | MAR
27
27
27
27
27
27 | APR 31 31 31 32 33 | MAY
89
52
42
37
39 | JUN
32
29
29
28
27 | JUL
25
24
24
25
26 | AUG
25
25
24
24
24
25 | SEP 23 22 21 19 | | 6
7
8
9
10 | 47
43
40
37
35 | 32
33
33
33
33 | 32
32
31
31
32 | 31
31
31
31
31 | 29
28
28
28
27 | 27
27
27
27
27
27 | 30
30
30
31
35 | 38
39
40
52
49 | 27
28
29
31
29 | 40
37
35
33
32 | 24
23
24
24
23 | 17
16
17
17
16 | | 11
12
13
14
15 | 34
34
34
34
34 | 36
36
35
36
35 | 32
32
32
32
33 | 30
31
30
30
29 | e27
e27
27
27
26 | 27
27
28
45
62 | 35
34
32
31
30 | 127
78
61
59
60 | 28
28
27
26
26 | 32
30
28
28
45 | 23
24
23
23
23 | 15
17
33
65
44 | | 16
17
18
19
20 | 34
33
34
34
33 | 35
33
33
33
33 | 32
33
37
40
38 | 30
29
29
29
29 | 26
26
26
26
28 | 46
42
36
34
34 | 29
29
28
27
30 | 52
47
45
42
40 | 25
25
25
26
25 | 35
32
31
30
29 | 23
23
22
21
20 | 36
32
28
28
28 | | 21
22
23
24
25 | 33
32
32
32
32
35 | 32
33
33
33
32 | 36
35
34
34
33 | 28
e27
e27
e27
e27 | 34
32
28
27
e27 | 34
33
32
33
33 | 31
28
26
26
25 | 39
37
36
35
34 | 24
24
24
25
25 | 38
33
31
30
27 | 20
20
19
18
19 | 27
27
27
26
25 | | 26
27
28
29
30
31 | 37
36
35
34
32
32 | 31
31
31
31
31 | 33
32
32
32
32
32
32 | e27
e27
e27
e28
28
29 | 27
27
27
 | 32
30
33
34
32
30 | 24
23
23
22
27 | 32
32
32
32
33
34 | 25
24
29
28
26 | 26
26
26
25
25
24 | 19
18
18
22
20
22 | 25
25
25
24
23 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,132
36.5
60
32
0.85
0.98 | 989
33.0
36
31
0.77
0.86 | 1,023
33.0
40
31
0.77
0.89 | 910
29.4
32
27
0.69
0.79 | 780
27.9
34
26
0.65
0.68 | 1,007
32.5
62
27
0.76
0.88 | 874
29.1
35
22
0.68
0.76 | 1,464
47.2
127
32
1.10
1.27 | 804
26.8
32
24
0.63
0.70 | 932
30.1
45
24
0.70
0.81 | 681
22.0
25
18
0.51
0.59 | 767
25.6
65
15
0.60
0.67 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 31.8
51.5
(1999)
15.9
(1967) | ONTHLY M
32.9
70.2
(1986)
16.1
(1967) | 30.4
48.0
(1988)
14.8
(1965) | FOR WAT
29.3
51.6
(1974)
15.1
(1959) | ER YEARS
33.6
64.9
(1994)
16.0
(1959) | 1954 - 2003,
47.7
85.3
(1961)
16.9
(1968) | 42.6
86.5
(1993)
22.5
(1957) | R YEAR (W
38.9
91.2
(1973)
18.7
(1965) | Y)
39.0
119
(2000)
14.4
(1965) | 36.9
140
(1993)
14.0
(1965) | 33.1
104
(2001)
15.5
(1958) | 32.8
66.0
(1980)
15.3
(1958) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI INSTAN' ANNUAI ANNUAI 10 PERC 50 PERC | RY STATIS L TOTAL L MEAN T ANNUAL T ANNUAL T DAILY M T DAILY M L SEVEN-D UM PEAK F UM PEAK S L RUNOFF L RUNOFF ENT EXCE ENT EXCE | MEAN MEAN EAN EAN AY MINIM TLOW TAGE LOW FLOW (CFSM) (INCHES) EDS EDS | IUM | 15,130
4
189
29
30 | 9 Jun
9 Sep
0 Sep
0.97
3.15
2 | 4
18 | 11,36
3
12
1
17 | 3 WATER Y 33 31.1 27 May 55 Sep 16 Sep 79 May 2.88 May 0.73 9.88 88 81 123 | 12 (a)Feb 1
13 Ju
750 Ju
7.08 Au | 1993
1964
g 2, 2001 | | | ⁽a) Also occurred July 26, 29, 1965 ⁽b) Gage height, 6.58 ft ⁽c) Result of freezeup ⁽e) Estimated due to ice effect or missing record #### 05407000 WISCONSIN RIVER AT MUSCODA, WI LOCATION.--Lat 43°11'53", long 90°26'36", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 1, T.8 N., R.1 W., Grant County, Hydrologic Unit 07070005, on left bank at bridge on State Highway 80, 0.5 mi upstream from Eagle Mill Creek and 1.0 mi north of Muscoda. DRAINAGE AREA.--10,400 mi². PERIOD OF RECORD.--December 1902 to December 1903, gage height and discharge measurements only, October 1913 to current year. Monthly discharge for October and November 1913 published in WSP 1308. Gage-height records collected at same site November 1908 to December 1912 are contained in reports of U. S. Weather Bureau. REVISED RECORDS.--WSP 785: 1921(M). WSP 875: 1921. WSP 1308: 1915(M), 1917-18(M), 1920-21(M), 1924(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 666.77 ft above NGVD of 1929. Prior to Nov. 22, 1929, nonrecording gage on bridge 200 ft upstream at same datum. Nov. 22, 1929, to Mar. 15, 1930, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges and Apr. 3-15 and 20-27, which are fair (see page 11). Flow regulated by 24 reservoirs and many powerplants upstream from station. In 1938 when the maximum of record occurred, there were 21 reservoirs upstream from station, the two large reservoirs, Petenwell and Castle Rock were not yet in existence. Usually flows less than 20 ft³/s were diverted out of the basin through Portage Canal to the Fox River throughout the year. Gage-height telemeter and data-collection platform at station. | | | DISCHA | ARGE, CUI | BIC FEET PEF | | , WATER
Y MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |-----------------|-----------------------|-----------------|----------------|--------------------------|------------------|---------------------|---------------------|------------------|------------------|----------------|----------------|--------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 6,670 | 12,300 | 6,910 | 6,900 | e4,600 | e5,200 | 9,890 | 14,000 | 8,090 | 5,890 | 4,130 | 3,950 | | 2 | 7,550 | 11,600 | 5,450 | 7,350 | e5,200 | e5,300 | 10,900 | 13,900 | 8,120 | 5,920 | 4,380 | 4,040 | | 3 | 8,860 | 10,900 | 6,850 | 6,940 | e7,000 | e4,300 | 11,100 | 13,300 | 8,220 | 4,880 | 5,170 | 4,050 | | 4 | 9,750 | 9,600 | 6,450 | 6,900 | e7,400 | e4,500 | 8,970 | 11,800 | 7,800 | 4,770
4,980 | 5,040 | 4,080 | | 5 | 10,600 | 8,860 | 6,400 | 6,440 | e6,000 | e4,800 | 10,600 | 10,100 | 8,300 | * | 5,300 | 4,110 | | 6
7 | 11,800
16,400 | 8,810
8,860 | 6,730
6,900 | 6,720
6,140 | e6,800
e7,100 | e3,800
e4,000 | 9,200
8,400 | 8,090
10,000 | 7,880
7,490 | 5,570
5,740 | 4,150
4,770 | 3,990
3,250 | | 8 | 19,300 | 8,280 | 6,940 | 6,420 | e6,100 | e4,600 | 8,220 | 11,100 | 8,820 | 5,670 | 6,290 | 3,230 | | 9 | 20,300 | 8,640 | 7,220 | 7,380 | e5,800 | e3,800 | 6,660 | 12,800 | 7,160 | 5,560 | 6,100 | 2,560 | | 10 | 19,600 | 7,850 | 7,980 | 7,420 | e4,800 | e3,700 | 6,240 | 17,400 | 8,360 | 5,890 | 4,660 | 2,780 | | 11 | 20,100 | 8,820 | 8,340 | 7,940 | e5,700 | e5,000 | 6,740 | 19,100 | 8,280 | 5,920 | 3,790 | 2,760 | | 12 | 20,700 | 8,330 | 7,780 | e5,500 | e6,600 | e5,200 | 6,740 | 18,800 | 9,930 | 5,900 | 3,940 | 3,600 | | 13
14 | 18,600
15,500 | 8,510
8,790 | 6,970
6,450 | e3,000
e7,900 | e6,000
e5,000 | e4,300
e3,600 | 6,820
7,290 | 22,200
25,900 | 13,000
17,400 | 5,790
5,170 | 4,300
4,400 | 4,070
4,630 | | 15 | 13,700 | 8,190 | 6,780 | e7,700 | e6,500 | e4,000 | 6,980 | 30,100 | 15,300 | 5,040 | 4,400 | 6,190 | | 16 | 11.800 | 8,320 | 6,800 | e7,200 | e5,800 | e5,000 | 7,420 | 35,300 | 12,900 | 5,790 | 3,460 | 4,950 | | 17 | 11,700 | 8,260 | 7,400 | e7,000 | e6,500 | e3,800 | 8,700 | 40,500 | 8,890 | 5,840 | 3,550 | 4,510 | | 18 | 12,000 | 8,250 | 7,530 | e6,300 | e4,700 | e8,400 | 9,570 | 37,200 | 7,290 | 6,400 | 3,650 | 4,440 | | 19 | 11,800 | 7,770 | 7,610 | e7,000 | e5,500 | 9,130 | 16,300 | 21,400 | 7,160 | 5,220 | 4,400 | 4,170 | | 20 | 11,100 | 6,870 | 6,860 | e6,100 | e4,700 | 9,020 | 21,500 | 16,400 | 6,820 | 4,500 | 3,480 | 3,550 | | 21
22 | 9,080
8,970 | 7,220
7,510 | 7,390
7,450 | e5,800
e6,400 | e4,500
e5,400 | 9,890
10,900 | 26,000
31,000 | 15,500
16,100 | 5,900
5,720 | 4,700
4,950 | 3,680
3,560 | 3,600
3,680 | | 23 | 8,930 | 7,780 | 7,430 | e6,500 | e4,300 | 11,500 | 32,800 | 14,400 | 5,720 | 4,320 | 3,970 | 4,640 | | 24 | 9,000 | 6,770 | 8,080 | e7,000 | e4,800 | 12,600 | 32,200 | 14,300 | 4,760 | 4,340 | 3,370 | 4,390 | | 25 | 10,200 | 8,030 | 7,460 | e5,500 | e5,300 | 12,600 | 30,800 | 13,200 | 4,830 | 4,470 | 3,570 | 4,010 | | 26 | 8,710 | 7,180 | 8,630 | e6,800 | e5,200 | 11,000 | 30,100 | 12,600 | 5,640 | 4,190 | 3,800 | 3,900 | | 27 | 10,200
9,980 | 7,380 | 7,820 | e7,000 |
e4,300 | 11,000
11,400 | 22,800 | 10,000 | 4,960
5,700 | 4,150 | 3,360 | 3,670 | | 28
29 | 11,100 | 7,570
6,070 | 8,210
7,210 | e5,100
e6,800 | e4,400 | 10,600 | 18,500
15,100 | 10,200
8,340 | 6,130 | 4,770
3,800 | 3,830
3,780 | 3,570
4,210 | | 30 | 11,500 | 7,410 | 7,030 | e6,400 | | 8,240 | 13,800 | 8,130 | 5,720 | 4,070 | 4,130 | 3,640 | | 31 | 11,800 | | 7,420 | e4,300 | | 9,530 | | 7,570 | | 3,990 | 3,640 | | | TOTAL | 387,300 | 250,730 | 224,880 | 201,850 | 156,000 | 220,710 | 441,340 | 519,730 | 241,750 | 158,190 | 129,920 | 118,120 | | MEAN | 12,490 | 8,358 | 7,254 | 6,511 | 5,571 | 7,120 | 14,710 | 16,770 | 8,058 | 5,103 | 4,191 | 3,937 | | MAX
MIN | 20,700
6,670 | 12,300
6,070 | 8,630
5,450 | 7,940
3,000 | 7,400
4,300 | 12,600
3,600 | 32,800
6,240 | 40,500
7,570 | 17,400
4,760 | 6,400
3,800 | 6,290
3,360 | 6,190
2,560 | | | | | | A FOR WATE | | | | | | 3,000 | 3,300 | 2,500 | | MEAN | 7,380 | 7,709 | 6,541 | 6,102 | 6,642 | 10,680 | 16,820 | 11,970 | 10,640 | 7,353 | 5,960 | 7,166 | | MAX | 25,460 | 17,130 | 13,100 | 11,400 | 12,020 | 30,400 | 37,650 | 32,270 | 28,840 | 17,780 | 11,610 | 31,280 | | (WY) | (1987) | (1986) | (1966) | (1973) | (1966) | (1973) | (1922) | (1960) | (1993) | (1978) | (1924) | (1938) | | MIN | 2,638 | 2,662 | 2,616 | 3,209 | 3,113 | 3,501 | 4,788 | 4,621 | 3,091 | 2,754 | 2,567 | 2,651 | | (WY) | (1977) | (1977) | (1977) | (1924) | (1924) | (1934) | (1964) | (1977) | (1988) | (1988) | (1988) | (1976) | | SUMMA
ANNUAI | RY STATIS | STICS | | FOR 2002 CA
3,922,040 | ALENDAR | YEAR | FOR 200
3,050,52 | 3 WATER Y | /EAR | WATER | YEARS 191 | 4 - 2003 | | ANNUAI | | | | 10,750 | | | 8,35 | | | 8,7 | 43 | | | HIGHES' | ΓANNUAL | | | , | | | , , | | | 16,0 | 30 | 1973 | | | ANNUAL | | | 40.000 | | 10 | 40.50 | | | 4,1 | | 1977 | | | Γ DAILY M
`DAILY M | | | 40,800
(a)4,500 | Apr | | 40,50
2,56 | | 7 17 | 79,5 | | p 16, 1938
al 3, 1988 | | | | EAN
AY MINIM | IIМ | (a)4,500
5,700 | Jan
Aug | 1,21
7 | 3,15 | 10 Sej
10 Ser | 6 | 1,4
1,9 | | g 13, 1988 | | | JM PEAK F | | C 171 | 3,700 | 1 1 ug | , | 42,10 | 00 May | 17 | 80,8 | | p 16, 1938 | | MAXIMU | JM PEAK S | STAGE | | | | | ŕ | 8.18 May | 17 | , | 11.48 Se | p 16, 1938 | | | ENT EXCE | | | 19,600 | | | 14,10 | 00 | | 15,3 | 00 | | | | ENT EXCE | | | 8,440 | | | 6,90 | | | 6,9 | | | 3,960 3,970 90 PERCENT EXCEEDS 6,210 ⁽a) Ice affected ⁽e) Estimated due to ice effect or missing record ### 054070396 FENNIMORE FORK AT HOMER ROAD NEAR CASTLE ROCK, WI $LOCATION.--Lat\ 43^{\circ}02'16''\ (revised), long\ 90^{\circ}33'40'', in\ NE\ {}^{1}\!\!/_{4}\ SW\ {}^{1}\!\!/_{4}\ sec.36, T.7\ N.,\ R.2\ W.,\ Grant\ County,\ Hydrologic\ Unit\ 07070005, on\ right\ bank\ just\ downstream\ from\ bridge\ on\ Homer\ Road,\ 1.7\ mi\ southwest\ of\ Castle\ Rock,\ and\ 6.2\ mi\ northeast\ of\ Fennimore.$ DRAINAGE AREA.--21.7 mi². PERIOD OF RECORD.--July 2001 to June 2003 (discontinued). GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 820 ft, from topographic map. REMARKS.--Records good except those for Jan. 21 to Feb. 4 and Feb. 20 to Mar. 3, which are fair (see page 11). Gage-height telemeter at station. | KEMAKI | KSRecord | is good exce | ept those for | Jan. 21 to Fe | b. 4 and Feb | . 20 to Mar. | 3, which are | tair (see pag | ge 11). Gag | e-neight tele | meter at stat | ion. | |-------------|-----------------------|-------------------|----------------|----------------|-------------------|---------------------|----------------|-----------------------|----------------|----------------|----------------------|----------------------------| | | | DISCH | ARGE, CUI | BIC FEET P | ER SECONE
DAII |), WATER
LY MEAN | | OBER 2002 | TO SEPTE | MBER 2003 | i | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3.6 | 3.0 | 2.0 | 1.8 | 0.75 | 0.95 | 0.91 | 2.4 | 0.81 | | | | | 2 | 5.2 | 3.1 | 2.7 | 2.2 | 0.77 | 0.96 | 0.88 | 0.68 | 0.81 | | | | | 3 | 4.9 | 3.2 | 1.9 | 1.9 | 0.83 | 0.82 | 0.91 | 0.40 | 0.89 | | | | | 4
5 | 8.0
4.8 | 3.2
3.3 | 2.2
2.2 | 2.3
2.4 | 0.91
0.89 | 0.88
0.84 | 0.84
0.89 | 0.34
0.78 | 0.84
0.73 | | | | | | | | | | | | | | | | | | | 6 | 4.2 | 3.2 | 1.6 | 2.3 | 0.91 | 0.84 | 0.89 | 0.53 | 0.76 | | | | | 7
8 | 3.7
3.9 | 3.0
3.1 | 1.7
2.0 | 2.3
2.4 | 0.82
0.92 | 0.83
0.80 | 0.74
0.63 | 7.6
3.9 | 1.0
1.8 | | | | | 9 | 3.8 | 3.0 | 1.5 | 2.4 | 0.92 | 0.66 | 0.62 | 6.7 | 1.3 | | | | | 10 | 3.8 | 3.1 | 1.6 | 1.8 | 0.83 | 0.61 | 0.68 | 3.6 | 0.91 | | | | | 11 | 3.7 | 3.3 | 1.9 | 0.90 | 0.77 | 0.80 | 0.47 | 7.0 | 0.80 | | | | | 12 | 3.5 | 2.9 | 2.1 | 1.4 | 0.75 | 11 | 0.40 | 5.1 | 0.30 | | | | | 13 | 3.4 | 2.9 | 2.1 | 1.8 | 0.75 | 15 | 0.40 | 3.6 | 0.77 | | | | | 14 | 3.4 | 2.9 | 2.2 | 1.9 | 0.75 | 16 | 0.37 | 4.2 | 0.69 | | | | | 15 | 3.5 | 2.9 | 2.2 | 1.7 | 0.75 | 12 | 0.44 | 3.2 | 0.64 | | | | | 16 | 3.4 | 3.0 | 2.2 | 1.7 | 0.72 | 6.7 | 0.40 | 2.5 | 0.63 | | | | | 17 | 3.6 | 2.9 | 2.2 | 1.6 | 0.70 | 4.0 | 0.37 | 2.2 | 0.64 | | | | | 18 | 3.7 | 3.0 | 4.2 | 1.3 | 0.75 | 2.2 | 0.42 | 1.9 | 0.69 | | | | | 19
20 | 3.3
3.3 | 3.0
3.0 | 3.1
2.4 | 1.2
1.2 | 0.86
15 | 1.2
1.6 | 0.59
0.91 | 1.7
1.6 | 0.65
0.60 | | | | | | | | | | | | | | | | | | | 21
22 | 3.2
3.0 | 3.0
2.9 | 2.2
2.2 | 1.1
0.95 | 12
4.3 | 1.2
0.98 | 0.89
0.70 | 1.4
1.3 | 0.68
0.70 | | | | | 23 | 2.9 | 2.9 | 1.9 | 0.93 | 4.3
1.6 | 0.98 | 0.70 | 1.3 | 0.70 | | | | | 24 | 3.2 | 2.8 | 1.8 | 0.59 | 1.2 | 0.66 | 0.60 | 1.2 | 1.4 | | | | | 25 | 4.5 | 2.5 | 2.1 | 0.62 | 0.80 | 0.44 | 0.61 | 1.1 | 1.1 | | | | | 26 | 3.9 | 2.6 | 1.8 | 0.56 | 0.96 | 0.37 | 0.62 | 0.98 | 1.6 | | | | | 27 | 3.2 | 2.6 | 2.0 | 0.44 | 0.90 | 0.41 | 0.54 | 0.92 | 0.95 | | | | | 28 | 3.5 | 2.5 | 2.2 | 0.44 | 0.89 | 0.79 | 0.47 | 0.91 | 1.9 | | | | | 29 | 3.2 | 3.1 | 2.3 | 0.46 | | 0.61 | 0.38 | 0.80 | 1.3 | | | | | 30
31 | 3.1
3.1 | 2.5 | 2.6
2.2 | 0.52
0.69 | | 0.59
0.80 | 0.99 | 0.94
0.86 | 0.89 | | | | | | | | | | | | | | | | | | | TOTAL | 117.5 | 88.4 | 67.3
2.17 | 43.45 | 52.92 | 86.33 | 19.17 | 71.74 | 27.91 | | | | | MEAN
MAX | 3.79
8.0 | 2.95
3.3 | 4.2 | 1.40
2.4 | 1.89
15 | 2.78
16 | 0.64
0.99 | 2.31
7.6 | 0.93
1.9 | | | | | MIN | 2.9 | 2.5 | 1.5 | 0.44 | 0.70 | 0.37 | 0.37 | 0.34 | 0.60 | | | | | CFSM | 0.17 | 0.14 | 0.10 | 0.06 | 0.09 | 0.13 | 0.03 | 0.11 | 0.04 | | | | | IN. | 0.20 | 0.15 | 0.12 | 0.07 | 0.09 | 0.15 | 0.03 | 0.12 | 0.05 | | | | | STATIST | TICS OF MO | ONTHLY M | IEAN DATA | A FOR WAT | ER YEARS | 2001 - 2003 | B, BY WATE | ER YEAR (W | VY) | | | | | MEAN | 4.52 | 3.68 | 3.01 | 1.92 | 3.06 | 3.85 | 3.08 | 4.98 | 7.23 | 9.37 | 5.69 | 5.53 | | MAX
(WY) | 5.24 (2002) | 4.42
(2002) | 3.85
(2002) | 2.43
(2002) | 4.24
(2002) | 4.92
(2002) | 5.51
(2002) | 7.64
(2002) | 13.5
(2002) | 9.58
(2001) | 6.04
(2001) | 6.73
(2001) | | MIN | 3.79 | 2.95 | 2.17 | 1.40 | 1.89 | 2.78 | 0.64 | 2.31 | 0.93 | 9.17 | 5.35 | 4.34 | | (WY) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2002) | (2002) | (2002) | | SUMMA | RY STATIS | STICS | | | CALENDAR | YEAR | |)3 WATER
TOBER-JUN | | | YEARS 20
2001-JUN | | | ANNUAI | L TOTAL | | | 2,00 | 7.9 | | 5′ | 74.72 | | | | | | ANNUAI | L MEAN | | | | 5.50 | | | 2.11 | | | 4.67 | | | | T ANNUAL | | | | | | | | | | 7.46 | 2001 | | | Γ ANNUAL
Γ DAILY M | | | 7 | 0 Jun | 4 | | 16 Ma | ır 14 | | 2.11
70 J | 2003
Jun 4, 2002 | | | DAILT M | | | | 1.5 Dec | | | | y 4 | | | lay 4, 2002 | | | | DAY MINIM | 1UM | | 1.8 Dec | | | 0.40 Ap | or 12 | | 0.40 A | pr 12, 2003 | | | UM PEAK I | | | | | | (| | b 20 | | | Jul 6, 2002 | | | UM PEAK S
Tanfous | STAGE
LOW FLOV | W | | | | | | b 20
y 4 | | | Jul 6, 2002
Iay 4, 2003 | | | L RUNOFF | | •• | | 0.25 | | | 0.28 Ma
0.097 | <i>,</i> ¬ | | 0.28 | .u.j -, 2003 | | | L RUNOFF | | | | 3.44 | | | 0.99 | | | 2.92 | | | | ENT EXCE | | | | 8.4 | | | 3.7 | | | 8.6 | | | | ENT EXCE
ENT EXCE | | | | 4.1
2.2 | | | 1.5
0.60 | | | 4.0
0.80 | | | JU FERU | LIVI EACE | LUS | | | £.£ | | | 0.00 | | | 0.60 | | ### 05407470 KICKAPOO RIVER AT HWY 33 AT ONTARIO, WI $LOCATION.\text{--Lat }43^{\circ}43^{\circ}18^{\circ}, long\ 90^{\circ}35^{\circ}15^{\circ}, IN\ SW\ ^{1}\!\!/_{\!\!4}\ NW\ ^{1}\!\!/_{\!\!4}\ sec.2,\ T.14\ N.,\ R.2\ W.,\ Vernon\ County,\ Hydrologic\ Unit\ 07070006,\ on\ right\ bank\ 85\ ft\ downstream\ from\ Highway\ 33\ bridge\ at\ Ontario.$ DRAINAGE AREA.--117 mi². PERIOD OF RECORD.--October 2001 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 850 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges and October to mid-November during bridge construction, which are fair (see page 11). Recorded gage heights are available from June 15, 2001 to Sept. 30, 2001. Sediment loads are available from November 1972 to Sept. 1973. Gageheight telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | YEAR OCTO | OBER 2002 | TO SEPTEN | MBER 2003 | | | |---|---|--|---|--|--|--|--|---|---|---|--
--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 56
54
66
195
80 | 50
49
49
50
52 | 50
50
e50
e50
e49 | e46
e45
e45
46
44 | e48
e48
e48
e47
e46 | e35
e34
e34
e33
e33 | 64
65
63
60
58 | 67
54
51
51
78 | 47
46
46
45
43 | 40
40
55
59
55 | 41
39
38
40
37 | 38
37
36
34
34 | | 6
7
8
9
10 | 69
62
61
59
60 | 55
53
53
53
54 | e48
48
e47
e46
46 | 42
43
44
43
43 | e45
e43
e43
e43 | e33
e32
e33
e33 | 55
57
57
62
61 | 68
71
67
161
82 | 43
46
57
47
51 | 71
60
50
50
65 | 37
44
37
36
35 | 34
34
33
33
32 | | 11
12
13
14
15 | 59
56
55
54
54 | 52
50
50
50
49 | 47
48
48
49
48 | e41
e42
e43
e43
e43 | e43
e42
e40
e40
e40 | e33
e32
e34
e200
869 | 60
60
58
59
60 | 244
206
93
88
89 | 47
43
42
40
38 | 54
48
46
45
53 | 34
34
33
32
32 | 33
49
53
58
45 | | 16
17
18
19
20 | 53
53
58
56
53 | 48
48
48
49
49 | 46
46
55
56
52 | e43
e43
e43
e43 | e40
e40
e40
e43
e55 | 498
234
113
79
85 | 94
76
67
99
260 | 68
62
57
56
62 | 37
36
37
38
36 | 47
44
43
42
42 | 32
31
31
31
31 | 41
39
37
47
41 | | 21
22
23
24
25 | 60
60
55
54
59 | 49
48
49
48
47 | 49
49
48
e48
e47 | e42
e41
e40
e40
e40 | e130
e180
e60
e47
e43 | 101
82
74
74
68 | 118
87
74
69
65 | 53
51
51
49
48 | 36
35
36
44
44 | 43
42
40
41
41 | 30
29
29
30
34 | 40
53
43
40
37 | | 26
27
28
29
30
31 | 63
57
56
54
53
51 | 45
49
53
49
47 | e48
e48
49
48
49 | e40
e40
e40
e41
e45
e46 | e38
e36
e35
 | 64
104
126
84
66
63 | 62
58
55
53
60 | 47
47
49
47
52
52 | 46
41
45
48
40 | 41
40
39
40
40 | 42
33
53
303
45
40 | 37
38
37
37
36 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,935
62.4
195
51
0.53
0.62 | 1,495
49.8
55
45
0.43
0.48 | 1,509
48.7
56
46
0.42
0.48 | 1,323
42.7
46
40
0.36
0.42 | 1,446
51.6
180
35
0.44
0.46 | 3,416
110
869
32
0.94
1.09 | 2,196
73.2
260
53
0.63
0.70 | 2,321
74.9
244
47
0.64
0.74 | 1,280
42.7
57
35
0.36
0.41 | 1,457
47.0
71
39
0.40
0.46 | 1,373
44.3
303
29
0.38
0.44 | 1,186
39.5
58
32
0.34
0.38 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 60.2
62.4
(2003)
58.0
(2002) | 54.1
58.4
(2002)
49.8
(2003) | 53.4
58.1
(2002)
48.7
(2003) | FOR WATI
48.0
53.3
(2002)
42.7
(2003) | ER YEARS
62.0
72.3
(2002)
51.6
(2003) | 2002 - 2003
99.6
110
(2003)
89.0
(2002) | 84.2
95.1
(2002)
73.2
(2003) | R YEAR (W
72.4
74.9
(2003)
69.8
(2002) | 70.3
98.0
(2002)
42.7
(2003) | 56.7
66.3
(2002)
47.0
(2003) | 49.7
55.0
(2002)
44.3
(2003) | 46.5
53.4
(2002)
39.5
(2003) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI INSTAN' ANNUAI ANNUAI 10 PERC 50 PERC | T ANNUAL T ANNUAL T DAILY M T DAILY M L SEVEN-D UM PEAK F UM PEAK S | . MEAN MEAN IEAN EAN AY MINIM FLOW TAGE LOW FLOW (CFSM) (INCHES) EDS EDS | UM | | 7.7 Jun Jul Sep | 21
28 | 20,93
86
2
3
1,95 | 57.4
59 Ma
29 Au
30 Au
50 Ma
16.24 Ma | r 15
g 22,23
g 18
r 15
r 15
n 10 | 1,9 | 29 Aug 2
30 Au
950 M
16.24 M | 2002
2003
ar 15, 2003
22,23, 2003
ag 18, 2003
ar 15, 2003
ar 15, 2003
an 10, 2003 | ⁽a) Also occurred Sept. 4, 2002, result of bridge construction ⁽e) Estimated due to ice effect or missing record #### 05408000 KICKAPOO RIVER AT LA FARGE, WI $LOCATION.--Lat\ 43^\circ 34^\prime 27^\prime, long\ 90^\circ 38^\prime 35^\prime, in\ NE\ _{1/4}^{1/4}\ SW\ _{1/4}^{1/4}\ sec. 29, T.13\ N., R.2\ W., Vernon\ County, Hydrologic\ Unit\ 07070006, on\ left\ bank\ 10\ ft\ upstream\ from\ bridge\ on\ State\ Highway\ 82,\ in\ La\ Farge,\ 0.3\ mi\ upstream\ from\ Otter\ Creek,\ and\ 1.3\ mi\ downstream\ from\ powerplant.$ DRAINAGE AREA.--266 mi². PERIOD OF RECORD .-- October 1938 to current year. REVISED RECORDS.--WSP 1388: 1951(M), 1954(M). WSP 1438: 1944-45(M), 1946, 1948, 1950(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 781.54 ft above NGVD of 1929. Prior to Dec. 4, 1939, nonrecording gage on highway bridge at same datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | KEWI KKI | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |---|---|---|--|--|--|--|---|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 161 | 143 | e240 | e130 | e100 | e120 | 192 | 227 | 150 | 120 | 104 | 117 | | 2 | 153 | 142 | e200 | e130 | e100 | e120 | 194 | 191 | 144 | 117 | 102 | 111 | | 3 | 177 | 142 | e180 | e130 | e110 | e120 | 191 | 172 | 146 | 130 | 101 | 107 | | 4 | 337 | 143 | e180 | e130 | e110 | e120 | 187 | 166 | 143 | 162 | 108 | 105 | | 5 | 370 | 146 | e180 | e130 | e110 | e120 | 180 | 197 | 137 | 166 | 104 | 103 | | 6 | 212 | 155 | e190 | e130 | e100 | e120 | 179 | 224 | 137 | 179 | 102 | 101 | | 7 | 194 | 149 | e200 | e130 | e100 | e120 | 181 | 208 | 152 | 214 | 107 | 99 | | 8 | 177 | 147 | e180 | e130 | e100 | e120 | 179 | 228 | 172 | 154 | 104 | 96 | | 9 | 169 | 148 | e170 | e120 | e100 | e120 | 192 | 395 | 174 | 149 | 100 | 94 | | 10 | 163 | 148 | e170 | e120 | e100 | e120 | 192 | 321 | 181 | 196 | 98 | 91 | | 11 | 167 | 157 | e160 | e120 | e100 | e120 | 189 | 435 | 174 | 179 | 96 | 91 | | 12 | 160 | 146 | e160 | e120 | e100 | e120 | 188 | 649 | 155 | 158 | 95 | 100 | | 13 | 155 | 143 | e160 | e110 | e100 | e130 | 184 | 333 | 148 | 139 | 95 | 150 | | 14 | 148 | 142 | e160 | e110 | e100 | e150 | 184 | 284 | 137 | 130 | 93 | 147 | | 15 | 149 | 140 | e150 | e110 | e100 | e400 | 188 | 302 | 129 | 129 | 93 | 132 | | 16 | 146 | 139 | e150 | e110 | e100 | e1,100 | 206 | 246 | 124 | 133 | 94 | 110 | | 17 | 144 | 138 | e150 | e110 | e100 | 788 | 243 | 220 | 121 | 124 | 94 | 103 | | 18 | 148 | 137 | e150 | e110 | e100 | 386 | 211 | 206 | 121 | 120 | 93 | 97 | | 19 | 153 | 138 | e150 | e110 | e110 | 253 | 223 | 198 | 123 | 116 | 90 | 111 | | 20 | 144 | 140 | e150 | e110 | e120 | 245 | 481 | 206 | 118 | 114 | 90 | 116 | | 21 | 149 | 141 | e140 | e110 | e150 | 283 | 351 | 190 | 117 | 119 | 97 | 104 | | 22 | 162 | 140 | e140 | e110 | e240 | 253 | 269 | 178 | 116 | 117 | 94 | 130 | | 23 | 147 | 139 | e130 | e110 | e160 | 224 | 229 | 174 | 115 | 115 | 93 | 125 | | 24 | 144 | 139 | e130 | e100 | e130 | 219 | 211 | 168 | 128 | 113 | 94 | 110 | | 25 | 154 | 137 | e130 | e100 | e120 | 209 | 201 | 164 | 135 | 110 | 97 | 104 | | 26
27
28
29
30
31 | 174
158
154
150
148
145 | 128
144
158
153
145 | e130
e130
e150
e140
e130
e130 | e100
e100
e100
e100
e100
e100 | e120
e120
e120
 | 195
230
316
282
208
193 | 191
183
177
171
178 | 159
155
153
154
156
163 | 133
126
143
146
129 | 109
109
106
103
101 | 111
108
99
394
170
125 | 101
106
106
102
100 | | TOTAL | 5,312 | 4,307 | 4,910 | 3,530 | 3,220 | 7,504 | 6,325 | 7,222 | 4,174 | 4,132 | 3,445 | 3,269 | | MEAN | 171 | 144 | 158 | 114 | 115 | 242 | 211 | 233 | 139 | 133 | 111 | 109 | | MAX | 370 | 158 | 240 | 130 | 240 | 1,100 | 481 | 649 | 181 | 214 | 394 | 150 | | MIN | 144 | 128 | 130 | 100 | 100 | 120 | 171 | 153 | 115 | 101 | 90 | 91 | | CFSM | 0.64 | 0.54 | 0.60 | 0.43 | 0.43 | 0.91 | 0.79 | 0.88 | 0.52 | 0.50 | 0.42 | 0.41 | | IN. | 0.74 | 0.60 | 0.69 | 0.49 | 0.45 | 1.05 | 0.88 | 1.01 | 0.58 | 0.58 | 0.48 | 0.46 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MO
146
317
(1960)
73.4
(1959) | ONTHLY MI
153
337
(1983)
78.5
(1940) | EAN DATA
133
336
(1985)
62.0
(1959) | FOR WATE
127
421
(1946)
61.3
(1959) | ER YEARS
159
499
(1966)
62.2
(1959) | 1939 - 2003
298
761
(1961)
114
(1957) | , BY WATER
274
723
(1965)
126
(1942) | R YEAR (W
197
580
(1973)
80.4
(1958) | 197
445
(1947)
80.9
(1958) | 164
838
(1978)
77.8
(1958) | 144
446
(1980)
60.4
(1958) | 159
539
(1965)
72.7
(1940) | | LOWEST DAILY MEAN (a)120 (b)Jan
| | | | | Jun
(b)Jan
Jan
.65 | 22
30 | 57,35
15
(a)1,10
9
9
1,68 | 7 0 Ma 0 Aug 2 Aug 0 Ma 9.80 Ma 0.59 8.02 6 | r 16
g 19,20
g 14
r 16
r 16 | 7,7
(a)
14,3 | 36 No
149 Jan
1600 Ju | 9 - 2003
1993
1958
5 9, 1966
v 3, 1939
n 3, 1968
1 1, 1978
1 1, 1978 | ⁽a) Ice affected ⁽b) Also occurred Jan. 31 to Feb. 2 and Feb. 13 ⁽e) Estimated due to ice effect or missing record #### WISCONSIN RIVER BASIN #### 05410490 KICKAPOO RIVER AT STEUBEN, WI $LOCATION.--Lat~43°10'58", long~90°51'30", in~NE~\frac{1}{4}~SW~\frac{1}{4}~sec.9, T.8~N., R.4~W., Crawford~County, Hydrologic~Unit~07070006, on~right~bank~at~upstream~corner~of~town~road~bridge~at~Steuben~and~18.6~mi~upstream~from~mouth.$ DRAINAGE AREA.--687 mi². PERIOD OF RECORD.--May 1933 to current year. Prior to October 1982, all records published under station number 05410500. REVISED RECORDS.--WSP 855: Drainage area. WSP 1438: 1933-38. WDR WI-79-1: 1978(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 657.00 ft above NGVD of 1929. May 1933 to Oct. 19, 1938, nonrecording gage at same site at datum 1.7 ft higher. Oct. 20, 1938 to September 1982, recording gage at site 1.2 mi downstream at datum 0.36 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Data-collection platform and gage-height telemeter at station | | | DISCHA | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | DBER 2002 | ГО ЅЕРТЕМ | IBER 2003 | | | |---|--|--|---|---|---|---|--|--|---|---|--|--| | DAY 1 2 3 4 | OCT
554
505
496 | NOV
469
465
462 | DEC
440
425
431
431 | JAN
430
402
e400
e400 | FEB
e340
e340
e340
e340 | MAR
e380
e380
e380
e380 | APR
526
513
511
509 | MAY
566
555
531
487 | JUN
437
433
423
419 | JUL
393
375
380
405 | AUG
343
335
333
333 | SEP
364
335
326
319 | | 5
6
7 | 535
616
762
636 | 461
463
468
471 | 455
537
593 | e400
e400
e400
e400 | e340
e340
e340
e340 | e380
e380
e380 | 503
493
490 | 488
495
547 | 419
416
414
420 | 403
439
463
487 | 337
339
333 | 315
312
310 | | 8
9
10 | 562
538
522 | 473
469
469 | 536
497
502 | e400
e400
e400 | e340
e340
e340 | e380
e380
e380 | 491
490
502 | 557
621
733 | 444
465
466 | 505
469
437 | 330
331
326 | 308
304
301 | | 11
12
13
14
15 | 514
509
502
491
486 | 482
490
480
466
461 | 488
490
479
470
451 | e400
e400
e390
e380
e370 | e340
e340
e340
e340
e340 | e380
e380
e380
e420
e600 | 509
501
493
485
481 | 899
898
1,030
889
768 | 452
462
441
425
413 | 446
477
436
414
396 | 322
319
316
315
315 | 298
301
324
370
390 | | 16
17
18
19
20 | 482
480
479
481
482 | 454
449
445
446
445 | 441
435
439
455
481 | e370
e360
e360
e350
e350 | e340
e340
e340
e340
e350 | e1,000
1,360
1,400
1,160
721 | 484
494
526
528
584 | 727
660
601
570
551 | 401
390
384
380
375 | 384
382
377
366
359 | 313
310
306
304
302 | 374
345
324
332
335 | | 21
22
23
24
25 | 478
472
478
485
483 | 448
447
446
444
441 | 472
451
439
410
387 | e350
e340
e330
e330
e320 | e390
e500
e580
e480
e430 | 616
622
610
571
549 | 759
797
648
577
540 | 540
525
502
488
478 | 371
366
365
369
392 | 358
357
355
350
345 | 301
299
298
296
302 | 339
337
341
354
337 | | 26
27
28
29
30
31 | 493
504
507
493
485
477 | 437
430
404
426
458 | e380
e380
e390
e420
450
442 | e320
e320
e320
e320
e320
e330 | e410
e400
e390
 | 535
534
570
653
649
571 | 516
498
484
472
481 | 467
456
448
441
438
439 | 423
396
413
408
407 | 342
342
341
338
334
333 | 318
312
317
332
342
517 | 324
321
319
318
313 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 15,987
516
762
472
0.75
0.87 | 13,669
456
490
404
0.66
0.74 | 14,097
455
593
380
0.66
0.76 | 11,362
367
430
320
0.53
0.62 | 10,390
371
580
340
0.54
0.56 | 18,081
583
1,400
380
0.85
0.98 | 15,885
530
797
472
0.77
0.86 | 18,395
593
1,030
438
0.86
1.00 | 12,370
412
466
365
0.60
0.67 | 12,185
393
505
333
0.57
0.66 | 10,096
326
517
296
0.47
0.55 | 9,890
330
390
298
0.48
0.54 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 71CS OF MC
422
798
(1973)
206
(1959) | ONTHLY MI
438
858
(1983)
222
(1938) | EAN DATA
385
781
(1985)
172
(1959) | FOR WATE
363
846
(1946)
172
(1959) | ER YEARS
427
1,276
(1966)
184
(1959) | 1933 - 2003,
764
1,856
(1946)
252
(1934) | BY WATE
703
1,748
(1959)
351
(1942) | R YEAR (W
533
1,415
(1973)
228
(1934) | 524
1,480
(2000)
223
(1934) | 491
1,901
(1978)
189
(1936) | 429
1,180
(1935)
188
(1936) | 453
1,331
(1938)
199
(1937) | | ANNUA
ANNUA
HIGHES | RY STATIS
L TOTAL
L MEAN
T ANNUAL
Γ ANNUAL | MEAN | Ī | FOR 2002 C.
193,030
529 | 1 | YEAR | FOR 200:
162,40
44 | | EAR . | 4
7 | YEARS 1933
95
92
73 | 3 - 2003
1993
1958 | | HIGHES
LOWES
ANNUA
MAXIM
MAXIM | T DAILY M
F DAILY M
L SEVEN-D
UM PEAK F
UM PEAK S
TANEOUS | EAN
EAN
AY MINIM
LOW
TAGE | | 1,150
(a)380
(a)401 | Dec
Dec | 26,27 | 1,40
29
30
1,41
1
29 | 06 Aug
00 Aug
0 Mai
1.11 Mai | ; 24
; 19
: 17
: 17 | 12,6
(a)1
(a)1
16,5 | 00 Ju
65 (b)Dec 10
65 Dec
00 Ju
14.81 Ju | 1 3, 1978 | | ANNUA
10 PERC
50 PERC | L RUNOFF
L RUNOFF
ENT EXCE
ENT EXCE
ENT EXCE | (INCHÉS)
EDS
EDS | | | | | | 0.65
8.79
4 | | 4 | 0.72
9.80
47
12
65 | | ⁽a) Ice affected ⁽b) Also occurred Jan. 4-9, Feb. 5-7, 1959, ice affected ⁽c) Site and datum then in use ⁽e) Estimated due to ice effect or missing record The 24 reservoirs listed below are used to stabilize the flow of the Wisconsin and Tomahawk Rivers for power generation and are also used for recreational purposes. The first 21 reservoirs are owned and operated by the Wisconsin Valley Improvement Co., which furnishes the gage heights and capacity tables. Revised capacity tables for all 21 reservoirs were received from the Company in April 1957 and were used to compute month-end usable contents beginning Sept. 30, 1955. Another revised capacity table for Burnt Rollways Reservoir was used to compute month-end usable contents beginning Sept. 30, 1964. Lake Dubay is owned by the Consolidated Water Power Co. Petenwell and Castle Rock are owned and operated by the Wisconsin River Power Co., which furnished the gage heights and capacity tables for those two reservoirs. Month-end contents are computed by the U.S. Geological Survey. The usable capacity of these reservoirs is usually less in summer than in winter because the allowable summer drawdown is limited by the Department of Natural Resources in the interest of riparian property owners. There are occasionally formal or informal changes in capacity and in minimum drawdown levels. Usable capacity figures listed below are for winter regulation. - 05390100 Lac Vieux Desert on Wisconsin River, lat 46°07'18", long 89°09'07", in SE 1/4 NW 1/4 sec.17, T.42 N., R.11 E., Vilas County, 4.8 mi northwest of Phelps, used as a reservoir since 1908, has a usable capacity of 652,000,000 ft³. Drainage area, 34.4 mi². - 05390150 Twin Lakes on Twin River, lat 46°01'20", long 89°10'05", in SW 1/4 NE 1/4 sec.19, T.41 N., R.11 E., Vilas County, 5.0 mi southwest of Phelps, used as a reservoir since 1908, has a usable capacity of 313,000,000 ft³. Drainage area, 26 mi². - 05390200 Buckatabon Lakes on Buckatabon Creek, lat 46°01'18", long 89°18'40", in SE 1/4 NE 1/4 sec.24, T.41 N., R.9 E., Vilas County, 3.3 mi southwest of Conover, used as a reservoir since 1908, has a usable capacity of 130,000,000 ft³. Drainage area, 16.9 mi². - 05390250 Sevenmile Lake on Sevenmile Creek, lat 45°52'30", long 89°04'07", in SE 1/4 NE 1/4 sec.11, T.39 N., R.11 E., Oneida County, 9.1 mi southeast of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 93,000,000 ft³. Drainage area, 12.1 mi². - 05390300 Lower Ninemile Lake on Ninemile Creek, lat 45°53'37", long 89°07'15", in NE 1/4 NW 1/4 sec.4, T.39 N., R.11 E., Oneida County, 6.6 mi southeast of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 121,000,000 ft³. Drainage area, 28.8 mi². - 05390350 Burnt Rollways Reservoir on Eagle River, lat 45°53'40", long
89°08'28", in NE 1/4 NW 1/4 sec.5, T.39 N., R.11 E., Oneida County, 5.3 mi southeast of town of Eagle6 River, used as a reservoir since 1908, has a usable capacity of 779,000,000 ft³. This reservoir includes 18 lakes controlled by the same dam. Drainage area, 142 mi². - 05390400 Long Lake on Deerskin River, lat 46°02'37", long 89°02'44", in NW 1/4 SE 1/4 sec.7, T.41 N., R.12 E., Vilas County, 2.5 mi southeast of Phelps, used as a reservoir since 1908, has a usable capacity of 400,000,000 ft³. Drainage area, 22.9 mi². - 05390600 Deerskin Lake on Little Deerskin River, lat 45°59'07", long 89°09'40", in SE 1/4 sec.31, T.41 N., R.ll E., Vilas County, 6.3 mi northeast of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 22,000,000 ft³. Drainage area, 2.47 mi². - 05390650 Sugar Camp Reservoir on Sugar Camp Creek, lat 45°52'19", long 89°23'40", in NE 1/4 sec.17, T.39 N., R.9 E., Oneida County, 7.6 mi southwest of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 471,000,000 ft³. Drainage area, 48.4 mi². - 05390700 Little St. Germain Lake on Little St. Germain Creek, lat 45°53′55″, long 89°27′10″, in SE 1/4 sec.35, T.40 N., R.8 E., Vilas County, 9.6 mi west of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 79,000,000 ft³. Drainage area, 19 mi². - 05390750 Big St. Germain Lake on St. Germain River, lat 45°55'06", long 89°31'55", in SE 1/4 sec.30, T.40 N., R.8 E., Vilas County, 5.0 mi south of Sayner, used as a reservoir since 1908, has a usable capacity of 202,000,000 ft³. Drainage area, 73.1 mi². - 05390800 Pickerel Lake on St. Germain River, lat 45°52'22", long 89°31'47", in NE 1/4 sec.18, T.39 N., R.8 E., Oneida County, 5.0 mi northeast of town of Lake Tomahawk, used as a reservoir since 1935, has a usable capacity of 338,000,000 ft³. Drainage area, 86.2 mi². - 05390900 Rainbow Lake on Wisconsin River, lat 45°50'02", long 89°32'42", in SW 1/4 sec.30, T.39 N., R.8 E., Oneida County, 800 ft upstream from U.S. Geological Survey river gaging station, 2.7 mi northeast of town of Lake Tomahawk, used as a reservoir since 1935, has a usable capacity of 2,181,000,000 ft³. Drainage area, 744 mi². - 05391100 South Pelican Lake on Pelican River, lat 45°31'37", long 89°12'24", in S 1/2 sec.11, T.35 N., R.10 E., Oneida County, 2.8 mi northwest of town of Pelican Lake, used as a reservoir since 1909, has a usable capacity of 305,000,000 ft³. Drainage area, 19.8 mi². - 05391300 North Pelican Lake (includes Moen Lakes) on North Branch Pelican River, lat 45°38'05", long 89°14'38", in SE 1/4 sec.4, T.36 N., R.10 E., Oneida County, 0.2 mi below Twin Lakes Creek and 8.0 mi east of Rhinelander city limits, used as a reservoir since 1908, has a usable capacity of 218,000,000 ft³. Drainage area, 95 mi². - 05392100 Minocqua Lake on Tomahawk River, lat 45°52'35", long 89°43'38", on line between secs.10 and 15, T.39 N., R.6 E., Oneida County, 1.0 mi west of Minocqua, used as a reservoir since 1910, has a usable capacity of 628,000,000 ft³. Drainage area, 72.5 mi². - 05392200 Squirrel Lake on Squirrel River, lat 45°50'37", long 89°54'13", in NE 1/4 sec.30, T.39 N., R.5 E., Oneida County, 9.4 mi west of Minocqua, used as a reservoir since 1908, has a usable capacity of 182,000,000 ft³. Drainage area, 15.2 mi². - 05392300 Willow Reservoir on Tomahawk River, lat 45°42'45", long 89°50'38", in NE 1/4 sec.10, T.37 N., R.5 E., Oneida County, 8.8 mi southwest of Hazelhurst, used as a reservoir since 1927, has a usable capacity of 3,302,000,000 ft³. Drainage area, 310 mi². - 05392500 Lake Nokomis on Tomahawk River, lat 45°32'20", long 89°44'48", in NW 1/4 sec.9, T.35 N., R.6 E., Lincoln County, at U.S. Geological Survey river gaging station, 0.5 mi east of Bradley, used as a reservoir since 1912, has a usable capacity of 1,808,000,000 ft³. Drainage area, 544 mi². - 05393600 Spirit River Flowage on Spirit River, lat 45°26'18", long 89°44'30", in NE 1/4 sec.16, T.34 N., R.6 E., Lincoln County, 2.0 mi south of Tomahawk, used as a reservoir since 1923, has a usable capacity of 756,000,000 ft³. Drainage area, 158 mi². - 05399600 Big Eau Pleine Reservoir on Big Eau Pleine River, lat 44°43′52″, long 89°45′35″, in SW 1/4 sec.14, T.26 N., R.6 E., Marathon County, 3.0 mi northeast of Dancy, used as a reservoir since 1937, has a capacity of 4,457,000,000 ft³. Drainage area, 363 mi². - 05400295 Lake Dubay on Wisconsin River, lat 44°39'54", long 89°39'03", in sec.10, T.25 N., R.7 E., Wood County, 1.5 mi downstream of Little Eau Pleine River and 10.5 mi northwest of Stevens Point, has a usable capacity of 2,117,000,000 ft³. Drainage area, 4,900 mi². - 05401400 Petenwell Flowage on Wisconsin River, lat 44°03'26", long 90°01'18", in SE 1/4 sec.4, T.18 N., R.4 E., Adams County, 5.2 mi upstream from Roche a Cri Creek, 2.4 mi west of Strongs Prairie, and 3.5 mi northeast of Necedah, used as a reservoir since 1950, has a total capacity of 19,880,000,000 ft³. Drainage area, 5,970 mi². - 05403200 Castle Rock Flowage on Wisconsin River, lat 43°51'48", long 89°57'38", in sec.13, T.16 N., R.4 E., Adams County, 4.5 mi upstream from Duck Creek, and 2.0 mi south of Germantown, and 7.0 mi northeast of Mauston, used as a reservoir since 1950, has a total capacity of 7,630,000,000 ft³. Drainage area, 7,056 mi². # ${\tt MONTH-END\ CONTENTS, IN\ MILLIONS\ OF\ CUBIC\ FEET, WATER\ YEAR\ OCTOBER\ 2002\ TO\ SEPTEMBER\ 2003}$ | | LAC VIEUX
DESERT | TWIN LAKES | BUCKATABON
LAKE | SEVENMILE
LAKE | LOWER
NINEMILE
LAKE | BURNT
ROLLWAYS
RESERVOIR | | DEERSKIN
LAKE | |----------|----------------------------|-------------------------------|----------------------------|----------------------------|--------------------------------|--------------------------------|--------------------------|---------------------------| | Sept. 30 | 384 | 292 | 116 | 67 | 97 | 594 | 189 | 14 | | Oct. 31 | 392 | 296 | 113 | 65 | 98 | 546 | 219 | 12 | | Nov. 30 | 266 | 262 | 96 | 43 | 74 | 438 | 168 | 6 | | Dec. 31 | 153 | 197 | 73 | 18 | 31 | 177 | 117 | 5 | | Jan. 31 | 86 | 133 | 56 | 0 | 12 | 0 | 76 | 4 | | Feb. 29 | 54 | 111 | 49 | 0 | 12 | 0 | 80 | 4 | | Mar. 31 | 108 | 147 | 78 | 18 | 61 | 182 | 125 | 8 | | Apr. 30 | 246 | 233 | 114 | 57 | 102 | 604 | 205 | 11 | | May 31 | 295 | 286 | 115 | 59 | 97 | 530 | 241 | 16 | | June 30 | 232 | 267 | 115 | 64 | 98 | 505 | 211 | 14 | | July 31 | 214 | 261 | 116 | 56 | 101 | 499 | 178 | 12 | | Aug.31 | 181 | 236 | 114 | 45 | 100 | 493 | 134 | 10 | | Sept. 30 | 171 | 229 | 116 | 40 | 98 | 530 | 89 | 12 | | | SUGAR
CAMP
RESERVOIR | LITTLE
ST. GERMAIN
LAKE | BIG
ST. GERMAIN
LAKE | PICKEREL
LAKE | RAINBOW
LAKE | SOUTH
PELICAN
LAKE | NORTH
PELICAN
LAKE | MINOCQUA
LAKE | | Sept. 30 | 397 | 72 | 173 | 278 | 1,635 | 289 | 139 | 516 | | Oct. 31 | 414 | 74 | 153 | 276 | 2,070 | 284 | 128 | 482 | | Nov. 30 | 290 | 46 | 101 | 273 | 1,762 | 226 | 99 | 343 | | Dec. 31 | 103 | 19 | 55 | 220 | 1,503 | 150 | 64 | 219 | | Jan. 31 | 83 | 7 | 23 | 183 | 910 | 97 | 3 | 90 | | Feb. 29 | 110 | 3 | 19 | 159 | 386 | 82 | 5 | 32 | | Mar. 31 | 243 | 29 | 68 | 231 | 707 | 141 | 93 | 162 | | Apr. 30 | 414 | 66 | 135 | 272 | 1,706 | 284 | 138 | 359 | | May 31 | 379 | 72 | 154 | 273 | 2,090 | 289 | 135 | 485 | | June 30 | 375 | 68 | 158 | 272 | 1,920 | 272 | 132 | 488 | | July 31 | 361 | 75 | 163 | 276 | 1,338 | 305 | 132 | 491 | | Aug. 31 | 347 | 59 | 163 | 249 | 1,006 | 269 | 116 | 459 | | Sept. 30 | 336 | 60 | 167 | 279 | 785 | 286 | 137 | 436 | | | SQUIRREL
LAKE | . WILLOW
RESERVOIR | LAKE
NOKOMIS | SPIRIT
RIVER
FLOWAGE | BIG EAU
PLEINE
RESERVOIR | LAKE I
DUBAY | PETENWELL
FLOWAGE | CASTLE
ROCK
FLOWAGE | | Sept. 30 | 170 | 2,939 | 1,684 | 667 | 4,394 | 4,144 | 17,597 | 6,611 | | Oct. 31 | 170 | 3,187 | 1,741 | 735 | 4,454 | 4,163 | 17,527 | 5,969 | | Nov. 30 | 142 | 2,705 | 1,451 | 550 | 4,130 | 4,144 | 17,615 | 5,876 | | Dec. 31 | 89 | 2,315 | 1,013 | 365 | 3,231 | 3,882 | 17,210 | 5,748 | | Jan. 31 | 43 | 1,643 | 732 | 163 | 2,289 | 3,378 | 15,018 | 5,487 | | Feb. 29 | 6 | 1,395 | 416 | 106 | 1,490 | 2,950 | 14,993 | 4,529 | | Mar. 31 | 58 | 1,252 | 885 | 426 | 3,049 | 3,855 | 16,276 | 5,568 | | Apr. 30 | 145 | 2,305 | 1,739 | 722 | 4,400 | 4,252 | 18,424 | 6,268 | | May 31 | 170 | 3,256 | 1,762 | 736 | 4,373 | 4,226 | 18,407 | 6,343 | | June 30 | 167 | 3,044 | 1,657 | 641 | 4,142 | 4,153 | 17,588 | 5,818 | | July 31 | 168 | 2,164 | 1,218 | 454 | 3,358 | 4,191 | 17,562 | 5,929 | | Aug. 31 | 157 | 1,603 | 1,108 | 353 | 2,513 | 4,054 | 17,236 | 5,850 | | Sept. 30 | 151 | 1,111 | 788 | 265 | 1,779 | 4,119 | 17,298 | 5,613 | Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. # **GRANT-PLATTE RIVER BASIN** 306 GRANT RIVER BASIN #### 05413500 GRANT RIVER AT BURTON, WI LOCATION.--Lat 42°43'13", long 90°49'09", in NW $\frac{1}{4}$ sec. 23, T.3 N., R.4 W., Grant County, Hydrologic Unit 07060003, on right bank at downstream side of highway bridge at Burton, 5.9 mi northwest of Potosi and 9.5 mi upstream from mouth. DRAINAGE AREA.--269 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1934 to current year. Published as "near Burton" October 1934 to September 1947. Records published for both sites March to September 1947. October 1934, monthly discharge published in WSP 1308. REVISED RECORDS.--WSP 825: 1935-36. WSP 1308: 1935-37(M), 1941(M), 1945-46(M), 1949(M). WSP 1728: 1942(M). WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 606.43 ft above NGVD of 1929. Oct. 17, 1934, to Sept. 30, 1947, non-recording gage at site 6 mi upstream at datum 33.18 ft higher. Mar. 18, 1947, to July 27, 1949, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Data-collection platform and gage-height
telemeter at station | | DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |----------------------------------|--|------------------------------------|---|--|--------------------------------------|--|---------------------------------|--|---------------------------------|----------------------------------|----------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 162 | 145 | e130 | e120 | e100 | e110 | 115 | 265 | 119 | 100 | 91 | 79 | | 2 | 220 | 144 | e130 | e120 | e100 | e100 | 115 | 177 | 118 | 98 | 90 | 79 | | 3 | 205 | 145 | e130 | e120 | e100 | e100 | 113 | 144 | 121 | 105 | 88 | 79 | | 4 | 228 | 146 | e130 | e120 | e100 | e100 | 115 | 134 | 124 | 111 | 91 | 77 | | 5 | 258 | 149 | e130 | e120 | e100 | e100 | 118 | 150 | 117 | 192 | 92 | 77 | | 6 | 188 | 153 | e130 | 119 | e100 | e100 | 114 | 144 | 116 | 141 | 90 | 77 | | 7 | 172 | 148 | e130 | 124 | e100 | e100 | 118 | 223 | 125 | 122 | 88 | 77 | | 8 | 165 | 148 | e130 | 121 | e100 | e100 | 117 | 291 | 148 | 143 | 86 | 77 | | 9 | 162 | 149 | e130 | 121 | e100 | e100 | 117 | 288 | 142 | 202 | 85 | 77 | | 10 | 158 | 150 | e140 | 104 | e100 | e100 | 122 | 258 | 124 | 147 | 84 | 77 | | 11 | 156 | 148 | e140 | 107 | e100 | e100 | 121 | 404 | 120 | 131 | 84 | 77 | | 12 | 153 | 144 | e140 | e130 | e100 | e130 | 118 | 316 | 116 | 124 | 82 | 79 | | 13 | 150 | 142 | e140 | e120 | e100 | e300 | 113 | 240 | 115 | 116 | 82 | 93 | | 14 | 148 | 144 | e140 | e110 | e100 | e250 | 111 | 250 | 112 | 110 | 82 | 154 | | 15 | 150 | 142 | e140 | e110 | e100 | e220 | 109 | 249 | 108 | 107 | 82 | 118 | | 16 | 148 | 139 | e140 | e110 | e100 | e180 | 109 | 208 | 105 | 104 | 82 | 94 | | 17 | 148 | 139 | e140 | e100 | e100 | 154 | 108 | 190 | 103 | 101 | 81 | 88 | | 18 | 153 | 140 | 149 | e100 | e100 | 139 | 106 | 177 | 103 | 100 | 80 | 84 | | 19 | 151 | 141 | 154 | e98 | e120 | 132 | 111 | 170 | 102 | 97 | 79 | 88 | | 20 | 146 | 140 | 137 | e97 | e180 | 147 | 131 | 162 | 98 | 97 | 80 | 87 | | 21
22
23
24
25 | 144
142
140
144
162 | 140
139
138
137
134 | 131
127
117
e120
e120 | e96
e96
e96
e97 | e280
e240
e180
e140
e130 | 135
126
122
121
119 | 130
116
109
106
105 | 150
145
148
145
138 | 97
97
97
108
124 | 100
98
95
93
93 | 83
82
79
78
79 | 84
87
87
85
82 | | 26
27
28
29
30
31 | 177
156
158
158
151
147 | 133
133
e130
e130
e130 | e120
e130
e140
138
131
126 | e97
e96
e97
e97
e97
e98 | e120
e120
e110 | 115
123
135
131
118
114 | 103
101
99
97
120 | 132
127
125
123
125
129 | 155
117
116
120
105 | 93
93
92
92
91
91 | 85
83
79
83
82
78 | 83
86
85
83
82 | | TOTAL | 5,100 | 4,240 | 4,130 | 3,334 | 3,420 | 4,121 | 3,387 | 5,927 | 3,472 | 3,479 | 2,590 | 2,582 | | MEAN | 165 | 141 | 133 | 108 | 122 | 133 | 113 | 191 | 116 | 112 | 83.5 | 86.1 | | MAX | 258 | 153 | 154 | 130 | 280 | 300 | 131 | 404 | 155 | 202 | 92 | 154 | | MIN | 140 | 130 | 117 | 96 | 100 | 100 | 97 | 123 | 97 | 91 | 78 | 77 | | CFSM | 0.61 | 0.53 | 0.50 | 0.40 | 0.45 | 0.49 | 0.42 | 0.71 | 0.43 | 0.42 | 0.31 | 0.32 | | IN. | 0.71 | 0.59 | 0.57 | 0.46 | 0.47 | 0.57 | 0.47 | 0.82 | 0.48 | 0.48 | 0.36 | 0.36 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1935 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN | 121 | 130 | 112 | 134 | 202 | 315 | 185 | 171 | 211 | 176 | 149 | 133 | | MAX | 276 | 626 | 350 | 467 | 668 | 1,057 | 505 | 489 | 920 | 808 | 502 | 330 | | (WY) | (1994) | (1962) | (1973) | (1974) | (1948) | (1959) | (1973) | (1973) | (1947) | (1993) | (1943) | (1993) | | MIN | 45.8 | 41.3 | 37.7 | 33.4 | 36.1 | 55.3 | 66.0 | 46.8 | 50.6 | 35.8 | 41.6 | 42.2 | | (WY) | (1935) | (1938) | (1959) | (1959) | (1959) | (1958) | (1957) | (1958) | (1936) | (1936) | (1937) | (1958) | ### 05413500 GRANT RIVER AT BURTON, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WA | TER YEAR | WATER YEA | RS 1935 - 2003 | |--------------------------|---------------|-----------|-------------|----------|-----------|----------------| | ANNUAL TOTAL | 67,066 | | 45,782 | | | | | ANNUAL MEAN | 184 | | 125 | | 170 | | | HIGHEST ANNUAL MEAN | | | | | 351 | 1993 | | LOWEST ANNUAL MEAN | | | | | 59.3 | 1958 | | HIGHEST DAILY MEAN | 5,370 | Jun 4 | 404 | May 11 | 10,700 | Jun 13, 1947 | | LOWEST DAILY MEAN | (a)110 | Feb 1-4 | 77 | Sep 4-11 | 30 | (b)Aug 5, 1936 | | ANNUAL SEVEN-DAY MINIMUM | (a)114 | Jan 29 | 77 | Sep 4 | 31 | (c)Aug 3, 1936 | | MAXIMUM PEAK FLOW | | | 592 | May 11 | (d)25,000 | Jul 16, 1950 | | MAXIMUM PEAK STAGE | | | 8.46 | May 11 | 24.8 | 2 Jul 16, 1950 | | INSTANTANEOUS LOW FLOW | | | | | (f)21 | Mar 4, 1954 | | ANNUAL RUNOFF (CFSM) | 0.68 | | 0.47 | | 0.63 | 3 | | ANNUAL RUNOFF (INCHES) | 9.27 | | 6.33 | | 8.5 | 3 | | 10 PERCENT EXCEEDS | 219 | | 162 | | 257 | | | 50 PERCENT EXCEEDS | 151 | | 119 | | 120 | | | 90 PERCENT EXCEEDS | 130 | | 84 | | 60 | | ⁽a) Ice affected (b) Also occurred Aug. 8, 9, 1936, Sept. 22, 1937, and Feb. 19, 20, 1959, ice affected (c) Also occurred Jan. 4, 1959, ice affected (d) From rating curve extended above 18,000 ft³/s on basis of slope-area measurement of peak flow (e) Estimated due to ice effect or missing record (f) Result of freezeup 308 GRANT RIVER BASIN #### 05413500 GRANT RIVER AT BURTON, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964-67, 1978 to current year. National Stream-Quality Accounting Network data collection October 1986 to September #### PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: Water years 1978 to current year, April-September monthly totals only published for 1983 water year, but daily load estimates are available for the entire year. INSTRUMENTATION.--Automatic pumping sampler since June 21, 1999. REMARKS.--Sediment records for periods of no ice cover are fair to good. Records for high-flow periods during ice cover are poor. Monthly and annual load values are fair. Most samples are point samples. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 13,600 mg/L, July 13, 1979; minimum observed, 6 mg/L, Dec. 8, 1997. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 95,300 tons, June 17, 1978; minimum daily, 1.5 tons, Mar. 1, 2, 1978. EXTREMES FOR CURRENT YEAR.-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 315 mg/L, May 8; minimum observed, 7 mg/L, Feb. 11. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 312 tons, May 11; minimum daily, 2.1 tons, Sept. 18. # SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------|-------------------------------|--|--|---------------------------------|-----------------------------------|---------------------------------|----------------------------------|----------------------------|-----------------------------------|--|---------------------------------| | 1
2
3
4
5 | 24
105
77
100
148 | 13
13
12
12
12 | 11
11
11
11
11 | 4.8
4.8
4.7
4.7 | 2.4
2.3
2.3
2.2
2.2 | 9.2
7.2
6.3
6.3
6.4 | 8.3
7.5
6.6
6.3
6.5 | 108
59
41
38
44 | 38
36
35
34
30 | 30
30
31
33
113 | 15
16
16
18
19 | 2.8
2.7
2.7
2.6
2.6 | | 6
7
8
9
10 | 83
72
65
61
56 | 12
11
11
11
11 | 11
10
9.8
9.4
9.8 | 4.7
4.8
4.7
4.7
4.0 | 2.1
2.1
2.0
2.0
1.9 | 6.5
6.5
6.6
6.7
6.8 | 6.3
6.7
6.7
6.8
7.2 | 43
87
197
172
107 | 29
30
34
32
27 | 58
38
59
150
86 | 19
20
21
21
18 | 2.6
2.5
2.5
2.6
2.7 | | 11
12
13
14
15 | 52
44
38
33
30 | 11
11
10
10 | 9.5
9.4
9.3
9.2
9.1 | 4.1
4.9
4.4
4.0
3.9 | 4.3
6.0
6.0
6.0
6.1 | 7.5
29
121
92
73 | 7.2
7.1
6.9
6.9
6.9 | 312
207
108
99
95 | 25
24
23
21
18 | 59
43
31
23
18 | 16
14
13
11
10 | 2.9
3.1
3.9
12
9.7 | | 16
17
18
19
20 | 26
23
22
22
22 | 10
10
8.8
7.3
8.3 | 9.0
8.9
9.4
9.6
8.4 | 3.8
3.4
3.3
3.2
3.1 | 6.1
6.3
12
32 | 54
42
36
34
37 | 7.0
7.1
7.1
7.5
9.0 | 69
57
52
50
47 | 15
14
15
22
32 | 13
10
9.9
24
22 | 9.0
8.0
6.7
4.7
3.4 | 4.3
2.3
2.1
2.2
2.3 | | 21
22
23
24
25 | 22
22
22
23
26 | 9.6
11
11
11
11 | 7.6
7.1
6.2
6.1
5.8 | 2.9
2.9
2.8
2.8
2.7 | 83
65
40
25
20 | 34
32
31
23
11 | 9.1
8.2
7.9
7.8
7.8 | 43
41
38
36
36 | 38
28
24
31
42 | 21
18
16
14
13 | 3.3
3.3
3.1
3.0
3.0 | 2.3
2.4
2.5
2.5
2.5 | | 26
27
28
29
30
31 | 26
21
20
18
16
14 | 11
11
11
11
11 | 5.5
5.7
5.8
5.5
5.1
5.1 | 2.7
2.6
2.5
2.5
2.4
2.4 | 16
14
11
 | 11
13
15
13
11
9.1 |
8.6
12
16
23
41 | 36
36
37
38
41
43 | 59
40
36
37
32 | 12
10
9.3
11
14
14 | 3.2
3.1
2.9
3.0
3.0
2.8 | 2.5
2.7
2.7
2.7
2.8 | | TOTAL | 1,333 | 323.0 | 262.3 | 114.0 | 386.4 | 797.1 | 283.0 | 2,417 | 901 | 1,033.2 | 312.5 | 96.7 | WTR YR 2003 TOTAL 8,259.2 ## GRANT RIVER BASIN 309 # 05413500 GRANT RIVER AT BURTON, WI—Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Discharge,
cfs
(00060) | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Suspended
sediment
concentration
mg/L
(80154) | |-------------------|--------------|------------------------------|---|--|---| | OCT 2002 | | | | | | | 02 | 1450 | | 227 | 10 | 151 | | 02 | 1452 | | 227 | 50 | 210 | | 04 | 0500 | | 184 | 50 | 97 | | 11 | 0500 | | 157 | 50 | 127 | | 18 | 0500 | | 153 | 50 | 52 | | 25 | 0500 | | 154 | 50 | 61 | | NOV | 0.500 | | | | 2.4 | | 01 | 0500 | | 145 | 50 | 34 | | 08
15 | 0500
0500 | | 148
142 | 50
50 | 27
27 | | 18 | 1348 | | 142 | 10 | 27 | | 18 | 1558 | | 140 | 50 | 17 | | 22 | 0500 | | 140 | 50 | 28 | | DEC | 0000 | | 1.0 | 20 | | | 04 | 1515 | 130 | | 50 | 32 | | 11 | 1137 | 140 | | 50 | 25 | | 20 | 0500 | | 139 | 50 | 23 | | 30 | 1333 | | 130 | 10 | 14 | | 30 | 1342 | | 131 | 50 | 15 | | JAN 2003 | 1412 | 120 | | 50 | 14 | | 12
FEB | 1412 | 130 | | 30 | 14 | | ге в
11 | 0930 | 100 | | 10 | 7 | | 11 | 0941 | 100 | | 50 | 22 | | MAR | 0,11 | 100 | | 20 | | | 03 | 1154 | 100 | | 50 | 23 | | 24 | 1450 | | 121 | 10 | 94 | | 24 | 1511 | | 121 | 50 | 31 | | 28 | 0500 | | 135 | 50 | 42 | | APR | 0500 | | 114 | 50 | 20 | | 04
14 | 0500
1028 | | 114
110 | 50
50 | 20
23 | | 26 | 0600 | | 104 | 50 | 28 | | MAY | 0000 | | 10. | 20 | | | 01 | 0715 | | 256 | 50 | 162 | | 03 | 0600 | | 148 | 50 | 103 | | 07 | 1200 | | 173 | 50 | 113 | | 08 | 0845 | | 310 | 10 | 315 | | 08 | 0850 | | 310 | 50 | 315 | | 10
14 | 0600
1545 | | 274
256 | 50
50 | 143
158 | | 17 | 0600 | | 193 | 50 | 111 | | 22 | 0848 | | 145 | 30 | 105 | | 24 | 0600 | | 148 | 50 | 91 | | 31 | 0600 | | 135 | 50 | 125 | | JUN | | | | | | | 07 | 0600 | | 121 | 50 | 89 | | 14 | 0600 | | 113 | 50 | 72
53 | | 16 | 1450 | | 103 | 10 | 53 | | 16
18 | 1500
1345 | | 103
101 | 50
30 | 48
54 | | 21 | 0600 | | 99 | 50 | 163 | | 28 | 0600 | | 110 | 50 | 115 | | JUL | | | | | | | 05 | 0600 | | 176 | 50 | 265 | | 09 | 0530 | | 255 | 50 | 304 | | 12 | 0600 | | 126 | 50 | 135 | | 18 | 1300 | | 98 | 30 | 29 | | 19 | 0600 | | 99
02 | 50 | 97
24 | | 29 | 1020 | | 92
92 | 10
50 | 34
52 | | 29
AUG | 1025 | | 94 | 50 | 52 | | 09 | 0600 | | 87 | 50 | 93 | | 18 | 0922 | | 82 | 50 | 33 | | 20 | 1241 | | 79 | 30 | 15 | | SEP | | | | | | | 08 | 1310 | | 77 | 10 | 12 | | 17 | 1300 | | 88 | 30 | 9 | | | | | | | | #### 05414000 PLATTE RIVER NEAR ROCKVILLE, WI LOCATION.--Lat 42°43′52", long 90°38′25", in SW ½ sec.17, T.3 N., R.2 W., Grant County, Hydrologic Unit 07060003, on right bank just downstream from bridge on County Trunk Highway B, 0.8 mi upstream from Blakely Branch, 2.2 mi east of Rockville, 4.5 mi northeast of Potosi, and 15.2 mi upstream from mouth DRAINAGE AREA.--142 mi². PERIOD OF RECORD.--October 1934 to current year. Monthly discharge for October and November 1934 published in WSP 1308. REVISED RECORDS.--WSP 1438: 1935-36, 1937(M), 1939(M), 1941-43(M), 1946(M). WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 642.50 ft above NGVD of 1929. Prior to Oct. 1, 1941, nonrecording gage at site 1.3 mi upstream at datum 12.55 ft higher. Oct. 1, 1941, to June 29, 1949, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | |) , WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|---|---|---|---|--|--|--|---|--|--|---|--| | DAY 1 2 3 4 5 | OCT
92
109
112
131
131 | NOV
75
74
74
76
77 | DEC
e64
e62
e60
e58
e58 | JAN
61
e62
e62
e61
e61 | FEB
e52
e52
e52
e51
e51 | MAR
e53
e53
e52
e51
e50 | APR 57 57 56 58 58 | MAY
169
105
84
77
83 | JUN
63
63
64
63
61 | JUL 51 50 51 52 81 | AUG
46
45
45
45
46 | SEP
39
38
38
37
37 | | 6 | 105 | 78 | e56 | e62 | e51 | e50 | 56 | 76 | 62 | 67 | 46 | 37 | | 7 | 97 | 76 | e56 | 62 | e50 | e50 | 58 | 87 | 66 | 61 | 46 | 36 | | 8 | 93 | 77 | e57 | 64 | e50 | e50 | 57 | 101 | 74 | 83 | 43 | 36 | | 9 | 90 | 77 | e59 | 64 | e50 | e50 | 57 | 115 | 72 | 89 | 42 | 36 | | 10 | 87 | 77 | 73 | 55 | e50 | e50 | 58 | 116 | 64 | 70 | 42 | 36 | | 11 | 87 | 77 | 72 | e66 | e50 | e52 | 57 | 205 | 62 | 66 | 42 | 36 | | 12 | 86 | 75 | 73 | e62 | e50 | e90 | 56 | 158 | 61 | 66 | 41 | 39 | | 13 | 84 | 74 | 72 | e60 | e50 | e150 | 55 | 127 | 60 | 58 | 41 | 69 | | 14 | 83 | 73 | 70 | e57 | e50 | e100 | 54 | 135 | 58 | 55 | 41 | 107 | | 15 | 83 | 72 | 69 | e55 | e50 | e97 | 54 | 128 | 55 | 54 | 41 | 68 | | 16 | 83 | 70 | 67 | e53 | e51 | 93 | 54 | 111 | 53 | 52 | 40 | 49 | | 17 | 83 | 71 | 66 | e52 | e51 | 81 | 54 | 102 | 52 | 51 | 39 | 45 | | 18 | 86 | 71 | 76 | e51 | e52 | 73 | 54 | 96 | 53 | 50 | 38 | 42 | | 19 | 84 | 72 | 81 | e50 | e60 | 69 | 55 | 92 | 52 | 49 | 38 | 42 | | 20 | 82 | 70 | 72 | e50 | e90 | 74 | 61 | 89 | 50 | 49 | 40 | 41 | | 21 | 80 | 71 | 69 | e50 | e130 | 68 | 59 | 82 | 50 | 50 | 43 | 42 | | 22 | 78 | 70 | 66 | e50 | e90 | 65 | 55 | 80 | 50 | 49 | 42 | 45 | | 23 | 77 | 69 | 67 | e50 | e65 | 63 | 52 | 85 | 50 | 48 | 39 | 45 | | 24 | 79 | 69 | e70 | e50 | e60 | 62 | 51 | 81 | 55 | 47 | 39 | 43 | | 25 | 90 | 68 | e64 | e50 | e58 | 62 | 51 | 76 | 65 | 47 | 38 | 40 | | 26
27
28
29
30
31 | 90
81
82
81
78
77 | 66
66
e65
e65
e64 | 60
67
69
67
68
66 | e50
e50
e50
e50
e50
e51 | e56
e55
e54
 | 59
62
66
65
59
57 | 50
49
48
48
67 | 71
68
68
66
68
67 | 70
57
61
62
53 | 47
46
47
46
46
46 | 41
39
38
43
40
38 | 41
42
40
39
39 | | TOTAL | 2,781 | 2,159 | 2,054 | 1,721 | 1,631 | 2,076 | 1,656 | 3,068 | 1,781 | 1,724 | 1,287 | 1,324 | | MEAN | 89.7 | 72.0 | 66.3 | 55.5 | 58.2 | 67.0 | 55.2 | 99.0 | 59.4 | 55.6 | 41.5 | 44.1 | | MAX | 131 | 78 | 81 | 66 | 130 | 150 | 67 | 205 | 74 | 89 | 46 | 107 | | MIN | 77 | 64 | 56 | 50 | 50 | 50 | 48 | 66 | 50 | 46 | 38 | 36 | | CFSM | 0.63 | 0.51 | 0.47 | 0.39 | 0.41 | 0.47 | 0.39 | 0.70 | 0.42 | 0.39 | 0.29 | 0.31 | | IN. | 0.73 | 0.57 | 0.54 | 0.45 | 0.43 | 0.54 | 0.43 | 0.80 | 0.47 | 0.45 | 0.34 | 0.35 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 70.7
146
(1962)
25.3
(1951) | ONTHLY M
76.4
372
(1962)
29.2
(1938) | EAN DATA
63.9
155
(1973)
23.7
(1959) | FOR WATE
76.3
315
(1946)
22.1
(1959) | ER YEARS
105
379
(1938)
24.3
(1959) | 1935 - 2003,
173
483
(1959)
33.4
(1957) | BY WATER
113
291
(1993)
42.0
(1990) | R YEAR (W
106
328
(1960)
36.1
(1958) | 133
586
(1947)
34.3
(1936) | 107
660
(1993)
24.0
(1936) | 88.7
348
(1943)
30.3
(1937) | 78.5
202
(1942)
33.7
(1989) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | | Jun
Dec
Dec | 4
6,7 | 23,26
6
20
3
3
(a) | 3.75 May6 Sep | 7 11
2 7-11
3 5 | 2
7,8
(b)43,5
(c) | 7.0 De
18 No
500 Ju
17.26 Ju | 1993
1958
1958
11 16, 1950
10 22, 1939
10 1, 1950
11 16, 1950
10 16, 1950
10 17 1950
10 1950
10 1950 | ⁽a) Ice affected ⁽b) From rating curve extended above 7,000 ft³/s on basis of slope-area measurement of peak flow ⁽c) Result of freezeup ⁽e) Estimated due to ice effect or missing record 311 ### 05414850 GALENA RIVER AT U.W. PLATTEVILLE FARMS NEAR PLATTEVILLE, WI LOCATION.--Lat 42°42'39", long 90°23'58", in NE $^{1}\sqrt{_4}$ NE $^{1}\sqrt{_4}$ NW $^{1}\sqrt{_4}$ sec.29, T.1 N., R.1 E., Lafayette County, Hydrologic Unit 07060005, on right bank 110 ft downstream from College Farm Road bridge. DRAINAGE AREA.--2.94 mi². PERIOD OF RECORD.--August 2002 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 606.43 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair except those for estimated daily discharges and for
Apr. 16-29 and July 11-27, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | |---|--|--|--|---|--|--|--|--|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 2.6
3.6
2.8
11
3.3 | 1.9
1.8
1.8
1.8 | 1.5
1.5
1.5
1.5
1.5 | e1.3
1.3
1.3
1.3
1.2 | 1.3
1.4
1.6
e1.3
e1.3 | 1.2
1.2
1.2
1.2
e1.2 | 1.2
1.2
1.2
1.2
1.1 | 4.1
2.2
2.0
2.0
2.1 | 1.2
1.2
1.2
1.2
1.2 | 1.5
1.6
1.7
1.8
2.2 | 0.86
0.83
0.87
0.88
0.82 | 1.2
1.1
1.1
1.1
1.1 | | | 6
7
8
9
10 | 2.9
2.7
2.6
2.6
2.6 | 1.7
1.7
1.6
1.6 | 1.5
1.5
1.5
1.5
1.5 | 1.2
1.3
1.3
1.3
1.3 | e1.2
e1.2
e1.2
e1.2
e1.2 | 1.2
1.2
e1.2
e1.2
e1.2 | 1.1
1.1
1.2
1.1
1.2 | 1.9
2.3
1.9
3.0
2.7 | 1.2
1.2
1.3
1.2
1.2 | 1.9
1.7
5.9
2.1
1.9 | 0.84
0.89
0.87
0.91
0.88 | 1.1
1.1
1.2
1.2
1.2 | | | 11
12
13
14
15 | 2.5
2.5
2.5
2.4
2.4 | 1.6
1.6
1.6
1.6
1.5 | 1.4
1.4
1.4
1.4 | e1.3
1.3
1.3
1.3
e1.3 | e1.2
e1.2
e1.2
e1.2
e1.2 | e1.2
3.2
1.8
1.4
1.3 | 1.2
1.1
1.1
1.1
1.1 | 2.1
1.8
1.6
4.1
1.9 | 1.2
1.2
1.3
1.2
1.2 | 2.3
2.0
1.8
1.9 | 0.93
0.93
0.93
0.94
0.95 | 1.2
1.2
2.5
3.0
1.4 | | | 16
17
18
19
20 | 2.3
2.3
2.3
2.2
2.2 | 1.5
1.5
1.6
1.6
1.5 | 1.4
1.4
1.5
1.4 | 1.3
1.3
1.3
1.3
1.3 | e1.2
1.2
1.6
1.6
1.7 | 1.3
1.3
1.3
1.3
1.3 | 1.2
1.3
1.3
1.4
1.4 | 1.7
1.5
1.4
1.4 | 1.2
1.2
1.2
1.2
1.2 | 2.0
1.9
1.7
1.6
1.5 | 0.97
0.99
0.98
0.88
0.89 | 1.2
1.2
1.2
1.2
1.2 | | | 21
22
23
24
25 | 2.1
2.1
2.0
2.0
2.2 | 1.5
1.5
1.5
1.5
1.5 | 1.4
1.4
1.4
1.4 | 1.3
1.3
e1.3
e1.3
e1.3 | 1.4
1.3
e1.3
e1.2
e1.2 | 1.3
1.3
1.2
1.2 | 1.4
1.3
1.3
1.3
1.3 | 1.3
1.3
1.3
1.3 | 1.2
1.2
1.2
1.3
1.6 | 1.5
1.5
1.5
1.5
1.5 | 0.92
0.94
0.98
0.94
0.96 | 1.2
1.2
1.1
1.1 | | | 26
27
28
29
30
31 | 2.1
2.0
2.0
2.0
1.9
1.9 | 1.5
1.5
1.5
1.5 | 1.3
1.3
1.3
1.3
1.3 | e1.3
e1.3
1.3
1.3
1.3 | e1.2
1.2
1.2
 | 1.2
1.3
1.3
1.2
1.2 | 1.3
1.3
1.3
1.3
7.5 | 1.3
1.3
1.2
1.2
1.3
1.2 | 1.4
1.2
1.4
1.3
1.4 | 1.5
1.4
1.3
1.1
1.0
0.93 | 1.1
1.1
1.2
1.2
1.2 | 1.1
1.0
0.95
0.95 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 31 1.9 1.3
OTAL 82.6 47.8 43.9
IEAN 2.66 1.59 1.42
IAX 11 1.9 1.5
IIN 1.9 1.5 1.3
FSM 0.91 0.54 0.48 | | | 40.1
1.29
1.3
1.2
0.44
0.51 | 36.2
1.29
1.7
1.2
0.44
0.46 | 41.0
1.32
3.2
1.2
0.45
0.52 | 43.1
1.44
7.5
1.1
0.49
0.55 | 57.1
1.84
4.1
1.2
0.63
0.72 | 37.4
1.25
1.6
1.2
0.42
0.47 | 55.63
1.79
5.9
0.93
0.61
0.70 | 29.68
0.96
1.2
0.82
0.33
0.38 | 37.50
1.25
3.0
0.95
0.43
0.47 | | | STATIST | ICS OF MO | ONTHLY M | EAN DAT | A FOR WAT | ER YEARS | 2002 - 2003 | B, BY WATE | R YEAR (V | VY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.66
2.66
(2003)
2.66
(2003) | 1.59
1.59
(2003)
1.59
(2003) | 1.42
1.42
(2003)
1.42
(2003) | 1.29
1.29
(2003)
1.29
(2003) | 1.29
1.29
(2003)
1.29
(2003) | 1.32
1.32
(2003)
1.32
(2003) | 1.44
1.44
(2003)
1.44
(2003) | 1.84
1.84
(2003)
1.84
(2003) | 1.25
1.25
(2003)
1.25
(2003) | 1.79
1.79
(2003)
1.79
(2003) | 1.61
2.27
(2002)
0.96
(2003) | 1.84
2.43
(2002)
1.25
(2003) | | | SUMMAF | RY STATIS | STICS | | FOR 2002 C
(AUGUS | | | FOR 200 | 3 WATER | YEAR | WATER | YEARS 200 | 02 - 2003 | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | (AUGUST-DECEMBER) 317.5 2.08 11 Oct 4 1.3 Dec 26-31 1.3 Dec 25 0.71 4.02 2.5 2.1 | | | 552.01
1.51
11 Oct 4
0.82 Aug 5
0.86 Aug 1
69 Apr 30
6.36 Apr 30
0.65 Apr 7
0.51
6.98
2.1
1.3 | | | | 0.82 Au
0.86 Au
69 Ay
6.36 Ay | 2002
2003
cct 4, 2002
gg 5, 2003
gg 1, 2003
pr 30, 2003
pr 30, 2003
pr 7, 2003 | | ⁽e) Estimated due to ice effect or missing record **ROCK AND ILLINOIS RIVER BASINS** Base from U.S. Geological Survey 1:100,000 digital data; modified by Wisconsin Department of Natural Resources. Wisconsin Transverse Mercator projection. #### 05423500 SOUTH BRANCH ROCK RIVER AT WAUPUN, WI $LOCATION.--Lat~43°38'30", long~88°43'14", in~SW~\frac{1}{4}~NW~\frac{1}{4}~sec. 33, T.14~N., R.15~E., Fond~du~Lac~County, Hydrologic~Unit~07090001, on left bank~260~ft~upstream~from~U.S.~Business~Route~151~at~Waupun, and~2.8~mi~upstream~from~mouth.$ DRAINAGE AREA.--63.6 mi². PERIOD OF RECORD.--October 1948 to September 1969. March 1987 to current year. Monthly discharge for October and November 1948 published in WSP 1308, but unpublished daily discharges available for October to November 1948. REVISED RECORDS.--WDR WI-88-1: Drainage area. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 863.46 ft above NGVD of 1929. October 1948 to September 1969, recording gage at site 150 ft downstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | KENII IKI | is. Record | | | BIC FEET PI | ER SECOND | | EAR OCTO | _ | - | | , | | |--|--|---|--|---|--|---|--|--|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 2.1
2.5
3.6
15 | 3.7
3.4
3.7
4.0 | 2.6
2.9
2.7
2.5 | 2.5
2.4
2.5
2.3 | e1.9
e2.0
e2.1
e2.2 | e0.80
e1.0
e1.1
e1.2 | 9.5
9.0
8.4
8.6 | 17
15
12
11 | 9.6
9.2
8.5 | 5.2
4.6
3.9
4.3 | 4.6
4.1
11
6.9 | 1.1
0.93
1.3
0.79 | | 5
6
7
8
9
10 | 7.5
8.4
5.9
4.9
3.8
4.4 | 4.5
4.4
4.4
3.9
3.8
3.9 | 2.5
2.4
2.4
2.4
2.0
2.0 | 2.5
2.6
2.7
2.7
2.7
2.3 | e2.3
e2.1
e2.0
e1.9
e1.9
e1.8 | e1.1
e1.0
e0.98
e0.96
e0.92 | 7.7
7.5
8.7
7.6
8.9
9.4 | 24
23
27
26
35
33 | 7.6
7.4
8.6
16
12
19 | 5.4
5.5
5.0
5.4
5.7 | 4.7
5.1
4.8
3.8
3.2
2.9 | 0.86
0.92
0.60
1.1
0.98
0.89 | | 11
12
13
14
15 | 3.7
3.1
2.8
3.0
2.8 | 4.7
3.5
3.4
3.4
3.2 | 2.0
2.1
2.3
2.3
2.4 | 2.1
e2.1
e2.1
e2.1
e2.1 | e1.8
e1.8
e1.8
e1.8 | e1.1
e3.0
10
12
21 | 9.1
8.9
8.7
8.3
8.9 | 123
128
95
70
56 | 16
14
12
10
8.4 | 18
15
12
9.0
12 | 2.9
2.9
3.5
2.5
2.1 | 0.93
13
15
19 | | 16
17
18
19
20 | 2.4
2.7
5.4
3.2
3.1 | 3.0
2.8
3.6
4.6
3.9 | 2.4
2.4
6.9
4.4
3.6 |
e2.1
e2.0
e2.0
e2.0
e2.0 | e1.7
e1.8
e1.9
e2.3 | 20
16
12
8.6
8.2 | 9.9
9.3
10
16 | 44
36
30
27
30 | 7.2
6.5
6.3
6.4
5.7 | 7.4
6.4
5.3
4.4
3.9 | 2.3
2.4
2.3
2.0
2.2 | 7.4
6.4
5.0
3.5
2.6 | | 21
22
23
24
25 | 3.7
3.5
3.4
3.9
5.4 | 3.9
3.7
3.8
3.6
3.4 | 3.0
2.5
8.6
2.8
2.6 | e2.0
e1.9
e1.9
e1.8
e1.9 | e2.1
e1.7
e1.0
e0.86
e0.80 | 8.2
9.3
8.4
8.9
8.2 | 15
14
12
10
9.3 | 24
21
19
17
15 | 5.8
5.2
5.7
5.1
8.1 | 3.5
3.4
3.5
3.5
3.5 | 2.0
1.1
0.83
1.1
5.3 | 2.6
2.9
2.1
1.8
1.6 | | 26
27
28
29
30
31 | 4.9
4.7
4.5
4.7
4.2
4.3 | 3.2
3.0
2.8
2.8
2.7 | 2.6
2.6
2.5
2.5
2.7
2.7 | e1.7
e1.8
e1.8
e1.9
e2.0
e2.1 | e0.76
e0.72
e0.70
 | 7.4
8.0
19
18
13
10 | 8.6
8.5
8.0
7.9
11 | 13
12
12
14
13
13 | 5.1
4.0
11
6.4
5.8 | 3.4
3.1
3.0
3.1
2.9
6.1 | 3.4
2.2
1.5
1.3
0.67
0.70 | 2.2
2.3
1.7
2.1
2.4 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 137.5
4.44
15
2.1
0.07
0.08 | 108.7
3.62
4.7
2.7
0.06
0.06 | 90.3
2.91
8.6
2.0
0.05
0.05 | 66.6
2.15
2.7
1.7
0.03
0.04 | 47.24
1.69
2.3
0.70
0.03
0.03 | 240.46
7.76
21
0.80
0.12
0.14 | 289.7
9.66
16
7.5
0.15
0.17 | 1,035
33.4
128
11
0.52
0.61 | 263.6
8.79
19
4.0
0.14
0.15 | 208.4
6.72
31
2.9
0.11
0.12 | 96.30
3.11
11
0.67
0.05
0.06 | 114.00
3.80
19
0.60
0.06
0.07 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 17.3
90.9
(1996)
0.63
(1965) | 20.4
106
(1962)
0.53
(1965) | EAN DATA
15.8
80.0
(1966)
0.16
(1959) | A FOR WAT
11.5
64.6
(1996)
0.094
(1959) | ER YEARS
18.0
105
(1966)
0.079
(1959) | 1949 - 2003,
64.5
176
(1952)
5.40
(1964) | 72.0
266
(1993)
7.80
(1964) | R YEAR (W
35.6
107
(1960)
3.54
(1958) | 30.8
132
(1996)
1.36
(1964) | 28.4
246
(1993)
0.95
(1964) | 16.4
115
(1960)
0.56
(1964) | 14.5
76.2
(1960)
0.55
(1963) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | | (1959) (1959) (1964) FOR 2002 CALENDAR YEAR 8,396.6 23.0 128 Mar 9 1.4 Sep 24 1.9 Sep 10 0.36 4.91 62 11 2.5 | | | 2,65 | 3 WATER Y
7.80
7.39
28 May
0.60 Sep
0.81 Fet
May
0.60 May
0.60 Sep
0.12
1.58
3.37 May
0.60 Sep
0.12 | 7 12
5 7
5 23
7 11
7 11 | 2
9.
1,28
(d)1,50
6 | 0.00 Se
0.00 (c)Se
0 Ap
7.97 Ap
0.00
0.45
6.18 | 9 - 2003
1993
1964
(a)
p 7, 1958
p 7, 1958
p 7, 1958
r 3, 1959
r 3, 1959
(f) | ⁽a) Many days in 1958-59, 1963-64 (b) Ice affected ⁽c) Also occurred in 1959 ⁽d) From rating curve extended above 650 ft³/s (e) Estimated due to ice effect or missing record (f) No flow at times in 1949, 1953-54, 1958-59, 1963-64 ### ROCK RIVER AT HORICON ### 05424057 ROCK RIVER AT HORICON, WI LOCATION.--Lat 43°27'01", long 88°37'56", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.6, T.11 N., R.16 E., Dodge County, Hydrologic Unit 07090001, on left bank downstream side of State Highway 33, 1,700 ft upstream of dam, at Horicon. DRAINAGE AREA.--456 mi². PERIOD OF RECORD.--November 1997 to December 2000, November 2001 to current year. GAGE.--Water-stage recorder. Side-looking velocity meter system. Elevation of gage is 860 ft, from topographic map. REMARKS.--Records poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | ГО SEPTEN | MBER 2003 | | | |---|---|---------------------------------|----------------------------------|--|----------|-------------------------|-----------|---|-----------------------------|--------------------------------------|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e28 | e110 | e70 | 68 | e25 | e30 | 156 | 121 | 244 | 63 | 43 | e3.7 | | 2 | e28 | e110 | e70 | 65 | e26 | 31 | 185 | 141 | 222 | 73 | 23 | e3.8 | | 3 | e28 | e96 | e63 | 64 | e27 | e30 | 290 | 147 | 218 | 74 | 45 | e3.9 | | 4 | e31 | e93 | e65 | 62 | e27 | e32 | 320 | 140 | 208 | 66 | 31 | e4.1 | | 5 | e41 | e92 | e64 | 63 | e26 | e33 | 271 | 213 | 176 | 53 | 28 | e4.4 | | 6 | e59 | e92 | e62 | 60 | e25 | e36 | 233 | 294 | 119 | 61 | 42 | e4.5 | | 7 | e58 | e91 | e62 | 57 | e23 | e40 | 193 | 297 | 188 | 97 | 61 | e4.4 | | 8 | e43 | e80 | e58 | 55 | e23 | e40 | 123 | 290 | 153 | 56 | 24 | e4.3 | | 9 | e46 | e90 | e53 | 53 | e23 | e40 | 121 | 269 | 157 | 91 | 21 | e4.0 | | 10 | e47 | e98 | e52 | 50 | e23 | e40 | 104 | 324 | 199 | 122 | 44 | e3.9 | | 11 | e48 | e98 | e54 | 50 | e23 | e40 | 95 | 335 | 238 | 65 | 45 | e4.0 | | 12 | e50 | e99 | e53 | 49 | e24 | e42 | 102 | 831 | 252 | 59 | 7.2 | e4.3 | | 13 | e54 | e100 | 52 | 51 | e24 | e44 | 87 | 920 | 296 | 54 | 4.6 | e5.0 | | 14 | e40 | e100 | 49 | 49 | e24 | e46 | 77 | 878 | 281 | 26 | 8.6 | e7.0 | | 15 | e45 | e97 | 51 | 49 | e23 | e50 | 87 | 870 | 279 | 131 | 9.5 | e8.0 | | 16 | e43 | e95 | 49 | 46 | e23 | 52 | 116 | 866 | 237 | 23 | 18 | e9.0 | | 17 | e43 | e90 | 48 | 40 | e23 | 65 | 140 | 838 | 206 | 66 | 2.5 | e10 | | 18 | e40 | e82 | 53 | 39 | e24 | 76 | 149 | 795 | 219 | 26 | 1.4 | e10 | | 19 | e40 | e76 | 59 | 34 | e26 | 79 | 123 | 636 | 206 | 25 | 13 | e10 | | 20 | e44 | e82 | 66 | 35 | e30 | 282 | 110 | 623 | 180 | 43 | -28 | e9.0 | | 21 | e44 | e90 | 79 | 31 | e35 | 356 | 152 | 376 | 164 | 97 | 87 | e9.0 | | 22 | e51 | e100 | 78 | 29 | e34 | 265 | 154 | 327 | 151 | 32 | 8.7 | e8.0 | | 23 | e48 | e110 | 74 | 29 | e32 | 213 | 144 | 320 | 122 | 27 | -3.1 | e7.0 | | 24 | e48 | e100 | 73 | 31 | 30 | 92 | 144 | 305 | 111 | 6.0 | 12 | e7.0 | | 25 | e47 | e96 | 74 | 17 | 31 | 39 | 137 | 282 | 108 | -20 | 52 | e7.0 | | 26
27
28
29
30
31 | e58
e67
e93
e100
e110
e110 | e78
e74
e74
e72
e65 | 74
73
73
73
68
64 | 74 19 32 53
73 e20 27 62
73 e21 e27 71
73 e22 83
68 e25 84 | | | | 267
233
226
283
133
346 | 196
68
68
94
71 | 53
45
27
-0.21
-21
63 | e40
e9.0
e7.0
e5.0
e4.0
e3.8 | e7.0
e7.0
e6.0
e6.0
e6.0 | | TOTAL | 1,632 | 2,730 | 1,956 | 1,309 | 740 | 2,529 | 4,343 | 12,926 | 5,431 | 1,582.79 | 669.2 | 187.3 | | MEAN | 52.6 | 91.0 | 63.1 | 42.2 | 26.4 | 81.6 | 145 | 417 | 181 | 51.1 | 21.6 | 6.24 | | MAX | 110 | 110 | 79 | 68 | 35 | 356 | 320 | 920 | 296 | 131 | 87 | 10 | | MIN | 28 | 65 | 48 | 17 | 23 | 30 | 77 | 121 | 68 | -21 | -28 | 3.7 | | CFSM | 0.12 | 0.20 | 0.14 | 0.09 | 0.06 | 0.18 | 0.32 | 0.91 | 0.40 | 0.11 | 0.05 | 0.01 | | IN. | 0.13 | 0.22 | 0.16 | 0.11 | 0.06 | 0.21 | 0.35 | 1.05 | 0.44 | 0.13 | 0.05 | 0.02 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1998 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN | 79.3 | 149 | 115 | 86.2 | 255 | 399 | 580 | 395 | 266 | 178 | 121 | 74.9 | | MAX | 106 | 229 | 205 | 138 | 441 | 794 | 1,194 | 538 | 470 | 573 | 448 | 166 | | (WY) | (1999) | (2002) | (2002) | (2002) | (2002) | (2002) | (1998) | (1999) | (2000) | (1999) | (1999) | (1999) | | MIN | 52.6 | 91.0 | 63.1 | 42.2 | 26.4 | 81.6 | 145 | 310 | 110 | 40.7 | 14.0 | 6.24 | | (WY) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (1998) | (1998) | (2002) | (2002) | (2003) | | SUMMA | UMMARY STATISTICS FOR 2002 CALENDAR YEA | | | | | | | 3 WATER Y | /EAR | WATER | YEARS 199 | 8 - 2003 | | ANNUAL TOTAL 85,968.0 ANNUAL MEAN 236 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 1,140 Mar 23 LOWEST DAILY MEAN (e)8.0 Sep 17 ANNUAL SEVEN-DAY MINIMUM (e)9.1 Sep 11 ANNUAL RUNOFF (CFSM) 0.52 ANNUAL RUNOFF (INCHES) 7.01 10 PERCENT EXCEEDS 742 50 PERCENT EXCEEDS 97 90 PERCENT EXCEEDS 16 | | | | | | 17 | 92
-2 | 20 May
28 Aug
3.6 Aug
0.22
2.94 | g 20 | 3
1,4
-
-
5
1 | 28 Au | 1999
2003
or 9, 1998
g 20, 2003
g 14, 2003 | ⁽e) Estimated due to ice effect or missing record #### 05425500 ROCK RIVER AT WATERTOWN, WI $LOCATION.--Lat~43^{\circ}11'17'', long~88^{\circ}43'34'', in~NE~\frac{1}{4}~SW~\frac{1}{4}~sec.4, T.8~N., R.15~E., Jefferson~County, Hydrologic~Unit~07090001, on~left~bank, 700~ft~downstream~from~Milwaukee~Street~bridge, 1.1~mi~downstream~from~Silver~Creek, at~Watertown.$ DRAINAGE AREA.--969 mi². PERIOD OF RECORD.--June 1931 to September 1970, October 1976 to current year; June to September 1914, daily gage heights available only in District files. Several 1914 water year discharges published in WSP 385. REVISED RECORDS.--WSP 1438: 1933,1935(M), 1937(M), 1938-39, 1945(M); WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 792.58 ft above NGVD of 1929. Prior to Sept. 26, 1933, nonrecording gage at site 700 ft upstream at different datum. REMARKS.--Records good
except those for estimated daily discharges, which are poor (see page 11). Flow partly regulated by powerplant at Watertown. Gage-height telemeter at station. | Suge | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAY OCT NOV DEC LAN EER MAR APR MAY HIN HIL ALIG SEP | | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 113
146
181
243
322 | 249
287
244
242
245 | 205
e150
e190
e180
e180 | e160
e150
e160
e180
199 | e68
e89
e90
e84
e87 | e83
e81
e79
e82
e87 | 259
248
239
286
342 | 490
715
790
759
775 | 572
638
649
538
464 | 174
158
142
139
141 | 73
70
107
151
189 | 44
38
32
27
27 | | 6
7
8
9
10 | 358
370
350
322
274 | 254
286
290
281
273 | e150
e160
e180
e190
e190 | 189
189
192
189
e140 | e63
e63
e62
e60 | e110
e100
e100
e110
e96 | 408
447
457
443
392 | 744
709
748
870
955 | 404
343
298
265
286 | 154
155
155
157
157 | 207
195
203
200
156 | 25
25
25
24
22 | | 11
12
13
14
15 | 246
207
179
154
148 | 251
238
258
250
239 | e200
e200
174
210
190 | e110
e120
e110
e110
e110 | e66
e69
e65
e50
e47 | e110
e98
e96
e110
e130 | 358
299
270
252
243 | 1,020
1,220
1,230
1,220
1,190 | 355
427
512
539
519 | 158
173
185
173
185 | 120
108
91
87
79 | 20
22
34
63
63 | | 16
17
18
19
20 | 149
153
172
162
173 | 248
259
251
253
254 | 167
151
177
200
e210 | e100
e98
e96
e88
e90 | e89
e69
e62
e64
e89 | 162
196
242
252
260 | 249
248
250
270
314 | 1,210
1,240
1,250
1,280
1,320 | 476
429
362
294
244 | 179
171
145
140
120 | 67
72
63
57
65 | 97
126
127
102
81 | | 21
22
23
24
25 | 190
182
170
176
185 | 255
267
268
295
305 | e240
e230
e220
e210
e190 | e87
e85
e83
e83
e83 | e93
e94
e91
e86
e81 | 245
239
289
357
380 | 368
453
557
570
511 | 1,330
1,290
1,190
1,070
971 | 230
206
204
150
139 | 116
100
97
96
88 | 44
42
42
39
39 | 72
60
55
49
43 | | 26
27
28
29
30
31 | 179
190
201
208
250
269 | e290
e270
e270
e300
e260 | e170
e180
e180
e180
184
e180 | e81
e77
e73
e67
e65
e63 | e76
e77
e80

 | 299
231
246
243
282
289 | 386
324
294
268
253 | 906
829
717
630
531
556 | 155
158
189
176
178 | 77
66
60
52
59
62 | 39
37
36
49
43
45 | 41
40
39
38
37 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 6,622
214
370
113
0.22
0.25 | 7,932
264
305
238
0.27
0.30 | 5,818
188
240
150
0.19
0.22 | 3,627
117
199
63
0.12
0.14 | 2,077
74.2
94
47
0.08
0.08 | 5,684
183
380
79
0.19
0.22 | 10,258
342
570
239
0.35
0.39 | 29,755
960
1,330
490
0.99
1.14 | 10,399
347
649
139
0.36
0.40 | 4,034
130
185
52
0.13
0.15 | 2,815
90.8
207
36
0.09
0.11 | 1,498
49.9
127
20
0.05
0.06 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 71CS OF MO
340
2,981
(1987)
11.6
(1964) | ONTHLY M
414
2,034
(1986)
27.2
(1964) | EAN DATA
336
1,148
(1986)
22.3
(1938) | FOR WATE
282
1,055
(1946)
20.4
(1940) | ER YEARS
365
1,627
(1938)
29.8
(1936) | 1931 - 2003
952
2,448
(1985)
114
(1964) | , BY WATE
1,285
3,875
(1979)
192
(1964) | R YEAR (W
741
2,634
(1993)
58.2
(1958) | 471
1,785
(1996)
23.6
(1931) | 348
1,625
(1993)
19.4
(1936) | 254
1,540
(1960)
8.42
(1934) | 258
1,552
(1986)
3.60
(1932) | | ANNUA ANNUA HIGHES LOWES' HIGHES LOWES' ANNUA MAXIM MAXIM ANNUA ANNUA 10 PERC 50 PERC | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MOREOUS TOTAL MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | FOR 2002 CALENDAR YEAR 200,497 549 1,770 Mar 9 47 Sep 18 69 Sep 13 0.57 7.70 1,420 295 113 | | | FOR 2003 WATER YEAR
90,519
248
1,330 May 21
20 Sep 11
23 Sep 6
1,420 May 19
3.57 May 19
0.26
3.48
534
180
58 | | | 0.90 (a)Oc
1.1 Sej
080 Ma | 1993
1964
or 4, 1959 | ⁽a) Also occurred Sept. 9, 1944(b) Gage height, 6.19 ft ⁽c) Backwater from ice ⁽e) Estimated due to ice effect or missing record #### 05425912 BEAVERDAM RIVER AT BEAVER DAM, WI LOCATION.--Lat 43°26'57", long 88°50'21", in NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.4, T.11 N., R.14 E., Dodge County, Hydrologic Unit 07090002, on left bank 5 ft upstream from bridge on Davis Street, 0.8 mi downstream from outlet of Beaverdam Lake, at Beaver Dam. DRAINAGE AREA.--157 mi². PERIOD OF RECORD.--March 1985 to current year. Instantaneous stages from November 1984 to February 1985 in District data files. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 839.42 ft above NGVD of 1929. REMARKS.--Records good (see page 11). Flow regulated by dam 0.8 mi upstream. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | |---|--|--|--|--|---|--|---|---|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.4
8.1
7.5
11
2.6 | 5.3
3.7
3.5
6.9
9.2 | 8.6
8.8
8.6
8.5
8.6 | 12
12
12
12
12 | 13
14
14
14
14 | 18
16
16
33
47 | 28
26
24
27
31 | 12
10
8.5
7.9 | 83
61
37
31
31 | 13
13
14
14
12 | 14
13
8.4
13 | 10
10
11
11
9.9 | | 6
7
8
9
10 | 5.8
5.7
4.9
5.3
7.9 | 8.3
7.4
7.3
6.9
6.9 | 8.5
8.6
8.4
8.2
8.9 | 12
12
12
13
13 | 14
14
14
14
14 | 45
43
42
42
40 | 25
25
26
25
16 | 8.8
10
8.3
11 | 24
24
29
27
29 | 11
12
13
14
16 | 18
19
20
20
21 | 9.5
8.1
9.7
10
11 | | 11
12
13
14
15 | 8.4
8.6
6.2
6.3
7.9 | 11
6.9
6.3
7.8
8.2 | 10
10
10
10
10 | 12
12
12
12
12 | 14
14
13
13
13 | 39
38
73
170
181 | 10
11
8.8
8.9
9.9 | 20
101
158
154
160 | 29
28
27
27
26 | 15
13
12
25
33 | 22
23
23
24
24 | 12
20
30
28
20 | | 16
17
18
19
20 | 7.8
8.2
9.3
7.1
7.9 | 8.0
8.1
8.6
8.5
8.2 | 10
10
14
12
13 | 11
11
11
11
11 | 13
12
12
12
12 | 174
94
43
39
29 | 9.3
8.4
8.7
8.6
14 | 160
155
149
146
182 | 25
24
21
17
15 | 24
22
20
19
16 | 24
14
8.8
8.2
9.9 | 18
16
15
14
8.4 | | 21
22
23
24
25 | 7.7
7.7
7.6
7.9
8.5 | 8.1
7.8
6.4
2.5
5.9 | 13
13
13
12
12 | 11
11
11
11
11 | 16
18
17
17
16 | 23
23
23
23
23
23 |
16
11
9.7
10
11 | 112
75
56
55
52 | 14
14
14
15
16 | 16
14
12
11
10 | 11
11
11
12
12 | 7.9
12
9.3
6.6
3.7 | | 26
27
28
29
30
31 | 6.1
5.1
5.0
4.9
4.8
4.3 | 8.0
8.5
8.7
8.9
9.3 | 12
12
12
12
12
12 | 11
10
11
13
13 | 16
17
19

 | 22
22
32
43
38
32 | 9.5
9.5
9.8
8.4
13 | 50
33
29
26
22
77 | 18
14
15
14
13 | 11
12
12
11
11 | 12
11
12
11
10
10 | 8.5
15
16
13
13 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 213.5
6.89
11
2.6
0.04
0.05 | 221.1
7.37
11
2.5
0.05
0.05 | 329.7
10.6
14
8.2
0.07
0.08 | 364
11.7
14
10
0.07
0.09 | 403
14.4
19
12
0.09
0.10 | 1,526
49.2
181
16
0.31
0.36 | 458.5
15.3
31
8.4
0.10
0.11 | 2,070.5
66.8
182
7.9
0.43
0.49 | 762
25.4
83
13
0.16
0.18 | 463
14.9
33
10
0.10
0.11 | 467.3
15.1
24
8.2
0.10
0.11 | 386.6
12.9
30
3.7
0.08
0.09 | | STATIST | | | | | | 1985 - 2003, | BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 69.2
446
(1987)
2.89
(1989) | 92.7
350
(1986)
6.66
(1989) | 79.6
289
(1986)
10.6
(2003) | 74.8
281
(1986)
11.7
(2003) | 76.0
182
(1986)
14.4
(2003) | 153
312
(1994)
10.9
(1988) | 172
527
(1993)
3.97
(2000) | 106
449
(1993)
4.55
(1989) | 115
369
(1993)
4.86
(1985) | 94.1
561
(1993)
2.86
(1988) | 66.1
287
(1999)
3.05
(1988) | 56.1
282
(1986)
5.13
(1988) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | 'EAR | WATER | YEARS 198 | 35 - 2003 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | | | | 22,451.2
61.5
320 Jun 12
2.5 Nov 24
4.5 Oct 28 | | | 7,665.2
21.0
182 May 20
2.5 Nov 24
4.5 Oct 28
427 Jun 3
8.15 Jun 3
1.3 Oct 5
0.13 | | | 2 | 0.64 Oc
0.77 Fe
758 Ju
9.35 Se
1.3 Oc
0.61 | 1993
2003
ul 12, 1993
ct 30, 1988
bb 11, 1987
ul 9, 1993
pp 26, 1986
ct 5, 2002 | | 10 PERC
50 PERC | L RUNOFF
ENT EXCE
ENT EXCE
ENT EXCE | EDS
EDS | | 228
29 | | | | 1.82
35
12
7.8 | | | 8.35
258
47
7.7 | | ⁽a) Gage height, 9.32 ft #### 05426000 CRAWFISH RIVER AT MILFORD, WI $LOCATION.--Lat\ 43^{\circ}06'00", long\ 88^{\circ}50'58", in\ NW\ {}^{1}\!\!/_{4}\ SW\ {}^{1}\!\!/_{4}\ sec.4, T.7\ N., R.14\ E., Jefferson\ County,\ Hydrologic\ Unit\ 07090002, on\ left\ bank\ near\ upstream\ side\ of\ highway\ bridge\ in\ Milford,\ 1.4\ mi\ downstream\ from\ Rock\ Creek\ and\ 9.8\ mi\ upstream\ from\ mouth.$ DRAINAGE AREA.--762 mi². PERIOD OF RECORD.--June 1931 to current year. REVISED RECORDS.--WSP 975: 1937-38. WSP 1438: 1932-33(M), 1935(M), 1937, 1938-41(M), 1943-44(M), 1947-48(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 779.40 ft above NGVD of 1929. Prior to July 28, 1966, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Some diurnal fluctuation at lower flows, due to manipulation of gates on small dams upstream. Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | |--|--|---
--|--|--|---------------------------------|---|---------------------------------|--|--
---| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 71 | 102 | e120 | e120 | e55 | e67 | 318 | 342 | 270 | 135 | 69 | 43 | | 97 | 98 | e98 | e110 | e57 | e64 | 313 | 461 | 279 | 122 | 68 | 39 | | 96 | 92 | e90 | e110 | e56 | e59 | 285 | 529 | 288 | 106 | 79 | 38 | | 95 | 101 | e85 | e110 | e53 | e56 | 284 | 536 | 286 | 113 | 93 | 43 | | 135 | 100 | e80 | 105 | e50 | e52 | 286 | 560 | 260 | 111 | 97 | 31 | | 122 | 102 | e76 | 105 | e48 | e53 | 258 | 571 | 233 | 109 | 106 | 26 | | 157 | 76 | e80 | 104 | e45 | e58 | 279 | 573 | 225 | 118 | 120 | 32 | | 131 | 80 | e76 | 107 | e45 | e55 | 272 | 561 | 221 | 123 | 112 | 33 | | 152 | 86 | e78 | 113 | e44 | e50 | 245 | 563 | 237 | 127 | 98 | 29 | | 132 | 117 | 79 | e110 | e44 | e45 | 238 | 622 | 225 | 126 | 88 | 27 | | 115 | 135 | 80 | e100 | e44 | e47 | 254 | 598 | 252 | 120 | 84 | 22 | | 116 | 118 | 83 | e91 | e43 | e54 | 269 | 768 | 253 | 104 | 76 | 20 | | 113 | 130 | 88 | e86 | e44 | e60 | 245 | 806 | 257 | 90 | 67 | 30 | | 80 | 166 | 93 | e80 | e46 | e68 | 211 | 849 | 246 | 76 | 62 | 74 | | 108 | 185 | 99 | e75 | e44 | e79 | 225 | 874 | 236 | 114 | 61 | 74 | | 103 | 168 | 99 | e70 | e44 | e93 | 293 | 858 | 211 | 133 | 59 | 74 | | 91 | 156 | 102 | e66 | e47 | e110 | 267 | 822 | 193 | 153 | 55 | 67 | | 76 | 141 | 114 | e62 | e51 | e220 | 257 | 766 | 173 | 167 | 52 | 73 | | 104 | 137 | 136 | e58 | e58 | e290 | 234 | 698 | 168 | 149 | 45 | 86 | | 101 | 143 | e140 | e54 | e64 | e330 | 242 | 719 | 143 | 135 | 40 | 71 | | 90 | 164 | e160 | e50 | e68 | e350 | 325 | 646 | 129 | 138 | 43 | 58 | | 114 | 149 | e150 | e48 | e64 | 350 | 349 | 607 | 117 | 127 | 55 | 62 | | 109 | 123 | e150 | e44 | e60 | 337 | 336 | 571 | 107 | 108 | 46 | 54 | | 97 | 142 | e140 | e44 | e55 | 346 | 329 | 530 | 98 | 85 | 35 | 49 | | 102 | 114 | e130 | e44 | e51 | 329 | 332 | 475 | 100 | 64 | 45 | 48 | | 115
115
110
108
114
109 | 110
105
100
102
e110 | e120
e120
122
122
123
e120 | e44
e44
e45
e44
e48
e52 | e53
e58
e63
 | 286
251
256
285
293
301 | 293
235
251
231
228 | 419
359
322
306
244
296 | 130
127
150
157
145 | 59
84
82
71
60
62 | 46
46
33
48
49
43 | 34
42
51
40
40 | | 3,378 | 3,652 | 3,353 | 2,343 | 1,454 | 5,294 | 8,184 | 17,851 | 5,916 | 3,371 | 2,020 | 1,410 | | 109 | 122 | 108 | 75.6 | 51.9 | 171 | 273 | 576 | 197 | 109 | 65.2 | 47.0 | | 157 | 185 | 160 | 120 | 68 | 350 | 349 | 874 | 288 | 167 | 120 | 86 | | 71 | 76 | 76 | 44 | 43 | 45 | 211 | 244 | 98 | 59 | 33 | 20 | | 0.14 | 0.16 | 0.14 | 0.10 | 0.07 | 0.22 | 0.36 | 0.76 | 0.26 | 0.14 | 0.09 | 0.06 | | 0.16 | 0.18 | 0.16 | 0.11 | 0.07 | 0.26 | 0.40 | 0.87 | 0.29 | 0.16 | 0.10 | 0.07 | | ICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1931 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | 268 | 298 | 250 | 237 | 312 | 1,010 | 974 | 515 | 386 | 294 | 200 | 238 | | 2,565 | 1,958 | 1,065 | 1,278 | 1,576 | 2,473 | 3,206 | 2,337 | 2,263 | 2,189 | 899 | 1,881 | | (1987) | (1986) | (1983) | (1946) | (1938) | (1948) | (1959) | (1973) | (2000) | (1993) | (1993) | (1986) | | 16.8 | 25.9 | 18.0 | 15.2 | 16.2 | 56.2 | 193 | 73.8 | 34.4 | 17.9 | 18.0 | 8.11 | | (1964) | (1950) | (1959) | (1940) | (1959) | (1940) | (1964) | (1958) | (1934) | (1965) | (1964) | (1958) | | RY STATIS | STICS | 1 | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 193 | 1 - 2003 | | ANNUAL TOAILY M TOAIL | MEAN IEAN EAN AY MINIM FLOW STAGE (CFSM) (INCHES) EDS EDS | IUM | 1,220
50
59
(6
859
197 |) Mar
0 Sep
0 Sep
0.46
5.22 | 2 | 88 | 74 May
20 Sep
27 Sep
82 May
3.70 May
0.21
2.84
29 | o 12
o 6
y 15 | 1,1
6,1
6,1 | 17
61.8
30 Ap
0.30 Se
1.5 Se
40 Ap
11.15 Ap
0.55
7.42
80
98 | 1993
1964
or 6, 1959
p 15, 1958
p 11, 1958
or 6, 1959
or 6, 1959 | | | 71 97 96 95 135 122 157 131 152 132 115 116 113 80 108 103 91 76 104 101 90 114 109 97 102 115 110 108 114 109 3,378 109 157 71 0.14 0.16 ICS OF MO 268 2,565 (1987) 16.8 (1964) RY STATIS L TOTAL C ANNUAL ANNUAL ANNUAL T DAILY M DA | OCT NOV 71 102 97 98 96 92 95 101 135 100 122 102 157 76 131 80 152 86 132 117 115 135 116 118 113 130 80 166 108 185 103 168 91 156 76 141 104 137 101 143 90 164 114 149 109 123 97 142 102 114 115 105 110 100 108 102 114 e110 115 105 110 100 108 102 114 e110 109 3,378 3,652 109 122 157 185 71 76 0.14 0.16 0.16 0.18 ICS OF MONTHLY M 268 298 2,565 1,958 (1987) (1986) 16.8 25.9 (1964) (1950) RY STATISTICS ANNUAL MEAN ANNUAL MEAN ANNUAL MEAN ANNUAL MEAN ANNUAL MEAN TOAILY | OCT NOV DEC 71 102 e120 97 98 e98 96 92 e90 95 101 e85 135 100 e80 122 102 e76 157 76 e80 131 80 e76 152 86 e78 132 117 79 115 135 80 116 118 83 113 130 88 80 166 93 108 185 99 103 168 99 91 156 102 76 141 114 104 137 136 101 143 e140 90 164 e160 114 149 e150 109 123 e150 97 142 e140 102 114 e130 115 10 e120 115 105 e120 110 100 122 114 e110 123 109 e120 3,378 3,652 3,353 109 122 108 157 185 160 71 76 76 0.14 0.16 0.14 0.16 0.18 0.16 ICS OF MONTHLY MEAN DATA 268 298 250 2,565 1,958 1,065 (1987) (1986) (1983) 16.8 25.9 18.0 (1964) (1950) (1959) RY STATISTICS TOTAL JAMEAN CANNUAL MEAN ANNUAL MEAN ANNUAL MEAN CANNUAL MEAN ANNUAL MEAN CANNUAL MEAN CANNUAL MEAN CANNUAL MEAN CANNUAL MEAN CANNUAL MEAN CANNUAL MEAN COALLY ME | OCT NOV DEC JAN 71 102 e120 e120 97 98 e98 e110 96 92 e90 e110 135 100 e80 105 122 102 e76 105 157 76 e80 104 131 80 e76 107 152 86 e78 113 132 117 79 e110 115 135 80 e100 116 118 83 e91 113 130 88 e86 80 166 93 e80 108 185 99 e75 103 168 99 e75 104 137 136 e58 101 143 e140 e54 90 164 e160 e50 114 114 e150 e44 102 114 e130 e44 115 110 e120 e44 115 100 e120 e44 115 100 e120 e44 116 118 100 122 e45 108 102 122 e45 108 102 122 e44 114 e110 123 e48 109 122 108 75.6 157 185 160 120 268 298 250 237 109 122 108 75.6 110 CS OF MONTHLY MEAN DATA FOR WATH ANNUAL MEAN CANNUAL MEAN ANNUAL ANNUA | OCT NOV DEC JAN FEB 71 102 e120 e120 e55 97 98 e98 e110 e56 95 101 e85 e110 e53 135 100 e80 105 e50 122 102 e76 105 e48 157 76 e80 104 e45 151 86 e78 113 e44 132 117 79 e110 e44 115 135 80 e76 107 e45 152 86 e78 113 e44 132 117 79 e110 e44 116 118 83 e91 e43 113 130 88 e86 e44 80 166 93 e80 e46 108 185 99 e75 e44 103 168 99 e75 e44 103 168 99 e70 e44 91 156 102 e66 e47 76 141 114 e62 e51 104 137 136 e58 e58 101 143 e140 e54 e64 90 164 e160 e50 e68 114 149 e150 e48 e64 109 123 e150 e44 e60 97 142 e140 e44 e55 102 114 e130 e44 e51 115 110 e120 e44 e53 116 100 122 e44 e60 97 142 e140 e44 e55 102 114 e130 e44 e51 115 110 e120 e44 e53 116 100 122 e44 e53 117 17 6 76 44 e53 118 100 122 e44 e53 119 123 e150 e44 e50 110 100 122 e45 e63 110 100 122 e44 e53 120 e68 114 e110 123 e48 e 114 e110 123 e48 e 115 105 e120 e44 e58 110 100 122 e44 e53 115 105 e120 e44 e58 110 100 122 e45 e63 108 102 122 e44 e 114 e110 123 e48 e 119 127 185 160 120 68 71 76 76 44 4 43 0.14 0.16 0.14 0.10 0.07 0.16 0.18 0.16 0.11 0.07 ICS OF MONTHLY MEAN DATA FOR WATER YEARS 268 298 250 237 312 2565 1,958 1,065 1,278 1,576 (1987) (1986) (1983) (1946) (1938) 16.8 25.9 18.0 15.2 16.2 (1964) (1950) (1959) (1940) (1959) RY STATISTICS FOR 2002 CALENDAR TOTAL 127,326 349 M PEAK STAGE 200 ENDOFF (INCHES) 200 E82 201 EXCEEDS 859 95 | OCT NOV DEC JAN FEB MAR 71 | OCT NOV DEC JAN FEB MAR APR 71 102 e120 e120 e55 e67 318 96 92 e90 e110 e56 e59 285 95 101 e85 e110 e53 e56 284 135 100 e80 105 e50 e52 286 122 102 e76 105 e48 e53 258 157 76 e80 104 e45 e58 279 131 80 e76 107 e45 e55 272 152 86 e78 113 e44 e50 245 132 117 79 e110 e44 e45 238 115 135 80 e100 e44 e45 238 116 118 83 e91 e43 e54 269 118 18 83 e91 e43 e54 269 108 185 99 e75 e44 e79 225 103 168 99 e70 e44 e93 293 91 156 102 e66 e47 e110 267 104 137 136 e58 e58 e290 234 101 143 e140 e54 e54 e53 329 101 143 e140 e54 e54 e53 229 115 100 e80 e80 e86 e330 325 116 e14 e140 e44 e55 e55 272 107 e45 e55 272 108 e78 e78
e86 e86 e86 e87 119 e87 e88 e86 e87 110 e88 e86 e87 111 e44 e50 245 115 e88 e86 e86 e88 e86 e88 e86 e87 116 e188 e86 e86 e88 e88 e86 e88 e88 117 e88 e86 e86 e88 e88 e88 e86 e88 e88 e88 | OCT NOV DEC | OCT NOV DEC JAN FEB MAR APR MAY JUN 71 102 e120 e120 e250 e55 e67 318 342 270 97 98 e98 e110 e57 e64 313 461 279 98 e99 e110 e56 e59 2255 529 288 95 101 e85 e110 e53 e56 284 536 286 135 100 e80 105 e50 e50 e52 286 560 260 122 102 e76 105 e48 e53 258 571 233 157 76 e80 104 e45 e58 279 573 225 131 80 e76 107 e45 e55 272 561 221 152 86 e78 113 e44 e50 245 563 237 1513 117 79 e110 e44 e45 238 622 225 115 135 80 e100 e44 e56 245 563 237 116 118 83 e91 e44 e50 245 568 251 118 118 130 e88 e86 e48 e66 e88 211 849 246 108 185 99 e75 e44 e69 225 874 236 103 168 99 e75 e44 e79 225 874 236 103 168 99 e75 e44 e79 225 874 236 104 137 136 e58 e58 e290 234 698 168 101 143 e140 e54 e64 e330 242 719 143 104 137 136 e58 e58 e59 e290 234 698 168 101 143 e140 e54 e64 e330 242 719 143 109 164 e160 c54 e64 e330 242 719 143 109 164 e160 e54 e64 230 242 719 143 109 142 e140 e44 e60 337 337 336 971 117 109 123 e150 e48 e64 259 339 358 127 115 105 e120 e44 e58 251 220 257 766 173 109 124 e140 e44 e60 337 337 336 971 117 109 123 e150 e48 e64 350 325 646 173 115 105 e120 e44 e58 251 220 257 766 173 109 142 e140 e44 e60 337 236 349 607 117 109 123 e150 e48 e64 350 325 646 171 109 123 e150 e48 e64 350 325 647 110 115 110 e120 e44 e58 251 235 339 127 116 110 e120 e44 e58 251 235 339 127 117 100 122 e45 e63 252 253 329 330 98 102 114 e130 e44 e53 259 332 475 100 115 110 e120 e44 e58 251 235 359 127 116 101 123 e48 e-29 234 498 100 115 110 e120 e44 e58 251 235 359 127 116 110 e120 e44 e58 251 235 359 127 117 185 160 e120 e44 e58 251 235 359 127 1187 185 160 e140 e44 e53 250 349 874 245 100 115 110 e120 e44 e58 251 235 359 130 98 102 114 e130 e44 e50 252 25 30 349 878 103 115 110 e120 e44 e58 251 235 359 127 116 101 e120 e44 e58 251 235 359 127 117 118 160 e120 e44 e58 251 235 359 127 1187 185 160 e120 e44 e58 251 235 359 127 119 143 e150 e48 e60 337 336 370 98 102 114 e100 23 e48 e60 230 449 130 e100 120 12 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL. 71 102 e120 e120 e20 e55 e67 318 342 270 135 97 98 e98 e110 e57 e64 313 461 279 122 98 95 101 e85 e110 e56 e59 285 529 288 106 95 101 e85 e110 e53 e56 284 536 286 113 135 100 e80 105 e50 e52 286 560 206 1111 122 102 e76 105 e48 e53 258 571 233 109 157 76 e80 104 e45 e58 279 573 225 118 131 80 e76 107 e45 e55 272 561 221 123 132 117 79 e110 e44 e45 e58 279 573 225 118 133 13 80 e76 107 e45 e55 272 561 221 123 132 117 79 e110 e44 e45 e58 279 573 225 118 131 13 80 e76 107 e45 e55 272 561 221 123 132 117 79 e110 e44 e45 e28 622 225 126 115 135 80 e100 e44 e47 e54 588 679 285 630 277 127 132 117 79 e110 e44 e65 e58 279 578 222 126 116 138 83 e100 e44 e67 254 568 272 126 117 130 88 e66 e44 e67 255 868 279 98 80 80 80 80 80 80 80 80 80 80 80 80 80 | The color | ⁽e) Estimated due to ice effect or missing record #### 05426067 BARK RIVER AT NAGAWICKA ROAD AT DELAFIELD, WI LOCATION.--Lat 43°05′16″ long 88°22′34″, in NE $^1\!\!/_4$ NW $^1\!\!/_4$ sec.9, T.7 N., R.18 E., Waukesha County, Hydrologic Unit 07090001, on left bank 20 ft upstream from Nagawicka Road in Delafield. DRAINAGE AREA.--35.9 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 2002 to September 2003. GAGE .-- Water-stage recorder. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |------------------------------------|---|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 |

 | 17
17
18
17 | e14
e14
14
14 | 13
14
13
14
14 | e10
e11
e11
e10
e9.8 | e10
e9.8
e9.6
e9.4
e9.4 | 15
19
20
22
20 | 51
41
36
31
36 | 27
25
23
22
21 | 15
15
14
14
15 | 18
18
21
22
16 | 10
9.8
9.5
9.3
8.9 | | | 6
7
8
9
10 |

 | 17
17
16
17
18 | 14
14
14
13
14 | 14
14
14
14
e14 | e9.6
e9.4
e9.2
e9.0
e9.0 | e9.2
e9.2
e9.0
e9.0 | 18
18
17
17 | 33
39
42
58
51 | 20
21
28
24
23 | 19
21
18
16
15 | 14
16
15
14
13 | 9.5
9.3
9.1
9.7
9.8 | | | 11
12
13
14
15 |

 | 19
19
18
18 | 14
14
14
14
14 | e13
e12
e12
e12
e11 | e9.0
e9.0
e9.2
e9.2
e9.2 | e9.2
e9.4
e9.8
e12
20 | 19
20
19
20
20 | 58
62
54
48
44 | 25
24
21
20
19 | 14
13
13
12
20 | 13
13
13
12
12 | 9.4
9.5
12
19
14 | | | 16
17
18
19
20 |

 | 18
17
17
18
18 | 14
14
21
20
19 | e11
e11
e11
e11 | e9.2
e9.2
e9.6
e10
e11 | 23
22
22
21
20 | 20
19
18
18
20 | 37
36
33
30
32 | 18
18
18
18
16 | 19
9.7
11
11
12 | 12
12
11
11 | 12
11
11
11 | | | 21
22
23
24
25 |

 | 19
18
18
18 | 18
e16
e13
e13
e13 | e10
e10
e9.0
e9.0
e9.0 | e11
e10
e9.8
e9.4
e9.0 | 20
20
19
18
17 | 20
19
18
19
18 | 30
29
26
25
24 | 16
15
14
13
14 | 12
12
11
11
10 | 9.6
9.5
9.2
9.2
9.2 | 11
11
11
10
9.4 | | | 26
27
28
29
30
31 |

e19
18
17 | e18
e17
e16
e15
e14 | e13
e13
e14
14
14 | e9.0
e9.0
e9.0
e9.0
e9.0 | e9.0
e9.2
e9.6
 | 16
16
18
18
17
16 | 19
18
17
18
24 | 23
21
23
23
23
23
30 | 14
14
17
16
16 | 11
11
11
11
13
16 | 9.9
10
11
11
11 | 9.9
10
10
10
9.9 | | | TOTAL
MEAN
MAX
MIN | 54
18.0
19
17 | 522
17.4
19
14 | 452
14.6
21
13 | 355.0
11.5
14
9.0 | 269.6
9.63
11
9.0 | 457.2
14.7
23
9.0 | 567
18.9
24
15 | 1,129
36.4
62
21 | 580
19.3
28
13 | 425.7
13.7
21
9.7 | 397.6
12.8
22
9.2 | 317.0
10.6
19
8.9 | | | STATIST | ICS OF M | ONTHLY M | EAN DATA | A FOR WAT | ER YEARS | 2003 - 2003 | 3, BY WATE | ER YEAR (W | YY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) |

 | 17.4
17.4
(2003)
17.4
(2003) | 14.6
14.6
(2003)
14.6
(2003) | 11.5
11.5
(2003)
11.5
(2003) | 9.63
9.63
(2003)
9.63
(2003) | 14.7
14.7
(2003)
14.7
(2003) | 18.9
18.9
(2003)
18.9
(2003) | 36.4
36.4
(2003)
36.4
(2003) | 19.3
19.3
(2003)
19.3
(2003) | 13.7
13.7
(2003)
13.7
(2003) | 12.8
12.8
(2003)
12.8
(2003) | 10.6
10.6
(2003)
10.6
(2003) | | SUMMARY STATISTICS ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS FOR 2003 WATER YEAR (NOVEMBER-SEPTEMBER) | 16.4 | | |-------|-----------| | 62 | May 12 | | 8.9 | Sep 5 | | 9.0 | Jan 23 | | 70 | May 11-12 | | 13.11 | May 11-12 | | 23 | • | | 14 | | | 9.3 | | | | | ⁽e) Estimated due to ice effect or missing record #### 05426067 BARK RIVER AT NAGAWICKA ROAD AT DELAFIELD, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 2002 to September 2003. PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: November 2002 to September 2003. TOTAL-PHOSPHORUS DISCHARGE: November 2002 to September 2003. INSTRUMENTATION.--Refrigerated automatic pumping sampler since November 2002. REMARKS .-- Records good. #### EXTREMES FOR CURRENT PERIOD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 312 mg/L, May 1; minimum observed, 11 mg/L, Sept. 16. SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum daily, 17 tons, May 9; minimum daily, 0.14 ton, Sept. 30. TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.59 mg/L, May 1; minimum observed, <0.02 mg/L, Feb. 13. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 41.1 lb, May 9; minimum daily, 0.80 lb, Feb. 25-27 and Mar. 6-8. # SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--------------|--------------------------------------|--------------------------------------|--|---|---|--------------------------------------|---|--------------------------------------|---|--|--------------------------------------| | 1
2
3
4 |

 | 2.7
2.8
2.8
2.7 | e2.1
e2.1
2.1
2.2 | 1.7
1.8
1.7
1.7 | e0.62
e0.65
e0.62
e0.57 | e0.38
e0.37
e0.36
e0.36 | 1.6
1.8
e1.9
e2.1 | 15
3.7
2.2
e1.0 | e5.7
e5.3
4.8
3.9 | 0.82
0.78
0.73
0.72 | 1.9
1.2
e2.4
e1.5 | 0.65
0.63
0.61
0.59 | | 5 |
| 2.8 | 2.1 | 1.7 | e0.53 | e0.36 | e1.9 | e1.8 | 3.1 | 0.76 | 0.72 | 0.54 | | 6
7
8
9
10 |

 | 2.8
2.7
2.6
2.7
2.9 | 2.2
2.2
2.1
2.1
2.1 | 1.7
1.7
1.7
1.7
e1.6 | e0.52
e0.48
e0.45
e0.44
e0.41 | e0.35
e0.35
e0.35
e0.44
e0.66 | e1.7
1.3
1.1
1.0
1.0 | 0.98
3.5
5.7
17 | 2.5
e4.4
e5.9
e5.0
e4.9 | e3.3
e4.0
e2.9
1.7
1.5 | 0.68
0.76
0.74
0.67
0.66 | 0.56
0.54
0.51
0.53
0.52 | | 11
12
13
14
15 |

 | 3.1
3.0
2.9
2.9
2.9 | 2.1
2.1
2.1
2.1
2.1 | e1.4
e1.3
e1.3
e1.2
e1.1 | e0.41
e0.39
e0.40
e0.40
e0.40 | e0.99
e1.5
e2.2
e2.7
4.3 | 1.0
0.99
0.88
0.87
0.84 | 16
12
11
8.9
7.3 | e5.3
e5.0
e4.4
1.7
1.6 | 1.3
1.2
1.1
0.95
e3.7 | 0.66
0.66
0.65
0.62
0.63 | 0.48
0.51
0.67
2.5
0.98 | | 16
17
18
19
20 |

 | 2.8
2.7
2.7
2.9
2.9 | 2.1
2.0
e4.0
e3.7
e3.4 | e1.1
e1.0
e1.0
e1.0
e0.95 | e0.40
e0.40
e0.39
e0.40
e0.44 | 4.8
4.4
4.2
3.9
3.5 | 0.77
0.72
0.64
0.65
0.68 | 5.7
5.0
4.1
3.5
3.4 | 1.4
1.3
1.3
1.2
1.0 | e3.3
0.71
0.78
0.81
0.83 | 0.61
0.63
0.61
0.60
0.59 | 0.38
0.32
0.29
0.27
0.27 | | 21
22
23
24
25 |

 | 3.0
2.9
2.8
2.8
2.8 | 2.6
e2.3
e1.8
e1.8
e1.8 | e0.84
e0.81
e0.70
e0.68
e0.68 | e0.44
e0.40
e0.40
e0.38
e0.36 | 3.3
3.2
2.9
2.7
2.5 | 0.66
0.60
0.56
0.58
0.52 | 2.9
2.5
2.1
1.8
1.6 | 0.97
0.91
0.86
0.78
0.81 | 0.83
0.81
0.78
0.74
0.68 | 0.54
0.54
0.53
0.53
0.54 | 0.26
0.24
0.23
0.20
0.17 | | 26
27
28
29
30
31 |

 | e2.8
e2.7
e2.5
e2.3
e2.2 | e1.8
e1.7
e1.9
e1.8
e1.8 | e0.66
e0.63
e0.61
e0.60
e0.58
e0.62 | e0.36
e0.37
e0.39 | 2.2
2.1
2.3
2.1
1.9
1.8 | 0.52
0.49
0.45
0.46
2.1 | 1.4
1.2
1.2
1.2
1.2
e6.3 | 0.80
0.81
0.94
0.89
0.86 | 0.70
0.70
0.69
0.67
1.3
0.98 | 0.58
0.60
0.65
0.70
0.68
0.66 | 0.17
0.17
0.16
0.15
0.14 | | TOTAL | | 83.1 | 68.1 | 35.76 | 12.42 | 63.47 | 30.38 | 165.18 | 78.33 | 40.77 | 24.04 | 14.24 | e Estimated ## 05426067 BARK RIVER AT NAGAWICKA ROAD AT DELAFIELD, WI—Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|-------| | 1 | | 2.00 | e1.50 | 1.58 | e1.10 | e0.90 | 4.87 | 40.2 | 6.71 | 6.35 | 7.29 | 2.12 | | 2 | | 2.06 | e1.50 | 1.63 | e1.20 | e0.90 | e7.70 | 16.4 | 6.54 | 6.34 | 6.47 | 2.00 | | 3 | | 2.06 | 1.45 | 1.63 | e1.20 | e0.90 | e8.40 | 13.4 | 6.44 | 6.17 | e10.4 | 1.90 | | 4 | | 2.00 | 1.50 | 1.69 | e1.10 | e0.90 | e9.80 | 10.6 | 5.63 | 6.37 | e11.1 | 1.78 | | 5 | | 2.02 | 1.48 | 1.75 | e1.00 | e0.90 | e8.40 | e19.8 | 5.05 | 7.00 | 5.66 | 1.64 | | 6 | | 2.00 | 1.52 | 1.76 | e1.00 | e0.80 | e7.00 | 10.5 | 4.79 | e8.80 | 4.52 | 1.67 | | 7 | | 1.95 | 1.52 | 1.80 | e1.00 | e0.80 | e7.00 | 15.4 | e5.40 | e10.4 | 4.93 | 1.58 | | 8 | | 1.90 | 1.46 | 1.87 | e0.90 | e0.80 | e6.20 | 18.0 | e10.3 | 8.89 | 4.71 | 1.48 | | 9 | | 1.96 | 1.42 | 1.89 | e0.90 | e1.00 | e6.00 | 41.1 | e7.50 | 8.06 | 4.11 | 1.51 | | 10 | | 2.06 | 1.44 | e1.90 | e0.90 | e1.30 | e7.00 | 37.4 | e6.80 | 6.96 | 3.93 | 1.47 | | 11 | | 2.21 | 1.42 | e1.70 | e0.90 | e1.70 | e7.70 | 39.1 | e8.20 | 5.79 | 3.85 | 1.35 | | 12 | | 2.12 | 1.43 | e1.60 | e0.90 | e2.30 | e8.40 | 33.0 | 5.60 | 4.86 | 3.73 | 1.71 | | 13 | | 2.08 | 1.43 | e1.50 | e0.90 | e3.00 | e7.00 | 29.2 | 5.18 | 4.17 | 3.60 | e3.98 | | 14 | | 2.09 | 1.44 | e1.50 | e0.90 | e4.30 | e8.00 | 24.8 | 4.97 | 3.58 | 3.34 | e10.2 | | 15 | | 2.06 | 1.43 | e1.40 | e0.90 | e10.8 | 9.03 | 21.4 | 4.98 | e9.60 | 3.29 | e4.53 | | 16 | | 2.03 | 1.37 | e1.40 | e0.90 | e13.2 | 8.60 | 17.3 | 4.88 | e8.80 | 3.12 | 2.36 | | 17 | | 1.92 | 1.24 | e1.30 | e0.90 | e12.4 | 7.90 | 15.7 | 4.90 | 2.58 | 3.08 | 2.00 | | 18 | | 1.91 | e2.40 | e1.30 | e0.90 | 6.25 | 7.00 | 13.4 | 5.19 | 2.84 | 2.93 | 1.84 | | 19 | | 2.05 | e2.30 | e1.30 | e1.00 | 5.96 | 6.91 | 11.8 | 5.14 | 2.96 | 2.80 | 1.76 | | 20 | | 2.04 | e2.20 | e1.30 | e1.10 | 5.67 | 7.15 | 11.9 | 4.89 | 3.01 | 2.69 | 1.79 | | 21 | | 2.12 | e2.10 | e1.20 | e1.10 | 5.74 | 6.86 | 10.4 | 4.87 | 3.04 | 2.37 | 1.76 | | 22 | | 2.04 | e1.60 | e1.20 | e1.00 | 5.71 | 6.19 | 9.31 | 4.77 | 2.95 | 2.30 | 1.67 | | 23 | | 1.98 | e1.50 | e1.10 | e0.90 | 5.46 | 5.69 | 8.09 | 4.68 | 2.83 | 2.20 | 1.61 | | 24 | | 2.00 | e1.50 | e1.10 | e0.90 | 5.38 | 5.73 | 7.26 | 4.45 | 2.70 | 2.16 | 1.41 | | 25 | | 1.96 | e1.30 | e1.00 | e0.80 | 5.21 | 5.14 | 6.53 | 4.85 | 2.49 | 2.13 | 1.24 | | 26 | | e1.90 | e1.30 | e1.00 | e0.80 | 4.90 | 5.04 | 5.89 | 4.95 | 2.55 | 2.24 | 1.26 | | 27 | | e1.80 | e1.30 | e1.00 | e0.80 | 4.89 | 4.66 | 5.13 | 5.25 | 2.54 | 2.24 | 1.24 | | 28 | | e1.70 | e1.40 | e1.00 | e0.90 | e9.20 | 4.24 | e6.80 | 6.41 | 2.53 | 2.36 | 1.21 | | 29 | | e1.60 | 1.55 | e1.00 | | e9.00 | 4.22 | e6.80 | 6.32 | 2.44 | 2.49 | 1.17 | | 30 | | e1.50 | 1.57 | e1.00 | | 5.17 | 15.3 | e6.80 | 6.35 | 5.19 | 2.33 | 1.08 | | 31 | | | 1.59 | e1.10 | | 5.03 | | e11.7 | | 6.51 | 2.21 | | | TOTAL | | 59.12 | 48.16 | 43.50 | 26.80 | 140.47 | 213.13 | 525.11 | 171.99 | 159.30 | 120.58 | 62.32 | e Estimated 321 # $05426067\ \ BARK\ RIVER\ AT\ NAGAWICKA\ ROAD\ AT\ DELAFIELD,\ WI-Continued$ ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Discharge,
cfs
(00060) | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | Ortho-
phosphate,
water, fltrd,
mg/L as P
(00671) | Phosphorus, | Suspended
sediment
concentration
mg/L
(80154) | |-----------|--------------|------------------------------|--------------------------------------|--|---|----------------|---| | | | (00000) | (00001) | (02370) | (00071) | (00003) | (60154) | | OCT 2002 | 1500 | | 17 | 10 | | 0.022 | 60 | | 31
DEC | 1500 | | 17 | 10 | | 0.022 | 60 | | 16 | 1100 | | 14 | 10 | 0.004 | 0.019 | 56 | | JAN 2003 | 0025 | | 1.1 | 10 | | 0.025 | 4.5 | | 08
FEB | 0925 | | 14 | 10 | | 0.025 | 45 | | 13 | 1030 | 9.2 | | 10 | | 0.018 | 16 | | MAR | | | | | | | | | 13
APR | 1025 | 9.8 | | 10 | 0.008 | 0.060 | 88 | | 02 | 1400 | | 20 | 10 | | 0.059 | 37 | | 02 | 1405 | | 20 | 50 | | 0.108 | 175 | | 15
30 | 1445
1615 | | 19
31 | 10
50 | | 0.085 | 15
46 | | 30 | 1830 | | 29 | 50 | | 0.126
0.100 | 29 | | MAY | | | | | | | | | 01 | 0001 | | 45 | 50 | | 0.589 | 286 | | 01
01 | 0200
0400 | | 64
66 | 50
50 | 0.017 | 0.327
0.237 | 312
239 | | 01 | 0600 | | 63 | 50 | | 0.192 | 166 | | 01 | 1000 | | 52 | 50 | | 0.118 | 50 | | 01 | 1600 | | 45 | 50 | 0.007 | 0.093 | 31 | | 02
02 | 0001
0800 | | 45
42 | 50
50 | | 0.106
0.081 | 51
31 | | 02 | 1800 | | 39 | 50 | | 0.089 | 38 | | 05 | 1425 | | 34 | 10 | | 0.069 | 13 | | 05
07 | 1426
1530 | | 34
46 | 50
50 | | 0.083
0.108 | 23
58 | | 07 | 1730 | | 48 | 50 | | 0.100 | 67 | | 07 | 2330 | | 45 | 50 | | 0.104 | 63 | | 08 | 0530 | | 41 | 50 | | 0.092 | 53 | | 09
09 | 0045
0500 | | 43
63 | 50
50 | | 0.098
0.210 | 57
172 | | 09 | 0900 | | 66 | 50 | | 0.167 | 120 | | 09 | 1146 | | 64 | 10 | | 0.129 | 137 | | 09 | 1147 | | 64 | 50 | | 0.152 | 108 | | 09
10 | 2015
0515 | | 55
51 | 50
50 | | 0.143
0.152 | 114
108 | | 10 | 2315 | | 49 | 50 | | 0.172 | 148 | | 11 | 0515 | | 57 | 50 | | 0.167 | 144 | | 11
11 | 1115
1715 | | 52
62 | 50
50 | | 0.135
0.142 | 89
100 | | 11 | 2315 | | 69 | 50 | | 0.142 | 108 | | 12 | 0815 | | 67 | 50 | | 0.109 | 70 | | 13 | 0530 | | 57 | 50 | | 0.120 | 88 | | 14
JUN | 1745 | | 44 | 50 | | 0.113 | 72 | | 03 | 1020 | | 24 | 10 | | 0.052 | 82 | | JUL | | | | 4.0 | | 0.007 | | | 09
30 | 1315
1815 | | 14
17 | 10
50 | | 0.096
0.122 | 41
54 | | 30 | 2030 | | 21 | 50 | | 0.122 | 98 | | 30 | 2230 | | 19 | 50 | | 0.114 | 46 | | 31 | 0030
0430 | | 19
18 | 50
50 | | 0.108 | 35
25 | | 31
31 | 1155 | | 15 | 10 | | 0.111
0.076 | 23 | | AUG | | | | | | | | | 01 | 0600 | | 18 | 50 | | 0.127 | 77 | | 01
01 | 0800
1200 | | 19
19 | 50
50 | | 0.127
0.085 | 81
41 | | 02 | 0001 | | 18 | 50 | | 0.075 | 23 | | 02 | 1200 | | 19 | 50 | | 0.078 | 28 | | 03 | 0715 | | 18 | 50 | 0.041 | 0.080 | 26 | | 04
SEP | 1115 | | 22 | 10 | 0.041 | 0.093 | 17 | | 03 | 1030 | | 9.6 | 10 | | 0.037 | 24 | | 13 | 1230 | | 14 | 50 | | 0.118 | 53 | | 13
14 | 1600
1100 | | 12
20 | 50
50 | | 0.062
0.195 | 13
144 | | 14 | 1300 | | 30 | 50 | | 0.193 | 92 | | 14 | 1600 | | 26 | 50 | | 0.146 | 86 | | 14 | 1900 | | 21 | 50 | | 0.115 | 41 | | 14
15 | 2200
0100 | | 21
17 | 50
50 | | 0.134
0.092 | 85
36 | | 15 | 0400 | | 16 | 50 | | 0.082 | 35 | | 15 | 1000 | | 14 | 50 | | 0.077 | 37 | | 15
16 | 1930
1215 | | 13
12 | 50
10 | | 0.052
0.034 | 15
11 | | 10 | 1213 | | 12 | 10 | | 0.054 | | #### 05426070 BARK RIVER AT DELAFIELD, WI $LOCATION.--Lat\ 43^{\circ}03'46"\ long\ 88^{\circ}24'09",\ in\ SW\ {}^{1}\!\!/_{\!\!4}\ SW\ {}^{1}\!\!/_{\!\!4}\ sec.17,\ T.7\ N.,\ R.18\ E.,\ Waukesha\ County,\ Hydrologic\ Unit\ 07090001,\ on\ right\ bank\ about\ 200\ ft\ downstream\ from\ dam\ and\ 140\ ft\ upstream\ from\ County\ Highway\ C\ in\ Delafield.$ DRAINAGE AREA.--44.9 mi².
WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 2002 to September 2003. GAGE .-- Water-stage recorder. REMARKS.--Records good (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--|--|--|--|--|--|---|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 |

 | 14
13
13
13
13 | 17
16
16
16
16 | 16
16
16
16
16 | 15
15
15
15
15 | 2.5
2.6
2.5
2.4
2.3 | 20
20
19
19 | 24
30
30
30
31 | 18
25
29
23
14 | 6.9
7.2
7.4
7.6
7.7 | 39
38
36
27
21 | 2.8
2.7
3.2
2.2
2.0 | | | 6
7
8
9
10 |

 | 13
13
11
9.1
9.3 | 16
16
16
16
16 | 16
16
16
16
16 | 15
15
15
15
15 | 2.4
2.6
2.8
2.8
2.9 | 19
20
19
16
12 | 54
64
64
64
64 | 14
12
13
28
34 | 12
19
24
36
25 | 16
10
10
11
11 | 2.1
2.1
2.1
2.2
2.2 | | | 11
12
13
14
15 |

 | 8.7
8.3
8.1
8.3
8.2 | 16
16
16
16
16 | 16
16
16
16
16 | 15
15
15
15
15 | 2.9
3.0
3.1
13
46 | 11
11
11
12
14 | 65
84
77
49
48 | 34
22
16
16
16 | 11
11
10
10 | 11
11
7.2
4.9
4.6 | 2.1
2.0
2.1
11
22 | | | 16
17
18
19
20 |

 | 7.9
7.6
7.9
40
58 | 16
16
17
49
42 | 16
16
16
16
16 | 15
14
14
7.9
3.1 | 76
40
21
21
16 | 13
12
11
11
12 | 48
47
47
28
18 | 16
16
11
13
17 | 11
10
9.7
9.7
9.6 | 4.2
4.1
4.3
4.1
3.9 | 14
12
5.3
2.4
2.3 | | | 21
22
23
24
25 |

 | 58
57
57
56
56 | 16
16
16
16
16 | 16
16
16
15
16 | 3.2
2.9
2.7
2.6
2.6 | 11
11
11
8.5
6.9 | 11
9.9
10
9.9
9.7 | 18
18
18
18 | 11
7.7
7.7
7.2
7.3 | 7.6
4.3
4.2
4.3
4.4 | 3.6
3.3
3.2
3.1
3.2 | 2.3
2.4
2.5
2.5
2.4 | | | 26
27
28
29
30
31 |

 | 56
30
16
17
17 | 16
16
16
16
16 | 16
15
15
15
15
15 | 2.5
2.5
2.5
 | 6.0
5.8
16
20
20
20 | 9.1
9.1
9.1
8.9
8.9 | 17
17
17
17
17
18 | 7.8
4.9
1.8
6.0
7.3 | 4.5
4.4
4.1
3.7
3.4 | 3.4
3.2
3.0
3.0
2.9
2.8 | 2.4
2.4
2.3
2.3
2.3 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. |

 | 704.4
23.5
58
7.6
0.52
0.58 | 557
18.0
49
16
0.40
0.46 | 490
15.8
16
15
0.35
0.41 | 300.5
10.7
15
2.5
0.24
0.25 | 404.0
13.0
76
2.3
0.29
0.33 | 396.6
13.2
20
8.9
0.29
0.33 | 1,159
37.4
84
17
0.83
0.96 | 455.7
15.2
34
1.8
0.34
0.38 | 317.7
10.2
36
3.4
0.23
0.26 | 313.0
10.1
39
2.8
0.22
0.26 | 122.6
4.09
22
2.0
0.09
0.10 | | | STATIST | ICS OF M | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 2003 - 2003 | BY WATE | R YEAR (W | Y) | | | | | | MEAN
MAX
(WY)
MIN
(WY) |

 | 23.5
23.5
(2003)
23.5
(2003) | 18.0
18.0
(2003)
18.0
(2003) | 15.8
15.8
(2003)
15.8
(2003) | 10.7
10.7
(2003)
10.7
(2003) | 13.0
13.0
(2003)
13.0
(2003) | 13.2
13.2
(2003)
13.2
(2003) | 37.4
37.4
(2003)
37.4
(2003) | 15.2
15.2
(2003)
15.2
(2003) | 10.2
10.2
(2003)
10.2
(2003) | 10.1
10.1
(2003)
10.1
(2003) | 4.09
4.09
(2003)
4.09
(2003) | | #### SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (IN CHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS FOR 2003 WATER YEAR (NOVEMBER-SEPTEMBER) #### 05426070 BARK RIVER AT DELAFIELD, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 2002 to September 2003. PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: November 2002 to September 2003. TOTAL-PHOSPHORUS DISCHARGE: November 2002 to September 2003. REMARKS.--Records good. Samples collected using equal-width increment method (EWI) unless otherwise noted. #### EXTREMES FOR CURRENT PERIOD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 46 mg/L, Mar. 13; minimum observed, 2 mg/L, Aug. 4 and Sept. 3. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 8.0 tons, Mar. 16; minimum daily, 0.01 ton, on many days. TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.053 mg/L, Sept. 3; minimum observed, 0.008 mg/L, Feb. 13. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 5.99 lb, May 12; minimum daily, 0.12 lb, on many days. # SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--------------|--------------------------------------|--|--|--------------------------------------|---|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1
2
3
4
5 |

 | 1.3
1.2
1.2
1.2
1.1 | 0.97
0.95
0.93
0.91
0.90 | 0.27
0.26
0.24
0.23
0.21 | 0.16
0.16
0.16
0.16
0.16 | 0.09
0.10
0.11
0.12
0.12 | 0.88
0.83
0.78
0.81
0.84 | 1.1
1.3
1.3
1.2
1.3 | 1.5
2.2
2.7
2.0
1.2 | 0.19
0.19
0.18
0.18
0.17 | 0.28
0.25
0.21
0.15
0.12 | 0.01
0.01
0.02
0.01
0.01 | | 6
7
8
9
10 |

 | 1.1
1.1
0.94
0.76
0.77 | 0.87
0.86
0.83
0.82
0.81 | 0.20
0.19
0.18
0.18
0.18 | 0.16
0.16
0.16
0.16
0.16 | 0.14
0.17
0.20
0.23
0.26 | 0.88
0.96
0.98
0.84
0.67 | 2.4
3.1
3.3
3.5
2.8 | 1.1
0.95
0.96
2.0
2.3 | 0.25
0.40
0.47
0.68
0.47 | 0.09
0.05
0.05
0.06
0.06 | 0.01
0.01
0.01
0.01
0.01 | | 11
12
13
14
15 |

 | 0.71
0.67
0.64
0.64
0.62 | 0.79
0.78
0.77
0.76
0.74 | 0.18
0.18
0.18
0.17
0.17 | 0.16
0.16
0.16
0.17
0.17 | 0.29
0.33
0.38
1.5
5.0 | 0.65
0.66
0.68
0.80
0.90 | 2.3
2.4
2.2
1.5
1.5 | 2.2
1.4
0.93
0.90
0.86 | 0.19
0.18
0.17
0.16
0.17 | 0.06
0.06
0.04
0.03
0.03 | 0.01
0.01
0.01
0.06
0.12 | | 16
17
18
19
20 |

 | 0.59
0.56
0.57
2.8
4.1 | 0.73
0.70
0.67
1.8
1.5 | 0.17
0.17
0.17
0.17
0.17 | 0.17
0.16
0.16
0.09
0.04 | 8.0
4.0
2.0
1.9
1.3 | 0.85
0.76
0.72
0.69
0.69 | 1.6
1.7
1.8
1.1
0.77 | 0.83
0.81
0.54
0.61
0.75 | 0.17
0.15
0.13
0.13
0.12 | 0.02
0.02
0.02
0.02
0.02 | 0.07
0.07
0.03
0.01
0.01 | | 21
22
23
24
25 |

 | 4.0
3.9
3.8
3.7
3.6 | 0.55
0.51
0.48
0.45
0.43 | 0.17
0.17
0.17
0.17
0.17 | 0.05
0.05
0.05
0.05
0.06 | 0.85
0.82
0.76
0.57
0.44 | 0.63
0.56
0.55
0.53
0.51 | 0.81
0.84
0.88
0.93
0.97 | 0.46
0.31
0.30
0.26
0.26 | 0.09
0.05
0.05
0.05
0.05 | 0.02
0.02
0.02
0.02
0.02 | 0.01
0.01
0.01
0.01
0.01 | | 26
27
28
29
30
31 |

 | 3.5
1.9
1.0
1.0 | 0.40
0.38
0.35
0.33
0.31
0.29 | 0.17
0.17
0.17
0.17
0.16
0.17 | 0.06
0.07
0.08
 | 0.36
0.33
0.87
1.0
0.97
0.92 | 0.46
0.45
0.44
0.42
0.41 | 1.0
1.1
1.1
1.2
1.2
1.4 | 0.26
0.16
0.06
0.18
0.21 | 0.04
0.04
0.04
0.03
0.03
0.14 | 0.02
0.02
0.02
0.02
0.02
0.02 | 0.01
0.01
0.01
0.01
0.01 | | TOTAL | | 49.97 | 22.57 | 5.73 | 3.51 | 34.13 | 20.83 | 49.60 | 29.20 | 5.36 | 1.86 | 0.61 | ### 05426070 BARK RIVER AT DELAFIELD, WI-Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--------------|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--
--------------------------------------| | 1
2
3
4
5 |

 | 0.81
0.77
0.76
0.76
0.76 | 1.04
1.03
1.03
1.03
1.04 | 1.06
1.06
1.06
1.06
1.06 | 0.75
0.74
0.74
0.72
0.71 | 0.12
0.13
0.12
0.12
0.12 | 1.51
1.53
1.41
1.41
1.41 | 1.68
2.15
2.11
2.11
2.21 | 1.50
2.17
2.55
2.00
1.20 | 0.65
0.68
0.70
0.73
0.74 | 3.50
3.36
3.14
2.36
1.84 | 0.22
0.22
0.26
0.18
0.16 | | 6
7
8
9
10 |

 | 0.77
0.77
0.66
0.55
0.56 | 1.03
1.02
1.02
1.02
1.02 | 1.06
1.07
1.06
1.04
1.03 | 0.71
0.70
0.69
0.68
0.67 | 0.12
0.13
0.14
0.15
0.15 | 1.42
1.48
1.46
1.21
0.91 | 4.09
5.13
5.47
5.79
5.38 | 1.20
1.08
1.15
2.46
3.00 | 1.14
1.84
2.29
3.48
2.46 | 1.39
0.87
0.87
0.92
0.92 | 0.17
0.17
0.17
0.18
0.18 | | 11
12
13
14
15 |

 | 0.53
0.51
0.49
0.51
0.50 | 1.02
1.02
1.03
1.03
1.03 | 1.02
1.01
1.00
0.97
0.95 | 0.67
0.66
0.65
0.66
0.66 | 0.15
0.16
0.17
0.71
2.56 | 0.85
0.83
0.83
0.93
1.02 | 5.00
5.99
5.44
3.47
3.49 | 3.05
1.96
1.39
1.43
1.43 | 1.04
1.02
0.99
1.00
1.07 | 0.92
0.92
0.61
0.41
0.39 | 0.17
0.16
0.17
0.84
1.70 | | 16
17
18
19
20 |

 | 0.48
0.47
0.48
2.45
3.59 | 1.03
1.05
1.08
3.16
2.74 | 0.95
0.94
0.92
0.91
0.90 | 0.67
0.63
0.62
0.36
0.14 | 4.31
2.28
1.22
1.25
0.96 | 0.97
0.89
0.86
0.84
0.86 | 3.50
3.47
3.49
2.07
1.38 | 1.44
1.46
1.03
1.23
1.57 | 1.09
0.99
0.92
0.92
0.90 | 0.36
0.34
0.36
0.34
0.32 | 1.06
0.96
0.41
0.18
0.18 | | 21
22
23
24
25 |

 | 3.57
3.52
3.51
3.48
3.49 | 1.06
1.06
1.06
1.06
1.06 | 0.89
0.88
0.86
0.84
0.83 | 0.15
0.13
0.13
0.12
0.12 | 0.66
0.68
0.68
0.55
0.46 | 0.80
0.73
0.73
0.72
0.70 | 1.39
1.37
1.37
1.39
1.39 | 1.00
0.71
0.71
0.67
0.68 | 0.72
0.41
0.39
0.40
0.41 | 0.30
0.27
0.26
0.26
0.26 | 0.18
0.19
0.19
0.19
0.18 | | 26
27
28
29
30
31 |

 | 3.46
1.87
1.03
1.05
1.06 | 1.06
1.06
1.06
1.06
1.06
1.06 | 0.82
0.81
0.80
0.79
0.77
0.77 | 0.12
0.12
0.12
 | 0.40
0.39
1.12
1.42
1.44
1.46 | 0.66
0.66
0.64
0.64 | 1.39
1.39
1.38
1.41
1.40
1.51 | 0.72
0.46
0.17
0.56
0.69 | 0.42
0.41
0.38
0.34
0.31
1.56 | 0.28
0.27
0.25
0.25
0.24
0.23 | 0.18
0.18
0.17
0.18
0.17 | | TOTAL | | 43.22 | 36.13 | 29.19 | 13.84 | 24.33 | 29.57 | 88.81 | 40.67 | 30.40 | 27.01 | 9.55 | ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | _ | | | | | | | |----------|------|--------------------------------------|-------------------------------|--|---|---| | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, unfltrd mg/L (00665) | Suspended sediment concentration mg/L (80154) | | OCT 2002 | | | | | | | | 31 | 1400 | 14 | 10 | | 0.011 | 36 | | DEC | | | | | | | | 16 | 1305 | 16 | 10 | | 0.012 | 17 | | JAN 2003 | | | | | | | | 08 | 1115 | 16 | 10 | | 0.012 | 4 | | FEB | | | | | | | | 13 | 1225 | 15 | 10 | | 0.008 | 4 | | MAR | | | | | | | | 13 | 1150 | 3.1 | 10 | | 0.010 | 46 | | APR | 1550 | 20 | 10 | | 0.014 | 1.5 | | 02
15 | 1550 | 20 | 10 | | 0.014 | 15 | | MAY | 1600 | 13 | 10 | | 0.014 | 25 | | 05 | 1305 | 31 | 10 | | 0.013 | 15 | | 09 | 1045 | 64 | 10 | | 0.013 | 21 | | 12 | 1305 | 94 | 10 | | 0.017 | 10 | | JUN | 1303 | 74 | 10 | | 0.013 | 10 | | 03 | 1205 | 30 | 10 | | 0.016 | 34 | | JUL | | | | | | | | 09 | 1515 | 36 | 10 | | 0.018 | 7 | | 31 | 1300 | 9.2 | 10 | | 0.017 | 3 | | AUG | | | | | | | | 04 | 1245 | 22 | 10 | 0.004 | 0.016 | 2 | | SEP | 1000 | | | | 0.050 | | | 03 | 1230 | 3.3 | 70 | | 0.053 | 2 | | | | | | | | | #### 430347088240800 NAGAWICKA LAKE AT DELAFIELD, WI LOCATION.--Lat 43°03'47", long 88°24'08", in SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.17, T.7 N., R.18 E., Waukesha County, Hydrologic Unit 07090001, on dike of Nagawicka Lake dam about 120 ft west of gates in Delafield. DRAINAGE AREA.--44.9 mi². Area of Nagawicka Lake, 917 acres. #### GAGE-HEIGHT RECORD PERIOD OF RECORD.--October 2002 to September 2003. GAGE .-- Water-stage recorder. REMARKS.--Gage established Oct. 29, 2002. Lake levels controlled by city of Delafield. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 8.48 ft, May 11, affected by wind; minimum gage height, 7.57 ft, Feb. 18, 19. | | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | |------|--|-------|------|------|------|------|------|------|------|------|------|------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | | | 7.90 | 7.88 | 7.66 | 7.81 | 8.13 | 8.38 | 8.37 | 8.30 | 8.30 | 8.23 | | | | 2 | | | 7.91 | 7.87 | 7.66 | 7.83 | 8.14 | 8.39 | 8.36 | 8.29 | 8.25 | 8.22 | | | | 3 | | | 7.90 | 7.87 | 7.67 | 7.85 | 8.15 | 8.37 | 8.34 | 8.28 | 8.26 | 8.21 | | | | 4 | | | 7.90 | 7.86 | 7.67 | 7.88 | 8.17 | 8.36 | 8.32 | 8.29 | 8.31 | 8.21 | | | | 5 | | | 7.90 | 7.87 | 7.66 | 7.92 | 8.14 | 8.40 | 8.30 | 8.31 | 8.29 | 8.19 | | | | 6 | | | 7.89 | 7.87 | 7.65 | 7.95 | 8.15 | 8.38 | 8.30 | 8.35 | 8.28 | 8.18 | | | | 7 | | | 7.89 | 7.86 | 7.65 | 7.98 | 8.19 | 8.36 | 8.30 | 8.41 | 8.31 | 8.20 | | | | 8 | | | 7.89 | 7.86 | 7.63 | 8.01 | 8.16 | 8.34 | 8.36 | 8.40 | 8.31 | 8.21 | | | | 9 | | | 7.89 | 7.86 | 7.63 | 8.03 | 8.13 | 8.38 | 8.37 | 8.37 | 8.30 | 8.21 | | | | 10 | | | 7.88 | 7.85 | 7.62 | 8.05 | 8.13 | 8.38 | 8.34 | 8.31 | 8.29 | 8.21 | | | | 11 | | | 7.88 | 7.84 | 7.62 | 8.07 | 8.15 | 8.37 | 8.35 | 8.29 | 8.29 | 8.21 | | | | 12 | | | 7.88 | 7.83 | 7.62 | 8.09 | 8.16 | 8.42 | 8.32 | 8.29 | 8.29 | 8.21 | | | | 13 | | | 7.88 | 7.82 | 7.61 | 8.12 | 8.16 | 8.36 | 8.31 | 8.27 | 8.27 | 8.26 | | | | 14 | | | 7.88 | 7.81 | 7.61 | 8.13 | 8.14 | 8.36 | 8.31 | 8.26 | 8.27 | 8.35 | | | | 15 | | | 7.88 | 7.80 | 7.59 | 8.10 | 8.15 | 8.37 | 8.30 | 8.30 | 8.28 | 8.37 | | | | 16 | | | 7.89 | 7.79 | 7.58 | 8.02 | 8.24 | 8.35 | 8.29 | 8.31 | 8.28 | 8.34 | | | | 17 | | | 7.89 | 7.78 | 7.58 | 7.97 | 8.20 | 8.34 | 8.26 | 8.30 | 8.28 | 8.33 | | | | 18 | | e8.40 | 7.93 | 7.77 | 7.58 | 7.98 | 8.18 | 8.31 | 8.26 | 8.28 | 8.27 | 8.31 | | | | 19 | | 8.39 | 7.94 | 7.76 | 7.58 | 8.00 | 8.17 | 8.28 | 8.30 | 8.24 | 8.26 | 8.30 | | | | 20 | | 8.32 | 7.88 | 7.75 | 7.61 | 8.00 | 8.19 | 8.32 | 8.26 | 8.23 | 8.25 | 8.30 | | | | 21 | | 8.27 | 7.88 | 7.74 | 7.63 | 8.02 | 8.21 | 8.34 | 8.24 | 8.23 | 8.25 | 8.30 | | | | 22 | | 8.20 | 7.88 | 7.73 | 7.66 | 8.05 | 8.22 | 8.34 | 8.23 | 8.23 | 8.26 | 8.31 | | | | 23 | | 8.12 | 7.87 | 7.71 | 7.67 | 8.06 | 8.23 | 8.34 | 8.22 | 8.22 | 8.25 | 8.31 | | | | 24 | | 8.06 | 7.88 | 7.71 | 7.70 | 8.07 | 8.23 | 8.34 | 8.22 | 8.21 | 8.21 | 8.31 | | | | 25 | | 8.00 | 7.88 | 7.71 | 7.72 | 8.09 | 8.23 | 8.33 | 8.23 | 8.19 | 8.22 | 8.29 | | | | 26 | | 7.94 | 7.88 | 7.69 | 7.75 | 8.11 | 8.21 | 8.32 | 8.25 | 8.17 | 8.23 | 8.29 | | | | 27 | | 7.91 | 7.87 | 7.68 | 7.77 | 8.14 | 8.19 | 8.30 | 8.24 | 8.20 | 8.24 | 8.29 | | | | 28 | | 7.91 | 7.87 | 7.68 | 7.79 | 8.16 | 8.19 | 8.30 | 8.29 | 8.19 | 8.21 | 8.29 | | | | 29 | e8.32 | 7.90 | 7.87 | 7.67 | | 8.16 | 8.20 | 8.32 | 8.30 | 8.19 | 8.24 | 8.29 | | | | 30 | 8.31 | 7.91 | 7.87 | 7.66 | | 8.14 | 8.23 | 8.31 | 8.30 | 8.22 | 8.24 | 8.28 | | | | 31 | e8.30 | | 7.88 | 7.66 | | 8.13 | | 8.39 | | 8.32 | 8.23 | | | | | MEAN | | | 7.89 | 7.78 | 7.65 | 8.03 | 8.18 | 8.35 | 8.29 | 8.27 | 8.27 | 8.27 | | | | MAX | | | 7.94 | 7.88 | 7.79 | 8.16 | 8.24 | 8.42 | 8.37 | 8.41 | 8.31 | 8.37 | | | | MIN | | | 7.87 | 7.66 | 7.58 | 7.81 | 8.13 | 8.28 | 8.22 | 8.17 | 8.21 | 8.18 | | | e Estimated ### 430347088240800 NAGAWICKA LAKE AT DELAFIELD, WI-Continued #### PRECIPITATION QUANTITY PERIOD OF RECORD.-October 2002 to September 2003 (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established October 29, 2002. Rain gage covered Dec. 4 to Mar. 18. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.99 in., July 30. # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|-----|-----|------|------|------|------|------|------|------| | 1 | | | 0.00 | | | | 0.00 | 0.23 | 0.00 | 0.00 | 0.10 | 0.00 | | 2 | | | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | 3 | | | 0.00 | | | | 0.01 | 0.00 | 0.10 | 0.00 | 0.82 | 0.00 | | 4 | | | 0.00 | | | | 0.19 | 0.31 | 0.00 | 0.25 | 0.00 | 0.00 | | 5 | | | | | | | 0.00 | 0.32 | 0.00 | 0.34 | 0.00 | 0.00 | | 6 | | | | | | | 0.00 | 0.00 | 0.02 | 0.73 | 0.19 | 0.00 | | 7 | | | | | | | 0.00 | 0.60 | 0.00 | 0.01 | 0.11 | 0.00 | | 8 | | | | | | | 0.00 | 0.01 | 0.82 | 0.00 | 0.00 | 0.00 | | 9 | | | | | | | 0.00 | 0.84 | 0.00 | 0.01 | 0.00 | 0.00 | | 10 | | | | | | | 0.00 | 0.11 | 0.07 | 0.03 | 0.00 | 0.00 | | 11 | | | | | | | 0.00 | 0.98 | 0.00 | 0.01 | 0.00 | 0.00 | | 12 | | | | | | | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.30 | | 13 | | | | | | | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.58 | | 14 | | | | | | | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 1.14 | | 15 | | | | | | | 0.00 | 0.00 | 0.00 | 0.74 |
0.00 | 0.00 | | 16 | | | | | | | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.00 | | 17 | | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | | | | | | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | | 19 | | 0.00 | | | | 0.03 | 0.28 | 0.11 | 0.00 | 0.00 | 0.00 | 0.01 | | 20 | | 0.01 | | | | 0.00 | 0.12 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | | 0.22 | | | | 0.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.05 | | 22 | | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | | 23 | | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 25 | | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.35 | 0.00 | 0.08 | 0.00 | | 26 | | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.14 | | 27 | | 0.00 | | | | 0.01 | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 0.01 | | 28 | | 0.00 | | | | 0.40 | 0.00 | 0.35 | 0.18 | 0.00 | 0.21 | 0.00 | | 29 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.04 | | 30 | 0.00 | 0.00 | | | | 0.00 | 1.43 | 0.73 | 0.00 | 1.99 | 0.00 | 0.00 | | 31 | 0.00 | | | | | 0.06 | | 0.01 | | 0.05 | 0.00 | | | TOTAL | | | | | | | 2.08 | 5.00 | 1.96 | 4.21 | 1.74 | 2.49 | ### 05426250 BARK RIVER NEAR ROME, WI LOCATION.--Lat 42°57'37" long 88°40'14", in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.24, T.6 N., R.15 E., Jefferson County, Hydrologic Unit 07090001, on left bank just upstream from bridge on Cushman Road, 2.8 mi southwest of Rome. DRAINAGE AREA.--122 mi². PERIOD OF RECORD.--October 1979 to September 1982. October 1982 to September 1983 (fragmentary). October 1983 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 810 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | | | DISCHA | ARGE, CUB | IC FEET PE | |) , WATER `
LY MEAN \ | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|---|---|---|---|---|---|--|---|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 52
76
93
134
113 | 68
57
54
48
48 | e59
55
52
49
46 | e41
e40
e38
e37
e38 | 29
27
29
28
e27 | e20
e19
e19
e17
e17 | 72
81
79
72
65 | 80
111
113
102
106 | 94
89
85
81
74 | 22
22
23
22
23 | 23
23
27
29
25 | 15
14
13
13
12 | | 6
7
8
9
10 | 106
91
86
84
81 | 45
46
45
47
47 | 44
e43
42
43
39 | e40
e41
e42
43
39 | e26
e26
e26
e26
e26 | e16
e17
e17
e17
e22 | 71
69
63
58
49 | 101
112
133
188
199 | 71
72
74
73
71 | 28
33
42
59
62 | 26
31
33
29
28 | 12
12
11
11
11 | | 11
12
13
14
15 | 69
54
51
54
53 | 46
44
46
45
44 | 40
40
41
43
44 | e37
e35
e34
e34 | e27
e27
e27
e27
e27 | e25
27
24
24
29 | 43
47
60
53
46 | 176
171
179
174
167 | 69
60
55
54
50 | 50
47
43
34
25 | 29
28
27
27
27 | 11
11
11
13
14 | | 16
17
18
19
20 | 52
53
52
50
51 | 44
40
40
41
43 | 42
41
48
55
54 | e33
e33
e32
e32
e31 | e27
e28
e27
e27
e27 | 31
36
54
61
72 | 59
62
52
54
57 | 143
120
122
123
126 | 49
46
45
54
53 | 24
38
48
40
37 | 27
27
25
23
22 | 15
16
17
18
17 | | 21
22
23
24
25 | 50
46
46
46
49 | 45
46
51
54
55 | 51
e48
e46
e45
e43 | e30
e29
e28
e29
e30 | e26
e25
e24
e23
e23 | 71
64
61
49
34 | 55
57
59
55
53 | 123
105
90
89
88 | 44
38
35
29
17 | 31
23
22
18
19 | 22
21
20
19
18 | 17
18
17
17
17 | | 26
27
28
29
30
31 | 48
46
46
48
47
56 | 58
60
62
66
61 | e43
e43
e43
e43
e42
e42 | e30
e30
e30
e30
e31
e30 | e22
e21
e21
 | 36
37
35
38
44
52 | 49
44
36
28
35 | 84
75
68
69
83
93 | 15
15
19
21
21 | 20
19
18
18
19
22 | 16
16
15
15
15 | 18
17
16
16
17 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,983
64.0
134
46
0.52
0.60 | 1,496
49.9
68
40
0.41
0.46 | 1,409
45.5
59
39
0.37
0.43 | 1,061
34.2
43
28
0.28
0.32 | 726
25.9
29
21
0.21
0.22 | 1,085
35.0
72
16
0.29
0.33 | 1,683
56.1
81
28
0.46
0.51 | 3,713
120
199
68
0.98
1.13 | 1,573
52.4
94
15
0.43
0.48 | 951
30.7
62
18
0.25
0.29 | 728
23.5
33
15
0.19
0.22 | 437
14.6
18
11
0.12
0.13 | | STATIST | TICS OF MO | | | FOR WATE | | 1980 - 2003 | | R YEAR (W | , | | | | | MEAN
MAX
(WY)
MIN
(WY) | 71.6
214
(1987)
23.6
(1989) | 89.7
214
(1986)
47.6
(2000) | 79.5
138
(1986)
34.2
(1990) | 66.0
105
(1985)
34.2
(2003) | 81.5
137
(1999)
25.9
(2003) | 123
248
(1986)
35.0
(2003) | 146
327
(1993)
56.1
(2003) | 111
180
(1993)
48.1
(1989) | 81.7
200
(1996)
13.3
(1988) | 64.4
176
(1993)
7.66
(1988) | 64.4
127
(1995)
6.04
(1988) | 68.4
212
(1986)
14.6
(2003) | | SUMMA | RY STATIS | STICS | 1 | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 198 | 30 - 2003 | | ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL MAXIMI ANNUAL ANNUAL 10 PERC | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | | | .8 Apr
Aug
Jul | 11 | 19
1
21
2 | 46.2
99 Ma
11 Sej
11 Sej
10 Ma | y 10
p 8-13
p 7
y 9
y 9 | 2 | 3.6 Au
3.8 Au
476 A _I | 1993
2003
2003
or 20, 1993
ig 4, 1988
g 1, 1988
or 20, 1993
or 20, 1993 | | ⁽e) Estimated due to ice effect or missing record ### 05427085 ROCK RIVER AT ROBERT STREET AT FORT ATKINSON, WI LOCATION.--Lat 42°55'39", long 88°50'34", in SW $^{1}\!\!/_{\!\!4}$ NE $^{1}\!\!/_{\!\!4}$ sec.4, T.5 N., R.14 E., Jefferson County, Hydrologic Unit 07090001, on upstream center of Robert Street bridge at Fort Atkinson. DRAINAGE AREA.--2,240 mi². PERIOD OF RECORD.--October 1998 to current year. GAGE.--Accoustical Velocity Meter (AVM) system. Single-path transducer installation. Datum of gage is 775.09 ft above NGVD of 1929 (levels by the City of Fort Atkinson). REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC IAN EER MAR APP MAY HIN HIL AUG SEP | | | | | | | | | | | | |---|---|---|--|--|--|---|---|--|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 423
528
558
643
941 | 571
599
593
599
576 | e500
e480
e440
e450
e450 | e380
e420
e410
e390
e420 | e230
e240
e270
e280
e250 | e270
e270
e270
e270
e260 | 929
929
869
865
929 | 1,240
1,730
1,890
1,940
1,950 | 1,260
1,180
1,260
1,240
1,100 | 478
444
416
397
422 | 276
270
263
327
384 | 140
148
151
145
165 | | 6
7
8
9
10 | 840
951
881
864
790 | 565
527
585
595
597 | e410
e390
e410
e390
e400 | e420
e410
e420
e420
e330 | e250
e240
e220
e220
e230 | e280
e290
e290
e280
e270 | 974
1,050
1,080
1,040
1,010 | 2,030
2,000
2,040
2,240
2,490 | 1,040
977
958
844
770 | 437
458
473
499
479 | 428
528
476
453
423 | 136
123
132
123
127 | | 11
12
13
14
15 | 718
629
576
516
482 | 648
589
574
636
644 |
e420
e420
e430
e420
e450 | e320
e330
e330
e300
e280 | e240
e240
e240
e220
e210 | e270
e310
e320
e340
e400 | 981
955
883
734
699 | 2,310
2,850
2,900
2,850
2,820 | 949
1,010
1,010
1,060
1,050 | 510
487
453
419
547 | 363
324
294
259
279 | 115
108
173
240
301 | | 16
17
18
19
20 | 474
474
439
505
493 | 626
611
601
591
607 | e430
e410
e430
e480
e490 | e270
e260
e250
e230
e230 | e210
e230
e250
e250
e250 | 524
592
721
856
890 | 830
761
770
759
772 | 2,710
2,610
2,520
2,400
2,450 | 996
939
888
809
649 | 577
557
517
471
432 | 252
211
215
208
200 | 301
307
312
306
319 | | 21
22
23
24
25 | 484
511
506
482
494 | 622
620
583
617
624 | e480
e470
e480
e480
e480 | e230
e230
e220
e220
e220 | e280
e300
e280
e300
e280 | 904
961
918
969
1,070 | 1,030
1,120
1,130
1,170
1,190 | 2,410
2,320
2,240
2,140
1,990 | 526
535
502
468
413 | 420
394
335
302
301 | 242
160
161
149
191 | 255
254
268
227
231 | | 26
27
28
29
30
31 | 522
538
536
541
542
564 | 570
594
586
622
605 | e480
e470
e470
e450
e440
e420 | e230
e220
e220
e220
e220
e220 | e270
e260
e260
 | 1,000
825
756
878
872
900 | 1,100
923
860
757
727 | 1,830
1,510
1,490
1,440
1,240
1,250 | 418
450
485
530
500 | 241
277
230
259
220
253 | 183
152
122
167
137
151 | 188
207
219
196
211 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 18,445
595
951
423
0.27
0.31 | 17,977
599
648
527
0.27
0.30 | 13,820
446
500
390
0.20
0.23 | 9,270
299
420
220
0.13
0.15 | 7,000
250
300
210
0.11
0.12 | 18,026
581
1,070
260
0.26
0.30 | 27,826
928
1,190
699
0.41
0.46 | 65,830
2,124
2,900
1,240
0.95
1.09 | 24,816
827
1,260
413
0.37
0.41 | 12,705
410
577
220
0.18
0.21 | 8,248
266
528
122
0.12
0.14 | 6,128
204
319
108
0.09
0.10 | | STATIST | ΓICS OF MO | ONTHLY M | EAN DATA | FOR WATI | ER YEARS | 1999 - 2003. | , BY WATE | R YEAR (W | /Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | MAX 1,418 1,408 1,427
(WY) (2002) (2002) (2002)
MIN 595 565 446 | | | | 1,436
2,469
(1999)
250
(2003) | 1,895
3,048
(2001)
581
(2003) | 2,355
3,590
(2001)
928
(2003) | 2,635
3,428
(1999)
2,013
(2002) | 2,673
4,887
(2000)
827
(2003) | 979
1,547
(1999)
410
(2003) | 790
1,960
(1999)
266
(2003) | 690
1,548
(2001)
204
(2003) | | SUMMARY STATISTICS FOR 2002 CA | | | | | ALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 199 | 9 - 2003 | | ANNUA
HIGHES
LOWEST
HIGHES
LOWEST
ANNUA
ANNUA
10 PERC
50 PERC | T ANNUAL
Γ ANNUAL
Τ DAILY M
Γ DAILY M | MEAN IEAN EAN OAY MINIM (CFSM) (INCHES) EDS EDS | UM | | Mar
Aug
Sep
0.55
7.48 | 12 | | 00 May
00 May
08 Sep
03 Sep
0.28
33.82
0 | y 13
o 12
o 6 | 7,7
1
1
3,0
9 | 04
30
40 Ju
08 Se
23 Se
0.62
8.44 | 1999
2003
n 3, 2000
p 12, 2003
p 6, 2003 | ⁽e) Estimated due to ice effect or missing record ### 05427235 LAKE KOSHKONONG NEAR NEWVILLE, WI LOCATION.--Lat 42°51'27", long 88°56'27", in NW $^{1}\!\!/_{4}$ NE $^{1}\!\!/_{4}$ sec.34, T.5 N., R.13 E., Jefferson County, Hydrologic Unit 07090001, 80 ft east of Pottawatomi Trail Bridge at Bingham Point Estates, and 4.5 mi northeast of Newville. DRAINAGE AREA.--2,560 mi², at lake outlet. Area of Lake Koshkonong, 16.3 mi². PERIOD OF RECORD .-- July 1987 to current year. GAGE.--Water-stage recorder. Datum of gage is 770.00 ft above NGVD of 1929 (Wisconsin Department of Transportation bench mark). REMARKS.--Lake level regulated by dam at Indianford. Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum recorded gage height, 12.23 ft, Apr. 25, 1993; minimum recorded, 5.10 ft, Dec. 28, 29, 1999. EXTREMES FOR CURRENT YEAR .-- Maximum recorded gage height, 7.53 ft, May 20; minimum daily gage height, 5.31 ft, Jan. 28, 30, and 31. | | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | | | |------|---|------|--------------|--------------|-------|-------|------|------|------|------|------|------|--|--|--| | | DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | | 1 | 6.45 | 5.56 | 5.58 | 5.71 | e5.32 | e5.41 | 5.65 | 6.39 | 6.39 | 6.27 | 6.06 | 5.85 | | | | | 2 | 6.46 | 5.49 | 5.60 | 5.70 | e5.33 | e5.41 | 5.62 | 6.46 | 6.30 | 6.26 | 6.06 | 5.85 | | | | | 3 | 6.41 | 5.44 | 5.60 | 5.70 | e5.35 | e5.41 | 5.56 | 6.50 | 6.27 | 6.25 | 6.05 | 5.87 | | | | | 4 | 6.46 | 5.42 | 5.59 | 5.69 | e5.37 | e5.42 | 5.58 | 6.53 | 6.26 | 6.27 | 6.05 | 5.86 | | | | | 5 | 6.47 | 5.38 | 5.59 | 5.70 | e5.36 | e5.44 | 5.59 | 6.65 | 6.23 | 6.29 | 6.06 | 5.85 | | | | | 6 | 6.48 | 5.38 | 5.58 | 5.70 | e5.36 | e5.47 | 5.53 | 6.69 | 6.22 | 6.29 | 6.07 | 5.85 | | | | | 7 | 6.45 | 5.39 | 5.57 | 5.70 | e5.36 | e5.48 | 5.52 | 6.72 | 6.22 | 6.31 | 6.08 | 5.85 | | | | | 8 | 6.38 | 5.43 | 5.56 | 5.70 | e5.35 | e5.49 | 5.57 | 6.74 | 6.24 | 6.34 | 6.09 | 5.85 | | | | | 9 | 6.33 | 5.42 | 5.55 | 5.67 | e5.35 | e5.50 | 5.58 | 6.85 | 6.23 | 6.35 | 6.09 | 5.85 | | | | | 10 | 6.27 | 5.45 | 5.53 | 5.61 | e5.35 | e5.49 | 5.58 | 6.95 | 6.18 | 6.36 | 6.10 | 5.85 | | | | | 11 | 6.24 | 5.45 | 5.52 | 5.54 | e5.36 | e5.49 | 5.59 | 7.13 | 6.22 | 6.33 | 6.11 | 5.83 | | | | | 12 | 6.25 | 5.45 | 5.51 | 5.48 | e5.37 | e5.50 | 5.59 | 7.24 | 6.26 | 6.25 | 6.08 | 5.82 | | | | | 13 | 6.25 | 5.43 | 5.49 | 5.42 | e5.36 | e5.51 | 5.57 | 7.30 | 6.30 | 6.20 | 6.06 | 5.89 | | | | | 14 | 6.19 | 5.45 | 5.47 | 5.40 | e5.35 | e5.52 | 5.54 | 7.36 | 6.34 | 6.16 | 6.05 | 6.04 | | | | | 15 | 6.19 | 5.44 | 5.46 | 5.38 | e5.34 | e5.56 | 5.57 | 7.41 | 6.37 | 6.29 | 6.05 | 6.06 | | | | | 16 | 6.15 | 5.42 | 5.46 | 5.36 | e5.34 | e5.60 | 5.58 | 7.43 | 6.38 | 6.30 | 6.03 | 6.07 | | | | | 17 | 6.12 | 5.41 | 5.45 | 5.34 | e5.35 | 5.64 | 5.62 | 7.44 | 6.36 | 6.32 | 6.01 | 6.06 | | | | | 18 | 6.09 | 5.40 | 5.48 | 5.34 | e5.36 | 5.72 | 5.73 | 7.42 | 6.32 | 6.31 | 5.98 | 6.07 | | | | | 19 | 6.10 | 5.42 | 5.53 | 5.34 | e5.36 | 5.78 | 5.82 | 7.40 | 6.29 | 6.30 | 5.95 | 6.13 | | | | | 20 | 6.04 | 5.43 | 5.57 | 5.34 | e5.36 | 5.85 | 6.00 | 7.45 | 6.26 | 6.29 | 5.93 | 6.11 | 21 | 6.00 | 5.48 | 5.61
5.64 | 5.34
5.34 | e5.38 | 5.90 | 6.15 | 7.38 | 6.22 | 6.35 | 5.94 | 6.10 | | | | | 22 | 5.99 | 5.47 | | | e5.39 | 5.91 | 6.24 | 7.35 | 6.19 | 6.33 | 5.92 | 6.15 | | | | | 23 | 5.92 | 5.48 | 5.65 | e5.33 | e5.39 | 5.91 | 6.30 | 7.29 | 6.16 | 6.28 | 5.89 | 6.14 | | | | | 24 | 5.84 | 5.51 | 5.66 | e5.33 | e5.40 | 5.91 | 6.32 | 7.22 | 6.18 | 6.24 | 5.86 | 6.14 | | | | | 25 | 5.82 | 5.52 | 5.68 | e5.33 | e5.40 | 5.88 | 6.34 | 7.14 | 6.21 | 6.20 | 5.86 | 6.13 | | | | | 26 | 5.82 | 5.52 | 5.70 | e5.33 | e5.41 | 5.84 | 6.30 | 7.05 | 6.28 | 6.17 | 5.85 | 6.11 | | | | | 27 | 5.80 | 5.53 | 5.70 | e5.32 | e5.40 | 5.78 | 6.26 | 6.95 | 6.23 | 6.17 | 5.85 | 6.15 | | | | | 28 | 5.76 | 5.54 | 5.71 | e5.31 | e5.40 | 5.79 | 6.23 | 6.86 | 6.25 | 6.14 | 5.84 | 6.14 | | | | | 29 | 5.69 | 5.56 | 5.71 | e5.32 | | 5.77 | 6.23 | 6.80 | 6.28 | 6.11 | 5.87 | 6.12 | | | | | 30 | 5.64 | 5.59 | 5.72 | e5.31 | | 5.71 | 6.25 | 6.64 | 6.27 | 6.08 | 5.85 | 6.13 | | | | | 31 | 5.60 | | 5.73 | e5.31 | | 5.67 | | 6.54 | | 6.06 | 5.85 | | | | | | MEAN | 6.12 | 5.46 | 5.59 | 5.46 | 5.37 | 5.64 | 5.83 | 7.01 | 6.26 | 6.25 | 5.99 | 6.00 | | | | | MAX | 6.48 | 5.59 | 5.73 | 5.71 | 5.41 | 5.91 | 6.34 | 7.45 | 6.39 | 6.36 | 6.11 | 6.15 | | | | | MIN | 5.60 | 5.38 | 5.45 | 5.31 | 5.32 | 5.41 | 5.52 | 6.39 | 6.16 | 6.06 | 5.84 | 5.82 | | | | ⁽e) Estimated due to ice effect or missing record #### 05427570 ROCK RIVER AT INDIANFORD, WI $LOCATION.--Lat\ 42^{\circ}48'15'', long\ 89^{\circ}05'24'', in\ SW\ {}^{1}\!\!/_{4}\ SW\ {}^{1}\!\!/_{4}\ sec.16, T.4\ N., R.12\ E., Rock\ County,\ Hydrologic\ Unit\ 07090001,\ on\ right\ bank\ 50\ ft\ upstream\ from\ bridge\ on\ County\ Trunk\ Highways\ F\ and\ M,\ 250\ ft\ upstream\ from\ dam\ in\ Indianford,\ and\ 1.8\ mi\ upstream\ from\ Yahara\ River.$ DRAINAGE AREA.--2,630 mi². PERIOD OF RECORD.--May 1975 to current year. REVISED RECORDS.--WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 763.84 ft (revised Oct. 1, 1990) above NGVD of 1929 (Rock County Surveyor bench mark). REMARKS.--Records poor (see page 11). Natural flow of stream affected by dam in Indianford. Discharge is adjusted for flow through wicket gates. Gageheight telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | | |--|--|---------------------------------|--
--|---|--|--|--|--|--|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 750 | 838 | 612 | 586 | 372 | e390 | 1,210 | 1,120 | 1,390 | 552 | 531 | 149 | | | | 2 | 1,050 | 842 | 624 | 571 | 380 | e390 | 1,370 | 1,690 | 1,360 | 521 | 492 | 124 | | | | 3 | 1,150 | 822 | 607 | 510 | 369 | e390 | 1,390 | 1,980 | 1,390 | 480 | 496 | 97 | | | | 4 | 1,270 | 840 | 594 | 514 | 366 | e390 | 1,390 | 2,040 | 1,390 | 489 | 477 | 128 | | | | 5 | 1,440 | 816 | 574 | 530 | 378 | e390 | 1,170 | 2,470 | 1,290 | 519 | 440 | 101 | | | | 6 | 1,260 | 541 | 555 | 531 | 369 | e400 | 1,280 | 2,630 | 1,270 | 528 | 433 | 81 | | | | 7 | 1,470 | 371 | 537 | 478 | 368 | e410 | 1,450 | 2,600 | 1,240 | 526 | 436 | 113 | | | | 8 | 1,480 | 529 | 526 | 473 | 358 | 414 | 1,270 | 2,430 | 1,250 | 566 | 440 | 137 | | | | 9 | 1,500 | 762 | 500 | 444 | 359 | 407 | 1,160 | 2,410 | 1,270 | 671 | 433 | 119 | | | | 10 | 1,330 | 812 | 490 | 439 | e360 | 411 | 1,000 | 2,530 | 912 | 702 | 425 | 119 | | | | 11 | 1,110 | 881 | 485 | 405 | e360 | 407 | 912 | 1,990 | 815 | 619 | 460 | 107 | | | | 12 | 778 | 786 | 460 | 400 | e360 | 427 | 974 | 2,550 | 834 | 569 | 454 | 106 | | | | 13 | 741 | 789 | 438 | 416 | e350 | 430 | 898 | 2,480 | 847 | 531 | 409 | 119 | | | | 14 | 712 | 832 | 414 | 442 | e350 | 407 | 716 | 2,520 | 898 | 453 | 399 | 219 | | | | 15 | 751 | 887 | 431 | 430 | e350 | 420 | 612 | 2,640 | 932 | 530 | 370 | 213 | | | | 16 | 744 | 833 | 448 | 417 | e350 | 448 | 779 | 2,760 | 971 | 552 | 364 | 198 | | | | 17 | 813 | 772 | 446 | 415 | e350 | 503 | 436 | 2,850 | 1,020 | 587 | 373 | 202 | | | | 18 | 821 | 680 | 413 | 425 | e350 | 644 | 324 | 2,880 | 968 | 634 | 337 | 233 | | | | 19 | 844 | 535 | 414 | 421 | e350 | 793 | 339 | 2,820 | 988 | 547 | 310 | 208 | | | | 20 | 842 | 601 | 396 | 428 | e350 | 898 | 347 | 2,920 | 809 | 516 | 266 | 253 | | | | 21 | 956 | 677 | 420 | 423 | e350 | 977 | 520 | 2,940 | 754 | 616 | 260 | 255 | | | | 22 | 1,060 | 630 | 417 | 420 | e350 | 1,120 | 739 | 2,740 | 702 | 624 | 317 | 232 | | | | 23 | 1,000 | 554 | 428 | 409 | 338 | 1,130 | 932 | 2,490 | 542 | 574 | 277 | 223 | | | | 24 | 854 | 636 | 476 | 393 | 330 | 1,190 | 1,130 | 2,460 | 418 | 507 | 199 | 230 | | | | 25 | 862 | 633 | 482 | 387 | e350 | 1,380 | 1,260 | 2,410 | 432 | 447 | 253 | 248 | | | | 26
27
28
29
30
31 | 825
833
1,110
1,270
1,090
947 | 612
601
591
565
656 | 477
473
482
503
497
545 | 388
383
377
379
372
373 | e360
e370
e390
 | 1,400
1,410
1,270
1,310
1,230
1,170 | 1,320
1,150
933
816
869 | 2,330
2,220
2,110
1,910
1,530
1,630 | 428
421
522
520
542 | 409
562
585
571
547
572 | 151
143
89
133
146
125 | 220
206
259
234
215 | | | | TOTAL | 31,663 | 20,924 | 15,164 | 13,579 | 10,037 | 22,956 | 28,696 | 73,080 | 27,125 | 17,106 | 10,438 | 5,348 | | | | MEAN | 1,021 | 697 | 489 | 438 | 358 | 741 | 957 | 2,357 | 904 | 552 | 337 | 178 | | | | MAX | 1,500 | 887 | 624 | 586 | 390 | 1,410 | 1,450 | 2,940 | 1,390 | 702 | 531 | 259 | | | | MIN | 712 | 371 | 396 | 372 | 330 | 390 | 324 | 1,120 | 418 | 409 | 89 | 81 | | | | CFSM | 0.39 | 0.27 | 0.19 | 0.17 | 0.14 | 0.28 | 0.36 | 0.90 | 0.34 | 0.21 | 0.13 | 0.07 | | | | IN. | 0.45 | 0.30 | 0.21 | 0.19 | 0.14 | 0.32 | 0.41 | 1.03 | 0.38 | 0.24 | 0.15 | 0.08 | | | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | IN. 0.45 0.30 0
STATISTICS OF MONTHLY MEAN D.
MEAN 1,388 1,584 1,526
MAX 7,729 5,047 3,745
(WY) (1987) (1986) (19
MIN 216 297 262 | | | FOR WATE
1,093
2,622
(1985)
254
(1977) | ER YEARS
1,322
2,751
(1999)
283
(1977) | 1975 - 2003
2,843
6,113
(1985)
741
(2003) | 3,630
9,466
(1979)
957
(2003) | R YEAR (W
2,529
6,028
(1993)
317
(1977) | 7Y)
1,813
6,220
(2000)
185
(1988) | 1,387
4,549
(1993)
158
(1988) | 1,038
3,377
(1993)
130
(1988) | 1,073
3,911
(1986)
178
(2003) | | | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | | FOR 2002 CALENDAR YEAR 543,268 1,488 4,100 Apr 19,20 249 Aug 15 327 Aug 11 0.57 7.68 3,230 1,120 374 | | | FOR 2003 WATER YEAR 276,116 756 2,940 May 21 81 Sep 6 111 Sep 3 3,150 May 22 12.76 May 22 0.29 3.91 1,400 531 254 | | | WATER YEARS 1975 - 2003 1,771 3,252 509 1977 11,700 Apr 7, 1979 39 Jun 19, 1988 85 Jun 15, 1988 11,900 Apr 5, 1979 (a)16.23 0.67 9.15 3,750 1,290 373 | | | | | ⁽a) Datum then in use ⁽e) Estimated due to ice effect or missing record ### 05427718 YAHARA RIVER AT WINDSOR, WI LOCATION.--Lat 43°12'32", long 89°21'09", in NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.31, T.9 N., R.10 E., Dane County, Hydrologic Unit 07090001, at bridge on road to Lake Windsor Country Club. DRAINAGE AREA.--73.6 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--February 1976 to December 1981, October 1989 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 870 ft above NGVD of 1929, from topographic map. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAII | LY MEAN V | ALUES | | | | | | |---|--|---|--|--|--|--|--|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 14
14
15
56
36 | 16
16
16
16
17 | 16
16
15
16
15 | 15
15
15
15
15 | e14
e14
e14
e13
e13 | 14
13
14
14
e14 | 16
16
16
17
16 | 52
25
19
17
24 | 14
14
14
14
14 | 10
9.6
9.5
10
12 | 9.5
9.2
22
11
9.8 | 9.5
9.2
9.1
8.9
9.2 | | 6
7
8
9
10 | 19
17
16
16
15 | 17
16
16
16
17 | 16
15
14
15
15 | 15
15
15
15
14 | e13
e12
e15
e15 | 13
13
13
13
e13 | 16
16
16
17
18 | 21
23
21
33
24 | 14
14
15
15
14 | 14
13
12
11 | 9.6
9.5
9.1
9.0
8.9 | 9.6
9.3
9.4
9.5
9.5 | | 11
12
13
14
15 | 15
15
15
15
15 | 34
24
20
18
17 | 15
15
15
15
15 | e15
15
15
15
15 | 16
16
15
15 | 14
14
14
22
24 | 18
17
17
16
16 | 47
43
25
24
23 | 13
13
13
12
12 | 11
10
9.8
9.5
44 | 8.8
9.1
8.9
8.8
8.8 | 9.6
12
34
90
31 | | 16
17
18
19
20 | 15
15
16
16
16 | 17
16
16
17
17 | 15
15
18
19
17 | 16
15
15
15
e15 | 14
e14
14
14
15 | 20
18
17
16
18 | 17
16
16
16
18 | 21
19
18
19
22 | 11
11
11
12
11 | 18
13
11
10
10 | 9.0
9.2
8.7
8.5
8.6 | 18
15
13
13
13 | | 21
22
23
24
25 | 15
16
15
16
17 | 17
17
e17
16
16 | 16
16
15
15 | e14
e14
e14
e14 | 15
15
15
13
e14 | 17
17
16
16
16 | 18
17
16
15 | 18
17
17
16
16 | 11
11
11
12
11 | 13
11
9.9
9.6
9.4 | 8.8
8.8
9.0
9.4
9.8 | 12
12
12
11
11 | | 26
27
28
29
30
31 | 18
17
17
16
16 | 16
16
16
16
16 | 15
15
15
15
15 | e14
e14
e14
e14
e15 | 14
14
14
 | 15
16
21
20
17
16 | 15
15
15
15
18 | e15
15
15
15
15
14 | 11
10
14
12
11 | 9.3
9.2
9.0
8.9
9.0
9.8 | 9.5
9.0
8.9
14
9.9
9.5 | 11
11
11
10
10 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 550
17.7
56
14
0.24
0.28 | 522
17.4
34
16
0.24
0.26 | 479
15.5
19
14
0.21
0.24 | 455
14.7
16
14
0.20
0.23 | 399
14.2
16
12
0.19
0.20 | 498
16.1
24
13
0.22
0.25 | 490
16.3
18
15
0.22
0.25 | 693
22.4
52
14
0.30
0.35 | 375
12.5
15
10
0.17
0.19 | 366.5
11.8
44
8.9
0.16
0.19 | 302.6
9.76
22
8.5
0.13
0.15 |
452.8
15.1
90
8.9
0.21
0.23 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 16.9
29.2
(1994)
7.75
(1978) | ONTHLY M
17.8
30.4
(1994)
8.78
(1978) | EAN DATA
15.7
27.0
(1994)
8.54
(1978) | 16.8
32.5
(1996)
6.50
(1978) | ER YEARS
25.8
74.2
(1994)
4.76
(1978) | 1976 - 2003
37.9
135
(1976)
11.8
(1978) | 24.7
47.8
(1993)
14.1
(1978) | R YEAR (W
21.1
37.0
(2000)
7.71
(1977) | 26.1
75.4
(2000)
7.48
(1977) | 21.5
95.3
(1993)
7.12
(1977) | 18.6
40.3
(1993)
7.29
(1991) | 18.7
50.1
(1980)
7.12
(1977) | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL MAXIMU INSTANT ANNUAL ANNUAL 10 PERCI 50 PERCI | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY M L SEVEN-D JM PEAK I JM PEAK S | . MEAN MEAN IEAN EAN EAN STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | IUM | 7,548
20
12:
12:
12: | 3 Jun
2 (a)Aug
2 Sep
3.28
3.82
6 | 4
2,3 | 5,58 | 90 Sep
8.5 Aug
8.8 Aug
25 Sep
3.31 Sep | 7EAR
0 14
g 19
g 14
0 14
0 14
o 14 | 5
(1
(1
2,0 | o)4.6 Mar
o)4.6 Ma
050 Ju
6.58 Ju | 6 - 2003
1993
1977
al 6, 1993
1-8, 1978
ar 1, 1978
al 6, 1993
b 25, 1991 | ⁽a) Also occurred Sept. 7-15 (b) Ice affected (c) Result of freezeup (e) Estimated due to ice effect or missing record #### 05427718 YAHARA RIVER AT WINDSOR, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1975 to September 1980, October 1989 to current year. PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: March 1990 to current year. TOTAL-PHOSPHORUS DISCHARGE: March 1990 to current year. TOTAL ORTHO-PHOSPHORUS DISCHARGE: October 1990 to September 1992. INSTRUMENTATION .-- Water-quality sampler since March 1990. REMARKS.--Records good. Samples are point samples unless otherwise indicated. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 7,070 mg/L, June 29, 1990; minimum observed, 3.0 mg/L, Sept. 10, 2002. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 1,280 tons, July 5, 1993; minimum daily, 0.10 ton, Sept. 10, 2002. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 5.10 mg/L, June 7, 1993; minimum observed, 0.01 mg/L, Jan. 31, 1991, and Oct. 29, TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 3,240 lb, Feb. 20, 1994; minimum daily, 0.70 lb, Nov. 13-15, 1997. TOTAL ORTHO-0HOSPHORUS CONCENTRATIONS: Maximum observed, 1.10 mg/L, Mar. 2, 3, 1991; minimum observed, <0.01 mg/L, Nov. 13, 1990 and June 26, 1994. TOTAL ORTHO-PHOSPHORUS DISCHARGE: Maximum daily, 1,260 lb, Mar. 2, 1991; minimum daily, 0.49 lb, Nov. 26, 1990. #### EXTREMES FOR CURRENT YEAR .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 748 mg/L, Sept. 13; minimum observed, 7.0 mg/L, Feb. 18. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 97 tons, Sept. 14; minimum daily, 0.21 ton, July 2. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.92 mg/L, Mar. 14; minimum observed, 0.036 mg/L, Feb. 18. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 277 lb, Sept. 14; minimum daily, 2.33 lb, Aug. 27. TOTAL ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.221 mg/L, Sept. 14; minimum observed, 0.049 mg/L, May 2. #### SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------|---|-------------------------------------|--|-------------------------------------|--|---|--------------------------------------| | 1 | 0.60 | 0.91 | 0.34 | 0.53 | 0.26 | 0.26 | 0.81 | 31 | 0.57 | 0.25 | 0.42 | 0.33 | | 2 | 1.3 | 0.91 | 0.34 | 0.52 | 0.26 | 0.25 | 0.70 | 2.0 | 0.55 | 0.21 | 0.40 | 0.31 | | 3 | 1.7 | 0.92 | 0.32 | 0.50 | 0.26 | 0.26 | 0.58 | 0.93 | 0.55 | 0.22 | 11 | 0.30 | | 4 | 34 | 0.92 | 0.35 | 0.48 | 0.25 | 0.26 | 0.58 | 0.76 | 0.55 | 0.47 | 1.9 | 0.28 | | 5 | 5.7 | 0.93 | 0.33 | 0.47 | 0.25 | 0.26 | 0.56 | 3.6 | 0.53 | 0.80 | 0.56 | 0.29 | | 6 | 0.98 | 0.93 | 0.35 | 0.44 | 0.25 | 0.25 | 0.54 | 2.6 | 0.54 | 1.4 | 0.51 | 0.29 | | 7 | 0.49 | 0.91 | 0.33 | 0.44 | 0.23 | 0.25 | 0.54 | 2.4 | 0.55 | 1.4 | 0.50 | 0.27 | | 8 | 0.43 | 0.90 | 0.31 | 0.43 | 0.28 | 0.25 | 0.53 | 2.9 | 0.55 | 0.65 | 0.48 | 0.26 | | 9 | 0.41 | 0.90 | 0.33 | 0.42 | 0.28 | 0.25 | 0.55 | 5.2 | 0.55 | 0.47 | 0.47 | 0.26 | | 10 | 0.40 | 0.90 | 0.32 | 0.36 | 0.28 | 0.32 | 0.58 | 1.5 | 0.52 | 0.47 | 0.46 | 0.25 | | 11 | 0.40 | 3.8 | 0.32 | 0.39 | 0.30 | 0.27 | 0.58 | 14 | 0.49 | 0.46 | 0.45 | 0.24 | | 12 | 0.40 | 0.76 | 0.32 | 0.37 | 0.30 | 0.26 | 0.55 | 7.2 | 0.47 | 0.42 | 0.46 | 1.6 | | 13 | 0.38 | 0.47 | 0.32 | 0.36 | 0.29 | 0.26 | 0.53 | 1.8 | 0.46 | 0.40 | 0.44 | 32 | | 14 | 0.37 | 0.42 | 0.36 | 0.35 | 0.28 | 7.1 | 0.51 | 1.6 | 0.43 | 0.40 | 0.44 | 97 | | 15 | 0.37 | 0.39 | 0.41 | 0.35 | 0.26 | 4.8 | 0.51 | 1.7 | 0.41 | 20 | 0.43 | 4.7 | | 16 | 0.36 | 0.36 | 0.47 | 0.35 | 0.27 | 2.3 | 0.51 | 1.4 | 0.40 | 3.6 | 0.44 | 0.89 | | 17 | 0.39 | 0.35 | 0.51 | 0.32 | 0.26 | 0.99 | 0.49 | 1.3 | 0.39 | 1.6 | 0.44 | 0.77 | | 18 | 0.77 | 0.36 | 1.4 | 0.32 | 0.27 | 0.91 | 0.47 | 1.2 | 0.38 | 0.74 | 0.42 | 0.72 | | 19 | 0.87 | 0.37 | 1.1 | 0.31 | 0.26 | 0.90 | 0.77 | 1.1 | 0.41 | 0.62 | 0.40 | 0.72 | | 20 | 0.84 | 0.36 | 0.86 | 0.30 | 0.28 | 1.5 | 1.4 | 3.8 | 0.37 | 0.60 | 0.40 | 0.73 | | 21 | 0.84 | 0.36 | 0.79 | 0.27 | 0.29 | 0.98 | 0.63 | 2.2 | 0.36 | 1.3 | 0.41 | 0.74 | | 22 | 0.84 | 0.36 | 0.75 | 0.26 | 0.28 | 1.2 | 0.50 | 1.7 | 0.39 | 0.77 | 0.41 | 0.76 | | 23 | 0.83 | 0.37 | 0.71 | 0.26 | 0.28 | 1.3 | 0.45 | 1.3 | 0.65 | 0.63 | 0.41 | 0.77 | | 24 | 0.84 | 0.35 | 0.69 | 0.26 | 0.25 | 1.6 | 0.42 | 0.96 | 0.40 | 0.53 | 0.42 | 0.75 | | 25 | 0.91 | 0.34 | 0.67 | 0.26 | 0.26 | 1.8 | 0.41 | 0.70 | 0.37 | 0.52 | 0.44 | 0.74 | | 26
27
28
29
30
31 | 0.96
0.92
0.91
0.91
0.90
0.91 | 0.35
0.34
0.34
0.35
0.35 | 0.64
0.63
0.62
0.60
0.58
0.56 | 0.26
0.26
0.26
0.26
0.26
0.28 | 0.27
0.27
0.26
 | 1.9
1.4
1.7
1.5
1.1
0.93 | 0.40
0.40
0.40
0.40
2.0 | 0.64
0.62
0.65
0.64
0.61
0.59 | 0.35
0.32
1.1
0.83
0.33 | 0.51
0.51
0.46
0.40
0.40
0.44 | 0.42
0.40
0.67
4.0
0.84
0.48 | 0.75
0.76
0.74
0.73
0.70 | | TOTAL | 60.93 | 20.28 | 16.63 | 10.90 | 7.53 | 37.31 | 18.30 | 98.60 | 14.77 | 41.65 | 29.92 | 149.65 | WATER YEAR 2003 TOTAL 506.47 ### 05427718 YAHARA RIVER AT WINDSOR, WI-Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 5.53 | 3.47 | 3.57 | 3.84 | 3.08 | 3.04 | 5.62 | 109 | 7.40 | 5.49 | 4.68 | 3.21 | | 2 | 6.06 | 3.51 | 3.56 | 3.87 | 3.05 | 3.08 | 5.14 | 18.1 | 7.15 | 5.04 | 4.92 | 3.01 | | 3 | 6.62 | 3.54 | 3.31 | 3.83 | 3.03 | 3.18 | 4.64 | 9.41 | 7.16 | 4.84 | 36.9 | 2.94 | | 4 | 147 | 3.62 | 3.70 | 3.82 | 2.80 | 3.21 | 4.66 | 6.82 | 7.22 | 5.73 | 11.1 | 2.84 | | 5 | 89.4 | 3.70 | 3.48 | 3.87 | 2.77 | 3.32 | 4.57 | 15.8 | 7.03 | 6.76 | 6.29 | 2.93 | | 6 | 24.7 | 3.79 | 3.61 | 3.78 | 2.75 | 3.23 | 4.47 | 12.0 | 7.24 | 10.9 | 4.42 | 3.01 | | 7 | 12.3 | 3.75 | 3.50 | 3.91 | 2.53 | 3.23 | 4.48 | 13.5 | 7.47 | 9.02 | 3.22 | 2.89 | | 8 | 9.07 | 3.76 | 3.20 | 3.97 | 3.13 | 3.26 | 4.50 | 9.60 | 7.53 | 6.13 | 2.90 | 2.88 | | 9 | 7.11 | 3.84 | 3.48 | 3.99 | 3.11 | 3.34 | 4.66 | 28.5 | 7.61 | 5.55 | 2.84 | 2.91 | | 10 | 5.58 | 3.90 | 3.38 | 3.55 | 3.06 | 4.23 | 4.99 | 15.4 | 7.16 | 5.60 | 2.77 | 2.86 | | 11 | 5.15 | 36.3 | 3.35 | 3.83 | 3.23 | 3.65 | 5.06 | 71.0 | 6.84 | 5.44 | 2.73 | 2.87 | | 12 | 5.07 | 21.7 | 3.36 | 3.77 | 3.22 | 3.56 | 4.88 | 58.0 | 6.55 | 5.05 | 2.78 | 7.53 | | 13 | 4.79 | 10.3 | 3.37 | 3.70 | 3.12 | 3.60 | 4.74 | 24.0 | 6.46 | 4.81 | 2.68 | 97.2 | | 14 | 4.62 | 7.81 | 3.39 | 3.64 | 2.91 | 62.5 | 4.65 | 17.7 | 6.12 | 5.00 | 2.64 | 277 | | 15 | 4.52 | 6.11 | 3.41 | 3.74 | 2.72 | 103 | 4.69 | 16.9 | 5.90 | 107 | 2.60 | 50.5 | | 16 | 4.38 | 4.85 | 3.44 | 3.87 | 2.80 | 62.7 | 4.70 | 14.3 | 5.81 | 26.4 | 2.62 | 17.0 | | 17 | 4.30 | 3.88 | 3.45 | 3.60 | 2.74 | 26.6 | 4.59 | 12.8 | 5.69 | 10.1 | 2.65 | 10.1 | | 18 | 4.47 | 3.68 | 11.9 | 3.65 | 2.78 | 13.2 | 4.50 | 11.8 | 5.60 | 6.67 | 2.49 | 7.59 | | 19 | 4.47 | 3.86 | 13.7 | 3.70 | 2.75 | 9.04 | 5.89 | 11.4 | 6.15 | 5.67 | 2.40 | 6.23 | | 20 | 4.21 | 3.78 | 8.09 | 3.59 | 2.92 | 7.17 | 8.64 | 17.2 | 5.55 | 5.08 | 2.39 | 5.30 | | 21 | 4.07 | 3.78 | 5.97 | 3.33 | 3.12 | 5.73 | 7.08 | 12.3 | 5.40 | 7.87 | 2.44 | 4.83 | | 22 | 3.98 | 3.77 | 4.54 | 3.31 | 3.02 | 5.36 | 5.90 | 10.3 | 5.32 | 5.46 | 2.40 | 4.51 | | 23 | 3.87 | 3.81 | 3.97 | 3.28 | 3.05 | 4.90 | 5.04 | 9.78 | 5.63 | 4.90 | 2.44 | 4.11 | | 24 | 3.81 | 3.63 | 3.96 | 3.26 | 2.76 | 4.74 | 4.52 | 9.18 | 6.63 | 4.74 | 2.50 | 3.64 | | 25 | 4.02 | 3.57 | 3.96 | 3.23 | 2.98 | 4.50 | 4.38 | 8.80 | 5.75 | 4.69 | 2.57 | 3.29 | | 26
27
28
29
30
31 |
4.11
3.79
3.67
3.54
3.42
3.46 | 3.59
3.51
3.54
3.66
3.68 | 3.90
3.93
3.95
3.93
3.91
3.88 | 3.21
3.19
3.17
3.14
3.12
3.32 | 3.13
3.09
3.01
 | 4.27
4.48
12.2
15.1
9.28
6.36 | 4.28
4.24
4.16
4.15
12.2 | 8.25
7.91
8.18
8.19
7.75
7.60 | 5.91
5.65
10.8
8.08
5.95 | 4.64
4.60
4.47
4.38
4.43
4.84 | 2.48
2.33
2.43
16.9
6.12
4.24 | 3.08
3.10
2.98
2.95
2.82 | | TOTAL | 401.09 | 175.69 | 138.15 | 111.08 | 82.66 | 405.06 | 156.02 | 591.47 | 198.76 | 301.30 | 152.87 | 546.11 | WATER YEAR 2003 TOTAL 3,260.26 # 05427718 YAHARA RIVER AT WINDSOR, WI—Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, unfltrd mg/L (00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |-----------|--------------|--------------------------------------|-------------------------------|--|---|--| | OCT 2002 | | | | | | | | 02 | 1030 | 14 | 10 | 0.05 | 0.08 | 36 | | 04 | 0900 | 20 | 50 | | 0.195 | 47 | | 04 | 1145 | 52 | 50 | | 0.366 | 87 | | 04 | 1215 | 71 | 50 | 0.120 | 0.695 | 390 | | 04
04 | 1315
1430 | 108
120 | 50
50 | 0.120
0.093 | 0.839
0.636 | 558
468 | | 04 | 1630 | 100 | 50 | 0.093 | 0.455 | 182 | | 05 | 0330 | 52 | 50 | | 0.564 | 80 | | 05 | 1615 | 27 | 50 | | 0.372 | 26 | | 07
30 | 1002 | 17
16 | 10
50 | | 0.134 | 10
48 | | NOV | 1220 | 10 | 30 | | 0.039 | 40 | | 11 | 0530 | 30 | 50 | | 0.185 | 38 | | 11 | 0630 | 39 | 50 | | 0.287 | 89 | | 11
12 | 1430
0630 | 38
25 | 50
50 | | 0.185
0.208 | 17
13 | | 12 | 2345 | 23 | 50 | | 0.208 | 9 | | DEC | 20.0 | | 20 | | 0.100 | | | 13 | 1440 | 15 | 10 | | 0.042 | 8 | | 18
18 | 1445
1945 | 19
26 | 50
50 | | 0.112
0.232 | 14
62 | | 19 | 0345 | 21 | 50 | | 0.232 | 19 | | JAN 2003 | 00.0 | | 20 | | 0.100 | | | 09 | 1314 | 15 | 10 | | 0.048 | 10 | | FEB
18 | 1020 | 14 | 10 | | 0.036 | 7 | | MAR | 1020 | 14 | 10 | | 0.030 | , | | 14 | 1415 | 17 | 50 | | 0.250 | 26 | | 14 | 1800 | 32 | 50 | | 0.770 | 151 | | 14
15 | 1845
0015 | 44
31 | 50
50 | | 0.920
0.840 | 291
97 | | 15 | 0700 | 19 | 50 | | 0.750 | 62 | | 15 | 1500 | 23 | 50 | | 0.890 | 44 | | 15 | 2300 | 28 | 50 | | 0.700 | 76 | | 16
18 | 0700
0615 | 20
18 | 50
50 | | 0.671
0.151 | 46
20 | | 26 | 1635 | 15 | 10 | | 0.151 | 48 | | 28 | 0945 | 19 | 50 | | 0.083 | 15 | | 28 | 1415 | 26 | 50 | | 0.135 | 42 | | 29
APR | 0615 | 22 | 50 | | 0.151 | 27 | | 19 | 2145 | 19 | 50 | | 0.097 | 38 | | 21 | 0845 | 18 | 50 | | 0.074 | 12 | | 30 | 1630 | 19 | 50 | | 0.087 | 15 | | 30
MAY | 2245 | 29 | 50 | | 0.251 | 76 | | 01 | 0015 | 47 | 50 | 0.053 | 0.562 | 347 | | 01 | 0115 | 69 | 50 | 0.088 | 0.821 | 596 | | 01
01 | 0215
0600 | 80
64 | 50
50 | 0.058 | 0.697
0.373 | 521
205 | | 01 | 1945 | 37 | 50
50 | 0.078 | 0.373 | 62 | | 02 | 1230 | 24 | 50 | 0.049 | 0.116 | 20 | | 05 | 1015 | 24 | 50 | | 0.103 | 25 | | 07
09 | 1730
0145 | 26
22 | 50
50 | | 0.105
0.111 | 22
26 | | 09 | 0545 | 41 | 50 | | 0.230 | 82
82 | | 09 | 0745 | 44 | 50 | | 0.230 | 139 | | 09 | 1310 | 35 | 50 | | 0.143 | 42 | | 10
11 | 2345
0230 | 28
48 | 50
50 | | 0.191
0.279 | 51
131 | | 11 | 1045 | 43 | 50 | | 0.225 | 78 | | 11 | 1815 | 52 | 50 | | 0.349 | 102 | | 11 | 2030 | 62
55 | 50
50 | | 0.308 | 82 | | 12
12 | 0430
1227 | 55
41 | 50
50 | | 0.249
0.255 | 48
49 | | 14 | 1345 | 26 | 50 | | | 28 | | 20 | 0315 | 23 | 50 | | | 56 | | JUN
23 | 1045 | 11 | 10 | | 0.092 | 42 | | 23 | 1045 | 11 | 50 | | 0.100 | 13 | | 28 | 1715 | 21 | 50 | | 0.175 | 44 | | | | | | | | | # 05427718 YAHARA RIVER AT WINDSOR, WI—Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Orthophosphate, water, fltrd, mg/L as P (00671) | Phosphorus, water, unfltrd mg/L (00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |----------|------|--------------------------------------|-------------------------------|---|---|--| | JUL 2003 | | | | | | | | 15 | 0230 | 33 | 50 | | 0.322 | 83 | | 15 | 0600 | 61 | 50 | 0.137 | 0.627 | 512 | | 15 | 0615 | 73 | 50 | 0.132 | 0.900 | 655 | | 15 | 0645 | 87 | 50 | 0.114 | 0.866 | 243 | | 15 | 1030 | 55 | 50 | 0.130 | 0.365 | 107 | | 16 | 0745 | 19 | 50 | | 0.291 | 76 | | 28 | 1158 | 9.8 | 50 | | 0.093 | 21 | | 28 | 1159 | 9.8 | 10 | | 0.091 | 17 | | AUG | | | | | | | | 29 | 0400 | 33 | 50 | | 0.418 | 225 | | 29 | 0913 | 13 | 50 | | 0.162 | 39 | | 29 | 0914 | 13 | 10 | | 0.170 | 45 | | SEP | | | | | | | | 13 | 0215 | 29 | 50 | | 0.626 | 345 | | 13 | 1900 | 42 | 50 | | 0.445 | 169 | | 13 | 2030 | 65 | 50 | 0.167 | 0.629 | 281 | | 13 | 2130 | 89 | 50 | | 0.727 | 482 | | 13 | 2245 | 115 | 50 | 0.103 | 0.841 | 748 | | 14 | 0300 | 99 | 50 | | 0.564 | 365 | | 14 | 0730 | 123 | 50 | 0.199 | 0.673 | 495 | | 14 | 1745 | 72 | 50 | 0.221 | 0.458 | 203 | | 15 | 0917 | 32 | 50 | | 0.315 | 38 | | 15 | 0918 | 32 | 10 | | 0.311 | 34 | | 15 | 1745 | 24 | 50 | | 0.232 | 18 | | 26 | 0903 | 11 | 10 | | 0.053 | 26 | | | | | | | | | ### 05427850 YAHARA RIVER AT STATE HWY 113 AT MADISON, WI $LOCATION.--Lat\ 43^{\circ}09'03", long\ 89^{\circ}24'07", in\ SW\ {}^{1}\!\!/_{\!\!4}\ SW\ {}^{1}\!\!/_{\!\!4}\ sec.23, T.8\ N., R.9\ E., Dane\ County,\ Hydrologic\ Unit\ 07090001,\ at\ northbound\ biridge\ on\ Hwy\ 113,\ 5.3\ mi\ north\ of\ the\ state\ capitol\ in\ Madison.$ DRAINAGE AREA.--114 mi², of which 36.6 mi² is noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 2002 to current year. GAGE.--Water-stage recorder. Side-looking velocity meter system. Datum of gage is 840.00 ft above NGVD of 1929 (Wisconsin Department of Transportation benchmark). REMARKS.--Records good (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC IAN EEP MAD ARR MAY HIM AUG. SER | | | | | | | | | | | | | | |---|---|---|---|---|---|---|--|--|---|---|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1
2
3
4
5 | 71
69
31
48
134 | 41
72
41
70
56 | 39
49
29
35
38 | 41
41
38
43
49 | 39
29
28
36
34 | 35
37
32
28
31 | 65
76
30
51
33 | 188
114
73
75
77 | 42
38
47
40
43 | 28
24
36
29
32 | 47
30
42
33
28 | 22
8.9
38
22
11 | | | | 6
7
8
9
10 | 48
69
55
51
43 | 59
10
95
48
64 | 32
46
36
32
42 | 41
47
43
46
31 | 36
29
34
34
31 | 41
30
45
37
32 | 85
32
17
49
54 | 104
87
100
102
112 | 26
61
45
53
44 | 44
47
37
40
32 | 29
27
26
25
30 | 29
25
18
23
23 | | | | 11
12
13
14
15 | 44
45
48
22
70 | 87
73
58
89
57 | 40
45
49
44
64 | 31
41
39
32
30 | 33
40
37
39
35 | 38
38
41
47
75 | 62
56
39
25
65 | 108
209
104
89
84 | 47
34
39
36
36 | 41
30
24
13
99 | 36
17
22
23
25 | 25
20
74
140
110 | | | | 16
17
18
19
20 | 39
44
27
75
58 | 52
46
53
54
59 | 39
47
61
76
53 | 40
33
35
29
36 | 37
34
38
37
45 | 85
73
62
47
49 | 110
-1.4
47
27
43 | 80
69
69
59
96 | 24
31
44
30
34 | 49
55
16
31
38 | 31
19
11
29
14 | 36
37
40
49
33 | | | | 21
22
23
24
25 | 44
64
35
40
47 | 59
36
58
58
47 | 58
34
47
43
43 | 30
28
22
22
22
26 | 63
69
40
37
39 | 44
59
41
50
47 | 101
38
44
45
44 | 65
62
59
61
57 | 28
28
33
28
19 | 45
30
24
24
10 | 43
19
17
21
36 | 34
27
34
36
34 | | | | 26
27
28
29
30
31 | 53
61
59
59
45
47 | 46
42
36
60
54 | 41
42
55
52
49
52 | 30
23
28
28
31
39 | 36
33
38
 | 47
52
42
83
52
41 | 28
26
53
33
69 | 51
48
49
50
47
51 | 50
45
37
38
35 | 45
41
23
18
24
37 | 32
20
8.6
63
12
29 | 29
40
37
30
36 | | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,645
53.1
134
22
0.69
0.79 | 1,680
56.0
95
10
0.72
0.81 |
1,412
45.5
76
29
0.59
0.68 | 1,073
34.6
49
22
0.45
0.52 | 1,060
37.9
69
28
0.49
0.51 | 1,461
47.1
85
28
0.61
0.70 | 1,445.6
48.2
110
-1.4
0.62
0.69 | 2,599
83.8
209
47
1.08
1.25 | 1,135
37.8
61
19
0.49
0.55 | 1,066
34.4
99
10
0.44
0.51 | 844.6
27.2
63
8.6
0.35
0.41 | 1,120.9
37.4
140
8.9
0.48
0.54 | | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 2002 - 2003, | BY WATE | R YEAR (W | YY) | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 53.1
53.1
(2003)
53.1
(2003) | 56.0
56.0
(2003)
56.0
(2003) | 45.5
45.5
(2003)
45.5
(2003) | 42.5
50.4
(2002)
34.6
(2003) | 54.7
71.6
(2002)
37.9
(2003) | 60.2
73.3
(2002)
47.1
(2003) | 65.1
82.1
(2002)
48.2
(2003) | 80.8
83.8
(2003)
77.8
(2002) | 58.9
79.9
(2002)
37.8
(2003) | 38.7
43.0
(2002)
34.4
(2003) | 35.0
42.8
(2002)
27.2
(2003) | 38.0
38.6
(2002)
37.4
(2003) | | | | SUMMA | RY STATIS | STICS | I | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 200 | 02 - 2003 | | | | LOWEST
HIGHEST
LOWEST
ANNUAI
ANNUAI
ANNUAI
10 PERCI
50 PERCI | L MEAN F ANNUAL F ANNUAL F DAILY M F DAILY M | MEAN IEAN EAN OAY MINIM (CFSM) (INCHES) EDS EDS | UM | | Jun
Nov
Sep : | 7 | 20
-
2
7
4 | 5.3 | r 17 | 2 | -1.4 Ap | 2003
2003
n 5, 2002
or 17, 2003
g 30, 2003 | | | #### 05427850 YAHARA RIVER AT STATE HWY 113 AT MADISON, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- January 2002 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: January 2002 to current year. SUSPENDED-SEDIMENT DISCHARGE: January 2002 to current year. TOTAL-PHOSPHORUS DISCHARGE: January 2002 to current year. INSTRUMENTATION.--Automatic pumping sampler since January 2002. REMARKS.--Records good. Samples are point samples unless otherwise noted. #### EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 31.5°C, July 18, 2002; minimum, 0.0°C, on many days during winter. SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 64 mg/L, June 4, 2002 and May 11, 2003; minimum observed, 4.0 mg/L, Feb. 18, 2003. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 39.0 tons, June 4, 2002; minimum daily, -0.11 ton, Apr. 17, 2003. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.392 mg/L, May 9, 2003; minimum observed, 0.013 mg/L, Feb. 18, 2003. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 190 lb, May 1, 2003; minimum daily, -1.36 lb, Apr. 17, 2003. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 30.0°C, July 5; minimum, 0.0°C, on many days during winter. SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 64 mg/L, May 11; minimum observed, 4.0 mg/L, Feb. 18. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 20.0 tons, May 12; minimum daily, -0.11 ton, Apr. 17. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.392 mg/L, May 9; minimum observed, 0.013 mg/L, Feb. 18. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 190 lb, May 1; minimum daily, -1.36 lb, Apr. 17. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|----------------------------------|---------------------------------|----------------------------------|--|--|---------------------------------|--|--|--| | | (| ОСТОВЕК | 2 | N | OVEMBE | ER | D | ECEMBE | R | Į | ANUARY | 7 | | 1
2
3
4
5 | 21.0
20.0
17.0
16.5
16.0 | 19.5
17.0
15.0
15.0
13.5 | 20.0
19.0
15.5
15.5
14.5 | 5.0
4.0
4.5
4.0
3.0 | 3.0
1.5
2.5
2.0
3.0 | 4.0
3.0
3.0
3.0
3.0 | 1.5
1.5
1.5
1.0
1.0 | 1.0
0.5
0.5
0.5
1.0 | 1.0
1.0
1.0
1.0
1.0 | 1.0
0.5
2.0
1.5
0.5 | 0.0
0.0
0.0
0.5
0.0 | 0.5
0.5
1.0
1.0
0.5 | | 6
7
8
9
10 | 15.5
13.5
12.5
14.0
14.0 | 13.5
11.5
11.5
11.5
12.0 | 14.5
12.5
12.0
12.5
13.0 | 4.0
5.5
7.5
9.5
10.5 | 3.0
3.5
5.5
7.0
9.5 | 3.5
4.5
6.5
8.0
10.0 | 1.5
1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0
0.5 | 1.0
1.0
2.0
1.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
1.0
0.5
0.5 | | 11
12
13
14
15 | 15.5
15.0
13.0
11.0
10.5 | 13.0
13.0
10.5
9.0
9.0 | 14.0
14.5
11.5
10.0
9.5 | 9.5
7.0
6.0
6.0
4.0 | 6.5
5.5
4.5
4.0
2.0 | 8.0
6.0
5.5
5.0
3.0 | 1.0
1.0
0.5
2.0
1.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
1.0 | 1.5
1.5
1.0
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | | 16
17
18
19
20 | 9.5
9.0
7.5
7.5
8.0 | 7.5
7.5
7.0
6.0
5.0 | 8.5
8.0
7.5
7.0
6.5 | 3.0
3.0
3.0
4.0
4.0 | 1.0
0.5
2.0
2.5
3.0 | 2.0
1.5
2.5
3.0
3.0 | 1.0
1.0
2.0
1.5
0.5 | 0.0
0.5
0.5
0.5
0.0 | 0.5
0.5
1.0
1.0
0.5 | 1.0
1.0
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.0
0.0 | | 21
22
23
24
25 | 7.5
7.0
6.0
5.5
5.5 | 6.5
5.5
4.5
4.0
4.5 | 7.0
6.5
5.5
4.5
5.0 | 3.5
2.5
3.5
2.5
2.0 | 2.0
1.0
1.0
0.0
0.0 | 3.0
2.0
2.0
1.5
1.0 | 1.0
0.5
1.0
1.5
1.0 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.5
0.5 | 1.0
0.5
0.5
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 7.5
7.0
7.0
7.0
6.5
6.5 | 5.0
6.0
5.0
5.5
4.0
5.0 | 6.0
6.5
6.0
6.0
5.5
5.5 | 3.0
3.5
3.5
3.0
2.0 | 1.5
2.5
2.5
1.5
1.0 | 2.5
3.0
3.0
2.0
1.5 | 2.0
1.5
1.0
1.5
1.5
2.0 | 0.5
0.5
0.0
0.5
1.0
0.5 | 1.0
1.0
0.5
1.0
1.5 | 0.5
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | | MONTH | 21.0 | 4.0 | 10.0 | 10.5 | 0.0 | 3.6 | 2.0 | 0.0 | 0.8 | 2.0 | 0.0 | 0.3 | ### 05427850 YAHARA RIVER AT STATE HWY 113 AT MADISON, WI—Continued ### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | | | | | | | MAY | | | | MINI | MEAN | |---|--|--|--|--|---|--|--|---|--|--|--|--| | DAY | MAX
1 | MIN
FEBRUAR | MEAN
Y | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 13.0
11.0
8.5
3.5
3.0 | 7.0
8.0
3.5
1.5
0.5 |
9.5
9.5
5.5
2.5
2.0 | 14.5
14.5
16.5
15.5
12.5 | 11.5
11.5
12.0
12.0
11.5 | 13.0
13.5
14.0
13.5
12.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 5.0
3.5
3.0
7.0
10.5 | 2.5
0.0
0.0
2.0
4.5 | 3.0
1.0
1.0
4.0
7.0 | 16.0
15.0
14.0
17.0
19.5 | 12.0
13.0
12.5
13.0
15.5 | 14.0
14.0
13.5
14.5
17.0 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | 14.0
14.0
14.5
16.5
19.0 | 8.0
10.0
10.5
12.0
15.0 | 11.0
12.5
12.0
14.0
16.5 | 18.0
15.5
17.0
17.0
16.0 | 12.5
11.5
13.5
14.5
13.5 | 15.5
13.5
15.5
15.5
14.5 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 4.0
5.0
4.0
3.0
2.0 | 0.5
0.5
1.5
1.5 | 2.0
2.0
2.5
2.0
1.5 | 19.0
10.5
8.5
10.5
13.0 | 9.5
7.5
7.5
7.0
10.5 | 13.5
9.0
8.0
8.5
12.0 | 18.5
18.5
19.5
19.0
19.5 | 14.0
16.0
16.5
18.0
17.0 | 16.5
17.0
18.0
18.5
18.5 | | 21
22
23
24
25 | 0.5
0.0
0.5
0.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 2.0
2.5
6.5
9.0
11.0 | 0.5
0.0
2.0
5.0
5.5 | 1.5
1.5
4.0
6.5
8.0 | 12.0
12.0
14.5
13.5
14.5 | 9.5
8.0
9.5
11.0
10.0 | 11.0
10.0
11.5
12.5
12.5 | 19.5
20.5
21.0
21.0
22.0 | 16.0
16.0
17.5
17.5
18.5 | 18.0
18.0
19.0
19.5
20.5 | | 26
27
28
29
30
31 | 0.5
0.5
0.5
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 11.0
9.0
8.0
5.0
7.0
8.0 | 7.0
6.5
4.5
3.0
3.0
4.5 | 8.5
8.0
6.5
4.0
5.0
6.0 | 15.5
17.5
18.5
17.0
16.5 | 10.5
13.5
15.5
15.0
12.5 | 13.0
15.5
17.0
16.0
14.5 | 22.5
23.5
23.0
21.0
21.0
20.0 | 19.0
19.5
21.0
19.0
19.0
17.0 | 21.0
21.0
22.0
20.0
20.0
18.0 | | | | | | | | | | | | | | | | MONTH | 0.5 | 0.0 | 0.0 | 11.0 | 0.0 | 2.3 | 19.0 | 0.0 | 9.8 | 23.5 | 11.5 | 16.7 | | MONTH | 0.5 | 0.0
JUNE | 0.0 | 11.0 | 0.0
JULY | 2.3 | | 0.0
AUGUST | | | 11.5
EPTEMBI | | | MONTH 1 2 3 4 5 | 0.5
20.5
20.0
19.0
20.5
22.0 | | 0.0
17.5
19.0
18.0
18.5
20.0 | 28.0
28.5
29.0
29.5
30.0 | | 2.3
25.5
27.0
27.5
28.0
28.5 | | | | | | | | 1
2
3
4 | 20.5
20.0
19.0
20.5 | JUNE
16.0
17.5
17.5
17.0 | 17.5
19.0
18.0
18.5 | 28.0
28.5
29.0
29.5 | JULY
24.5
25.5
26.5
26.5 | 25.5
27.0
27.5
28.0 | 26.5
27.5
26.5
25.5 | AUGUST
24.5
25.0
24.5 | 25.0
26.0
25.5
24.5 | 22.5
23.0
23.5 | 19.5
19.5
19.5
21.0
20.0 | 21.5
21.0
22.0
21.0 | | 1
2
3
4
5
6
7
8
9 | 20.5
20.0
19.0
20.5
22.0
21.5
22.0
21.5
23.0 | JUNE 16.0 17.5 17.5 17.0 18.5 19.0 18.0 20.0 18.5 | 17.5
19.0
18.0
18.5
20.0
20.5
19.5
20.5
20.5 | 28.0
28.5
29.0
29.5
30.0
29.5
28.5
28.0
25.5 | JULY 24.5 25.5 26.5 26.5 27.0 27.0 25.5 25.5 23.0 | 25.5
27.0
27.5
28.0
28.5
28.0
27.0
26.0
23.5 | 26.5
27.5
26.5
25.5
26.5
28.0
28.0
27.0
26.5 | AUGUST 24.5 25.0 24.5 24.0 23.5 24.5 25.0 24.5 25.0 24.5 23.5 | 25.0
26.0
25.5
24.5
24.5
26.0
26.5
25.5
25.0 | 22.5
23.0
23.5
22.0
23.0 | 19.5
19.5
21.0
20.0
20.0
20.5
22.0
23.5
24.0 | 21.5
21.0
22.0
21.0
21.0
21.0
24.0
24.0
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.5
20.0
19.0
20.5
22.0
21.5
23.0
22.0
21.5
21.5
24.5
24.5
25.0 | JUNE 16.0 17.5 17.5 17.0 18.5 19.0 18.0 20.0 18.5 20.5 19.0 18.0 19.5 22.5 | 17.5
19.0
18.0
18.5
20.0
20.5
19.5
20.5
21.5
20.0
19.0
21.5
24.0 | 28.0
28.5
29.0
29.5
30.0
29.5
28.5
28.0
25.5
23.0
22.5
24.5
27.5 | JULY 24.5 25.5 26.5 26.5 27.0 27.0 25.5 25.5 23.0 21.0 19.5 21.0 23.0 25.0 | 25.5
27.0
27.5
28.0
28.5
28.0
27.0
26.0
23.5
21.5
21.0
22.5
24.5
26.0 | 26.5
27.5
26.5
25.5
26.5
28.0
27.0
26.5
27.5
27.5
24.5
26.0
27.0 | AUGUST 24.5 25.0 24.5 24.0 23.5 24.5 25.0 24.5 25.0 24.5 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 | 25.0
26.0
25.5
24.5
24.5
26.0
26.5
25.5
25.0
25.5
25.0
23.0
24.0
25.0 | 22.5
23.0
23.5
22.0
23.0
24.5
27.5
26.5
26.5
26.0
25.0
24.0
21.5
20.5 | 19.5
19.5
21.0
20.0
20.0
20.5
22.0
23.5
24.0
23.0
21.0
20.5
19.0 | 21.5
21.0
22.0
21.0
21.0
22.0
24.0
24.5
25.0
24.5
24.5
22.0
21.0
19.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20.5
20.0
19.0
20.5
22.0
21.5
22.0
21.5
23.0
22.0
21.5
24.5
24.5
26.0
27.5
28.5
29.0
27.5 | JUNE 16.0 17.5 17.5 17.0 18.5 19.0 18.0 20.0 18.5 20.5 19.0 18.0 19.5 22.5 22.0 23.0 23.5 25.5 24.0 | 17.5
19.0
18.0
18.5
20.0
20.5
19.5
20.5
21.5
20.0
19.0
21.5
24.0
24.0
25.0
25.0
25.0
25.0 | 28.0
28.5
29.0
29.5
30.0
29.5
28.5
28.0
25.5
23.0
22.5
24.5
27.5
26.5
26.5
26.5 | JULY 24.5 25.5 26.5 26.5 27.0 27.0 25.5 25.5 23.0 21.0 19.5 21.0 23.0 24.0 24.0 25.0 24.0 25.0 22.5 23.0 | 25.5
27.0
27.5
28.0
28.5
28.0
27.0
26.0
23.5
21.5
21.5
22.5
24.5
26.0
25.5
25.0
26.0
24.5
24.0 | 26.5
27.5
26.5
25.5
26.5
28.0
28.0
27.0
26.5
27.5
24.5
26.0
27.0
28.0
27.0
28.5
28.5
27.5 | AUGUST 24.5 25.0 24.5 24.0 23.5 24.5 25.0 24.5 25.0 24.5 25.0 24.5 23.5 24.0 25.5 26.5 26.0 25.5 26.0 | 25.0
26.0
25.5
24.5
24.5
26.0
26.5
25.5
25.0
23.0
24.0
26.5
27.5
27.5
26.0
27.0 | 22.5
23.0
23.5
22.0
23.0
24.5
27.5
26.5
26.5
26.0
25.0
24.0
21.5
20.0
21.0
21.5
22.0
21.0 | 19.5
19.5
21.0
20.0
20.0
20.5
22.0
23.5
24.0
23.0
21.0
20.5
19.0
17.5 | 21.5
21.0
22.0
21.0
21.0
22.0
24.0
24.5
25.0
24.5
24.0
22.0
21.0
19.5
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 20.5
20.0
19.0
20.5
22.0
21.5
23.0
22.0
21.5
21.5
24.5
25.0
26.0
27.5
28.5
29.0
27.5
26.0 | JUNE 16.0 17.5 17.5 17.0 18.5 19.0 18.0 20.0 18.5 20.5 19.0 23.5 22.5 24.0 21.5 22.5 24.0 24.0 24.5 24.0 | 17.5
19.0
18.0
18.5
20.0
20.5
19.5
20.5
21.5
20.0
19.0
21.5
24.0
24.0
25.0
25.5
27.0
25.0
23.5
24.5
24.5
26.0
26.0 | 28.0
28.5
29.0
29.5
30.0
29.5
28.5
28.0
25.5
24.5
27.5
27.5
26.5
26.0
26.5
26.0
26.5
26.0
26.5
26.0
26.5 | JULY 24.5 25.5 26.5 26.5 27.0 27.0 25.5 25.5 23.0 21.0 19.5 21.0 25.0 24.0 24.0 25.0 24.0 24.5 23.0 24.5 23.0 24.5 23.0 | 25.5
27.0
27.5
28.0
28.5
28.0
27.0
26.0
23.5
21.5
21.0
22.5
24.5
26.0
25.5
24.0
25.0
26.0
24.5
24.0
25.0
25.5
24.0
25.5
24.0
25.5
24.0
25.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26 | 26.5
27.5
26.5
25.5
26.5
28.0
27.0
26.5
27.5
27.5
24.5
26.0
27.0
28.0
28.5
27.5
28.5
27.5
28.5
27.5
28.5
27.5
28.5
27.5
28.5
27.5
28.7
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
27.0
28.0
28.0
27.0
28.0
28.0
28.0
28.0
28.0
27.0
28.0
28.0
28.0
28.0
28.0
28.0
28.0
28 | AUGUST 24.5 25.0 24.5 24.0 23.5 24.5 25.0 24.5 23.5 24.0 23.5 24.0 25.5 26.0 25.5 26.0 25.0 26.0 25.0 26.0 25.5 26.0 25.0 26.0 25.5 26.0 25.5 26.0 25.5 26.0 | 25.0
26.0
25.5
24.5
24.5
26.0
26.5
25.5
25.0
25.5
25.0
24.0
25.0
26.5
27.5
26.0
27.0
26.5
27.0
26.5 | 22.5
23.0
23.5
22.0
23.0
24.5
27.5
26.5
26.5
26.0
24.0
21.5
20.5
20.0
21.0
19.0
19.0
18.5
17.5
18.0 | 19.5
19.5
19.5
21.0
20.0
20.0
20.5
22.0
23.5
24.0
23.0
21.0
20.5
19.0
17.5
18.0
19.0
18.5
17.5
15.5
16.5 | 21.5
21.0
22.0
21.0
21.0
22.0
24.0
24.5
25.0
24.5
22.0
21.0
19.5
19.0
19.0
17.0
18.0
16.5
17.0 | #### 05427850 YAHARA RIVER AT STATE HWY 113 AT MADISON, WI-Continued # SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP |
----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 3.80 | 3.80 | 1.50 | 0.73 | 0.50 | 0.80 | 6.50 | 12.0 | 3.40 | 2.40 | 3.80 | 1.70 | | 2 | 3.60 | 7.00 | 1.80 | 0.72 | 0.38 | 0.91 | 8.00 | 8.50 | 2.80 | 2.00 | 2.50 | 0.65 | | 3 | 1.20 | 4.10 | 1.00 | 0.66 | 0.36 | 0.84 | 3.50 | 6.20 | 3.30 | 3.00 | 3.60 | 2.70 | | 4 | 1.40 | 7.40 | 1.20 | 0.75 | 0.44 | 0.78 | 6.40 | 7.10 | 2.80 | 2.40 | 2.80 | 1.50 | | 5 | 4.30 | 6.10 | 1.30 | 0.83 | 0.42 | 0.93 | 4.50 | 8.00 | 3.00 | 2.70 | 2.50 | 0.71 | | 6 | 1.90 | 6.60 | 1.00 | 0.69 | 0.44 | 1.30 | 11.0 | 12.0 | 1.90 | 3.80 | 2.60 | 1.70 | | 7 | 3.30 | 1.10 | 1.40 | 0.78 | 0.35 | 1.00 | 3.20 | 10.0 | 4.40 | 4.10 | 2.40 | 1.50 | | 8 | 3.30 | 9.90 | 1.10 | 0.71 | 0.40 | 1.70 | 1.40 | 12.0 | 3.60 | 3.30 | 2.30 | 1.10 | | 9 | 3.70 | 4.80 | 0.88 | 0.75 | 0.41 | 1.50 | 3.10 | 13.0 | 4.30 | 3.50 | 2.30 | 1.30 | | 10 | 3.70 | 6.10 | 1.10 | 0.50 | 0.37 | 1.40 | 3.60 | 17.0 | 3.20 | 2.80 | 2.70 | 1.20 | | 11 | 3.90 | 8.00 | 1.00 | 0.49 | 0.38 | 1.70 | 4.50 | 15.0 | 3.00 | 3.50 | 3.20 | 1.30 | | 12 | 4.10 | 6.40 | 1.10 | 0.65 | 0.46 | 1.80 | 4.40 | 20.0 | 2.00 | 2.50 | 1.50 | 1.10 | | 13 | 4.40 | 4.90 | 1.10 | 0.61 | 0.42 | 2.10 | 3.30 | 11.0 | 2.10 | 1.90 | 1.90 | 3.60 | | 14 | 2.00 | 7.10 | 0.98 | 0.50 | 0.44 | 2.50 | 2.20 | 11.0 | 2.00 | 1.00 | 2.00 | 6.70 | | 15 | 6.40 | 4.40 | 1.40 | 0.46 | 0.39 | 4.00 | 6.40 | 9.50 | 2.10 | 7.40 | 2.30 | 6.10 | | 16 | 3.60 | 3.80 | 0.81 | 0.60 | 0.41 | 4.80 | 11.0 | 7.70 | 1.40 | 3.40 | 2.70 | 1.90 | | 17 | 3.80 | 3.30 | 0.96 | 0.49 | 0.37 | 4.20 | -0.11 | 6.40 | 1.90 | 3.40 | 1.70 | 2.00 | | 18 | 2.20 | 3.60 | 1.30 | 0.52 | 0.42 | 3.80 | 3.70 | 6.20 | 2.70 | 0.90 | 1.00 | 2.20 | | 19 | 5.80 | 3.50 | 1.50 | 0.42 | 0.43 | 3.00 | 1.90 | 5.20 | 1.90 | 1.60 | 2.60 | 2.70 | | 20 | 4.20 | 3.70 | 1.10 | 0.52 | 0.56 | 3.20 | 2.80 | 8.20 | 2.30 | 1.90 | 1.30 | 1.80 | | 21 | 3.00 | 3.50 | 1.20 | 0.43 | 0.84 | 3.00 | 6.90 | 5.50 | 2.00 | 2.40 | 3.80 | 1.90 | | 22 | 4.20 | 2.10 | 0.67 | 0.40 | 0.98 | 4.10 | 2.70 | 5.50 | 2.20 | 1.60 | 1.70 | 1.50 | | 23 | 2.30 | 3.20 | 0.91 | 0.31 | 0.61 | 2.90 | 3.20 | 5.50 | 2.80 | 1.40 | 1.50 | 1.80 | | 24 | 2.80 | 3.10 | 0.83 | 0.30 | 0.61 | 3.80 | 3.40 | 5.90 | 2.50 | 1.50 | 1.90 | 1.90 | | 25 | 3.40 | 2.40 | 0.83 | 0.36 | 0.67 | 3.60 | 3.40 | 5.90 | 1.70 | 0.66 | 3.20 | 1.80 | | 26
27
28
29
30
31 | 4.00
4.70
4.80
4.90
3.90
4.20 | 2.20
1.90
1.60
2.50
2.20 | 0.77
0.79
1.00
0.95
0.90
0.93 | 0.41
0.31
0.38
0.38
0.40
0.51 | 0.67
0.66
0.81
 | 3.80
4.30
3.60
7.50
4.90
3.90 | 2.20
2.10
4.10
2.00
3.90 | 5.40
5.30
5.30
5.00
4.50
4.50 | 4.30
3.80
3.10
3.20
2.90 | 3.10
2.90
1.60
1.30
1.80
2.90 | 2.90
1.80
0.77
5.50
0.98
2.40 | 1.60
2.20
2.00
1.60
1.90 | | TOTAL | 112.80 | 130.30 | 33.31 | 16.57 | 14.20 | 87.66 | 125.19 | 264.30 | 82.60 | 78.66 | 74.15 | 61.66 | WATR YEAR 2003 TOTAL 1,081.40 # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 28.4 | 8.78 | 6.51 | 4.86 | 3.25 | 2.96 | 45.5 | 190 | 33.8 | 31.0 | 75.1 | 29.5 | | 2 | 27.3 | 15.5 | 8.07 | 4.79 | 2.46 | 3.18 | 56.6 | 112 | 26.1 | 27.0 | 49.4 | 11.5 | | 3 | 11.2 | 8.78 | 4.66 | 4.40 | 2.33 | 2.81 | 23.0 | 70.3 | 30.4 | 40.7 | 71.1 | 47.8 | | 4 | 16.1 | 15.2 | 5.63 | 4.95 | 2.90 | 2.49 | 39.3 | 69.9 | 26.7 | 33.4 | 57.0 | 26.5 | | 5 | 43.7 | 12.2 | 6.04 | 5.52 | 2.73 | 2.79 | 26.2 | 68.3 | 29.0 | 37.8 | 50.0 | 13.2 | | 6 | 15.5 | 12.7 | 5.06 | 4.57 | 2.85 | 3.79 | 68.1 | 87.3 | 18.4 | 53.2 | 51.2 | 32.6 | | 7 | 22.3 | 2.25 | 7.17 | 5.14 | 2.32 | 2.80 | 26.4 | 85.8 | 42.5 | 58.4 | 48.0 | 27.7 | | 8 | 17.7 | 20.1 | 5.57 | 4.73 | 2.63 | 4.35 | 14.8 | 159 | 30.1 | 48.5 | 44.7 | 20.5 | | 9 | 16.2 | 10.0 | 4.78 | 4.99 | 2.65 | 3.60 | 42.5 | 192 | 33.5 | 53.8 | 43.8 | 25.2 | | 10 | 13.5 | 13.2 | 6.26 | 3.30 | 2.38 | 3.18 | 48.4 | 159 | 26.4 | 44.3 | 51.8 | 25.0 | | 11 | 13.6 | 17.9 | 5.89 | 3.25 | 2.49 | 3.79 | 57.5 | 114 | 27.1 | 56.8 | 61.6 | 26.8 | | 12 | 13.8 | 14.7 | 6.54 | 4.33 | 3.01 | 3.94 | 53.9 | 185 | 18.8 | 41.9 | 28.3 | 22.2 | | 13 | 14.4 | 11.6 | 7.04 | 4.01 | 2.73 | 4.62 | 38.9 | 92.5 | 21.3 | 33.6 | 36.4 | 74.6 | | 14 | 6.62 | 17.5 | 6.26 | 3.30 | 2.87 | 5.85 | 25.1 | 76.8 | 20.5 | 18.7 | 37.6 | 121 | | 15 | 20.3 | 11.2 | 9.01 | 3.01 | 2.56 | 10.2 | 68.1 | 68.9 | 21.5 | 139 | 41.8 | 86.9 | | 16 | 11.2 | 10.0 | 5.42 | 3.96 | 2.64 | 12.9 | 118 | 61.4 | 15.3 | 65.9 | 49.7 | 27.3 | | 17 | 12.0 | 8.88 | 6.45 | 3.26 | 2.39 | 12.1 | -1.36 | 50.8 | 20.2 | 70.7 | 30.0 | 27.8 | | 18 | 7.08 | 9.98 | 8.38 | 3.42 | 2.68 | 11.4 | 51.8 | 49.3 | 29.9 | 19.4 | 18.0 | 30.0 | | 19 | 18.7 | 10.1 | 10.2 | 2.78 | 2.68 | 9.57 | 29.8 | 41.0 | 21.2 | 35.8 | 46.7 | 36.2 | | 20 | 13.7 | 11.0 | 7.13 | 3.41 | 3.30 | 10.8 | 47.1 | 64.3 | 25.9 | 43.7 | 22.6 | 23.7 | | 21 | 10.0 | 10.8 | 7.69 | 2.82 | 4.68 | 10.7 | 109 | 43.0 | 22.9 | 52.9 | 67.6 | 24.6 | | 22 | 13.8 | 6.59 | 4.44 | 2.61 | 5.17 | 15.8 | 40.0 | 41.1 | 24.8 | 35.5 | 29.7 | 19.3 | | 23 | 7.52 | 10.5 | 6.07 | 2.05 | 3.06 | 12.0 | 44.6 | 39.7 | 31.5 | 29.7 | 25.9 | 23.6 | | 24 | 8.62 | 10.3 | 5.54 | 2.00 | 2.89 | 16.3 | 44.6 | 40.8 | 27.6 | 30.3 | 31.7 | 25.0 | | 25 | 10.1 | 8.36 | 5.52 | 2.36 | 3.06 | 16.7 | 42.1 | 38.7 | 19.5 | 12.9 | 53.7 | 23.4 | | 26
27
28
29
30
31 | 11.5
13.1
12.7
12.7
9.66
10.1 | 8.04
7.16
6.08
10.1
9.05 | 5.15
5.24
6.72
6.32
5.96
6.19 | 2.67
2.03
2.48
2.47
2.63
3.32 | 2.89
2.71
3.14
 | 18.5
22.4
20.1
43.7
30.2
26.0 | 25.7
23.3
47.3
29.8
65.5 | 34.0
30.8
31.8
37.5
41.8
46.5 | 50.4
46.1
38.9
40.6
37.8 | 59.1
56.0
31.8
26.2
35.4
57.0 | 48.2
30.1
12.7
91.5
16.6
40.3 | 19.6
26.8
24.8
19.7
23.2 | | TOTAL | 463.10 | 328.55 | 196.91 | 109.42 | 81.45 | 349.52 | 1,351.54 | 2,423.3 | 858.7 | 1,380.4 | 1,362.8 | 966.0 | ### 05427850 YAHARA RIVER AT STATE HWY 113 AT MADISON, WI—Continued | Date | Time | Dis-
charge,
cfs
(00060) | Sampling method, code (82398) | Orthophosphate, water, fltrd, mg/L as P (00671) | Phosphorus, water, unfltrd mg/L (00665) | Chloro-
phyll a
wat unf
trichr.
method,
uncorr,
ug/L
(32210) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |----------|------|-----------------------------------|-------------------------------|---|---|---|--| | OCT 2002 | | | | | | | | | 02 | 0940 | 69 | 10 | | 0.074 | | 20 | | 04 | 1420 | 48 | 10 | | 0.061 | | 10 | | 10 | 1345 | 43 | 10 | | 0.058 | | 33 | | 16 | 1000 | 39 | 10 | | 0.053 | | 34 | | 22 | 1335 | 64 | 10 | | 0.040 | | 24 | | NOV | | | | | | | | | 06 | 1220 | 59 | 10 | | 0.040 | | 42 | | FEB 2003 | | | | | | | | | 18 | 1055 | 38 | 10 | | 0.013 | | 4 | | MAR | | | | | | | | | 12 | 1100 | 38 | 10 | 0.006 | 0.019 | 4.33 | 18 | | APR | | | | | | | | | 09 | 1040 | 49 | 10 | | | | 23 | | 09 | 1045 | 49 | 50 | | | | 12 | | MAY | | | | | | | | | 15 | 1020 | 84 | 10 | 0.003 | 0.161 | 120 | 44 | | 15 | 1025 | 84 | 50 | 0.003 | 0.155 | 117 | 34 | | | | | | | | | | ### 05427850 YAHARA RIVER AT STATE HWY 113 AT MADISON, WI—Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 #### COMPOSITE SAMPLES | | | | | WII OSITE ST | IVII EES | | | |---------------------|----------------|-------------------|----------------|------------------------------|--|---|---| | Beginning
Date | Ending
date | Beginning
Time | Ending
time | Discharge,
cfs
(00060) | Sampling
method,
code
(82398) | Phosphorus,
water,
unfltrd
mg/L
(00665) | Suspended
sediment
concentration
mg/L
(80154) | | APR
02-02 | 20030402 | 0300 | 2100 | 76 | 50 | 0.138 | 38 | | APR
06-06 | 20030406 | 0300 | 2100 | 85 | 50 | 0.147 | 53 | | APR
16-16 | 20030416 | 0300 | 2100 | 110 | 50 | 0.197 | 38 | | APR
20-20 | 20030420 | 0300 | 2,00 | 43 | 50 | 0.207 | 24 | | APR
28-28 | 20030428 | 0300 | 2100 | 53 | 50 | 0.164 | 31 | | APR
30-30 | 20030430 | 0300 | 2100 | 69 | 50 | 0.170 | 20 | | MAY
01-01 | 20030501 | 0300 | 2100 | 188 | 50 | 0.189 | 23 | | MAY
04-04 | 20030504 | 0300 | 2100 | 75 | 50 | 0.175 | 34 | | MAY
07-07 | 20030507 | 0300 | 2100 | 87 | 50 | 0.151 | 44 | | MAY
09-09 | 20030509 | 0300 | 2100 | 102 | 50 | 0.392 | 43 | | MAY
11-11 | 20030511 | 0300 | 2100 |
108 | 50 | 0.217 | 64 | | MAY
12-12 | 20030512 | 0300 | 2100 | 209 | 50 | 0.162 | 35 | | MAY
13-13 | 20030513 | 0300 | 2100 | 104 | 50 | 0.166 | 37 | | MAY
14-14 | 20030514 | 0300 | 2100 | 89 | 50 | 0.161 | 44 | | MAY
16-16 | 20030516 | 0300 | 2100 | 80 | 50 | 0.143 | 36 | | MAY
21-21 | 20030521 | 0300 | 1200 | 65 | 50 | 0.122 | 31 | | MAY
26-26 | 20030526 | 0300 | 2100 | 51 | 50 | 0.126 | 39 | | MAY
28-28 | 20030528 | 0300 | 2100 | 49 | 50 | 0.114 | 41 | | MAY
31-31 | 20030531 | 0300 | 2,00 | 51 | 50 | 0.179 | 34 | | JUN
03-03 | 20030603 | 0300 | 2100 | 47 | 50 | 0.118 | 26 | | JUN
07-07 | 20030607 | 0300 | 2100 | 61 | 50 | 0.131 | 26 | | JUN
09-09 | 20030609 | 0300 | 2100 | 53 | 50 | 0.119 | 31 | | JUN
13-13 | 20030613 | 0300 | 2100 | 39 | 50 | 0.099 | 20 | | JUN
20-20 | 20030620 | 0300 | 2100 | 34 | 50 | 0.137 | 24 | | JUN
24-24 | 20030624 | 0300 | 2100 | 28 | 50 | 0.183 | 33 | | JUN
28-28
JUL | 20030628 | 0300 | 2100 | 37 | 50 | 0.192 | 31 | | 07-07
JUL | 20030707 | 0300 | 2100 | 47 | 50 | 0.227 | 32 | | 10-10
JUL | 20030710 | 0300 | 2100 | 32 | 50 | 0.257 | 33 | | 15-15
JUL | 20030715 | 0300 | 2100 | 99 | 50 | 0.266 | 29 | | 20-20
JUL | 20030720 | 0300 | 2100 | 38 | 50 | 0.210 | 18 | | 26-26
AUG | 20030726 | 0300 | 2100 | 45 | 50 | 0.239 | 25 | | 05-05
AUG | 20030805 | 0300 | 2100 | 28 | 50 | 0.331 | 33 | | 29-29
SEP | 20030829 | 0300 | 2100 | 63 | 50 | 0.272 | 33 | | 07-07
SEP | 20030907 | 0300 | 2100 | 25 | 50 | 0.208 | 22 | | 13-13
SEP | 20030913 | 0300 | 2100 | 74 | 50 | 0.201 | 19 | | 14-14
SEP | 20030914 | 0300 | 2100 | 140 | 50 | 0.165 | 16 | | 15-15
SEP | 20030915 | 0300 | 2100 | 110 | 50 | 0.150 | 21 | | 16-16 | 20030916 | 0300 | 2100 | 36 | 50 | 0.141 | 20 | | | | | | | | | | #### 05427948 PHEASANT BRANCH AT MIDDLETON, WI LOCATION.--Lat $43^\circ06'12''$, long $89^\circ30'42''$, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.11, T.7 N., R.8 E., Dane County, Hydrologic Unit 07090001, on left bank at bridge on U.S. Highway 12, 2.5 mi upstream from Lake Mendota, at Middleton. DRAINAGE AREA.--18.3 mi², of which 1.22 mi² is noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- July 1974 to current year. GAGE.--Water-stage recorder, crest-stage gage, parshall flume, and concrete control. Datum of gage is 901.5 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges and July 29 to Aug. 7, which are fair (see page 11). Low flows occasionally affected by construction activities upstream. Gage-height telemeter at station. | | | DISCH | ARGE, CUE | BIC FEET P | |) , WATER
LY MEAN V | | OBER 2002 | TO SEPTE | MBER 2003 | | | |---|--|--|--|---|---|---|---|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.4
3.6
5.1
50
22 | 2.9
2.9
2.9
2.9
3.1 | 1.9
2.0
2.1
2.1
2.1 | 1.9
1.9
1.8
1.8 | 1.6
1.7
2.0
1.8
1.7 | 1.4
e1.4
1.4
1.5 | 2.7
2.6
2.7
3.5
3.4 | 54
11
5.6
4.2 | 3.3
2.5
1.9
2.0
2.0 | 2.8
2.0
1.8
2.0
3.6 | 1.3
1.2
1.2
1.2
1.2 | 0.60
0.68
0.80
0.81
0.77 | | 6
7
8
9
10 | 7.8
5.0
4.2
3.8
3.6 | 3.3
3.2
3.1
3.1
3.1 | 2.0
2.0
1.9
2.1
2.1 | 1.9
1.9
2.1
2.2
1.9 | 1.7
1.7
1.5
1.5
e1.5 | 1.6
1.5
1.5
1.4
1.4 | 3.2
2.9
3.0
3.2
3.4 | 7.9
11
8.8
18
8.6 | 2.2
2.5
2.9
3.6
2.9 | 13
15
8.5
5.3
3.7 | 1.1
1.2
0.96
0.89
0.87 | 0.64
0.66
0.80
0.76
0.76 | | 11
12
13
14
15 | 3.5
3.4
3.4
3.2
3.3 | 4.1
3.4
3.1
3.1
3.0 | 2.0
2.1
2.1
2.1
2.1 | 1.8
1.7
1.7
1.6
1.7 | 1.5
1.5
1.5
1.4
1.4 | 1.5
1.6
1.7
4.3 | 3.7
3.3
3.0
2.9
3.4 | 17
12
6.5
7.1
6.8 | 2.3
2.0
2.0
1.9
1.7 | 2.8
2.0
1.6
1.4
28 | 0.94
0.97
0.98
1.0
0.95 | 0.75
1.9
16
59
14 | | 16
17
18
19
20 | 3.2
3.1
3.5
3.4
3.3 | 2.5
2.4
2.4
2.6
2.5 | 2.2
2.1
4.8
6.6
4.1 | 1.7
1.5
1.5
1.5
1.6 | 1.4
1.4
1.5
1.4
1.6 | 11
5.6
3.8
3.4
3.8 | 3.2
3.1
3.2
e3.8
e4.2 | 5.2
4.3
3.8
4.5
6.2 | 1.6
1.6
1.5
1.2
1.6 | 11
4.7
2.9
2.1
1.8 | 0.85
0.73
0.81
0.85
0.90 | 6.2
3.9
2.7
2.2
1.6 | | 21
22
23
24
25 | 3.1
3.1
3.0
3.1
4.1 | 2.4
2.4
2.3
2.2
2.2 | 3.3
2.8
2.5
2.2
2.1 | 1.6
1.5
1.5
1.4
1.4 | 2.4
4.1
4.0
2.8
1.4 | 3.5
3.0
2.5
2.2
2.2 | e3.7
2.5
2.2
1.9
1.8 | 4.4
3.5
3.1
2.8
2.5 | 1.4
1.2
1.2
1.9
1.8 | 3.3
3.8
2.6
1.9
1.5 | 1.2
0.97
0.68
0.60
0.69 | 1.2
1.4
1.7
1.6
1.2 | | 26
27
28
29
30
31 | 3.8
3.4
3.3
3.3
3.1
3.1 | 2.2
2.1
1.9
1.9
1.9 | 2.1
1.9
2.0
2.0
2.0
2.0 | 1.4
1.4
1.5
1.5
1.6 | 1.4
1.5
1.4
 | 2.0
2.1
4.5
4.8
3.5
3.1 | 1.7
1.5
1.5
1.5
10 | 2.1
2.1
2.3
3.8
4.6
4.0 | 1.8
1.5
5.7
7.8
4.1 | 1.3
1.2
1.2
1.5
1.3 | 0.81
0.68
0.54
1.0
0.74
0.62 | 0.92
0.83
0.84
0.90
1.0 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 178.2
5.75
50
3.0
0.34
0.39 | 81.1
2.70
4.1
1.9
0.16
0.18 | 75.4
2.43
6.6
1.9
0.14
0.16 | 51.8
1.67
2.2
1.4
0.10
0.11 | 50.3
1.80
4.1
1.4
0.11
0.11 | 101.6
3.28
17
1.4
0.19
0.22 | 92.7
3.09
10
1.5
0.18
0.20 | 248.7
8.02
54
2.1
0.47
0.54 | 71.6
2.39
7.8
1.2
0.14
0.16 | 136.9
4.42
28
1.2
0.26
0.30 | 28.63
0.92
1.3
0.54
0.05
0.06 | 127.12
4.24
59
0.60
0.25
0.28 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 2.73
6.42
(1987)
0.86
(1977) | 3.14
12.3
(1986)
0.67
(1991) | 2.35
6.11
(1985)
0.34
(1990) | A FOR WAT
2.56
7.75
(1997)
0.36
(1991) | CER YEARS
6.30
20.4
(1994)
0.46
(1978) | 1974 - 2003
10.0
34.6
(1993)
1.63
(1981) | 5.57
16.8
(1999)
0.95
(1990) | ER YEAR (W
4.25
18.7
(2000)
0.96
(1977) | 7.02
41.7
(2000)
0.92
(1989) | 5.35
32.5
(1993)
0.94
(1976) | 4.05
26.5
(2001)
0.92
(2003) | 3.81
13.0
(1980)
0.74
(1976) | | ANNUAI
ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
MAXIMU
INSTAN'
ANNUAI
ANNUAI
10 PERCI
50 PERCI | L MEAN T ANNUAL T ANNUAL T DAILY M T DAILY M L SEVEN-D JM PEAK I JM PEAK S | . MEAN MEAN IEAN EAN EAN SAY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | 1 UM | 1,60
6
(a) | CALENDAR
6.0
4.40
1 Jun
1.6 Aug
1.9 Jul
0.26
3.50
6.5
3.0
2.0 | 4 3 | 1,24
(a
(a
10 |)0.54 Aug
)0.69 Aug
01 Oc
5.80 Oc | o 14
g 28 | 5 | 0.17 Dec 2
0.18 Dec 2
964 Au
9.88 Au | 74 - 2003
1993
1977
19 2, 2001
25-27, 1989
ec 21, 1989
ig 2, 2001
ig 2, 2001
ec 21, 1989 | ⁽a) Result of contruction upstream(e) Estimated due to ice effect or missing record #### 05427948 PHEASANT BRANCH AT MIDDLETON, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1974 to current year. #### PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: October 1977 to current year. TOTAL-PHOSPHORUS DISCHARGE: January 1992 to December 1993, and October 1994 to current year. TOTAL ORTHO-PHOSPHORUS DISCHARGE: January to September 1992. INSTRUMENTATION .-- Automatic pumping sampler since December 1977. REMARKS.--Records good. Samples are point samples unless otherwise indicated. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 15,400 mg/L, Apr. 30, 1984; minimum observed, 4 mg/L, Mar. 12, 1979, May 11, 1995, Mar. 17, 2001, July 3 and Aug. 7, 2002. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 2,870 tons, June 10, 1984; minimum daily, 0.01 ton, on many days in 1990, 1991, and 2003 water years TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 15.1 mg/L, July 4, 1994; minimum observed, 0.03 mg/L, Jan. 28, 1998. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 4,310 lb, May 18, 2000; minimum daily, 0.19 lb, Jan. 14, 31, 1998. TOTAL ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 2.40 mg/L, Feb. 29, 1992; minimum observed, 0.02 mg/L, Nov. 13, 2001. TOTAL ORTHO-PHOSPHORUS DISCHARGE: Maximum daily, 966 lb, Feb. 28, 1992; minimum daily, 0.13 lb, Sept. 13, 1992. #### EXTREMES FOR CURRENT YEAR .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 1,520 mg/L, May 1; minimum observed, 6 mg/L, July 28. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 104 tons, May 1; minimum daily, 0.01 ton, Aug. 23-25, 27, 28, and Aug. 30 to Sept. 11. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum
observed, 1.79 mg/L, Mar. 15; minimum observed, 0.058 mg/L, Feb. 13. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 214 lb, May 1; minimum daily, 0.24 lb, Aug. 28. TOTAL ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.119 mg/L, Oct. 4; minimum observed, 0.033 mg/L, Apr. 30. #### SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--------------------------------------|--|--|--------------------------------------| | 1
2
3 | 0.22
0.24
0.31
85 | 0.12
0.12
0.12
0.12 | 0.08
0.08
0.09
0.08 | 0.10
0.10
0.09
0.09 | 0.05
0.05
0.06
0.06 | 0.07
0.07
0.07
0.07 | 0.15
0.16
0.19
0.28 | 104
2.6
0.67
0.26 | 0.12
0.09
0.07
0.07 | 0.06
0.04
0.04
0.04 | 0.02
0.02
0.02
0.02 | 0.01
0.01
0.01
0.01 | | 4
5 | 4.2 | 0.12 | 0.08 | 0.09 | 0.06 | 0.07 | 0.28 | 1.3 | 0.08 | 0.18 | 0.02 | 0.01 | | 6
7
8
9
10 | 0.44
0.22
0.18
0.16
0.15 | 0.13
0.13
0.13
0.13
0.12 | 0.08
0.08
0.08
0.08
0.09 | 0.09
0.08
0.09
0.09
0.08 | 0.06
0.05
0.05
0.05
0.05 | 0.08
0.08
0.07
0.07
0.07 | 0.22
0.18
0.17
0.20
0.25 | 0.81
1.5
0.72
3.5
2.9 | 0.12
0.17
0.24
0.25
0.15 | 3.7
4.7
0.82
0.16
0.11 | 0.02
0.02
0.02
0.02
0.02 | 0.01
0.01
0.01
0.01
0.01 | | 11
12
13
14
15 | 0.14
0.14
0.14
0.13
0.13 | 0.12
0.16
0.14
0.12
0.12
0.12 | 0.09
0.09
0.09
0.09
0.09 | 0.07
0.07
0.07
0.07
0.06
0.06 | 0.05
0.05
0.05
0.05
0.05
0.04 | 0.08
0.08
0.09
0.45
6.1 | 0.23
0.30
0.22
0.16
0.13
0.16 | 4.7
1.1
0.32
0.58
0.33 | 0.09
0.06
0.05
0.04
0.04 | 0.09
0.06
0.05
0.05
21 | 0.02
0.02
0.02
0.02
0.02
0.02 | 0.01
0.03
8.9
21
1.0 | | 16
17
18
19
20 | 0.13
0.13
0.14
0.14
0.13 | 0.10
0.10
0.10
0.11
0.10 | 0.09
0.09
1.0
0.85
0.41 | 0.06
0.05
0.05
0.05
0.05 | 0.04
0.05
0.05
0.05
0.06 | 2.2
0.73
0.41
0.30
0.29 | 0.17
0.19
0.23
0.32
0.35 | 0.16
0.12
0.10
0.15
0.51 | 0.04
0.03
0.03
0.03
0.03 | 2.3
0.31
0.13
0.06
0.04 | 0.02
0.02
0.02
0.02
0.02 | 0.20
0.12
0.08
0.06
0.04 | | 21
22
23
24
25 | 0.13
0.13
0.12
0.13
0.17 | 0.10
0.10
0.09
0.09
0.09 | 0.30
0.24
0.19
0.16
0.14 | 0.05
0.05
0.05
0.04
0.04 | 0.17
0.59
0.54
0.23
0.08 | 0.23
0.16
0.12
0.10
0.10 | 0.27
0.16
0.14
0.10
0.09 | 0.34
0.22
0.15
0.11
0.09 | 0.03
0.03
0.03
0.04
0.04 | 0.21
0.28
0.15
0.08
0.05 | 0.03
0.02
0.01
0.01
0.01 | 0.03
0.06
0.13
0.14
0.10 | | 26
27
28
29
30
31 | 0.15
0.14
0.14
0.13
0.13
0.12 | 0.09
0.09
0.08
0.08
0.08 | 0.13
0.11
0.11
0.11
0.11
0.10 | 0.05
0.04
0.05
0.05
0.05
0.05 | 0.07
0.07
0.07
 | 0.09
0.10
0.49
0.49
0.21
0.15 | 0.07
0.06
0.06
0.06
20 | 0.08
0.08
0.09
0.19
0.31
0.23 | 0.04
0.04
0.46
0.67
0.12 | 0.04
0.02
0.02
0.02
0.02
0.02 | 0.02
0.01
0.01
0.02
0.01
0.01 | 0.08
0.07
0.07
0.08
0.08 | | TOTAL | 93.96 | 3.31 | 5.40 | 2.01 | 2.85 | 13.70 | 25.30 | 128.22 | 3.30 | 34.85 | 0.56 | 32.38 | WATER YEAR 2003 TOTAL 345.84 ### 05427948 PHEASANT BRANCH AT MIDDLETON, WI—Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 1.30 | 1.67 | 1.05 | 0.78 | 0.51 | 0.50 | 1.23 | 214 | 2.63 | 1.10 | 0.67 | 0.26 | | 2 | 1.78 | 1.66 | 1.12 | 0.78 | 0.54 | 0.49 | 1.17 | 40.1 | 1.87 | 0.60 | 0.62 | 0.30 | | 3 | 2.79 | 1.62 | 1.16 | 0.73 | 0.63 | 0.51 | 1.22 | 16.2 | 1.31 | 0.41 | 0.60 | 0.35 | | 4 | 203 | 1.67 | 1.15 | 0.72 | 0.59 | 0.48 | 1.59 | 7.65 | 1.27 | 0.61 | 0.61 | 0.35 | | 5 | 60.2 | 1.78 | 1.13 | 0.74 | 0.55 | 0.55 | 1.51 | 14.9 | 1.26 | 1.80 | 0.59 | 0.34 | | 6 | 29.5 | 1.85 | 1.10 | 0.73 | 0.55 | 0.57 | 1.42 | 8.38 | 1.39 | 14.0 | 0.54 | 0.28 | | 7 | 16.3 | 1.79 | 1.09 | 0.73 | 0.53 | 0.54 | 1.29 | 14.0 | 1.54 | 20.1 | 0.62 | 0.29 | | 8 | 10.9 | 1.77 | 1.06 | 0.80 | 0.49 | 0.53 | 1.36 | 9.81 | 1.71 | 9.16 | 0.48 | 0.35 | | 9 | 7.98 | 1.74 | 1.13 | 0.81 | 0.47 | 0.51 | 1.44 | 24.9 | 2.11 | 4.20 | 0.44 | 0.33 | | 10 | 6.10 | 1.73 | 1.16 | 0.70 | 0.47 | 0.51 | 1.51 | 13.2 | 1.71 | 2.57 | 0.43 | 0.33 | | 11 | 4.95 | 2.30 | 1.11 | 0.67 | 0.47 | 0.56 | 1.64 | 23.6 | 1.34 | 1.67 | 0.45 | 0.32 | | 12 | 4.22 | 1.89 | 1.17 | 0.61 | 0.48 | 0.59 | 1.45 | 13.3 | 1.14 | 1.04 | 0.47 | 1.02 | | 13 | 3.67 | 1.72 | 1.17 | 0.60 | 0.46 | 0.64 | 1.34 | 7.56 | 1.09 | 0.76 | 0.47 | 36.8 | | 14 | 3.09 | 1.73 | 1.16 | 0.58 | 0.45 | 6.00 | 1.28 | 7.40 | 1.05 | 0.77 | 0.47 | 136 | | 15 | 2.72 | 1.70 | 1.14 | 0.59 | 0.43 | 139 | 1.49 | 6.20 | 0.92 | 62.6 | 0.44 | 24.5 | | 16 | 2.34 | 1.43 | 1.25 | 0.58 | 0.43 | 79.1 | 1.43 | 4.10 | 0.86 | 19.5 | 0.40 | 10.5 | | 17 | 2.00 | 1.32 | 1.76 | 0.51 | 0.46 | 31.1 | 1.37 | 2.93 | 0.81 | 6.42 | 0.34 | 5.39 | | 18 | 2.03 | 1.33 | 5.52 | 0.53 | 0.47 | 10.9 | 1.41 | 2.38 | 0.76 | 3.38 | 0.37 | 2.99 | | 19 | 1.95 | 1.46 | 6.38 | 0.52 | 0.47 | 5.04 | 1.68 | 3.77 | 0.59 | 2.05 | 0.38 | 1.91 | | 20 | 1.85 | 1.39 | 3.28 | 0.52 | 0.53 | 4.51 | 1.85 | 4.51 | 0.78 | 1.51 | 0.40 | 1.11 | | 21 | 1.77 | 1.35 | 2.23 | 0.52 | 0.79 | 3.47 | 1.63 | 2.17 | 0.69 | 2.34 | 0.55 | 0.79 | | 22 | 1.76 | 1.32 | 1.61 | 0.49 | 1.37 | 2.46 | 1.08 | 1.61 | 0.58 | 2.56 | 0.43 | 0.83 | | 23 | 1.73 | 1.29 | 1.33 | 0.48 | 1.35 | 1.72 | 0.99 | 1.33 | 0.59 | 1.73 | 0.30 | 0.98 | | 24 | 1.76 | 1.24 | 1.13 | 0.45 | 0.94 | 1.30 | 0.84 | 1.12 | 0.87 | 1.18 | 0.27 | 0.88 | | 25 | 2.36 | 1.23 | 1.00 | 0.45 | 0.48 | 1.06 | 0.79 | 0.93 | 0.82 | 0.96 | 0.31 | 0.65 | | 26
27
28
29
30
31 | 2.14
1.95
1.90
1.87
1.78
1.75 | 1.20
1.17
1.07
1.04
1.05 | 0.97
0.85
0.84
0.82
0.84
0.81 | 0.46
0.44
0.47
0.48
0.48
0.51 | 0.48
0.50
0.48
 | 0.92
0.96
2.02
2.15
1.59
1.38 | 0.73
0.67
0.67
0.67
40.3 | 0.74
0.71
1.13
2.64
4.01
3.55 | 0.82
0.84
4.20
4.59
2.12 | 0.80
0.69
0.68
0.78
0.72
0.71 | 0.36
0.30
0.24
0.45
0.33
0.27 | 0.47
0.41
0.42
0.45
0.49 | | TOTAL | 389.44 | 45.51 | 47.52 | 18.46 | 16.37 | 301.66 | 77.05 | 458.83 | 42.26 | 167.40 | 13.60 | 230.09 | WATER YEAR 2003 TOTAL 1,808.19 ### 05427948 PHEASANT BRANCH AT MIDDLETON, WI—Continued | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |-----------|--------------|--------------------------------------|-------------------------------|--|--|--| | OCT 2002 | | | | | | | | 02 | 2315 | 6.3 | 50 | | | 25 | | 04 | 0755 | 7.2 | 50 | | 0.130 | 18 | | 04
04 | 0845
0900 | 27
45 | 50
50 | 0.064
0.060 | 0.496
0.541 | 334
414 | | 04 | 0900 | 67 | 50 | 0.044 | 1.04 | 843 | | 04 | 1230 | 89 | 50 | 0.100 | 1.12 | 954 | | 04 | 2315 | 50 | 50 | 0.119 | 0.339 | 132 | | 05 | 1730 | 14 | 50 | | 0.691 | 31 | | 06
NOV | 1745 | 6.3 | 50 | | 0.716 | 17 | | 20 | 0900 | 2.5 | 10 | | 0.104 | 120 | | DEC | | | | | | | | 17 | 1215 | 2.1 | 10 | | 0.157 | 116 | | 18
19 | 1415
1300 | 6.3
6.9 | 50
50 | | 0.231
0.173 | 74
40 | | JAN 2003 | 1300 | 0.9 | 30 | | 0.173 | 40 | | 08 | 1215 | 2.2 | 10 | | 0.305 | 66 | | 22 | 1235 | 1.4 | 10 | | 0.061 | 12 | | FEB
13 | 1100 | 1.4 | 10 | | 0.058 | 48 | | MAR | 1100 | 1.4 | 10 | | 0.038 | 40 | | 12 | 0630 | 1.5 | 10 | | 0.070 | 19 | | 14 | 2045 | 6.3 | 50 | | 0.280 | 44 | | 14
15 | 2300
0500 | 13
19 | 50
50 | | 0.530
1.79 | 69
180 | | 15 | 2315 | 16 | 50 | | 1.49 | 100 | | 17 | 0545 | 6.3 | 50 | | 1.19 | 49 | | APR | 1220 | | 50 | | 0.262 | 20 | | 30
30 | 1230
2105 | 6.6
18 | 50
50 | | 0.263
0.228 | 38
47 | | 30 | 2130 | 31 | 50 | | 0.228 | 1,000 | | 30 | 2150 | 46 | 50 | 0.033 | 1.19 | 1,320 | | 30 | 2325 | 66 | 50 | 0.047 | 1.03 | 1,190 | | MAY
01 | 0130 | 91 | 50 | 0.042 | 1.22 | 1,520 | | 01 | 0745 |
74 | 50 | 0.072 | 0.570 | 543 | | 01 | 1330 | 44 | 50 | 0.114 | 0.460 | 348 | | 02 | 0130 | 17 | 50 | | 0.697 | 106 | | 03
05 | 0200
0610 | 6.6
7.9 | 50
50 | | 0.634
0.240 | 56
14 | | 05 | 1215 | 14 | 50 | | 0.263 | 62 | | 06 | 1845 | 6.3 | 50 | | 0.171 | 30 | | 07 | 1030 | 12 | 50 | | 0.302 | 62 | | 07
08 | 1645
2300 | 14
6.6 | 50
50 | | 0.224
0.193 | 53
19 | | 09 | 0100 | 13 | 50 | | 0.283 | 92 | | 09 | 0545 | 22 | 50 | | 0.282 | 87 | | 09
09 | 1145
1800 | 22
16 | 50
50 | | 0.255
0.223 | 80
51 | | 10 | 1215 | 6.6 | 50 | | 0.223 | 20 | | 10 | 2200 | 14 | 50 | | 0.440 | 344 | | 10 | 2245 | 23 | 50 | | 0.477 | 415 | | 11
11 | 0445
1100 | 18
15 | 50
50 | | 0.264
0.244 | 156
65 | | 11 | 1700 | 19 | 50 | | 0.235 | 62 | | 12 | 1115 | 12 | 50 | | 0.194 | 30 | | 13 | 1245 | 6.3 | 50 | | 0.220 | 15 | | 13
14 | 1246
1715 | 6.3
9.0 | 10
50 | | 0.223 | 15
37 | | 15 | 1730 | 6.3 | 50 | | | 13 | | 30 | 1745 | 7.2 | 50 | | 0.175 | 13 | | JUN
17 | 1210 | 1 4 | 50 | | 0.157 | o | | 17
17 | 1318
1319 | 1.6
1.6 | 50
10 | | 0.157
0.154 | 8
8 | | 28 | 0950 | 6.4 | 50 | | 0.154 | 19 | | 29 | 0145 | 9.6 | 50 | | 0.097 | 14 | | 29 | 1400 | 7.2 | 50 | | 0.121 | 16 | | | | | | | | | ### 05427948 PHEASANT BRANCH AT MIDDLETON, WI—Continued | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, unfltrd mg/L (00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |----------|------|--------------------------------------|-------------------------------|--|---|--| | JUL 2003 | | | | | | | | 06 | 0725 | 11 | 50 | | 0.133 | 14 | | 06 | 0735 | 15 | 50 | | 0.108 | 11 | | 06 | 1945 | 18 | 50 | | 0.205 | 48 | | 09 | 0230 | 6.3 | 50 | | 0.154 | 11 | | 15 | 0210 | 10 | 50 | | 0.118 | 12 | | 15 | 0235 | 25 | 50 | | 0.525 | 381 | | 15 | 0845 | 36 | 50 | | 0.407 | 268 | | 15 | 1445 | 37 | 50 | | 0.406 | 246 | | 16 | 2115 | 6.9 | 50 | | 0.275 | 30 | | 28 | 1240 | 1.2 | 50 | | 0.104 | 6 | | 28 | 1241 | 1.2 | 10 | | 0.101 | 6 | | AUG | | | | | | | | 20 | 1305 | 0.87 | 10 | | 0.083 | 8 | | SEP | | | | | | | | 13 | 1505 | 6.7 | 50 | | 0.157 | 11 | | 13 | 1820 | 22 | 50 | 0.066 | 0.589 | 336 | | 13 | 2120 | 52 | 50 | 0.049 | 0.447 | 221 | | 13 | 2300 | 74 | 50 | 0.070 | 0.495 | 261 | | 15 | 1026 | 14 | 50 | | 0.295 | 21 | | 15 | 1027 | 14 | 10 | | 0.292 | 22 | | 16 | 0545 | 7.2 | 50 | | 0.334 | 12 | | 26 | 1035 | 0.87 | 10 | | 0.093 | 31 | #### 054279509 PHEASANT BRANCH TRIBUTARY AT MIDDLETON, WI $LOCATION.--Lat\ 43^{\circ}07^{\circ}10^{\circ},\ long\ 89^{\circ}29^{\circ}02^{\circ},\ in\ SE\ _{1/4}^{1}\ NW\ _{1/4}^{1/4}\ sec. 36,\ T.8\ N.,\ r.8\ E.,\ Dane\ County,\ Hydrologic\ Unit\ 07090001,\ on\ left\ bank\ about\ 1.0\ mi\ from\ County\ Highway\ M\ and\ Q\ bridge\ in\ Middleton,\ and\ approximately\ 1.1\ mi\ from\ mouth.$ PERIOD OF RECORD .-- October 2000 to current year. GAGE.--Water-stage recorder and Parshall flume. Datum of gage is 840.2 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. Drainage area is not listed because discharge is primarily from springs. On Jan. 22, the ditch that diverted water from some contributing springs to the flume was filled in and the flow from these springs now bypasses the flume. | | | DISCH | ARGE, CUE | BIC FEET PI | | D, WATER ' | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|---|--|--|---|--|--|--|--|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.2
4.3
4.3
5.9
4.6 | 4.5
4.5
4.5
4.4
4.4 | 4.3
4.3
4.3
4.3
4.3 | 4.4
4.4
4.4
4.3
4.4 | 2.5
2.6
2.6
2.6
2.6 | 2.9
2.9
2.9
2.8
2.8 | 2.5
2.5
2.5
2.5
2.4 | 5.2
2.5
2.5
2.4
2.6 | 2.3
2.3
2.3
2.3
2.4 | 2.3
2.3
2.3
2.4
2.4 | 2.2
2.2
2.2
2.2
2.2 | 2.2
2.2
2.2
2.2
2.2 | | 6
7
8
9
10 | 4.4
4.3
4.4
4.4 | 4.4
4.4
4.4
4.4 | 4.3
4.3
4.2
4.2
4.3 | 4.4
4.4
4.4
4.4
4.4 | 2.6
2.6
2.6
2.6
2.6 | 2.9
3.0
3.0
2.8
2.6 | 2.4
2.4
2.4
2.5
2.5 | 2.4
2.6
2.4
2.7
2.5 | 2.4
2.4
2.3
2.3
2.3 | 2.5
2.4
2.4
2.4
2.3 | 2.1
2.1
2.1
2.1
2.1 | 2.1
2.2
2.2
2.2
2.3 | | 11
12
13
14
15 | 4.4
4.4
4.3
4.3 | 4.5
4.4
4.4
4.4
4.4 | 4.3
4.3
4.3
4.3
4.4 | 4.3
4.4
4.3
4.3
4.3 | 2.6
2.6
e2.6
e2.5
e2.4 | 2.5
2.5
2.5
2.5
2.5 | 2.4
2.4
2.4
2.4
2.4 | 2.8
2.5
2.4
2.4
2.4 | 2.2
2.2
2.2
2.2
2.2 | 2.2
2.2
2.2
2.1
3.0 | 2.0
2.1
2.0
2.1
2.1 | 2.3
2.3
2.5
3.5
2.3 | | 16
17
18
19
20 | 4.3
4.4
4.4
4.4
4.3 | 4.4
4.4
4.4
4.5
4.5 | 4.3
4.4
4.5
4.4
4.4 | 4.4
4.4
4.4
4.4
4.4 | e2.4
e2.4
e2.5
2.6
2.7 | 2.6
2.6
2.5
2.6
2.5 | 2.3
2.4
2.5
2.5
2.5 | 2.4
2.3
2.4
2.4
2.4 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.2
2.1
2.0
2.0 | 2.1
2.1
2.1
2.1
2.1 | 2.3
2.2
2.3
2.3
2.2 | | 21
22
23
24
25 | 4.4
4.4
4.4
4.5 | 4.5
4.5
4.5
4.5
4.4 | 4.3
4.3
4.3
4.3
4.3 | 4.4
e3.4
e2.8
e2.6
2.6 | 2.7
2.7
2.7
e2.7
e2.7 | 2.5
2.5
2.5
2.5
2.6 | 2.4
2.4
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.4 | 2.3
2.2
2.3
2.4
2.4 | 2.1
2.1
2.1
2.0
2.0 | 2.1
2.1
2.1
2.1
2.1 | 2.2
2.2
2.2
2.2
2.2 | | 26
27
28
29
30
31 | 4.4
4.4
4.5
4.5
4.5 | 4.4
4.4
4.1
3.9 | 4.3
4.3
4.3
4.4
4.4 | 2.5
2.5
2.5
2.5
2.5
2.5
2.5 | e2.7
2.8
2.9
 | 2.6
2.6
2.7
2.6
2.4
2.4 | 2.3
2.3
2.5
2.6
3.0 | 2.3
2.3
2.3
2.2
2.3
2.3 | 2.4
2.4
2.5
2.4
2.3 | 2.1
2.1
2.1
2.1
2.1
2.1 | 2.1
2.1
2.1
2.1
2.1
2.2 | 2.2
2.2
2.2
2.2
2.2 | | TOTAL
MEAN
MAX
MIN | 137.5
4.44
5.9
4.2 | 132.2
4.41
4.5
3.9 | 133.9
4.32
4.5
4.2 | 118.3
3.82
4.4
2.5 | 73.1
2.61
2.9
2.4 | 81.8
2.64
3.0
2.4 | 73.2
2.44
3.0
2.3 | 77.5
2.50
5.2
2.2 | 69.4
2.31
2.5
2.2 | 68.9
2.22
3.0
2.0 | 65.5
2.11
2.2
2.0 | 68.2
2.27
3.5
2.1 | | STATIST | TICS OF MC | NTHLY M | EAN DATA | FOR WAT | ER YEARS | 2001 - 2003 | , BY WATE | ER YEAR (W | /Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.51
4.73
(2002)
4.36
(2001) | 4.44
4.71
(2002)
4.22
(2001) | 4.32
4.65
(2002)
3.99
(2001) | 4.03
4.34
(2002)
3.82
(2003) | 3.83
4.74
(2002)
2.61
(2003) | 3.94
4.70
(2002)
2.64
(2003) | 3.84
4.72
(2002)
2.44
(2003) | 3.81
4.70
(2002)
2.50
(2003) | 3.79
5.27
(2002)
2.31
(2003) | 3.84
4.81
(2002)
2.22
(2003) | 3.36
4.61
(2002)
2.11
(2003) | 3.31
4.35
(2002)
2.27
(2003) | | SUMMAI | RY STATIS | TICS | 1 | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 200 | 01 - 2003 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTANT
10 PERCI
50 PERCI | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY MI L SEVEN-D JM PEAK F JM PEAK S | MEAN EAN EAN AY MINIM TLOW TAGE LOW FLOV EDS EDS | | 10 | 4.61 | 30 | | 2.0 (a)Ju
2.0 Ju | 1119
et 4
et 4 | ` | 2.0 (a)Ju
2.0 Ju
(b) Ju
0)14.71 Au | 2002
2003
an 3, 2002
al 19, 2003
al 19, 2003
n 3, 2002
g 2, 2001
al 19, 2003 | ⁽a) Also occurred July 20, 24, 25, and Aug. 11, 13, 2003 ⁽b) Discharge unknown ⁽c) Also occurred May 1 ⁽d) Also occurred Aug. 11, 14, 2003 (e) Estimated due to ice effect or missing record #### 05427965 SPRING HARBOR STORM SEWER AT MADISON, WI LOCATION.--Lat 43°04'45", long 89°28'15", in NW $^{1}_{4}$ SE $^{1}_{4}$ sec.18, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, in city park near the junction of Spring Harbor Drive and University Avenue in Madison. DRAINAGE AREA.--3.29 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--February 1976 to current year. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 855.3 ft above NGVD of 1929. REMARKS.--Records good except those for periods of flow between 0.00 ft³/s and 0.3 ft³/s and flow greater than 100 ft³/s, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CU | BIC FEET P | | D, WATER '
LY MEAN ' | | OBER 2002 | TO SEPTE | MBER 2003 | | | |-------------|-----------------------|----------------|----------------|----------------|------------------|-------------------------|----------------|--------------------
----------------|----------------|----------------|---------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.38 | 0.13 | 0.00 | 0.00 | 0.19 | 0.10 | 0.27 | 19 | 0.35 | 0.19 | 0.06 | 0.04 | | 2 | 1.4 | 0.10 | 0.00 | 0.00 | 0.28 | 0.07 | 0.07 | 1.0 | 0.18 | 0.12 | 0.30 | 0.05 | | 2
3
4 | 2.5
26 | 0.03
0.00 | $0.00 \\ 0.00$ | $0.00 \\ 0.00$ | 0.44
0.10 | 0.15
0.15 | 0.35
0.78 | 0.32
0.77 | 0.17 | 0.17
3.7 | 0.05
0.04 | 0.05 | | 5 | 2.9 | 0.00 | 0.00 | 0.00 | 0.10 | 0.13 | 1.7 | 11 | 0.18
0.12 | 6.3 | 0.86 | 0.05
0.09 | | 6 | 0.42 | 0.10 | 0.00 | 0.00 | 0.00 | 0.09 | 0.72 | 0.82 | 0.49 | 8.0 | 0.07 | 0.07 | | 7 | 0.42 | 0.10 | 0.00 | 0.00 | 0.00 | 0.09 | 0.72 | 12 | 0.49 | 5.2 | 0.07 | 0.07 | | 8 | 0.21 | 0.07 | 0.00 | 0.00 | 0.00 | 0.05 | 0.89 | 1.4 | 1.5 | 2.9 | 0.05 | 0.10 | | 9 | 0.08 | 0.02 | 0.00 | 0.00 | 0.00 | 0.12 | 0.80 | 12 | 1.3 | 1.0 | 0.04 | 0.13 | | 10 | 0.02 | 0.03 | 0.00 | 0.00 | 0.00 | 0.13 | 0.51 | 6.2 | 0.49 | 0.42 | 0.03 | 0.13 | | 11 | 0.00 | 1.4 | 0.02 | 0.00 | 0.00 | 0.18 | 0.35 | 9.1 | 0.22 | 0.22 | 0.06 | 0.10 | | 12
13 | $0.00 \\ 0.00$ | 0.35
0.10 | 0.09
0.00 | $0.00 \\ 0.00$ | 0.00
0.00 | 0.23
0.76 | 0.21
0.14 | 1.8
0.29 | 0.16
0.15 | 0.09
0.02 | 0.04
0.03 | 7.1
41 | | 14 | 0.00 | 0.06 | 0.00 | 0.00 | 0.11 | 4.7 | 0.14 | 4.0 | 0.15 | 0.00 | 0.03 | 34 | | 15 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 4.1 | 0.10 | 1.2 | 0.15 | 30 | 0.00 | 2.3 | | 16 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 2.0 | 0.10 | 0.26 | 0.15 | 1.4 | 0.00 | 0.29 | | 17 | 0.16 | 0.00 | 0.09 | 0.00 | 0.00 | 0.82 | 0.56 | 0.12 | 0.15 | 0.23 | 0.00 | 0.10 | | 18
19 | 0.45
0.13 | 0.18
0.37 | 10
2.0 | $0.00 \\ 0.00$ | 0.10
0.10 | 0.37
1.9 | 2.4
2.2 | 0.10
4.4 | 0.16
0.19 | 0.11
0.02 | 0.02
0.00 | 0.69
0.70 | | 20 | 0.13 | 0.37 | 0.36 | 0.00 | 1.3 | 1.5 | 3.1 | 4.0 | 0.19 | 0.02 | 0.06 | 0.70 | | 21 | 0.05 | 0.24 | 0.26 | 0.00 | 0.99 | 0.46 | 0.69 | 0.43 | 0.15 | 5.8 | 0.09 | 0.02 | | 22 | 0.00 | 0.20 | 0.21 | 0.00 | 0.31 | 0.23 | 0.39 | 0.16 | 0.16 | 0.58 | 0.05 | 0.18 | | 23 | 0.00 | 0.12 | 0.10 | 0.00 | 0.17 | 0.14 | 0.32 | 0.11 | 0.19 | 0.17 | 0.05 | 0.14 | | 24 | 0.05 | 0.02 | 0.14 | 0.04 | 0.10 | 0.10 | 0.20 | 0.10 | 2.5 | 0.06 | 0.03 | 0.08 | | 25 | 3.1 | 0.00 | 0.13 | 0.00 | 0.12 | 0.10 | 0.15 | 0.10 | 4.0 | 0.01 | 0.11 | 0.05 | | 26
27 | 1.0
0.31 | 0.07
0.01 | 0.03
0.00 | $0.00 \\ 0.00$ | 0.08
0.10 | 0.10
0.17 | 0.06
0.07 | 0.09
0.09 | 1.8
0.50 | $0.00 \\ 0.00$ | 0.07
0.06 | 0.02
0.00 | | 28 | 0.31 | 0.01 | 0.00 | 0.00 | 0.10 | 6.4 | 0.07 | 0.72 | 16 | 0.00 | 0.00 | 0.04 | | 29 | 0.28 | 0.00 | 0.00 | 0.09 | | 0.94 | 0.07 | 0.42 | 2.3 | 0.00 | 0.66 | 0.08 | | 30 | 0.21 | 0.00 | 0.00 | 0.00 | | 0.20 | 22 | 2.8 | 0.42 | 0.00 | 0.23 | 0.06 | | 31 | 0.17 | | 0.02 | 0.14 | | 0.09 | | 2.3 | | 0.07 | 0.08 | | | TOTAL | 40.66 | 3.94 | 13.45 | 0.32 | 4.68 | 26.53 | 39.82 | 97.10 | 35.05 | 66.81 | 3.32 | 87.76 | | MEAN
MAX | 1.31
26 | 0.13
1.4 | 0.43
10 | 0.010
0.14 | 0.17
1.3 | 0.86
6.4 | 1.33
22 | 3.13
19 | 1.17
16 | 2.16
30 | 0.11
0.86 | 2.93
41 | | MIN | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.05 | 0.06 | 0.09 | 0.12 | 0.00 | 0.00 | 0.00 | | CFSM | 0.40 | 0.04 | 0.13 | 0.00 | 0.05 | 0.26 | 0.40 | 0.95 | 0.36 | 0.66 | 0.03 | 0.89 | | IN. | 0.46 | 0.04 | 0.15 | 0.00 | 0.05 | 0.30 | 0.45 | 1.10 | 0.40 | 0.76 | 0.04 | 0.99 | | | | | | | | 1976 - 2003 | | | | | | | | MEAN | 1.09 | 1.15 | 0.51 | 0.52 | 1.36 | 1.98 | 1.94 | 1.69 | 2.60 | 2.07 | 1.95 | 1.78 | | MAX
(WY) | 3.19
(1985) | 3.64
(1993) | 1.99
(1985) | 1.73
(1990) | 3.60
(1994) | 6.97
(1993) | 6.26
(1999) | 6.57
(2000) | 7.20
(2000) | 6.51
(1993) | 5.01
(2001) | 4.97
(1980) | | MIN | 0.11 | 0.027 | 0.000 | 0.000 | 0.050 | 0.19 | 0.54 | 0.25 | 0.33 | 0.24 | 0.11 | 0.11 | | (WY) | (2001) | (1977) | (1990) | (1977) | (1978) | (1999) | (1985) | (1994) | (1987) | (2001) | (2003) | (1976) | | | RY STATIS
L TOTAL | STICS | | | CALENDAR | YEAR | | 3 WATER \
19.44 | YEAR | WATER | YEARS | 1976 - 2003 | | ANNUAL | | | | | 1.24 | | | 1.15 | | | 1.56 | | | | ΓANNUAL | | | | | | | | | | 3.09 | 1993 | | | ' ANNUAL | | | 2 | 2 I | . 4 | | 41 Se ₁ | p 13 | | 0.97
79 | 1988
Aug 2, 2001 | | | Γ DAILY M
CDAILY M | | | | 2 Jun
0.00 Ma | ny days | • | | any days | | 0.00 | Many days | | | | AY MINIM | IUM | | 0.00 (a)Jan | | | 0.00 (b)No | | | 0.00 | (c) | | | JM PEAK I | | | | | | 3 | | 1 15 | | 754 | Jul 5, 1993 | | | JM PEAK S
L RUNOFF | | | | 0.38 | | | 2.88 Ju
0.35 | 1 15 | | 4.16
0.47 | Jul 5, 1993 | | | L RUNOFF | | | | 5.12 | | | 4.74 | | | 6.45 | | | 10 PERCI | ENT EXCE | ÈDS | | | 3.4 | | | 2.3 | | | 3.5 | | | | ENT EXCE | | | | 0.14 | | | 0.10 | | | 0.14 | | | 90 PERCI | ENT EXCE | EDS | | | 0.00 | | | 0.00 | | | 0.00 | | ⁽a) Also occurred Nov. 28, May 16, and July 1 ⁽b) Also occurred Jan. 6 and Feb 6 ⁽c) Annual seven-day minimum flows are 0.00 for most years #### 05427965 SPRING HARBOR STORM SEWER AT MADISON, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- February 1976 to current year. PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: October 1991 to current year. INSTRUMENTATION .-- Automatic pumping sampler. REMARKS.--Records good. Samples are point samples unless otherwise indicated. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 3,870 mg/L, July 4, 1994; minimum observed, 1 mg/L, Aug. 6, 1993, Sept. 15, 1998, and July 26, 1999. SUSPENDED-SÉDIMENT DISCHARGE: Maximum daily, 137 tons, June 17, 1996; minimum daily, 0.00 ton, on many days. #### EXTREMES FOR CURRENT YEAR .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 1,360 mg/L, Apr. 30; minimum observed, 6 mg/L, May 20. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 34 tons, Sept. 13; minimum daily, 0.00 ton, on many days. ### SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|------|-------|-------|------|-------|------|-------| | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.7 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | | 3 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 4 | 5.9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.19 | 0.00 | 0.80 | 0.00 | 0.00 | | 5 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 3.7 | 0.00 | 0.75 | 1.1 | 0.00 | | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.01 | 2.1 | 0.00 | 0.00 | | 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.2 | 0.02 | 0.59 | 0.00 | 0.00 | | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.07 | 0.07 | 0.12 | 0.00 | 0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 2.2 | 0.04 | 0.03 | 0.00 | 0.00 | | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 7.0 | 0.01 | 0.01 | 0.00 | 0.00 | | 11 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.3 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 3.6 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 34 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.2 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 8.3 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.65 | 0.00 | 0.04 | 0.00 | 29 | 0.00 | 0.09 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | | 17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.00 | 0.00 | 1.8 | 0.00 | 0.00 | 0.03 | 0.64 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | | 19 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.64 | 0.49 | 1.5 | 0.00 | 0.00 | 0.00 | 0.10 | | 20 | 0.00 | 0.00 | 0.01 | 0.00 | 0.15 | 0.22 | 0.35 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.03 | 0.04 | 0.00 | 0.00 | 2.4 | 0.00 | 0.00 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.71 | 0.00 | 0.00 | 0.00 | | 25 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.79 | 0.00 | 0.00 | 0.00 | | 26 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | | 27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | | 28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.1 | 0.00 | 0.09 | 4.4 | 0.00 | 0.00 | 0.00 | | 29 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.04 | 0.00 | 0.01 | 0.06 | 0.00 | 0.02 | 0.00 | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 32 | 0.68 | 0.00 | 0.00 | 0.00 | 0.00 | | 31 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.06 | | 0.00 | 0.00 | | | TOTAL | 6.28 | 0.04 | 1.99 | 0.00 | 0.28 | 4.32 | 33.74 | 25.55 | 6.17 | 35.87 | 1.12 | 46.19 | WATER YEAR 2003 TOTAL 161.55 ### 05427965 SPRING HARBOR STORM SEWER AT MADISON, WI—Continued | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Suspended sediment concentration mg/L (80154) | |---|--|---|--
--| | OCT 2002
03
04
04
04
04
04
05
25
25 | 0420
0735
0910
1026
1027
1120
2035
0550
0855
1700 | 5.2
30
144
75
75
55
15
4.1
4.7
3.8 | 50
50
50
10
50
50
50
50
50
50 | 26
143
129
142
558
72
18
8
12 | | DEC
19 | 1026 | 1.5 | 50 | 23 | | FEB 2003
21 | 1530 | 3.6 | 50 | 80 | | MAR 14 15 16 19 28 28 28 | 1420
2030
1340
1425
1910
0815
1425
2035 | 21
4.4
12
4.4
5.5
16
7.2
4.1 | 50
50
50
50
50
50
50
50 | 206
25
82
62
216
124
46
20 | | APR 18 20 30 30 30 30 30 30 | 0035
0900
0735
1150
1415
2025
2100
2150
2235 | 19
6.1
4.7
24
26
7.7
47
107 | 50
50
50
50
50
50
50
50
50
50 | 165
120
167
788
193
27
952
1,360
455 | | MAY 01 01 01 05 05 05 07 07 07 09 09 10 11 11 11 12 14 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 | 0305
0915
1830
0000
1041
1810
0445
0820
0850
0950
2135
0035
0110
0620
1535
2200
0000
1220
1525
0040
0840
1755
1335
2210
2335
0850
1745
2110
0320 | 37
18
5.2
26
13
5.8
17
41
69
38
5.5
28
55
13
4.7
34
85
20
5.8
11
5.2
7.7
5.5
5.5
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7 | 50
50
50
50
50
50
50
50
50
50 | 70 48 27 320 29 19 67 279 218 114 18 139 132 22 416 880 567 152 18 30 12 36 11 61 223 138 6 254 28 | | 24
24
25
26
28
28
28
29 | 0755
0940
1535
0020
0715
1000
1230
1840
0355 | 21
4.1
24
4.7
12
105
30
18
4.1 | 50
50
50
50
50
50
50
50
50 | 292
62
175
11
25
158
68
71
8 | ### 05427965 SPRING HARBOR STORM SEWER AT MADISON, WI—Continued | | | | | Sus- | | |----------|--------------|------------|----------|------------|--| | | | | | pended | | | | | Instan- | | sedi- | | | | | taneous | Sam- | ment | | | | | dis- | pling | concen- | | | ъ. | m. | charge, | method, | tration | | | Date | Time | cfs | code | mg/L | | | | | (00061) | (82398) | (80154) | | | JUL 2003 | | | | | | | 04 | 0555 | 25 | 50 | 194 | | | 05 | 0440 | 34 | 50 | 67 | | | 05 | 0635 | 11 | 50 | 40 | | | 05 | 1245 | 5.5 | 50 | 11 | | | 06 | 0730 | 85 | 50 | 294 | | | 06 | 0750 | 86 | 50 | 226 | | | 06 | 1205 | 8.2 | 50 | 17 | | | 07 | 0625 | 25 | 50 | 80 | | | 07 | 1235 | 5.2 | 50 | 7 | | | 08 | 1110 | 14 | 50 | 34 | | | 15
15 | 0150
0215 | 107
278 | 50
50 | 541
683 | | | 15 | 0213 | 300 | 50 | 534 | | | 15 | 0305 | 156 | 50 | 949 | | | 15 | 0400 | 70 | 50 | 267 | | | 15 | 0925 | 21 | 50 | 41 | | | 15 | 2145 | 5.8 | 50 | 30 | | | 21 | 0300 | 31 | 50 | 191 | | | 21 | 0310 | 63 | 50 | 446 | | | 21 | 0535 | 8.7 | 50 | 56 | | | 21 | 1145 | 4.1 | 50 | 16 | | | AUG | | | | | | | 05 | 1740 | 25 | 50 | 864 | | | 05 | 1845 | 3.2 | 50 | 243 | | | SEP | | | | | | | 12 | 1420 | 31 | 50 | 328 | | | 12 | 1630 | 8.2 | 50 | 183 | | | 12 | 1900 | 41 | 50 | 152 | | | 13 | 0230 | 7.2 | 50 | 25 | | | 13
13 | 0840 | 12 | 50 | 65 | | | 13 | 1400 | 35
186 | 50
50 | 53
614 | | | 13
14 | 1800
0015 | 50 | 50
50 | 43 | | | 14 | 0225 | 96 | 50
50 | 43
70 | | | 14 | 0655 | 30 | 50 | 21 | | | 14 | 0810 | 58 | 50 | 36 | | | 14 | 2030 | 13 | 50 | 23 | | | 18 | 2355 | 15 | 50 | 102 | | | 10 | 4333 | 1.5 | 50 | 102 | | #### 05428000 LAKE MENDOTA AT MADISON, WI LOCATION.--Lat 43°05'42", long 89°22'12", in SE $\frac{1}{4}$ sec.12, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, in county boat house at dam at outlet, in Madison DRAINAGE AREA.--233 mi². Area of Lake Mendota, 15.2 mi². PERIOD OF RECORD.--January 1916 to current year (incomplete). REVISED RECORDS.--WDR WI-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 840.00 ft above NGVD of 1929, or 5.60 ft below City of Madison datum. Prior to Oct. 1, 1979, at datum 7.82 ft higher; prior to Nov. 15, 1971, nonrecording gage at same site at the higher datum. REMARKS.--Lake level regulated by concrete dam with two 12-foot gates and 20-foot lock at outlet. Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 12.75 ft, June 5, 2000; minimum observed, 8.02 ft, Feb. 24 to Mar. 10, 1920, current datum. GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 EXTREMES FOR CURRENT YEAR .-- Maximum recorded gage height, 10.58 ft, May 10; minimum recorded, 8.35 ft, Jan. 7 and 17. | | DAILY MEAN VALUES | | | | | | | | | | | | |--------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|---------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 9.90
9.92 | 9.56
9.51 | 8.84
8.83 | 8.44
8.43 | 8.45
8.47 | 8.67
8.68 | 9.34
9.37 | 10.14
10.19 | 9.82
9.81 | 9.83
9.83 | 9.99
10.00 | 9.68
9.68 | | 3 | 9.93 | 9.46 | 8.81 | 8.41 | 8.48 | 8.69 | 9.37 | 10.17 | 9.80 | 9.83 | 9.99 | 9.64 | | 4 | 10.03 | 9.42 | 8.79 | 8.40 | 8.48 | 8.71 | 9.41 | 10.13 | 9.79 | 9.85 | 9.98 | 9.64 | | 5 | 10.07 | 9.40 | 8.78 | 8.40 | 8.49 | 8.74 | 9.44 | 10.18 | 9.77 | 9.87 | 9.98 | 9.61 | | 6 | 10.08 | 9.37 | 8.74 | 8.38 | 8.50 | 8.75 | 9.44 | 10.19 | 9.75 | 9.93 | 9.99 | 9.63 | | 7
8 | 10.05 | 9.33 | 8.73 | 8.37
8.38 | 8.50
8.50 | 8.76
8.78 | 9.48 | 10.21
10.21 | 9.76
9.77 | 9.98
9.99 | 9.97
9.95 | 9.60
9.59 | | 8
9 | 10.02
10.02 | 9.29
9.26 | 8.70
8.68 | 8.38
8.39 | 8.50
8.51 | 8.78
8.79 | 9.51
9.52 | 10.21 | 9.77
9.77 | 9.99
9.98 | 9.93
9.94 | 9.59
9.64 | | 10 | 10.02 | 9.20 | 8.66 | 8.39
8.39 | 8.51 | 8.80 | 9.52
9.54 | 10.24 | 9.77 | 10.00 | 9.94 | 9.62 | | | | | | | | | | | | | | | | 11 | 9.99 | 9.24 | 8.64 | 8.39 | 8.52 | 8.81 | 9.57 | 10.33 | 9.74 | 9.99 | 9.93 | 9.62 | | 12 | 9.99 | 9.21 | 8.63 | 8.39 | 8.53 | 8.82 | 9.59 | 10.33 | 9.73 | 9.97 | 9.91 | 9.64 | | 13 | 9.96 | 9.17 | 8.62 | 8.39 | 8.54 | 8.83 | 9.60 | 10.30 | 9.72 | 9.96 | 9.91 | 9.75 | | 14 | 9.90 | 9.15 | 8.61 | 8.39 | 8.55 | 8.84 | 9.62 | 10.28 | 9.73 | 9.95 | 9.90 | 10.02 | | 15 | 9.89 | 9.12 | 8.60 | 8.39 | 8.55 | 8.86 | 9.64 | 10.28 | 9.73 | 10.08 | 9.90 | 10.05 | | 16 | 9.85 | 9.09 | 8.57 | 8.39 | 8.56 | 8.90 | 9.66 | 10.25 | 9.73 | 10.11 | 9.90 | 10.04 | | 17 | 9.84 | 9.06 | 8.54 | 8.40 | 8.56 | 8.93 | 9.66 | 10.22 | 9.73 | 10.11 | 9.88 | 10.04 | | 18 | 9.83 | 9.03 | 8.58 | 8.40 | 8.57 | 8.96 | 9.67 | 10.18 | 9.74 | 10.09 | 9.88 | 10.03 | | 19 | 9.82 | 9.04 | 8.63 | 8.40 | 8.57 | 8.99 | 9.70 | 10.16 | 9.73 | 10.08 | 9.86 | 10.03 | | 20 | 9.79 | 9.02 | 8.64 | 8.40 | 8.58 | 9.03 | 9.77 | 10.17 | 9.72 | 10.07 | 9.85 | 9.98 | | 21 | 9.77 | 9.05 | 8.63 | 8.40 | 8.60 | 9.06 | 9.81 | 10.11 | 9.71 | 10.10 | 9.85 | 9.95 | | 22 | 9.75 | 9.02 | 8.62 | 8.40 | 8.61 | 9.08 | 9.81 | 10.07 | 9.70 | 10.08 | 9.83 | 9.96 | | 23 | 9.73 | 8.99 | 8.61 | 8.40 | 8.62 | 9.10 | 9.82 | 10.03 | 9.70 | 10.06 | 9.81 | 9.92 | | 24 | 9.72 | 8.98 | 8.56 | 8.41 | 8.63 | 9.12 | 9.82 | 9.99 | 9.70 | 10.05 | 9.79 | 9.90 | | 25 | 9.73 | 8.95 | 8.55 | 8.41 | 8.63 | 9.14 | 9.84 | 9.95 | 9.73 | 10.03 | 9.79 | 9.87 | | 26 | 9.73 | 8.93 | 8.52 | 8.41 | 8.64 | 9.16 | 9.84 | 9.90 | 9.77 | e10.02 | 9.78 | 9.84 | | 27 | 9.70 | 8.91 | 8.51 | 8.41 | 8.65 | 9.19 | 9.85 | 9.87 | 9.72 | e10.01 | 9.77 | 9.84 | | 28 | 9.68 | 8.89 | 8.50 | 8.42 | 8.66 | 9.25 | 9.87 | 9.87 | 9.78 | 10.00 | 9.73 | 9.80 | | 29 | 9.65 | 8.89 | 8.49 | 8.42 | | 9.28 | 9.87 | 9.86 | 9.83 | 10.00 | 9.74 | 9.77 | | 30 | 9.62 | 8.91 | 8.48 | 8.43 | | 9.30 | 9.94 | 9.84 | 9.83 | 9.99 | 9.71 | 9.75 | | 31 | 9.60 | | 8.47 | 8.44 | | 9.31 | | 9.85 | | 9.99 | 9.69 | | | MEAN | 9.86 | 9.15 | 8.63 | 8.40 | 8.55 | 8.95 | 9.65 | 10.12 | 9.75 | 9.99 | 9.88 | 9.80 | | MAX | 10.08 | 9.56 | 8.84 | 8.44 | 8.66 | 9.31 | 9.94 | 10.33 | 9.83 | 10.11 | 10.00 | 10.05 | | MIN | 9.60 | 8.89 | 8.47 | 8.37 | 8.45 | 8.67 | 9.34 | 9.84 | 9.70 | 9.83 | 9.69 | 9.59 | e Estimated #### 05429000 LAKE MONONA AT MADISON, WI LOCATION.--Lat 43°03'48", long 89°23'49', in SE 1/4 SW \(^1/_4\) sec.23, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, in Brittingham Park, in Madison DRAINAGE AREA.--279 mi². Area of Lake Monona, 5.3 mi². PERIOD OF RECORD.--September 1915 to current year (fragmentary) in reports of the Geological Survey. For 1856 to March 1917 in reports of Wisconsin Railroad Commission, volume 19. REVISED RECORDS.--WSP 1338: Lake area. WDR WI-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 840.00 ft above NGVD of 1929, or 5.60 ft below City of Madison datum. Prior to Oct. 1, 1979, datum 3.61 ft higher; prior to Nov. 15, 1971, nonrecording gage at same site at the higher datum. REMARKS.--Lake level regulated by concrete dam with four 12-foot stop-log sections and 12-foot lock at outlet of Lake Waubesa. Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 7.48 ft, June 14, 15, 2000; minimum observed, 3.22 ft, Jan. 20, 1965, current datum. EXTREMES FOR CURRENT YEAR.--Maximum recorded gage height, 5.61 ft, May 15; minimum recorded, 3.44 ft, Mar. 2 and 3. | | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | |------|---|------|------|------|------|------|------|------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5.02 | 4.90 | 4.42 | 4.27 | 3.70 | 3.45 | 3.87 | 4.51 | 5.19 | 4.84 | 5.02 | 4.71 | | 2 | 5.03 | 4.90 | 4.43 | 4.26 |
3.69 | 3.44 | 3.88 | 4.59 | 5.16 | 4.84 | 5.01 | 4.70 | | 3 | 5.05 | 4.91 | 4.41 | 4.26 | 3.69 | 3.45 | 3.90 | 4.69 | 5.13 | 4.84 | 5.02 | 4.67 | | 4 | 5.10 | 4.92 | 4.41 | 4.26 | 3.68 | 3.46 | 3.91 | 4.81 | 5.09 | 4.87 | 5.01 | 4.64 | | 5 | 5.14 | 4.92 | 4.40 | 4.26 | 3.68 | 3.47 | 3.90 | 4.95 | 5.06 | 4.91 | 5.00 | 4.64 | | 6 | 5.13 | 4.92 | 4.39 | 4.26 | 3.66 | 3.48 | 3.95 | 5.03 | 5.05 | 4.98 | 4.99 | 4.63 | | 7 | 5.11 | 4.92 | 4.38 | 4.25 | 3.65 | 3.48 | 3.98 | 5.15 | 5.04 | 5.03 | 4.99 | 4.62 | | 8 | 5.11 | 4.93 | 4.37 | 4.20 | 3.64 | 3.49 | 3.98 | 5.25 | 5.04 | 5.04 | 4.98 | 4.62 | | 9 | 5.12 | 4.95 | 4.36 | 4.15 | 3.63 | 3.49 | 3.99 | 5.41 | 5.04 | 5.07 | 4.97 | 4.62 | | 10 | 5.13 | 4.96 | 4.36 | 4.10 | 3.62 | 3.50 | 4.00 | 5.46 | 5.03 | 5.06 | 4.96 | 4.61 | | 11 | 5.14 | 5.02 | 4.36 | 4.07 | 3.62 | 3.51 | 4.01 | 5.52 | 5.02 | 5.03 | 4.95 | 4.60 | | 12 | 5.12 | 5.01 | 4.35 | 4.04 | 3.62 | 3.51 | 4.03 | 5.54 | 5.00 | 5.04 | 4.93 | 4.61 | | 13 | 5.06 | 5.01 | 4.35 | 4.01 | 3.62 | 3.51 | 4.04 | 5.54 | 4.98 | 5.05 | 4.92 | 4.74 | | 14 | 5.03 | 4.98 | 4.34 | 3.98 | 3.61 | 3.52 | 4.05 | 5.58 | 4.94 | 5.06 | 4.92 | 5.05 | | 15 | 5.00 | 4.94 | 4.34 | 3.95 | 3.59 | 3.54 | 4.06 | 5.60 | 4.89 | 5.27 | 4.91 | 5.09 | | 16 | 4.98 | 4.91 | 4.34 | 3.93 | 3.58 | 3.57 | 4.10 | 5.60 | 4.84 | 5.29 | 4.91 | 5.11 | | 17 | 4.97 | 4.88 | 4.34 | 3.90 | 3.57 | 3.58 | 4.09 | 5.59 | 4.80 | 5.29 | 4.92 | 5.13 | | 18 | 4.97 | 4.87 | 4.39 | 3.88 | 3.56 | 3.59 | 4.08 | 5.58 | 4.77 | 5.27 | 4.91 | 5.14 | | 19 | 4.94 | 4.84 | 4.43 | 3.86 | 3.55 | 3.61 | 4.10 | 5.57 | 4.76 | 5.24 | 4.90 | 5.11 | | 20 | 4.93 | 4.80 | 4.42 | 3.84 | 3.54 | 3.65 | 4.12 | 5.55 | 4.73 | 5.21 | 4.88 | 5.11 | | 21 | 4.93 | 4.76 | 4.39 | 3.82 | 3.53 | 3.66 | 4.12 | 5.53 | 4.72 | 5.20 | 4.85 | 5.11 | | 22 | 4.90 | 4.71 | 4.37 | 3.80 | 3.52 | 3.67 | 4.12 | 5.50 | 4.71 | 5.18 | 4.84 | 5.09 | | 23 | e4.88 | 4.68 | 4.31 | 3.78 | 3.50 | 3.69 | 4.15 | 5.47 | 4.70 | 5.15 | 4.83 | 5.07 | | 24 | e4.89 | 4.64 | 4.30 | 3.77 | 3.49 | 3.70 | 4.16 | 5.44 | 4.72 | 5.13 | 4.81 | 5.05 | | 25 | 4.91 | 4.60 | 4.30 | 3.76 | 3.48 | 3.70 | 4.16 | 5.42 | 4.73 | 5.10 | 4.80 | 5.02 | | 26 | 4.93 | 4.58 | 4.30 | 3.75 | 3.47 | 3.71 | 4.15 | 5.39 | 4.72 | 5.08 | 4.78 | 5.00 | | 27 | 4.93 | 4.54 | 4.30 | 3.74 | 3.46 | 3.74 | 4.15 | 5.36 | 4.71 | 5.07 | 4.78 | 4.96 | | 28 | 4.94 | 4.51 | 4.29 | 3.73 | 3.45 | 3.79 | 4.15 | 5.30 | 4.79 | 5.05 | 4.76 | 4.92 | | 29 | 4.95 | 4.48 | 4.30 | 3.72 | | 3.81 | 4.16 | 5.26 | 4.84 | 5.04 | 4.75 | 4.90 | | 30 | 4.93 | 4.44 | 4.29 | 3.71 | | 3.84 | 4.24 | 5.24 | 4.84 | 5.02 | 4.74 | 4.87 | | 31 | 4.91 | | 4.28 | 3.71 | | 3.85 | | 5.23 | | 5.02 | 4.72 | | | MEAN | 5.01 | 4.81 | 4.36 | 3.97 | 3.59 | 3.60 | 4.05 | 5.31 | 4.90 | 5.07 | 4.90 | 4.87 | | MAX | 5.14 | 5.02 | 4.43 | 4.27 | 3.70 | 3.85 | 4.24 | 5.60 | 5.19 | 5.29 | 5.02 | 5.14 | | MIN | 4.88 | 4.44 | 4.28 | 3.71 | 3.45 | 3.44 | 3.87 | 4.51 | 4.70 | 4.84 | 4.72 | 4.60 | e Estimated #### 430140089281000 KRONCKE DRIVE STORM SEWER AT MADISON, WI LOCATION.--Lat 43°01'40", long 89°28'10", in NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.6, T.6 N., R.9 E., Dane County, Hydrologic Unit 07090001, 100 ft east of Teal Drive and 50 ft west of Tawhee Drive, at Madison. DRAINAGE AREA.--0.08 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 2001 to current year. GAGE.--Water-stage recorder and area-velocity flow meter in a 42-inch circular, concrete pipe. Elevation of gage is 1,030 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |---|---|--|--|--|---|--|---|--|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 4 | e0.33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.07 | 0.00 | 0.03 | 0.00 | 0.00 | | 5 | e0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.11 | 0.00 | 0.08 | 0.34 | 0.00 | | 6 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.14 | 0.00 | 0.00 | | 7 | e0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.17 | 0.00 | 0.04 | 0.00 | 0.00 | | 8 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.02 | 0.02 | 0.04 | 0.00 | 0.00 | | 9 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.11 | 0.00 | 0.01 | 0.00 | 0.00 | | 10 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | e0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | e0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | | 13 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.73 | | 14 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | e0.10 | 0.07 | 0.00 | 0.00 | 0.00 | 0.24 | | 15 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | e0.00 | 0.00 | 0.00 | 0.77 | 0.00 | 0.12 | | 16 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | e0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | e0.01 | 0.03 | 0.19 | 0.00 | 0.02 | 0.00 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 | e0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.04 | e0.12 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | | 20 | e0.00 | 0.00 | 0.01 | 0.00 | 0.08 | 0.02 | e0.03 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | e0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.00 | e0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | | 22 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | e0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | | 25 | e0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.01 | 0.00
0.00
0.00
 | 0.00
0.01
0.12
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.73 | 0.00
0.00
0.02
0.00
0.17
0.01 | 0.00
0.00
0.31
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
e0.09 | 0.00
0.00
0.03
0.03
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL | 0.48 | 0.09 | 0.23 | 0.03 | 0.27 | 0.58 | 1.13 | 1.16 | 0.52 | 1.43 | 0.40 | 1.16 | | MEAN | 0.015 | 0.003 | 0.007 | 0.001 | 0.010 | 0.019 | 0.038 | 0.037 | 0.017 | 0.046 | 0.013 | 0.039 | | MAX | 0.33 | 0.04 | 0.19 | 0.01 | 0.08 | 0.13 | 0.73 | 0.18 | 0.31 | 0.77 | 0.34 | 0.73 | | MIN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CFSM | 0.19 | 0.04 | 0.09 | 0.01 | 0.12 | 0.23 | 0.47 | 0.47 | 0.22 | 0.58 | 0.16 | 0.48 | | IN. | 0.22 | 0.04 | 0.11 | 0.01 | 0.13 | 0.27 | 0.53 | 0.54 | 0.24 | 0.66 | 0.19 | 0.54 | | STATIST | TICS OF MO | ONTHLY M | IEAN DAT | A FOR WAT | ΓER YEARS | 2001 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN | 0.020 | 0.011 | 0.011 | 0.002 | 0.023 | 0.021 | 0.041 | 0.034 | 0.027 | 0.026 | 0.016 | 0.040 | | MAX | 0.024 | 0.020 | 0.014 | 0.002 | 0.036 | 0.023 | 0.044 | 0.037 | 0.036 | 0.046 | 0.020 | 0.057 | | (WY) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2002) | (2003) | (2002) | (2003) | (2002) | (2001) | | MIN | 0.015 | 0.003 | 0.007 | 0.001 | 0.010 | 0.019 | 0.038 | 0.031 | 0.017 | 0.006 | 0.013 | 0.024 | | (WY) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2002) | (2003) | (2002) | (2003) | (2002) | | SUMMA | RY STATIS | STICS | | FOR 2002 | CALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 200 | 01 - 2003 | | ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI ANNUAI ANNUAI 10 PERC | Τ ANNUAI
Γ ANNUAL
Τ DAILY M
Γ DAILY M | MEAN MEAN MEAN MEAN MAY MINIM MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEA | IUM | | 7.49
0.021
0.40 Jun
0.00 Jan
0.00 Jan
0.26
3.48
0.05
0.00
0.00 | 1 | | 0.00 Oc | 115
t 1
t 5 | | 0.00 Au | 2002
2003
g 25, 2001
g 19, 2001
g 26, 2001 | e Estimated ### $430140089281000\;\; \text{KRONCKE DRIVE STORM SEWER AT MADISON, WI--Continued}$ #### PRECIPITATION QUANTITY PERIOD OF RECORD.-October 2001 to current year. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established October 2001. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.74 in., Sept. 13, 2003. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.74 in., Sept. 13. # PRECIPITATION, TOTAL, INCHES $\,$ WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--
--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 0.12 | 0.1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.1 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.30 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | | 3 | 0.1 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.11 | 0.0 | 0.00 | 0.03 | 0.11 | 0.00 | | 4 | 1.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.35 | 0.00 | 0.19 | 0.00 | 0.01 | | 5 | 0.0 | 0.09 | 0.00 | 0.04 | 0.00 | 0.03 | 0.00 | 0.39 | 0.00 | 0.40 | 0.41 | 0.00 | | 6 | 0.1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.0 | 0.15 | 0.58 | 0.01 | 0.00 | | 7 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.66 | 0.00 | 0.20 | 0.00 | 0.00 | | 8 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.19 | 0.14 | 0.29 | 0.00 | 0.00 | | 9 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.38 | 0.00 | 0.07 | 0.00 | 0.00 | | 10 | 0.0 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.46 | 0.00 | 0.07 | 0.00 | 0.00 | | 11 | 0.00 | 0.25 | 0.00 | 0.16 | 0.00 | 0.06 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.59 | | 13 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.74 | | 14 | 0.00 | 0.00 | 0.00 | 0.21 | 0.02 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.82 | | 15 | 0.00 | 0.00 | 0.00 | 0.08 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 1.81 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | | 17 | 0.09 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | | 18 | 0.17 | 0.16 | 0.67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.0 | 0.00 | 0.00 | | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.48 | 0.50 | 0.03 | 0.0 | 0.00 | 0.04 | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.11 | 0.03 | 0.00 | 0.0 | 0.02 | 0.00 | | 21 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.40 | 0.00 | 0.03 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 0.00 | | 25 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.45 | 0.00 | 0.00 | 0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.09
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.13 | 0.00
0.00
0.00
 | 0.00
0.09
0.53
0.02
0.00
0.00 | 0.04
0.00
0.00
0.00
1.51 | 0.00
0.00
0.10
0.00
0.58
0.07 | 0.00
0.00
1.13
0.00
0.00 | 0.00
0.00
0.02
0.00
0.00
0.26 | 0.00
0.00
0.00
0.29
0.00
0.00 | 0.02
0.02
0.00
0.00
0.00 | | TOTAL | 2.90 | 0.72 | 0.69 | 0.81 | 0.09 | 1.05 | 2.82 | 4.36 | 2.27 | 4.32 | 0.86 | 4.32 | #### $430209089274900\,\,$ KNOX LANE STORM SEWER AT MADISON, WI LOCATION.--Lat 43°02'09", long 89°27'49", in NE ${}^1\!\!/_4$ SE ${}^1\!\!/_4$ sec.31, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, 0.1 mi west of Reetz Road and 50 ft east of Widklow Way, at Madison. DRAINAGE AREA.--0.14 mi². PERIOD OF RECORD.--October 2001 to current year. REVISED RECORDS.--Records have been revised for the period Apr. 1 to Sept. 30, 2002, and are published below. GAGE.--Water-stage recorder and area-velocity flow meter in a 42-inch circular, concrete pipe. Elevation of gage is 1,025 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharge, which are fair (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | |--|--|---|--|--|--|--|---|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | e0.05 | e0.00 | e0.00 | e0.00 | e0.00 | | 2 | e0.07 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 3 | e0.03 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.03 | e0.00 | e0.00 | e0.00 | e0.01 | e0.00 | | 4 | e0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | e0.09 | e0.00 | e0.06 | e0.00 | e0.00 | | 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | e0.20 | e0.00 | e0.14 | e0.12 | e0.00 | | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | e0.02 | e0.17 | e0.00 | e0.00 | | 7 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | e0.29 | e0.00 | e0.04 | e0.00 | e0.00 | | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | e0.04 | e0.03 | e0.06 | e0.00 | e0.00 | | 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | e0.17 | e0.00 | e0.01 | e0.00 | e0.00 | | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.14 | e0.00 | e0.00 | e0.00 | e0.00 | | 11 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | e0.13 | e0.00 | e0.00 | e0.00 | e0.00 | | 12 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.04 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.08 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.79 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | e0.14 | e0.00 | e0.00 | e0.00 | e0.25 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | e0.08 | e0.00 | e0.00 | e0.47 | e0.00 | e0.00 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 17 | 0.01 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 18 | 0.03 | 0.04 | 0.37 | 0.00 | 0.03 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.10 | e0.17 | e0.20 | e0.00 | e0.00 | e0.00 | e0.00 | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.04 | e0.05 | e0.01 | e0.00 | e0.00 | e0.00 | e0.00 | | 21 | 0.00 | 0.01 | 0.00 | 0.00 | 0.10 | 0.00 | e0.00 | e0.00 | e0.00 | e0.16 | e0.00 | e0.00 | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | e0.00 | e0.08 | e0.00 | e0.00 | e0.00 | | 25 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | e0.00 | e0.00 | e0.09 | e0.00 | e0.00 | e0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.00
0.02
0.32
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.90 | e0.00
e0.00
e0.02
e0.00
e0.11
e0.01 | e0.00
e0.00
e0.35
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00
e0.02 | e0.00
e0.00
e0.03
e0.01
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | | TOTAL | 0.64 | 0.12 | 0.40 | 0.04 | 0.47 | 1.38 | 1.54 | 1.60 | 0.57 | 1.13 | 0.17 | 1.12 | | MEAN | 0.021 | 0.004 | 0.013 | 0.001 | 0.017 | 0.045 | 0.051 | 0.052 | 0.019 | 0.036 | 0.005 | 0.037 | | MAX | 0.30 | 0.07 | 0.37 | 0.02 | 0.19 | 0.38 | 0.90 | 0.29 | 0.35 | 0.47 | 0.12 | 0.79 | | MIN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CFSM | 0.15 | 0.03 | 0.09 | 0.01 | 0.12 | 0.32 | 0.37 | 0.37 | 0.14 | 0.26 | 0.04 | 0.27 | | IN. | 0.17 | 0.03 | 0.11 | 0.01 | 0.12 | 0.37 | 0.41 | 0.43 | 0.15 | 0.30 | 0.05 | 0.30 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | A FOR WAT | TER YEARS | 2001 - 2003 | , BY WATE | ER YEAR (W | VY) | | | | | MEAN | 0.026 | 0.014 | 0.014 | 0.001 | 0.036 | 0.037 | 0.068 | 0.052 | 0.051 | 0.027 | 0.019 | 0.044 | | MAX | 0.031 | 0.024 | 0.016 | 0.001 | 0.054 | 0.045 | 0.085 | 0.052 | 0.083 | 0.036 | 0.032 | 0.050 | | (WY) | (2002) | (2002) | (2002) | (2003) | (2002) | (2003) | (2002) | (2002) | (2002) | (2003) | (2002) | (2002) | | MIN | 0.021 | 0.004 | 0.013 | 0.001 | 0.017 | 0.029 | 0.051 | 0.052 | 0.019 | 0.017 | 0.005 | 0.037 | | (WY) | (2003) | (2003) | (2003) | (2002) | (2003) | (2002) | (2003) | (2003) | (2003) | (2002) | (2003) | (2003) | | SUMMA | RY STATIS | STICS | | FOR 2002 (| CALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 200 | 01 - 2003 | | ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL ANNUAL 10 PERC 50 PERC | T ANNUAL
Γ ANNUAL
Τ DAILY M
Γ DAILY M | MEAN IEAN EAN OAY MINIM (CFSM) (INCHES) EDS EDS | IUM | | 3.27
0.036
1.1 Jun
0.00 Jan
0.00 Jan
0.26
3.53
0.09
0.00
0.00 | 1 | | 0.00 Oc | or 30
et 1
et 5 | | 0.00 Au | 2002
2003
an 4, 2002
ag 20, 2001
ep 10, 2001 | ⁽e) Estimated #### 430209089274900 KNOX LANE STORM SEWER AT MADISON, WI--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR APRIL TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | APR | MAY | JUN | JUL | AUG | SEP | |-------------|-------|-------|-------|-------|-------|-------| | 1 | 0.07 | 0.12 | e0.00 | e0.00 | e0.00 | e0.00 | | 2 | 0.04 | 0.05 |
e0.06 | e0.00 | e0.00 | e0.55 | | 2
3
4 | 0.00 | 0.00 | e0.68 | e0.00 | e0.00 | e0.00 | | 4 | 0.00 | 0.00 | e1.1 | e0.00 | e0.14 | e0.00 | | 5 | 0.00 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 6 | 0.00 | 0.06 | e0.00 | e0.00 | e0.00 | e0.00 | | 7 | 0.42 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 8 | 0.63 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 9 | 0.03 | 0.09 | e0.00 | e0.00 | e0.00 | e0.00 | | 10 | 0.00 | 0.00 | e0.20 | e0.00 | e0.00 | e0.03 | | 11 | 0.04 | 0.20 | e0.00 | e0.00 | e0.00 | e0.00 | | 12 | 0.09 | 0.14 | e0.00 | e0.00 | e0.00 | e0.00 | | 13 | 0.00 | 0.00 | e0.12 | e0.00 | e0.28 | e0.00 | | 14 | 0.09 | 0.00 | e0.06 | e0.00 | e0.00 | e0.00 | | 15 | 0.00 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 16 | 0.11 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 17 | 0.00 | 0.00 | e0.00 | e0.00 | e0.13 | e0.09 | | 18 | 0.58 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 19 | 0.02 | 0.00 | e0.00 | e0.00 | e0.00 | e0.39 | | 20 | 0.00 | 0.00 | e0.00 | e0.05 | e0.00 | e0.16 | | 21 | 0.12 | 0.02 | e0.00 | e0.00 | e0.17 | e0.00 | | 22 | e0.00 | 0.21 | e0.00 | e0.37 | e0.26 | e0.00 | | 23 | e0.00 | 0.04 | e0.00 | e0.00 | e0.00 | e0.00 | | 24 | 0.12 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 25 | 0.00 | 0.29 | e0.00 | e0.00 | e0.00 | e0.00 | | 26 | 0.00 | 0.00 | e0.26 | e0.00 | e0.00 | e0.00 | | 27 | 0.10 | 0.00 | e0.00 | e0.04 | e0.00 | e0.00 | | 28 | 0.08 | 0.38 | e0.00 | e0.00 | e0.00 | e0.00 | | 29 | 0.00 | 0.02 | e0.00 | e0.08 | e0.00 | e0.27 | | 30 | 0.00 | 0.00 | e0.00 | e0.00 | e0.00 | e0.00 | | 31 | | 0.00 | | e0.00 | e0.00 | | | TOTAL | 2.54 | 1.62 | 2.48 | 0.54 | 0.98 | 1.49 | | MEAN | 0.085 | 0.052 | 0.083 | 0.017 | 0.032 | 0.050 | | MAX | 0.63 | 0.38 | 1.1 | 0.37 | 0.28 | 0.55 | | MIN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CFSM | 0.60 | 0.37 | 0.59 | 0.12 | 0.23 | 0.35 | | IN. | 0.67 | 0.43 | 0.66 | 0.14 | 0.26 | 0.40 | #### 430230089284300 PIPING ROCK ROAD STORM SEWER AT MADISON, WI LOCATION.--Lat 43°02'30", long 89°28'43", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec31, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, 200 ft west of South Whitney Way at Madison. DRAINAGE AREA.--0.09 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 2002 to September 2003. GAGE.--Water-stage recorder and area-velocity flow meter in a 38 x 60-inch elliptical, concrete pipe. Elevation of gage is 995 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CU | BIC FEET F | ER SECONI
DAII | O, WATER ' | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |---|--|--|--|--|----------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | | 3 | 0.02 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | | 4 | 0.27 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.05 | 0.00 | 0.04 | 0.00 | 0.00 | | 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.09 | 0.00 | 0.08 | 0.00 | 0.00 | | 6 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.08 | 0.00 | 0.00 | | 7 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.01 | 0.14 | 0.00 | 0.04 | 0.00 | 0.00 | | 8 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.01 | 0.02 | 0.03 | 0.00 | 0.00 | | 9 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | e0.12 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | e0.12 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.05 | 0.00 | 0.00 | 0.00 | 0.09 | | 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.65 | | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.17 | 0.00 | e0.07 | 0.00 | 0.00 | 0.00 | 0.16 | | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.02 | 0.01 | 0.00 | 0.42 | 0.00 | 0.01 | | 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | | 17 | 0.00 | 0.00 | e0.03 | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | | 18 | 0.01 | 0.01 | e0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.13 | e0.13 | 0.00 | 0.00 | 0.00 | 0.00 | | 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.02 | 0.06 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.01 | 0.02 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | | 22 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | | 25 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | | 26
27
28
29
30
31 | 0.01
0.01
0.01
0.01
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.01
0.01
0.12
0.01
0.01
0.00 | 0.00
0.00
0.00
0.00
0.38 | 0.00
0.00
0.02
0.02
0.08
0.00 | 0.00
0.00
0.25
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.04
0.03
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL | 0.41 | 0.04 | 0.03 | 0.07 | 0.22 | 0.83 | 0.86 | 1.23 | 0.39 | 0.79 | 0.07 | 0.94 | | MEAN | 0.013 | 0.001 | 0.001 | 0.002 | 0.008 | 0.027 | 0.029 | 0.040 | 0.013 | 0.025 | 0.002 | 0.031 | | MAX | 0.27 | 0.03 | 0.03 | 0.02 | 0.07 | 0.17 | 0.38 | 0.14 | 0.25 | 0.42 | 0.04 | 0.65 | | MIN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CFSM | 0.15 | 0.01 | 0.01 | 0.03 | 0.09 | 0.30 | 0.32 | 0.44 | 0.14 | 0.28 | 0.03 | 0.35 | | IN. | 0.17 | 0.02 | 0.01 | 0.03 | 0.09 | 0.34 | 0.36 | 0.51 | 0.16 | 0.33 | 0.03 | 0.39 | | STATIST | TICS OF MO | ONTHLY M | IEAN DAT | A FOR WAT | ΓER YEARS | 2002 - 2003 | , BY WATE | ER YEAR (W | YY) | | | | | MEAN | 0.013 | 0.001 | 0.001 | 0.002 | 0.008 | 0.027 | 0.029 | 0.040 | 0.013 | 0.016 | 0.008 | 0.030 | | MAX | 0.013 | 0.001 | 0.001 | 0.002 | 0.008 | 0.027 | 0.029 | 0.040 | 0.013 | 0.025 | 0.014 | 0.031 | | (WY) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2002) | (2003) | | MIN | 0.013 | 0.001 | 0.001 | 0.002 | 0.008 | 0.027 | 0.029 | 0.040 | 0.013 | 0.007 | 0.002 | 0.029 | | (WY) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2003) | (2002) | (2003) | (2002) | | SUMMA | RY STATIS | STICS | | | CALENDAR
ER-DECEM | | FOR 200 | 3 WATER | YEAR | WATER | YEARS 200 | 02 - 2003 | | ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI ANNUAI ANNUAI 10 PERC' 50 PERC' | F ANNUAL F ANNUAL F DAILY M F DAILY M L SEVEN-L L RUNOFF | MEAN MEAN MEAN MEAN MEAN MEAY MINIM MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEA | ИUМ | | 0.27 Oct
0.00 Jul
0.00 Aug | 1 | | 0.00 Oc | p 13
t 1
t 10 | | 0.00 J | 2003
2003
ep 13, 2003
ul 1, 2002
ug 23, 2002 | e Estimated ### PERIOD OF RECORD.--October 2002 to September 2003. GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Gage established October 2002. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 3.64 in., Sept. 13. ### PRECIPITATION, TOTAL, INCHES WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | | | | | | D/11 | illi bom 11 | LCLO | | | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.12 | 0.05 | 0.00 | 0.0 | 0.0 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.30 | 0.00 | 0.02 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | | 3 | 0.09 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | 0.16 | 0.00 | 0.04 | 0.05 | 0.17 | 0.00 | | 4 | 1.36 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | 0.05 | 0.35 | 0.00 | 0.28 | 0.00 | 0.00 | | 5 | 0.00 | 0.11 | 0.09 | 0.0 | 0.0 | 0.06 | 0.04 | 0.39 | 0.00 | 0.52 | 0.11 | 0.00 | | 6 | 0.05 | 0.05 | 0.00 | 0.0 | 0.0 | 0.03 | 0.14 | 0.00 | 0.21 | 0.58 | 0.04 | 0.00 | | 7 | 0.01 | 0.03 | 0.00 | 0.0 | 0.0 | 0.07 | 0.00 | 0.66 | 0.00 | 0.26 | 0.00 | 0.00 | | 8 | 0.02 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | 0.10 | 0.19 | 0.26 | 0.27 | 0.00 | 0.00 | | 9 | 0.00 | 0.01 | 0.00 | 0.0 | 0.0 | 0.00 | 0.01 | 0.38 | 0.01 | 0.09 | 0.00 | 0.00 | | 10 | 0.01 | 0.08 | 0.00 | 0.0 | 0.0 | 0.00 | 0.00 | 0.46 | 0.01 | 0.06 | 0.00 | 0.00 | | 11 | 0.00 | 0.28 | 0.00 | 0.16 | 0.0 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | | 12 | 0.02 | 0.01 | 0.00 | 0.14 | 0.0 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.86 | | 13 | 0.00 | 0.00 | 0.00 |
0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.64 | | 14 | 0.00 | 0.00 | 0.32 | 0.21 | 0.00 | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 0.00 | 1.01 | | 15 | 0.00 | 0.03 | 0.08 | 0.1 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 1.81 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | 0.02 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 17 | 0.12 | 0.00 | 0.13 | 0.1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.18 | 0.17 | 0.61 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | | 19 | 0.00 | 0.00 | 0.03 | 0.0 | 0.00 | 0.21 | 0.64 | 0.69 | 0.01 | 0.00 | 0.00 | 0.04 | | 20 | 0.00 | 0.00 | 0.03 | 0.0 | 0.00 | 0.10 | 0.15 | 0.03 | 0.00 | 0.00 | 0.06 | 0.00 | | 21 | 0.00 | 0.08 | 0.0 | 0.0 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.40 | 0.00 | 0.06 | | 22 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | | 23 | 0.00 | 0.04 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | | 24 | 0.09 | 0.00 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.00 | 0.00 | 0.00 | | 25 | 0.50 | 0.00 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.53 | 0.00 | 0.04 | 0.00 | | 26
27
28
29
30
31 | 0.01
0.01
0.09
0.00
0.00
0.00 | 0.00
0.03
0.00
0.02
0.19 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.00
0.00
0.00
 | 0.00
0.08
0.56
0.00
0.00
0.01 | 0.00
0.00
0.00
0.00
1.96 | 0.00
0.00
0.20
0.00
0.60
0.05 | 0.00
0.00
1.45
0.00
0.00 | 0.00
0.00
0.02
0.00
0.00
0.22 | 0.00
0.00
0.39
0.02
0.00
0.00 | 0.03
0.00
0.02
0.00
0.00 | | TOTAL | 2.98 | 1.18 | 1.33 | 0.84 | 0.00 | 1.13 | 3.28 | 4.67 | 2.93 | 4.56 | 0.89 | 5.74 | #### 05429500 YAHARA RIVER AT MCFARLAND, WI LOCATION.--Lat 43°00'32", long 89°18'18", in SW $\frac{1}{4}$ sec.3, T.6 N., R.10 E., Dane County, Hydrologic Unit 07090001, on left bank just upstream from bridge on U.S. Highway 51, downstream of dam at outlet of Lake Waubesa and 1.0 mi southwest of McFarland. DRAINAGE AREA.--327 mi². PERIOD OF RECORD .-- September 1930 to current year. Prior to October 2000, published as "near McFarland". REVISED RECORDS.--WSP 805, WDR WI-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 840.00 ft above NGVD of 1929 (levels by Wisconsin Department of Natural Resources). September 1930 to Dec. 22, 1934, nonrecording gage at same site at datum 0.40 ft higher. Dec. 23, 1934 to Sept. 30, 1982, recording gage at same site at datum 0.40 ft higher. REMARKS.--Records fair (see page 11). Flow regulated by dams at outlets of Lake Mendota and Lake Waubesa. The Madison Metropolitan Sewerage District diverted an average of \$7 ft³/s of effluent into the Badfish Creek basin during 2003 water year. The data were provided by the Madison Metropolitan Sewerage District. Prior to 1958 the effluent was discharged into the Yahara River above McFarland. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | |---|---|---|--|--|--|---|---|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 64 | 231 | e200 | 173 | 87 | 35 | 18 | 36 | 218 | 17 | 26 | 9.5 | | 2 | 62 | 227 | 198 | 174 | 87 | 35 | 12 | 42 | 212 | 17 | 27 | 9.0 | | 3 | 69 | 227 | 193 | 172 | e86 | 36 | 12 | 51 | 205 | 16 | 28 | 8.6 | | 4 | 102 | 241 | 190 | 171 | e86 | 36 | 11 | 67 | 200 | 14 | 28 | 8.3 | | 5 | 125 | 257 | 188 | 171 | 86 | 38 | 9.3 | 80 | 198 | 15 | 29 | 7.7 | | 6
7
8
9
10 | 125
121
81
70
109 | 260
258
258
260
263 | 188
187
185
183
182 | 170
169
168
164
157 | 85
84
83
81
80 | 38
31
25
e26
e26 | 12
11
9.3
9.3
9.3 | 94
120
209
331
336 | 193
195
193
196
194 | 15
15
15
17
16 | 29
30
30
30
30
30 | 6.9
6.1
11
18
17 | | 11 | 191 | 272 | 182 | 150 | e80 | e26 | 8.8 | 354 | 189 | 15 | 30 | 17 | | 12 | 218 | 276 | 181 | 141 | e80 | 26 | 8.9 | 361 | 185 | 17 | 26 | 17 | | 13 | 215 | 278 | 181 | 135 | e79 | 26 | 10 | 356 | 182 | 17 | 24 | 23 | | 14 | 172 | 279 | 180 | 131 | 79 | 27 | 12 | 366 | 176 | 16 | 23 | 40 | | 15 | 132 | 275 | 180 | 127 | 77 | 27 | 11 | 374 | 169 | 49 | 22 | 34 | | 16 | 144 | 271 | 179 | 123 | 77 | 28 | 11 | 365 | 161 | 87 | 24 | 25 | | 17 | 160 | 266 | 176 | 119 | 76 | 28 | 11 | 357 | 125 | 90 | 26 | 28 | | 18 | 162 | 262 | 183 | 116 | 76 | 29 | 12 | 349 | 73 | 88 | 26 | 33 | | 19 | 163 | 261 | 194 | 111 | 74 | 29 | 15 | 360 | 56 | 88 | 26 | 40 | | 20 | 164 | 256 | 198 | 108 | 73 | 29 | 15 | 388 | 44 | 87 | 24 | 54 | | 21 | 163 | 253 | 199 | 106 | 72 | 30 | 12 | 368 | 39 | 92 | 20 | 58 | | 22 | 164 | 247 | 199 | 103 | 71 | 31 | 12 | 353 | 35 | 95 | 18 | 59 | | 23 | 161 | 239 | 195 | e100 | 71 | 31 | 16 | 341 | 28 | 90 | 17 | 82 | | 24 | 159 | 233 | 186 | e99 | 70 | 28 | 17 | 327 | 24 | 84 | 16 | 100 | | 25 | 188 | 227 | 184 | 97 | 69 | 22 | 15 | 314 | 22 | 74 | 14 | 97 | | 26
27
28
29
30
31 | 212
210
208
208
207
221 | 220
215
210
206
e200 | 180
179
177
177
175
175 | 94
91
90
89
87
88 | 67
51
34
 | 21
20
23
25
23
23 | 15
16
11
13
18 | 302
253
217
218
220
223 | 15
14
13
13
16 | 55
49
44
33
29
27 | 13
13
12
11
11
9.9 | 94
94
93
94
92 | | TOTAL | 4,750 | 7,428 | 5,754 | 3,994 | 2,121 | 878 | 372.9 | 8,132 | 3,583 | 1,383 | 692.9 | 1,276.1 | | MEAN | 153 | 248 | 186 | 129 | 75.8 | 28.3 | 12.4 | 262 | 119 | 44.6 | 22.4 | 42.5 | | MAX | 221 | 279 | 200 | 174 | 87 | 38 | 18 | 388 | 218 | 95 | 30 | 100 | | MIN | 62 | 200 | 175 | 87 | 34 | 20 | 8.8 | 36 | 13 | 14 | 9.9 | 6.1 | | CFSM | 0.47 | 0.76 | 0.57 | 0.39 | 0.23 | 0.09 | 0.04 | 0.80 | 0.37 | 0.14 | 0.07 | 0.13 | | IN. | 0.54 | 0.85 | 0.65 | 0.45 | 0.24 | 0.10 | 0.04 | 0.93 | 0.41 | 0.16 | 0.08 | 0.15 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MO
130
401
(1981)
4.09
(1965) | ONTHLY M
163
355
(1986)
27.4
(1940) | EAN DATA
150
375
(1986)
36.5
(1940) | FOR WATI
143
376
(1986)
34.0
(1977) | ER YEARS
159
363
(1938)
31.6
(1991) | 1930 - 2003
242
599
(1937)
28.3
(2003) | , BY WATE
255
719
(1959)
12.4
(2003) | R YEAR (W
187
520
(1933)
42.1
(1958) | 155
585
(2000)
15.6
(1936) | 147
511
(1993)
16.0
(1965) | 120
478
(1993)
15.9
(1988) | 117
422
(1993)
13.8
(1964) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI MAXIMI ANNUAI 10 PERC 50 PERC | T ANNUAL
T ANNUAL
T DAILY M
T DAILY M | MEAN MEAN IEAN EAN OAY MINIM TLOW STAGE (CFSM) (INCHES) EDS EDS | | | Jun Sep Sep Sep 2.53 | 5
17 | 40,36
11
38
43 | 11
38 May
6.1 Sep | y 20
o 7
o 1
y 14 | 1
3
8
(a)8
(t | 1.2 J
2.0 J
67 A | 1993
1964
.pr 11, 1959
un 27, 1979
un 22, 1979
.pr 10, 1959
un 26, 2000 | ⁽a) Gage height, 5.82 ft, datum then in use ⁽b) Backwater from vegetation ⁽e) Estimated due to ice effect or missing record #### 05430150 BADFISH CREEK NEAR COOKSVILLE, WI $LOCATION.--Lat~42^{\circ}50'00", long~89^{\circ}11'48", in~SW~^{1}\!\!/_{4}~sec.4, T.4~N., R.11~E., Rock~County, Hydrologic~Unit~07090001, on~right~bank, 20~ft~upstream~from~bridge~on~State~Highway~59, 2.2~mi~east~of~Cooksville, and~2.2~mi~above~the~mouth.$ DRAINAGE AREA.--82.6 mi². PERIOD OF RECORD.--July 1977 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 807.06 ft above NGVD of 1929. REMARKS.--Records good (see page 11). Approximately 64 percent of flow is effluent from Nine Springs treatment plant (data provided by Madison Metropolitan Sewerage District). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |---|--|---|---|---|--|--|--|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 96
109
116
158
138 | 92
92
91
94
95 | 84
91
90
88
90 | 86
83
86
84
84 | 79
80
85
83
83 | 77
77
78
80
79 | 94
94
94
100
101 | 204
136
113
105
140 | 78
80
80
79
79 |
80
79
78
79
80 | e82
e80
e81
e83
80 | 64
69
69
69
70 | | 6
7
8
9
10 | 108
103
100
98
96 | 96
94
95
91
91 | 90
88
87
89
89 | 86
86
86
86
85 | 84
82
80
80
84 | 78
80
80
79
e80 | 99
98
96
95
99 | 123
137
135
167
131 | 78
80
83
85
85 | 80
90
102
102
107 | 80
95
80
81
78 | 69
68
69
69 | | 11
12
13
14
15 | 95
91
88
91
93 | 95
95
93
94
94 | 89
89
89
89 | 81
81
85
84
e84 | 85
e85
81
82
80 | 81
83
86
94
95 | 99
95
92
92
93 | 130
127
112
109
110 | 88
87
84
83
79 | 101
89
82
81
159 | 78
82
84
78
81 | 69
70
85
127
89 | | 16
17
18
19
20 | 92
92
95
91
90 | 91
91
94
96
95 | 91
91
106
115
102 | 83
83
79
e82
83 | 79
82
81
81 | 92
93
92
89
94 | 95
94
93
94
110 | 102
97
91
93
105 | 79
79
82
84
80 | 105
92
88
81
92 | 80
76
75
77
75 | 78
74
73
73
70 | | 21
22
23
24
25 | 92
93
93
92
99 | 96
95
91
90
93 | 95
91
89
90
83 | e85
e85
e88
e86
e84 | 82
79
77
80
e80 | 93
88
87
90
90 | 103
100
96
95
94 | 92
88
87
81
79 | 77
74
75
84
88 | e140
e120
e100
e94
e90 | 77
e76
e72
e70
e75 | 69
72
71
72
70 | | 26
27
28
29
30
31 | 98
91
96
96
95
94 | 92
91
89
85
85 | 79
86
86
84
86
88 | 80
e82
e81
80
81 | 80
79
79
 | 88
88
116
111
97
95 | 91
90
93
92
104 | 75
80
85
85
82
83 | 101
82
84
84
78 | e87
e86
e85
e86
e87
e86 | 76
74
73
73
69
66 | 71
71
70
72
73 | | TOTAL
MEAN
MAX
MIN | 3,079
99.3
158
88 | 2,776
92.5
96
85 | 2,793
90.1
115
79 | 2,592
83.6
88
79 | 2,273
81.2
85
77 | 2,730
88.1
116
77 | 2,885
96.2
110
90 | 3,384
109
204
75 | 2,459
82.0
101
74 | 2,908
93.8
159
78 | 2,407
77.6
95
66 | 2,203
73.4
127
64 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WATE | ER YEARS | 1977 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 97.0
139
(1987)
66.9
(1978) | 101
162
(1986)
69.5
(1978) | 95.7
129
(1983)
69.7
(1979) | 91.1
122
(1988)
65.3
(1991) | 107
163
(1994)
73.1
(1979) | 124
190
(1993)
80.4
(1981) | 124
193
(1993)
88.7
(1990) | 111
205
(1999)
78.3
(1981) | 120
252
(1996)
76.4
(1991) | 104
171
(1993)
70.4
(1977) | 96.7
133
(1996)
59.2
(1977) | 97.5
146
(2001)
67.6
(1991) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 197 | 7 - 2003 | | LOWEST
HIGHEST
LOWEST
ANNUAI
MAXIMU
MAXIMU
10 PERCT
50 PERCT | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY M | MEAN
IEAN
EAN
OAY MINIM
FLOW
STAGE
EDS
EDS | UM | 37,876
104
307
78
81
125
98
86 | Apr
(a)Aug
Aug | 11 | 20
6
6
(b)28
(c) | 39.0
04 Ma
54 Se
58 Au
32 Ma
05.99 Ju | y 1
p 1
g 30
y 1
1 1 1 5 | 1,4
2,2
1 | 35 Au
48 Ju
210 Ju | 1993
1991
n 18, 1996
g 1, 1977
nl 28, 1977
n 17, 1996
n 17, 1996 | ⁽a) Also occurred Sept. 1 (b) Gage height, 5.73 ft (c) Discharge, 253 ft³/s (e) Estimated due to ice effect or missing record #### 05430175 YAHARA RIVER NEAR FULTON, WI LOCATION.--Lat $42^{\circ}49^{\circ}35^{\circ}$, long $89^{\circ}10^{\circ}19^{\circ}$, in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec. 10, T.4 N., R.11 E., Rock County, Hydrologic Unit 07090001, on left bank, 20 ft upstream from bridge on State Highway 59, 0.5 mi downstream from Badfish Creek, and 2.6 mi northwest of Fulton. DRAINAGE AREA.--518 mi². PERIOD OF RECORD.--July 1977 to current year. REVISED RECORDS.--WDR WI-96-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 789.85 ft above NGVD of 1929. July 1977 to April 1996, recording gage at site about 2,000 ft upstream at datum 2.85 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Regulation from dams and powerplants upstream. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND , WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |--|--|---|---|---|---|--|--|--|---------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 207 | 387 | e370 | 322 | e240 | e130 | 186 | 322 | 399 | 122 | 164 | 130 | | 2 | 242 | 386 | e340 | 320 | e240 | e120 | 201 | 217 | 399 | 128 | 162 | 120 | | 3 | 266 | 387 | e330 | e300 | e240 | e120 | 192 | 188 | 397 | 136 | 173 | 116 | | 4 | 379 | 386 | e320 | e300 | e240 | e110 | 196 | 176 | 394 | 145 | 166 | 119 | | 5 | 486 | 392 | e310 | 310 | e240 | e110 | 198 | 234 | 389 | 140 | 164 | 121 | | 6 | 450 | 401 | e310 | 312 | e240 | e120 | 189 | 216 | 284 | 138 | 162 | 122 | | 7 | 409 | 400 | e310 | 315 | e240 | 133 | 176 | 238 | 133 | 150 | 173 | 122 | | 8 | 387 | 404 | e300 | 314 | e240 | 131 | 170 | 244 | 138 | 165 | 158 | 117 | | 9 | 367 | 419 | e300 | 313 | e230 | e120 | 169 | 446 | 199 | 171 | 157 | 109 | | 10 | 369 | 412 | e300 | 313 | e230 | e130 | 173 | 554 | 286 | 174 | 137 | 122 | | 11 | 347 | 415 | 305 | e310 | e230 | e120 | 172 | 538 | 327 | 181 | 151 | 118 | | 12 | 334 | 418 | 307 | e300 | e230 | 130 | 167 | 557 | 315 | 153 | 159 | 120 | | 13 | 422 | 418 | 307 | e290 | e230 | 136 | 163 | 689 | 340 | 139 | 156 | 166 | | 14 | 426 | 418 | 313 | e290 | e220 | 151 | 156 | 709 | 341 | 140 | 149 | 267 | | 15 | 435 | 421 | 326 | e280 | e220 | 154 | 155 | 708 | 330 | 275 | 149 | 200 | | 16 | 429 | 421 | e330 | e270 | e220 | 152 | 154 | 666 | 318 | 215 | 138 | 128 | | 17 | 420 | 421 | 345 | e260 | e220 | 151 | 153 | 630 | 315 | 222 | 129 | 135 | | 18 | 425 | 427 | 368 | e260 | e220 | 150 | 158 | 622 | 270 | 309 | 138 | 123 | | 19 | 416 | 440 | 389 | e260 | e220 | 149 | 169 | 617 | 277 | 235 | 135 | 111 | | 20 | 408 | 439 | 392 | e250 | e220 | 159 | 193 | 635 | 253 | 249 | 131 | 115 | | 21 | 392 | 436 | 381 | e250 | e210 | 158 | 175 | 615 | 148 | 368 | 132 | 112 | | 22 | 372 | 436 | 370 | e250 | e130 | 152 | 167 | 601 | 130 | 400 | 130 | 114 | | 23 | 370 | 433 | e350 | e250 | e130 | 150 | 160 | 589 | 138 | 377 | 125 | 115 | | 24 | 327 | 429 | e350 | e250 | e130 | 151 | 156 | 540 | 150 | 344 | 119 | 114 | | 25 | 282 | 430 | e340 | e250 | e130 | 152 | 156 | 547 | 156 | 317 | 121 | 112 | | 26
27
28
29
30
31 | 304
304
331
349
359
355 | 429
419
411
406
e390 | e330
e340
349
345
341
325 | e240
e240
e240
e240
e240
e240 | e130
e130
e130
 | 150
150
191
197
178
172 | 152
150
148
139
157 | 536
534
468
383
399
404 | 170
152
146
143
126 | 269
165
146
164
167
162 | 128
128
128
129
125
122 | 113
113
111
113
117 | | TOTAL | 11,369 | 12,431 | 10,393 | 8,579 | 5,730 | 4,477 | 5,050 | 14,822 | 7,563 | 6,466 | 4,438 | 3,815 | | MEAN | 367 | 414 | 335 | 277 | 205 | 144 | 168 | 478 | 252 | 209 | 143 | 127 | | MAX | 486 | 440 | 392 | 322 | 240 | 197 | 201 | 709 | 399 | 400 | 173 | 267 | | MIN | 207 | 386 | 300 | 240 | 130 | 110 | 139 | 176 | 126 | 122 | 119 | 109 | | CFSM | 0.71 | 0.80 | 0.65 | 0.53 | 0.40 | 0.28 | 0.32 | 0.92 | 0.49 | 0.40 | 0.28 | 0.25 | | IN. | 0.82 | 0.89 | 0.75 | 0.62 | 0.41 | 0.32 | 0.36 | 1.06 | 0.54 | 0.46 | 0.32 | 0.27 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | FICS OF MO
363
623
(2002)
171
(1991) | ONTHLY M
415
711
(1986)
181
(1990) | EAN DATA
384
558
(1983)
167
(1990) | FOR WATE
339
542
(1986)
192
(1978) | ER YEARS
370
585
(1986)
168
(1991) | 1977 - 2003
445
760
(1994)
144
(2003) | , BY WATE
455
1,043
(1993)
168
(2003) | R YEAR (W
414
858
(1993)
155
(1981) | (2000)
136
(1988) | 333
862
(1993)
121
(1988) | 302
760
(1993)
117
(1988) | 320
696
(1993)
109
(1988) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' ANNUAI MAXIMU MAXIMU ANNUAI 10 PERCI 50 PERCI | L MEAN
Γ ANNUAL
Γ ANNUAL
Γ DAILY M
Γ DAILY M | , MEAN MEAN IEAN EAN DAY MINIM FLOW STAGE (CFSM) (INCHES) EDS EDS | | 131,416
360
771
150
158 | Apr Aug Aug 2.70 | 9
15 | 95,13
26
70
10
11
74
(a) | 99 May
99 Sep
3 Sep
10 May
16.49 Jan
0.50
6.83 | 7 14
9 9
9 23
7 13 | 2,8
2,8
1
3,2 | 60 Au
104 Au
230 Ju | 7 - 2003
1993
2003
n 18, 1996
g 7, 1977
g 3, 1977
n 18, 1996
n 18, 1996 | ⁽a)
Backwater from ice ⁽e) Estimated due to ice effect or missing record #### 05430500 ROCK RIVER AT AFTON, WI LOCATION.--Lat 42°36'33", long 89°04'14", in NE $\frac{1}{4}$ sec.28, T.2 N., R.12 E., Rock County, Hydrologic Unit 07090001, on right bank in Afton, 0.3 mi downstream from highway bridge and 1.1 mi upstream from Bass Creek. DRAINAGE AREA.--3,340 mi². PERIOD OF RECORD.--January 1914 to current year. Monthly discharge for January 1914 published in WSP 1308. Unpublished daily discharges for January and February 1914 in District files. REVISED RECORDS.--WSP 1238: 1916(M), 1919(M), 1933, 1937-38, 1943. WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 742.36 ft above NGVD of 1929. Prior to Aug. 23, 1932, a nonrecording gage 20 ft upstream, and Aug. 23, 1932, to Sept. 30, 1933, water-stage recorder, at same site at datum 1 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are fair, and periods of discharge below 800 ft³/s, which are poor (see page 11). Diurnal fluctuation caused by powerplants above station. Gage-height telemeter and data-collection platform at station. | DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 1,020 1,540 1,090 1,090 e790 e630 1,530 1,370 2,410 840 637 449 2 1,370 1,520 e1,100 1,100 e760 e610 1,570 1,930 2,170 862 630 450 3 1,480 1,470 e1,100 e960 e740 e610 1,590 2,300 1,860 806 683 396 4 1,740 1,480 e1,100 e960 e730 e610 1,590 2,150 1,940 795 682 368 5 1,840 1,470 e1,000 e980 e730 e610 1,560 2,520 1,780 858 595 384 | |--| | 3 1,480 1,470 e1,100 e960 e740 e610 1,590 2,300 1,860 806 683 396
4 1,740 1,480 e1,100 e960 e730 e610 1,590 2,150 1,940 795 682 368 | | 3 1,480 1,470 e1,100 e960 e740 e610 1,590 2,300 1,860 806 683 396
4 1,740 1,480 e1,100 e960 e730 e610 1,590 2,150 1,940 795 682 368 | | 4 1,740 1,480 e1,100 e960 e730 e610 1,590 2,150 1,940 795 682 368 5 1,840 1,470 e1,000 e980 e730 e610 1,560 2,520 1,780 858 595 384 | | | | 6 1,830 1,370 e1,000 e1,000 e730 e640 1,470 2,520 1,590 903 601 336 | | 7 1,690 1,000 e1,000 1,040 e730 e650 1,570 2,630 1,500 791 688 352 8 1,940 1,060 e1,000 1,090 e730 e650 1,530 2,600 1,450 995 726 478 | | 9 1,870 1,420 e900 1,380 e730 e640 1,450 3,060 1,500 990 679 559
10 1,800 1,430 e900 e1,200 e730 e640 1,470 3,060 1,470 1,250 626 498 | | 11 1530 1410 e900 e1100 e730 733 1430 2.840 1190 1110 610 467 | | 12 1,290 1,380 e900 e1,000 e720 726 1,400 2,940 1,310 1,020 677 430 13 1,310 1,330 e870 e950 e700 721 1,430 3,230 1,320 1,030 714 543 | | 14 1,350 1,350 e870 e940 e700 745 1,360 3,600 1,390 938 723 759 | | | | 17 1,340 1,400 e900 e860 e700 751 1,020 3,520 1,600 946 538 604 | | 18 1,420 1,400 e950 e860 e700 795 509 3,480 1,580 1,110 544 529 19 1,370 1,320 e1,000 e850 e700 1,070 626 3,400 1,640 1,070 534 489 | | 20 1,360 1,320 e1,000 e840 e710 1,060 851 3,480 1,300 852 465 444 | | 21 1,360 1,320 e1,000 e840 e680 1,320 936 3,370 1,040 1,060 382 667 22 1,430 1,280 e1,000 e830 e590 1,340 1,000 3,330 1,060 1,220 657 626 | | 23 1.440 1.260 e1.000 e830 e560 1.390 1.180 3.420 968 1.150 510 449 | | 24 1,630 1,240 e970 e830 e530 1,340 1,490 3,280 686 1,090 366 515 25 1,330 1,260 e970 e830 e540 1,700 1,480 3,170 844 929 494 558 | | 26 1,220 1,170 e990 e830 e570 1,650 1,700 3,030 764 790 439 474
27 1,350 e1,200 e1,000 e830 e600 1,610 1,580 2,960 684 744 335 444
28 1,220 e1,100 e1,000 e820 e630 1,670 1,410 2,750 855 761 430 586 | | 27 1,350 e1,200 e1,000 e830 e600 1,610 1,580 2,960 684 744 335 444 28 1,220 e1,100 e1,000 e820 e630 1,670 1,410 2,750 855 761 430 586 | | 29 1,590 e1,100 e1,100 e820 1,610 1,070 2,560 853 715 481 487 30 1,590 e1,100 1,160 e800 1,580 1,190 2,640 822 668 351 466 | | 31 1,560 1,120 e790 1,540 2,610 633 384 | | TOTAL 45,990 39,530 30,640 29,070 19,160 31,196 38,874 90,980 40,386 29,046 17,355 14,777 MEAN 1,484 1,318 988 938 684 1,006 1,296 2,935 1,346 937 560 493 | | | | MAX 1,940 1,540 1,160 1,380 790 1,700 1,700 3,630 2,410 1,250 726 759 MIN 1,020 1,000 870 790 530 610 509 1,370 684 633 335 336 CFSM 0.44 0.39 0.30 0.28 0.20 0.30 0.39 0.88 0.40 0.28 0.17 0.1 IN 0.51 0.44 0.34 0.32 0.21 0.35 0.43 1.01 0.45 0.32 0.19 0.1 | | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1914 - 2003, BY WATER YEAR (WY) MEAN 1,400 1,579 1,473 1,311 1,560 3,315 4,076 2,606 1,848 1,434 1,135 1,194 | | MAX 8.219 5.884 4.395 3.558 5.647 8.958 10.010 7.911 7.452 5.443 5.376 5.088 | | (WY) (1987) (1986) (1986) (1960) (1938) (1918) (1979) (1973) (2000) (1993) (1924) (1938) MIN 254 397 383 275 327 610 1,002 389 314 247 183 212 | | (WY) (1940) (1964) (1940) (1959) (1959) (1940) (1931) (1958) (1934) (1934) (1934) (1934) | | SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1914 - 2003 ANNUAL TOTAL 711.448 427,004 | | ANNUAL MEAN 1,949 1,170 1,914 | | HIGHEST ANNUAL MEAN 3,925 199
LOWEST ANNUAL MEAN 557 196 | | HIGHEST DAILY MEAN 4,270 Mar 18 3,630 May 15 13,000 Mar 23, 24,192
LOWEST DAILY MEAN 603 Aug 10 335 Aug 27 42 Aug 25,26, 193 | | ANNUAL SEVEN-DAY MINIMUM 720 Sep 12 391 Sep 1 115 Aug 24, 193 | | MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 3,680 May 14 (a)13,000 Mar 23, 192 6.52 May 14 (b)13.05 Feb 5, 191 | | ANNUAL RUNOFF (CFSM) 0.58 0.35 0.57
ANNUAL RUNOFF (INCHES) 7.92 4.76 7.79 | | 10 PERCENT EXCEÈDS 3,630 1,850 4,040 | | 50 PERCENT EXCEEDS 1,600 1,000 1,350 90 PERCENT EXCEEDS 784 536 482 | ⁽a) Gage height, 11.81 ft, present datum ⁽b) Present datum, backwater from ice ⁽e) Estimated due to ice effect or missing record #### 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI $LOCATION.--Lat\ 42^{\circ}39^{\circ}03^{\circ},\ long\ 88^{\circ}33^{\circ}03^{\circ},\ in\ NW\ ^{1}\!\!/_{4}\ sec.\ 12,\ T.2\ N.,\ R.\ 16\ E.,\ Walworth\ County,\ Hydrologic\ Unit\ 07090001,\ on\ left\ bank\ 20\ ft\ downstream\ from\ Interstate\ Highway\ 43,\ 1.1\ mi\ upstream\ from\ Delavan\ Lake\ inlet\ at\ Mound\ Road,\ and\ 1.5\ mi\ south\ of\ Elkhorn.$ DRAINAGE AREA.--4.34 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1983 to current year. REVISED RECORDS .-- WDR WI-89-1: 1988. GAGE.--Water-stage recorder. Datum of gage is 924.70 ft above NGVD of 1929 (Wisconsin Department of Transportation bench mark). Prior to Dec. 4, 1992, at site 180 ft downstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | 100011111 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |--|--|---|--|---|---|---|--|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.2
5.6
1.4
10
2.2 | 0.80
0.72
0.63
0.70
0.84 | e0.70
e0.66
e0.64
e0.60
e0.56 | 0.48
e0.45
e0.43
e0.40
e0.40 | 0.50
0.46
0.64
0.61
0.49 | 0.54
e0.50
e0.48
e0.46
e0.50 | 0.99
0.83
0.77
1.9
1.4 | 6.9
1.7
1.2
2.7
7.7 | 1.7
1.4
1.4
1.2
1.0 | 0.27
0.26
0.27
1.2
9.4 | 0.73
0.51
1.6
1.0
0.66 | 0.20
0.25
0.30
0.41
0.26 | | 6
7
8
9
10 | 1.4
1.1
0.96
0.89
0.97 | 0.80
0.79
0.73
0.66
0.61 | e0.52
e0.54
e0.50
e0.50
e0.54 | e0.42
e0.50
e0.70
0.92
0.87 | e0.44
e0.42
e0.39
e0.37
e0.36 | e0.48
e0.52
e0.48
e0.44
e0.42 | 1.0
1.5
1.3
1.5
1.5 | 2.3
5.0
3.0
18
3.8 | 1.1
0.90
5.9
1.7
1.3 | 8.7
3.2
10
6.6
2.5 | 0.57
0.60
0.80
0.69
0.44 | 0.16
0.11
0.21
0.23
0.22 | | 11
12
13
14
15 | 0.85
0.85
0.79
0.99
1.1 | 0.77
0.82
0.91
0.89
0.82 | e0.60
0.68
0.65
0.41
0.52 | 0.52
0.49
e0.48
e0.46
e0.43 | e0.35
e0.35
e0.34
e0.34 | e0.42
e0.50
0.98
3.0
2.5 | 1.4
0.99
0.86
0.92
0.96 | 11
5.6
2.9
5.1
3.2 | 1.1
1.00
0.96
0.73
0.60 | 2.0
1.4
0.97
0.84
48 | 0.54
0.54
0.54
0.48
0.65 | 0.20
2.4
1.2
3.4
0.63 | | 16
17
18
19
20 | 1.0
1.3
1.4
1.0
0.79 |
0.64
0.59
0.84
0.97
0.96 | 0.58
0.67
5.0
1.8
1.0 | e0.42
e0.42
e0.40
e0.39
e0.39 | e0.35
e0.40
e0.44
0.52
0.60 | 1.8
1.5
1.2
1.5
1.6 | 0.96
1.0
1.3
1.5
1.5 | 2.4
2.0
1.7
1.5
2.3 | 0.56
0.54
1.7
1.0
0.64 | 6.2
3.0
2.3
1.7
1.5 | 0.37
0.32
0.42
0.43
0.44 | 0.42
0.37
0.33
0.49
0.27 | | 21
22
23
24
25 | 0.93
0.92
0.95
1.0
2.4 | 1.0
0.83
0.76
0.71
0.85 | 0.69
0.60
0.55
e0.46
e0.44 | e0.38
e0.37
e0.36
e0.36
e0.36 | 0.72
0.56
e0.48
e0.44
e0.40 | 1.4
1.0
0.94
1.3
1.4 | 1.1
0.92
0.84
0.89
1.0 | 1.4
1.5
1.4
1.3
1.3 | 0.46
0.39
0.38
0.37
2.9 | 3.1
1.5
1.2
1.1
1.1 | 0.44
0.56
0.27
0.22
0.45 | 0.20
1.0
0.46
0.33
0.32 | | 26
27
28
29
30
31 | 1.0
0.83
0.83
0.89
0.78
0.76 | e0.80
e0.74
e0.70
0.95
0.81 | e0.42
e0.43
e0.46
e0.49
0.70
0.56 | e0.34
e0.34
e0.40
e0.46
e0.42
0.61 | e0.38
e0.40
0.65 | 1.2
1.4
2.7
1.4
0.92
0.95 | 0.80
0.85
0.84
0.78
2.9 | 1.2
1.2
6.2
2.3
4.6
3.5 | 1.4
0.51
0.76
0.36
0.27 | 0.80
0.69
0.78
0.71
0.92
0.65 | 0.45
0.31
0.41
1.6
0.22
0.19 | 0.89
0.46
0.32
0.33
0.33 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 48.08
1.55
10
0.76
0.36
0.41 | 23.64
0.79
1.0
0.59
0.18
0.20 | 23.47
0.76
5.0
0.41
0.17
0.20 | 14.37
0.46
0.92
0.34
0.11
0.12 | 12.76
0.46
0.72
0.34
0.11
0.11 | 34.43
1.11
3.0
0.42
0.26
0.30 | 35.00
1.17
2.9
0.77
0.27
0.30 | 115.9
3.74
18
1.2
0.86
0.99 | 34.23
1.14
5.9
0.27
0.26
0.29 | 122.86
3.96
48
0.26
0.91
1.05 | 17.45
0.56
1.6
0.19
0.13
0.15 | 16.70
0.56
3.4
0.11
0.13
0.14 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 2.37
8.38
(2002)
0.30
(1995) | 3.47
13.3
(1986)
0.58
(1990) | 2.33
6.55
(1985)
0.49
(1990) | 1.87
4.62
(1999)
0.45
(1994) | 3.73
9.42
(2001)
0.33
(1989) | 1984 - 2003
4.52
10.7
(1986)
1.11
(2003) | 4.86
14.4
(1993)
1.17
(2003) | R YEAR (W
3.59
8.00
(2000)
0.79
(1989) | 3.65
9.42
(1996)
0.54
(1988) | 2.18
5.39
(1992)
0.44
(1988) | 1.55
5.59
(1995)
0.30
(1988) | 2.64
10.8
(1986)
0.27
(1987) | | ANNUAI
ANNUAI
HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAI
MAXIMU
MAXIMU
ANNUAI
10 PERCI
50 PERCI | L MEAN
Γ ANNUAI
΄ ANNUAL
Γ DAILY M
΄ DAILY M | . MEAN MEAN IEAN EAN OAY MINIM FLOW STAGE (CFSM) (INCHES) EDS EDS | IUM | 85 | CALENDAR
52.26
2.33
54 Jun
0.26 Aug
0.34 Aug
0.54
7.31
3.7
1.2
0.42 | 4 3 | 49
4
16 | 0.11 Sep
0.20 Sep
60 Ju | YEAR 115 5 7 5 5 115 | 1 | 3.05
5.74
1.37
13
0.03
0.07 | 1993
2003
Feb 19, 1994
Sep 14, 1997
Sep 8, 1997
Apr 19, 1993
Apr 19, 1993 | ⁽e) Estimated due to ice effect or missing record #### 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI-Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- October 1983 to current year. PERIOD OF DAILY RECORD.- SUSPENDED-SEDIMENT DISCHARGE: October 1983 to current year. DISSOLVED AMMONIA NITROGEN DISCHARGE: February 1993 to September 1995. TOTAL AMMONIA PLUS ORGANIC NITROGEN DISCHARGE: Water years 1984-85 and February 1993 to September 1995. DISSOLVED NITRITE PLUS NITRATE DISCHARGE: February 1993 to September 1995. TOTAL NITRITE PLUS NITRATE DISCHARGE: Water years 1984-85. TOTAL-PHOSPHORUS DISCHARGE: October 1983 to current year. DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: February 1993 to September 1995. INSTRUMENTATION.--Automatic pumping sampler since October 1983. REMARKS .-- Records good. COOPERATION .-- Observer furnished by Delavan Lake Sanitary District. EXTREMES FOR PERIOD OF RECORD.- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 5,520 mg/L, Aug. 7, 1984; minimum observed, 1 mg/L, on several days during 1984, May 12, 1990, and May 11, 1995. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 136 tons, June 17, 1996; minimum daily, 0.00 ton, on several days in 1994, 1995, 1997 and 2000 water years, Aug. 3, 2002, and June 29 to July 2, 2003. DISSOLVED AMMONIA NITROGEN CONCENTRATIONS: Maximum observed, 1.00 mg/L, Jan. 24, 1994; minimum observed, <0.015 mg/L, on many days in 1995 water year. DISSOLVED AMMONIA NITROGEN DISCHARGE: Maximum daily, 298 lb, Mar. 23, 1993; minimum daily, 0.02 lb, Jan. 8-11 and July 1-2, 1995. TOTAL AMMONIA PLUS ORGANIC NITROGEN CONCENTRATIONS: Maximum observed, 16 mg/L, Nov. 19, 1983; minimum observed, 0.10 mg/ TOTAL AMMONIA PLUS ORGANIC NITROGEN DISCHARGE: Maximum daily, 1,710 lb, Feb. 19, 1994; minimum daily, 0.09 lb, Jan. 9-11, 1995. DISSOLVED NITRITE PLUS NITRATE CONCENTRATIONS: Maximum observed, 7.6 mg/L, Apr. 28, 1995; minimum observed, 0.30 mg/L, Aug. 7, DISSOLVED NITRITE PLUS NITRATE DISCHARGE: Maximum daily, 1,080 lb, June 8, 1993; minimum daily, 0.43 lb, Aug. 6, 1995. TOTAL NITRITE PLUS NITRATE CONCENTRATIONS: Maximum observed, 6.10 mg/L, Oct. 19, 1984; minimum observed, <0.10 mg/L, Oct. 12 and TOTAL NITRITE PLUS NITRATE DISCHARGE: Maximum daily, 1,489 lb, May 28, 1984; minimum daily, 0.17 lb, July 23, 1985. TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 8.20 mg/L, Aug. 7, 1984; minimum observed, 0.01 mg/L, Jan. 16, Mar. 14, 1990, and Dec. 27, 1994. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 584 lb, Feb. 19, 1994; minimum daily, 0.01 lb, Aug. 2, 1994. DISSOLVED ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.81 mg/L, Mar. 4, 1993; minimum observed, <0.01 mg/L, on many days during 1995. DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: Maximum daily, 126 lb, Mar. 23, 1993; minimum daily, 0.00 lb, Aug. 2, 1994, and Jan. 8-11, Aug. #### EXTREMES FOR CURRENT YEAR.- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 1,560 mg/L, May 28; minimum observed, 7 mg/L, May 10, 12, 29 and June 26. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 18 tons, July 15; minimum daily, 0.00 ton, June 29 to July 2 TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 2.33 mg/L, Mar. 14; minimum observed, 0.03 mg/L, Feb. 3. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 81 lb, July 15; minimum daily, 0.05 lb, Feb. 13, 14. #### SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|--------------------------------------|--|--------------------------------------|---|--|---------------------------------------| | 1
2
3
4
5 | 0.35
0.61
0.09
2.8
0.23 | 0.11
0.10
0.08
0.09
0.11 | e0.13
e0.12
e0.11
e0.10
e0.09 | 0.05
e0.04
e0.04
e0.04
e0.04 | 0.02
0.01
0.02
0.02
0.02 | 0.02
e0.01
e0.01
e0.01
e0.01 | 0.16
0.14
0.14
0.35
0.27 | 2.6
0.09
0.05
1.3
0.92 | 0.24
0.16
0.14
0.10
0.08 | 0.00
0.00
0.00
e0.49
4.0 | 0.03
0.02
e0.66
0.04
0.03 | 0.03
0.04
0.05
0.06
0.04 | | 6
7
8
9
10 | 0.20
0.20
0.18
0.16
0.17 | 0.11
0.11
0.10
0.09
0.09 | e0.08
e0.08
e0.07
e0.07
e0.07 | e0.04
e0.05
e0.07
0.08
0.07 | e0.01
e0.01
e0.01
e0.01
e0.01 | e0.01
e0.01
e0.01
e0.01 | 0.20
0.27
0.18
0.14
0.10 | 0.06
0.84
0.09
9.7
0.08 | 0.07
0.05
2.1
0.07
0.05 | 5.1
0.27
2.2
0.33
0.08 | 0.03
0.03
0.05
0.05
0.04 | 0.02
0.01
0.03
0.03
0.03 | | 11
12
13
14
15 | 0.15
0.15
0.14
0.17
0.19 | 0.11
0.12
0.14
0.13
0.12 | e0.07
0.08
0.07
0.04
0.05 | 0.04
0.04
e0.03
e0.03
e0.03 | e0.01
e0.01
e0.01
e0.01
e0.01 | e0.01
0.02
0.03
1.6
0.30 | 0.07
0.05
0.04
0.04
0.04 | 4.6
0.11
0.05
0.64
0.17 | 0.06
0.06
0.06
0.06
0.05 | 0.06
0.04
0.03
0.02
e18 | 0.05
0.06
0.07
0.07
0.11 | 0.02
0.51
0.15
0.92
0.06 | | 16
17
18
19
20 | 0.17
0.21
0.22
0.17
0.13 | 0.10
0.09
0.13
0.15
0.15 | 0.06
0.07
2.2
0.17
0.07 | e0.03
e0.02
e0.02
e0.02
e0.02 | e0.01
e0.01
e0.01
0.02
0.02 | 0.19
0.16
0.12
e0.60
e0.64 | 0.04
0.04
0.05
0.06
0.05 | 0.12
0.10
0.09
0.08
e0.95 | 0.05
0.04
0.58
0.25
0.13 | 0.26
0.11
0.08
0.05
0.04 | 0.07
0.07
0.10
0.10
0.10 | 0.04
0.04
0.03
0.05
0.03 | | 21
22
23
24
25 | 0.15
0.14
0.15
0.16
e0.28 | 0.17
0.14
0.13
0.12
0.15 | 0.05
0.05
0.04
e0.04
e0.04 | e0.02
e0.01
e0.01
e0.01
e0.01 | 0.02
0.02
e0.01
e0.01
e0.01 | 0.16
0.12
0.11
0.16
0.18 | 0.04
0.03
0.03
0.03
0.03 | 0.08
0.08
0.08
0.07
0.07 | 0.08
0.06
0.05
0.05
1.5 | e1.3
0.07
0.06
0.05
0.05 | 0.09
0.11
0.05
0.04
0.07 | 0.02
e0.41
0.05
0.04
0.04 | | 26
27
28
29
30
31 | 0.15
0.12
0.12
0.13
0.11
0.11 | e0.14
e0.13
e0.12
0.17
0.15 | e0.04
e0.04
e0.04
e0.04
0.06
0.05 |
e0.01
e0.01
e0.01
e0.01
e0.01
e0.01 | e0.01
e0.01
0.02 | 0.17
0.19
0.40
0.20
0.14
0.15 | 0.02
0.03
0.02
0.02
0.85 | 0.07
0.07
5.1
0.06
2.1
0.65 | 0.07
0.01
0.02
0.00
0.00 | 0.04
0.03
0.03
0.03
e0.38
0.03 | 0.07
0.04
0.06
0.44
0.04
0.03 | e0.37
0.06
0.04
0.04
0.04 | | TOTAL | 8.31 | 3.65 | 4.29 | 0.92 | 0.37 | 5.76 | 3.53 | 31.07 | 6.24 | 33.23 | 2.82 | 3.30 | WATER YEAR 2003 TOTAL 103.49 #### 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI-Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|---|---|--|--|--|--------------------------------------|--|---|---------------------------------------| | 1 | 2.54 | 0.24 | e0.15 | 0.16 | 0.11 | 0.09 | 0.59 | 11.8 | 0.52 | 0.17 | 0.29 | 0.12 | | 2 | 5.70 | 0.21 | e0.14 | e0.15 | 0.09 | e0.08 | 0.50 | 0.80 | 0.32 | 0.15 | 0.23 | 0.14 | | 3 | 0.76 | 0.17 | e0.14 | e0.14 | 0.10 | e0.08 | 0.47 | 0.44 | 0.29 | 0.15 | e2.70 | 0.16 | | 4 | 17.7 | 0.19 | e0.13 | e0.13 | 0.10 | e0.07 | e3.20 | 4.41 | 0.23 | e2.00 | e1.70 | 0.22 | | 5 | 1.66 | 0.23 | e0.12 | e0.13 | 0.08 | e0.08 | e2.30 | 6.69 | 0.19 | 20.0 | 0.38 | 0.14 | | 6 | 0.92 | 0.21 | e0.11 | e0.14 | e0.07 | e0.08 | 0.65 | 0.76 | 0.19 | 20.8 | 0.31 | 0.09 | | 7 | 0.72 | 0.21 | e0.12 | e0.16 | e0.07 | e0.08 | 0.90 | 5.21 | 0.15 | 2.44 | 0.31 | 0.06 | | 8 | 0.61 | 0.19 | e0.11 | e0.23 | e0.06 | e0.08 | 0.68 | 1.15 | 8.29 | 13.0 | 0.40 | 0.11 | | 9 | 0.55 | 0.17 | e0.10 | 0.30 | e0.06 | e0.07 | 0.59 | 35.9 | 0.77 | 5.56 | 0.33 | 0.13 | | 10 | 0.58 | 0.16 | e0.12 | 0.29 | e0.06 | e0.07 | 0.50 | 1.59 | 0.54 | 1.72 | 0.20 | 0.12 | | 11 | 0.49 | 0.20 | e0.13 | 0.18 | e0.06 | e0.07 | 0.38 | 19.1 | 0.44 | 1.30 | 0.23 | 0.11 | | 12 | 0.48 | 0.21 | 0.15 | 0.16 | e0.06 | e0.08 | 0.27 | 2.90 | 0.37 | 0.89 | 0.23 | 3.70 | | 13 | 0.43 | 0.23 | 0.14 | e0.16 | e0.05 | e1.60 | 0.23 | 1.06 | 0.34 | 0.58 | 0.22 | e2.00 | | 14 | 0.52 | 0.22 | 0.09 | e0.16 | e0.05 | 11.9 | 0.25 | 3.80 | 0.25 | 0.47 | 0.18 | 5.94 | | 15 | 0.57 | 0.20 | 0.11 | e0.15 | e0.06 | e4.20 | 0.26 | 1.01 | 0.19 | e81.0 | 0.24 | 0.51 | | 16
17
18
19
20 | 0.50
0.61
0.63
0.47
0.34 | 0.16
0.14
0.20
0.23
0.23 | 0.13
0.15
11.4
0.95
0.38 | e0.15
e0.15
e0.14
e0.14 | e0.06
e0.06
e0.07
0.08
0.10 | e3.00
0.77
0.58
0.74
0.82 | 0.26
0.28
0.34
e2.50
e1.20 | 0.64
0.53
0.45
0.41
e3.90 | 0.17
0.16
3.25
0.63
0.30 | 3.90
1.53
0.99
0.62
0.46 | 0.13
0.11
0.14
0.14
0.14 | 0.31
0.27
0.24
0.34
0.18 | | 21 | 0.39 | 0.24 | 0.26 | e0.14 | 0.12 | 0.71 | 0.29 | 0.38 | 0.20 | e5.20 | 0.13 | 0.13 | | 22 | 0.37 | 0.19 | 0.22 | e0.13 | 0.09 | 0.52 | 0.25 | 0.40 | 0.15 | 0.39 | 0.16 | e1.70 | | 23 | 0.37 | 0.18 | 0.20 | e0.13 | e0.08 | 0.49 | 0.23 | 0.38 | 0.13 | 0.31 | 0.08 | 0.29 | | 24 | 0.40 | 0.16 | e0.17 | e0.13 | e0.07 | 0.69 | 0.24 | 0.36 | 0.11 | 0.26 | 0.06 | 0.20 | | 25 | e4.00 | 0.19 | e0.16 | e0.13 | e0.06 | 0.75 | 0.27 | 0.34 | 7.56 | 0.26 | 0.32 | 0.19 | | 26
27
28
29
30
31 | 0.37
0.29
0.28
0.29
0.25
0.23 | e0.18
e0.17
e0.15
0.21
0.18 | e0.15
e0.15
e0.16
e0.17
0.24
0.19 | e0.13
e0.13
e0.15
e0.17
e0.13
0.16 | e0.06
e0.06
0.11
 | 0.67
0.75
e4.50
e2.30
0.53
0.56 | 0.22
0.23
0.23
0.21
e4.90 | 0.33
0.33
17.7
1.08
8.31
1.70 | 1.44
0.37
0.53
0.24
0.18 | 0.18
0.15
0.17
0.18
0.27
0.22 | 0.31
0.19
e0.70
2.43
0.16
0.13 | e1.50
0.27
0.18
0.18
0.18 | | TOTAL | 44.02 | 5.85 | 16.94 | 4.89 | 2.10 | 37.01 | 23.42 | 133.86 | 28.50 | 165.32 | 13.28 | 19.71 | WATER YEAR 2003 TOTAL 494.90 e Estimated ### 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI—Continued | Date | Time | Discharge,
cfs
(00060) | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Phosphorus, water, unfltrd mg/L (00665) | Suspended sediment concentration mg/L (80154) | |-----------|--------------|------------------------------|--------------------------------------|-------------------------------|---|---| | OCT 2002 | | | | | | | | 01 | 2030 | | 8.3 | 50 | 0.37 | 124 | | 01 | 2230 | | 8.3 | 50 | 0.23 | 45 | | 02 | 0200 | | 9.9 | 50 | 0.29 | 80 | | 02 | 0300 | | 15 | 50 | 0.30 | 76 | | 02 | 0700 | | 8.7 | 50 | 0.19 | 26 | | 04 | 1015 | | 12 | 50 | 1.25 | 941 | | 04 | 1100 | | 29 | 50 | 0.55 | 280 | | 04 | 1130 | | 38 | 50 | 0.42 | 171 | | 04 | 1330 | | 31 | 50 | 0.27 | 47 | | 04 | 1730 | | 13
2.4 | 50
10 | 0.22 | 24
38 | | 05
07 | 0705
0800 | | 1.1 | 10 | 0.13 | 58
69 | | NOV | 0800 | | 1.1 | 10 | | 09 | | 04 | 0730 | | 0.69 | 10 | 0.05 | 49 | | DEC | | | | | | | | 02 | 0730 | 0.66 | | 10 | 0.04 | 69 | | 13 | 1100 | | 0.69 | 10 | E.04 | 40 | | 18 | 0515 | | 7.9 | 50 | 1.09 | 370 | | 18 | 1645 | | 11 | 50 | 0.74 | 365 | | 18
19 | 1845 | | 11
1.9 | 50 | 0.39 | 114 | | JAN 2003 | 0730 | | 1.9 | 10 | 0.07 | 26 | | 06 | 0735 | 0.42 | | 10 | 0.06 | 40 | | 29 | 1130 | 0.46 | | 10 | 0.07 | 11 | | FEB | | | | | | | | 03 | 0805 | | 0.56 | 10 | E.03 | 12 | | MAR | | | | | | | | 14 | 1545 | | 7.7 | 50 | 2.33 | 791 | | 14 | 1800 | | 8.3 | 50 | 0.66 | 127 | | 18
APR | 1150 | | 1.2 | 10 | 0.09 | 38 | | 07 | 0800 | | 1.0 | 10 | 0.12 | 75 | | 11 | 1015 | | 1.6 | 10 | 0.05 | 18 | | 30 | 1600 | | 7.2 | 50 | 0.37 | 107 | | MAY | | | | | | | | 01 | 0100 | | 13 | 50 | 0.67 | 398 | | 01 | 0145 | | 20 | 50 | 0.94 | 595 | | 01 | 0400 | | 17 | 50 | 0.25 | 68 | | 01
01 | 0615
0730 | | 9.9
7.5 | 50
10 | 0.14
0.11 | 25
20 | | 04 | 2230 | | 15 | 50 | 0.60 | 397 | | 04 | 2345 | | 22 | 50 | 0.42 | 241 | | 05 | 0200 | | 20 | 50 | 0.22 | 57 | | 05 | 0415 | | 13 | 50 | 0.14 | 22 | | 05 | 0630 | | 8.9 | 50 | 0.11 | 13 | | 05 | 0740 | | 7.5 | 10 | 0.08 | 11 | | 07 | 1445 | | 10 | 50 | 0.27 | 121 | | 07
08 | 1700 | | 10
3.1 | 50
10 | 0.18 | 40
9 | | 09 | 0725
0115 | | 10 | 50 | 0.07
0.36 | 137 | | 09 | 0315 | | 29 | 50 | 0.80 | 552 | | 09 | 0400 | | 54 | 50 | 1.04 | 883 | | 09 | 0615 | | 37 | 50 | 0.27 | 109 | | 09 | 1045 | | 18 | 50 | 0.18 | 18 | | 09 | 1730 | | 8.7 | 50 | 0.10 | 9 | | 10 | 0625 | | 4.2 | 10 | 0.09 | 1 270 | | 11
11 | 0045
0100 | | 17
27 | 50
10 | 1.60
1.66 | 1,370
1,270 | | 11 | 0315 | | 15 | 50 | 0.24 | 90 | | 11 | 0640 | | 8.2 | 10 | 0.15 | 25 | | 11 | 1645 | | 9.1 | 50 | 0.182 | 38 | | 11 | 1830 | | 15 | 50 | 0.21 | 50 | | 11 | 2300 | | 12 | 50 | 0.15 | 16 | | 12 | 0330 | | 7.9 | 50
50 | 0.10 | 7 | | 14
14 | 1345
1600 | | 11
7.9 | 50
50 | 0.20
0.12 | 47
19 | | 15 | 1045 | | 3.3 | 10 | 0.12 | 19 | | 28 | 1430 | | 25 | 50 | 2.15 | 1,560 | | 28 | 1645 | | 18 | 50 | 0.37 | 181 | | 28 | 2115 | | 7.7 | 50 | 0.16 | 33 | | 29 | 0745 | | 2.4 | 10 | 0.08 | 7 | | 30 | 1945 | | 19 | 50 | 1.51 | 1,110 | | 30
30 | 2015
2230 | | 21
14 | 50
50 | 0.53
0.24 | 277
77 | | 50 | 4430 | | 14 | 50 | 0.24 | // | # 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI—Continued | | | Instan- | | Phos- | Sus-
pended
sedi- | |----------|--------------|-------------|----------|--------------|-------------------------| | | | taneous | Sam- | phorus, | ment | | | | dis- | pling | water, | concen- | | | | charge, | method, | unfltrd | tration | | Date | Time | cfs | code | mg/L | mg/L | | | | (00061) | (82398) | (00665) | (80154) | | JUN 2003 | | | | | | | 02 | 0740 | 1.4 | 10 | < 0.04 | 42 | | 08 | 0345 | 17 | 50 | 1.25 | 485 | | 08 | 0500 | 23 | 50 | 0.19 | 42 | | 08 | 0630 | 12 | 50 | 0.44 | 752 | | 08 | 0900 | 5.6 | 10 | | 22 | | 09
16 | 1015
0745 | 1.9
0.56 | 10
10 | 0.08 | 13
38 | | 18 | 2100 | 9.3 | 50 | 0.77 | 301 | | 18 | 2315 | 6.5 | 50 | 0.77 | 96 | | 23 | 0915 | 0.40 | 10 | | 50 | | 25 | 2015 | 16 | 50 | 1.09 | 595 | | 25 | 2230 | 13 | 50 | 0.31 | 59 | | 26 | 0915 | 1.0 | 10 | 0.14 | 7 | | JUL | | | | | | | 05 | 0545 | 25 | 50 | 1.24 | 752 | | 05
05 | 0600
0630 | 33
48 | 50
50 | 0.69
0.73 | 389
410 | | 05
05 | 0815 | 32 | 50
50 | 0.73 | 65 | | 05 | 1145 | 11 | 50 | 0.18 | 19 | | 06 | 1600 | 18 | 50 | 1.05 | 784 | | 06 | 1615 | 27 | 50 | 0.61 | 366 | | 06 | 1700 | 44 | 50 | 0.69 | 366 | | 06 | 1845 | 29 | 50 | 0.47 | 240 | | 06 | 2245 | 11 | 50 | 0.20 | 43 | | 07 | 0835 | 5.2 | 10 | 0.13 | 47 | | 08
08 | 1130
1345 | 10
15 | 50
50 | E.22
E.17 | 56
34 | | 08 | 1600 | 8.9 | 50 | E.17
E.14 | 17 | | 08 | 2000 | 19 | 50 | E.42 | 232 | | 08 | 2030 | 27 | 50 | E.30 | 138 | | 08 | 2100 | 39 | 50 | E.37 | 183 | | 09 | 0130 | 17 | 50 | E.17 | 22 | | 09 | 0600 | 9.1 | 50 | E.14 | 13 | | 15 | 0945 | 66 | 50 | 0.48 | 181 | | 15 | 1300 | 36 | 50 | 0.27 | 47 | | 15 | 1945 | 18 | 50 | 0.14 | 17 | | 16
21 | 0445
0730 | 8.7
5.4 | 50
10 | 0.12
0.11 | 16
19 | | 28 | 1035 | 0.85 | 10 | 0.11 | 188 | | AUG | 1033 | 0.03 | 10 | 0.04 | 100 | | 04 | 0930 | 1.0 | 10 | 0.11 | 14 | | 18 | 1000 | 0.45 | 10 | 0.06 | 94 | | 25 | 0800 | 0.40 | 10 | 0.14 | 59 | | 29 | 0145 | 7.4 | 50 | 0.55 | 174 | | SEP | 1005 | 0.21 | 10 | 0.10 | 60 | | 02
12 | 1005
1815 | 0.31
9.7 | 10
50 | 0.10
0.48 | 60
108 | | 12
14 | 1100 | 9.7
15 |
50
50 | 0.48 | 266 | | 14 | 1315 | 11 | 50 | 0.29 | 58 | | 15 | 0815 | 0.62 | 10 | 0.14 | 36 | | | | | | | | #### 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI LOCATION.--Lat 42°38'27", long 88°33'39", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ Sec.11, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, on left bank at bridge on Mound Road, 2.3 mi south of Elkhorn. DRAINAGE AREA.--16.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--February 1993 to current year. GAGE.--Water-stage recorder. Datum of gage is 920.00 ft above NGVD of 1929 (Wisconsin Department of Transportation benchmark). REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | |--|--|--|---|---|--|--|--|--|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.2
13
6.4
14
11 | 1.5
1.4
1.4
1.4
1.4 | e1.5
e1.4
e1.3
e1.2
e1.2 | e2.0
e1.8
e1.7
e1.5
e1.5 | e1.3
e1.1
e1.0
e0.95
e0.90 | e1.2
e1.1
e0.90
e0.84
e0.80 | 3.3
3.5
3.1
3.5
4.4 | 16
8.9
5.5
4.5
21 | 8.2
6.4
5.8
4.9
4.2 | 1.6
1.4
1.0
1.2
9.9 | 1.6
1.5
1.3
2.1
2.1 | 0.78
0.83
0.83
0.83
0.71 | | 6
7
8
9
10 | 4.5
3.2
2.6
2.3
2.2 | 1.6
1.5
1.4
1.4 | e1.1
e1.1
e1.0
e1.0 | e1.5
e1.5
e1.6
e1.8
e1.7 | e0.88
e0.86
e0.84
e0.82
e0.82 | e0.76
e0.74
e0.72
e0.72
e0.70 | 4.2
3.7
3.7
3.8
4.2 | 12
12
15
47
26 | 3.8
3.8
9.9
10
6.7 | 10
16
12
32
17 | 1.6
1.4
1.2
1.4
1.4 | 0.65
0.55
0.50
0.45
0.43 | | 11
12
13
14
15 | 2.2
2.1
1.7
1.5
1.6 | 1.4
1.4
1.4
1.4 | e1.1
e1.2
e1.3
e1.2
e1.1 | e1.4
e1.2
e1.1
e1.0
e0.90 | e0.80
e0.78
e0.76
e0.75
e0.73 | e0.80
e1.2
e2.0
4.9
4.8 | 4.6
4.7
4.0
3.4
3.1 | 27
26
14
14
16 | 5.9
4.7
4.2
3.8
3.3 | 12
8.7
6.3
4.7
103 | 1.1
1.1
1.1
1.1
1.1 | 0.36
0.34
0.69
1.6
2.8 | | 16
17
18
19
20 | 1.6
1.6
1.6
1.9 | 1.3
1.2
1.2
1.2
1.4 | e1.5
2.2
3.2
8.8
5.2 | e0.85
e0.80
e0.79
e0.78
e0.77 | e0.72
e0.70
e0.68
e0.74
e1.0 | 4.9
4.8
4.5
3.7
4.1 | 3.2
2.9
2.7
2.8
3.3 | 12
9.5
7.9
7.0
8.4 | 2.8
2.6
2.5
3.6
2.9 | 45
19
12
8.2
6.5 | 1.1
1.0
0.79
0.72
0.72 | 1.6
0.98
0.78
0.67
0.65 | | 21
22
23
24
25 | 1.4
1.4
1.4
1.7 | 1.4
1.5
1.6
1.6
1.5 | 3.6
3.3
2.7
e2.3
e2.1 | e0.76
e0.75
e0.74
e0.73
e0.72 | e1.5
e1.2
e1.0
e0.90
e0.80 | 4.4
4.0
3.5
3.4
3.4 | 3.4
3.0
2.6
2.6
2.4 | 6.5
5.4
4.7
4.5
4.1 | 2.5
2.0
1.9
1.8
1.7 | 8.5
6.2
4.6
3.9
3.2 | 0.83
0.77
0.72
0.71
0.66 | 0.61
0.65
0.82
0.80
0.68 | | 26
27
28
29
30
31 | 2.6
2.4
2.0
2.0
1.8
1.6 | 1.4
e1.3
e1.3
e1.4
1.6 | e1.9
e1.7
e1.6
e1.6
e1.7
2.4 | e0.70
e0.70
e0.72
e0.80
e0.95
e1.2 | e0.74
e0.70
e0.80
 | 3.4
3.4
3.8
4.5
4.0
3.4 | 2.2
1.6
1.6
1.6
3.8 | 3.5
3.4
6.5
10
6.2
14 | 4.9
2.5
2.1
2.1
1.7 | 2.8
2.5
2.1
2.0
1.9 | 0.65
0.70
0.65
0.70
0.83
0.83 | 0.64
0.84
0.93
0.78
0.68 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 99.6
3.21
14
1.4
0.19
0.22 | 42.3
1.41
1.6
1.2
0.08
0.09 | 63.6
2.05
8.8
1.0
0.12
0.14 | 34.96
1.13
2.0
0.70
0.07
0.08 | 24.77
0.88
1.5
0.68
0.05
0.05 | 85.38
2.75
4.9
0.70
0.16
0.19 | 96.9
3.23
4.7
1.6
0.19
0.21 | 378.5
12.2
47
3.4
0.73
0.84 | 123.2
4.11
10
1.7
0.24
0.27 | 367.1
11.8
103
1.0
0.70
0.81 | 33.48
1.08
2.1
0.65
0.06
0.07 | 24.46
0.82
2.8
0.34
0.05
0.05 | | STATIST | CICS OF MO | ONTHLY M | IEAN DATA | A FOR WAT | ER YEARS | 1993 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.41
22.4
(2002)
1.45
(1998) | 7.60
22.4
(1996)
1.41
(2003) | 5.02
10.5
(1996)
2.05
(2003) | 7.11
21.6
(1999)
1.13
(2003) | 17.8
53.5
(2001)
0.88
(2003) | 15.6
48.2
(1993)
2.75
(2003) | 23.0
77.4
(1993)
3.23
(2003) | 14.9
28.5
(2000)
4.18
(1994) | 26.2
66.2
(1996)
3.78
(1994) | 6.94
22.6
(1993)
1.23
(2002) | 4.64
23.8
(1995)
0.82
(1999) | 5.18
14.7
(2001)
0.82
(2003) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER Y | /EAR | WATER | YEARS 19 | 993 - 2003 | | ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
MAXIMU
MAXIMU
ANNUAI
10 PERC'
50 PERC' | Γ ANNUAI
Γ ANNUAL
Γ DAILY M
Γ DAILY M | MEAN MEAN MEAN DAY MINIM FLOW STAGE (CFSM) (INCHES) EEDS | 1UM | 16 | 8.13
9 Apr
0.49 Aug | | 10 | 0.34 Sep
0.47 Sep
01 Ju | 1 15
5 12
5 6
1 15
1 15 | | 0.28 S
0.35 S
190 A | 1996
2003
Apr 20, 1993
Sep 26, 1999
Sep 4, 1997
Apr 20, 1993
Apr 20, 1993 | ⁽e) Estimated due to ice effect or missing record #### 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1983 to September 1985, February 1993 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: October 1999 to current year. SUSPENDED-SEDIMENT DISCHARGE: February 1993 to current year. DISSOLVED AMMONIA NITROGEN DISCHARGE: February 1993 to September 1995. TOTAL AMMONIA PLUS ORGANIC NITROGEN DISCHARGE: February 1993 to September 1995. DISSOLVED NITRITE PLUS NITRATE DISCHARGE: February 1993 to September 1995. TOTAL PHOSPHORUS DISCHARGE: February 1993 to current year. DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: February 1993 to current year. INSTRUMENTATION.--Automatic pumping sampler since February 1993. Continuous water temperature recorder since October 1999. REMARKS.--Records good. Records represent water temperature at sensor within 0.5°C. COOPERATION .-- Observer furnished by Delavan Lake Sanitary District. #### EXTREMES OUTSIDE PERIOD OF DAILY RECORD -- TOTAL AMMONIA PLUS ORGANIC NITROGEN CONCENTRATIONS: Maximum observed, 2.1 mg/L, July 10, 1985; minimum observed, 0.30 mg/ L, Jan. 24, 1985 TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.55 mg/L, July 10, 1985; minimum observed, 0.03 mg/L, Apr. 2, 1985. DISSOLVED ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.20 mg/L, Nov. 20, 1984 and May 22, 1985; minimum observed, <0.01 mg/L, July 10, 23, 1985. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 35.0°C, July 24, 2001 and July 4, 2002; minimum, 0.0°C on many days. SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 1,420 mg/L, June 17, 1996; minimum observed, 2 mg/L, Sept. 16, 1993, July 25, 1995, July 18, 1996, and June 4, 2000. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 1,030 tons, June 17, 1996; minimum daily, 0.01 ton, Aug. 25-28 and Sept. 11, 1993, July 19, 22, 1995, and many days in 1994, 1996, 1997, 1998, and 1999 water years. DISSOLVED AMMONIA NITROGEN CONCENTRATIONS: Maximum observed, 1.70 mg/L, Mar. 5, 1993; minimum observed, 0.01 mg/L, Aug. 1, 29, and Sept. 25, 1994. DISSOLVED AMMONIA NITROGEN DISCHARGE: Maximum daily, 1,410 lb, Feb. 20, 1994; minimum daily, 0.07 lb, July 31, 1995. TOTAL AMMONIA PLUS ORGANIC NITROGEN CONCENTRATIONS: Maximum observed, 4.6 mg/L, Mar. 5, 1993; minimum observed, 0.40 mg/L, Oct. 6 and Dec. 15, 1993, and Jan. 14, Mar. 28-29, 1995. TOTAL AMMONIA PLUS ORGANIC NITROGEN DISCHARGE: Maximum daily, 4,900 lb, Apr. 20, 1993; minimum daily, 1.5 lb, June 19, 1994. DISSOLVED NITRITE PLUS NITRATE CONCENTRATIONS: Maximum observed, 13.0 mg/L, Apr. 30, 1995; minimum observed, <0.05 mg/L, Sept. 2, 1993, and many days in 1994 and 1995 water years. DISSOLVED NITRITE PLUS NITRATE DISCHARGE: Maximum daily, 5,310 lb, Apr. 20, 1993; minimum daily, 0.16 lb, July 19, 1995. TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 1.6 mg/L, June 17, 1996; minimum observed, <0.01 mg/L, Mar. 19, 1997. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 2,630 lb, Apr. 20, 1993; minimum daily, 0.11 lb, Jan. 26-28, 2003. DISSOLVED ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.63 mg/L, Feb. 19, 1997; minimum observed, 0.009 mg/L, June 2, 2001 DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: Maximum daily, 700 lb, Feb. 9, 2001; minimum daily, 0.02 lb, Sept. 11-12, 2003. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 31.0°C, Aug. 16; minimum, 0.0°C on many days. SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 175 mg/L, Oct. 5; minimum observed, 9 mg/L, July 9. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 16 tons, July 15;
minimum daily, 0.03 ton, Sept. 7-11. TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.40 mg/L, July 15; minimum observed, 0.03 mg/L, Jan. 29. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 171 lb, July 15; minimum daily, 0.11 lb, Jan. 26-28. DISSOLVED ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.180 mg/L, July 15; minimum observed, 0.01 mg/L, several days. DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: Maximum daily, 64.1 lb, July 15; minimum daily, 0.02 lb, Sept. 11-12. ### 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI—Continued | Date | Time | Discharge,
cfs
(00060) | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, unfltrd mg/L (00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |-----------|--------------------|------------------------------|--------------------------------------|-------------------------------|--|---|--| | OCT | 0545 | | 16 | 50 | 0.02 | 0.28 | 76 | | 02
02 | 0545
0805 | | 16
18 | 50
10 | 0.02 | 0.28 | 76
62 | | 02 | 0845 | | 18 | 50 | 0.03 | 0.23 | 62 | | 02 | 1445 | | 15 | 50 | 0.04 | 0.23 | 61 | | 02
03 | 2045
0800 | | 11
7.0 | 50
10 | 0.05
<0.02 | 0.20
0.26 | 59
87 | | 04 | 1315 | | 16 | 50 | 0.02 | 0.22 | 51 | | 04 | 1615 | | 26 | 50 | 0.07 | 0.27 | 61 | | 04
05 | 1915
0115 | | 28
20 | 50
50 | 0.07
0.05 | 0.27
0.28 | 62
77 | | 05 | 0720 | | 13 | 10 | | | 175 | | 05 | 1015 | | 10 | 50 | 0.03 | 0.29 | 80 | | 07
NOV | 0810 | | 3.4 | 10 | < 0.02 | 0.19 | 72 | | 04 | 0750 | | 1.4 | 10 | < 0.02 | 0.10 | 91 | | DEC
02 | 0745 | 1.4 | | 10 | < 0.02 | E.04 | 43 | | 13
JAN | 1245 | 1.3 | | 10 | E.01 | 0.05 | 56 | | 29 | 1430 | 0.80 | | 70 | 0.02 | E.03 | 24 | | MAR
18 | 1115 | | 4.5 | 70 | 0.04 | 0.23 | 37 | | APR
07 | 0815 | | 3.6 | 10 | < 0.02 | 0.10 | 55 | | 11 | 0945 | | 4.5 | 70 | < 0.02 | 0.10 | 66 | | MAY
01 | 0315 | | 13 | 50 | < 0.02 | 0.17 | 50 | | 01 | 0615 | | 22 | 50 | < 0.02 | 0.17 | 51 | | 01 | 1215 | | 20 | 50 | < 0.02 | 0.16 | 39 | | 01
02 | 1815
0740 | | 16
9.4 | 50
10 | <0.02
<0.02 | 0.15
0.14 | 28
29 | | 05 | 0245 | | 19 | 50 | < 0.02 | 0.17 | 143 | | 05 | 0800 | | 26 | 10 | < 0.02 | 0.10 | 27 | | 05
05 | 0845
1445 | | 27
22 | 50
50 | <0.02
<0.02 | 0.13
0.10 | 24
30 | | 05 | 2045 | | 18 | 50 | < 0.02 | 0.14 | 28 | | 06
07 | 0740
1815 | | 13
16 | 10
50 | <0.02
<0.02 | 0.13
0.07 | 56
19 | | 07 | 0015 | | 19 | 50 | < 0.02 | 0.07 | 31 | | 08 | 0745 | | 16 | 10 | < 0.02 | 0.08 | 38 | | 09
09 | 0030
0330 | | 13
22 | 50
50 | <0.02
<0.02 | $0.07 \\ 0.10$ | 21
36 | | 09 | 0755 | | 58 | 10 | 0.05 | 0.15 | 128 | | 09 | 1215 | | 67 | 50 | 0.04 | 0.19 | 38 | | 09
10 | 1815
0640 | | 51
30 | 50
10 | $0.07 \\ 0.06$ | 0.20
0.13 | 66
27 | | 11 | 0015 | | 18 | 50 | 0.02 | 0.12 | 25 | | 11 | 0655 | | 31 | 10
50 | 0.03 | 0.15 | 78
55 | | 11
12 | 1515
0015 | | 24
34 | 50 | <0.02
E.01 | 0.16
0.15 | 53
54 | | 12 | 0840 | | 29 | 10 | < 0.02 | 0.09 | 33 | | 14
14 | 0215
1445 | | 11
16 | 50
50 | <0.02
<0.02 | 0.06
0.11 | 11
58 | | 14 | 2045 | | 18 | 50 | <0.02 | 0.11 | 31 | | 15 | 0940 | | 16 | 10 | E.02 | 0.07 | 67 | | 16
28 | 0850
2200 | | 12
15 | 10
50 | <0.02
<0.02 | 0.06
0.13 | 81
60 | | 29 | 0400 | | 16 | 50 | < 0.02 | 0.15 | 30 | | 29 | 0805 | | 12 | 10 | < 0.02 | 0.16 | 61 | | 31
31 | 0045
0645 | | 13
18 | 50
50 | <0.02
<0.02 | 0.11
0.15 | 29
46 | | 31 | 1245 | | 15 | 50 | < 0.02 | 0.13 | 32 | | JUN
02 | 0800 | | 6.6 | 10 | < 0.02 | E.04 | 22 | | 02 | 0800 | | 10 | 10 | <0.02 | 0.09 | 33 | | 08 | 1445 | | 13 | 50 | < 0.02 | 0.14 | 64 | | 08
09 | 2045
0245 | | 14
13 | 50
50 | <0.02
<0.02 | 0.18
0.16 | 77
48 | | 09 | 1030 | | 10 | 10 | E.01 | 0.16 | 61 | | 16 | 0750 | | 2.9 | 10 | 0.03 | 0.20 | 28 | | 23
26 | 0935
0940 | | 2.0
6.6 | 10
10 | 0.11
<0.02 | 0.34
0.30 | 45
32 | | 20 | 07- 1 0 | | 0.0 | 10 | NO.02 | 5.50 | 32 | # 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, unfltrd mg/L (00665) | Suspended sediment concentration mg/L (80154) | |----------|------|--------------------------------------|---|--|---|---| | JUL | | | | | | | | 05 | 1245 | 17 | 50 | 0.05 | 0.26 | 46 | | 05 | 1545 | 18 | 50 | 0.07 | 0.24 | 29 | | 05 | 2145 | 13 | 50 | 0.06 | 0.26 | 32 | | 06 | 2100 | 18 | 50 | 0.05 | 0.28 | 84 | | 07 | 0300 | 22 | 50 | 0.07 | 0.22 | 26 | | 07 | 0900 | 16 | 50 | E.10 | E.24 | 24 | | 07 | 0901 | 16 | 10 | 0.10 | 0.22 | 26 | | 07 | 1800 | 12 | 50 | E.06 | E.25 | 43 | | 08 | 1630 | 14 | 50 | E.03 | E.21 | 49 | | 08 | 2230 | 22 | 50 | E.04 | E.19 | 46 | | 09 | 0430 | 37 | 50 | E.04 | E.14 | 9 | | 09 | 0820 | 38 | 10 | E.09 | E.17 | 48 | | 09 | 1330 | 33 | 50 | 0.07 | 0.23 | 32 | | 09 | 2230 | 22 | 50 | 0.06 | 0.23 | 43 | | 10 | 0820 | 18 | 10 | 0.06 | 0.19 | 46 | | 11 | 0755 | 13 | 10 | 0.04 | 0.12 | 66 | | 14 | 0815 | 5.5 | 10 | < 0.02 | 0.12 | 49 | | 15 | 1035 | 199 | 10 | 0.11 | 0.10 | 124 | | 15 | 1700 | 136 | 50 | 0.11 | 0.40 | 20 | | 15 | 2300 | 89 | 50 | 0.12 | 0.28 | 22 | | 16 | 0800 | 50 | 50 | 0.16 | 0.32 | 11 | | 16 | 1100 | 43 | 50 | 0.13 | 0.20 | 18 | | 17 | 0500 | 22 | 50 | | 0.24 | 36 | | 17
17 | 2000 | 16 | 50 | | 0.10 | 42 | | 18 | 1100 | 13 | 50 | | 0.12 | 18 | | 21 | 0745 | 10 | 10 | < 0.02 | 0.09 | 83 | | 28 | 1050 | 2.2 | 10 | 0.02 | | 64 | | AUG | 1030 | 2.2 | 10 | 0.06 | 0.17 | 04 | | | 0050 | 2.2 | 10 | -0.02 | 0.16 | 1.5 | | 04 | 0950 | 2.2 | 10 | < 0.02 | 0.16 | 15 | | 11
18 | 0755 | 1.1
0.83 | 10
10 | <0.18 | 0.25
0.33 | 35
19 | | | 1020 | | | E.17 | | | | 25 | 0820 | 0.65 | 10 | < 0.18 | 0.35 | 55 | | SEP | 1015 | 0.82 | 10 | ر
د0 10 | 0.22 | 42 | | 02 | 1015 | 0.83 | 10 | < 0.18 | 0.32 | 42 | | 08 | 1010 | 0.51 | 10 | 0.02 | 0.23 | 19 | | 15 | 0830 | 2.9 | 10 | E.01 | 0.26 | 66 | | 22 | 0810 | 0.65 | 10 | E.01 | 0.19 | 37 | | 29 | 0955 | 0.83 | 10 | < 0.02 | 0.12 | 29 | # 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI—Continued TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | ER, DEGREI
MAX | MIN | US, WATER
MEAN | MAX | JBER 200
MIN | MEAN | MAX | MIN | MEAN | |----------------------------------|---|--|--|---|--|---|--|--|--|--|--|--| | | | OCTOBER | | | OVEMBE | | | ECEMBE | | | JANUARY | | | 1
2
3
4
5 | 23.5
20.0
16.5
19.5
20.0 | 17.5
16.0
14.5
15.0
12.5 | 20.5
19.0
15.5
17.0
16.0 | 4.5
5.0
5.0
6.0
5.5 | 0.0
e0.0
3.0
2.0
3.0 | 2.0
2.5
4.0
4.0
4.0 | 2.0
1.0
1.0
1.0
1.0 | 1.0
0.5
0.5
0.5
0.5 | 1.5
0.5
0.5
0.5
0.5 | 2.5
2.0
2.5
2.0
1.5 | 1.5
1.5
1.0
1.0 | 2.0
1.5
1.5
1.5
1.5 | | 6
7
8
9
10 | 18.5
16.5
17.0
19.5
17.0 | 11.5
8.0
10.0
12.0
13.0 | 14.5
12.0
13.5
15.0
15.0 | 5.5
8.5
10.5
13.0
13.0 | 3.0
3.5
5.0
7.5
10.5 | 4.0
5.5
7.5
10.0
12.0 | 1.0
1.0
1.0
0.5
0.5 | 0.5
0.5
0.5
0.5
0.0 | 0.5
0.5
0.5
0.5
0.5 | 2.0
1.5
2.5
3.0
3.5 | 1.5
1.0
1.0
1.5
1.5 | 1.5
1.5
1.5
2.0
2.5 | | 11
12
13
14
15 | 20.0
17.0
14.0
12.5
13.0 | 12.5
14.0
8.0
5.5
6.5 | 16.0
15.5
10.5
9.0
9.5 | 10.5
7.0
8.5
7.5
5.0 | 6.0
4.0
2.5
5.0
2.0 | 7.5
5.5
5.5
6.0
3.0 | 0.5
0.5
1.0
2.0
1.5 | 0.0
0.0
0.0
0.5
0.5 | 0.5
0.5
0.5
1.0 | 4.0
4.0
3.0
2.0
2.0 | 1.5
1.5
1.5
1.0
1.0 | 2.0
2.0
2.0
1.5
1.5 | | 16
17
18
19
20 | 11.0
9.0
9.5
9.0
11.0 | 5.5
6.0
4.5
5.5
5.0 | 8.0
7.0
6.5
7.5
7.5 | 4.0
4.5
4.0
5.5
6.0 | 1.0
1.5
2.5
2.5
3.0 | 2.5
3.0
3.5
4.0
4.5 | 2.5
1.5
3.0
4.0
2.0 | 1.0
0.5
0.0
2.0
0.0 | 1.0
1.0
1.0
3.0
0.5 | 2.0
2.0
1.5
1.0 | 1.0
1.0
1.0
1.0
1.0 | 1.5
1.5
1.0
1.0 | | 21
22
23
24
25 | 9.5
9.0
7.0
6.5
8.0 | 6.5
5.5
3.0
4.5
5.5 | 8.5
7.0
5.5
5.5
7.0 | 6.0
3.0
4.5
2.5
3.5 | 1.5
0.0
1.5
1.0
1.0 | 3.5
1.5
3.0
1.5
2.0 | 3.0
2.5
3.5
2.5
2.0 | 0.0
1.0
1.0
1.5
1.0 | 1.0
1.5
2.0
2.0
1.5 | 1.5
1.0
1.0
0.5
0.5 | 1.0
1.0
0.5
0.5
0.5 | 1.0
1.0
0.5
0.5 | | 26
27
28
29
30
31 | 9.5
8.5
7.5
7.5
10.0
7.5 | 7.0
4.5
4.0
5.0
3.5
3.5 |
8.0
7.0
6.0
6.0
6.5
5.5 | 3.0
3.5
3.5
3.0
2.0 | 1.5
1.0
1.0
1.0
1.0 | 2.0
2.0
2.0
2.0
1.5 | 2.5
3.0
2.5
3.0
1.5
4.0 | 0.5
1.5
1.5
1.5
1.0
1.5 | 1.5
2.0
1.5
2.0
1.5
2.5 | 0.5
0.5
0.5
0.5
0.5
e1.0 | 0.5
0.5
0.5
0.5
0.5
e0.5 | 0.5
0.5
0.5
0.5
0.5
e0.5 | | MONTH | 23.5 | 3.0 | 10.6 | 13.0 | 0.0 | 4.0 | 4.0 | 0.0 | 1.1 | 4.0 | 0.5 | 1.2 | | 1 | | FEBRUARY | | | MARCH | 0.5 | 10.0 | APRIL | 11.0 | 12.5 | MAY | 12.0 | | 1
2
3
4
5 | 1.0
1.0
1.0
1.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
1.0
1.0
1.0
0.5 | 0.5
1.0
0.5
0.5
0.5 | 0.5
0.5
0.0
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 18.0
17.0
9.0
4.0
4.5 | 6.5
6.5
4.0
1.0
0.0 | 11.0
11.0
5.5
2.5
2.0 | 13.5
18.5
21.0
16.5
13.5 | 11.0
9.0
9.0
10.0
11.0 | 12.0
13.0
14.5
12.5
12.0 | | 6
7
8
9
10 | 1.0
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.0 | 0.5
0.5
0.5
0.5
0.5 | 7.5
3.5
3.0
11.0
16.5 | 1.5
0.0
0.0
1.5
5.5 | 4.0
1.0
1.5
6.0
10.0 | 21.5
16.5
15.0
18.5
20.0 | 11.5
12.5
11.5
12.5
14.5 | 16.0
13.0
13.0
15.0
16.5 | | 11
12
13
14
15 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
1.0
1.0 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
1.0 | 18.5
18.0
18.0
20.0
22.0 | 6.5
7.0
6.5
9.0
12.5 | 12.0
12.0
12.0
14.5
17.0 | 16.5
18.0
22.5
17.0
18.0 | 11.0
10.0
12.5
13.0
12.0 | 13.0
13.5
17.0
14.5
14.0 | | 16
17
18
19
20 | 0.5
0.5
1.0
1.0 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
1.0 | 1.0
1.5
6.5
5.0
8.5 | 1.0
1.0
1.0
1.5
3.5 | 1.0
1.0
3.5
3.0
5.5 | 18.5
7.0
9.5
14.5
17.5 | 7.0
4.0
5.0
6.0
13.0 | 12.5
5.5
7.0
9.5
15.0 | 20.0
23.0
23.5
20.5
23.5 | 12.5
14.0
15.0
17.0
16.5 | 16.0
18.0
19.0
19.0
19.5 | | 21
22
23
24
25 | 1.0
1.0
1.0
0.5
0.5 | 0.5
1.0
0.5
0.5
0.5 | 1.0
1.0
1.0
0.5
0.5 | 8.0
7.5
15.0
16.0
15.5 | 4.5
3.5
5.0
7.5
9.0 | 6.0
5.5
9.5
11.5
12.0 | 13.0
16.0
18.5
15.0
18.0 | 7.5
4.0
8.0
8.0
7.0 | 10.5
10.0
13.0
11.0
12.0 | 23.0
24.5
24.0
22.5
23.5 | 14.0
12.5
15.5
15.5
16.0 | 18.0
18.0
19.0
19.0
19.5 | | 26
27
28
29
30
31 | 0.5
0.5
0.5
 | 0.5
0.5
0.5
 | 0.5
0.5
0.5
 | 16.0
11.0
9.5
5.5
9.0
12.0 | 6.5
6.5
5.0
2.0
2.0
3.5 | 11.0
9.0
8.0
4.0
5.0
7.5 | 18.0
19.5
19.0
18.5
16.5 | 6.5
11.5
15.0
12.5
11.5 | 12.0
16.0
17.0
15.5
13.0 | 22.5
24.5
24.0
24.0
22.0
19.5 | 17.0
17.5
17.5
15.5
16.0
15.5 | 20.0
21.0
20.0
19.0
18.5
17.5 | | MONTH | 1.0 | 0.0 | 0.6 | 16.0 | 0.0 | 3.6 | 22.0 | 0.0 | 10.1 | 24.5 | 9.0 | 16.5 | ## 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI-Continued ### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|-----------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | S | ЕРТЕМВІ | ER | | 1 | 24.5 | 12.5 | 18.0 | 29.0 | 23.5 | 26.0 | 29.0 | 24.5 | 27.0 | 20.5 | 18.5 | 19.5 | | 2 | 22.5 | 15.5 | 19.0 | 29.0 | 24.0 | 26.5 | 29.0 | 24.5 | 27.5 | 23.5 | 17.5 | 20.5 | | 3 | 21.0 | 16.5 | 18.5 | 29.0 | 25.0 | 27.5 | 28.0 | 25.0 | 26.5 | 24.0 | 20.5 | 22.0 | | 4 | 23.0 | 17.0 | 19.5 | 30.5 | 25.5 | 28.0 | 27.0 | 22.5 | 24.5 | 23.0 | 19.0 | 21.0 | | 5 | 25.5 | 18.0 | 21.0 | 29.5 | 24.0 | 27.0 | 30.0 | 23.0 | 26.0 | 22.5 | 18.0 | 20.5 | | 6 | 23.5 | 18.0 | 19.5 | 27.5 | 24.0 | 25.5 | 30.5 | 26.0 | 28.5 | 24.0 | 20.0 | 21.5 | | 7 | 25.5 | 17.0 | 20.5 | 26.5 | 22.5 | 24.5 | 29.5 | 25.0 | 27.5 | 26.0 | 21.5 | 23.5 | | 8 | 24.0 | 19.0 | 20.5 | 25.5 | 21.5 | 23.0 | 28.5 | 25.0 | 26.5 | 26.0 | 23.0 | 24.5 | | 9 | 25.0 | 16.5 | 20.5 | 21.5 | 20.0 | 21.0 | 27.0 | 23.0 | 25.0 | 27.5 | 24.0 | 25.5 | | 10 | 22.5 | 18.5 | 20.5 | 22.5 | 19.5 | 21.0 | 28.5 | 22.5 | 25.5 | 27.5 | 23.5 | 25.0 | | 11 | 21.0 | 19.0 | 19.5 | 23.5 | 19.0 | 21.0 | 28.0 | 23.5 | 25.0 | 27.0 | 23.5 | 25.0 | | 12 | 23.5 | 17.0 | 19.5 | 26.5 | 19.5 | 22.5 | 25.5 | 21.5 | 23.0 | 23.5 | 20.0 | 21.5 | | 13 | 27.0 | 19.5 | 22.5 | 28.5 | 20.5 | 24.0 | 28.5 | 22.5 | 25.5 | 23.0 | 20.0 | 21.0 | | 14 | 27.0 | 21.0 | 24.0 | 28.5 | 22.0 | 25.0 | 29.5 | 24.5 | 27.0 | 22.0 | 18.5 | 20.5 | | 15 | 28.5 | 20.5 | 24.0 | 26.5 | 21.5 | 23.0 | 30.0 | 26.0 | 28.0 | 21.5 | 15.5 | 18.5 | | 16 | 28.0 | 21.5 | 24.5 | 24.0 | 20.0 | 22.0 | 31.0 | 27.0 | 29.0 | 23.5 | 15.5 | 19.5 | | 17 | 29.0 | 20.0 | 24.0 | 25.0 | 20.0 | 22.5 | 30.5 | 26.0 | 28.5 | 23.5 | 18.0 | 20.5 | | 18 | 28.0 | 22.0 | 25.0 | 25.5 | 19.5 | 22.5 | 28.5 | 24.5 | 26.5 | 25.5 | 17.5 | 21.0 | | 19 | 26.0 | 18.5 | 22.0 | 28.0 | 19.0 | 23.0 | 28.0 | 24.5 | 26.5 | 21.0 | 16.5 | 18.5 | | 20 | 28.0 | 16.5 | 21.5 | 27.5 | 21.5 | 24.0 | 29.0 | 25.0 | 27.0 | 20.5 | 12.5 | 16.5 | | 21 | 29.0 | 19.5 | 24.0 | 27.0 | 22.5 | 24.5 | 30.0 | 26.0 | 28.0 | 20.5 | 14.5 | 17.5 | | 22 | 28.5 | 21.0 | 25.0 | 25.0 | 21.5 | 23.5 | 29.0 | 25.5 | 27.5 | 19.5 | 16.5 | 18.0 | | 23 | 28.0 | 22.5 | 25.5 | 26.0 | 19.5 | 22.5 | 28.5 | 24.0 | 26.5 | 19.0 | 12.5 | 16.0 | | 24 | 29.5 | 23.0 | 26.0 | 28.0 | 19.5 | 23.5 | 27.5 | 24.0 | 26.0 | 20.5 | 15.0 | 17.0 | | 25 | 29.5 | 24.5 | 27.0 | 27.5 | 22.0 | 25.0 | 28.0 | 25.0 | 26.0 | 17.0 | 11.5 | 14.5 | | 26
27
28
29
30
31 | 26.0
26.0
25.0
27.5
27.5 | 22.5
18.5
20.5
22.0
22.5 | 24.0
22.0
23.0
24.5
25.0 | 26.5
28.5
27.5
29.0
28.5
29.5 | 22.5
24.5
23.0
22.0
24.0
24.0 | 24.5
26.0
25.0
25.5
26.5
26.5 | 29.0
29.5
27.0
27.5
26.5
24.5 | 25.0
26.0
22.5
23.5
22.5
20.5 | 27.0
27.5
24.5
25.5
24.5
22.0 | 14.5
13.0
13.0
14.0
12.5 | 12.5
9.5
10.0
9.0
9.0 | 13.5
11.5
11.5
11.5
11.0 | | MONTH | 29.5 | 12.5 | 22.3 | 30.5 | 19.0 | 24.3 | 31.0 | 20.5 | 26.3 | 27.5 | 9.0 | 18.9 | # SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------| | 1 | 0.37 | 0.36 | e0.18 | e0.22 | e0.09 | e0.11 | 0.45 | 1.9 | 0.60 | 0.11 | 0.12 | 0.09 | | 2 | 2.4 | 0.34 | e0.16 | e0.19 | e0.08 | e0.10 | 0.47 | 0.68 | 0.39 | 0.09 | 0.09 | 0.09 | | 3 | 1.3 | 0.35 | e0.15 | e0.18 | e0.07 | e0.08 | 0.44 | 0.38 | 0.34 | 0.06 | 0.06 | 0.08 | | 4 | 2.4 | 0.34 | e0.15 | e0.16 | e0.07 | e0.08 | 0.49 | 0.30 | 0.29 | 0.07 | 0.09 | 0.07 | | 5 | 3.1 | 0.34 | e0.15 | e0.15 | e0.07 | e0.07 | 0.64 | 2.5 | 0.24 | 0.91 | 0.10 | 0.05 | | 6 | 0.94 | 0.37 | e0.14 | e0.15 | e0.06 | e0.07 | 0.61 | 1.4 | 0.22 | 1.2 | 0.08 | 0.04 | | 7 | 0.62 | 0.33 | e0.15 | e0.15 | e0.06 | e0.07 | 0.55 | 0.70 | 0.22 | 1.4 | 0.08 | 0.03 | | 8 | 0.50 | 0.31 | e0.15 | e0.16 | e0.06 | e0.07 | 0.59 | 1.2 | 1.5 | 1.4 | 0.08 | 0.03 | | 9 | 0.46 | 0.30 | e0.14 | e0.17 | e0.06 | e0.07 | 0.64 | 8.0 | 1.5 | 3.7 | 0.11 | 0.03 | | 10 | 0.44 | 0.29 | e0.14 | e0.16 | e0.06 | e0.07 | 0.74 | 2.1 | 0.93 | 2.3 | 0.12 | 0.03 | | 11 | 0.44 | 0.29 | e0.16 | e0.13 | e0.06 | e0.08 | 0.85 | 4.1 | 0.69 | 2.0 | 0.10 | 0.03 | | 12 | 0.42 | 0.28 | e0.18 | e0.11 | e0.06 | e0.12 | 0.85 | 2.5 | 0.47 | 1.4 | 0.10 | 0.04 | | 13 | 0.34 | 0.27 | e0.20 | e0.10 | e0.06 | e0.20 | 0.71 | 0.65 | 0.38 | 0.91 | 0.09 | 0.09 | | 14 | 0.31 | 0.26 | e0.18 | e0.09 | e0.06 | 0.50 | 0.59 | 1.1 | 0.33 | 0.61 | 0.08 | e0.32 | | 15 | 0.33 | 0.26 | e0.16 | e0.08 | e0.06 | 0.49 | 0.52 | 2.7 | 0.26 | 16 | 0.08 | e0.57 | | 16 | 0.33 | 0.23 | e0.21 | e0.07 | e0.06 | 0.50 | 0.53 | 2.5 | 0.22 | 2.3 | 0.07 | e0.32 | | 17 | 0.33 | 0.22 | 0.31 | e0.07 | e0.06 | 0.50 | 0.46 | 1.9 | 0.21 | 2.0 | 0.06 | 0.15 | | 18 | 0.35 | 0.20 | e0.65 | e0.06 | e0.06 | 0.47 | 0.42 | 1.5 | 0.22 | 0.79 | 0.04 | 0.11 | | 19 | 0.41 | 0.20 | e1.8 | e0.06 | e0.06 | 0.40 | 0.43 | 1.2 | 0.33 | 0.71 | 0.04 | 0.08 | | 20 | 0.36 | 0.22 | e1.0 | e0.06 | e0.08 | 0.45 | 0.48 | 1.3 | 0.29 | 0.95 | 0.05 | 0.08 | | 21 | 0.31 | 0.22 | 0.48 | e0.06 | e0.12 | 0.49 | 0.48 | 0.96 | 0.26 | 1.9 | 0.07 | 0.07 | | 22 | 0.31 | 0.22 | 0.42 | e0.06 | e0.10 | 0.45 | 0.42 | 0.73 | 0.23 | 1.3 | 0.07 | 0.06 | | 23 | 0.31 | 0.24 | 0.35 | e0.06 | e0.09 | 0.40 | 0.35 | 0.59 | 0.23 | 0.95 | 0.08 | 0.08 | | 24 | 0.32 | 0.23 | e0.29 | e0.05 | e0.08 | 0.39 | 0.34 | 0.52 | 0.19 | 0.78 | 0.09 | 0.07 | | 25 | e0.35 | 0.21 | e0.26 | e0.05 | e0.07 | 0.40 | 0.31 | 0.44 | 0.17 | 0.61 | 0.10 | 0.06 | | 26 | e0.53 | 0.20 | e0.23 | e0.05 | e0.06 | 0.41 | 0.28 | 0.35 | e0.58 | 0.52 | 0.09 | 0.06 | | 27 | e0.49 | e0.17 | e0.20 | e0.05 | e0.06 | 0.42 | 0.19 | 0.31 | e0.30 | 0.45 | 0.10 | 0.07 | | 28 | 0.46 | e0.17 | e0.19 | e0.05 | e0.07 | 0.48 | 0.19 | 0.79 | 0.16 | 0.36 | 0.09 | 0.08 | | 29 |
0.46 | e0.17 | e0.18 | e0.05 | | 0.57 | 0.18 | 1.3 | 0.16 | 0.28 | 0.09 | 0.06 | | 30 | 0.42 | 0.19 | e0.19 | e0.06 | | 0.52 | 0.48 | 0.47 | 0.12 | 0.22 | 0.10 | 0.05 | | 31 | 0.38 | | 0.27 | e0.08 | | 0.45 | | 1.4 | | 0.18 | 0.10 | | | TOTAL | 20.49 | 7.78 | 9.42 | 3.14 | 1.95 | 9.48 | 14.68 | 46.47 | 12.03 | 46.46 | 2.62 | 2.99 | WATER YEAR 2003 TOTAL 177.51 ## 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI-Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|---|--|---|--|--------------------------------------|--|---|--|--|--| | 1
2
3
4
5 | 3.37
16.3
7.75
18.3
16.4 | 0.87
0.80
0.79
0.75
0.74 | e0.33
e0.30
e0.29
e0.27
e0.28 | e0.43
e0.39
e0.36
e0.32
e0.31 | e0.22
e0.19
e0.18
e0.17
e0.17 | e0.45
e0.43
e0.36
e0.34 | 2.28
2.26
1.97
2.11
2.58 | 13.9
6.55
3.54
2.50
13.7 | 2.97
1.42
1.18
0.95
0.76 | e1.70
1.67
1.18
1.25
12.6 | 1.44
1.28
1.15
1.84
1.93 | 1.36
1.43
1.36
1.28
1.03 | | 6
7
8
9
10 | 5.49
3.29
2.55
2.27
2.10 | 0.80
0.71
0.66
0.64
0.62 | e0.26
e0.26
e0.27
e0.25
e0.25 | e0.31
e0.30
e0.32
e0.35
e0.33 | e0.17
e0.17
e0.17
e0.17
e0.18 | e0.33
e0.33
e0.33
e0.34 | 2.32
1.99
2.00
2.02
2.18 | 7.32
4.18
5.65
42.0
18.7 | 0.64
0.62
6.70
8.23
5.66 | 12.7
19.6
13.0
31.3
16.4 | 1.54
1.44
1.40
1.70
1.82 | 0.89
0.72
0.62
0.53
0.49 | | 11
12
13
14
15 | 2.05
1.89
1.50
1.30
1.35 | 0.60
0.58
0.56
0.54
0.53 | e0.28
e0.32
e0.35
e0.32
e0.29 | e0.27
e0.23
e0.21
e0.18
e0.17 | e0.18
e0.18
e0.18
e0.18
e0.19 | e0.40
e0.62
e2.50
e6.10
e6.00 | 2.38
2.41
2.07
1.78
1.61 | 21.4
13.7
5.16
5.69
6.10 | 5.17
4.31
3.99
3.79
3.41 | 7.72
5.25
3.59
2.54
171 | 1.47
1.57
1.61
1.67
1.82 | 0.39
0.36
0.78
e2.10
e3.70 | | 16
17
18
19
20 | 1.32
1.27
1.30
1.48
1.27 | 0.48
0.44
0.41
0.41
0.44 | e0.39
0.57
e4.20
e11.6
e6.80 | e0.16
e0.14
e0.14
e0.13
e0.13 | e0.19
e0.19
e0.19
e0.21
e0.29 | e6.10
e6.00
5.25
4.27
4.51 | 1.67
1.50
1.39
1.46
1.71 | 3.87
3.03
2.47
2.16
e5.90 | 3.09
3.01
3.15
4.90
4.30 | 58.5
14.6
5.82
3.07
1.92 | 1.81
1.78
1.41
1.30
1.31 | e2.10
1.12
0.82
0.69
0.67 | | 21
22
23
24
25 | 1.06
1.03
1.00
0.97
e2.20 | 0.43
0.44
0.46
0.44
0.40 | 0.89
0.79
0.66
e0.55
e0.49 | e0.13
e0.13
e0.12
e0.12
e0.12 | e0.45
e0.37
e0.32
e0.29
e0.27 | 4.67
4.07
3.40
3.15
3.03 | 1.74
1.54
1.33
1.33
1.26 | e4.60
1.55
1.34
1.25
1.11 | 3.93
3.41
3.45
3.11
2.91 | 3.59
2.36
1.94
1.92
1.84 | 1.52
1.42
1.34
1.34
1.24 | 0.62
0.66
0.78
0.72
0.57 | | 26
27
28
29
30
31 | e3.40
e3.20
1.26
1.22
1.07
0.94 | 0.38
e0.33
e0.32
e0.33
0.36 | e0.44
e0.39
e0.36
e0.35
e0.38
0.53 | e0.11
e0.11
e0.11
e0.13
e0.16
e0.19 | e0.26
e0.25
e0.29 | 2.91
2.86
3.05
3.47
2.99
2.42 | 1.14
0.82
0.82
0.82
2.51 | 0.94
0.89
2.95
8.04
3.65
8.87 | e5.10
e2.60
e2.20
e2.00
e1.80 | 1.91
1.99
1.92
1.80
1.72
1.72 | 1.22
1.29
1.19
1.26
1.49
1.47 | 0.50
0.61
0.64
0.51
0.44 | | TOTAL | 109.90 | 16.26 | 33.71 | 6.61 | 6.27 | 81.35 | 53.00 | 222.71 | 98.76 | 408.12 | 46.07 | 28.49 | WATER YEAR 2003 TOTAL 1,111.25 ## ORTHOPHOSPHATE, WATER, FILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1
2
3
4
5 | 0.33
2.45
0.81
3.96
2.23 | 0.16
0.15
0.16
0.15
0.15 | e0.16
e0.15
e0.13
e0.11
e0.10 | e0.14
e0.13
e0.13
e0.11
e0.11 | e0.14
e0.12
e0.11
e0.10
e0.10 | e0.13
e0.12
e0.10
e0.09
e0.09 | 0.44
0.44
0.39
0.42
0.51 | 1.78
0.96
0.60
0.48
2.27 | 0.88
0.69
0.63
0.53
0.45 | 0.17
0.15
0.11
0.13
2.94 | 0.28
0.21
0.16
0.24
0.32 | 0.76
0.76
0.55
0.38
0.23 | | 6
7
8
9 | 0.58
0.35
0.28
0.25
0.24 | 0.17
0.16
0.15
0.15
0.15 | e0.09
e0.09
e0.08
e0.07
e0.06 | e0.11
e0.11
e0.13
e0.15
e0.14 | e0.10
e0.09
e0.09
e0.09
e0.09 | e0.08
e0.08
e0.08
e0.08
e0.08 | 0.46
0.40
0.40
0.41
0.45 | 1.29
1.27
1.59
12.7
6.69 | 0.40
0.40
1.07
0.72
0.43 | 2.49
6.26
2.10
10.7
5.15 | 0.33
0.39
0.49
0.78
1.05 | 0.14
0.08
0.05
0.04
0.03 | | 11
12
13
14
15 | 0.24
0.22
0.18
0.16
0.17 | 0.15
0.15
0.15
0.15
0.15 | e0.07
e0.07
e0.07
e0.06
e0.06 | e0.11
e0.10
e0.10
e0.09
e0.08 | e0.09
e0.08
e0.08
e0.08
e0.08 | e0.09
e0.13
e0.22
e0.93
e0.92 | 0.50
0.50
0.43
0.37
0.33 | 3.07
2.41
1.52
1.50
1.72 | 0.44
0.41
0.43
0.46
0.46 | 2.49
1.45
0.84
0.52
64.1 | 1.04
1.07
1.05
1.04
1.07 | 0.02
0.02
0.04
0.09
0.15 | | 16
17
18
19
20 | 0.17
0.17
0.18
0.21
0.18 | 0.14
0.13
0.13
0.13
0.15 | e0.08
0.13
e0.61
e1.70
e0.99 | e0.07
e0.07
e0.07
e0.07
e0.07 | e0.08
e0.08
e0.07
e0.08
e0.11 | e0.94
e0.92
0.95
0.78
0.83 | 0.35
0.31
0.29
0.30
0.36 | 1.28
1.03
0.85
0.76
e0.89 | 0.47
0.51
0.60
1.04
1.01 | 34.3
7.80
3.29
1.57
0.87 | 1.02
0.96
0.73
0.67
0.67 | 0.09
0.05
0.04
0.04
0.03 | | 21
22
23
24
25 | 0.15
0.15
0.15
0.15
e0.32 | 0.15
0.16
0.17
0.17
0.16 | 0.22
0.20
0.17
e0.15
e0.13 | e0.07
e0.07
e0.07
e0.07
e0.07 | e0.16
e0.13
e0.11
e0.10
e0.09 | 0.86
0.75
0.63
0.59
0.57 | 0.36
0.32
0.28
0.28
0.26 | e0.69
0.57
0.50
0.48
0.43 | 1.03
1.00
1.02
0.57
0.32 | 0.92
0.68
0.59
0.61
0.60 | 0.78
0.73
0.69
0.69
0.64 | 0.03
0.04
0.05
0.05
0.05 | | 26
27
28
29
30
31 | e0.50
e0.46
0.22
0.21
0.19
0.17 | 0.16
e0.14
e0.14
e0.15
0.17 | e0.12
e0.11
e0.10
e0.11
e0.12
e0.17 | e0.07
e0.07
e0.08
e0.09
e0.10
e0.13 | e0.08
e0.08
e0.09 | 0.55
0.54
0.58
0.66
0.57
0.47 | 0.24
0.17
0.17
0.17
0.41 | 0.37
0.36
0.69
1.12
0.67
1.52 | 0.56
0.27
0.22
0.23
0.18 | 0.64
0.68
0.66
0.54
0.45
0.39 | 0.63
0.68
0.63
0.68
0.81
0.81 | 0.05
0.08
0.09
0.08
0.05 | | TOTAL | 16.03 | 4.55 | 6.48 | 2.98 | 2.70 | 14.41 | 10.72 | 52.06 | 17.43 | 154.19 | 21.34 | 4.16 | WATER YEAR 2003 TOTAL 307.05 e Estimated ## 05431016 JACKSON CREEK AT MOUND ROAD NEAR ELKHORN, WI--Continued ### PRECIPITATION QUANTITY PERIOD OF RECORD.--June 1999 to current year (non-frozen precipitation). GAGE.--Tipping bucket rain gage with electronic datalogger. REMARKS.--Rain gage covered Dec. 13, 2002 to Mar. 18, 2003. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.65 in., June 13, 1999. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.93 in., July 15. # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|-----|-----|------|------|------|------|------|------|------| | 1 | 0.58 | 0.00 | 0.00 | | | | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | | 2 | 0.51 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | | 3 | 0.00 | 0.00 | 0.00 | | | | 0.06 | 0.00 | 0.07 | 0.00 | 0.58 | 0.00 | | 4 | 0.85 | 0.00 | 0.00 | | | | 0.19 | 0.72 | 0.00 | 0.35 | 0.00 | 0.00 | | 5 | 0.00 | 0.10 | 0.00 | | | | 0.00 | 0.05 | 0.00 | 0.96 | 0.00 | 0.00 | | 6 | 0.01 | 0.00 | 0.00 | | | | 0.03 | 0.00 | 0.05 | 0.76 | 0.02 | 0.00 | | 7 | 0.01 | 0.00 | 0.00 | | | | 0.00 | 0.46 | 0.00 | 0.14 | 0.01 | 0.00 | | 8 | 0.00 | 0.00 | 0.00 | | | | 0.01 | 0.19 | 0.72 | 1.19 | 0.01 | 0.00 | | 9 | 0.01 | 0.00 | 0.00 | | | | 0.00 | 0.59 | 0.00 | 0.08 | 0.00 | 0.00 | | 10 | 0.00 | 0.00 | 0.00 | | | | 0.00 | 0.12 | 0.00 | 0.09 | 0.00 | 0.00 | | 11 | 0.00 |
0.05 | 0.00 | | | | 0.00 | 0.57 | 0.00 | 0.12 | 0.00 | 0.00 | | 12 | 0.01 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.64 | | 13 | 0.00 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | | 14 | 0.00 | 0.00 | | | | | 0.00 | 0.44 | 0.00 | 0.00 | 0.00 | 0.54 | | 15 | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 1.93 | 0.00 | 0.00 | | 16 | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | 17 | 0.18 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | 0.13 | 0.13 | | | | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | | 19 | 0.00 | 0.00 | | | | 0.14 | 0.23 | 0.14 | 0.00 | 0.00 | 0.00 | 0.02 | | 20 | 0.00 | 0.00 | | | | 0.03 | 0.07 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | | 21 | 0.00 | 0.02 | | | | 0.01 | 0.03 | 0.00 | 0.00 | 0.41 | 0.00 | 0.06 | | 22 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | | 23 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | | 24 | 0.07 | 0.00 | | | | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 25 | 0.37 | 0.02 | | | | 0.01 | 0.00 | 0.00 | 0.77 | 0.00 | 0.00 | 0.00 | | 26 | 0.01 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.25 | | 27 | 0.00 | 0.00 | | | | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | 0.00 | 0.00 | | | | 0.36 | 0.00 | 0.79 | 0.13 | 0.02 | 0.00 | 0.01 | | 29 | 0.00 | 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.05 | 0.01 | | 30 | 0.00 | 0.00 | | | | 0.00 | 0.80 | 0.56 | 0.00 | 0.00 | 0.00 | 0.01 | | 31 | 0.00 | | | | | 0.04 | | 0.02 | | 0.00 | 0.02 | | | TOTAL | 2.74 | 0.32 | | | | | 1.42 | 5.10 | 2.00 | 6.05 | 0.75 | 2.05 | ## 05431017 DELAVAN LAKE INLET AT STATE HIGHWAY 50 AT LAKE LAWN, WI LOCATION.--Lat 42°37'16", long 88°34'57", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.22, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, on downstream headwall of State Highway 50 bridge, and 1.0 mi east of Lake Lawn. DRAINAGE AREA.--21.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--1984 and 1985 water years (unpublished) to current year. Published as "at U.S. Highway 50" prior to October 1988. GAGE.--Nonrecording gage. Datum of gage is 922.94 ft above NGVD of 1929 (Wisconsin Department of Transportation bench mark). Previously published datum of 914.48 ft in 1989-91 annual data reports was in error. REMARKS.--Daily mean discharges were estimated based on discharges upstream at Jackson Creek near Elkhorn (05431014) and Jackson Creek Tributary near Elkhorn (054310157) for Oct. 1, 1983 to Jan. 31, 1993. Also during this period, an acoustical velocity meter was used to measure discharges equal to or greater than 20 ft³/s from Oct. 1, 1985 to May 7, 1987. Daily mean discharges were estimated based on discharges upstream at Jackson Creek at Mound Road near Elkhorn (05431016) from Feb. 1, 1993 to present. Records poor (see page 11). | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAV. OCT. NOV. DEC. LAN. SEP. MAR. APR. MAY. HIN. SEP. MAY. SEP. | | | | | | | | | | | | | |---|---|--|---|--|---|---|---|--|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 4.2
17
8.3
18
14 | 1.9
1.8
1.8
1.8 | 1.9
1.8
1.7
1.6
1.6 | 2.6
2.3
2.2
1.9
1.9 | 1.7
1.4
1.3
1.2
1.2 | 1.6
1.4
1.2
1.1
1.0 | 4.3
4.5
4.0
4.5
5.7 | 21
12
7.2
5.8
27 | 8.3
7.5
6.4
5.5 | 2.1
1.8
1.3
1.6
13 | 2.1
1.9
1.7
2.7
2.7 | 1.0
1.1
1.1
1.1
0.92 | | | 6
7
8
9
10 | 5.8
4.2
3.4
3.0
2.9 | 2.1
1.9
1.8
1.8 | 1.4
1.4
1.4
1.3
1.3 | 1.9
1.9
2.1
2.3
2.2 | 1.1
1.1
1.1
1.1
1.1 | 0.99
0.96
0.94
0.94 | 5.5
4.8
4.8
4.9
5.5 | 16
16
20
61
34 | 4.9
4.9
13
13
8.7 | 13
21
16
42
22 | 2.1
1.8
1.6
1.8
1.8 | 0.84
0.71
0.65
0.58
0.56 | | | 11
12
13
14
15 | 2.9
2.7
2.2
1.9
2.1 | 1.8
1.8
1.8
1.8 | 1.4
1.6
1.7
1.6
1.4 | 1.8
1.6
1.4
1.3
1.2 | 1.0
1.0
0.99
0.97
0.95 | 1.0
1.6
2.6
6.4
6.2 | 6.0
6.1
5.2
4.4
4.0 | 35
34
18
18
21 | 7.7
6.1
5.5
4.9
4.3 | 16
11
8.2
6.1
134 | 1.4
1.4
1.4
1.4 | 0.47
0.44
0.90
2.1
3.6 | | | 16
17
18
19
20 | 2.1
2.1
2.1
2.5
2.2 | 1.7
1.6
1.6
1.6
1.8 | 1.9
2.9
4.2
11
6.8 | 1.1
1.0
1.0
1.0
1.0 | 0.94
0.91
0.88
0.96
1.3 | 6.4
6.2
5.8
4.8
5.3 | 4.2
3.8
3.5
3.6
4.3 | 16
12
10
9.1 | 3.6
3.4
3.2
4.7
3.8 | 58
25
16
11
8.4 | 1.4
1.3
1.0
0.94
0.94 | 2.1
1.3
1.0
0.87
0.84 | | | 21
22
23
24
25 | 1.8
1.8
1.8
1.8
2.2 | 1.8
1.9
2.1
2.1
1.9 | 4.7
4.3
3.5
3.0
2.7 | 0.99
0.97
0.96
0.95
0.94 | 1.9
1.6
1.3
1.2
1.0 | 5.7
5.2
4.5
4.4
4.4 | 4.4
3.9
3.4
3.4
3.1 | 8.4
7.0
6.1
5.8
5.3 | 3.2
2.6
2.5
2.3
2.2 | 11
8.1
6.0
5.1
4.2 | 1.1
1.0
0.94
0.92
0.86 | 0.79
0.84
1.1
1.0
0.88 | | | 26
27
28
29
30
31 | 3.4
3.1
2.6
2.6
2.3
2.1 | 1.8
1.7
1.7
1.8
2.1 | 2.5
2.2
2.1
2.1
2.2
3.1 | 0.91
0.91
0.94
1.0
1.2
1.6 | 0.96
0.91
1.0
 | 4.4
4.4
4.9
5.8
5.2
4.4 | 2.9
2.1
2.1
2.1
4.9 | 4.5
4.4
8.4
13
8.1
18 | 6.4
3.2
2.7
2.7
2.2 | 3.6
3.2
2.7
2.6
2.5
2.5 | 0.84
0.91
0.84
0.91
1.1 | 0.83
1.1
1.2
1.0
0.88 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 129.1
4.16
18
1.8
0.19
0.22 | 54.7
1.82
2.1
1.6
0.08
0.09 | 82.3
2.65
11
1.3
0.12
0.14 | 45.07
1.45
2.6
0.91
0.07
0.08 | 32.07
1.15
1.9
0.88
0.05
0.05 | 110.64
3.57
6.4
0.91
0.16
0.19 | 125.9
4.20
6.1
2.1
0.19
0.21 | 493.1
15.9
61
4.4
0.73
0.84 | 160.4
5.35
13
2.2
0.25
0.27 | 479.0
15.5
134
1.3
0.71
0.82 | 43.30
1.40
2.7
0.84
0.06
0.07 | 31.80
1.06
3.6
0.44
0.05
0.05 | | | STATIST | ICS OF MO | ONTHLY M | EAN DAT | A FOR WAT | ER YEARS | 1984 - 2003 | BY WATE | R YEAR (W | YY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | IAX 29.2 54.5 30.3
WY) (2002) (1986) (1992)
IIN 0.67 1.14 1.12 | | | | 19.6
69.9
(2001)
1.15
(2003) | 23.0
68.3
(1986)
3.57
(2003) | 24.2 16.0 21.3
100 37.0 86.0
(1993) (2000) (1996)
3.28 1.44 0.76
(1989) (1989) (1988) | | | 8.10
29.3
(1993)
0.61
(1988) | 4.72
30.5
(1995)
0.50
(1988) | 7.71
37.4
(1986)
0.61
(1988) | | | SUMMAI | RY STATIS | STICS | | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 19 | 984 - 2003 | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (FSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | IUM | 22 | 4.62
0.6
0 Apr
0.64 Aug
0.69 Jul
6.58
9
5.2
1.2 | 12 | 13 | 0.44 Sej | 1 15
5 12
5 6 | , | 0.22 S | 1993
2003
pr 20, 1993
ep 15, 1988
ep 9, 1988 | | #### 05431017 DELAVAN LAKE INLET AT STATE HIGHWAY 50 AT LAKE LAWN, WI-Continued #### WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: 1984 and 1985 water years (unpublished), October 1989 to September 1995. TOTAL-PHOSPHORUS DISCHARGE: 1984 and 1985 water years (unpublished) to current year. DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: April 1994 to current year. REMARKS.--Records poor. Daily mean discharges are estimated based on discharges from upstream stations 05431014 and 054310157 from Oct. 1, 1992 to Jan. 31, 1993, and from station 05431016 from Feb. 1, 1993 to present. COOPERATION .-- Observer furnished by Delavan Lake Sanitary District. #### EXTREMES FOR PERIOD OF RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 345 mg/L, Apr. 16, 1984; minimum observed, 0 mg/L, Sept. 23, 1991, July 17, Sept. 26, 1992, and Nov. 16, 1994. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 468 tons, Apr. 20, 1993; minimum daily, 0.00 ton, Sept. 26, 1990, many days during 1992 to 1994 water years, and July 14, 15, 18, 19, 1995. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 3.8 mg/L, May 27, 1985; minimum observed, 0.01 mg/L, Mar. 7, 1990, Dec. 15, 1994, Apr. 17, 1995, Oct. 6, 1995, Feb. 5, 1997, and Mar. 19, 1998. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 1,910 lb, Apr. 20, 1993; minimum daily, 0.10 lb, Dec. 28, 1989. DISSOLVED ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.851 mg/L, Aug. 3, 2000; minimum observed, <0.01 mg/L, Apr. 14,
1994, many days during 1995 water year, Nov. 22, 1995, several days in 1997-1999 water years, and many days in 2000 water year. DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: Maximum daily, 503 lb, June 26, 1998; minimum daily, 0.02 lb, Sept. 26, 1999. DISSOLVED CHLORIDE CONCENTRATIONS: Maximum observed, 130 mg/L, Aug. 8, 1995; minimum observed, 18 mg/L, June 1, 1995. ### EXTREMES FOR CURRENT YEAR.-- TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.54 mg/L, Oct 3 and July 7; minimum observed, 0.07 mg/L, Nov. 18 and Dec. 13. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 114 lb, July 9; minimum daily, 0.44 lb, Sept. 12. DISSOLVED ORTHO-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.43 mg/L, Oct. 4, 5; minimum observed, <0.02 mg/L, Apr. 11, May 5-12, and July 16, 21. DISSOLVED ORTHO-PHOSPHORUS DISCHARGE: Maximum daily, 91 lb, July 9; minimum daily, 0.10 lb, Mar. 10. # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------|------------------------------|----------------------|------------------------------|------------------------------|--------------|------------------------------|----------------------|------------------------------|----------------------|------------------------------|------------------------------|----------------------| | 1 | 9.61 | 0.84 | 0.72 | 1.48 | 1.00 | 0.88 | 2.79 | 31.6 | 17.6 | 4.02 | 3.21 | 1.30 | | 2 | 45.9 | 0.79 | 0.68 | 1.31 | 0.83 | 0.77 | 2.83 | 16.1 | 12.5 | 3.29 | 3.09 | 1.42 | | 3 | 24.1 | 0.78 | 0.64 | 1.26 | 0.76 | 0.66 | 2.45 | 6.24 | 10.5 | 2.27 | 2.94 | 1.39 | | 4 | 50.9 | 0.77 | 0.60 | 1.09 | 0.70 | 0.60 | 2.68 | 3.69 | 8.43 | 2.65 | 4.91 | 1.36 | | 5 | 37.5 | 0.77 | 0.60 | 1.09 | 0.70 | 0.55 | 3.29 | 26.7 | 6.78 | 33.3 | 4.91 | 1.11 | | 6 | 13.6 | 0.89 | 0.53 | 1.09 | 0.64 | 0.54 | 3.09 | 15.2 | 5.66 | 30.0 | 3.79 | 0.99 | | 7 | 7.34 | 0.79 | 0.53 | 1.09 | 0.64 | 0.52 | 2.62 | 16.1 | 5.93 | 60.8 | 3.22 | 0.81 | | 8 | 4.05 | 0.75 | 0.53 | 1.21 | 0.64 | 0.51 | 2.54 | 21.2 | 27.4 | 41.0 | 2.84 | 0.72 | | 9 | 2.41 | 0.74 | 0.49 | 1.33 | 0.64 | 0.51 | 2.52 | 62.1 | 30.6 | 114 | 3.16 | 0.63 | | 10 | 1.65 | 0.73 | 0.49 | 1.27 | 0.64 | 0.49 | 2.75 | 30.4 | 20.2 | 44.2 | 3.13 | 0.59 | | 11 | 1.55 | 0.73 | 0.53 | 1.04 | 0.58 | 0.54 | 2.92 | 48.5 | 17.2 | 21.9 | 2.42 | 0.49 | | 12
13 | 1.43
1.16 | 0.73
0.72
0.71 | 0.60
0.64 | 0.93
0.81 | 0.58
0.57 | 0.99
2.13 | 2.92
2.92
2.46 | 30.4
11.0 | 17.2
13.2
11.5 | 12.1
8.15 | 2.39
2.37 | 0.49
0.44
0.70 | | 14 | 0.99 | 0.71 | 0.60 | 0.76 | 0.56 | 6.64 | 2.05 | 9.61 | 9.88 | 6.00 | 2.35 | 1.70 | | 15 | 1.08 | 0.70 | 0.53 | 0.70 | 0.54 | 6.52 | 1.84 | 10.3 | 8.38 | 107 | 2.33 | 2.80 | | 16 | 1.07 | 0.65 | 0.80 | 0.64 | 0.54 | 6.55 | 1.90 | 7.86 | 6.73 | 45.4 | 2.31 | 1.70 | | 17 | 1.06 | 0.61 | 1.52 | 0.58 | 0.52 | 6.18 | 1.70 | 5.95 | 5.92 | 19.2 | 2.13 | 1.00 | | 18 | 1.05 | 0.61 | 3.70 | 0.58 | 0.50 | 5.63 | 1.54 | 5.00 | 5.27 | 9.06 | 1.62 | 0.87 | | 19 | 1.24 | 0.60 | 9.70 | 0.59 | 0.54 | 4.53 | 1.56 | 4.58 | 10.0 | 5.78 | 1.48 | 0.71 | | 20 | 1.08 | 0.68 | 6.00 | 0.59 | 0.73 | 4.85 | 1.84 | 5.58 | 8.10 | 5.55 | 1.44 | 0.63 | | 21 | 0.88 | 0.68 | 4.10 | 0.58 | 1.07 | 5.07 | 1.86 | 4.31 | 6.08 | 8.85 | 1.65 | 0.55 | | 22 | 0.87 | 0.72 | 3.80 | 0.57 | 0.90 | 4.50 | 1.63 | 3.62 | 5.21 | 6.98 | 1.46 | 0.55 | | 23 | 0.86 | 0.79 | 1.97 | 0.57 | 0.73 | 3.79 | 1.40 | 3.18 | 5.24 | 5.46 | 1.34 | 0.72 | | 24 | 0.86 | 0.79 | 1.69 | 0.56 | 0.67 | 3.59 | 1.38 | 3.05 | 4.85 | 4.89 | 1.27 | 0.67 | | 25 | 1.03 | 0.72 | 1.52 | 0.56 | 0.56 | 3.49 | 1.24 | 2.81 | 4.72 | 4.25 | 1.16 | 0.60 | | 26 | 1.58 | 0.68 | 1.41 | 0.54 | 0.53 | 3.39 | 1.14 | 2.41 | 13.7 | 3.85 | 1.13 | 0.57 | | 27 | 1.43 | 0.64 | 1.25 | 0.54 | 0.51 | 3.30 | 0.82 | 2.60 | 6.80 | 3.61 | 1.22 | 0.78 | | 28
29
30
31 | 1.19
1.18
1.03
0.94 | 0.64
0.68
0.79 | 1.19
1.19
1.25
1.76 | 0.56
0.59
0.71
0.95 | 0.55

 | 3.56
4.10
3.57
2.94 | 0.80
0.88
4.14 | 9.08
23.7
14.7
30.6 | 5.80
5.68
4.42 | 3.22
3.29
3.37
3.59 | 1.12
1.20
1.45
1.44 | 0.91
0.82
0.77 | | TOTAL | 220.62 | 21.70 | 51.56 | 26.17 | 18.37 | 91.89 | 63.58 | 468.17 | 304.28 | 627.03 | 70.48 | 28.30 | WATER YEAR 2003 TOTAL 1,992.15 # 05431017 DELAVAN LAKE INLET AT STATE HIGHWAY 50 AT LAKE LAWN, WI—Continued # ORTHOPHOSPHATE, WATER, FILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 6.77 | 0.45 | 0.25 | 0.45 | 0.35 | 0.21 | 0.46 | 6.77 | 7.07 | 2.64 | 1.79 | 0.83 | | 2 | 36.6 | 0.41 | 0.23 | 0.41 | 0.28 | 0.18 | 0.49 | 2.57 | 4.55 | 2.17 | 1.81 | 0.94 | | 3 | 18.7 | 0.40 | 0.22 | 0.39 | 0.26 | 0.15 | 0.43 | 1.20 | 3.77 | 1.50 | 1.81 | 0.90 | | 4 | 41.5 | 0.40 | 0.20 | 0.34 | 0.24 | 0.13 | 0.49 | 0.77 | 3.00 | 1.76 | 3.16 | 0.86 | | 5 | 31.3 | 0.39 | 0.20 | 0.34 | 0.23 | 0.12 | 0.61 | 2.95 | 2.40 | 24.8 | 3.16 | 0.68 | | 6 | 10.9 | 0.44 | 0.17 | 0.34 | 0.21 | 0.12 | 0.59 | 1.73 | 1.99 | 24.0 | 2.43 | 0.59 | | 7 | 5.25 | 0.39 | 0.17 | 0.35 | 0.20 | 0.11 | 0.52 | 1.73 | 2.21 | 47.5 | 2.05 | 0.48 | | 8 | 2.85 | 0.36 | 0.16 | 0.39 | 0.20 | 0.11 | 0.52 | 2.16 | 14.0 | 30.6 | 1.80 | 0.41 | | 9 | 1.69 | 0.35 | 0.15 | 0.43 | 0.20 | 0.11 | 0.53 | 6.56 | 15.6 | 91.0 | 1.99 | 0.35 | | 10 | 1.15 | 0.35 | 0.15 | 0.41 | 0.19 | 0.10 | 0.59 | 3.69 | 10.6 | 32.4 | 1.96 | 0.32 | | 11 | 1.07 | 0.34 | 0.16 | 0.34 | 0.17 | 0.11 | 0.65 | 3.78 | 8.47 | 15.0 | 1.51 | 0.26 | | 12 | 0.98 | 0.33 | 0.18 | 0.30 | 0.17 | 0.17 | 0.66 | 3.67 | 6.03 | 8.14 | 1.48 | 0.23 | | 13 | 0.78 | 0.32 | 0.18 | 0.27 | 0.17 | 0.28 | 0.56 | 1.95 | 4.87 | 4.16 | 1.46 | 0.44 | | 14 | 0.66 | 0.32 | 0.17 | 0.25 | 0.16 | 0.69 | 0.48 | 1.94 | 3.89 | 2.06 | 1.44 | 0.98 | | 15 | 0.71 | 0.31 | 0.15 | 0.23 | 0.15 | 0.67 | 0.43 | 2.27 | 3.07 | 34.5 | 1.42 | 1.60 | | 16 | 0.70 | 0.29 | 0.25 | 0.22 | 0.15 | 0.69 | 0.45 | 1.73 | 2.31 | 7.30 | 1.40 | 0.89 | | 17 | 0.68 | 0.26 | 0.33 | 0.20 | 0.14 | 0.67 | 0.41 | 1.30 | 2.00 | 4.29 | 1.28 | 0.52 | | 18 | 0.67 | 0.26 | 0.48 | 0.20 | 0.14 | 0.63 | 0.38 | 1.08 | 1.78 | 1.42 | 0.97 | 0.38 | | 19 | 0.78 | 0.25 | 1.30 | 0.20 | 0.15 | 0.52 | 0.39 | 0.98 | 5.30 | 0.61 | 0.85 | 0.31 | | 20 | 0.67 | 0.28 | 0.78 | 0.20 | 0.19 | 0.57 | 0.46 | 1.19 | 4.30 | 0.64 | 0.79 | 0.27 | | 21 | 0.54 | 0.28 | 0.54 | 0.20 | 0.28 | 0.62 | 0.48 | 0.91 | 2.55 | 1.21 | 0.86 | 0.23 | | 22 | 0.52 | 0.29 | 0.49 | 0.20 | 0.23 | 0.56 | 0.42 | 0.76 | 2.36 | 1.13 | 0.73 | 0.23 | | 23 | 0.51 | 0.31 | 0.57 | 0.20 | 0.19 | 0.49 | 0.37 | 0.66 | 2.54 | 1.05 | 0.64 | 0.32 | | 24 | 0.50 | 0.31 | 0.49 | 0.20 | 0.17 | 0.48 | 0.37 | 0.63 | 2.42 | 1.12 | 0.58 | 0.31 | | 25 | 0.60 | 0.27 | 0.45 | 0.20 | 0.14 | 0.48 | 0.33 | 0.57 | 2.49 | 1.16 | 0.52 | 0.29 | | 26
27
28
29
30
31 | 0.91
0.81
0.67
0.65
0.56
0.50 | 0.26
0.24
0.23
0.24
0.28 | 0.42
0.37
0.36
0.36
0.38
0.54 | 0.19
0.19
0.20
0.22
0.26
0.33 | 0.13
0.12
0.13
 | 0.48
0.48
0.53
0.63
0.56
0.48 | 0.31
0.23
0.23
0.25
1.05 | 0.49
0.56
3.25
12.5
7.29
13.6 | 7.30
4.81
3.87
3.70
2.89 | 1.24
1.39
1.44
1.58
1.70
1.90 | 0.52
0.59
0.58
0.65
0.83
0.87 | 0.29
0.42
0.50
0.47
0.45 | | TOTAL | 171.18 | 9.61 | 10.85 | 8.65 | 5.34 | 12.13 | 14.14 | 91.24 | 142.14 | 351.41 | 41.93 | 15.75 | WATER YEAR 2003 TOTAL 874.37 379 # 05431017 DELAVAN LAKE INLET AT STATE HIGHWAY 50 AT LAKE LAWN, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | (QOALIT I | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Sam- | Ortho-
phos-
phate,
water, | Phos-
phorus, | |----------------|---|------------------------|--------------------------|-------------------------------------|---------------------------| | Date | Time | Dis-
charge,
cfs | pling
method,
code | fltrd,
mg/L
as P | water,
unfltrd
mg/L | | | | (00060) | (82398) | (00671) | (00665) | | OCT 2002
02 | 0845 | 17 | 10 | 0.41 | 0.50 | | 03 | 0830 | 8.3 | 10 | 0.41 | 0.54 | | 04
05 | 0955
0730 | 18
14 | 10
10 | 0.43
0.43 | 0.53
0.50 | | 05 | 1350 | 14 | 10 | 0.43 | 0.50 | | 06
07 | 1145
0855 | 5.8
4.2 | 10
10 | 0.36
0.24 | 0.44
0.34 | | NOV | | | | | | | 18
DEC | 1130 | 1.6 | 10 | 0.03 | 0.07 | | 13
JAN 2003 | 1330 | 1.7 | 10 | E.02 | 0.07 | | 29
MAR | 1500 | 1.0 | 70 | 0.04 | 0.11 | | 18
APR | 1100 | 5.8 | 70 | E.02 | 0.18 | | 11
MAY | 1215 | 6.0 | 10 | < 0.02 | 0.09 | | 01 | 0845 | 21 | 10 | 0.07 | 0.30 | | 02 | 0810 | 12
27 | 10 | 0.04 | 0.27
0.20 | | 05
06 | 0845
0815 | 16 | 10
10 | <0.02
<0.02 | 0.20 | | 08 | 0835 | 20 | 10 | < 0.02 | 0.20 | | 09
09 | 0915
1400 | 61
61 | 10
10 | <0.02
<0.02 | 0.19
0.20 | | 10 | 0650 | 34 | 10 | < 0.02 | 0.15 | | 10 | 1320 | 34 | 10 | < 0.02 | 0.15 | | 11
11 | 0930
1320 | 35
35 | 10
10 | <0.02
<0.02 | 0.28
0.30 | | 12 | 0840 | 34 | 10 | < 0.02 | 0.17 | | 13 | 1000
1055 | 18
21 | 10
10 | 0.02
E.02 | 0.11
0.09 | | 15
29 | 0925 | 13 | 10 | 0.10 | 0.09 | | JUN
02 | 0910 | 8.3 | 10 | | 0.28 | | 08 | 0910 | 13 | 10 | 0.21 | 0.28 | | 08 |
1510 | 13 | 10 | 0.23 | 0.42 | | 09
10 | 1100
0900 | 13
8.7 | 10
10 | 0.22
0.23 | 0.44
0.43 | | 16 | 0850 | 3.6 | 10 | 0.12 | 0.35 | | 23
26 | 1045 | 2.5
6.4 | 10
10 | 0.19 | 0.39
0.45 | | JUL | 1035 | 0.4 | 10 | 0.29 | 0.43 | | 07 | 0945 | 21 | 10 | 0.42 | 0.54 | | 09
10 | 0915
0920 | 42
22 | 10
10 | E.43
0.30 | E.53
0.40 | | 10 | 1500 | 22 | 10 | 0.24 | 0.34 | | 11
11 | 0915
1440 | 16
16 | 10
10 | 0.17
0.17 | 0.25
0.25 | | 12 | 0545 | 11 | 10 | 0.17 | 0.23 | | 13 | 0900 | 8.2 | 10 | 0.10 | 0.18 | | 14
15 | 0920
1135 | 6.1
134 | 10
10 | 0.06
0.06 | 0.19
0.15 | | 15 | 1400 | 134 | 10 | 0.04 | 0.14 | | 16
16 | 1000
1445 | 58
58 | 10
10 | 0.02
<0.02 | 0.14
0.15 | | 17 | 0935 | 25 | 10 | 0.04 | 0.13 | | 17 | 1455 | 25 | 10 | 0.03 | 0.15 | | 18
18 | 1055
1455 | 16
16 | 10
10 | E.02
E.01 | 0.10
0.10 | | 19 | 0925 | 11 | 10 | E.01 | 0.09 | | 19
21 | 1600
0900 | 11
11 | 10
10 | E.01
<0.02 | 0.10
0.15 | | 28 | 1140 | 2.7 | 10 | 0.10 | 0.13 | | AUG
04 | 1100 | 27 | 10 | 0.22 | 0.24 | | 18 | 1100
1105 | 2.7
1.0 | 10 | 0.22
E.18 | 0.34
0.30 | | 25 | 1100 | 0.86 | 10 | E.11 | 0.25 | | SEP
02 | 1145 | 1.1 | 10 | E.16 | 0.24 | | 18 | 1550 | 1.0 | 30 | 0.07 | 0.16 | | 22
27 | 1130
1050 | 0.84
1.1 | 10
10 | 0.05
0.07 | 0.12
0.13 | | ۷, | 1030 | 1.1 | 10 | 0.07 | 0.13 | ### 423556088365001 DELAVAN LAKE AT CENTER NEAR DELAVAN LAKE, WI LOCATION.--Lat 42°35'56", long 88°36'50", in SE 1/4 SW 1/4 sec.28, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, 2.6 mi southeast of Delavan. DRAINAGE AREA.--41.4 mi², of which 2.3 mi² is non-contributing. Area of Delavan Lake, 2,072 acres. PERIOD OF RECORD .-- October 1983 to current year. REMARKS.--Lake ice-covered during February measurements. Water-quality analyses done by the U.S. Geological Survey National Water Quality Laboratory. Samples for determination of chlorophyll-a concentration are collected from the top 1.5 ft of the lake. # WATER-QUALITY DATA, NOVEMBER 18 TO MAY 21, 2003 (Milligrams per liter unless otherwise indicated) | | Nov | -18 | <u>Feb</u> | <u>-20</u> | <u>Apr</u> | <u>-14</u> | Ma | <u>y-21</u> | |--|-------|-------|------------|------------|------------|------------|-------|-------------| | Lake stage (ft) | 4.8 | 32 | 4. | 97 | 5. | 0 | 5. | 02 | | Secchi-depth (m) | 3. | | | .2 | 2. | | | 7 | | Chlorophyll a, phytoplankton (µg/L) | _ | | 9. | | 5. | | 3. | 84 | | Depth of sample (m) | 0.5 | 16.5 | 0.5 | 16 | 0.5 | 16 | 0.5 | 16 | | Water temperature (°C) | 7 | 6.5 | 0 | 3.4 | 6.7 | 6.2 | 14.6 | 11.6 | | Specific conductance (µS/cm) | 560 | 564 | 577 | 597 | 575 | 576 | 566 | 576 | | Hq | 7.9 | 8.1 | 7.6 | 7.8 | 8.4 | 8.5 | 8.2 | 7.8 | | Dissolved oxygen (mg/L) | 11 | 10.4 | 17 | 5.5 | 13.5 | 12.7 | 10.7 | 6 | | Phosphorus, total (as P) | 0.106 | 0.105 | 0.076 | 0.192 | 0.057 | 0.063 | 0.054 | 0.113 | | Phosphorus, ortho, dissolved (as P) | 0.071 | 0.07 | 0.034 | 0.139 | 0.022 | 0.023 | 0.025 | 0.078 | | Nitrogen, NO ₂ + NO ₃ , diss. (as N) | 0.095 | | 0.022 | | <.022 | <.022 | E.017 | | | Nitrogen, ammonia, dissolved (as N) | 0.073 | | <.015 | | <.015 | <.015 | E.008 | | | Nitrogen, amm. + org., total (as N) | 0.56 | | 0.54 | | 0.64 | 0.64 | 0.65 | | | Nitrogen, total (as N) | 0.65 | | 0.56 | | 0.65 | 0.65 | | | | Color (Pt-Co. scale) | | | | | 12 | 12 | | | | Turbidity (NTU) | | | | | 2.1 | 3.2 | | | | Hardness, as CaCO ₃ | | | | | 230 | 230 | | | | Calcium, dissolved (Ca) | | | | | 38.4 | 38.5 | | | | Magnesium, dissolved (Mg) | | | | | 33.3 | 33.3 | | | | Soduim, dissolved (Na) | | | | | 26.2 | 26 | | | | Potassium, dissolved (K) | | | | | 2.48 | 2.44 | | | | Alkalinity, as CaCO ₃ | | | | | 188 | 188 | | | | Sulfate, dissolved (SO ₄) | | | | | 24.5 | 24.4 | | | | Chloride, dissolved (Cl) | | | | | 57.9 | 57.3 | | | | Silica, dissolved (SiO ₂) | | | | | <.2 | <.2 | | | | Solids, dissolved, at 180°C | | | | | 323 | 322 | | | | Iron, dissolved (Fe) (µg/L) | | | | | <10 | <10 | | | | Manganese, dissolved, (Mn) (μg/L) | | | | | E.9 | < 2.0 | | | SPECIFIC CONDUCTANCE (S.C.) IN MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS ### 423556088365001 DELAVAN LAKE AT CENTER NEAR DELAVAN LAKE, WI--Continued ## WATER-QUALITY DATA, JUNE 19 TO JULY 16, 2003 (Milligrams per liter unless otherwise indicated) | | | <u>Jun-</u> | <u> 19</u> | | | <u>Jul-16</u> | | | | | | |--|-------|-------------|------------|-------|-------|---------------|-------|-------|--|--|--| | Lake stage (ft) | | 4.9 | 8 | | | 5.23 | | | | | | | Secchi-depth (m) | | 3.7 | 7 | | | 2.9 | | | | | | | Chlorophyll a, phytoplankton (µg/L) | | 5.9 |) | | | 21 | .8 | | | | | | Depth of sample (m) | 0.5 | 7 | 12 | 16 | 0.5 | 5 | 11 | 16 | | | | | Water temperature (°C) | 20.2 | 20 | 13.8 | 12.7 | 24.8 | 24 | 15.2 | 13.5 | | | | | Specific conductance (µS/cm) | 567 | 568 | 584 | 599 | 546 | 550 | 591 | 604 | | | | | pĤ | 8.7 | 8.6 | 8.4 | 8.3 | 8.8 | 8.7 | 8.8 | 8.9 | | | | | Dissolved oxygen (mg/L) | 9.9 | 9.7 | 2.3 | 0.3 | 9.9 | 8.9 | 0.3 | 0.2 | | | | | Phosphorus, total (as P) | 0.056 | 0.052 | 0.2 | 0.34 | 0.037 | 0.036 | 0.21 | 0.44 | | | | | Phosphorus, ortho, dissolved (as P) | E.004 | 0.007 | 0.163 | 0.297 | E.004 | <.007 | 0.177 | 0.379 | | | | | Nitrogen, $NO_2 + NO_3$, diss. (as N) | <.022 | | | | <.022 | | | | | | | | Nitrogen, ammonia, dissolved (as N) | <.015 | | | | E.008 | | | | | | | | Nitrogen, amm. + org., total (as N) | 0.62 | | | | 0.87 | | | | | | | SPECIFIC CONDUCTANCE (S.C.) IN MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS # WATER-QUALITY DATA, AUGUST 12, 2003 (Milligrams per liter unless otherwise indicated) | | | | | Aug | | | | | | | | |--|-------|-------|-------|------|-------|------|------|-------|--|--|--| | Lake stage (ft) | | | | 4.8 | 33 | | | | | | | | Secchi-depth (m) | | | | 2. | 9 | | | | | | | | Chlorophyll a, phytoplankton (µg/L) | 8.87 | | | | | | | | | | | | Depth of sample (m) | 0.5 | 7 | 9 | 11 | 13 | 14 | 15 | 16 | | | | | Water temperature (°C) | 24 | 23.8 | 22.7 | 16.3 | 14.3 | 14 | 13.6 | 13.4 | | | | | Specific conductance (µS/cm) | 550 | 552 | 562 | 590 | 600 | 604 | 610 | 618 | | | | | pH " | 8.3 | 8.3 | 8.1 | 8 | 8.1 | 8.1 | 8.1 | 8.1 | | | | | Dissolved oxygen (mg/L) | 7.8 | 7 | 4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | Phosphorus, total (as P) | 0.044 | 0.046 | 0.093 | 0.32 | 0.43 | 0.47 | 0.51 | 0.59 | | | | | Phosphorus, ortho, dissolved (as P) | <.007 | 0.009 | | | 0.336 | | | 0.482 | | | | | Nitrogen, $NO_2 + NO_3$, diss. (as N) | <.022 | | | | | | | | | | | | Nitrogen, ammonia, dissolved (as N) | <.015 | | | | | | | | | | | | Nitrogen, amm. + org., total (as N) | 0.69 | | | | | | | | | | | 8-12-03 DISSOLVED OXYGEN (D.O.) IN MILLIGRAMS PER LITER WATER TEMPERATURE (W.T.) IN DEGREES CELSIUS SPECIFIC CONDUCTANCE (S.C.) IN MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS ## WATER-QUALITY DATA, SEPTEMBER 18, 2003 (Milligrams per liter unless otherwise indicated) | | | Sep- | 18 | | |--|-------|-------|-------|------| | Lake stage (ft) | | 4.4 | 4 | | | Secchi-depth (m) | | 1.2 | | | | Chlorophyll a, phytoplankton (µg/L) | | 26 | | | | Depth of sample (m) | 0.5 | 11 | 14 | 16 | | Water temperature (°C) | 21.9 | 20.2 | 14.1 | 13.3 | | Specific conductance (µS/cm) | 545 | 566 | 620 | 643 | | pĤ | 8.7 | 8.1 | 8.2 | 8.2 | | Dissolved oxygen (mg/L) | 9.2 | 0.8 | 0.2 | 0.2 | | Phosphorus, total (as P) | 0.073 | 0.106 | 0.6 | 0.75 | | Phosphorus, ortho, dissolved (as P) | <.007 | 0.062 | 0.533 | 0.65 | | Nitrogen, NO ₂ + NO ₃ , diss. (as N) | <.022 | | | | | Nitrogen, ammonia, dissolved (as N) | <.015 | | | | | Nitrogen, amm. + org., total (as N) | 0.9 | | | | 9-18-03 DISSOLVED OXYGEN (D.O.) IN MILLIGRAMS PER LITER WATER TEMPERATURE (W.T.) IN DEGREES CELSIUS SPECIFIC CONDUCTANCE (S.C.) IN MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS # 423556088365001 DELAVAN LAKE AT CENTER NEAR DELAVAN LAKE, WI--Continued # ADDITIONAL WATER-QUALITY DATA, OCTOBER 16, 2002 TO AUGUST 29, 2003 (Milligrams per liter unless otherwise indicated) | | Oct. 16 | May 13 | June 5 | June 13 | <u>June 20</u> | |--------------------------|----------------|---------|----------------|----------------|----------------| | Lake stage (ft) | 4.85 | 5.12 | 5.04 | 5.02 | 4.95 | | Secchi-depth (meters) | 2.3 | 6.7 | 4.6 | 5.2 | 3.7 | | Depth of sample (meters) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Water temperature (°C) | 9.5 | 13.0 | 16.5 | 19.0 | 20.0 | | Phosphorus, total (as P) | 0.127 | 0.055 | 0.054 | 0.055 | 0.053 | | | | | | | | | | <u>June 27</u> | July 2 | <u>July 14</u> | <u>July 23</u> | <u>July 30</u> | | Lake stage (ft) | 4.95 | 4.91 | 5.02 | 4.99 | 4.91 | | Secchi-depth (meters) | 3.0 | 3.8 | 3.0 | 3.2 | 3.8 | | Depth of sample (meters) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Water temperature (°C) | 21.5 | 24.5 | 24.5 | 24.0 | 24.0 | | Phosphorus, total (as P) | 0.052 | 0.045 | 0.051 | 0.038 | 0.046 | | | | | | | | | | <u>Aug. 6</u> | Aug. 22 | Aug. 29 | | | | Lake stage (ft) | 4.89 | 4.72 | 4.61 | | | | Secchi-depth (meters) | 3.5 | 1.7 | 1.4 | | | | Depth of sample (meters) | 0.5 | 0.5 | 0.5 | | | | Water temperature (°C) | 25.0 | 26.0 | 25.0 | | | | Phosphorus, total (as P) | 0.040 | 0.048 | 0.052 | | | ^{*} Measurements and samples collected by the Delavan Lake Sanitary District. ### 423659088354401 DELAVAN LAKE, AT NORTH END, NEAR LAKE LAWN, WI LOCATION.--Lat 42°36'59", long 88°35'44", in NW 1/4 SW 1/4, sec.22, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, 2.6 mi southeast of Delavan. DRAINAGE AREA.--41.4 mi², of which 2.3 mi² is non-contributing. PERIOD OF RECORD.--October 1983 to current year. ### WATER-QUALITY DATA, MAY 21 TO AUGUST 12, 2003 | | May 21 | June 19 | July 16 | Aug. 12 |
-----------------------|--------|---------|---------|---------| | Secchi-depth (meters) | 6.7 | 3.7 | 2.8 | 3.4 | ### 423526088380101 DELAVAN LAKE, AT SW END, NEAR DELAVAN LAKE, WI LOCATION.--Lat 42°35'26", long 88°38'01", in SE 1/4 NW 1/4, sec.32, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, 2.6 mi southeast of Delavan. DRAINAGE AREA.--41.4 mi², of which 2.3 mi² is non-contributing. PERIOD OF RECORD.--October 1983 to current year. ### WATER-QUALITY DATA, MAY 21 TO AUGUST 12, 2003 | | May 21 | June 19 | July 16 | Aug. 12 | |-----------------------|--------|---------|---------|---------| | Secchi-depth (meters) | 6.2 | 3.0 | 3.4 | 2.1 | ### 423706088363400 DELAVAN LAKE NEAR DELAVAN, WI LOCATION.--Lat 42°36′27", long 88°36′19", in SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.28, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, at Delavan Lake Sanitary District Lift Station No. 2 at Delavan Lake Yacht Club, 1.0 mi southeast of outlet, and 2.7 mi southeast of Delavan. DRAINAGE AREA.--41.4 mi², of which 2.3 mi² is non-contributing. Area of Delavan Lake, 2,072 acres. PERIOD OF RECORD.--October 1983 to current year. October 1983 to September 1985 data published in Water Resources Investigation series report "Water Quality and Hydrology of Delavan Lake in Southeastern Wisconsin" by Stephen J. Field and Marvin D. Duerk. GAGE.--Water-stage recorder. Datum of gage is 922.92 ft above NGVD of 1929. Prior to Sept. 5, 1989, staff gage at bridge on North Shore Drive at same datum REMARKS.--Lake was ice covered from Dec. 4-19 and Jan. 14 to Mar. 28. Lake levels controlled by Delavan Lake Sanitary District. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 6.19 ft, Feb. 21, 1994; minimum daily, -4.44 ft Nov. 6, 1989 (lake drawn down for lake rehabilitation program). GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 5.26 ft, July 15, 16; minimum, 4.26 ft, Sept. 30. | DAILY MEAN VALUES | | | | | | | | | | | | | |-------------------|------|------|-------|-------|-------|------|------|------|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 4.77 | 4.84 | 4.82 | e4.97 | 4.97 | 4.96 | 5.05 | 5.11 | 5.09 | 4.92 | 4.89 | 4.56 | | 2 | 4.86 | 4.82 | 4.82 | e4.97 | 4.97 | 4.96 | 5.06 | 5.09 | 5.08 | 4.91 | 4.88 | 4.55 | | 3 | 4.88 | 4.82 | 4.83 | 4.97 | e4.98 | 4.95 | 5.06 | 5.06 | e5.07 | 4.89 | 4.88 | 4.53 | | 4 | 4.92 | 4.82 | 4.83 | 4.97 | e5.00 | 4.96 | 5.07 | 5.04 | 5.06 | 4.90 | 4.90 | 4.51 | | 5 | 4.96 | 4.82 | 4.83 | 4.98 | 4.99 | 5.00 | 5.07 | 5.10 | 5.04 | 4.95 | 4.89 | 4.50 | | 6 | 4.95 | 4.82 | 4.83 | 4.99 | 4.99 | 5.00 | 5.06 | 5.09 | 5.02 | 4.99 | 4.89 | 4.48 | | 7 | 4.92 | 4.82 | 4.83 | 4.99 | 4.99 | 5.00 | 5.05 | 5.11 | 5.02 | 5.04 | 4.88 | 4.47 | | 8 | 4.91 | 4.82 | 4.83 | 4.99 | 4.99 | 5.00 | 5.05 | 5.12 | 5.05 | 5.08 | 4.87 | 4.46 | | 9 | 4.90 | 4.82 | 4.83 | 5.00 | 4.99 | 5.01 | 5.04 | 5.17 | 5.06 | 5.13 | 4.86 | 4.44 | | 10 | 4.90 | 4.83 | 4.83 | 5.00 | e4.99 | 5.01 | 5.04 | 5.17 | 5.04 | 5.08 | 4.85 | 4.43 | | 11 | 4.90 | 4.84 | 4.83 | 4.99 | e4.99 | 5.00 | 5.03 | 5.18 | 5.03 | 5.04 | 4.84 | 4.42 | | 12 | 4.90 | 4.83 | 4.84 | 4.99 | 4.99 | 4.99 | 5.02 | 5.17 | 5.02 | 5.03 | 4.83 | 4.42 | | 13 | 4.89 | 4.83 | 4.84 | 4.99 | 4.98 | 4.99 | 5.01 | 5.12 | 5.02 | 5.03 | 4.82 | 4.46 | | 14 | 4.87 | 4.83 | 4.84 | 4.99 | 4.98 | 4.99 | 5.00 | 5.09 | 5.02 | 5.02 | 4.81 | 4.49 | | 15 | 4.86 | 4.83 | 4.84 | 4.98 | 4.98 | 5.00 | 5.00 | 5.07 | 5.01 | 5.21 | 4.81 | 4.50 | | 16 | 4.85 | 4.82 | 4.84 | 4.98 | 4.97 | 5.01 | 5.01 | 5.02 | 5.00 | 5.23 | 4.81 | 4.48 | | 17 | 4.84 | 4.82 | 4.84 | 4.98 | 4.97 | 5.02 | 5.00 | 5.01 | 4.99 | 5.14 | 4.79 | 4.46 | | 18 | 4.86 | 4.82 | 4.89 | 4.98 | 4.98 | 5.02 | 5.00 | 5.01 | 4.99 | 5.05 | 4.78 | 4.44 | | 19 | 4.85 | 4.82 | 4.94 | 4.98 | 4.97 | 5.02 | 5.01 | 5.01 | 4.98 | 5.01 | 4.76 | 4.42 | | 20 | 4.85 | 4.82 | 4.95 | 4.98 | 4.97 | 5.02 | 5.04 | 5.04 | 4.95 | 5.00 | 4.74 | 4.40 | | 21 | 4.84 | 4.83 | 4.96 | 4.98 | 4.97 | 5.02 | 5.05 | 5.02 | 4.94 | 5.01 | 4.74 | 4.39 | | 22 | 4.84 | 4.83 | 4.96 | 4.97 | 4.97 | 5.01 | 5.05 | 5.01 | 4.93 | 5.00 | 4.72 | 4.40 | | 23 | 4.83 | 4.82 | 4.95 | 4.97 | 4.96 | 5.00 | 5.04 | 5.00 | 4.92 | 4.99 | 4.70 | 4.39 | | 24 | 4.82 | 4.83 | 4.95 | 4.97 | 4.97 | 4.98 | 5.03 | 5.00 | 4.91 | 4.98 | 4.68 | 4.37 | | 25 | 4.85 | 4.83 | 4.95 | 4.97 | 4.97 | 4.98 | 5.03 | 4.99 | 4.92 | 4.96 | 4.66 | 4.35 | | 26 | 4.86 | 4.83 | 4.95 | 4.97 | 4.97 | 4.99 | 5.01 | 4.99 | 4.97 | 4.95 | 4.66 | 4.34 | | 27 | 4.86 | 4.83 | 4.95 | 4.96 | 4.96 | 5.00 | 5.00 | 4.98 | 4.95 | 4.94 | 4.65 | 4.33 | | 28 | 4.86 | 4.83 | 4.95 | 4.96 | 4.96 | 5.03 | 4.99 | 5.01 | 4.94 | 4.93 | 4.62 | 4.31 | | 29 | 4.85 | 4.83 | 4.95 | 4.97 | | 5.05 | 4.99 | 5.05 | 4.94 | 4.92 | 4.61 | 4.30 | | 30 | 4.85 | 4.82 | e4.96 | 4.97 | | 5.05 | 5.02 | 5.06 | 4.93 | 4.91 | 4.60 | 4.28 | | 31 | 4.84 | | e4.98 | 4.97 | | 5.05 | | 5.10 | | 4.90 | 4.58 | | | MEAN | 4.87 | 4.83 | 4.89 | 4.98 | 4.98 | 5.00 | 5.03 | 5.06 | 5.00 | 5.00 | 4.77 | 4.43 | | MAX | 4.96 | 4.84 | 4.98 | 5.00 | 5.00 | 5.05 | 5.07 | 5.18 | 5.09 | 5.23 | 4.90 | 4.56 | | MIN | 4.77 | 4.82 | 4.82 | 4.96 | 4.96 | 4.95 | 4.99 | 4.98 | 4.91 | 4.89 | 4.58 | 4.28 | e Estimated due to ice effect or missing record ### 05431022 DELAVAN LAKE OUTLET AT BORG ROAD NEAR DELAVAN, WI LOCATION.--Lat 42°36′53", long 88°37′29", in SW $^{1}_{2}$ 4 sec.20, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, on right bank 50 ft upstream from bridge on Borg Road, 1.4 mi southeast of Delavan, and 0.2 mi downstream from Delavan Lake dam outlet. DRAINAGE AREA.--42.1 mi², of which 2.3 mi² is non-contributing. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1983 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 914.50 ft above NGVD of 1929 (Public Service Commission bench mark). REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|--|---|--|---|---|---|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.8
2.0
1.7
1.9 | 2.5
2.5
2.6
2.6
2.5 | 2.1
2.2
2.2
2.2
2.4 | 2.6
2.5
2.3
2.3
2.2 | 4.3
4.1
3.0
2.6
2.6 | 2.1
2.1
2.1
2.2
2.1 | 7.9
9.4
12
15
18 | 21
31
30
30
32 | 15
11
11
16
17 | 7.6
4.5
3.3
2.7
1.9 | 0.97
0.67
0.57
0.44
0.46 | 0.67
1.0
1.2
1.1
1.5 | | 6
7
8
9
10 | 14
7.2
2.7
2.6
2.7 | 2.1
2.2
2.2
2.3
2.0 | 2.3
2.3
2.1
2.3
2.3 | 2.0
2.6
2.9
2.9
2.6 | 2.7
3.0
2.9
2.9
2.9 | 2.1
3.0
3.4
3.4
3.4 | 20
18
16
16
16 | 27
24
56
73
74 | 11
8.0
12
20
19 | 2.6
7.4
9.4
55
62 | 0.44
0.27
1.4
2.1
2.1 | 1.4
1.4
0.93
0.91
1.3 | | 11
12
13
14
15 | 2.6
2.3
2.1
2.3
2.3 | 2.3
2.0
1.8
2.3
2.3 | 3.2
3.4
3.1
2.4
2.0 | 2.2
2.1
2.1
2.6
2.6 | 2.9
2.9
2.9
2.8
2.6 | 3.4
3.4
3.5
3.7
3.6 | 16
17
17
6.2
0.70 | 70
72
73
77
80 | 7.5
3.1
2.2
2.3
1.4 | 28
1.8
2.3
3.0
71 | 1.1
0.51
0.47
0.22
0.05 | 1.2
1.7
0.92
0.81
0.98 | | 16
17
18
19
20 | 2.5
2.4
3.3
3.6
3.4 | 2.4
2.4
2.1
3.0
3.4 | 2.3
2.3
2.3
2.3
2.3 | 2.4
2.4
2.4
2.2
2.2 | 2.6
2.6
2.6
2.7
2.7 | 9.5
20
24
24
24 | 0.68
0.51
0.50
0.32
0.38 | 51
22
17
17
17 | 1.2
0.38
e0.02
e3.4
3.3 | 132
124
60
19
14 | 0.78
1.3
1.1
1.9
2.7 | 1.0
1.1
1.1
0.76
0.81 | | 21
22
23
24
25 | 2.9
2.5
2.3
2.3
2.6 | 2.2
2.5
2.9
2.9
2.5 | 2.2
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
1.9
2.0 | 2.4
2.2
2.1
2.1
2.1 | 24
24
23
23
7.6 | 2.5
3.2
3.5
3.4
4.6 | 16
16
10
5.8
4.7 | 1.7
1.6
0.69
0.51
0.30 | 8.9
8.2
3.8
0.71
1.4 | 2.4
2.2
2.2
2.3
2.2 | 0.80
1.2
1.2
1.3
1.3 | | 26
27
28
29
30
31 | 2.6
2.4
2.3
2.3
2.5
2.6 | 2.1
2.1
2.2
2.3
2.1 | 2.2
2.2
2.3
2.4
2.6
2.6 | 2.1
2.1
3.4
5.1
5.9
5.1 | 2.1
2.7
2.4
 | 1.5
2.7
3.2
2.8
1.1
5.2 | 5.5
5.9
6.2
2.7
1.8 | 3.2
1.6
1.00
3.8
1.3
1.2 | 0.15
0.16
0.23
0.38
5.8 | 1.8
1.9
1.6
1.3
1.3 | 2.1
1.6
1.2
0.57
2.4
1.8 | 1.4
1.7
1.6
1.7
1.8 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 102.7
3.31
14
1.7
204
0.08
0.10 |
71.3
2.38
3.4
1.8
141
0.06
0.07 | 73.7
2.38
3.4
2.0
146
0.06
0.07 | 82.6
2.66
5.9
1.9
164
0.07
0.08 | 76.4
2.73
4.3
2.1
152
0.07
0.07 | 263.1
8.49
24
1.1
522
0.21
0.25 | 246.89
8.23
20
0.32
490
0.21
0.23 | 958.60
30.9
80
1.0
1,900
0.78
0.90 | 176.32
5.88
20
0.02
350
0.15
0.16 | 643.81
20.8
132
0.71
1,280
0.52
0.60 | 40.52
1.31
2.7
0.05
80
0.03
0.04 | 35.79
1.19
1.8
0.67
71
0.03
0.03 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 21.1
127
(1990)
0.000
(1991) | DNTHLY MI
18.5
93.1
(1986)
0.003
(1991) | EAN DATA
18.1
51.1
(1986)
0.000
(1990) | FOR WATE
17.8
44.7
(1993)
0.31
(1990) | 30.7
97.8
(1994)
0.71
(1990) | 1984 - 2003
28.9
71.2
(1986)
0.41
(1990) | 36.5
145
(1993)
0.000
(1990) | 21.8
56.0
(1996)
0.006
(1990) | 29.3
105
(1996)
0.014
(1990) | 11.3
53.7
(1993)
0.025
(1990) | 5.03
32.6
(1995)
0.011
(1991) | 15.2
110
(1989)
0.020
(1990) | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | | | | 5,246
14
198
(
(
10,410
2
33 | 3. Jun
0.07 May
0.24 Jul
0.36 | 5
27 | 2,77
13
15
5,50 | 0.02 Jur
0.35 Jur
51 Ju
7.18 Ju | YEAR 1 16 1 18 1 23 1 16 1 16 | 21.
42.
7.
406
0.
0.
473
8.
15,270
0.
7.
58 | 6
59
Fe
00 (a)Jun 2
00 (b)No
Fe
35 Au
53
20 | 1993
2003
eb 22, 1994 | ⁽a) Also occurred many days during 1990 and 1991 water years (lake drawn down for lake rehabilitation program)(b) Also occurred in 1991 water year ⁽e) Estimated #### 05431022 DELAVAN LAKE OUTLET AT BORG ROAD NEAR DELAVAN, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- October 1983 to current year. PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: Water years 1984-85, 1990-91. TOTAL-PHOSPHORUS DISCHARGE: October 1983 to current year. INSTRUMENTATION.--Automatic pumping sampler from October to December 1983. Manual samples collected from January 1984 to present. REMARKS .-- Records good. COOPERATION .-- Observer furnished by Delavan Lake Sanitary District. #### EXTREMES FOR PERIOD OF RECORD - SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 238 mg/L, Feb. 22, 1985; minimum observed, 1 mg/L, on many days. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 29 tons, Feb. 25, 1985; minimum daily, 0.00 ton, on many days during 1990 and 1991 water years. DISSOLVED CHLORIDE CONCENTRATIONS: Maximum observed, 71 mg/L, June 5, 1995; minimum observed, 40 mg/L, July 5, 1995. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 6.00 mg/L, Jan. 5, 1990; minimum observed, <0.01 mg/L, Mar. 9-10, 1990, several days during 1992, 1994, and 1995 water years, and Oct. 2, 1995. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 585 lb, Feb. 22, 1994; minimum daily, 0.00 lb, Aug. 9, 13, 1987, and many days during 1990, 1991, and 1994 water years, Dec. 4, 1994, July 10-11, 1995, Oct. 1-5, 1995, and Sept. 27, 1996. PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.20 mg/L, June 26; minimum observed, 0.02 mg/L, July 18, 21. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 28.4 lb, July 16; minimum daily, 0.02 lb, June 18 and Aug. 15. #### DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG SEP 0.69 0.69 0.900.64 0.95 0.52 1.49 4 59 12.0 5 94 0.290.18 0.21 2 0.740.69 0.96 0.62 0.91 0.52 1.73 6.64 9.03 3.32 0.28 3 0.91 0.66 0.70 0.57 0.66 0.53 2.20 6.58 8.80 2.27 0.18 0.35 4 0.70 0.70 0.87 0.57 0.57 0.54 2.62 6.56 13.9 1.75 0.14 0.30 5 5.26 0.70 0.91 0.53 0.58 0.53 3.13 7.01 15.0 1.16 0.15 0.43 6 5.10 0.59 0.85 0.49 0.61 0.55 3.31 5.86 10.1 1.47 0.14 0.42 2.01 0.64 0.79 0.61 0.67 0.77 2.95 5.97 7.16 3.92 0.09 0.44 0.70 0.87 8 0.72 0.65 0.68 0.67 2.62 16.7 11.1 4.80 0.45 0.30 2.51 24.9 0.71 0.68 0.73 0.68 0.65 0.88 25.2 0.69 0.28 10 0.73 0.59 0.71 0.62 0.66 0.87 2.54 21.1 18.2 23.6 0.68 0.37 0.94 0.70 0.71 0.51 0.90 22.5 7.38 9.11 0.36 0.33 11 0.66 2.64 3.07 0.96 0.50 0.89 2.79 23.2 0.63 0.63 0.66 0.57 0.17 0.44 12 13 0.56 0.57 0.85 0.49 0.66 0.92 2.88 23.5 2.150.73 0.15 0.22 14 0.61 0.73 0.65 0.59 0.65 0.98 1.05 24 9 2 27 0.96 0.07 0.18 15 0.63 0.74 0.55 0.60 0.61 0.96 0.12 26.2 1.41 21.2 0.02 0.21 16 0.68 0.81 0.62 0.56 0.61 2.56 0.12 17.2 1.25 0.25 0.21 0.64 0.82 0.60 0.55 0.61 5.31 0.09 7.94 0.39 19.0 0.42 0.22 18 0.89 0.73 0.59 0.54 0.61 6.40 0.09 6.30 e0.02 7.11 0.35 0.20 0.98 0.50 19 1.05 0.61 0.63 6.33 0.06 6.65 e3.53 2.86 0.61 0.14 20 0.93 1.20 0.59 0.50 0.64 6.05 0.07 6.96 3.49 1.83 0.86 0.14 0.77 0.59 21 0.80 0.57 0.51 5.90 0.47 7.03 1.80 1.00 0.74 0.13 22 0.66 0.92 0.59 0.52 0.52 5.73 0.61 0.69 7.43 1.73 1.03 0.18 23 0.50 0.52 5.49 1.07 0.59 4.88 0.73 0.63 0.53 0.66 0.18 0.6724 0.58 0.42 0.52 5.28 2.97 0.63 1.08 0.67 0.55 0.11 0.69 0.1925 0.44 0.32 0.97 0.58 0.51 1.72 0.92 2.53 0.64 0.18 0.69 0.27 26 0.70 0.83 0.55 0.45 0.51 0.33 1.10 1.84 0.16 0.38 0.62 0.18 2.7 0.66 0.83 0.56 0.46 0.66 0.58 1.20 0.98 0.16 0.46 0.46 0.21 28 0.63 0.91 0.58 0.74 0.59 0.67 1.29 0.63 0.22 0.43 0.35 0.19 29 0.63 0.96 0.60 1.10 0.57 0.57 2.54 0.34 0.37 0.16 0.20 30 0.69 0.90 0.64 1.29 ---0.23 0.39 0.88 4.79 0.37 0.66 0.19 31 0.70 0.64 1.11 1.01 0.86 0.41 0.51 65.39 42.90 304.13 160.45 170.26 12.46 7.47 WATER YEAR 2003 TOTAL 877.26 23.89 21.77 18.89 17.69 31.96 TOTAL e Estimated # 05431022 DELAVAN LAKE OUTLET AT BORG ROAD NEAR DELAVAN, WI—Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | Instan- | | Phos- | |-----------|----------------|----------|----------|--------------| | | | taneous | Sam- | phorus, | | | | dis- | pling | water, | | | | charge, | method, | unfltrd | | Date | Time | cfs | code | mg/L | | | | (00061) | (82398) | (00665) | | OCT 2002 | | | | | | 02 | 0830 | 1.9 | 10 | 0.07 | | 05 | 1335 | 25 | 10 | 0.09 | | 07 | 0845 | 13 | 10 | 0.05 | | NOV | 0010 | 2.6 | 10 | 0.05 | | 04
DEC | 0810 | 2.6 | 10 | 0.05 | | 02 | 0825 | 2.2 | 10 | 0.08 | | 13 | 1500 | 3.1 | 10 | 0.08 | | JAN 2003 | 1300 | 5.1 | 10 | 0.03 | | 29 | 1610 | 5.6 | 10 | E.04 | | MAR | | | | | | 18 | 0955 | 24 | 10 | 0.05 | | APR | | | | | | 07 | 0900 | 18 | 10 | E.03 | | 11 | 0905 | 16 | 10 | E.03 | | MAY | | | | | | 01 | 0825 | 1.8 | 10 | E.04 | | 02 | 0800 | 31 | 10 | E.04 | | 06 | 0805 | 31 | 10 | E.04 | | 08 | 0810 | 31 | 10 | 0.05 | | 09 | 0855 | 73 | 10 | 0.07 | | 10 | 0905 | 74 | 10 | 0.05 | | 11
15 | 0910
1100 | 69
81 | 10
10 | 0.06
0.06 | | JUN | 1100 | 01 | 10 | 0.00 | | 02 | 0845 | 26 | 10 | 0.15 | | 08 | 0925 | 7.0 | 10 | 0.17 | | 09 | 1045 | 24 | 10 | 0.18 | | 26 | 1010 | 0.17 | 10 | 0.20 | | JUL | | | | | | 07 | 0920 | 3.1 | 10 | 0.10 | | 09 | 0845 | 11 | 10 | E.09 | | 10 | 0850 | 80 | 10 | 0.07 | | 11 | 0855 | 50 | 10 | 0.06 | | 12 | 0705 | 1.5 | 10 | 0.06 | | 15 | 1340 | 121 | 10 | 0.06 | | 16 | 0915 | 135 | 10 | 0.04 | | 17 | 0855 | 121 | 10 | E.03 | | 18 | 0955 | 114 | 10 | E.02 | | 19 | 0915 | 23 | 10 | E.03 | | 21 | 0845 | 12 | 10 | E.02 | | 28
AUG | 1120 | 1.7 | 10 | 0.05 | | 04 | 1015 | 0.42 | 10 | 0.06 | | 18 | 1013 | 1.5 | 10 | 0.06 | | SEP | 1030 | 1.5 | 10 | 0.00 | | 02 | 1135 | 0.51 | 10 | 0.05 | | 08 | 1135 | 1.0 | 10 | 0.06 | | 15 | 0945 | 0.62 | 10 | 0.04 | | | · - | | - | | ## 05431032 TURTLE CREEK AT DELAVAN, WI $LOCATION.--Lat~42^{\circ}38'13'', long~88^{\circ}39'27'', in~NW~\frac{1}{4}~NW~\frac{1}{4}~sec.18, T.2~N., R.16~E., Walworth~County, Hydrologic~Unit~07090001, on~left~bank~0.1~mi~downstream~from~bridge~on~County~Highway~P,~0.7~mi~northwest~of~Post~Office~at~Delavan.$ DRAINAGE AREA.--83.3 mi², of which 2.33 mi² is noncontributing. PERIOD OF RECORD.--June 1996 to current year. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 873.00 ft above NGVD of 1929 (levels by U.S. Geological Survey). REMARKS.--Records good (see page 11). Some seasonal regulation caused by dams used to maintain levels of Comus and Delavan Lakes and Delavan Millpond. Gage-height telemeter at station. | winipe | Jiiu. Gage-i | neight teleme | at station | 1. | | | | | | | | | |---|--|--|--|--|---|---|---|--|---|--|--|--| | | | DISCH | ARGE, CUE | BIC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 T | TO SEPTEN | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 26
63
33
32
33 | 19
19
20
20
20 | 17
18
17
17 | 17
17
16
16
17 | 19
19
19
18
16 | 16
16
16
16
17 | 28
29
29
33
34 | 48
62
59
58
71 | 28
35
24
31
31 |
14
14
12
15
23 | 11
11
17
15
14 | 8.5
7.9
7.8
8.1
8.1 | | 6
7
8
9
10 | 39
34
25
23
23 | 20
19
19
19
20 | 16
16
16
16
16 | 17
17
17
18
17 | 18
17
17
17
17 | 17
17
18
17
17 | 37
36
32
31
31 | 63
66
84
132
122 | 29
23
28
33
36 | 21
22
41
57
80 | 13
12
12
13
13 | 7.8
7.9
7.2
6.8
6.6 | | 11
12
13
14
15 | 21
21
20
19
21 | 20
20
19
19
20 | 17
17
17
17
17 | 16
16
16
16
16 | 16
16
16
16
16 | 18
19
19
22
24 | 32
32
32
27
19 | 135
122
114
112
107 | 27
19
18
17
16 | 71
34
21
17
125 | 13
12
11
11 | 6.6
11
11
23
14 | | 16
17
18
19
20 | 19
20
21
21
21 | 19
18
18
19
20 | 17
17
25
26
24 | 16
16
16
16
16 | 15
16
15
16
16 | 32
52
58
54
44 | 22
20
20
21
22 | 94
59
41
32
33 | 14
14
12
12
14 | 139
146
120
64
33 | 11
11
11
11
11 | 13
11
11
11
10 | | 21
22
23
24
25 | 20
20
20
20
20
25 | 21
19
20
20
20 | 22
20
18
18
17 | 15
15
15
15
15 | 17
17
17
17
16 | 41
41
41
41
32 | 24
26
24
24
25 | 32
31
28
22
21 | 13
11
11
10
17 | 23
18
18
16
13 | 12
12
11
11
9.9 | 10
12
11
11
10 | | 26
27
28
29
30
31 | 23
22
22
21
20
20 | 18
18
18
18
19 | 17
17
17
17
17 | 15
15
16
17
18
19 | 16
16
16
 | 21
23
26
26
24
25 | 24
23
23
22
26 | 20
16
20
19
21
24 | 15
12
12
12
11 | 12
13
13
12
12
12 | 9.1
9.3
8.6
9.4
8.3
8.2 | 11
11
11
11
10 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 768
24.8
63
19
0.30
0.34 | 578
19.3
21
18
0.23
0.26 | 557
18.0
26
16
0.22
0.25 | 504
16.3
19
15
0.20
0.23 | 467
16.7
19
15
0.20
0.21 | 850
27.4
58
16
0.33
0.38 | 808
26.9
37
19
0.32
0.36 | 1,868
60.3
135
16
0.72
0.83 | 585
19.5
36
10
0.23
0.26 | 1,231
39.7
146
12
0.48
0.55 | 352.8
11.4
17
8.2
0.14
0.16 | 306.3
10.2
23
6.6
0.12
0.14 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1996 - 2003 | , BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 35.9
74.1
(2002)
16.2
(1998) | 32.8
56.3
(2002)
17.2
(1998) | 32.7
48.2
(2002)
18.0
(2003) | 40.0
72.4
(1999)
16.3
(2003) | 74.0
122
(2001)
16.7
(2003) | 59.9
103
(2001)
27.4
(2003) | 74.3
106
(1999)
26.9
(2003) | 60.8
91.8
(2000)
41.8
(2002) | 91.3
171
(1996)
19.5
(2003) | 33.1
62.6
(2000)
16.5
(2002) | 26.4
68.3
(1998)
11.4
(2003) | 32.9
72.7
(2001)
10.2
(2003) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | ALENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 199 | 06 - 2003 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | 14,727.1
40.3
282 Jun 6
9.1 Jul 25
12 Jul 24
0.48
6.58
70
25 | | | 14 22 | 8,875.1 24.3 146 Jul 17 6.6 Sep 10,11 7.3 Sep 5 239 Jul 15 2.91 Jul 15 6.5 Sep 9-12 0.29 3.96 40 | | | 48.6 61.2 24.3 2003 404 Jun 15, 1999 6.6 Sep 10,11, 2003 7.3 Sep 5, 2003 493 Feb 21, 1997 3.78 Feb 21, 1997 6.5 Sep 9-12, 2003 0.58 7.92 | | | | 90 PERC | D PERCENT EXCEEDS 25 18 32
D PERCENT EXCEEDS 16 11 16 | | | | | | | | | | | | ### 05431486 TURTLE CREEK AT CARVERS ROCK ROAD NEAR CLINTON, WI LOCATION.--Lat 42°35′50″, long 88°49′45″, in SE 1 /₄ SW 1 /₄ sec.27, T.2 N., R.14 E., Rock County, Hydrologic Unit 07090001, on left bank 25 ft downstream from bridge on Carvers Rock Road, 3.3 mi northeast of Clinton, 13 mi northeast of Beloit, and 17.8 mi upstream from mouth. DRAINAGE AREA.--199 mi², of which 2.33 mi² is noncontributing. PERIOD OF RECORD.--September 1939 to current year. Prior to January 1980, all records published as "Turtle Creek near Clinton" (05431500). REVISED RECORDS.--WSP 955: 1940. WSP 1308: 1950(M). WDR WI-71-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 823 ft above NGVD of 1929, from topographic map. Prior to January 17, 1940, non-recording gage, and January 17, 1940 to December 31, 1979, water-stage recorder at site 1.8 mi downstream at a different datum. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Some seasonal regulation caused by dams used to maintain levels of Comus and Delavan Lakes and Delavan Millpond. Gage-height telemeter at station. | manne | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | |---|--|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------|---------------|---------------|---------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 81 | 79
77 | 72 | 71 | e72 | e62 | 85 | 121 | 106 | 51 | 57 | 40 | | 2 3 | 134
161 | 77
76 | e72
e72 | 71
71 | e72
e72 | e62
e60 | 85
84 | 125
117 | 98
93 | 52
53 | 55
57 | 39
37 | | 4 | 123 | 75 | e70 | 71 | e68 | e62 | 86 | 111 | 85 | 52 | 70 | 35 | | 5 | 158 | 77 | e68 | 71 | e63 | e62 | 93 | 182 | 87 | 74 | 63 | 35 | | 6
7 | 118
107 | 77
75 | e66
e66 | 70
69 | e68
e66 | e62
64 | 90
92 | 160
135 | 86
81 | 94
89 | 58
56 | 35
34 | | 8 | 95 | 75 | e66 | 71 | e66 | 65 | 88 | 145 | 83 | 91 | 56 | 34 | | 9
10 | 84
81 | 75
73 | e66
e66 | 72
66 | e66
e65 | 60
e60 | 83
85 | 335
286 | 85
87 | 148
142 | 55
52 | 34
34 | | | | | | | | | | | | | | | | 11
12 | 79
78 | 72
70 | e66
e68 | e66
e66 | e63
e62 | e60
66 | 86
85 | 355
292 | 86
75 | 140
116 | 52
53 | 34
38 | | 13 | 77 | 71 | e72 | e66 | e62 | 68 | 84 | 226 | 69 | 83 | 50 | 54 | | 14
15 | 75
74 | 74
75 | e72
71 | e66
e66 | e62
e62 | 76
106 | 83
76 | 222
281 | 65
62 | 68
449 | 49
49 | 58
67 | | 16 | 76 | 74 | 70 | e66 | e62 | 110 | 72 | 220 | 59 | 397 | 47 | 47 | | 17 | 75 | 70 | 70 | e66 | e62 | 113 | 74 | 173 | 56 | 256 | 47 | 44 | | 18
19 | 80
80 | 69
77 | 83
113 | e66
e66 | e62
e64 | 123
114 | 70
72 | 130
114 | 56
56 | 228
173 | 44
44 | 42
41 | | 20 | 78 | 77 | 96 | e66 | e66 | 111 | 78 | 117 | 54 | 116 | 44 | 41 | | 21 | 79 | 84 | 87 | e65 | e66 | 102 | 76 | 108 | 55 | 138 | 44 | 40 | | 22
23 | 76
74 | 83
81 | 80
e76 | e64
e64 | e68
e64 | 99
98 | 76
75 | 99
93 | 54
52 | 103
80 | 44
43 | 43
44 | | 24 | 75 | e78 | e74 | e64 | e63 | 98 | 73 | 85 | 51 | 73 | 42 | 41 | | 25 | 85 | 78 | 74 | e64 | e62 | 99 | 72 | 78 | 55 | 67 | 41 | 40 | | 26
27 | 89
82 | 73
72 | 74
74 | e64
e64 | e60
e62 | 84
81 | 71
70 | 74
72 | 86
69 | 62
59 | 41
41 | 41
44 | | 28 | 82 | 72 | 72 | e66 | e62 | 90 | 69 | 68 | 58 | 60 | 40 | 43 | | 29
30 | 79
77 | 73
73 | 72
74 | e68
e69 | | 102
89 | 69
76 | 78
74 | 56
53 | 59
57 | 41
40 | 43
42 | | 31 | 76 | | 74 | e72 | | 83 | | 129 | | 59 | 39 | | | TOTAL | 2,788 | 2,255 | 2,296 | 2,087 | 1,812 | 2,591 | 2,378 | 4,805 | 2,118 | 3,689 | 1,514 | 1,244 | | MEAN
MAX | 89.9
161 | 75.2
84 | 74.1
113 | 67.3
72 | 64.7
72 | 83.6
123 | 79.3
93 | 155
355 | 70.6
106 | 119
449 | 48.8
70 | 41.5
67 | | MIN | 74 | 69 | 66 | 64 | 60 | 60 | 69 | 68 | 51 | 51 | 39 | 34 | | CFSM
IN. | 0.46
0.53 | 0.38
0.43 | 0.38
0.43 | 0.34
0.39 | 0.33
0.34 | 0.42
0.49 | 0.40
0.45 | 0.79
0.91 | 0.36
0.40 | 0.61
0.70 | 0.25
0.29 | 0.21
0.24 | | | | | | FOR WATE | | | | | | 0.70 | 0.2 | 0.2 | | MEAN | 103 | 109 | 104 | 107 | 144 | 223 | 177 | 131 | 127 | 98.4 | 86.8 | 96.3 | | MAX
(WY) | 312
(1974) | 388
(1986) | 343
(1983) | 315
(1946) | 518
(1949) | 664
(1959) | 758
(1973) | 486
(1973) | 407
(1993) | 458
(1978) | 278
(1972) | 482
(1972) | | MIN | 30.1 | 37.9 | 34.5 | 24.5 | 30.4 | 55.4 | 52.7 | 31.6 | 35.2 | 24.8 | 21.5 | 19.6 | | (WY) | (1958) | (1950) | (1965) | (1959) | (1959) | (1954) | (1958) | (1958) | (1965) | (1958) | (1958) | (1958) | | | RY STATIS | TICS | | FOR 2002 CA | | YEAR | | 3 WATER | YEAR | WATER | YEARS 19 | 39 - 2003 | | ANNUAI
ANNUAI | | | | 45,604
125 | | | 29,57
8 | 31.0 | | 1 | 125 | | | HIGHEST | ΓANNUAL | | | | | | _ | | | | 289
43.0 | 1973
1958 | | | Γ ANNUAL
Γ DAILY M | | | 818 | Jun | 5 | 44 | .9 Ju | 1 15 | 6,4 | | pr 21, 1973 | | | DAILY M | | T T N # | 59 | | 11,12 | | | 7-11 | | | ep 13, 1958 | | | JM PEAK F | AY MINIM
LOW | UM | 62 | Aug | O | 62 | | p 5
115 | (a)16,5 | | ep 9, 1958
pr 21, 1973 | | MAXIMUM PEAK STAGE | | | | | | 5.70 Ju | 1 15 | (b) |)12.85 A | pr 21, 1973 | | | | INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (CFSM) 0.64 | | | | | (c)2 | .5 ма
0.41 | r 9,10 | (| c)8.0 D
0.64 | ec 29, 1956 | | | | ANNUAI | L RUNOFF | (INCHÉS) |
 8. | .63 | | | 5.59 | | _ | 8.67 | | | | ENT EXCE
ENT EXCE | | | 196
109 | | | 11
7 | 5
'2 | | | 230
86 | | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | | 66 | | | 4 | 4 | | | 44 | | - (a) From rating curve extended above 6,500 ft³/s on basis of slope-area measurement of peak flow - (b) Site and datum then in use - (c) Result of freezeup - (e) Estimated due to ice effect or missing record ### 05432500 PECATONICA RIVER AT DARLINGTON, WI $\begin{array}{l} \text{LOCATION.--Lat } \ 42^\circ 40^\circ 40^\circ 40^\circ 1, \\ \text{long } \ 90^\circ 07^\circ 07^\circ, \\ \text{in NE} \ \frac{1}{4} \text{ sec. 3, T.2 N., R.3 E., Lafayette County, Hydrologic Unit } 07090003, \\ \text{on right bank in Darlington, } 0.3 \\ \text{mi downstream from Vinegar Branch, and } 3.6 \\ \text{mi upstream from Otter Creek.} \end{array}$ DRAINAGE AREA.--273 mi². PERIOD OF RECORD .-- September 1939 to current year. REVISED RECORDS .-- WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 802.42 ft above NGVD of 1929. Prior to Dec. 19, 1939, nonrecording gage at same site and datum. | REMAR | KSRecord | ls good exce | pt those for e | stimated dai | ly discharge | s, which are | poor (see pa | ge 11). Gag | e-height tele | meter at stat | ion. | | |--|--|--|--|--|--|---|---|--|--|--|--|--| | | | DISCH | ARGE, CUB | IC FEET PE | | O, WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5
6
7
8 | 155
190
208
355
544
250
200
181 | 133
131
131
131
133
134
132
132 | 84
e120
e110
e110
e110
e100
e100
e100 | 77 e100 e100 e100 111 106 98 111 | e80
e82
e81
e81
e81
e81
e81 | e86
e86
e84
e81
e82
e82
e83
e82 | 101
102
101
102
104
99
100
101 | 689
375
217
181
191
184
171
190 | 124
118
118
119
114
112
122
128 | 90
87
86
89
113
116
113
125 | 71
74
74
80
74
72
69
68 | 61
60
58
57
57
57
57 | | 9
10 | 172
164 | 133
134 | e100
108 | 107
80 | e81
e81 | e80
e79 | 99
106 | 244
245 | 129
117 | 184
132 | 66
65 | 55
54 | | 11
12
13
14
15 | 159
154
150
144
144 | 133
131
127
127
125 | 113
115
119
118
118 | 102
e100
e97
e90
e87 | e81
e81
e81
e81 | e79
e100
e230
e280
e230 | 106
104
100
97
96 | 326
386
242
258
344 | 114
112
109
106
100 | 116
108
99
93
91 | 64
64
63
63
62 | 54
55
81
223
192 | | 16
17
18
19
20 | 144
142
147
148
141 | 123
122
122
129
129 | 111
118
133
158
131 | e84
e82
e80
e78
e78 | e81
e81
e84
e88
e100 | 211
176
144
129
131 | 97
102
98
99
118 | 257
221
201
190
180 | 96
93
92
92
88 | 91
87
85
81
80 | 62
61
59
59
58 | 101
79
73
69
68 | | 21
22
23
24
25 | 138
136
132
133
148 | 127
126
123
122
119 | 113
105
79
e100
e100 | e77
e77
e77
e76
e76 | e140
e220
e170
e100
e98 | 135
121
115
112
111 | 115
103
94
91
90 | 167
157
160
158
147 | 86
86
85
87
95 | 82
82
78
76
75 | 61
61
58
57
57 | 67
70
73
70
67 | | 26
27
28
29
30
31 | 162
148
144
145
140
136 | 104
98
117
142
118 | e100
109
114
109
117
105 | e76
e77
e77
e77
e78
e78 | e85
e80
e85
 | 106
107
117
120
108
100 | 87
85
84
84
109 | 140
134
131
128
126
138 | 126
107
101
123
100 | 74
74
76
74
72
72 | 58
58
55
78
83
66 | 65
67
68
66
64 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 5,454
176
544
132
0.64
0.74 | 3,788
126
142
98
0.46
0.52 | 3,427
111
158
79
0.40
0.47 | 2,714
87.5
111
76
0.32
0.37 | 2,627
93.8
220
80
0.34
0.36 | 3,787
122
280
79
0.45
0.52 | 2,974
99.1
118
84
0.36
0.41 | 6,878
222
689
126
0.81
0.94 | 3,199
107
129
85
0.39
0.44 | 2,901
93.6
184
72
0.34
0.40 | 2,020
65.2
83
55
0.24
0.28 | 2,248
74.9
223
54
0.27
0.31 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 132
302
(1985)
39.9
(1965) | ONTHLY M
141
674
(1962)
43.8
(1965) | EAN DATA
123
338
(1983)
34.6
(1959) | FOR WATI
155
546
(1960)
31.6
(1959) | ER YEARS
215
738
(1953)
38.3
(1959) | 1939 - 2003,
364
951
(1959)
60.9
(1957) | 245
731
(1959)
69.8
(1957) | R YEAR (W
204
780
(1960)
51.1
(1958) | 247
810
(2000)
42.2
(1965) | 203
1,796
(1993)
32.7
(1965) | 152
610
(1993)
42.1
(1958) | 142
487
(1942)
38.3
(1958) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | FOR 2002 CALENDAR YEAR 68,215 187 1,290 Jun 5 (a)79 (b)Dec 23 101 Dec 21 0.68 9.30 261 163 122 | | | FOR 2003 WATER YEAR 42,017 115 689 May 1 54 Sep 10,11 55 Sep 6 845 May 1 52 Dec 23 0.42 5.73 171 100 67 | | | 11,2
(d)22,(
(a) | 24 (c)Ju
25 Ju
000 Ju
20.71 Ju | 9 - 2003
1993
1958
11 16, 1950
11 25, 1965
11 24, 1965
11 16, 1950
10 16, 1950
10 1966 | | ⁽a) Result of freezeup (b) Also occurred Jan. 10 (as result of freezeup) and Sept. 12 (c) Also occurred July 26, 27, 30, 1965 (d) From rating curve extended above 11,000 ft³/s on basis of slope-area determination of peak flow (e) Estimated due to ice effect or missing record ### 05433000 EAST BRANCH PECATONICA RIVER NEAR BLANCHARDVILLE, WI $LOCATION.--Lat\ 42^{\circ}47'08"\ long\ 89^{\circ}51'40",\ in\ SE\ {}^{1}\!\!{}^{\prime}_{4}\ SE\ {}^{1}\!\!{}^{\prime}_{4}\ sec.\ 26,\ T.4\ N.,\ R.5\ E.,\ Lafayette\ County,\ Hydrologic\ Unit\ 07090003,\ on\ left\ bank\ at\ downstream\ side\ of\ bridge\ on\ State\ Highway\ 78,\ 1.8\ mi\ south\ of\ Blanchardville\ and\ 4.5\ mi\ upstream\ from\ Sawmill\ Creek.$ DRAINAGE AREA.--221 mi². PERIOD OF RECORD.--September 1939 to September 1986, October 1987 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 796.8 ft above NGVD of 1929. Prior to Dec. 20, 1939, nonrecording gage at bridge 50 ft upstream at same datum. REMARKS.--Records good except those for periods of discharge over 500 ft³/s, which are fair, and estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | C | C | DISCH | ARGE, CUB | IC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |--|--
--|--|--|--|---|--|---|--|---|---|--| | DAY 1 2 3 4 5 | OCT
113
126
137
188
261 | NOV
111
111
111
111
113 | DEC
e100
e100
e100
e100
e99 | JAN
e92
e100
e100
e99
e99 | FEB
e81
e82
e81
e82
e81 | MAR
e84
e84
e84
e84 | APR
102
101
100
102
105 | MAY
300
201
136
122
137 | JUN
98
97
97
96
93 | JUL
81
80
80
83
91 | AUG
92
79
79
81
78 | SEP 72 72 71 70 70 | | 6
7
8
9
10 | 147
130
124
122
119 | 115
112
113
112
113 | e99
e98
e98
e97
e100 | 98
95
101
100
e98 | e81
e82
e82
e82
e82 | e83
e82
e81
e81
e80 | 100
100
101
100
105 | 139
133
144
181
173 | 93
99
101
98
92 | 92
94
93
101
92 | 76
75
75
75
74 | 70
70
69
69
69 | | 11
12
13
14
15 | 118
117
115
112
115 | 112
110
108
109
107 | e110
e110
e110
e110
e100 | e95
e93
e91
e90
e89 | e82
e83
e83
e83
e84 | e88
e100
e230
e290
e200 | 105
103
101
100
99 | 225
227
165
168
216 | 92
91
91
88
86 | 90
91
85
83
83 | 73
74
74
73
73 | 69
70
90
178
135 | | 16
17
18
19
20 | 115
116
119
120
115 | 105
105
106
111
109 | 100
101
114
134
113 | e86
e84
e82
e80
e80 | e84
e84
e85
e89
e100 | 170
142
121
111
116 | 98
99
98
99
113 | 167
148
138
133
134 | 84
83
83
82
81 | 80
79
79
78
78 | 73
71
70
70
70 | 88
81
78
77
75 | | 21
22
23
24
25 | 114
113
111
112
120 | 108
107
106
106
103 | 106
103
e100
e100
e100 | e79
e79
e78
e78
e78 | e150
e200
e160
e130
e100 | 115
108
105
104
103 | 109
99
95
94
94 | 123
118
117
114
110 | 81
80
83
89 | 80
80
77
76
76 | 74
71
70
70
69 | 75
77
77
75
74 | | 26
27
28
29
30
31 | 129
119
117
117
115
113 | 96
e120
e110
e110
e100 | e100
e100
e100
99
106
102 | e77
e77
e77
e79
e79
e80 | e90
e86
e84
 | 100
102
113
117
103
100 | 92
91
91
90
103 | 107
104
103
101
101
101 | 92
84
89
99
83 | 76
76
76
76
75
77 | 72
70
68
87
88
71 | 74
74
74
73
72 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3,909
126
261
111
0.57
0.66 | 3,270
109
120
96
0.49
0.55 | 3,209
104
134
97
0.47
0.54 | 2,713
87.5
101
77
0.40
0.46 | 2,673
95.5
200
81
0.43
0.45 | 3,565
115
290
80
0.52
0.60 | 2,989
99.6
113
90
0.45
0.50 | 4,586
148
300
101
0.67
0.77 | 2,686
89.5
101
80
0.41
0.45 | 2,558
82.5
101
75
0.37
0.43 | 2,315
74.7
92
68
0.34
0.39 | 2,388
79.6
178
69
0.36
0.40 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MO
114
252
(1985)
54.9
(1965) | ONTHLY M
119
311
(1962)
55.8
(1965) | EAN DATA
110
278
(1983)
47.6
(1959) | 126
354
(1960)
46.4
(1959) | ER YEARS
166
597
(1948)
52.1
(1959) | 1939 - 2003
256
574
(1950)
62.7
(1957) | 198
547
(1959)
71.5
(1957) | R YEAR (W
166
584
(1973)
54.5
(1958) | 174
450
(2000)
59.6
(1958) | 153
885
(1993)
48.2
(1958) | 121
303
(1993)
43.7
(1958) | 119
332
(1981)
44.6
(1958) | | ANNUA: ANNUA: HIGHES' LOWES' HIGHES' LOWES' ANNUA: MAXIMI INSTAN ANNUA: ANNUA: 10 PERC 50 PERC | T ANNUAI | MEAN MEAN MEAN MEAN MEAN MEAN MEAN MINIM M | IUM | | Jun
6 Nov
Dec
0.64
3.67 | 5
26 | 36,86
10
30
6
6
(c) | 00 May
58 Aug
59 Sep
(c)
77.48 Ma
0.46
6.20 | , 1 | 15:
33:
7,
7,56:
4
4:
(d)11,70:
1(a)1: | 8
0.4
0 Fe
1 (b)Aug 1
2 Oc
0 Fe
5.54 Ju
8 No
0.69
9.032
5 | 199 - 2003
1993
1958
b 28, 1948
8, 19,1958
ct 1, 1958
b 28, 1948
al 6, 1993
v 29, 1966 | ⁽a) Result of freezeup ⁽b) Also occurred Sept. 1, 22, 23, 29, Oct. 2, 6, 1958, and Dec. 19, 20, 1964 ⁽c) Ice affected ⁽d) Gage height, 15.74 ft ⁽e) Estimated due to ice effect or missing record ### 05434500 PECATONICA RIVER AT MARTINTOWN, WI LOCATION.--Lat 42°30'34", long 89°47'58", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.32, T.1 N., R.6 E., Green County, Hydrologic Unit 07090003, on right bank about 400 ft downstream from highway bridge in Martintown, 0.3 mi upstream from Wisconsin-Illinois State line and 8.8 mi downstream from Skinner Creek. DRAINAGE AREA.--1,034 mi². PERIOD OF RECORD .-- October 1939 to current year. REVISED RECORDS.--WSP 1308: 1949-50(M). WDR WI-71-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 757.83 ft above NGVD of 1929. Prior to Jan. 6, 1940, nonrecording gage at same site and datum. Auxiliary wire-weight gage 1.2 mi downstream, at same datum. REMARKS.--Records good except those for periods of discharge above 2,000 ft³/s, which are fair, and estimated daily discharges, which are poor (see page 11). Diurnal fluctuation at low flow may occur from powerplant operations in Argyle, 28.2 mi upstream. Gage-height telemeter at station. | 11). | | | | _ | R SECONE |), WATER Y
LY MEAN V | EAR OCTO | - | | MBER 2003 | at satisfies | | |--|---|--|---|---|---|---|--|--|---|--|---|---| | DAY 1 2 3 4 5 | OCT
825
732
800
880
1,290 | NOV
545
536
536
539
538 | DEC
e440
e430
e430
e430
e430 | JAN
451
e370
e410
e410
e420 | FEB
e340
e340
e340
e340
e340 | MAR
e350
e350
e350
e350
e340 | APR 481 478 478 479 493 | MAY
728
1,410
1,310
915
812 | JUN
574
539
518
505
513 | JUL
440
406
390
389
423 | AUG
310
319
320
332
340 | SEP
291
272
269
267
260 | | 6 | 1,440 | 541 | e420 | e440 | e340 | e330 | 494 | 823 | 499 | 465 | 326 | 259 | | 7 | 1,130 | 541 | e420 | e430 | e340 | e330 | 483 | 792 | 497 | 460 | 313 | 258 | | 8 | 853 | 537 | e420 | e420 | e340 | e330 | 475 | 782 | 509 | 449 | 298 | 256 | | 9 | 737 | 530 | e420 | 445 |
e340 | e330 | 475 | 911 | 520 | 524 | 300 | 254 | | 10 | 689 | 530 | e420 | 438 | e340 | e330 | 480 | 1,030 | 518 | 588 | 293 | 252 | | 11 | 650 | 527 | e440 | 369 | e340 | e330 | 492 | 986 | 502 | 537 | 291 | 251 | | 12 | 622 | 521 | e470 | e400 | e340 | e360 | 493 | 928 | 489 | 478 | 288 | 253 | | 13 | 599 | 528 | e480 | e400 | e340 | e450 | 483 | 1,060 | 481 | 458 | 287 | 279 | | 14 | 579 | 519 | e490 | e400 | e330 | e600 | 472 | 946 | 474 | 428 | 285 | 403 | | 15 | 574 | 509 | e480 | e380 | e330 | e1,100 | 464 | 952 | 461 | 407 | 282 | 581 | | 16 | 568 | 502 | e460 | e370 | e330 | e1,000 | 460 | 1,010 | 447 | 394 | 279 | 611 | | 17 | 564 | 494 | e450 | e360 | e330 | e900 | 459 | 924 | 435 | 382 | 277 | 438 | | 18 | 565 | 490 | e470 | e350 | e350 | 755 | 459 | 811 | 434 | 366 | 273 | 331 | | 19 | 567 | 493 | e530 | e340 | e380 | 619 | 463 | 748 | 481 | 358 | 271 | 307 | | 20 | 572 | 504 | e570 | e340 | e420 | 580 | 479 | 814 | 440 | 353 | 263 | 302 | | 21 | 560 | 513 | e530 | e330 | e470 | 576 | 504 | 802 | 422 | 347 | 261 | 291 | | 22 | 547 | 505 | e460 | e330 | e530 | 568 | 508 | 708 | 413 | 348 | 264 | 288 | | 23 | 533 | 496 | e400 | e330 | e560 | 543 | 479 | 669 | 406 | 342 | 267 | 287 | | 24 | 533 | 491 | e330 | e330 | e600 | 520 | 453 | 655 | 402 | 340 | 263 | 289 | | 25 | 556 | 485 | e420 | e330 | e510 | 513 | 440 | 635 | 401 | 322 | 259 | 287 | | 26
27
28
29
30
31 | 590
612
598
577
568
559 | 474
430
390
500
536 | e420
e420
e430
e440
e450
472 | e330
e330
e330
e330
e330
e340 | e470
e400
e360
 | 499
483
505
568
551
508 | 432
421
405
406
416 | 601
579
559
545
540
562 | 457
468
458
443
461 | 330
312
316
316
323
316 | 259
261
262
266
278
318 | 281
279
280
281
277 | | TOTAL | 21,469 | 15,280 | 13,872 | 11,583 | 10,790 | 15,918 | 14,004 | 25,547 | 14,167 | 12,307 | 8,905 | 9,234 | | MEAN | 693 | 509 | 447 | 374 | 385 | 513 | 467 | 824 | 472 | 397 | 287 | 308 | | MAX | 1,440 | 545 | 570 | 451 | 600 | 1,100 | 508 | 1,410 | 574 | 588 | 340 | 611 | | MIN | 533 | 390 | 330 | 330 | 330 | 330 | 405 | 540 | 401 | 312 | 259 | 251 | | CFSM | 0.67 | 0.49 | 0.43 | 0.36 | 0.37 | 0.50 | 0.45 | 0.80 | 0.46 | 0.38 | 0.28 | 0.30 | | IN. | 0.77 | 0.55 | 0.50 | 0.42 | 0.39 | 0.57 | 0.50 | 0.92 | 0.51 | 0.44 | 0.32 | 0.33 | | STATIS' MEAN MAX (WY) MIN (WY) | TICS OF MO
542
1,226
(1987)
187
(1957) | ONTHLY M
588
2,429
(1962)
211
(1965) | EAN DATA
518
1,492
(1983)
162
(1959) | FOR WATE
581
2,049
(1960)
147
(1959) | ER YEARS
803
2,512
(1953)
182
(1959) | 1940 - 2003,
1,354
3,155
(1950)
259
(1957) | 969
2,943
(1960)
328
(1957) | R YEAR (W
821
3,200
(1973)
234
(1958) | 863
2,804
(2000)
233
(1965) | 790
5,190
(1993)
181
(1965) | 584
1,752
(1993)
167
(1958) | 575
1,920
(1965)
166
(1958) | | ANNUA ANNUA HIGHES LOWES HIGHES LOWES ANNUA MAXIM MAXIM INSTAN ANNUA ANNUA 50 PERC | UM PEAK I
UM PEAK S | MEAN MEAN MEAN EAN EAN SAY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | UM | | Jun
Dec
Dec | 7
24 | 173,07
47
1,44
25
25
1,51 | 74 Oct 10 Oct 11 Sep 10 May 8.66 May 17 19 0.46 | t 6
o 11
o 6
y 2 | 77
1,7
2
14,6
1
(a)1
15,1
(t) | 92
900 Ju
32 No
40 Ja
900 Ju
21.46 Ju
900.00 De
0.72
9.84 | 1993
1964
191 1, 1969
1907 7, 1949
191 1, 1969
191 1, 1969
191 1, 1969
191 1, 1939 | ⁽a) Ice affected ⁽b) Result of regulation ⁽e) Estimated due to ice effect or missing record ## 05435943 BADGER MILL CREEK AT VERONA, WI $LOCATION.--Lat\ 42^{\circ}58'37'', long\ 89^{\circ}32'22'', in\ NW\ {}^{1}\!\!{}^{\prime}_{4}\ sec. 22, T.6\ N., R.8\ E., Dane\ County,\ Hydrologic\ Unit\ 07090004, on\ left\ bank\ 60\ ft\ downstream\ of\ Bruce\ Street,\ 0.8\ mi\ southwest\ of\ intersection\ of\ State\ Highway\ 69\ and\ County\ Trunk\ Highway\ M,\ at\ Verona.$ DRAINAGE AREA.--20.3 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1996 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 930 ft above NGVD of 1929, from topographic map. REMARKS,--Records good (see page 11). Gage-height and water-quality telemeter at station. Effluent discharged into creek continuously at an average rate of 4.6 ft³/s (data provided by Madison Metropolitan Sewerage District). | | | DISCH | ARGE, CUI | BIC FEET PE | |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEM | MBER 2003 | | | |---|--|---|--|---|--|---|--|---|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.1
11
9.6
19 | 8.7
8.5
8.5
8.6
8.7 | 8.9
8.8
8.8
8.8 | 8.0
8.1
8.1
8.0
8.0 | 7.3
7.4
7.5
7.3
7.3 | 7.1
7.1
7.1
7.1
7.1 | 8.1
8.0
8.0
8.1
8.1 | 26
11
9.7
9.4
12 | 9.5
8.6
8.1
8.0
7.8 | 6.9
6.8
6.9
7.9
9.8 | 8.0
8.1
8.1
7.6
7.5 | 6.0
5.9
5.9
5.9
5.9 | | 6
7
8
9
10 | 10
9.3
8.9
8.7
8.9 | 8.8
8.9
8.8
8.8 | 8.6
8.7
8.6
8.6
8.6 | 8.0
8.1
8.1
8.1
8.1 | 7.3
7.3
7.3
7.2
7.3 | 7.1
7.2
7.1
7.0
7.1 | 8.0
8.1
8.3
8.3
8.4 | 11
13
11
13
10 | 7.7
7.6
7.6
7.0
6.9 | 11
12
12
10
9.9 | 7.4
7.1
6.9
6.8
6.8 | 5.7
5.8
5.8
5.9
5.8 | | 11
12
13
14
15 | 8.9
8.7
8.7
8.8
8.8 | 8.7
8.7
8.8
8.7
8.7 | 8.6
8.6
8.5
8.5 | 8.0
8.0
7.9
7.8
7.7 | 7.4
7.3
7.3
7.3
7.2 | 7.2
6.9
7.4
8.0
7.8 | 8.5
8.4
8.4
8.7
8.8 | 11
10
9.2
9.7
9.1 | 6.8
6.9
6.8
6.7
6.7 | 9.1
8.6
8.4
8.4
35 | 6.8
6.7
6.6
6.6
6.7 | 5.8
6.5
18
50
17 | | 16
17
18
19
20 | 8.7
8.5
8.7
8.5
8.5 | 8.7
8.7
8.9
8.9
9.1 | 8.5
8.4
10
8.8
8.5 | 7.7
7.7
7.7
7.7
7.6 | 7.3
7.4
7.4
7.4
7.6 | 7.6
7.6
7.4
7.6
7.7 | 8.8
8.8
8.8
9.4
9.3 | 8.7
8.6
8.6
9.4 | 6.7
6.6
6.5
6.4
6.3 | 16
10
8.7
8.3
8.2 | 6.5
6.5
6.5
6.5
6.5 | 8.5
6.8
6.3
6.0
5.8 | | 21
22
23
24
25 | 8.5
8.5
8.4
8.5
9.3 | 9.4
9.3
9.2
9.1
9.2 | 8.4
8.3
8.4
8.3
8.4 | 7.6
7.6
7.5
7.5
7.5 | 7.4
7.3
7.2
7.2
7.2 | 7.6
7.5
7.5
7.6
7.6 | 9.1
9.0
9.0
9.1
9.2 | 9.3
8.8
9.0
9.1
9.1 | 6.2
6.1
6.1
6.6
7.0 | 40
18
9.2
7.9
7.6 | 6.4
6.2
6.2
6.2
6.3 | 5.7
5.8
5.6
5.5
5.6 | | 26
27
28
29
30
31 | 8.6
8.5
8.7
8.7
8.8 | 9.1
9.1
9.1
9.1
9.0 | 8.3
8.2
8.3
8.5
8.5 | 7.4
7.5
7.4
7.4
7.5
7.3 | 7.2
7.2
7.2
 | 7.6
7.7
8.9
8.0
7.9
7.9 | 9.1
9.1
9.1
9.0
12 | 9.2
9.3
10
9.0
9.6
12 | 6.3
6.2
10
9.1
7.3 | 7.6
7.6
7.6
7.9
8.0
8.6 | 6.3
6.4
6.3
7.0
5.9
5.9 | 5.6
5.6
5.5
5.4 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 289.6
9.34
19
8.4
0.46
0.53 | 266.6
8.89
9.4
8.5
0.44
0.49 | 265.7
8.57
10
8.2
0.42
0.49 | 240.6
7.76
8.1
7.3
0.38
0.44 | 204.7
7.31
7.6
7.2
0.36
0.38 | 232.0
7.48
8.9
6.9
0.37
0.43 | 263.0
8.77
12
8.0
0.43
0.48 | 325.8
10.5
26
8.6
0.52
0.60 | 216.1
7.20
10
6.1
0.35
0.40 | 343.9
11.1
40
6.8
0.55
0.63 | 209.3
6.75
8.1
5.9
0.33
0.38 | 245.2
8.17
50
5.4
0.40
0.45 | | STATIST | CICS OF MO | ONTHLY M | EAN DATA | FOR WATI | ER YEARS | 1997 - 2003 | , BY WATE | R YEAR (W | YY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 8.70
12.5
(2002)
3.55
(1998) | 8.19
12.0
(1999)
3.28
(1998) | 7.33
10.1
(2002)
3.25
(1998) | 7.63
9.24
(2001)
3.67
(1998) | 10.4
17.7
(1997)
4.74
(1998) | 9.87
13.6
(1997)
7.30
(2000) | 11.0
19.3
(1999)
6.34
(1997) | 11.0
15.2
(2000)
6.39
(1997) | 14.0
29.8
(2000)
6.93
(1997) | 9.95
14.0
(1999)
7.94
(1997) | 10.3
19.7
(2001)
4.53
(1997) | 9.66
15.2
(2001)
3.76
(1997) | | ANNUAI ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI MAXIMI MAXIMI ANNUAI 10 PERC 50 PERC | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 20 PERCENT EXCEEDS | | | | ALENDAR .6 .2 Jun .2 Aug .3 Dec .50 .83 .6 .5 | 4
10,11 | 3,10
5 | 8.50
60 Sep
5.4 Sep
5.5
Sep
2 Sep | YEAR 2 14 2 30 2 24 2 14 2 14 | 2 | 2.9 Nov
3.1 Nov
466 Jui | 7 - 2003
2001
1997
g 2, 2001
v 23, 1997
v 21, 1997
n 2, 2000
n 2, 2000 | ⁽a) Also occurred Dec. 28 and 31 ### 05435943 BADGER MILL CREEK AT VERONA, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: November 1996 to current year. DISSOLVED OXYGEN: May 1998 to current year. INSTRUMENTATION.--Continuous water temperature recorder since November 1996. Dissolved-oxygen recorder since May 1998. REMARKS.--Records represent water temperature at sensor within 0.5°C. Effluent discharged continuously into creek after Aug. 28, 1998. #### EXTEMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum, 26.5°C, Aug. 20, 21, and 26, 2003; minimum 0.0°C on many days during winter periods of 1996-98 water years. DISSOLVED OXYGEN: Maximum, 24.9 mg/L, Mar. 29, 1999; minimum, 1.3 mg/L, Oct. 5, 1998. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 26.5°C, Aug. 20, 21, and 26; minimum 1.0°C, Jan. 23. DISSOLVED OXYGEN: Maximum, 21.8 mg/L, Apr. 14 and 15; minimum, 2.8 mg/L, Apr. 25. #### TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|----------------------------------|---------------------------------|---------------------------------|---|--|--|--|--|--| | | | ОСТОВЕ | 3 | N | OVEMBE | ER | Б | ECEMBE | ER | | JANUARY | <i>T</i> | | 1 | 18.5 | 16.5 | 17.5 | 11.0 | 8.0 | 9.5 | 8.0 | 5.0 | 6.5 | 7.0 | 5.5 | 6.5 | | 2 | 18.0 | 15.0 | 16.5 | 12.0 | 8.0 | 9.5 | 8.0 | 5.5 | 7.0 | 8.0 | 6.5 | 7.0 | | 3 | 15.5 | 14.5 | 15.0 | 11.5 | 8.0 | 10.0 | 7.5 | 5.0 | 6.0 | 8.0 | 5.5 | 6.5 | | 4 | 18.0 | 15.0 | 16.5 | 12.0 | 9.0 | 10.0 | 9.0 | 5.0 | 6.5 | 8.5 | 5.5 | 7.0 | | 5 | 16.5 | 13.5 | 15.0 | 11.0 | 9.5 | 10.5 | 8.0 | 5.0 | 6.5 | 9.0 | 7.5 | 8.0 | | 6 | 17.0 | 13.0 | 15.0 | 12.0 | 10.0 | 11.0 | 7.5 | 4.5 | 6.0 | 8.5 | 7.0 | 7.5 | | 7 | 15.0 | 11.5 | 13.0 | 12.5 | 9.0 | 11.0 | 9.0 | 7.0 | 7.5 | 9.0 | 6.5 | 7.5 | | 8 | 15.0 | 13.0 | 14.0 | 14.0 | 11.0 | 12.0 | 7.0 | 5.0 | 6.5 | 10.0 | 7.5 | 8.5 | | 9 | 16.5 | 13.0 | 14.5 | 14.5 | 11.5 | 13.0 | 7.5 | 4.0 | 5.5 | 8.5 | 6.0 | 7.5 | | 10 | 17.0 | 12.5 | 14.5 | 14.5 | 12.0 | 13.5 | 9.5 | 6.5 | 7.5 | 6.5 | 3.5 | 5.5 | | 11 | 17.5 | 13.0 | 15.0 | 12.0 | 10.5 | 11.0 | 9.5 | 6.0 | 8.0 | 5.5 | 3.0 | 4.0 | | 12 | 15.0 | 13.0 | 14.5 | 11.5 | 10.0 | 10.5 | 10.0 | 8.0 | 9.5 | 6.0 | 4.0 | 5.0 | | 13 | 14.0 | 11.0 | 12.5 | 12.5 | 9.0 | 10.5 | 10.0 | 8.5 | 9.5 | 6.5 | 4.0 | 5.0 | | 14 | 14.5 | 10.5 | 12.0 | 11.5 | 10.0 | 10.5 | 10.0 | 8.5 | 9.0 | 6.0 | 3.0 | 4.5 | | 15 | 14.5 | 11.0 | 12.5 | 10.5 | 9.0 | 10.0 | 10.5 | 8.0 | 9.0 | 6.0 | 3.0 | 4.0 | | 16 | 13.5 | 10.0 | 11.5 | 11.0 | 8.0 | 9.5 | 8.5 | 6.5 | 7.5 | 7.0 | 4.0 | 5.5 | | 17 | 12.5 | 11.0 | 11.5 | 10.0 | 7.5 | 8.5 | 8.5 | 7.5 | 8.0 | 6.0 | 3.5 | 4.5 | | 18 | 13.5 | 11.0 | 12.0 | 10.5 | 7.5 | 9.0 | 11.0 | 7.0 | 9.0 | 6.0 | 3.0 | 4.5 | | 19 | 12.5 | 11.0 | 12.0 | 11.5 | 8.5 | 10.0 | 9.5 | 8.0 | 9.0 | 6.0 | 3.0 | 4.5 | | 20 | 14.0 | 10.0 | 11.5 | 12.0 | 8.5 | 10.5 | 8.5 | 7.0 | 7.5 | 6.0 | 4.0 | 4.5 | | 21 | 13.5 | 11.5 | 12.5 | 10.5 | 9.5 | 10.0 | 8.0 | 6.0 | 7.0 | 5.5 | 3.0 | 4.0 | | 22 | 12.5 | 11.0 | 11.5 | 10.5 | 8.5 | 9.5 | 7.5 | 6.0 | 6.5 | 5.0 | 2.0 | 3.5 | | 23 | 12.5 | 10.5 | 11.0 | 11.0 | 8.5 | 9.5 | 7.0 | 5.5 | 6.0 | 4.5 | 1.0 | 2.5 | | 24 | 12.0 | 10.5 | 11.5 | 9.0 | 8.0 | 8.5 | 7.0 | 5.0 | 6.0 | 5.0 | 2.5 | 4.0 | | 25 | 12.5 | 11.0 | 11.5 | 9.0 | 6.5 | 7.5 | 7.0 | 6.5 | 6.5 | 7.0 | 4.5 | 5.0 | | 26
27
28
29
30
31 | 14.0
12.0
12.5
13.0
12.5
12.0 | 11.5
10.5
10.5
10.5
9.5
9.0 | 12.5
11.5
11.5
11.5
11.0
10.5 | 9.5
9.0
9.0
10.5
8.5 | 6.5
6.5
6.5
8.0
5.0 | 7.5
7.5
7.5
9.0
7.0 | 8.0
8.0
9.0
9.5
11.5
8.5 | 5.5
6.0
7.0
7.0
8.0
6.5 | 6.5
7.0
8.0
8.0
9.5
7.5 | 5.0
5.0
7.0
7.0
8.0
9.0 | 2.5
2.0
4.5
4.0
4.0
6.5 | 3.5
3.5
6.0
5.5
6.0
7.5 | | MONTH | 18.5 | 9.0 | 13.0 | 14.5 | 5.0 | 9.8 | 11.5 | 4.0 | 7.4 | 10.0 | 1.0 | 5.4 | # 05435943 BADGER MILL CREEK AT VERONA, WI—Continued # TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|--|--|--|--|--|--|--| | | | FEBRUAR | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 8.5
9.0
8.0
6.5
6.5 | 7.0
7.5
6.0
3.0
2.5 | 8.0
8.0
7.5
5.0
4.5 | 10.0
9.0
6.5
8.0
9.5 | 5.0
3.5
3.5
3.0
3.0 | 7.0
6.5
5.0
5.0
5.5 | 18.5
15.5
9.0
8.0
10.5 | 8.5
8.5
7.5
5.0
5.5 | 12.0
11.0
8.5
7.0
7.5 | 14.0
17.5
19.0
12.5
13.0 | 10.0
10.0
8.5
9.5
10.5 | 11.5
12.5
13.0
11.0
12.0 | | 6
7
8
9
10 | 7.5
6.0
7.0
6.5
6.5 | 4.0
2.5
2.5
2.0
3.0 | 6.0
4.0
4.5
4.0
5.0 | 10.0
10.0
7.0
8.0
9.0 | 4.0
5.0
3.5
2.0
1.5 | 6.5
7.0
5.5
4.0
4.5 | 13.0
7.0
11.0
16.0
17.5 | 5.0
4.5
5.0
4.5
6.5 | 8.0
6.0
7.5
9.0
10.5 | 19.0
13.0
14.0
18.0
19.0 | 11.5
11.0
11.5
12.0
12.0 | 14.5
12.0
12.5
14.0
14.5 | | 11
12
13
14
15 | 6.5
6.0
8.5
9.0
6.0 | 2.0
1.5
3.0
3.0
3.0 | 3.5
3.5
5.5
5.5
4.5 | 10.5
11.0
11.5
12.5
14.0 | 4.0
6.0
5.5
5.0
6.0 | 6.5
7.5
7.5
7.5
9.0 | 18.5
18.0
18.5
20.5
21.0 | 7.5
8.0
7.5
9.5
11.5 | 12.0
12.0
12.0
13.5
15.5 | 14.5
18.5
20.0
13.5
16.5 | 11.0
10.5
10.5
12.0
12.0 | 12.5
13.5
14.5
12.5
13.5 | | 16
17
18
19
20 | 8.0
8.5
10.0
10.0
11.0 | 2.5
3.0
5.5
4.5
5.5 | 4.5
6.0
7.5
7.0
7.5 | 15.0
16.5
11.5
9.0
11.0 | 7.5
8.0
8.0
7.0
8.0 | 10.5
11.5
9.5
8.0
9.5 | 13.5
13.0
12.0
16.0
14.5 | 8.5
8.0
9.5
9.0
10.5 | 11.0
10.0
10.5
12.0
12.5 | 19.5
18.0
19.0
17.0
19.0 | 10.5
11.5
12.0
14.0
13.0 | 14.5
14.5
15.0
15.0
15.5 | | 21
22
23
24
25 | 11.5
8.0
8.0
7.0
7.5 | 6.5
4.5
3.0
2.5
1.5 | 8.0
6.5
5.0
4.5
4.0 | 10.5
12.0
16.0
15.0
15.5 | 8.0
8.0
7.0
9.0
7.5 | 9.0
9.5
10.5
11.5
10.5 | 12.0
18.5
19.0
14.5
19.0 | 9.0
8.0
8.0
8.5
9.0 | 10.5
12.0
12.5
11.5
13.0 | 19.0
20.0
19.0
19.5
21.0 | 11.0
10.5
12.5
11.0
12.0 | 14.5
14.5
15.0
14.5
15.5 | | 26
27
28
29
30
31 | 9.0
10.5
10.5
 | 2.5
3.5
4.0
 | 5.0
6.0
6.5
 | 15.5
13.0
10.0
10.5
13.5
14.5 | 7.5
9.0
7.0
6.0
5.5
6.0 | 10.5
10.5
8.5
8.0
8.5
9.5 | 20.0
21.0
19.0
16.5
12.0 | 8.5
10.0
12.0
10.5
10.0 | 13.0
14.5
14.5
13.0
11.5 | 21.0
22.0
19.5
19.5
19.5
18.0 | 11.5
12.5
13.0
12.0
12.5
14.0 | 15.5
16.5
15.5
15.5
15.5
15.5 | | 51 | | | | 14.5 | 0.0 | 7.5 | | | | 10.0 | | | | MONTH | 11.5 | 1.5 | 5.6 | 16.5 | 1.5 | 8.1 | 21.0 | 4.5 | 11.1 | 22.0 | 8.5 | 14.1 | | MONTH | 11.5 | 1.5
JUNE | 5.6 | 16.5 | 1.5
JULY | 8.1 | | 4.5
AUGUST | | | 8.5
EPTEMBI | | | MONTH 1 2 3 4 5 | 20.0
17.0
19.5
19.5
21.5 | |
5.6
15.5
14.5
15.0
15.5
16.5 | 23.0
23.0
23.0
24.0
24.0 | | 8.1
19.5
20.0
20.5
21.5
22.0 | | | | | | | | 1
2
3
4 | 20.0
17.0
19.5
19.5 | JUNE
12.0
12.0
13.0
13.5 | 15.5
14.5
15.0
15.5 | 23.0
23.0
23.0
24.0 | JULY
16.5
16.5 | 19.5
20.0
20.5
21.5 | 23.5
23.0
22.0
21.0 | 18.0
17.5
17.5
18.0 | 20.5
20.0
19.5
19.5 | SI
22.0 | 16.5
15.0
17.0
16.5 | 18.5
19.0
19.5
18.5 | | 1
2
3
4
5
6
7
8
9 | 20.0
17.0
19.5
19.5
21.5
16.0
20.5
18.0
21.5 | JUNE 12.0 12.0 13.0 13.5 13.0 13.5 14.0 14.5 13.0 14.5 | 15.5
14.5
15.0
15.5
16.5
14.5
16.5
16.0
17.0 | 23.0
23.0
23.0
24.0
24.0
22.0
24.5
22.5 | JULY 16.5 16.5 17.5 18.5 19.0 19.0 20.0 19.0 18.0 | 19.5
20.0
20.5
21.5
22.0
20.5
22.0
20.0
19.0 | 23.5
23.0
22.0
21.0
23.0
24.0
23.5
23.0
22.0 | 18.0
17.5
17.5
17.5
18.0
17.0
18.5
18.0
17.0 | 20.5
20.0
19.5
19.5
20.0
21.0
20.5
20.5
19.5 | 22.0
23.5
23.5
22.5
23.0
24.0
24.5
24.0 | 16.5
15.0
17.0
16.5
15.0
16.5
17.5
17.5
18.5 | 18.5
19.0
19.5
18.5
18.5
19.5
20.5
20.5
21.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.0
17.0
19.5
19.5
21.5
16.0
20.5
18.0
21.5
18.5
16.5
19.0
22.5
22.5 | JUNE 12.0 12.0 13.0 13.5 13.0 13.5 14.0 14.5 13.0 14.5 15.0 14.0 | 15.5
14.5
15.0
15.5
16.5
14.5
16.0
17.0
16.0
15.5
16.0
18.0 | 23.0
23.0
24.0
24.0
24.5
22.5
20.0
19.5
21.0
22.0
22.5
22.5
22.5 | JULY 16.5 16.5 17.5 18.5 19.0 19.0 20.0 19.0 18.0 18.0 16.5 16.5 16.5 17.5 | 19.5
20.0
20.5
21.5
22.0
20.5
22.0
20.0
19.0
18.5
18.5
19.5
19.5
20.0 | 23.5
23.0
22.0
21.0
23.0
24.0
23.5
23.0
22.0
24.0
20.5
22.0
24.0
23.5 | AUGUST 18.0 17.5 17.5 18.0 17.0 18.5 18.0 17.0 18.5 17.0 17.0 18.5 18.0 17.0 | 20.5
20.0
19.5
19.5
20.0
21.0
20.5
20.5
19.5
20.0
19.0
20.0
20.5
20.5 | 22.0
23.5
23.5
23.5
22.5
23.0
24.0
24.5
24.0
24.5
23.5
24.0
21.5
21.0
19.5 | 16.5
15.0
17.0
16.5
15.0
16.5
17.5
17.5
18.5
18.0
18.5
19.0
18.0 | 18.5
19.0
19.5
18.5
18.5
20.5
20.5
21.0
20.5
21.0
20.0
20.0
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 20.0
17.0
19.5
19.5
21.5
16.0
20.5
18.0
21.5
18.5
19.0
22.5
22.0
23.5
22.0
23.5
22.0
22.5
23.0
22.5
23.0
22.5
23.0
24.0
24.0 | JUNE 12.0 12.0 13.0 13.5 13.0 13.5 14.0 14.5 13.0 14.5 15.0 14.5 15.0 14.5 16.0 15.0 13.0 14.5 16.0 15.0 13.0 | 15.5
14.5
15.5
16.5
16.5
14.5
16.0
17.0
16.0
15.5
16.0
18.0
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 23.0
23.0
24.0
24.0
24.5
22.5
20.0
19.5
21.0
22.5
22.5
23.5
22.5
21.0
23.0
23.0
23.0
22.5
23.0 | JULY 16.5 16.5 17.5 18.5 19.0 19.0 20.0 19.0 18.0 18.0 16.5 16.5 16.5 17.5 19.5 19.5 19.6 | 19.5
20.0
20.5
21.5
22.0
20.5
22.0
20.0
19.0
18.5
19.5
19.5
20.0
21.5
21.0
20.0
19.5
19.5
21.0
20.0
19.5 | 23.5
23.0
22.0
21.0
23.0
24.0
23.5
23.0
22.0
24.0
20.5
22.0
24.0
23.5
25.0
26.0
25.5
25.0
25.0 | 18.0
17.5
17.5
18.0
17.0
18.5
18.0
17.0
18.5
17.0
18.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19 | 20.5
20.0
19.5
19.5
20.0
21.0
20.5
20.5
20.5
19.0
20.0
20.5
21.5
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0 | 22.0
23.5
23.5
22.5
23.0
24.0
24.5
24.5
23.5
24.0
21.5
21.0
19.5
20.0
21.5
22.0
22.5
18.5 | 16.5
15.0
17.0
16.5
15.0
16.5
17.5
17.5
18.5
18.0
18.5
18.5
19.0
16.5
16.5
16.5
17.0
15.5 | 18.5
19.0
19.5
18.5
18.5
20.5
20.5
21.0
20.5
21.0
20.0
19.0
18.0
18.5
19.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 20.0
17.0
19.5
19.5
21.5
16.0
20.5
18.0
21.5
18.5
16.5
19.0
23.5
22.0
23.5
22.0
23.5
22.0
22.5
23.5
22.0
23.5
22.0
23.5
22.0
23.5
22.0
23.5
24.0 | JUNE 12.0 12.0 13.0 13.5 13.0 13.5 14.0 14.5 13.0 14.5 15.0 14.5 15.0 14.5 14.5 16.0 15.0 13.0 14.5 15.0 14.5 16.0 15.0 17.0 | 15.5
14.5
15.5
16.5
16.5
14.5
16.0
17.0
16.0
15.5
16.0
18.0
18.5
18.5
18.5
18.5
18.5
18.5
18.0
17.5 | 23.0
23.0
24.0
24.0
24.5
22.5
20.0
19.5
21.0
22.5
22.5
23.5
23.5
23.5
22.5
21.0
23.0
23.0
23.0
22.5 | JULY 16.5 16.5 17.5 18.5 19.0 19.0 20.0 19.0 18.0 18.0 16.5 16.5 17.5 19.5 19.6 17.5 16.0 18.0 19.0 20.0 17.5 16.0 17.5 16.5 | 19.5
20.0
20.5
21.5
22.0
20.5
22.0
20.0
19.0
18.5
18.5
19.5
20.0
21.5
21.0
20.0
19.5
19.5
21.0
20.0
19.5 | 23.5
23.0
22.0
21.0
23.0
24.0
23.5
23.0
22.0
24.0
20.5
22.0
24.0
23.5
25.0
26.0
25.5
25.0
26.5
26.5
26.5
25.0
24.5 | AUGUST 18.0 17.5 17.5 18.0 17.0 18.5 18.0 17.0 18.5 17.0 17.0 18.5 18.0 17.0 19.0 19.0 19.0 19.0 20.0 18.5 17.5 18.0 | 20.5
20.0
19.5
19.5
20.0
21.0
20.5
20.5
20.5
19.0
20.0
20.5
21.5
22.0
21.5
22.0
21.5
22.0
22.5
21.5 | 22.0
23.5
23.5
22.5
23.0
24.0
24.5
24.0
24.5
23.5
24.0
21.5
21.0
19.5
20.0
21.5
22.0
22.5
18.5
20.5 | 16.5
15.0
16.5
15.0
16.5
17.5
17.5
18.5
18.0
18.5
18.0
16.5
16.5
17.0
16.5
16.5
17.0
16.5
17.0
16.5
17.0
18.0
16.5 | 18.5
19.0
19.5
18.5
18.5
19.5
20.5
20.5
21.0
20.5
21.0
20.0
19.0
18.0
18.5
19.5
19.0
17.0
16.5
17.0 | # 05435943 BADGER MILL CREEK AT VERONA, WI—Continued DISSOLVED OXYGEN, WATER, UNFILTERED, MILLIGRAMS PER LITER, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | OCTOBER NOVEMBER DECEMBER 1 9.9 6.0 7.4 13.8 8.7 10.3 15.9 10.0 12.0 2 7.9 5.6 6.6 14.0 8.5 10.2 16.1 9.9 11.8 3 9.3 6.5 7.5 13.5 8.5 10 14.7 10.4 11.7 4 7.1 6.4 6.7 14.7 8.6 10.4 14.7 10.0 11.6 5 9.2 6.6 7.6 11.6 8.2 9.2 13.9 9.8 11.3 | 12.2
12.2
11.2
11.5
11.2 | 8.9
9.7
9.2
8.9
8.8 | 10.5
10.5
10 | |---|--|---|--| | 1 9.9 6.0 7.4 13.8 8.7 10.3 15.9 10.0 12.0
2 7.9 5.6 6.6 14.0 8.5 10.2 16.1 9.9 11.8
3 9.3 6.5 7.5 13.5 8.5 10 14.7 10.4 11.7 | 11.2
11.5
11.2
11.3 | 9.7
9.2
8.9 | 10.5 | | 5 9.2 6.6 7.6 11.6 8.2 9.2 13.9 9.8 11.3 | | 0.0 | 9.7
9.4 | | 7 10.2 7.3 8.3 14.2 8.2 10.0 14.5 9.4 11.1
8 9.3 7.0 7.9 15.3 8.0 10.1 14.5 9.6 11.3
9 9.2 7.0 7.7 14.8 7.4 9.6 14.1 9.7 11.6 | 11.4
11.5
11.0
11.8 | 9.0
8.9
8.8
8.7
9.4 | 9.7
9.7
9.6
9.5
10.2 | | 12 7.4 5.9 6.9 15.1 8.6 10.5 11.4 8.6 9.4
13 10.6 7.4 8.7 15.6 8.4 10.5 12.2 8.8 9.7
14 10.5 7.7 8.8 14.0 8.5 10.0 13.4 8.9 10.1 | 12.4
12.2
12.2
12.2
12.1 | 10.1
9.8
9.8
9.9
10.1 | 10.7
10.5
10.5
10.6
10.7 | | 17 9.8 7.2 8.1 15.4 9.3 11.1 11.4 9.1 9.8 18 8.8 5.9 7.3 14.1 8.5 10.6 10.0 8.6 9.2 19 11.1 7.0 8.5 16.6 8.6 11.0 11.7 8.7 9.6 | 12.5
12.5
12.3
13.3
13.6 | 9.4
10.1
10.2
10.0
10.1 | 10.5
10.8
10.8
11.1
11.1 | | 22 11.7 7.8 9.1 17.6 8.8 11.2 12.5 9.5 10.4
23 12.5 8.0 9.4 16.6 9.1 11.2 12.5 10.0 10.7
24 10.2 7.5 8.4 15.5 9.0 11.1 12.3 9.9 10.6 | 12.7
13.5
13.2
12.7
13.0 | 10.2
10.4
10.9
10.3
10.3 | 11.0
11.3
11.5
11.1
11.0 | | 27 12.5 7.8 9.2 16.0 9.8 11.7 12.1 9.7 10.4 28 13.0 8.0 9.6 16.5 9.6 11.6 12.1 9.5 10.2 29 13.8 8.4 9.9 15.9 9.3 11.2 12.3 9.4 10.2 30 13.7 8.3 10 16.4 9.2 11.8 10.5 8.7 9.4 | 13.5
13.2
11.6
12.5
12.3
11.5 | 10.5
10.1
9.7
10.0
9.9
9.5 | 11.5
11.3
10.3
10.7
10.7
10.2 | | MONTH 13.9 5.6 8.3 17.6 7.3 10.6 16.1 8.6 10.5 | 13.6 | 8.7 | 10.5 | | FEBRUARY MARCH APRIL | | MAY | | | 2 11.7 9.5 10.1 14.5 9.7 11.4
3 10.3 9.2 9.8 14.7 10.2 11.7
4 12.1 10.0 10.8 14.6 10.2 11.6 | 9.0
11.3
12.8
12.6
10.7 | 7.9
8.2
8.5
8.4
8.2 | 8.2
9.4
10.1
10.2
9.1 | | 7 11.9 10.6 11.1 14.0 10.0 11.2 15.3 8.9 11.2
8 11.9 10.6 11.0 13.8 10.0 11.2 19.0 9.3 12.6
9 12.2 10.7 11.2 13.5 10.7 11.8 20.0 8.8 12.6 | 14.1
10.0
12.3
11.0
13.3 | 8.2
8.1
8.7
8.3
7.4 |
10.3
9.0
9.9
9.2
9.9 | | 13 10.6 9.4 10.2 14.8 9.8 11.4 21.5 7.9 12.5
14 10.9 9.8 10.2 13.4 8.8 10.5 21.8 7.2 12.4 | 11.2
13.7
14.2
11.1
13.8 | 7.4
8.8
8.4
8.2
8.4 | 9.2
10.6
10.6
9.1
10.3 | | 18 12.2 9.9 10.5 15.1 8.5 10.4 19.4 7.6 11.9
19 11.7 9.6 10.4 14.4 8.9 10.5 | 14.1
14.3
14.9
10.6
12.0 | 8.3
8.2
8.0
7.4
7.3 | 10.4
10.4
10.6
8.7
9.3 | | 22 12.4 9.3 10.3 18.3 8.8 11.8
23 13.0 9.9 10.9 19.5 8.6 12.3 | 13.3
13.5
14.2
15.1
16.3 | 8.2
8.1
7.6
8.2
7.9 | 10.1
10.1
10.1
10.7
10.9 | | 28 14.0 10.0 11.2 11.7 8.2 9.7
29 19.2 9.4 12.9 19.9 7.0 11.2
30 19.5 9.0 12.6 10.5 7.0 8.5 | 16.8
16.5
14.4
14.2
13.2 | 7.9
7.7
6.4
7.1
5.5 | 11.2
10.9
8.7
9.7
8.4 | | 31 20.5 8.0 12.3 MONTH 14.0 9.2 10.7 21.0 8.0 11.4 21.8 2.8 11.7 | 9.9
16.8 | 6.3
5.5 | 7.8
9.8 | # 05435943 BADGER MILL CREEK AT VERONA, WI—Continued # DISSOLVED OXYGEN, WATER, UNFILTERED, MILLIGRAMS PER LITER, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|-------------------------------------|---------------------------------|---------------------------------|---|--|--|---|--|--|--------------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | , | S | ЕРТЕМВІ | ER | | 1 | 13.0 | 7.3 | 9.4 | 11.9 | 5.0 | 7.6 | 9.9 | 3.6 | 6.3 | 9.9 | 5.1 | 6.7 | | 2 | 12.4 | 7.0 | 9.3 | 11.8 | 4.7 | 7.6 | 10.2 | 3.9 | 6.4 | 8.3 | 4.5 | 6.2 | | 3 | 13.4 | 7.4 | 9.2 | 12.0 | 4.4 | 7.2 | 9.7 | 3.8 | 6.2 | 8.1 | 4.5 | 5.7 | | 4 | 13.9 | 7.4 | 9.7 | 11.3 | 4.3 | 6.7 | 8.7 | 4.2 | 6.0 | 8.4 | 4.6 | 5.8 | | 5 | 13.4 | 7.0 | 9.5 | 11.0 | 3.8 | 6.6 | 9.3 | 3.9 | 6.1 | 8.4 | 4.7 | 6.0 | | 6 | 11.0 | 6.2 | 8.2 | 8.6 | 3.8 | 5.7 | 9.9 | 3.6 | 6.0 | 8.6 | 4.6 | 6.0 | | 7 | 12.9 | 6.4 | 9.0 | 9.7 | 3.7 | 5.8 | 9.7 | 3.7 | 5.9 | 8.7 | 4.6 | 5.9 | | 8 | 11.4 | 5.6 | 8.4 | 8.1 | 3.6 | 5.1 | 9.6 | 3.7 | 6.0 | 8.9 | 4.6 | 6.1 | | 9 | 12.6 | 6.4 | 8.9 | 8.4 | 3.8 | 5.8 | 9.2 | 3.9 | 6.0 | 9.1 | 4.7 | 6.2 | | 10 | 10.3 | 6.9 | 8.3 | 6.8 | 3.6 | 4.8 | 9.8 | 4.0 | 6.2 | 9.3 | 4.9 | 6.3 | | 11 | 10.6 | 6.7 | 8.4 | 8.5 | 3.5 | 5.6 | 7.7 | 3.8 | 5.4 | 9.3 | 4.8 | 6.3 | | 12 | 11.8 | 7.0 | 8.8 | 9.4 | 3.5 | 5.8 | 9.6 | 4.2 | 6.2 | 7.3 | 4.4 | 5.5 | | 13 | 12.5 | 6.8 | 9.0 | 9.2 | 3.5 | 5.9 | 10.0 | 4.3 | 6.4 | 5.9 | 4.4 | 5.3 | | 14 | 12.9 | 6.6 | 9.1 | 9.9 | 3.5 | 6.1 | 10.3 | 4.1 | 6.4 | 5.4 | 4.4 | 4.9 | | 15 | 13.0 | 6.7 | 9.1 | 4.7 | 3.4 | 3.9 | 10.7 | 4.2 | 6.5 | 6.8 | 5.0 | 5.9 | | 16 | 13.1 | 6.7 | 9.1 | 8.2 | 3.2 | 5.3 | 10.8 | 3.9 | 6.5 | 7.9 | 5.9 | 6.6 | | 17 | 13.5 | 6.8 | 9.3 | 8.9 | 3.7 | 5.7 | 11.0 | 3.9 | 6.6 | 8.4 | 5.9 | 6.7 | | 18 | 13.0 | 6.6 | 9.0 | 9.7 | 3.7 | 6.1 | 11.1 | 4.2 | 6.7 | 8.9 | 5.3 | 6.9 | | 19 | 13.8 | 6.0 | 9.2 | 10.0 | 3.9 | 6.2 | 11.2 | 4.3 | 6.7 | 9.4 | 5.5 | 7.2 | | 20 | 13.8 | 7.0 | 9.5 | 9.3 | 3.7 | 5.9 | 11.3 | 3.9 | 6.6 | 9.9 | 6.5 | 7.7 | | 21 | 14.3 | 6.8 | 9.6 | 4.4 | 3.2 | 3.8 | 10.9 | 3.8 | 6.3 | 10.3 | 6.5 | 7.8 | | 22 | 14.8 | 6.6 | 9.7 | 7.2 | 3.3 | 4.9 | 11.2 | 4.2 | 6.6 | 9.9 | 6.3 | 7.6 | | 23 | 13.6 | 6.0 | 8.9 | 9.1 | 3.8 | 6.0 | 11.2 | 4.3 | 6.8 | 10.9 | 6.8 | 8.3 | | 24 | 11.3 | 5.4 | 7.4 | 9.0 | 4.2 | 6.0 | 10.8 | 4.2 | 6.6 | 11.5 | 6.7 | 8.3 | | 25 | 12.3 | 4.1 | 6.9 | 9.5 | 4.1 | 6.1 | 10.3 | 4.2 | 6.2 | 13.6 | 7.0 | 8.9 | | 26
27
28
29
30
31 | 11.4
12.4
9.8
10.8
11.0 | 3.2
5.5
4.9
5.0
5.0 | 7.6
8.1
6.5
7.2
7.4 | 9.0
10.1
10.4
10.7
10.6
10.5 | 3.9
3.8
3.9
4.2
3.9
3.3 | 5.9
6.1
6.3
6.6
6.5
6.0 | 9.8
9.9
10.1
9.3
9.6
8.3 | 4.0
4.0
4.2
3.6
4.4
4.8 | 6.1
6.3
6.4
5.9
6.3
6.2 | 10.5
12.0
11.9
12.4
12.5 | 7.0
7.0
7.2
7.6
7.7 | 8.1
8.7
8.9
9.3
9.5 | | MONTH | 14.8 | 3.2 | 8.7 | 12.0 | 3.2 | 5.9 | 11.3 | 3.6 | 6.3 | 13.6 | 4.4 | 7.0 | ### 05436500 SUGAR RIVER NEAR BRODHEAD, WI LOCATION.--Lat 42°36'42", long 89°23'53", in SW $^{1}\!\!/_{\!\!4}$ sec.26, T.2 N., R.9 E., Green County, Hydrologic Unit 07090004, on left bank at downstream side of highway bridge, 1.2 mi southwest of Brodhead, and 1.9 mi upstream from Sylvester Creek. DRAINAGE AREA.--523 mi². PERIOD OF RECORD.--January 1914 to current year. Monthly discharge only for January and February 1914 published in WSP 1308. REVISED RECORDS.--WSP 1238: 1914-16, 1918, 1922, 1927, 1933. WSP 1508: 1916-17(M), 1919(M), 1920, 1921(M), 1927-28(M), 1930(M), 1931, 1936(M), 1943(M). WDR WI-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 768.14 ft above NGVD of 1929. Prior to Oct. 17, 1938, nonrecording gage 20 ft upstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Some regulation from dam and non-operational powerplant upstream. Gage-height telemeter at station. | • | | DISCH | ARGE, CUB | SIC FEET PI | | D, WATER Y
LY MEAN V | YEAR OCTO | OBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |--|---|--|---|---|--|--|--|--|---|---|--|---| | DAY | OCT 414 378 379 471 557 | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | 276 | e220 | 243 | e180 | e200 | 312 | 395 | 279 | 218 | 190 | 135 | | 2 | | 261 | e220 | e230 | e180 | e200 | 300 | 578 | 273 | 201 | 181 | 135 | | 3 | | 262 | e220 | e230 | e180 | e190 | 294 | 644 | 268 | 199 | 176 | 137 | | 4 | | 279 | e220 | 232 | e180 | e190 | 298 | 526 | 264 | 200 | 180 | 139 | | 5 | | 264 | e220 | 258 | e180 | e190 | 317 | 468 | 256 | 225 | 184 | 126 | | 6 | 585 | 262 | e220 | 246 | e180 | e190 | 320 | 486 | 253 | 232 | 177 | 126 | | 7 | 536 | 267 | e220 | 237 | e180 | e190 | 311 | 477 | 255 | 233 | 181 | 126 | | 8 | 424 | 264 | e220 | 237 | e180 | e190 | 301 | 481 | 265 | 243 | 169 | 112 | | 9 | 362 | 262 | e220 | 243 | e180 | e190 | 290 | 667 | 262 | 302 | 164 | 117 | | 10 | 329 | 261 | e220 | e230 | e180 | e190 | 293 | 693 | 256 | 326 | 163 | 120 | | 11 | 323 | 259 | e230 | e180 | e180 | e190 | 309 | 677 | 250 | 283 | 161 | 119 | | 12 | 315 | 255 | 236 | e220 | e180 | e200 | 305 | 567 | 247 | 263 | 160 | 124 | | 13 | 307 | 254 | 238 | e210 | e180 | e220 | 292 | 482 | 244 | 241 | 159 | 154 | | 14 | 297 | 254 | 244 | e200 | e180 | e300 | 280 | 447 | 236 | 225 | 157 | 238 | | 15 | 293 | 252 | 246 | e190 | e180 | e360 | 262 | 442 | 229 | 242 | 154 | 300 | | 16 | 302 | 251 | e240 | e190 | e180 | 418 | 249 | 439 | 220 | 269 | 151 | 297 | | 17 | 288 | 247 | 243 | e180 | e180 | 364 | 267 | 405 | 215 | 250 | 145 | 236 | | 18 | 288 | 247 | 265 | e180 | e200 | 323 | 263 | 370 | 230 | 231 | 144 | 194 | | 19 | 292 | 252 | 329 | e180 | e240 | 308 | 275 | 346 | 234 | 215 | 141 | 178 | | 20 | 291 | 256 | 372 | e180 | e300 | 302 | 304 | 411 | 223 | 206 | 140 | 169 | | 21 | 281 | 246 | 329 | e180 | e270 | 316 | 326 | 456 | 210 | 200 | 142 | 167 | | 22 | 288 | 239 | 292 | e180 | e250 | 311 | 314 | 444 | 205 | 198 | 133 | 169 | | 23 | 300 | 249 | 241 | e180 | e250 | 296 | 291 | 373 | 201 | 204 | 133 | 169 | | 24 | 274 | 247 | 237 | e180 | e240 | 289 | 272 | 339 | 195 | 201 | 131 | 168 | | 25 | 286 | 245 | e240 | e170 | e230 | 285 | 260 | 321 | 205 | 187 | 131 | 163 | | 26
27
28
29
30
31 | 302
312
305
292
288
281 | 232
217
235
265
e230 | e240
e240
264
252
254
252 | e170
e170
e170
e170
e170
e180 | e210
e200
e200
 | 281
277
303
378
400
341 | 252
244
244
219
244 | 304
291
285
285
287
294 | 267
259
232
232
232 | 181
178
176
174
171
177 | 131
127
124
128
135
134 | 162
167
169
166
165 | | TOTAL | 10,640 | 7,590 | 7,684 | 6,216 | 5,650 | 8,382 | 8,508 | 13,680 | 7,197 | 6,851 | 4,726 | 4,947 | | MEAN | 343 | 253 | 248 | 201 | 202 | 270 | 284 | 441 | 240 | 221 | 152 | 165 | | MAX | 585 | 279 | 372 | 258 | 300 | 418 | 326 | 693 | 279 | 326 | 190 | 300 | | MIN | 274 | 217 | 220 | 170 | 180 | 190 | 219 | 285 | 195 | 171 | 124 | 112 | | CFSM | 0.66 | 0.48 | 0.47 | 0.38 | 0.39 | 0.52 | 0.54 | 0.84 | 0.46 | 0.42 | 0.29 | 0.32 | | IN. | 0.76 | 0.54 | 0.55 | 0.44 | 0.40 | 0.60 | 0.61 | 0.97 | 0.51 | 0.49 | 0.34 | 0.35 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 71CS OF MO
287
788
(1928)
126
(1965) | ONTHLY M
308
836
(1962)
127
(1965) | EAN DATA
272
597
(1929)
120
(1956) | FOR WAT
293
1,168
(1916)
89.4
(1956) | ER YEARS
430
1,690
(1938)
127
(1959) | 1914 - 2003
653
1,698
(1929)
181
(1934) | , BY WATE
463
1,159
(1993)
198
(1938) | R YEAR (W
375
1,368
(1973)
140
(1934) | 375
1,320
(2000)
113
(1934) | 303
1,248
(1993)
117
(1958) | 260
694
(1924)
105
(1934) | 297
1,579
(1938)
106
(1958) | | ANNUA ANNUA HIGHES LOWES' HIGHES
LOWES' ANNUA MAXIM INSTAN ANNUA ANNUA 10 PERC 50 PERC | UM PEAK I
UM PEAK S | MEAN MEAN MEAN EAN EAN SAY MINIM FLOW STAGE LOW FLOW (CFSM) (INCHES) EDS EDS | IUM | 130,676
355
1,296
21'
(a)226 | 8
0 Jun
7 Nov
0 Dec
0.68
9.29
4
5 | 5
27 | 92,07
25
69
11
12
74 | 52 33 May 22 Sep 211 Sep 42 May 2.72 May 0.48 6.55 51 | 7 10
0 8
0 6
7 9 | (b)14,8
(c) | 51 Ji
71 Ji
600 Se
11.40 Se | 1993
1934
4ar 14, 1929
un 13, 1934
un 28, 1934
ep 13, 1915
ep 13, 1915
ep 19, 1959 | ⁽a) Ice affected ⁽b) From rating curve extended above 7,500 ft³/s ⁽c) From floodmarks ⁽e) Estimated due to ice effect or missing record #### 05437500 ROCK RIVER AT ROCKTON, IL LOCATION.--Lat 42°26'55", long 89°04'11", in SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.24, T.46 N., R.1 E., Winnebago County, Hydrologic Unit 07090005, on right bank 750 ft downstream from State Highway 75 in Rockton, 1.0 mi downstream from Pecatonica River, and at mile 156.1. DRAINAGE AREA -- 6 363 mi² PERIOD OF RECORD.--June 1903 to July 1906, October 1906 to March 1909, July 1914 to September 1919, October 1939 to current year. Published as "below mouth of Pecatonica River at Rockton" 1903-9; as "at Rockford" 1914-19. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORD.--WSP 325: 1903-9. WSP 895: 1904(M). WSP 1508: 1915, 1916-17(M). WDR IL-75-1: Drainage area. WDR IL-97-1: 1996 (Dec. 10-23). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 707.94 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1906, nonrecording gage at site 800 ft upstream at datum about 1 ft higher. Oct. 1, 1906, to Mar. 31, 1909, nonrecording gage at site 800 ft upstream at datum about 2 ft higher. July 30, 1914, to Apr. 30, 1919, nonrecording gage at site at Rockford about 21 mi downstream, at different datum. Oct. 1, 1939, to Aug. 10, 1973, at site 800 ft upstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor (see page 11). Low flow regulated by powerplant upstream from station. Gage-height telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in February 1937 reached a stage of 14.6 ft (backwater from ice), from floodmark. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN ш. AUG SEP 2,220 e2,300 2.800 3.460 2.880 e2.800 3,400 3.060 4.810 2.320 1.850 e980 2 4.020 3.450 2,910 e2.7002,200 e2,300 3.340 3.750 4.430 2,310 1.870 e950 3 4.120 3,430 e2,600 e2,300 e990 2,820 e2.4003,310 4.000 2.320 1.840 4.620 2.540 e2,200 e2,100 2.190 1.970 4.760 3.320 e2.600 e2.600 3.250 5.110 3.920 922 5 3,450 3,290 1.950 5.630 2.750 3.930 2,420 900 e2.600 e2.800 5.660 5,540 6 3,320 2,720 e2,800 e2,900 e2,100 3,260 5,870 3,440 2,370 1,810 876 5,230 3,010 2,900 e2,800 e2,800 e2,100 3,220 5,820 3,410 2,430 1,850 834 8 5,310 2,780 3,090 e2,700 e2,700 e2,200 3,310 5,650 3,280 2,630 1.930 741 Q 5,210 2,960 e2,600 e2,600 e2,200 3,150 6,410 3,240 3,370 1,910 894 3.110 10 4,710 2,840 3,070 3,430 3,510 855 3,320 e2,600 e2,600 e2,200 7,020 1,840 4.220 e2,500 11 3.280 3,090 e2,600 e2.200 3.160 7,360 3.180 3,420 1.780 870 3,680 3,260 2,990 2,590 e2,500 e2,200 3,070 6,960 2,900 3,050 1.760 882 12 3,520 3,200 3,070 e2,500 e2,500 e2,200 3,130 7,060 3,120 2,930 1,770 952 13 3,470 3,090 e2,500 2,150 2,840 1,880 14 3,150 e2,600 3.090 7,260 3,000 1.780 15 3.440 3.280 3,090 e2.500 e2.300 2.820 7.700 3.180 3,500 1.740 1.860 e2.7007,930 e2,700 e2,400 2.460 3,440 1,690 1,470 3.420 3.300 3.060 3.050 16 2,710 2,780 2,570 1.550 17 3.350 3.210 3,160 e2.600 e2.500 e7.400 3.170 2,870 1.470 18 3,410 3,250 3,200 2,730 e2,400 e2.600 2,340 e6,800 3,280 2,780 1.530 1.990 19 3,400 3,210 3,500 2.740 e2,400 e2,800 1.920 e6,200 3.380 2,840 1.480 1,690 20 3.330 3,140 3,490 2,630 e2,400 e3.000 2,430 e6,200 3,130 2,500 1,410 1,170 1,190 21 3.310 3,220 3,520 e2,500 e2.400 3.020 2,720 6.860 2,650 2,350 e1,400 3,390 3,200 3,500 e2,400 e2,400 3,160 2.800 6,780 2,550 2,730 e1,300 1,390 23 3,390 2,490 2,520 3.090 3,320 e2,300 e2,400 3,140 2,920 6,590 e1,100 1,260 24 e3,300 3,140 3,010 e2,200 e2,400 3,060 3,190 6,360 2,130 2,450 e1,070 990 25 e3,200 3,130 3,010 e2,400 3,230 3,330 5,970 2,060 2,280 1,200 e2,100 e1,100 26 3.280 3.070 3.000 e2.100 e2.400 3.510 3.210 5.660 2.840 2.110 e1.000 1.200 3,250 e2,400 5,410 3.010 2.140 e1.000 2.7 2.910 e2.100 3.210 3,320 1.980 1.000 3,310 3.340 2.350 2 990 28 3.100 e3.000e2,100 e2,300 5 200 1 970 e970 1,110 e3,000 29 3.560 3,440 4.890 1.950 e980 3,060 e2.100 2.650 2,440 1.230 30 3.670 3,110 e3.000 e2,100 3,440 2,610 4.830 2,370 1.890 e1.000 1,070 31 3,520 e2,900 e2,100 ---3,500 5,150 1,880 e1,000 TOTAL 119,750 95,960 94,420 77,180 70,220 82,400 89,330 187,540 93,300 80,150 47,230 34,816 3,199 2,508 3,046 6,050 2,585 1,524 MEAN 3,863 2,490 2,658 2,978 3,110 1,161 2,800 MAX5,630 3,460 3,520 2,900 3,510 3,400 7,930 4,810 3,510 1,970 1,990 MIN 2,800 2,780 2,540 2,100 2,200 2,100 1,920 3,060 2,060 1,880 970 741 **CFSM** 0.61 0.50 0.48 0.39 0.39 0.42 0.47 0.95 0.49 0.41 0.24 0.18 0.70 0.56 0.55 0.45 0.41 0.48 0.52 1.10 0.55 0.47 0.28 0.20 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 2003, BY WATER YEAR (WY) 3,286 MEAN 3,139 3.525 3,210 3.879 7,194 7,299 5,388 4,555 3,688 2,886 2,880 MAX 13.340 11.320 9.049 9,432 8,365 13.920 18.530 17,770 16,960 17,000 9,039 7,753 (WY) (1987)(1986)(1983)(1960)(1997)(1974)(1993)(1973)(2000)(1993)(1993)(1972)MIN 857 1,100 1.004 800 1.000 1,692 2,476 1,103 1,248 1.056 793 780 (WY) (1965)(1940)(1959)(1940)(1940)(1954)(1958)(1958)(1977)(1965)(1958)(1958) # 05437500 ROCK RIVER AT ROCKTON, IL—Continued | SUMMARY STATISTICS | FOR 2002 CALE | ENDAR YEAR | FC | OR 2003 WA | TER YEAR | WATER YEARS 1940 - 200 | | | |--------------------------|---------------|------------|-------|------------|----------|------------------------|--------------|--| | ANNUAL TOTAL | 1,703,280 | | 1. | 072,296 | | | | | | ANNUAL MEAN | 4,667 | | | 2,938 | | 4,243 | | | | HIGHEST ANNUAL MEAN | | | | | | 9,484 | 1993 | | | LOWEST ANNUAL MEAN | | | | | | 1,568 | 1958 | | | HIGHEST DAILY MEAN | 11,800 | Jun 9 | ,10 | 7,930 | May 16 | 29,700 | Mar 25, 1975 | | | LOWEST DAILY MEAN | 2,140 | Aug 11 | | 741 | Sep 8 | 501 | Sep 14, 1958 | | | ANNUAL SEVEN-DAY MINIMUM | 2,270 | Sep 13 | | 850 | Sep 6 | 622 | Oct 2, 1958 | | | MAXIMUM PEAK FLOW | | • | | 8,000 | May 16 | 30,000 | Mar 25, 1975 | | | MAXIMUM PEAK STAGE | | | | 6.26 | May 16 | 15.54 | Mar 25, 1975 | | | INSTANTANEOUS LOW FLOW | | | | 606 | Sep 12 | | | | | ANNUAL RUNOFF (CFSM) | 0.73 | | | 0.46 | • | 0.67 | | | | ANNUAL RUNOFF (INCHES) | 9.96 | | | 6.27 | | 9.06 | | | | 10 PERCENT EXCEEDS | 7,700 | | | 4,660 | | 8,370 | | | | 50 PERCENT EXCEEDS | 3,930 | 2,820 | | | 3,220 | | | | | 90 PERCENT EXCEEDS | 2,550 | | 1,450 | | | 1,310 | | | ⁽e) Estimated due to ice effect or missing record ### 05438283 PISCASAW CREEK NEAR WALWORTH, WI $LOCATION.--Lat\ 42^\circ 31'18'', long\ 88^\circ 39'39'', in\ NE\ {}^1\!\!/_4\ NE\ {}^1\!\!/_4\ sec.25,\ T.1\ N.,\ R.15\ E.,\ Walworth\ County,\ Hydrologic\ Unit\ 07090006,\ on\ right\ bank\ 0.9\ mi\ upstream\ from\ County\ Trunk\ Highway\ B\ bridge,\ 3.2\ mi\ southwest\ of\ Walworth.$ DRAINAGE AREA.--9.58 mi². PERIOD OF RECORD.--September 1992 to current year. GAGE.--Water-stage recorder. Elevation of gage is 935 ft above NGVD of 1929, from topographic map. REMARKS.--Records fair (see page 11). Gage-height telemeter at station. | KEWIAKN | SKecord | is raii (see p | age 11). Ga | ige-neight tei | icilicici at sta | ation. | | | | | | | |---|---|--|--|--|---|--|--|--|--|---|--|--| | | | DISCH | ARGE, CU | BIC FEET P | | D, WATER '
LY MEAN ' | YEAR OCTO
VALUES | OBER 2002 | TO SEPTEM | MBER 2003 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.6
4.6
2.5
6.6
5.4 | 2.0
2.0
2.0
2.0
2.0 | 1.7
1.7
1.6
1.7
1.7 | 1.5
1.5
1.5
1.5 | 1.3
1.3
1.4
1.4
1.3 | 1.5
1.5
1.5
1.5
1.5 | 1.2
1.2
1.2
1.2
1.2 | 1.6
1.5
1.4
1.4
2.5 | 1.6
1.5
1.5
1.5
1.4 | 1.5
1.5
1.5
1.5
2.5 | 1.1
1.1
7.1
2.0
1.4 | 0.87
0.85
0.84
0.79
0.82 | | 6
7
8
9
10 | 4.2
3.7
3.1
2.7
2.4 | 1.8
1.8
1.8
1.8 | 1.6
1.6
1.5
1.6
1.7 | 1.5
1.5
1.5
1.5 | 1.4
1.5
1.5
1.4
1.4 | 1.6
1.7
1.7
1.6
1.4 | 1.2
1.3
1.2
1.2 | 1.8
1.7
1.9
4.2
2.6 | 1.5
1.5
1.5
1.5
1.4 | 1.6
1.5
3.7
2.1
1.7 | 1.2
1.2
1.2
1.2
1.1 | 0.80
0.79
0.79
0.78
0.78 | | 11
12
13
14
15 | 2.1
2.2
2.3
2.5
2.4 | 1.7
1.8
1.8
1.7 | 1.7
1.7
1.7
1.7
1.7 | 1.5
1.5
1.5
1.5
1.4 | 1.4
1.4
1.4
1.5
1.5 | 1.3
1.2
1.3
2.3
1.9 | 1.2
1.4
1.4
1.3
1.3 | 2.2
1.9
1.7
2.3
2.5 |
1.4
1.4
1.4
1.5
1.5 | 1.6
1.5
1.4
1.3
27 | 1.1
1.1
1.2
1.2
1.2 | 0.80
0.86
0.95
1.0
0.94 | | 16
17
18
19
20 | 2.2
2.2
2.3
2.2
2.2 | 1.7
1.7
1.8
1.8 | 1.7
1.7
1.9
2.1
1.9 | 1.3
1.3
1.3
1.3 | 1.5
1.5
1.5
1.6
1.6 | 1.7
1.4
1.3
1.2
1.3 | 1.4
1.4
1.3
1.3 | 2.0
1.8
1.7
1.7
2.7 | 1.4
1.4
1.4
1.4
1.5 | 2.5
2.1
1.8
1.6
1.4 | 1.2
1.1
1.1
1.1
1.1 | 0.89
0.88
0.87
0.90
0.89 | | 21
22
23
24
25 | 2.0
2.0
1.9
2.0
2.2 | 1.8
1.7
1.8
1.7 | 1.8
1.7
1.7
1.7
1.7 | 1.3
1.3
1.2
1.2
1.3 | 1.5
1.5
1.5
1.5
1.4 | 1.3
1.3
1.4
1.4
1.4 | 1.4
1.3
1.3
1.3
1.4 | 2.0
1.8
1.7
1.5
1.5 | 1.6
1.7
1.6
1.6
1.7 | 13
2.3
2.1
1.7
1.5 | 1.1
1.1
1.0
0.85
0.83 | 0.89
0.96
0.96
0.96
0.93 | | 26
27
28
29
30
31 | 2.1
2.0
2.0
2.0
2.0
2.0 | 1.7
1.7
1.7
1.7
1.7 | 1.7
1.7
1.6
1.6
1.7
1.5 | 1.3
1.3
1.3
1.3
1.3 | 1.5
1.4
1.5
 | 1.3
1.2
1.3
1.2
1.2
1.2 | 1.5
1.3
1.2
1.2
1.3 | 1.4
1.4
2.2
1.6
2.3
2.0 | 1.9
1.6
1.6
1.5
1.5 | 1.3
1.3
1.2
1.2
1.1
1.2 | 0.86
0.85
0.84
0.83
0.84
0.84 | 1.0
0.99
0.99
0.97
0.97 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 81.6
2.63
6.6
1.6
0.27
0.32 | 53.7
1.79
2.0
1.7
0.19
0.21 | 52.6
1.70
2.1
1.5
0.18
0.20 | 43.0
1.39
1.5
1.2
0.14
0.17 | 40.6
1.45
1.6
1.3
0.15
0.16 | 44.6
1.44
2.3
1.2
0.15
0.17 | 38.6
1.29
1.5
1.2
0.13
0.15 | 60.5
1.95
4.2
1.4
0.20
0.23 | 45.5
1.52
1.9
1.4
0.16
0.18 | 89.2
2.88
27
1.1
0.30
0.35 | 39.94
1.29
7.1
0.83
0.13
0.16 | 26.71
0.89
1.0
0.78
0.09
0.10 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | ICS OF MO
2.22
3.68
(1994)
1.24
(1996) | 2.05
3.29
(1993)
1.08
(1997) | 1.98
4.54
(1993)
0.99
(1998) | 2.33
5.85
(1993)
1.16
(1996) | 7ER YEARS
4.57
13.1
(1997)
1.23
(1995) | 3.95
3.95
12.0
(1993)
0.69
(1996) | 3, BY WATE
3.88
12.4
(1993)
1.00
(1996) | ER YEAR (W
3.30
6.92
(2000)
1.95
(1995) | 8.43
17.2
(1999)
1.38
(1995) | 2.98
6.22
(1993)
1.07
(1995) | 2.06
4.27
(1993)
1.02
(1995) | 2.12
4.48
(1993)
0.89
(2003) | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL MAXIMU INSTANT ANNUAL ANNUAL 10 PERCI 50 PERCI | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE NSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) O PERCENT EXCEEDS O PERCENT EXCEEDS | | | 2 | 0.5
2.82
8 Apr | , 9
; 11,12 | 6 | 0.78 Se _j
0.79 Se _j
52 Ju | ll 15
p 9,10
p 4
ll 15
ll 15 | (a). | 0.58 M
0.62 M
571 J
0)10.05 J | 92 - 2003
1993
1995
eb 21, 1997
ar 10, 1996
far 9, 1996
un 13, 1999
un 30, 1993
ar 9, 1996 | 90 PERCENT EXCEEDS ⁽a) Gage height, 9.69 ft (b) Discharge, 322 ft³/s ⁽c) Also occurred Sept. 2-11 ⁽d) Also occurred Mar. 10-12, 1996 #### ILLINOIS RIVER BASIN ### 05527800 DES PLAINES RIVER AT RUSSELL, IL LOCATION.--Lat $42^{\circ}29^{\circ}21^{\circ}$, long $87^{\circ}55^{\circ}35^{\circ}$, in SE $\frac{1}{4}$ sec. 3, T.46 N., R.11 E., Lake County, Hydrologic Unit 07120004, on right bank at upstream side of Russell Road bridge, 0.3 mi west of Russell, 7.2 mi upstream from Mill Creek, and at mile 109.3. DRAINAGE AREA.--123 mi². PERIOD OF RECORD.--Occasional low-flow measurements, water years 1961-63, and annual maximum, water years 1962-66. June 1967 to current year. REVISED RECORDS.--WDR IL-75-1: Drainage area. WDR IL-76-1: 1960-68(M), 1973(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 662.00 ft above NGVD of 1929. Oct. 17, 1961, to June 29, 1967, crest-stage gage at left downstream side of bridge at datum 4.29 ft higher. REMARKS.--Records good except those estimated daily discharges, which are poor (see page 11). Recording rain gage and gage-height telemeter at station. | | | DISCHA | ARGE, CUI | BIC FEET PE | |), WATER Y
LY MEAN V | | DBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |--|--|---|---|---|---|---|---|---|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.2
14
30
26
48 | 17
16
16
17
17 | e8.2
e7.8
e7.5
e7.2
e6.9 | e14
e13
e13
e13
e13 | e1.4
e1.5
e1.5
e1.5
e1.4 | e1.1
e1.2
e1.2
e1.4
e1.9 | 49
44
40
41
63 | 48
86
106
109
144 | 87
90
84
73
62 | 9.2
8.2
5.8
4.3
4.6 | 4.1
17
20
38
49 | 0.91
0.68
0.50
0.40
0.29 | | 6
7
8
9
10 | 48
35
22
14
9.3 | 18
21
21
14
16 | e6.6
e6.4
e6.1
e5.8
e5.7 | e13
e13
e12
e11
e10 | e1.3
e1.3
e1.2
e1.2
e1.2 | e2.4
e3.4
e4.2
e5.6
e7.2 | 83
88
81
73
84 | 183
198
200
219
233 | 54
48
49
57
58 | 11
40
70
102
102 | 53
50
38
29
21 | 0.20
0.15
0.22
0.33
0.05 | | 11
12
13
14
15 | 7.5
5.6
5.2
6.3
4.0 | 23
23
23
21
19 | e5.6
e5.6
e5.7
e5.8
e6.0 | e9.0
e8.0
e7.0
e6.2
e5.4 | e1.2
e1.2
e1.2
e1.2
e1.1 | 10
12
14
18
29 | 104
112
110
96
79 | 238
237
226
211
195 | 54
48
42
37
34 | 83
65
52
41
43 | 15
12
11
8.6
6.7 | 0.00
0.00
0.00
0.00
0.01 | | 16
17
18
19
20 | 3.9
4.1
3.8
3.4
3.3 | 17
16
16
20
21 | e7.0
9.2
18
31
47 | e4.7
e4.2
e3.8
e3.4
e3.0 | e1.1
e1.1
e1.0
e1.0 | 41
56
54
40
37 | 65
57
52
49
53 | 175
153
129
106
91 | 25
19
15
18
22 | 59
71
85
72
51 | 6.0
5.2
4.3
4.0
2.9 | 0.05
0.01
0.00
0.00
0.00 | | 21
22
23
24
25 | 3.5
3.5
3.9
4.4
4.9 | 34
26
16
12
11 | 51
47
38
30
24 | e2.7
e2.4
e2.1
e1.8
e1.7 | e1.0
e1.1
e1.1
e1.1
e1.1 | 51
63
59
51
51 | 55
52
46
40
34 | 84
80
71
62
55 | 27
24
20
15
11 | 38
37
25
17
12 | 2.2
1.9
2.1
2.0
1.6 | 0.00
0.01
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 8.9
13
13
15
17 | 11
12
11
e9.8
e9.0 | 20
18
16
15
e15
e14 | e1.5
e1.4
e1.3
e1.3
e1.4
e1.4 | e1.0
e1.1
e1.1
 | 55
54
52
57
59
54 | 30
27
24
21
22 | 47
41
37
41
57
76 | 9.4
10
7.9
7.6
8.4 | 9.1
7.6
6.6
5.5
4.6
3.9 | 1.5
1.4
1.2
1.5
2.6
1.3 | 0.06
0.11
0.07
0.09
0.12 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 403.7
13.0
48
3.3
0.11
0.12 | 523.8
17.5
34
9.0
0.14
0.16 | 497.1
16.0
51
5.6
0.13
0.15 | 198.7
6.41
14
1.3
0.05
0.06 | 33.3
1.19
1.5
1.0
0.01
0.01 | 946.6
30.5
63
1.1
0.25
0.29 | 1,774
59.1
112
21
0.48
0.54 | 3,938
127
238
37
1.03
1.19 | 1,116.3
37.2
90
7.6
0.30
0.34 | 1,145.4
36.9
102
3.9
0.30
0.35 | 414.1
13.4
53
1.2
0.11
0.13 | 4.26
0.14
0.91
0.00
0.00
0.00 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | TICS OF MC
42.7
364
(1987)
0.056
(1995) | 0NTHLY MI
68.3
390
(1986)
1.60
(2000) | EAN DATA
85.4
382
(1983)
3.06
(1977) | A FOR WATE
67.4
279
(1993)
1.46
(1977) | ER YEARS
107
327
(1974)
1.19
(2003) | 1967 - 2003
205
673
(1979)
14.9
(1968) | , BY WATE
222
718
(1993)
33.4
(1977) | R YEAR (W
127
410
(1996)
6.15
(1977) | 104
642
(2000)
1.90
(1988) | 52.6
363
(1978)
0.78
(1988) | 39.2
417
(1978)
0.23
(1999) | 52.1
410
(1972)
0.060
(1994) | | ANNUAI
ANNUAI
HIGHES'
LOWEST
HIGHES'
LOWEST
ANNUAI
MAXIMI
MAXIMI
ANNUAI
10 PERC
50 PERC | | MEAN MEAN EAN EAN AY MINIM LOW TAGE (CFSM) (INCHES) EDS EDS | | 1
6
163
22 | 7.81
2.5
8 Apr
0.57 Aug
0.2 Jul
0.51
0.90 | 12
12 | 10,99
3
23
24 | 80.1
88 May
0.00 (a)
0.00 Sep | 7 11
)
0 18
7 11 | 2,1
(c)2,1 | 0.00
0.00
30 J | 1993
1977
Mar 21, 1979
(b)
Jul 27, 1988
Jun 14, 2000
(d) | ⁽a) Several days ⁽b) At times in most years(c) Gage height, 9.95 ft(d) March 6, 1976, Sept. 27, 1986 ⁽e) Estimated due to ice effect or missing record ### 05543830 FOX
RIVER AT WAUKESHA, WI LOCATION.--Lat $43^{\circ}00'17''$, long $88^{\circ}14'37''$, in SW $\frac{1}{4}$ (revised) sec.3, T.6 N., R.19 E., Waukesha County, Hydrologic Unit 07120006, on left bank 20 ft downstream from Prairie Street bridge in Waukesha, 1.0 mi downstream from dam and 3.2 mi downstream from Pewaukee River. DRAINAGE AREA.--126 mi². PERIOD OF RECORD .-- January 1963 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 793.04 ft above NGVD of 1929 (levels by City of Waukesha). REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). There is occasional regulation from mill dam 1.0 mi upstream. Gage-height telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC IAN EED MAR ARB MAY HIN ALIC SEP | | | | | | | | | | | | | |---|---|---|---|---|---|--|--|---|--|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 73
164
150
159
169 | 70
68
62
61
63 | 41
50
46
42
39 | 36
41
44
38
41 | 27
29
32
32
e29 | 24
25
26
26
26 | 68
62
57
65
83 | 251
247
187
144
217 | 107
90
90
82
63 | 38
37
34
33
45 | 41
35
33
34
39 | 19
20
22
23
23 | | | 6
7
8
9
10 | 134
107
89
79
68 | 65
62
61
58
58 | 40
39
38
35
36 | 42
43
45
45
38 | e28
e27
e26
e25
e25 | 28
28
27
26
28 | 86
81
76
82
100 | 224
192
195
313
343 | 55
54
142
169
130 | 62
81
89
79
79 | 41
45
43
37
35 | 21
19
20
19
22 | | | 11
12
13
14
15 | 61
55
54
54
77 | 65
63
62
60
56 | 38
37
41
42
43 | 36
34
33
31
e29 | e24
e23
e23
e23
23 | 31
30
31
39
62 | 129
127
105
90
87 | 383
418
385
326
283 | 111
100
87
75
65 | 79
74
64
56
112 | 31
29
28
26
26 | 23
31
38
56
52 | | | 16
17
18
19
20 | 83
61
59
64
59 | 51
49
54
62
65 | 44
40
67
89
75 | e27
e25
e23
e22
e21 | 23
24
25
25
25 | 102
108
101
90
91 | 81
71
66
82
93 | 245
195
158
142
179 | 56
52
51
51
48 | 69
48
43
39
34 | 24
22
22
22
22
23 | 37
31
31
25
21 | | | 21
22
23
24
25 | 54
71
82
82
104 | 69
71
62
58
56 | 57
46
45
45
42 | e20
e19
e19
e20
e21 | 26
26
27
28
25 | 96
85
74
71
72 | 95
91
75
66
59 | 154
132
101
82
75 | 44
39
38
38
46 | 34
32
31
26
25 | 23
22
20
18
21 | 20
24
24
23
23 | | | 26
27
28
29
30
31 | 111
101
92
84
76
71 | 52
53
45
46
46 | 40
39
37
38
40
43 | e21
22
23
24
26
29 | 25
26
26
 | 67
61
68
81
71
67 | 55
55
53
50
70 | 67
64
66
70
78
119 | 46
48
67
55
44 | 26
27
26
25
31
43 | 23
20
19
21
19
18 | 25
25
23
22
22
22 | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2,747
88.6
169
54
0.70
0.81 | 1,773
59.1
71
45
0.47
0.52 | 1,394
45.0
89
35
0.36
0.41 | 938
30.3
45
19
0.24
0.28 | 727
26.0
32
23
0.21
0.21 | 1,762
56.8
108
24
0.45
0.52 | 2,360
78.7
129
50
0.62
0.70 | 6,035
195
418
64
1.55
1.78 | 2,143
71.4
169
38
0.57
0.63 | 1,521
49.1
112
25
0.39
0.45 | 860
27.7
45
18
0.22
0.25 | 784
26.1
56
19
0.21
0.23 | | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1963 - 2003 | , BY WATE | R YEAR (W | /Y) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 76.0
346
(1987)
6.44
(1964) | 81.6
303
(1986)
8.14
(1964) | 80.6
207
(1992)
4.80
(1964) | 65.3
188
(1973)
6.35
(1964) | 96.4
247
(2001)
6.26
(1964) | 185
451
(1974)
22.5
(1968) | 208
598
(1993)
53.4
(1963) | 136
384
(2000)
26.6
(1977) | 105
370
(1996)
19.0
(1964) | 80.4
271
(1993)
9.33
(1963) | 66.2
217
(1998)
8.23
(1963) | 76.8
385
(1986)
6.44
(1963) | | | SUMMA | RY STATIS | STICS | 1 | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER | YEAR | WATER | YEARS 196 | 3 - 2003 | | | ANNUAL HIGHES' LOWEST ANNUAL MAXIMI ANNUAL ANNUAL TO PERC 50 PERC | NUAL TOTAL 37,134 102 102 102 102 103 103 104 105 | | | | 25 | 41
1
1
49 | 53.1
18 May
18 Au | | (a)3
2,260
7
0 | .6 Ap
.2 (b)Dec 2
.3 De
Ap | 1993
1964
or 22, 1973
9-31, 1963
c 26, 1963
or 22, 1973
or 22, 1973 | | | ⁽a) Ice affected ⁽a) lee affected(b) Also occurred Jan. 1, 1964(e) Estimated due to ice effect or missing record ### ILLINOIS RIVER BASIN ### 05544200 MUKWONAGO RIVER AT MUKWONAGO, WI $LOCATION.--Lat~42^{\circ}51^{\circ}24^{\circ},~long~88^{\circ}19^{\circ}40^{\circ},~in~NE~\frac{1}{4}~NE~\frac{1}{4}~sec. 35,~T.5~N~.,~R.18~E.,~Waukesha~County,~Hydrologic~Unit~07120006,~on~left~bank~100~ft~upstream~from~bridge~on~State~Highway~83~in~Mukwonago,~100~ft~downstream~from~railroad~bridge,~and~800~ft~downstream~from~dam.$ DRAINAGE AREA.--74.1 mi². PERIOD OF RECORD .-- June 1973 to current year. REVISED RECORDS.--WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 779.23 ft above NGVD of 1929 (Southeastern Wisconsin Regional Planning Commission bench mark). Prior to Oct. 19, 1981, at datum 0.85 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Discharge affected by
manipulation of gates at dams 800 ft and 11.4 mi upstream. Gage-height telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |--|---|---|--|---|--|--|---|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 56
75
79
89
63 | 30
48
53
39
35 | 42
40
39
29
26 | 26
27
29
30
31 | 32
31
31
40
41 | 20
16
19
21
25 | 36
35
34
37
42 | 83
80
77
52
55 | 56
37
36
26
21 | 17
16
15
14
20 | 21
20
20
21
21 | 8.9
8.8
9.4
8.6
8.4 | | 6
7
8
9
10 | 50
52
43
39
27 | 36
36
36
36
36 | 27
28
28
29
30 | 31
e31
e32
50
58 | 38
36
e32
e31
28 | 26
27
28
28
33 | 42
44
54
61
33 | 65
64
64
73
79 | 20
21
28
50
76 | 23
27
50
68
67 | 20
20
20
20
20
19 | 8.4
8.2
8.2
8.3
8.4 | | 11
12
13
14
15 | 24
30
51
55
30 | 37
37
37
37
37 | 30
30
31
31
31 | e57
53
48
44
23 | 24
e24
e25
e25
e25 | 38
36
35
43
54 | 28
35
37
52
57 | 130
145
71
48
50 | 78
50
17
18
18 | 55
41
39
23
53 | 18
17
16
15 | 8.4
9.3
11
14
16 | | 16
17
18
19
20 | 20
23
39
57
41 | 37
37
37
38
36 | 31
31
52
60
58 | 16
18
e19
e19
e19 | 26
26
26
26
31 | 60
48
42
43
49 | 34
26
27
40
43 | 51
53
51
50
51 | 18
17
17
17
16 | 42
26
29
30
31 | 14
15
14
14
14 | 15
14
14
15
13 | | 21
22
23
24
25 | 26
24
26
28
61 | 36
35
34
33
32 | 57
58
58
57
53 | e19
e19
e16
e16
e15 | 33
e34
e33
e32
e29 | 63
68
64
46
30 | 41
40
38
26
21 | 50
49
46
40
35 | 16
15
14
14
15 | 29
26
27
26
24 | 13
12
11
11
11 | 13
14
14
14
13 | | 26
27
28
29
30
31 | 57
48
35
23
24
27 | 23
21
25
41
46 | 36
29
30
23
23
25 | e15
e15
e16
e40
35
31 | 30
30
29
 | 27
29
55
74
69
44 | 22
23
23
22
46 | 22
17
19
22
42
71 | 22
23
37
44
25 | 22
20
19
18
18 | 11
10
9.5
9.7
9.1
9.0 | 13
14
14
13
13 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1,322
42.6
89
20
0.58
0.66 | 1,081
36.0
53
21
0.49
0.54 | 1,152
37.2
60
23
0.50
0.58 | 898
29.0
58
15
0.39
0.45 | 848
30.3
41
24
0.41
0.43 | 1,260
40.6
74
16
0.55
0.63 | 1,099
36.6
61
21
0.49
0.55 | 1,805
58.2
145
17
0.79
0.91 | 862
28.7
78
14
0.39
0.43 | 933
30.1
68
14
0.41
0.47 | 470.3
15.2
21
9.0
0.20
0.24 | 350.3
11.7
16
8.2
0.16
0.18 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 48.4
98.7
(1987)
19.0
(1998) | 55.2
110
(1986)
29.2
(1977) | EAN DATA
52.9
83.7
(1983)
26.2
(1990) | FOR WAT
45.6
77.8
(1974)
22.8
(1977) | ER YEARS
54.1
83.8
(1974)
30.3
(2003) | 1973 - 2003
72.9
151
(1974)
40.6
(2003) | 76.1
150
(1993)
36.6
(2003) | R YEAR (W
63.2
155
(1975)
16.9
(1977) | 53.5
138
(1975)
14.4
(1988) | 41.8
80.8
(1993)
13.3
(1988) | 44.4
83.5
(1979)
15.2
(2003) | 45.6
88.7
(1986)
11.7
(2003) | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | FOR 2002 CALENDAR YEAR 17,566.7 48.1 168 | | | FOR 2003 WATER YEAR 12,080.6 33.1 145 May 12 8.2 Sep 7,8 8.3 Sep 5 170 May 11 3.22 May 11 0.45 6.06 57 30 14 | | | 2 | 54.3 90.3 1974 30.8 1977 275 Mar 6, 1974 1.8 Dec 23, 1975 6.8 Oct 31, 1988 (a)300 Mar 5, 1976 3.55 Sep 29, 1986 99 46 21 | | ⁽a) Gage height, 2.50 ft, datum then in use ⁽e) Estimated due to ice effect or missing record # 05544371 JEWEL CREEK AT MUSKEGO, WI $LOCATION.--Lat~42^{\circ}55'37'', long~88^{\circ}08'45'', in~NW~\frac{1}{4}~NW~\frac{1}{4}~sec.4, T.5~N~., R.20~E., Waukesha~County, Hydrologic~Unit~07120006, on~right~bank~0.4~mi~downstream~from~County~Trunk~Highway~HH, and~0.3~mi~upstream~from~Little~Muskego~Lake.$ DRAINAGE AREA.--8.16 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- June 1999 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 800 ft, from topographic map. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). | | | DISCH | ARGE, CUI | BIC FEET P | |), WATER Y
LY MEAN V | | OBER 2002 | TO SEPTEN | MBER 2003 | | | |---|--|--|--|--|--|--|--|--|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.8
5.4
5.4
5.8
6.8 | 1.7
1.8
1.8
1.8
1.9 | 1.8
1.7
1.6
1.6
1.6 | 1.9
1.9
1.9
1.8
1.9 | 1.8
1.8
1.9
1.8
1.7 | 1.6
1.6
1.5
1.6 | 4.0
3.8
3.4
4.3
5.2 | 35
12
6.6
5.6
25 | 4.9
3.9
3.3
2.7
2.4 | 1.4
1.4
1.4
1.3
1.4 | 1.2
1.1
1.1
1.2
1.3 | 1.0
1.0
1.0
1.0
e0.90 | | 6
7
8
9
10 | 3.1
2.5
2.4
5.8
1.5 | 2.0
2.2
2.1
2.0
1.9 | 1.6
1.6
1.5
1.5 | 1.8
1.9
2.0
2.0
1.9 | 1.7
1.6
1.7
1.6
1.6 | 1.5
1.5
1.6
1.5
1.5 | 4.7
4.4
4.0
5.5 | 12
19
20
50
18 | 2.1
2.1
7.2
4.9
3.5 | 4.1
4.4
4.3
4.2
2.0 | 2.4
3.6
1.5
1.3
1.2 | e1.0
e1.0
e1.0
1.1
1.1 | | 11
12
13
14
15 | 1.9
2.2
2.2
2.5
2.4 | 2.2
2.4
2.2
2.0
2.0 | 1.7
1.6
1.7
1.7 | 1.7
1.7
1.7
1.7
1.6 | 1.6
1.6
1.5
1.5 | 1.5
1.5
1.7
3.1 | 8.7
5.4
4.5
4.0
4.1 | 20
23
12
9.2
8.9 | 2.6
2.2
1.9
1.7
1.6 | 1.7
1.5
1.5
1.4
12 | 1.2
1.2
1.2
1.2
1.2 | 1.1
1.1
1.2
2.1
1.7 | | 16
17
18
19
20 | 2.1
2.1
2.3
2.2
2.2 | 2.0
2.0
2.0
2.2
2.2 | 1.7
1.7
4.3
5.5
3.9 | 1.7
1.7
1.7
1.8
1.7 | 1.6
1.6
1.6
1.6
1.8 | 9.3
5.1
4.1
3.5
4.3 | 3.6
3.2
2.8
3.4
4.3 | 7.0
6.2
5.5
5.3
6.7 | 1.6
1.4
1.4
1.5
1.4 | 3.2
1.5
1.5
1.4
1.3 | 1.1
1.1
1.1
1.1
1.1 | 1.2
1.1
1.1
1.1
1.1 | | 21
22
23
24
25 | 2.3
2.1
2.0
2.0
2.6 | 2.3
2.3
2.0
2.0
1.9 | 3.1
2.5
2.1
2.0
1.9 | 1.6
1.6
1.6
1.6
1.7 | 1.8
1.8
1.7
1.7 | 4.0
3.1
3.1
3.1
3.2 | 3.8
3.2
2.6
2.3
2.1 | 5.5
4.8
4.3
3.8
3.1 | 1.4
1.4
1.4
1.4
1.3 | 1.3
1.3
1.3
1.2
1.2 | e1.1
e1.0
e1.0
e1.0
e1.0 | 1.1
1.2
1.2
1.1
e1.0 | | 26
27
28
29
30
31 | 2.6
2.1
2.0
4.7
2.1
1.9 | 1.8
1.8
1.8
1.8 | 1.9
1.9
1.9
1.9
2.0
2.0 | 1.7
1.6
1.6
1.7
1.7 | 1.6
1.6
1.6
 | 3.4
3.7
4.9
5.5
4.3
3.9 | 1.9
1.9
1.9
1.8
3.6 | 2.5
2.2
3.0
4.1
3.8
8.6 | 1.5
1.5
2.6
2.4
1.5 | 1.2
1.2
1.2
1.2
1.2
1.2 | e1.1
e1.1
1.0
1.1
1.0 | e1.1
1.1
1.2
e1.1
e1.1 | | TOTAL
MEAN
MAX
MIN | 90.0
2.90
6.8
1.5 | 60.0
2.00
2.4
1.7 | 64.9
2.09
5.5
1.5 | 54.1
1.75
2.0
1.6 | 46.6
1.66
1.9
1.5 | 106.8
3.45
15
1.5 | 118.4
3.95
10
1.8 | 352.7
11.4
50
2.2 | 70.7
2.36
7.2
1.3 | 66.4
2.14
12
1.2 | 38.8
1.25
3.6
1.0 | 34.10
1.14
2.1
0.90 | | | TICS OF MO | | EAN DATA | A FOR WAT | | | | R YEAR
(W | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.45
8.18
(2002)
2.62
(2000) | 3.82
6.19
(2001)
2.00
(2003) | 3.57
4.87
(2001)
2.09
(2003) | 3.64
6.89
(2001)
1.75
(2003) | 8.35
18.4
(2001)
1.66
(2003) | 7.23
12.5
(2001)
3.45
(2003) | 10.5
16.4
(2001)
3.95
(2003) | 11.1
16.1
(2000)
6.21
(2002) | 10.7
19.7
(1999)
2.36
(2003) | 5.54
14.6
(2000)
1.80
(2002) | 5.16
9.15
(2000)
1.25
(2003) | 5.73
12.6
(2000)
1.14
(2003) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER Y | YEAR | WATER | YEARS 19 | 99 - 2003 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMU MAXIMU INSTANT 10 PERCI | L MEAN I ANNUAL I ANNUAL I DAILY M I DAILY M L SEVEN-D JM PEAK I JM PEAK S | MEAN IEAN EAN OAY MINIM STAGE LOW FLOW EDS | | 9(e)
(e) | 5.37
0 Apr
1.0 Aug | 11 | 5 |)0.90 Sej
0.99 Aug
37 Oc | y 9
p 5
g 30
t 9
t 9 | | 0.80 O
0.98 O
372 J
5.59 J | 2001
2003
ul 3, 2000
ct 23, 1999
ct 20, 1999
ul 2, 2000
ul 2, 2000
an 18, 2000 | | | ENT EXCE | | | | 1.6 | | | 1.1 | | | 1.5 | | ⁽a) Also occurred Apr. 7, 8, result of dam construction upstream ⁽e) Estimated due to ice effect or missing record # 05544371 JEWEL CREEK AT MUSKEGO, WI-Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- June 1999 to current year. PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: June 1999 to current year. TOTAL-PHOSPHORUS DISCHARGE: June 1999 to current year. $INSTRUMENTATION. \hbox{--} Stage-activated water-quality sampler. \\$ REMARKS.--Chemical analyses are done by the Wisconsin State Laboratory of Hygiene. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 171 tons, June 13, 1999; minimum daily, 0.02 ton, Dec. 2-17, 2002, and Sept. 5, 25, 2003. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 428 lb, July 3, 2000; minimum daily, 0.11 lb, Feb. 13-16, 28, and Mar. 1, 3, 4, 6-12, 2003. EXTREMES FOR CURRENT YEAR.-- SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 8.3 tons, May 9; minimum daily, 0.02 ton, Dec. 2-17, and Sept. 5, 25. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 33.7 lb, May 9; minimum daily, 0.11 lb, Feb. 13-16, 28, and Mar. 1, 3, 4, 6-12. | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Phosphorus, water, unfltrd mg/L (00665) | Suspended sediment concentration mg/L (80154) | |----------|------|--------------------------------------|-------------------------------|---|---| | OCT 2002 | | | | | | | 09 | 1515 | 126 | 50 | | 713 | | 09 | 1600 | 13 | 50 | | 124 | | 29 | 1845 | 12 | 50 | 0.068 | 66 | | NOV | 1043 | 12 | 30 | 0.000 | 00 | | 05 | 1240 | 1.9 | 50 | 0.025 | 12 | | DEC | 1240 | 1.9 | 30 | 0.023 | 12 | | 10 | 1110 | 1.5 | 70 | 0.014 | 4 | | JAN 2003 | 1110 | 1.5 | 70 | 0.014 | | | 21 | 1045 | 1.6 | 70 | 0.014 | 18 | | MAR | 1043 | 1.0 | 70 | 0.014 | 10 | | 26 | 1150 | 3.7 | 50 | 0.062 | 47 | | 26
26 | 1245 | 3.7 | 50
50 | 0.062 | 16 | | APR | 1243 | 3.9 | 30 | 0.048 | 10 | | | 1045 | 1.5 | 50 | 0.025 | 22 | | 10 | 1845 | 15 | 50 | 0.035 | 23 | | 11 | 0130 | 12 | 50 | 0.033 | 17 | | MAY | 0100 | 20 | 50 | 0.000 | 1.40 | | 01 | 0100 | 28 | 50 | 0.232 | 149 | | 01 | 0415 | 47 | 50 | 0.149 | 77 | | 01 | 0730 | 48 | 50 | 0.129 | 54 | | 01 | 1045 | 45 | 50 | 0.095 | 33 | | 01 | 2030 | 21 | 50 | 0.106 | 45 | | 02 | 0615 | 15 | 50 | 0.141 | 90 | | 05 | 0030 | 8.2 | 50 | 0.063 | 21 | | 05 | 0345 | 24 | 50 | 0.063 | 28 | | 05 | 0700 | 32 | 50 | 0.064 | 27 | | 05 | 1330 | 29 | 50 | 0.088 | 36 | | 05 | 2000 | 19 | 50 | 0.079 | 27 | | 06 | 0545 | 13 | 50 | 0.060 | 51 | | 06 | 1000 | 15 | 50 | 0.061 | 18 | | 07 | 1715 | 29 | 50 | 0.059 | 19 | | 07 | 2030 | 37 | 50 | 0.071 | 32 | | 07 | 2345 | 35 | 50 | 0.065 | 34 | | 08 | 0615 | 23 | 50 | 0.088 | 32 | | 09 | 0445 | 51 | 50 | 0.086 | 34 | | 09 | 0800 | 70 | 50 | 0.080 | 72 | | 09
09 | 1115 | 70
74 | 50
50 | 0.134 | 53 | | 09 | | 46 | 50
50 | | 33
87 | | | 1745 | | | 0.153 | | | 10 | 0330 | 22 | 50 | 0.121 | 47 | | 11 | 2200 | 32 | 50 | 0.107 | 41 | | 12 | 0115 | 34 | 50 | 0.080 | 51 | | 12 | 0430 | 31 | 50 | 0.077 | 33 | | 14 | 1045 | 9.1 | 50 | 0.051 | 62 | | JUN | | | | | | | 12 | 1025 | 2.2 | 70 | 0.079 | 35 | | JUL | | | | | | | 15 | 0445 | 25 | 70 | 0.219 | 106 | | AUG | | | | | | | 27 | 1200 | 1.1 | 70 | 0.074 | 9 | | | | | | | | # 05544371 JEWEL CREEK AT MUSKEGO, WI—Continued # SUSPENDED SEDIMENT LOAD, TONS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|--|--------------------------------------|--|--|--------------------------------------|--|--|---|--------------------------------------|--|--|--| | 1 | 0.14 | 0.06 | 0.03 | 0.09 | 0.09 | 0.07 | 0.20 | 5.6 | 0.65 | 0.12 | 0.06 | 0.03 | | 2 | 0.37 | 0.07 | 0.02 | 0.09 | 0.09 | 0.08 | 0.19 | 2.3 | 0.43 | 0.12 | 0.06 | 0.03 | | 3 | 0.43 | 0.06 | 0.02 | 0.09 | 0.09 | 0.07 | 0.18 | 0.86 | 0.31 | 0.12 | 0.06 | 0.03 | | 4 | 0.53 | 0.06 | 0.02 | 0.09 | 0.09 | 0.08 | 0.23 | 0.42 | 0.24 | 0.11 | 0.06 | 0.03 | | 5 | 0.54 | 0.06 | 0.02 | 0.09 | 0.08 | 0.08 | 0.29 | 2.0 | 0.21 | 0.12 | 0.07 | 0.02 | | 6 | 0.20 | 0.06 | 0.02 | 0.09 | 0.08 | 0.07 | 0.26 | 0.88 | 0.19 | 0.50 | 0.18 | 0.03 | | 7 | 0.14 | 0.07 | 0.02 | 0.09 | 0.08 | 0.07 | 0.25 | 1.2 | 0.21 | 0.59 | 0.32 | 0.03 | | 8 | 0.13 | 0.06 | 0.02 | 0.10 | 0.08 | 0.08 | 0.24 | 1.7 | 0.91 | 0.51 | 0.09 | 0.03 | | 9 | 1.5 | 0.06 | 0.02 | 0.10 | 0.08 | 0.07 | 0.33 | 8.3 | 0.60 | 0.45 | 0.07 | 0.03 | | 10 | 0.14 | 0.05 | 0.02 | 0.09 | 0.08 | 0.07 | 0.60 | 2.3 | 0.40 | 0.19 | 0.06 | 0.03 | | 11
12
13
14
15 | 0.10
0.12
0.12
0.14
0.13 | 0.06
0.06
0.05
0.05
0.05 | 0.02
0.02
0.02
0.02
0.02 | 0.08
0.08
0.08
0.08
0.08 | 0.08
0.08
0.07
0.07
0.07 | 0.07
0.07
0.08
0.43
6.8 | 0.40
0.25
0.21
0.19
0.20 | 2.3
2.4
1.5
1.5 | 0.27
0.21
0.18
0.16
0.14 | 0.15
0.13
0.12
0.14
2.9 | 0.06
0.05
0.05
0.05
0.05 | 0.03
0.03
0.04
0.10
0.08 | | 16 | 0.12 | 0.05 | 0.02 | 0.08 | 0.07 | 3.7 | 0.17 | 1.1 | 0.14 | 0.51 | 0.04 | 0.04 | | 17 | 0.12 | 0.04 | 0.02 | 0.08 | 0.08 | 1.5 | 0.16 | 0.94 | 0.13 | 0.14 | 0.04 | 0.03 | | 18 | 0.13 | 0.04 | 0.13 | 0.08 | 0.08 | 0.93 | 0.14 | 0.81 | 0.13 | 0.09 | 0.04 | 0.03 | | 19 | 0.12 | 0.05 | 0.29 | 0.09 | 0.08 | 0.73 | 0.17 | 0.75 | 0.13 | 0.07 | 0.04 | 0.03 | | 20 | 0.12 | 0.04 | 0.21 | 0.08 | 0.09 | 0.84 | 0.22 | 0.93 | 0.12 | 0.07 | 0.04 | 0.03 | | 21 | 0.13 | 0.05 | 0.16 | 0.08 | 0.09 | 0.72 | 0.20 | 0.73 | 0.12 | 0.07 | 0.03 | 0.03 | | 22 | 0.11 | 0.04 | 0.12 | 0.08 | 0.09 | 0.53 | 0.16 | 0.62 | 0.12 | 0.07 | 0.03 | 0.03 | | 23 | 0.11 | 0.04 | 0.11 | 0.08 | 0.08 | 0.49 | 0.14 | 0.53 | 0.11 | 0.07 | 0.03 | 0.03 | | 24 | 0.11 | 0.04 | 0.10 | 0.08 | 0.08 | 0.46 | 0.12 | 0.45 | 0.11 | 0.07 | 0.03 | 0.03 | | 25 | 0.14 | 0.03 | 0.09 | 0.08 | 0.08 | 0.44 | 0.12 | 0.36 | 0.11 | 0.07 | 0.03 | 0.02 | | 26
27
28
29
30
31
TOTAL | 0.14
0.12
0.11
0.66
0.15
0.08
7.20 | 0.03
0.03
0.03
0.03
0.03 | 0.09
0.09
0.09
0.09
0.10
0.10 | 0.08
0.08
0.08
0.08
0.08
0.08 | 0.08
0.08
0.07

2.26 | 0.27
0.16
0.22
0.26
0.20
0.19 | 0.10
0.10
0.10
0.10
0.66
 | 0.28
0.24
0.31
0.42
0.44
1.3 | 0.12
0.12
0.21
0.19
0.12 | 0.07
0.07
0.06
0.07
0.07
0.07 | 0.03
0.03
0.03
0.03
0.03
0.03 | 0.03
0.03
0.03
0.03
0.03
 | | .01/11 | 7.20 | 1.15 | 2.12 | 2.01 | 2.20 | 17.00 | 0.00 | 11.07 | 7.07 | 1.71 | 1.02 | 1.02 | WTR YR 2003 TOTAL 104.86 # 05544371 JEWEL CREEK AT MUSKEGO, WI—Continued # PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 0.51 | 0.26 | 0.15 | 0.15 | 0.13 | 0.11 | 0.92 | 23.9 | 1.52 | 0.58 | 0.50 | 0.41 | | 2 | 0.99 | 0.27 | 0.15 | 0.15 | 0.13 | 0.12 | 0.86 | 7.73 | 1.12 | 0.58 | 0.47 | 0.41 | | 3 | 0.98 | 0.26 | 0.14 | 0.15 | 0.14 | 0.11 | 0.75 | 2.98 | 0.95 | 0.56 | 0.46 | 0.41 | | 4 | 1.06 | 0.26 | 0.13 | 0.14 | 0.14 | 0.11 | 0.92 | 2.07 | 0.78 | 0.53 | 0.50 | 0.40 | | 5 | 1.24 | 0.26 | 0.13 | 0.15 | 0.13 | 0.12 | 1.10 | 9.93 | 0.70 | 0.62 | 0.64 | 0.35 | | 6 | 0.56 | 0.27 | 0.13 | 0.14 | 0.12 | 0.11 | 0.96 | 3.95 | 0.63 | 2.07 | 1.34 | 0.39 | | 7 | 0.45 | 0.29 | 0.13 | 0.15 | 0.12 | 0.11 | 0.89 | 6.44 | 0.72 | 2.10 | 1.93 | 0.38 | | 8 | 0.44 | 0.27 | 0.12 | 0.15 | 0.12 | 0.11 | 0.80 | 8.77 | 3.33 | 1.90 | 0.76 | 0.38 | | 9 | 5.07 | 0.26 | 0.12 | 0.16 | 0.12 | 0.11 | 1.07 | 33.7 | 2.27 | 1.73 | 0.62 | 0.41 | | 10 | 0.37 | 0.24 | 0.12 | 0.15 | 0.12 | 0.11 | 1.91 | 11.8 | 1.59 | 0.80 |
0.58 | 0.40 | | 11 | 0.42 | 0.27 | 0.13 | 0.14 | 0.12 | 0.11 | 1.55 | 11.6 | 1.15 | 0.66 | 0.54 | 0.41 | | 12 | 0.47 | 0.29 | 0.12 | 0.13 | 0.12 | 0.11 | 0.97 | 9.22 | 0.93 | 0.60 | 0.51 | 0.42 | | 13 | 0.46 | 0.25 | 0.13 | 0.13 | 0.11 | 0.12 | 0.81 | 3.84 | 0.82 | 0.56 | 0.50 | 0.47 | | 14 | 0.53 | 0.24 | 0.13 | 0.13 | 0.11 | 0.43 | 0.72 | 2.58 | 0.71 | 0.86 | 0.52 | 0.78 | | 15 | 0.50 | 0.23 | 0.13 | 0.12 | 0.11 | 10.5 | 0.74 | 2.46 | 0.67 | 13.5 | 0.51 | 0.62 | | 16 | 0.44 | 0.23 | 0.13 | 0.13 | 0.11 | 6.26 | 0.65 | 1.93 | 0.65 | 3.29 | 0.47 | 0.45 | | 17 | 0.44 | 0.22 | 0.14 | 0.13 | 0.12 | 2.91 | 0.59 | 1.73 | 0.61 | 1.41 | 0.46 | 0.42 | | 18 | 0.48 | 0.22 | 0.44 | 0.13 | 0.12 | 2.09 | 0.52 | 1.53 | 0.60 | 1.16 | 0.47 | 0.41 | | 19 | 0.46 | 0.23 | 0.90 | 0.13 | 0.12 | 1.69 | 0.63 | 1.47 | 0.62 | 0.91 | 0.46 | 0.41 | | 20 | 0.45 | 0.23 | 0.61 | 0.13 | 0.13 | 1.99 | 0.80 | 1.88 | 0.59 | 0.76 | 0.46 | 0.41 | | 21 | 0.47 | 0.24 | 0.42 | 0.12 | 0.14 | 1.74 | 0.71 | 1.53 | 0.58 | 0.66 | 0.45 | 0.41 | | 22 | 0.42 | 0.23 | 0.30 | 0.12 | 0.13 | 1.30 | 0.60 | 1.36 | 0.56 | 0.63 | 0.41 | 0.42 | | 23 | 0.40 | 0.20 | 0.24 | 0.12 | 0.12 | 1.21 | 0.49 | 1.20 | 0.56 | 0.60 | 0.41 | 0.43 | | 24 | 0.40 | 0.19 | 0.20 | 0.12 | 0.12 | 1.16 | 0.43 | 1.06 | 0.57 | 0.58 | 0.41 | 0.42 | | 25 | 0.52 | 0.18 | 0.17 | 0.13 | 0.12 | 1.13 | 0.41 | 0.87 | 0.55 | 0.56 | 0.40 | 0.36 | | 26
27
28
29
30
31 | 0.50
0.41
0.39
1.31
0.36
0.31 | 0.17
0.17
0.16
0.17
0.17 | 0.16
0.15
0.16
0.15
0.16
0.16 | 0.12
0.12
0.12
0.12
0.12
0.13 | 0.12
0.12
0.11
 | 0.99
0.95
1.23
1.35
1.02
0.90 | 0.37
0.37
0.36
0.35
1.40 | 0.71
0.61
0.84
1.17
1.36
3.31 | 0.60
0.60
1.04
0.97
0.61 | 0.55
0.54
0.52
0.52
0.53
0.52 | 0.44
0.44
0.42
0.42
0.41
0.41 | 0.40
0.41
0.42
0.39
0.37 | | TOTAL | 21.81 | 6.93 | 6.45 | 4.13 | 3.42 | 40.31 | 23.65 | 163.53 | 27.60 | 41.39 | 17.32 | 12.77 | WTR YR 2003 TOTAL 369.31 # 05544385 MUSKEGO (BIG MUSKEGO) LAKE OUTLET NEAR WIND LAKE, WI $LOCATION.--Lat~42^{\circ}51'09", long~88^{\circ}07'50", in~SE~\frac{1}{4}~NE~\frac{1}{4}~sec. 33, T.5~N~., R.20~E., Waukesha~County, Hydrologic~Unit~07120006, on~right~bank~at~dam~outlet~of~Muskego~Lake,~700~ft~north~of~Muskego~Dam~Drive,~2~mi~northeast~of~Wind~Lake.$ DRAINAGE AREA.--33.9 mi². PERIOD OF RECORD.--October 1987 to September 1989, October 1995 to current year. Prior to October 1996, published under station number 425109088075000. Prior to October 2000 published as "Muskego Lake Outlet near Wind Lake". GAGE.--Water-stage recorder. Datum of gage is 760.00 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 18, 1987, nonrecording gage at same site and datum, October 1989 to September 1995, nonrecording gage at same datum. REMARKS.--Flows for the water year were based on upstream-stage/downstream-stage-discharge ratings for flow through the variably-opened gate or upstream-stage-discharge rating for the dam crest or combination of gate and crest overflow. Records good except for estimated daily disicharges, which are fair to poor (see page 11). | | 1 | DISCH | ARGE, CU | BIC FEET P | ER SECONE
DAII |), WATER Y
LY MEAN V | | OBER 2002 T | TO SEPTEN | MBER 2003 | | | |--|--|---|--|--|---|---|---|--|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | e59
e42
e28
e14
e5.3 | e0.6
e0.6
e0.6
e0.6 | 1.8
1.8
1.5
1.3
1.7 | e0.0
e0.0
e0.0
e0.0
e0.0 | e0.0
e0.0
e0.0
0.9
1.8 | 7.1
16.3
14.9
18
7.4 | 11.5
17.6
5.5
4.2
10.3 | 3.7
3.7
3.7
3.7
3.7 | 3.5
3.5
3.4
3.4
3.4 | 3.3
3.3
3.3
3.3
3.3 | 3.3
3.3
3.3
3.3
3.3 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
0.0 | 0.9
0.4
0.2
0.3 | e0.6
e0.6
e0.6
e0.6 | 1.7
1.7
1.7
1.5
1.2 | e0.0
e0.0
e0.0
e0.0
e0.0 | 1.8
1.8
2
2.3
2.2 | 12.1
23.6
12.2
5.4
5.4 | 13.4
21.7
36.5
59
68.6 | 3.7
3.7
3.7
3.7
3.7 | 3.4
3.4
3.4
3.4
3.4 | 3.3
3.3
3.4
3.3
3.3 | 3.3
3.3
3.3
3.3
3.3 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 2.6
0.7
0.7
1.8
3.5 | 0.6
0.6
0.6
0.6
0.7 | e0.0
e0.0
e0.0
e0.0
e0.0 | e0.0
e0.0
e0.0
e0.0
e0.0 | 2.2
1.9
2.2
2
2.3 | 9.4
12.9
5.6
2.2
1.6 | 46.7
71.7
65.5
62.2
61.8 | 3.8
3.8
3.7
3.7
3.7 | 3.4
3.4
3.3
3.3 | 3.4
3.4
3.3
3.3
3.3 | 3.2
3.2
3.3
3.3
3.3 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0
0.0 | 1.8
0.7
11.2
0.4
0.7 | 0.6
0.6
2
3
3.2 | e0.0
e0.0
e0.0
e0.0
e0.0 | e0.0
e0.0
e0.0
e0.0
e0.0 | 2.7
3
3.3
4.1
5.8 | 26.2
10.1
5
2.7
0.7 | 56
53.9
47.2
42.4
43.6 | 3.7
3.7
3.7
3.7
3.7 | 3.3
3.3
3.4
3.3
3.3 | 3.3
3.3
3.3
3.3
e3.3 | 3.3
3.3
3.3
3.3
3.3 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0
0.0 | 3.7
1.8
0.3
0.6
0.6 | 2.3
2
1.7
1.8
1.8 | e0.0
e0.0
e0.0
e0.0
e0.0 | e0.0
e0.0
e0.0
e0.0
e0.0 | 5.7
6.5
6
5.1
6.3 | 4.2
5.1
3.2
2.9
9.8 | 40.9
39.4
38.7
38.5
37.8 | 3.6
3.6
3.6
3.5
3.5 | 3.3
3.3
3.3
3.3
3.2 | e3.3
e3.3
e3.3
e3.3
e3.3 | 3.3
3.2
3.2
3.2
3.3 | | 26
27
28
29
30
31 | 0.0
0.0
17
70.3
74.9
e74 | e0.6
e0.6
e0.6
e0.6 | 1.4
1.3
1.3
1.4
1.5 | e0.0
e0.0
e0.0
e0.0
e0.0
e0.0 | e0.0
e0.0
e0.0 | 6.3
7.6
5.1
8.4
6
5.4 | 2.3
0.3
0.5
0.8
2.5 | 37.7
5.9
3.7
3.7
3.7
4.3 | 3.5
3.5
3.5
3.5
3.5 | 3.2
3.3
3.3
3.2
3.2
3.2 | e3.3
e3.3
3.3
3.3
3.3
3.3 | 3.2
3.2
3.3
3.3
3.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 236.2
7.62
75
0.00
0.22
0.26 | 185.20
6.17
59
0.20
0.18
0.20 | 36.40
1.17
3.2
0.60
0.03
0.04 | 15.90
0.51
1.8
0.00
0.02
0.02 | 0.00
0.000
0.00
0.00
0.00
0.00 | 110.70
3.57
8.4
0.00
0.11
0.12 | 230.4
7.68
26
0.30
0.23
0.25 | 1,053.6
34.0
72
3.7
1.00
1.16 | 109.5
3.65
3.8
3.5
0.11
0.12 | 103.4
3.34
3.5
3.2
0.10
0.11 | 102.6
3.31
3.4
3.3
0.10
0.11 | 98.3
3.28
3.3
3.2
0.10
0.11 | | | | | | | ER YEARS | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 15.7
44.2
(1996)
0.000
(1989) | 12.9
45.6
(1996)
0.001
(2000) | 12.5
44.2
(1988)
0.46
(2001) | 17.1
43.9
(1988)
0.51
(2003) | 36.5
88.6
(2001)
0.000
(2003) | 25.0
51.8
(2001)
3.57
(2003) | 29.2
55.6
(1999)
0.000
(1997) | 24.7
69.7
(2000)
0.008
(1997) | 27.2
69.7
(1999)
0.003
(1989) | 8.12
39.6
(2000)
0.000
(1988) | 4.03
14.8
(1998)
0.000
(1988) | 7.12
32.0
(2000)
0.000
(1988) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | CALENDAR | YEAR | FOR 200 | 3 WATER Y | EAR | WATER | YEARS 198 | 38 - 2003 | | ANNUAI HIGHES' LOWEST HIGHES' LOWEST ANNUAI ANNUAI 10 PERC' 50 PERC' | Γ ANNUAL
Γ ANNUAL
Γ DAILY M
Γ DAILY M | MEAN IEAN EAN OAY MINIM (CFSM) (INCHES) EDS EDS | UM | 9 | 1.7 | days | 7 | 32.20
6.25
75 Oct
0.00 (a)Oct
0.00 Oct
0.18
2.50
2.33
0.00 | | 1 | 0.00 M | 1999
2003
n 15, 1999
any days
any periods | ⁽a) Also occurred Oct. 2-27, and Jan. 11 to Mar. 3 ⁽e) Estimated due to ice effect or missing record # $423525088260400\,$ GENEVA LAKE AT LAKE GENEVA, WI LOCATION.--Lat 42°35′25″, long 88°26′04″ in SE $^{1}\!\!/_{4}$ NW $^{1}\!\!/_{4}$ sec.36, T.2 N., R.17 E., Walworth County, Hydrologic Unit 07120006, at Geneva Lake dam at Center Street at Lake Geneva. DRAINAGE AREA.--28.7 mi². Area of Lake Geneva, 5,262 acres. PERIOD OF RECORD.--October 1997 to August 2002, December 2002 to current year. GAGE.--Water-stage recorder. Datum of gage is 862.08 ft above NGVD of 1929. Intermittent staff-gage readings October to March. REMARKS.--Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 3.29 ft, June 13, 2000; minimum gage height, 1.66 ft, Apr. 9, 2001. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 3.11 ft, May 9 (affected by wind); minimum gage height, 1.72 ft, Sept. 30. | | | | GAGE H | EIGHT, FEI | | R YEAR OC'
LY MEAN V | | 2 TO SEPTE | EMBER 2003 | 3 | | | |----------|------|------|---------------|------------|-----|-------------------------|--------------|--------------|--------------|--------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2.30 | 2.15 | | | | | 2.36
2.35 | 2.52 | 2.58 | 2.41 | 2.37 | 2.06 | | 2 3 | 2.42 | | | | | | 2.35 | 2.52
2.52 | 2.56
2.56 | 2.40
2.41 | 2.37
2.40 | 2.05
2.05 | | 4 | | | | | | | 2.37 | 2.51 | 2.54 | 2.40 |
2.41 | 2.03 | | 5 | | | | | | | 2.41 | 2.60 | 2.53 | 2.45 | 2.40 | 2.00 | | 6 | | | | | | | 2.39 | 2.60 | 2.52 | 2.46 | 2.39 | 1.99 | | 7 | | | | | | | 2.39 | 2.59 | 2.52 | 2.48 | 2.39 | 1.97 | | 8 | | | | | | | 2.42 | 2.59 | 2.58 | 2.49 | 2.37 | 1.96 | | 9 | | | | 1.06 | | | 2.42 | 2.66 | 2.57 | 2.49 | 2.36 | 1.96 | | 10 | | | | e1.86 | | | 2.42 | 2.66 | 2.57 | 2.51 | 2.35 | 1.95 | | 11 | | | 2.08 | | | | e2.43 | 2.73 | 2.54 | 2.49 | 2.34 | 1.94 | | 12 | | | | | | | e2.43 | 2.67 | 2.53 | 2.47 | 2.32 | 1.96 | | 13 | | | 2.03 | | | | e2.42 | 2.64 | 2.52 | 2.46 | 2.31 | 2.01 | | 14 | | | | | | | e2.42 | 2.65 | 2.51 | 2.45 | 2.30 | 2.03 | | 15 | 2.34 | | | | | | e2.42 | 2.66 | 2.50 | 2.56 | 2.31 | 2.02 | | 16 | | | | | | | e2.41 | 2.65 | 2.49 | 2.57 | 2.31 | 2.00 | | 17 | | | | | | | e2.41 | 2.63 | e2.49 | 2.55 | 2.29 | 1.98 | | 18
19 | 2.31 | | | | | e2.17 | 2.42 | 2.62 | 2.50 | 2.50 | 2.28 | 1.96
1.96 | | 20 | | 2.12 | | | | | 2.43
2.48 | 2.62
2.66 | 2.48
2.47 | 2.49
2.49 | 2.27
2.27 | 1.96 | | | | 2.12 | | | | | | | | | | | | 21 | | | | | | | 2.47 | 2.63 | 2.46 | 2.49 | 2.26 | 1.91 | | 22 | | | | | | | 2.46 | 2.61 | 2.46 | 2.46 | 2.23 | 1.93 | | 23
24 | 2.26 | | -2.02 | | | | 2.45 | 2.60 | 2.45 | 2.44 | 2.21 | 1.91 | | 24
25 | 2.26 | | e2.02
2.01 | | | e2.30 | 2.44
2.43 | 2.59
2.57 | 2.45
2.45 | 2.43
2.43 | 2.22
2.19 | 1.88
1.86 | | 23 | | | 2.01 | | | 62.30 | 2.43 | 2.37 | 2.43 | 2.43 | 2.19 | 1.80 | | 26 | | | 2.00 | | | 2.29 | 2.43 | 2.56 | 2.48 | 2.42 | 2.18 | 1.85 | | 27 | | | 1.98 | | | 2.29 | 2.44 | 2.54 | 2.45 | 2.38 | 2.16 | 1.86 | | 28 | | | 1.97 | | | 2.33 | 2.43 | 2.56 | 2.42 | 2.36 | 2.15 | 1.82 | | 29 | | | 1.95 | e1.88 | | 2.35 | 2.42 | 2.59 | 2.43 | 2.36 | 2.13 | 1.81 | | 30
31 | 2.20 | | 1.95 | | | 2.35 | 2.44 | 2.59 | 2.41 | 2.37 | 2.10 | 1.79 | | 31 | | | 1.94 | | | 2.35 | | 2.59 | | 2.37 | 2.09 | | | MEAN | | | | | | | 2.42 | 2.60 | 2.50 | 2.45 | 2.28 | 1.95 | | MAX | | | | | | | 2.48 | 2.73 | 2.58 | 2.57 | 2.41 | 2.06 | | MIN | | | | | | | 2.35 | 2.51 | 2.41 | 2.36 | 2.09 | 1.79 | ⁽e) Estimated due to ice effect or missing record # 055451345 WHITE RIVER AT CENTER STREET AT LAKE GENEVA, WI LOCATION.--Lat 42°35'26", long 88°26'01", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.36, T.2 N., R.17 E., Walworth County, Hydrologic Unit 07120006, on left bank at downstream end of Center Street culvert crossing at Lake Geneva. DRAINAGE AREA.--28.7 mi². # Water-Discharge Records PERIOD OF RECORD.--October 1997 to August 12, 2002, December 24, 2002 to September 2003. GAGE.--Water-stage recorder. Elevation of gage is 848.22 ft above NGVD of 1929. REMARKS.--Records fair except those for estimated daily discharges, which are poor (see page 11). Gage-height telemeter at station. | | | DISCH | ARGE, CUI | BIC FEET PI | | O, WATER '
LY MEAN ' | YEAR OCTO
VALUES | DBER 2002 | ГО ЅЕРТЕМ | MBER 2003 | | | |---|--|---|--|--|--|--|--|--|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 |

 |

 |

 | 38
36
36
35
35 | 0.70
0.66
0.66
0.66
e0.64 | e0.58
e0.56
e0.50
e0.50
e0.50 | 2.2
2.0
6.3
7.4
7.5 | 35
31
28
28
55 | 33
29
29
26
24 | 4.7
4.3
5.2
5.2
11 | 3.2
3.8
6.2
7.4
4.9 | 0.31
0.31
0.30
0.28
0.28 | | 6
7
8
9
10 |

 |

 |

 | 37
37
36
13
1.1 | e0.62
e0.60
e0.60
e0.58 | e0.50
e0.50
e0.50
e0.50
e0.50 | 3.7
3.8
6.3
7.0
7.5 | 54
51
52
53
49 | 22
22
35
33
32 | 14
16
17
17
20 | 3.5
4.2
3.1
1.7
1.3 | 0.26
0.25
0.25
0.23
0.23 | | 11
12
13
14
15 |

 |

 |

 | 1.2
1.00
0.98
0.98
0.99 | e0.54
e0.54
e0.54
e0.54
0.56 | 0.51
0.52
0.52
0.54
0.53 | e8.2
e8.2
e8.2
e8.2
e8.0 | 75
55
46
49
52 | 25
23
23
22
20 | 18
13
12
11
33 | 0.60
0.31
0.28
0.27
0.30 | 0.23
0.29
0.16
0.16
0.13 | | 16
17
18
19
20 |

 |

 |

 | 0.96
0.98
0.99
1.0
0.99 | e0.54
e0.54
0.56
0.56
0.56 | 0.54
0.56
0.50
0.50
0.48 | e8.0
e8.0
8.9
16
24 | 49
45
42
42
53 | 18
e17
17
13
12 | 32
28
20
19
18 | 0.32
0.32
0.29
0.34
0.33 | 0.13
0.14
0.13
0.13
0.13 | | 21
22
23
24
25 |

 |

 | e36
36 | e0.98
e0.90
e0.80
e0.76
e0.74 | 0.56
0.54
0.52
e0.50
e0.50 | 0.39
0.38
0.38
0.37
0.31 | 20
16
14
10
9.0 | 44
40
36
33
29 | 12
12
11
10
11 | 19
15
11
10
9.4 | 0.34
0.31
0.31
0.28
0.26 | 0.12
0.14
0.13
0.11
0.08 | | 26
27
28
29
30
31 |

 |

 | 37
39
38
36
37
38 | e0.74
e0.70
e0.74
e0.80
e0.68
e0.70 | e0.50
e0.50
e0.54 | 0.26
0.58
1.3
1.0
1.1
1.6 | 9.5
11
11
10
15 | 26
26
32
38
38
38 | 9.0
7.1
6.6
5.3 | 9.1
4.2
2.7
2.0
3.1
3.3 | 0.28
0.27
0.26
0.27
0.29
0.29 | 0.07
0.06
0.06
0.06
0.06 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. |

 |

 | 297
37.1
39
36
1.29
0.38 | 322.71
10.4
38
0.68
0.36
0.42 | 15.96
0.57
0.70
0.50
0.02
0.02 | 18.01
0.58
1.6
0.26
0.02
0.02 | 284.9
9.50
24
2.0
0.33
0.37 | 1,322
42.6
75
26
1.49
1.71 | 573.0
19.1
35
5.3
0.67
0.74 | 407.2
13.1
33
2.0
0.46
0.53 | 45.82
1.48
7.4
0.26
0.05
0.06 | 5.22
0.17
0.31
0.06
0.01
0.01 | | STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 1998 - 2003 | BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.00
18.9
(2002)
0.81
(2000) | 7.90
21.3
(2002)
0.17
(1998) | 20.6
37.1
(2003)
0.46
(2000) | 28.4
50.7
(2001)
10.4
(2003) | 35.9
64.2
(1999)
0.57
(2003) | 21.1
61.8
(2001)
0.58
(2003) | 30.1
47.6
(2002)
9.50
(2003) | 53.3
79.8
(1999)
32.7
(2001) | 75.6
127
(1999)
19.1
(2003) | 21.6
51.0
(2000)
5.44
(2002) | 4.16
10.8
(2001)
0.077
(2002) | 7.08
26.4
(2001)
0.17
(2003) | | SUMMA | RY STATIS | STICS | | FOR 2002 C | CALENDAR | YEAR | | 3 WATER Y
SER-SEPTEN | | WATER | YEARS 199 | 98 - 2003 | | ANNUAL HIGHES' LOWEST ANNUAL MAXIMI ANNUAL ANNUAL TO PERC 50 PERC | T ANNUAI
Γ ANNUAL
Τ DAILY M
Γ DAILY M | MEAN IEAN EAN DAY MINIM FLOW STAGE (CFSM) (INCHES) EEDS | IUM | 12:
(
(
(
)
(
)
(
) | 5.6
3 Jun
0.03 Aug
0.06 Aug
0.93
3.00 | 5 | 3,29
1
7
14 | 01.82
1.7
75 May
0.06 Sep
0.07 Sep | 7 11
2 27-30
2 24
7 9 | 3
1
34
(e)
(e)
56
1
1
6 | 0.02 (a)Au
0.06 Au
1 Ju
1.60 Ma
0.94
2.76 | 1999
2003
n 14, 1999
g 3, 1998
g 1, 2002
n 13, 1999
ur 10, 2002 | ⁽a) Also occurred Aug. 12, 21, 1998 ⁽e) Estimated due to ice effect or missing record #### 055451345 WHITE RIVER AT CENTER STREET AT LAKE GENEVA, WI--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1997 to September 1999, October 2000 to August 2002, December 2002 to September 2003. #### PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT DISCHARGE: October 1997 to September 1999. TOTAL-PHOSPHORUS DISCHARGE: October 1997 to September 1999, October 2000 to August 2002, December 2002 to September 2003. REMARKS.--Records fair. Samples collected by Geneva Lake Environmental Agency using equal-width increment (EWI) method unless otherwise noted. Monitoring suspended from Aug. 12 to Dec. 24, 2002, because of repairs to Geneva Lake dam. #### EXTREMES FOR PERIOD OF RECORD .-- SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 16 mg/L, APR. 26, 1999; minimum observed, 1 mg/L, on several days. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 3.0 ton, APR. 26, 1999; minimum daily, 0.0 ton, on many days in 1998 and 1999 water years. TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.40 mg/L, Sept. 8; minimum observed, <0.005 mg/L, Jan. 6 and Feb. 12, 1998, and TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 8.86 lb, June 13, 2001; minimum daily, 0.00 lb, on several days in 1998 and 1999 water years, and many days in 2002 water year. EXTREMES FOR CURRENT YEAR.-TOTAL-PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.028 mg/L, Mar. 28; minimum observed, <0.005 mg/L, May 19. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 3.06 lb, May 30; minimum daily, 0.02 lb, on many days. #### PHOSPHORUS, WATER, UNFILTERED, POUNDS PER DAY, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------|------|------| | 1 | | | | 1.87 | 0.03 | e0.03 | 0.26 | 1.60 | 2.37 | 0.48 | 0.36 | 0.07 | | 2 | | | | 1.74 | 0.03 | e0.03 | 0.22 | 1.39 | 2.03 | 0.43 | 0.44 | 0.07 | | 2 3 | | | | 1.75 | 0.03
| e0.02 | 0.62 | 1.22 | 1.88 | 0.53 | 0.74 | 0.06 | | 4 | | | | 1.72 | 0.03 | e0.02 | 0.68 | 1.16 | 1.58 | 0.53 | 0.91 | 0.06 | | 5 | | | | 1.72 | e0.03 | e0.02 | 0.64 | 2.22 | 1.42 | 1.12 | 0.63 | 0.06 | | 6 | | | | 1.77 | e0.03 | e0.02 | 0.30 | 2.13 | 1.22 | 1.37 | 0.48 | 0.06 | | 7 | | | | 1.78 | e0.03 | e0.02 | 0.28 | 1.95 | 1.18 | 1.56 | 0.58 | 0.06 | | 8 | | | | 1.77 | e0.03 | e0.02 | 0.43 | 1.94 | 1.73 | 1.72 | 0.44 | 0.06 | | 9 | | | | 0.64 | e0.03 | e0.02 | 0.45 | 1.90 | 1.57 | 1.63 | 0.25 | 0.05 | | 10 | | | | 0.06 | e0.03 | e0.02 | 0.45 | 1.72 | 1.44 | 1.93 | 0.20 | 0.06 | | 11 | | | | 0.06 | e0.03 | 0.02 | 0.48 | 2.56 | 1.06 | 1.70 | 0.09 | 0.06 | | 12 | | | | 0.05 | e0.03 | 0.03 | e0.48 | 1.82 | 0.91 | 1.28 | 0.05 | 0.07 | | 13 | | | | 0.05 | e0.03 | 0.03 | e0.48 | 1.49 | 0.88 | 1.12 | 0.04 | 0.04 | | 14 | | | | 0.05 | e0.03 | 0.03 | e0.48 | 1.52 | 0.87 | 0.98 | 0.04 | 0.04 | | 15 | | | | 0.05 | 0.03 | 0.03 | e0.47 | 1.58 | 0.84 | 3.03 | 0.05 | 0.03 | | 16 | | | | 0.05 | e0.03 | 0.03 | e0.47 | 1.45 | 0.84 | 2.86 | 0.05 | 0.03 | | 17 | | | | 0.05 | e0.03 | 0.03 | e0.47 | 1.28 | e0.83 | 2.46 | 0.05 | 0.04 | | 18 | | | | 0.05 | 0.03 | 0.02 | 0.50 | 1.16 | 0.90 | 1.73 | 0.05 | 0.04 | | 19 | | | | 0.05 | 0.03 | 0.03 | 0.89 | 1.14 | 0.72 | 1.64 | 0.06 | 0.04 | | 20 | | | | 0.05 | 0.03 | 0.03 | 1.34 | 1.57 | 0.73 | 1.55 | 0.06 | 0.04 | | 21 | | | | e0.05 | 0.03 | 0.03 | 1.12 | 1.45 | 0.78 | 1.60 | 0.06 | 0.03 | | 22 | | | | e0.04 | 0.03 | 0.03 | 0.90 | 1.44 | 0.77 | 1.22 | 0.06 | 0.04 | | 23 | | | | e0.04 | 0.03 | 0.03 | 0.76 | 1.46 | 0.77 | 0.94 | 0.06 | 0.04 | | 24 | | | e1.70 | e0.04 | e0.02 | 0.04 | 0.56 | 1.46 | 0.78 | 0.82 | 0.05 | 0.03 | | 25 | | | 1.77 | e0.04 | e0.02 | 0.03 | 0.48 | 1.41 | 0.89 | 0.80 | 0.05 | 0.02 | | 26 | | | 1.81 | e0.04 | e0.02 | 0.03 | 0.50 | 1.43 | 1.24 | 0.79 | 0.05 | 0.02 | | 27 | | | 1.88 | e0.03 | e0.02 | 0.08 | 0.57 | 1.53 | 0.82 | 0.38 | 0.05 | 0.02 | | 28 | | | 1.86 | e0.04 | e0.03 | 0.20 | 0.57 | 2.14 | 0.69 | 0.25 | 0.05 | 0.02 | | 29 | | | 1.76 | e0.04 | | 0.14 | 0.49 | 2.79 | 0.67 | 0.19 | 0.05 | 0.02 | | 30 | | | 1.81 | e0.03 | | 0.15 | 0.71 | 3.06 | 0.54 | 0.32 | 0.06 | 0.02 | | 31 | | | 1.87 | e0.03 | | 0.19 | | 2.78 | | 0.35 | 0.06 | | | TOTAL | | | | 15.75 | 0.80 | 1.45 | 17.05 | 53.75 | 32.95 | 37.31 | 6.17 | 1.30 | e Estimated # 055451345 WHITE RIVER AT CENTER STREET AT LAKE GENEVA, WI--Continued | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | |----------|------|--------------------------------------|-------------------------------|--| | OCT 2002 | | | | | | 15 | 1505 | 1.1 | 10 | 0.016 | | DEC | | | | | | 27 | 1441 | 38 | 10 | 0.009 | | MAR 2003 | | | | | | 18 | 1330 | 0.51 | 70 | 0.009 | | 28 | 1510 | 1.4 | 10 | 0.028 | | APR | | | | | | 10 | 1300 | 11 | 10 | 0.011 | | 25 | 1650 | 12 | 10 | 0.010 | | MAY | 1145 | 22 | 10 | 0.005 | | 19 | 1147 | 33 | 10 | < 0.005 | | 30 | 1300 | 49 | 10 | 0.015 | | JUN | 1155 | 20 | 10 | 0.007 | | 13 | 1157 | 28 | 10 | 0.007 | | 29 | 0945 | 7.6 | 10 | 0.019 | | JUL | 0001 | 10 | 10 | 0.010 | | 11 | 0921 | 19 | 10 | 0.018 | | 24 | 1142 | 9.6 | 10 | 0.015 | | AUG | 1245 | 2.4 | 10 | 0.027 | | 08 | 1345 | 2.4 | 10 | 0.027 | # 05545750 FOX RIVER NEAR NEW MUNSTER, WI LOCATION.--Lat 42°36'39", long 88°13'33", in NW $^{1}\!\!/_{\!\!4}$ NW $^{1}\!\!/_{\!\!4}$ sec.26, T.2 N., R.19 E., Kenosha County, Hydrologic Unit 07120006, on right bank 40 ft downstream from bridge on County Trunk Highway JB, 2.2 mi north of New Munster, and 17.0 mi upstream from Fox Chain of Lakes. DRAINAGE AREA.--811 mi². PERIOD OF RECORD.--October 1939 to current year. Prior to October 1993, published as "at Wilmot" under station number 05546500. REVISED RECORDS.--WSP 1308: 1943(M), 1945(M). WDR WI-67-1: Drainage area. WDR WI-92-1: 1991. GAGE.--Water-stage recorder. Datum of gage is 735.72 ft above NGVD of 1929 (Racine County Surveyor bench mark). Prior to Sept. 2 1965, nonrecording gage at bridge 400 ft above dam in Wilmot 11 mi downstream at datum 0.50 ft lower, and Sept. 2 1965 to Sept. 30, 1993, recording gage 100 ft downstream from bridge at the lower datum. Removal of dam due to damage was completed by Sept. 15, 1992. REMARKS.--Records good except those for estimated daily discharges, which are fair (see page 11). Gage-height telemeter and data-collection platform at station. | | | DISCHA | ARGE, CUB | IC FEET PI | | D, WATER Y
LY MEAN V | | OBER 2002 | го ѕертем | MBER 2003 | | | |----------------------------------|--|------------------------------------|--|--|--------------------------|--|---------------------------------|--|---------------------------------|--|--------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 323 | 356 | e230 | 287 | e170 | e140 | 396 | 455 | 471 | 219 | 151 | 112 | | 2 | 453 | 332 | e250 | 288 | e180 | e140 | 372 | 685 | 423 | 225 | 149 | 91 | | 3 | 482 | 365 | e240 | 262 | e190 | e150 | 354 | 636 | 484 | 195 | 187 | 88 | | 4 | 441 | 289 | e230 | e270 | e190 | e150 | 349 | 592 | 415 | 159 | 199 | 86 | | 5 | 558 | 329 | e220 | e270 | e180 | e150 | 391 | 790 | 413 | 228 | 195 | 102 | | 6 | 500 | 308 | e220 | 277 | e180 | e160 | 409 | 963 | 363 | 217 | 172 | 99 | | 7 | 458 | 279 | e210 | 280 | e180 | e160 | 399 | 777 | 317 | 328 | 208 | 96 | | 8 | 448 | 279 | e210 | 283 | e170 | e160 | 435 | 895 | 345 | 334 | 205 | 83 | | 9 | 324 | 287 | e200 | 275 | e170 | e160 | 445 | 1,100 | 435 | 454 | 223 | 103 | | 10 | 366 | 308 | e200 | 267 | e160 | e170 | 357 | 1,360 | 416 | 434 | 169 | 104 | | 11 | 332 | 318 | e210 | e240 | e160 | e180 | 457 | 1,240 | 478 | 441 | 166 | 87 | | 12 | 270 | 334 | e210 | e210 | e150 | e180 | 455 | 1,320 | 474 | 414 | 169 | 96 | | 13 | 290 | 270 | e220 | e180 | e150 | e180 | 445 | 1,330 | 430 | 338 | 163 | 164 | | 14 | 304 | 267 | e230 | e170 | e150 | e220 | 405 | 1,140 | 364 | 269 | 137 | 159 | | 15 | 271 | 306 | e230 | e160 | e140 | e320 | 348 | 1,190 | 321 | 388 | 154 | 110 | | 16 | 295 | 281 | e240 | e150 | e140 | e540 | 454 | 1,130 | 301 | 525 | 126 | 109 | | 17 | 282 | 282 | e240 | e150 | e140 | 578 | 449 | 988 | 243 | 489 | 124 | 105 | | 18 | 259 | 287 | 285 | e150 | e140 | 555 | 273 | 881 | 241 | 441 | 142 | 101 | | 19 | 303 | 282 | 367 | e140 | e140 | 622 | 325 | 793 | 267 | 315 | 116 | 97 | | 20 | 342 | 278 | 446 | e140 | e140 | 562 | 333 | 778 | 279 | 259 | 115 | 88 | | 21 | 276 | 302 | 432 | e130 | e140 | 489 | 367 | 687 | 194 | 281 | 114 | 90 | | 22 | 281 | 334 | e380 | e130 | e140 | 453 | 431 | 531 | 233 | 275 | 126 | 107 | | 23 | 308 | 262 | e320 | e130 | e150 | 470 | 364 | 589 | 213 | 247 | 95 | 122 | | 24 | 266 | e260 | e280 | e130 | e150 | 465 | 292 | 515 | 187 | 218 | 95 | 106 | | 25 | 307 | e260 | e260 | e130 | e140 | 423 | 305 | 450 | 204 | 206 | 120 | 100 | | 26
27
28
29
30
31 | 369
396
418
389
360
337 | e260
e260
249
262
e250 | e250
e240
e230
e220
e220
e230 | e140
e140
e140
e150
e150
e160 | e140
e140
e140
 | 419
388
348
422
437
415 | 335
261
226
239
278 | 402
405
348
447
400
397 | 212
185
235
242
196 | 210
183
157
181
133
173 | 124
114
92
98
116
114 | 110
135
110
105
103 | | TOTAL | 11,008 | 8,736 | 7,950 | 5,979 | 4,360 | 10,206 | 10,949 | 24,214 | 9,581 | 8,936 | 4,478 | 3,168 | | MEAN | 355 | 291 | 256 | 193 | 156 | 329 | 365 | 781 | 319 | 288 | 144 | 106 | | MAX | 558 | 365 | 446 | 288 | 190 | 622 | 457 | 1,360 | 484 | 525 | 223 | 164 | | MIN | 259 | 249 | 200 | 130 | 140 | 140 | 226 | 348 | 185 | 133 | 92 | 83 | | CFSM | 0.44 | 0.36 | 0.32 | 0.24 | 0.19 | 0.41 | 0.45 | 0.96 | 0.39 | 0.36 | 0.18 | 0.13 | | IN. | 0.50 | 0.40 | 0.36 | 0.27 | 0.20 | 0.47 | 0.50 | 1.11 | 0.44 | 0.41 | 0.21 | 0.15 | | STATIST | TICS OF MC | NTHLY M | EAN DATA | FOR WAT | ER YEARS | 1940 - 2003, | BY WATE | R YEAR (W | Y) | | | | | MEAN | 391 | 478 | 449 | 423 | 542 | 1,094 | 1,065 | 717 | 566 | 390 | 331 | 344 | | MAX | 1,931 | 1,536 | 1,755 | 1,818 | 1,386 | 2,434 | 3,591 | 2,078 | 1,748 | 1,382 | 902 | 1,763 | | (WY) | (1987) | (1986) | (1983) | (1960) | (2001) | (1979) | (1993) | (1973) | (2000) | (1969) | (1952) | (1972) | | MIN | 79.5 | 113 | 91.4 | 87.7 | 105 | 252 | 256 | 108 | 124 | 69.2 | 57.2 | 62.7 | | (WY) | (1957) | (1950) | (1964) | (1940) | (1940) | (1968) | (1958) | (1958) | (1988) | (1958) | (1958) | (1946) | # 05545750 FOX RIVER NEAR NEW MUNSTER, WI-Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1940 - 2003 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 184,039 | 109,565 | | | ANNUAL MEAN | 504 | 300 | 565 | | HIGHEST ANNUAL MEAN | | | 1,240 1993 | | LOWEST ANNUAL MEAN | | | 174 1958 | | HIGHEST DAILY MEAN | 2,420 Jun 6 | 1,360 May 10 | 7,100 Apr 1, 1960 | | LOWEST DAILY MEAN | 130 Aug 12 | 83 Sep 8 | 35 Sep 9, 1958 | | ANNUAL SEVEN-DAY MINIMUM | 160 Jul 20 | 92 Sep 2 | 41 Sep 7, 1958 | | MAXIMUM PEAK FLOW | | 1,420 May 12 | (a)7,520 Mar 31, 1960 | | MAXIMUM PEAK STAGE | | 9.31 May 12 | (b)14.10 Feb 21, 1994 | | INSTANTANEOUS LOW FLOW | | 79 (c)Sep 8,9 | 0.00 (d)Oct 26, 1945 | | ANNUAL RUNOFF (CFSM) | 0.62 | 0.37 | 0.70 | | ANNUAL RUNOFF (INCHÉS) | 8.44 | 5.03 | 9.47 | | 10 PERCENT EXCEEDS | 853 | 476 | 1,270 | | 50 PERCENT EXCEEDS | 409 | 260 | 370 | | 90 PERCENT EXCEEDS | 210 | 118 | 127 | ⁽a) Gage height, 9.25 ft, from graph based on gage readings, site and datum then in use (b) Ice affected (c)
Also occurred Sept. 11,12 (d) Also occurred Aug. 10, 1990 (e) Estimated due to ice effect or missing record As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at miscellaneous sites for both low flows and high flows are given in separate tables. # Crest-stage partial-record stations The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. ### Maximum discharge at crest-stage partial-record stations | | | | Water Y | ear 2003 M | aximum | Period o | f Record M | aximum | |--|--|-----------------------------|----------------------|--------------------------|--|----------------------|--------------------------|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | STREAM | IS TRIBUTA | RY TO LAKE | SUPERIO | R | | | | | 04024400 Stony
Brook near Superior | Lat 46°35'01", long 92°07'10" in SE 1/4 sec. 4, T.47 N., R.14 W., Douglas County, Hydrologic Unit 04010301, at box culvert on State Highway 35, 12.5 mi south of toll bridge on U.S. Highways 2 and 35 at St. Louis River at Superior; drainage area, 1.86 mi ² . | 1959-03 | 05-10-03
03-18-03 | 13.21
G13.41 | 103 | 09-02-85 | 35.23 | 595 | | 04025200 Pearson
Creek near Maple | Lat 46°38'51", long 91°42'55" on
common boundary of secs. 11 and
14, T.48 N., R.11 W., Douglas
County, Hydrologic Unit
04010301, at box culvert on State
Highway 13, 4.0 mi north of
Maple; drainage area, 4.07 mi ² . | 1957-03 | 05-10-03 | С | <765 | 09-02-85 | 31.83 | 1,440 | | 04026200 Sand River
Tributary near Red
Cliff | Lat 46°53'53", long 90°56'47" in NE 1/4 section 14, T.51 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at box culvert on State Highway 13, 8.0 mi northwest of Red Cliff; drainage area, 1.09 mi ² . | 1959-03 | 05-11-03 | 10.74 | 41 | 05-23-64 | 16.86 | 624 | | 04026300 Sioux
River near Washburn | Lat 46°41'20", long 90°57'02" in NE 1/4 sec. 35, T.49 N., R.5 W., Bay-field County, Hydrologic Unit 04010301, on County Trunk Highway C, 2.5 mi west of Washburn; drainage area, 33.9 mi ² . | 1959-65
1966#
1967-03 | 05-11-03 | 12.55 | 539 | 09-02-85
04-23-01 | 29.45
21.70 | 2,200
2,670 | | | | | Water Y | ear 2003 M | aximum | Period o | f Record M | laximum | |---|---|------------------------|--|----------------------------------|--|----------|--------------------------|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | STREAMS TRIBU | TARY TO LA | KE SUPERIO | DRCONTII | NUED | | | | | 04026450 Bad River
near Mellen | Lat 46°16'14", long 90°42'26" in NE 1/4 NW 1/4 sec.26, T.44 N., R.3 W., Ashland County, Hydrologic Unit 04010302, on left bank 150 ft downstream from bridge on U.S. Forest Service Road, 4.4 mi southwest of Mellen; drainage area, 82.0 mi ² . | 1971-75#
1976-03 | 05-12-03 | 9.59 | 2,880 | 05-12-03 | 9.59 | 2,880 | | 04027200 Pearl
Creek at Grandview | Lat 46°22'05", long 91°05'27" in NE 1/4 sec.22, T.45 N., R.6 W., Bay-flield County, Hydrologic Unit 04010302, at bbox culvert on U.S. Highway 63, 0.8 mi east of Grandview; drainage area, 16.9 mi ² . | 1960-03 | 05-11-03 | 14.25 | 395 | 07-02-92 | 28.47 | 1,920 | | | STREAM | IS TRIBUTA | RY TO LAKE | MICHIGAN | N | | | | | 04059900 Allen
Creek Tributary near
Alvin | Lat 45°58'05", long 88°47'24" on
north boundary sec. 7, T.40 N.,
R.14 E., Forest County, Hydro-
logic Unit 04030106, at culvert on
State Highway 70, 2.2 mi southeast
of Alvin; drainage area, 1.22 mi ² . | 1960-03 | 50-13-03 | 9.76 | 9.61 | 05-22-83 | 11.38 | 40 | | 04063640 North
Branch Pine River at
Windsor Dam near
Alvin | Lat 45°55'43", long 88°51'38" in SE 1/4 sec.21,T.40 Nl, R.13 E., Forest County, Hydrologic Unit 04030108, at bridge on country road, at Windsor Dam, 3.8 mi upstream from confluence of North and South Forks, 4.0 mi southwest of Alvin; drainage area, 27.8 mi ² . | 1967-68#
1970-03 | 05-13-03
04-13-02
04-13-01
04-21-00 | D3.78
D4.43
D3.64
D3.53 | B
FB
FB
FB | 04-09-80 | 3.89 | 165 | | 04067760 Peshtigo
River near Cavour | Lat 45°39'20", long 88°38'52" in SW 1/4 sec.29, T.37 N., R.15 E., Forest County, Hydrologic Unit 04040105, at bridge on U.S. Highway 8, 0.7 mi northwest of Cavour; drainage area, 150 mi ² . | 1970-03 | 04-22-03 | 12.83 | 741 | 04-21-96 | 15.78 | 1,600 | | 04069700 North
Branch Oconto
River near Wabeno | Lat 45°26'19", long 88°37'40" in SW 1/4 sec.9, T.34 N., R.15 E., Forest County, Hydrologic Unit 04030104, at pipe arch culvert on County Trunk Highway C, 0.6 mi east of intersection with State Highway 32 at Wabeno; drainage area, 34.1 mi ² . | 1970-03 | 04-22-03 | 12.12 | 147 | 04-20-96 | 14.21 | 621 | | | | | Water Y | ear 2003 M | aximum | Period o | f Record M | laximum | |---|--|--------------------------------|----------------------|--------------------------|--|----------------------|--------------------------|--| | Station Number
and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | STREAMS TRIE | BUTARY TO | LAKE MICHI | GANCON | TINUED | | | | | 04071700 North
Branch Little River
near Coleman | Lat 45°00'37", long 88°02'43" on common boundary of secs. 2 and 3, T.29 N., R.20 E., Oconto County, Hydrologic Unit 04030104, at bridge on U.S. Highway 141, 3.8 mi south of Coleman; drainage area, 21.4 mi ² . | 1958-03 | 04-16-03
03-20-03 | 12.28
G12.30 | 171 | 03-30-67 | 14.50 | 640 | | 04071800 Pensaukee
River near Pulaski | Lat 44°45′48" long 88°15′07" in NE 1/4 sec.1, T.26 N., R.18 E., Shawano County, Hydrologic Unit 04030103, at bridge on State Highway 32, 6.1 mi north of Pulaski; drainage area, 48.80 mi ² . | 1961-03 | 04-16-03 | 13.96 | 883 | 06-18-96 | 16.96 | 1,810 | | 04072792 Tagatz
Creek near Westfield | Lat 43°57'22" long 89°29'38" in SE 1/4 sec.12, T.17 N., R.8 E., Marquette County, Hydrologic Unit 04030201, at culvert on County Trunk Highway H, 5.2 mi north of Westfield. | 1996-03 | 03-27-03 | 16.89 | 80 | 03-27-03 | 16.89 | 80 | | 04073400 Bird Creek
at Wautoma | Lat 44°04'06", long 89°18'08" in S 1/2 section 34, T.19 N., R.10 E., Waushara County, Hydrologic Unit 04030201, at concrete culvert on State Highway 21, 0.2 mi west of Wautoma; drainage area, 4.14 mi ² . | 1959-03 | 04-17-03 | 11.87 | 66 | 03-07-73
06-20-02 | 13.07
15.97 | 190
B | | 04074850 Lily River
near Lily | Lat 45°20′59", long 88°49′52" in SE 1/4 sec.11, T.33 N., R.13 E., Langlade County, Hydrologic Unit 04030202, at culvert on County Trunk Highway A, 3.2 mi north from junction of State Highways 55 and 52 at Lily; drainage area, 45.6 mi ² . | 1970-03 | 04-21-03 | 9.70 | 127 | 04-20-96 | 10.25 | 167 | | *04075200 Evergreen
Creek
near Langlade | Lat 45°10'11", long 88°48'12" in NW 1/4 sec.18, T.31 N., R.14 E., Langlade County, Hydrologic Unit 04030202, on culvert on State Highway 64, 3.5 mi southest of Langlade; drainage area, 8.09 mi ² . | 1959-65
1966-72#
1973-03 | 04-16-03 | 10.95 | 49 | 07-11-82 | 11.66 | 80 | | 04078891 Maple
Creek near Sugar
Bush | Lat 44°27'54", long 88°43'20" in NW 1/4 SE 1/4 sec.18, T.23 N., R.15 E., Outagamie County, Hydrologic Unit 04030202, at bridge on County Trunk Highway D, 1.3 mi southeast of Sugar Bush; drainage area, 22.1 mi ² . | 1996-03 | 04-16-03 | 12.17 | 94 | 1996 | 13.65 | 360 | | | | | Water Ye | ear 2003 M | aximum | Period of Record Maximum | | | |--|---|-----------------------------|-------------|--------------------------|--|--------------------------|--------------------------|-------------------------------| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Discharge (ft³/s) 101 2,350 | | | STREAMS TRIE | BUTARY TO | LAKE MICHIO | GANCON | TINUED | | | | | 04079700 Spaulding
Creek near Big Falls | Lat 44°38'13", long 89°01'20" on common boundary of secs. 14 and 15, T.25 N., R.12 E., Waupaca County, Hydrologic Unit 04030202, at culvert on County Trunk Highway E, 1.5 mi north of Big Falls; drainage area, 5.57 mi ² . | 1959-65
1966#
1967-03 | 04-16-03 | <10.39 | <34 | 05-07-60 | 11.64 | 101 | | 04081900 Sawyer
Creek at Oshkosh | Lat 44°02'00", long 88°35'00" in SW 1/4 sec.15, T.18 N., R.16 E., Winnebago County, Hydrologic Unit 04030201, at bridge on U.S. Highway 41, 1.0 mi southwest of bridge on Algoma Street at Fox River, at Oshkosh; drainage area, 12.10 mi ² . | 1961-03 | 05-11-03 | 11.48 | В | 09-11-86 | 17.47 | 2,350 | | 04085145 Red River
near Dykesville | Lat 44°38'59", long 87°42'47" in SW 1/4 SE 1/4 sec.9, T.25 N., R.23 E., Kewaunee County, Hydrologic Unit 04030102, at upstream crossing of County Highway A, 2.5 mi east of Dykesville; drainage area,11.8 mi ² . | 1996-03 | 05-11-03 | 11.39 | 76 | 04-01-98 | 12.49 | 215 | | 04085400 Killsnake
River near Chilton | Lat 44°03'33", long 88°08'36" in E 1/2 sec.6, T.18 N., R.20 E., Calumet County, Hydrologic Unit 04030101, at bridge on country road, 2.4 mi northeast of Cilton; drainage area, 29.4 mi ² . | 1961-03 | 05-12-03 | 10.36 | 220 | 03-30-79 | 14.37 | 1,840 | | 040854105 Mud
Creek near Valders | Lat 44°02'20", long 87°54'07" in SW 1/4 SW 1/4 sec.8, T.18 N., R.22 E., Manitowoc County, Hydrologic Unit 04030101, at culvert on Marken Road, 0.8 mi south of intersection with State Highway 151, and 1.7 mi southeast of Valders. | 1996-03 | 05-11-03 | 13.14 | 111 | 06-17-96 | 13.94 | 145 | | 04086310 Mink
Creek near Beech-
wood | Lat 43°36'15", long 88°06'01" in SE 1/4 SE 1/4 sec.9, T.13 N., R.20 E., Sheboygan County, Hydrologic Unit 04040003, at bridge on County Trunk Highway S, 1.2 mi northeast of Beechwood; drainage area, 9.84 mi ² . | 1996-03 | 03-24-03 | 16.97 | 38 | 06-17-96 | 18.33 | 61 | | 04087100 Honey
Creek at Milwaukee | Lat 42°58'44", long 87°59'56" in NE 1/4 SW 1/4, sec.15, T.6 N., R.21 E., Milwaukee County, Hydrologic Unit 04040003, 400 ft upstream from bridge on S. 68th Street, 6.0 mi southwest of mouth of Milwaukee River, at Milwaukee; drainage area, 3.26 mi ² . | 1959-03 | 08-03-03 | 21.01 | 546 | 08-13-02 | 25.12 | 2,290 | | | | | Water Yo | ear 2003 M | aximum | Period o | f Record M | aximum | | | |--|--|------------------------|------------|--------------------------|--|----------|--------------------------|--|--|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | | | STREAMS TRIE | BUTARY TO | LAKE MICHI | GANCON | TINUED | | | | | | | 04087200 Oak Creek
near South Milwau-
kee | Lat 42°52'58", long 87°53'31" on common boundary of sec. 21 and 22, T.5 N., R.22 E., Milwaukee County, Hydrologic Unit 04040002, at bridge on West Nicholson Road, 3.0 mi southest of South Milwaukee; drainage area, 13.8 mi ² . | 1958-03 | 05-09-03 | 13.76 | 144 | 07-02-00 | 17.74 | 1,360 | | | | 04087250 Pike Creek
near Kenosha | Lat 42°36'12", long 87°53'41" in W 1/2 sec.27, T.2 N., R.22 E., Kenosha County, Hydrologic Unit 04040002, at box culvert on State Highway 43, 3.0 mi northest of Kenosha; drainage area, 7.25 mi ² . | 1960-03 | 05-09-03 | 11.90 | 33 | 06-12-00 | 18.07 | 235 | | | | ST. CROIX RIVER BASIN | | | | | | | | | | | | 05340300 Trade
River near Frederic | Lat 45°37'41", long 92°29'19" in SW 1/4 sec.4, T.36 N., R.17 W., Polk County, Hydrologic Unit 07030005, at box culvert on State Highways 35 and 48, 2.5 mi southwest of Frederic; drainage area, 6.34 mi ² . | 1958-03 | 05-20-03 | 10.98 | 121 | 06-12-84 | 18.89 | 1,050 | | | | 05341313 Bull Brook
near Amery | Lat 45°17'03", long 92°19"00" in SW 1/4 SE 1/4, sec. 2, T.32 N., R.16 W., Polk County, Hydrologic Unit 07030005, on right bank just upstream from 32-ft concrete box culvert on County Trunk Highway F, 1.8 mi south of junction of County Trunk Highway J, and about 2.5 mi southeast of Amery; drainage area, 9.62 mi ² . | 1995-03 | 05-12-03 | 12.36 | 348 | 04-23-01 | 12.83 | 433 | | | | 05341900 Kinnickin-
nic River Tributary
at River Falls | Lat 44°49'57", long 92°38'23" in NE 1/4 sec.14, T.27 N., R.19 W., Pierce County, Hydrologic Unit 07030005, at bridge on County Trunk Highway FF, 1.6 mi southwest of River Falls; drainage area, 7.26 mi ² . | 1959-03 | 05-11-03 | 13.56 | 389 | 08-09-88 | 15.99 | 5,200 | | | | 05346294 Goose
Creek at Beldenville | Lat 44°46'27", long 92°31'29" in NW 1/4 NE 1/4 sec.2, T.26 N., R.18 W., Pierce County, Hydrologic Unit 07040001, at bridge on 790th Street, 1.0 mi west of Beldenville; drainage area, 10.8 mi ² . | 2000-03 | 05-11-03 | 12.87 | 1,480 | 05-11-03 | 12.87 | 1,480 | | | | | | | Water Y | ear 2003 M | aximum | Period o | of Record M | laximum | |---|---|-----------------------------|----------------------|--------------------------|--|----------------------|--------------------------|--| | Station Number
and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | ST. CI | ROIX RIVER | BASINCO | NTINUED | | | | | | 05355315 Lost
Creek near Waverly | Lat 44°42'10", long 92°20'16" in SE 1/4 SE 1/4 sec.29, T.26 N., R.16 W., Pierce County, Hydrologic Unit 07040001, at bridge on 465th Ave., 4.4 mi southwest of Waverly; drainage area, 25.2 mi ² . | 2000-03 | 05-11-03 | 12.53 | 984 | 04-12-01 | 12.97 | 1,200 | | | | CHIPPEWA | RIVER BAS | SIN | | | | | | 05357360 Bear River
near Powell | Lat 46°04'40", long 90°00'52" in NE 1/4 sec.32, T.42 N., R.4 E., Iron County, Hydrologic Unit 07050002, at bridge on State Highway 182, 3.0 mi west of Powell; drainage area, 120 mi ² . | 1970-03 | 05-13-03 | 12.42 | 557 | 05-11-02
04-21-96 | 13.08
G13.18 | 799 | | 05359600 Price
Creek near Phillips | Lat 45°43'33", long 90°40'12" in SW 1/4 sec.31, T.38 N., R.2 W., Price County, Hydrologic Unit 07050002, at culvert on County Trunk Highway W, 13.0 mi west of Phillips; drainage area, 16.9 mi ² . | 1958-65
1966#
1967-03 | 05-13-03 | 12.91 | 186 | 09-15-94 | 17.43 | 552 | | 05361400 Hay Creek
near Prentice | Lat 45°32'32", long 90°21'37" in SE 1/4 sec.4, T.35 N., R.1 E., Price County, Hydrologic Unit 07050004, at culvert on U.S. Highway 8, 3.5 mi west of Prentice; drainage area, 22.6 mi ² . | 1961-03 | 05-13-03 | 12.30 | 409 | 09-16-94 | 15.39 | 1,650 | | 05361420 Douglas
Creek near Prentice | Lat 45°31'06", long 90°15'28" in NE 1/4 sec.17, T.35 N., R.2 E., Price County, Hydrologic Unit 07050004, at culvert on County Trunk Highway C, 2.3 mi southeast of intersection with State Highway 13 at Prentice; drainage area, 25.2 mi ² . | 1970-03 | 05-13-03 | 14.24 | 745 | 09-15-94 | 17.66 | 1,620 | | 05361989 Jump River
Tributary near Jump
River | Lat 45°21'08", long 90°49'23" in SW 1/4 SW 1/4 sec.12, T.33 N., R.4 W., Taylor County, Hydrologic Unit 07050004, on left bank just upstream from a 23-ft concrete box culvert at a cut-off road at Junction of Hwys 73 and I-94, 1 mi west of Jump River and 7.5 mi northeast of Sheldon; drainage area, 6.77 mi ² . | 1995-03 | 05-11-03
10-07-02 | 11.30
G12.07 | 140 | 04-11-02
10-07-02 | 11.66
G12.07 | 205 | | | | | Water Y | ear 2003 M | aximum | Period o | f Record M | aximum | |--
---|------------------------|----------------------|--------------------------|--|----------|--------------------------|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | CHIPF | EWA RIVER | BASINCO | NTINUED | | | | | | 05363775 Babit
Creek at Gilman | Lat 45°10'00", long 90°47'49" in NW 1/4 SW 1/4 sec.18, T.31 N., R.3 W., Taylor County, Hydrologic Unit 07050005, on right bank just upstream from a 30 ft concrete culvert on State Highway 64 at east side of Gilman; drainage area, 8.49 mi ² . | 1995-03 | 05-11-03 | 12.49 | 298 | 03-28-98 | 12.87 | 367 | | 05364000 Yellow
River at Cadott | Lat 44°57′21″, long 91°08′48″ in NE 1/4 sec.31, T.29 N., R.6 W., Chippewa County, Hydrologic Unit 07050005, at bridge on State Highway 27, at Cadott; drainage area, 364 mi². | 1943-61#
1962-03 | 05-12-03 | 10.71 | 4,260 | 09-22-86 | 15.82 | 16,600 | | 05364100 Seth Creek
near Cadott | Lat 44°59'24", long 91°08'48" in SW 1/4 sec.17, T.29 N., R.6 W., Chippewa County, Hydrologic Unit 07050005, at culvert on State Highway 27, 3.1 mi north of Cadott; drainage area, 3.25 mi ² . | 1962-03 | 05-11-03 | 13.61 | 259 | 08-01-01 | 19.13 | 1,540 | | 05364500 Duncan
Creek at Bloomer | Lat 45°07'00", long 91°30'00" in sec.8, T.30 N., R.9 W., Chippewa County, Hydrologic Unit 07070005, 0.2 mi below Bloomer dam, at Bloomer; drainage area, 50.3 mi ² . | 1945-51#
1958-03 | 05-12-03 | 8.33 | 1,340 | 06-29-79 | 11.81 | 5,400 | | 05366500 Eau Claire
River near Fall
Creek | Lat 44°48'35", long 91°16'50" in NW 1/4 sec.19, T.27 N., R.7 W., Eau Claire County, Hydrologic Unit 07050006, 500 ft east of County Trunk Highway K, 3.2 mi north of Fall Creek; drainage area, 760 mi ² . | 1943-55#
1958-03 | 04-18-03 | 12.27 | 9,440 | 06-20-93 | 19.38 | 24,500 | | 05367030 Willow
Creek near Eau
Claire | Lat 44°44'11", long 91°26'48" on
common boundary of secs. 14 and
15, T.26 N., R.9 W., Eau Claire
County, Hydrologic Unit
07050005, at box culvert on State
Highway 93, 4.0 mi south of Eau
Claire; drainage area, 3.83 mi ² . | 1958-03 | 05-11-03 | 10.13
G10.90 | 45.1 | 07-08-59 | 14.12 | 400 | | 053674588 Rock
Creek Tributary near
Canton | Lat 45°27'06", long 90°36'08" in SW 1/4 SW 1/4 sec.3, T.34 N., R.10 W., Barron County, Hydrologic Unit 07050007, 3 mi north of U.S. Hwy 8 on 27th Street, about 40 ft north of intersection of 27th Street and 17th Avenue, and 2.5 mi east and 1.7 mi north of Canton; drainage area, 6.34 mi ² . | 1995-03 | 05-11-03
04-01-03 | 12.14
G12.61 | 237 | 08-01-01 | 12.87 | 340 | | | | | Water Yo | ear 2003 M | aximum | Period o | f Record M | aximum | |--|---|---------------------------------|------------|--------------------------|--|----------|--------------------------|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | СНІРР | EWA RIVER | BASINCO | NTINUED | | | | | | 05367700 Lightning
Creek at Almena | Lat 45°25'17", long 92°01'57" in NW 1/4 sec.19, T.34 N., R.13 W., Barron County, Hydrologic Unit 07050007, at bridge on County Trunk Highway P, at Almena; drainage area, 19.0 mi ² . | 1958-03 | 05-12-03 | 11.91 | 391 | 03-30-67 | 12.39 | 1,550 | | 05369945 Eau Galle
River at Low-Water
Bridge at Spring
Valley | Lat 44°52'02", long 92°15'07" in SE 1/4 NW 1/4 sec.31, T.28 N., R.15 W., St. Croix County, Hydrologic Unit 07050005, on right bank 50 ft downstream from Low-Water Bridge on Boston Road, approximately 550 ft upstream from French Creek, and at Spring Valley. Drinage area, 47.9 mi ² . | 1981-83#
1986-96#
2002-03 | 05-11-03 | 8.17 | 1,470 | 09-21-86 | 8.80 | 6,000 | | 05370900 Spring
Creek near Durand | Lat 44°34'13", long 91°57'48" in S 1/2 sec.9, T.24 N., R.13 W., Buffalo County, Hydrologic Unit 07050005, at bridge on country road, 4.0 mi south of bridge on Chippewa River at Durand; drainage area, 6.45 mi ² . | 1962-03 | 2002 | С | В | 08-23-75 | 15.71 | 860 | | | | BUFFALO | RIVER BASI | N | | | | | | 05371800 Buffalo
River Tributary near
Osseo | Lat 44°35′01" long 91°05′40" in S 1/2 sec.3, T.24 N., R.6 W., Jackson County, Hydrologic Unit 07040003, at culvert on U.S. Highway 10, 6.5 mi east of Osseo; drainage area, 1.44 mi ² . | 1960-03 | 04-16-03 | 11.12 | 56 | 09-12-78 | 12.85 | 188 | | 05371920 Buffalo
River near Mondovi | Lat 44°31'36" long 91°41'46" in SW 1/4 SE 1/4 sec.27, T.24 N., R.11 W., Buffalo County, Hydrologic Unit 07040003, at bridge on State Highway 88, 4.0 mi south of Mondovi; drainage area, 279 mi ² . | 1974-03 | 03-27-03 | 12.80 | 1,020 | 09-10-75 | 15.39 | 5,180 | | | т | REMPEALE | AU RIVER B | ASIN | | | | | | 05379187 Pine Creek
near Taylor | Lat 44°20'07", long 91°05'17" in NE 1/4 NE 1/4 sec.3, T.21 N., R.6 W., Jackson County, Hydrologic Unit 07040005, at bridge on Taylor Road, about 2 mi northeast of Taylor; drainage area, 10.9 mi ² . | 1996-03 | 2003 | <10.04 | <75 | 06-27-98 | 13.69 | 405 | | | | | Water Y | ear 2003 M | aximum | Period o | f Record N | Maximum | |--|---|-----------------------------|-------------|--------------------------|--|----------------------|--------------------------|--| | Station Number
and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | TREMPE | ALEAU RIV | ER BASINC | CONTINUE |) | | | | | 05379288 Bruce
Valley Creek near
Pleasantville | Lat 44°26'45", long 91°21'40" in SE 1/4 NW 1/4 sec.28, T.23 N., R.8 W., Trempealeau County, Hydrologic Unit 07040005, on left bank, 100 ft upstream from bridge on CTH D, 0.9 mi upstream from Elk Creek, and 2.9 mi west of Pleasantville; drainage area, 10.1 mi ² . | 1996-03 | 10-04-02 | 6.01 | 76 | 06-27-98 | 8.18 | 225 | | | | BLACK F | RIVER BASIN | I | | | | | | 05380900 Poplar
River near Owen | Lat 44°53'10", long 90°34'17" in NW 1/4 sec.25, T.28 N., R.2 W., Clark County, Hydrologic Unit 07040007, at bridge on County Trunk Highway N, 4.2 mi south of Owen; drainage area, 157 mi ² . | 1958-65
1966#
1967-03 | 04-16-03 | 17.51 | 4,350 | 06-06-80
06-22-02 | 20.12
J20.14 | 12,500
5,900 | | 05380970 Cawley
Creek near Neills-
ville | Lat 44°35'42", long 90°34'31" in SW 1/4 sec.25, T.25 N., R.2 W., Clark County, Hydrologic Unit 07040007, at bridge on State Highway 73, 3.7 mi north of Neillsville; drainage area, 38.6 mi ² . | 1961-03 | 04-16-03 | 16.08 | 1,760 | 09-22-86 | 20.62 | 7,880 | | 05382200 French
Creek near Ettrick | Lat 44°11'04", long
91°18'45"(revised) in NW 1/4 NW
1/4 sec.26 (revised), T.20 N., R.8
W., Trempealeau County, Hydro-
logic Unit 07040007, at bridge on
County Trunk Highways D and T,
2.5 mi west of Ettrick; drainage
area, 14.7 mi ² . | 1960-03 | 2003 | <9.26 | <573 | 06-12-01 | 12.58 | 2,950 | | | | BAD AXE | RIVER BASI | N | | | | | | 05387100 North Fork
Bad Axe River near
Genoa | Lat 43°33'10", long 91°08'58" in SW 1/4 sec.36, T.13 N., R.7 W., Vernon County, Hydrologic Unit 07060001, at bridge on State Highway 56, 4.1 mi southeast of Genoa; drainage area, 80.8 mi ² . | 1959-65
1966#
1967-03 | С | <9.07 | <75 | 08-27-59 | 19.59 | 10,000 | | | | WISCONSII | N RIVER BAS | SIN | | | | | | 05391260 Gudegast
Creek near Starks | Lat 45°41'41", long 89°15'42" in NW 1/4 sec.16, T.37 N., R.10 E., Oneida County, Hydrologic Unit 07070001, at corrugated culvert on country road, 3.0 mi northwest of Starks; drainage area, 14.0 mi ² . | 1970-03 | 04-21-03 | 11.71 | 60 | 05-09-90
04-19-02 | 13.33
13.36 | 130
126 | | | | | Water Y | ear 2003 M | aximum | Period o | f Record M | aximum | |--|---|-----------------------------|--|----------------------------------|--|----------|--------------------------|--| | Station Number
and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | WISCO | DNSIN RIVE | R BASINCO | ONTINUED | | | | | | 05391950 Squaw
Creek near Harrison | Lat 45°32'47" long
89°29'16" in SW 1/4 sec.3, T.35 N., R.8 E., Lincoln County, Hydrologic Unit 07070001, at culvert on County Trunk Highway A, 5.0 mi northeast of Harrison.; drainage area, 3.23 mi ² . | 1970-03 | 04-17-03 | 10.96 | 30.3 | 03-03-87 | 11.35 | F51 | | 05392150 Mishon-
agon Creek near
Woodruff | Lat 45°54'41", long 89°45'30" in NE 1/4 sec.32, T.40 N., R.6 E., Vilas County, Hydrologic Unit 07070001, at Twin culverts on Stte Highway 47, 3.0 mi northwest of Woodruff; drainage area, 17.6 mi ² . | 1958-03 | 05-12-03 | 10.42 | 99.3 | 08-17-72 | 11.33 | 117 | | 05392350 Bearskin
Creek near Harshaw | Lat 45°38'43", long 89°41'12" in SW 1/4 sec.36, T.37 N., R.6 E., Oneida County, Hydrologic Unit 07070001, at culvert on County Trunk Highway K, 2.1 mi southwest of Harshaw; drainage area, 31.1 mi ² . | 1958-65
1966#
1967-03 | 05-12-03 | 10.01 | 106 | 06-14-81 | 10.97 | 180 | | 05393640 Little Pine
Creek near Irma | Lat 45°23'37", long 89°40'20" in NW 1/4 sec.31, T.34 N., R.7 E., Lincoln County, Hydrologic Unit 07070002, at box culvert on U.S. Highway 51, 3.0 mi north of Irma; drainage area, 22.0 mi ² . | 1970-03 | 04-21-03
04-12-02
04-11-01
09-12-00 | 14.15
13.49
12.72
12.07 | 171
F135
F97.7
F70.8 | 06-14-81 | 14.38 | 310 | | 05394200 Devil
Creek near Merrill | Lat 45°08'56", long 89°47'13" in N 1/2 sec.30, T.31 N., R.6 E., Lincoln County, Hydrologic Unit 07070002, at culvert on County Trunk Highway F, 5.8 mi southwest of Merrill; drainage area, 9.58 mi ² . | 1961-03 | 05-12-03 | 13.27 | 334 | 06-13-90 | 17.98 | 1,600 | | 05395020 Lloyd
Creek near Doering | Lat 45°13'57", long 89°22'04" in SE 1/4, T.32 N., R.9 E., Langlade County, Hydrologic Unit 07070002, at bridge on County Trunk Highway C, 4.5 mi east of Doering; drainage area, 7.80 mi ² . | 1970-03 | 04-17-03
04-17-03 | 12.34
D12.91 | 276 | 06-13-90 | >16.00 | >1,000 | | 05395100 Trappe
River Tributary near
Merrill | Lat 45°08'07" long 89°30'08" in SW 1/4 sec.28, T.31 N., R.8 E., Lincoln County, Hydrologic Unit 07070002, at culvert on County Trunk Highway P, 9.5 mi southeast of Merrill; drainage area, 1.58 mi ² . | 1959-03 | 04-17-03 | 12.44 | 103 | 08-15-95 | 17.79 | 396 | | | | | Water Yo | ear 2003 Ma | aximum | Period o | f Record M | aximum | |---|---|--|-----------|--------------------------|--|-------------------|--------------------------|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | WISCO | NSIN RIVER | R BASINCC | NTINUED | | | | | | 05396300 Wisconsin
River Tributary at
Wausau | Lat 44°57′28", long 89°39′52" in NE 1/4 NW 1/4 sec.34, T.29 N., R.7 E., Marathon County, Hydrologic Unit 07070002, on road right-of-way of 24th Avenue opposite the Ace Motel, 300 ft east of U.S. Highway 51, at Wausau; drainage area, 1.10 mi ² . | 1982-03 | 04-16-03 | H2.80 | В | 06-12 or
13-90 | 9.11 | 740 | | 05397600 Big Sandy
Creek near Wausau | Lat 45°01'55", long 89°27'00" in SE 1/4 sec.31, T.30 N., R.9 E., Marathon County, Hydrologic Unit 07070002, at bridge on State Highway 52, 10.0 mi northeast of Wausau; drainage area, 11.5 mi ² . | 1959-03 | 04-16-03 | 12.41 | В | 09-27-59 | 15.18 | 2,120 | | 05400025 Johnson
Creek near Knowl-
ton | Lat 44°44'19", long 89°36'39" in SE 1/4 NE 1/4 sec.13, T.26 N., R.7 E., Marathon County, Hydrologic Unit 07070002, at bridge on County Trunk Highway X, 2.7 mi east of Knowlton; drainage area, 25.1 mi ² . | 1973-03 | 04-15-03 | 14.82 | 706 | 06-06-80 | 21.78 | 3,700 | | 05401800 Yellow
River Tributary near
Pittsville | Lat 44°28′58″, long 90°07′05″ on common boundary of secs.11 and 14, T.23 N., R.3 E., Wood County, Hydrologic Unit 07070003, at bridge on County Trunk Highway C, 2.0 mi north of Pittsville; drainage area, 7.23 mi ² . | 1959-03 | 10-04-02 | 11.32 | 91 | 05-02-73 | 13.82 | 810 | | 05403700 Dell Creek
near Lake Delton | Lat 43°33'05" long 89°51'55" in NW 1/4 sec.2, T.12 N., R.5 E., Sauk County, Hydrologic Unit 07070003, on right bank 50 ft upstream from highway bridge, 6.0 mi southwest of Lake Delton, and 7.0 mi upstream from mouth; drainage area, 44.9 mi ² . | 1957-65#
1966-70
1971-80#
1983-03 | 05-11-03 | 5.33 | 151 | 09-14-92 | 9.80 | 1,200 | | 05405600 Rowan
Creek at Poynette | Lat 43°23'13", long 89°23'25" in S 1/2 sec.35, T.11 N., R.9 E., Columbia County, Hydrologic Unit 07070005, at bridge on U.S. Highway 51, at Poynette; drainage area, 10.4 mi ² . | 1961-03 | 05-11-03 | H10.34 | 75 | 09-09-65 | 17.90 | 2,260 | | 054062391 Otter
Creek near Prairie
du Sac | Lat 43°22'22", long 89°47'47" in SW 1/4 NW 1/4 sec.4, T.10 N., R.6 E., Sauk County, Hydrologic Unit 07070005, at bridge on Kings Corner Road, 6.0 mi north, northwest of Prairie du Sac; drainage area, 4.75 mi ² . | 1996-03 | 05-11-03 | 13.30 | 113 | 06-01-00 | 19.90 | 3,680 | | | | | Water Y | ear 2003 M | aximum | Period o | f Record M | aximum | |---|--|-----------------------------|----------------------|--------------------------|--|----------|--------------------------|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | WISCO | NSIN RIVEI | R BASINCO | ONTINUED | | | | | | 05406605 Lowery
Creek near Spring
Green | Lat 43°08'00", long 90°03'52" in SE 1/4 SE 1/4 SW 1/4 sec.30, T.8 N., R.4 E., Iowa County, Hydrologic Unit 07070005, on CTH T, 3.0 mi south of Spring Green; drainage area, 8.76 mi ² . | 1996-03 | 10-04-02 | 10.41 | В | 06-01-00 | 16.42 | 780 | | 05407039 Fennimore
Fork near Fenni-
more | Lat 43°01'40", long 90°33'47" in NE 1/4 SW 1/4 NW 1/4 sec.1, T.6 N., R.2 W., Grant County, Hydrologic Unit 07070005, on Blue School Road, 5.6 mi northeast of Fennimore; drainage area, 15.3 mi ² . | 1996-03 | 03-14-03
02-20-03 | G10.65
G10.87 | E70 | 06-01-00 | 16.70 | 1,160 | | | | GRANT F | RIVER BASIN | ١ | | | | | | 05413400 Pigeon
Creek near Lan-
caster | Lat 42°49'00", long 90°43'20" in SW 1/4 sec.15, T.4 N., R.3 W., Grant County, Hydrologic Unit 07060003, at culvert on country road, 2.0 mi south of Lancaster; drainage area, 6.93 mi ² . | 1960-65
1966#
1967-03 | 07-08-03 | <9.81 | <100 | 01-24-67 | 20.85 | 2,800 | | | | PLATTE F | RIVER BASIN | N | | | | | | 05414213 Little
Platte River near
Platteville | Lat 42°43'23", long 90°31'41" in NE 1/4 NE 1/4 sec.19, T.3 N., R.1 W., Grant County, Hydrologic Unit 07060003, on left bank 150 ft upstream from Stumptown Road, 2.6 mi southwest of Post Office in Platteville; drainage area, 79.7 mi ² . | 1987-90#
1991-03 | 09-14-03 | 8.93 | 438 | 06-01-00 | 17.60 | 9,200 | | | | GALENA | RIVER BASI | N | | | | | | 05414900 Pats Creek
near Elk Grove | Lat 42°40'03", long 90°22'40" in SW 1/4 sec.4, T.2 N., R.1 E., Lafayette County, Hydrologic Unit 07060005, at bridge on State Highway 81, 7.0 mi southeast of Platteville; drainage area, 8.50 mi ² . | 1960-03 | 04-30-03 | 12.82 | 455 | 06-29-69 | 17.32 | 7,040 | | | | ROCK R | IVER BASIN | | | | | | | 05425806 Mud
Creek near Danville | Lat 43°17'06", long 88°56'54" in NW 1/4 NW 1/4 NW 1/4 sec.3, T.9 N., R.13 E., Dodge County, Hydrologic Unit 07090002, at bridge on Burr Oak Road, 2.5 mi south of Danville; drainage area, 12.3 mi ² . | 1995-03 | 2003 | С | <10.1 | 06-02-00 | 16.33 | 396 | | | | | Water Year 2003 Maximum | | | Period of Record Maximum | | | |--|--|--|-------------------------|--------------------------|--|--------------------------|--------------------------|--| | Station Number and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | ROO | CK RIVER B | ASINCONT | INUED | | | | | | 05430403 Fisher
Creek Tributary at
Janesville | Lat 42°40'18", long 89°03'31" in SW 1/4 SE 1/4 sec.34, T.3 N., R.12 E., Rock County, Hydrologic Unit 07090001, at culvert on Rockport Road, 0.4 mi west of South Crosby Avenue and 0.6 mi upstream from County Trunk Highway D, at Janesville; drainage area, 1.42 mi ² . | 1982-03 | 07-15-03 | 7.27 | 304 | 06-25-98 | 8.23 | 419 | | 05431400 Little Tur-
tle Creek at Allens
Grove | Lat 42°34'46", long 88°45'33" in NE 1/4 sec.6, T.1 N., R.15 E., Walworth County, Hydrologic Unit 07090001, at bridge on country road, 0.2 mi south of Allens Grove; drainage area, 42.4 mi ² . | 1962-03 | 07-15-03 | 10.95 | 576 | 04-21-73 | 18.28 | 8,400 | | 05432055 Livingston
Branch Pecatonica
River near
Living-
ston | Lat 42°54'01", long 90°22'23", in SW 1/4 SE 1/4 sec.16, T.5 N., R.1 E., Iowa County, Hydrologic Unit 07090003, on the left bank 75 ft upstream from Enloe Road and 2.7 mi east of Livingston; drainage area, 16.4 mi ² . | 1987-91#
1996-03 | 05-10-03 | 7.63 | 720 | 06-29-90 | 13.49 | 6,260 | | 05432300 Rock
Branch near Min-
eral Point | Lat 42°50'02", long 90°09'15" in SE 1/4 sec.8, T.4 N., R.3 E., Iowa County, Hydrologic Unit 07090003, at box culvert on State Highway 23, 2.5 mi south of Mineral Point; drainage area, 4.83 mi ² . | 1959-03 | 2003 | С | В | 07-05-93 | 22.63 | 3,100 | | 05433500 Yellow-
stone River near
Blanchardville | Lat 42°46'55", long 89°59'50" in NE 1/4 sec.34, T.4 N., R.4 E., Lafayette County, Hydrologic Unit 07090003, 0.6 mi upstream from bridge on County Trunk Highway F, 7.0 mi west-southwest of Blanchardville; drainage area, 28.5 mi ² . | 1954-65#
1966-77
1978-79#
1980-03 | 05-01-03
03-13-03 | 3.66
G3.96 | 177 | 06-29-90 | 11.40 | 8,500 | | 05436200 Gill Creek
near Brooklyn | Lat 42°49'38", long 89°26'43" in NW 1/4 sec.16, T.4 N., R.9 E., Green County, Hydrologic Unit 07090004, at culvert on State Highway 92, 4.3 mi west of Brooklyn; drainage area, 3.33 mi ² . | 1961-03 | 10-04-02 | E11.08 | E32 | 05-17-99 | 17.85 | 960 | | | | ILLINOIS I | RIVER BASI | N | | | | | | 05545100 Sugar
Creek at Elkhorn | Lat 42°41'05", long 88″30'50" in SW 1/4 sec.29, T.3 N., R.17 E., Walworth County, Hydrologic Unit 07120006, at culvert on State Highway 11, 2.0 mi northeast of Elkhorn; drainage area, 6.63 mi ² . | 1962-03 | 07-15-03 | 11.06 | 42 | 04-21-73 | 17.47 | 900 | | | | | Water Y | ear 2003 M | aximum | Period o | f Record M | aximum | |---|---|------------------------|----------|--------------------------|--|----------|--------------------------|--| | Station Number
and Name | Location and
Drainage Area | Period
of
Record | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | ILLIN | IOIS RIVER | BASINCON | ITINUED | | | | | | 05545200 White
River Tributary near
Burlington | Lat 42°41'01", long
88°21'41"(revised) in SW 1/4 SW
1/4, sec. 27 (revised), T.3 N., R.18
E., Walworth County, Hydrologic
Unit 07120006, at box culvert on
State Highway 11, 4.5 mi west of
Burlington; drainage area, 2.42
mi ² . | 1958-03 | С | <10.37 | <5 | 06-13-99 | 14.77 | 354 | | 05548150 North
Branch Nippersink
Creek near Genoa
City | Lat 42°30'15", long 88°23'01" in SW 1/4 NW 1/4 sec.33, T.1 N., R.18 E., Walworth County, Hydrologic Unit 07120006, at bridge on County Trunk Highway B, 3.0 mi west of Genoa City; drainage area, 13.6 mi ² . | 1962-03 | 07-15-03 | 9.81 | 39 | 06-12-00 | 14.18 | 563 | [#] Operated as a continuous-record station B Discharge not determined C Peak not recorded D Backwater E Estimated F Revised G Backwater from ice H Downstream gage Measurements of streamflow at points other than gaging stations or partial-record stations are given in the following table. | | | | Drainaga | Measured | Measu | rements | |---|---------------|--|--|--------------------------------|----------|--| | Stream | Tributary to | Location | Drainage
area
(mi ²) | previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | STREAMS TRIBUTARY TO LAKE | SUPERIOR | | | | | 04026117 Flag River | Lake Superior | Lat 46°41'25.4", long 91°16'58.5", in SE 1/4 SE 1/4 sec.30, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Port Wing. | 0.57 | | 11/04/02 | 0.07 | | 04026120 Flag River | Lake Superior | Lat 46°46'57.6", long 91°22'25.2", in SE 1/4 NW 1/4 sec.28, T.50 N., R.8 W., Bayfield County, Hydrologic Unit 04010301, at Port Wing. | 27.7 | 1964
1969-76
1988 | 11/04/02 | 33.7 | | 04026124 East Fork
Cranberry River
Trib #2 | Lake Superior | Lat 46°43'12.8", long 91°11'49.1", in NE 1/4 SE 1/4 SE 1/4 sec.13, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Herbster. | 0.08 | | 11/04/02 | 0 | | 040261244 East Fork
Cranberry River
Tributary | Lake Superior | Lat 46°44'11.8", long 91°11'47.9", in SW 1/4 NW 1/4 SW 1/4 sec.12, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Herbster. | 0.34 | | 11/04/02 | 0 | | 040261248 East Fork
Cranberry River | Lake Superior | Lat 46°45'34", long 91°14'08", in NW 1/4 NW 1/4 NW 1/4 sec.3, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Lenawee Road, near Herbster. | 4.51 | | 11/20/02 | 13.8 | | 04026125 Lenawee
Creek Tributary #2 | Lake Superior | Lat 46°42'50.5", long 91°13'36.63", in SE 1/4 NW 1/4 NE 1/4 sec.22, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Sand Trap Road, near Herbster. | 0.17 | | 11/04/02 | 0 | | 040261254 Lenawee
Creek Tributary | Lake Superior | Lat 46°42'47", long 91°13'42.5", in NW 1/4 SW 1/4 NE 1/4 sec.22, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Sand Trap Road, near Herbster. | 0.14 | | 11/04/02 | 0 | | 040261255 Lenawee
Creek Tributary #3 | Lake Superior | Lat 46°42'53.5", long 91°13'55.4", in SE 1/4 NE 1/4 NW 1/4 sec.22, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Sand Trap Road, near Herbster. | 0.16 | | 11/04/02 | 0 | | 040261258 Lenawee
Creek | Lake Superior | Lat 46°43'47.6", long 91°14'24.3", in SE 1/4 NE 1/4 NE 1/4 sec.16, T.49 N., R.7 W., Bay-field County, Hydrologic Unit 04010301, at Seven Mile Road, near Herbster. | 2.70 | | 11/04/02 | 0.07 | | | | | Drainage | Measured | Measu | rements | |--|---------------|--|----------------------------|--------------------------------|----------|--| | Stream | Tributary to | Location | area
(mi ²) | previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | STREAMS TRIBUTARY TO LAKE SUPER | IORCONTIN | NUED | | | | 04026126 Lenawee
Creek | Lake Superior | Lat 46°45'30.9", long 91°14'14.8", in SW 1/4 NW 1/4 NW 1/4 sec.3, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Lenawee Road, near Herbster. | 4.16 | | 11/04/02 | 1.55 | | 040261261 Lenawee
Creek Tributary | Lake Superior | Lat 46°45'32", long 91°14'15.3", in SW 1/4 NW 1/4 NW 1/4 sec.3, T.49 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Lenawee Road, near Herbster. | 0.40 | | 11/04/02 | 0.1 | | 04026127 East
Branch East Fork
Cranberry River | Lake Superior | Lat 46°46'53", long 91°14'06.3", in NW 1/4
NW 1/4 NW 1/4 sec.27, T.50 N., R.7 W.,
Bayfield County, Hydrologic Unit 04010301,
at Campbell Road, near Herbster. | 4.95 | | 11/05/02 | 3.49 | | 04026128 East Fork
Cranberry River | Lake Superior | Lat 46°47'06", long 91°14'46.8", in NW 1/4 SW 1/4 NE 1/4 sec.28, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Lenawee Road, near Herbster. | 17.6 | | 11/04/02 | 22.7 | | 04026130 East Fork
Cranberry River | Lake Superior | Lat 46°47'19.9", long 91°16'24.8", in NE 1/4 NW 1/4 sec.29, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Touve Road, near Herbster. | 18.7 | 1970 | 11/04/02 | 25.1 | | 04026131 South
Branch Cranberry
River | Lake Superior | Lat 46°47'21.2", long 91°16'36.8", in NE 1/4 NW 1/4 NW 1/4 sec.29, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Touve Road, near Herbster. | 5.38 | | 11/04/02 | 1.22 | | 040261315 Cran-
berry River Tribu-
tary | Lake Superior | Lat 46°48'07.2", long 91°15'30.7", in NE 1/4 NE 1/4 NE 1/4 sec.20, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Lenawee Road, near Herbster. | 0.18 | | 11/04/02 | 0.03 | | 04026132 Cranberry
River | Lake Superior | Lat 46°49'47", long 91°16'02", in SW 1/4 SW 1/4 NE 1/4 sec.8, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at old Highway 13, near Herbster. | 31.0 | 1989 | 11/04/02 | (a) | | 04026135 Bark River | Lake Superior | Lat 46°47'34.6", long 91°12'17.5", in SE 1/4 SW 1/4 NW 1/4 sec.23, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, at Bark River Road, near Herbster. | 0.92 | | 11/05/02 | 0.53 | | 04026137 Bark River | Lake Superior | Lat 46°49'17.7", long 91°10'42.3", in SE 1/4 NE 1/4 SW 1/4 sec.12, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Bark River Road, near Herbster. | 5.86 | | 11/05/02 | 8.97 | | | | | Dusinson | Measured | Measurements | | | |--|---------------|---|--|--------------------------------|--------------|--|--| | Stream | Tributary to | Location | Drainage
area
(mi ²) | previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | | STREAMS TRIBUTARY TO LAKE SUPER | IORCONTIN | IUED | | | | | 04026138 Bark River
Tributary | Lake Superior | Lat 46°49'21", long 91°10'36", in SE 1/4 SE 1/4 SE 1/4 sec.12, T.50 N., R.7 W.,
Bayfield County, Hydrologic Unit 04010301, near Bark River Road, near Herbster. | 0.14 | | 11/05/02 | 0.56 | | | 04026139 East
Branch Bark River | Lake Superior | Lat 46°49'25", long 91°10'36", in SE 1/4 SE 1/4 SE 1/4 sec.12, T.50 N., R.7 W., Bayfield County, Hydrologic Unit 04010301, near Bark River Road, near Herbster. | 1.08 | | 1/08/03 | 4.00 | | | 04026140 Bark River | Lake Superior | Lat 46°50'27.4", long 91°10'48.8", in SW 1/4 SE 1/4 NE 1/4 sec.1, T.50 N., R.7 W., Bay-field County, Hydrologic Unit 04010301, at Highway 13, near Cornucopia. | 8.19 | | 11/05/02 | 18.3 | | | 04026150 Lost Creek
No. 2 | Lost Creek | Lat 46°50'33", long 91°08'04", in NE 1/4 SE 1/4 NE 1/4 sec.5, T.50 N., R.6 W., Bayfield County, Hydrologic Unit 04010301, near Cornucopia. | 1.94 | 1970 | 11/05/02 | 0.79 | | | 04026160 Siskiwit
River | Lake Superior | Lat 46°51'17", long 91°05'29", in SW 1/4 SW 1/4 NW 1/4 sec.35, T.51 N., R.6 W., Bayfield County, Hydrologic Unit 04010301, at Cornucopia. | 21.6 | 1950
1970 | 11/05/02 | 9.7 | | | 04026190 Sand River | Lake Superior | Lat 46°54'00", long 90°57'20", in SW 1/4 NE 1/4 sec.14, T.51 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, near Red Cliff. | 26.9 | 1969–76
1980
1988 | 11/05/02 | 7.21 | | | 04026200 Sand River
Tributary | Sand River | Lat 46°53'53", long 90°56'47", in SE 1/4 SE 1/4 sec.14, T.51 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, near Red Cliff. | 1.11 | 1962
1964
1969 | 11/05/02 | 0.2 | | | 04026207 Rasp-
berry River Tribu-
tary | Lake Superior | Lat 46°53'06", long 90°53'51", in NW 1/4 SE 1/4 NW 1/4 sec.20, T.51 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, at Highway 13, near Red Cliff. | 0.31 | | 11/05/02 | 0.06 | | | 040262075 Rasp-
berry River | Lake Superior | Lat 46°53'05", long 90°53'47", in NW 1/4 SE 1/4 NW 1/4 sec.20, T.51 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, at Highway 13, near Sand Bay. | 0.23 | | 11/05/02 | 0.005 | | | 04026209 Rasp-
berry River | Lake Superior | Lat 46°54'52", long 90°51'31", in NW 1/4 SW 1/4 NE 1/4 sec.10, T.51 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, at Highway K, near Sand Bay. | 8.17 | | 11/05/02 | 0.86 | | | | | | Drainage | Measured | Measu | rements | |---|---------------|--|----------------------------|--------------------------------|----------|--| | Stream | Tributary to | Location | area
(mi ²) | previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | STREAMS TRIBUTARY TO LAKE SUPER | IORCONTIN | IUED | | | | 04026211 North
Branch Raspberry
River | Lake Superior | Lat 46°55'58", long 90°51'12", in NW 1/4 NE 1/4 NE 1/4 sec.3, T.51 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, at Blueberry Road, near Sand Bay. | 0.48 | | 11/05/02 | 0 | | 04026213 South
Branch Raspberry
River | Lake Superior | Lat 46°54'07", long 90°49'01", in NW 1/4 NE 1/4 NE 1/4 sec.13, T.51 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, at Emil Road, near Sand Bay. | 0.13 | | 11/05/02 | 0.05 | | 04026215 Rasp-
berry River | Lake Superior | Lat 46°55'24", long 90°49'51", in NW 1/4 SE 1/4 sec.2, T.51 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, near Sand Bay. | 13.8 | 1970 | 11/05/02 | 2.32 | | 04026290 Sioux
River | Lake Superior | Lat 46°39'16", long 91°00'36", in SE 1/4 NE 1/4 sec.8, T.48 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, near Washburn. | 2.50 | | 11/04/02 | 0.47 | | 04026295 Sioux
River | Lake Superior | Lat 46°40'35", long 90°59'22", in SE 1/4 SE 1/4 NE 1/4 sec.33, T.49 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at Church Corner Road, near Washburn. | 9.95 | | 11/04/02 | 4.0 | | 04026300 Sioux
River | Lake Superior | Lat 46°41'20", long 90°57'02", in NE 1/4 NE 1/4 sec.35, T.49 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, near Washburn. | 13.6 | | 11/04/02 | 10.0 | | 04026304 Fourmile
Creek Tributary | Lake Superior | Lat 46°42'51", long 91°00'09", in SW 1/4 NE 1/4 SW 1/4 sec.21, T.49 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at County Highway C, near Washburn. | 0.17 | | 11/05/02 | 0.03 | | 04026305 Fourmile
Creek | Lake Superior | Lat 46°42'50", long 91°00'02", in NE 1/4 SE 1/4 NW 1/4 sec.21, T.49 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at County Highway C, near Washburn. | 3.98 | | 11/05/02 | 3.81 | | 04026308 Sioux
River | Lake Superior | Lat 46°42'37", long 90°55'33", in SE 1/4 SE 1/4 NE 1/4 sec.24, T.49 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at Big Rock Road, near Washburn. | 26.7 | | 11/04/02 | 25.2 | | 04026309 Sioux
River | Lake Superior | Lat 46°43'32", long 90°54'27", in SE 1/4 NE 1/4 sec.18, T.49 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, at Friendly Valley Road, near Washburn. | 29.3 | 1970 | 11/05/02 | 28.7 | | 04026311 Little
Sioux River | Lake Superior | Lat 46°45'37", long 90°58'02", in NE 1/4 NE 1/4 NE 1/4 Sec.3, T.49 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at Little Sioux Road, near Washburn. | 2.92 | | 11/05/02 | 1.4 | | | | | Berlinsen | Measured | Measurements | | | |--|-----------------|--|--|---|--|--|--| | Stream | Tributary to | Location | Drainage
area
(mi ²) | previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | | STREAMS TRIBUTARY TO LAKE SUPER | IORCONTIN | NUED | | | | | 04026315 Little
Sioux River | Lake Superior | Lat 46°43'35.6", long 90°54'27", in NE 1/4 SE 1/4 NE 1/4 sec.18, T.49 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, near Washburn. | 11.6 | 1970 | 11/05/02 | 13.63 | | | 04026316 Sioux
River | Lake Superior | Lat 46°44'03", long 90°52'35", in SE 1/4 SW 1/4 sec.9, T.49 N., R.4 W., Bayfield County, Hydrologic Unit 04010301, at Highway 13, near Washburn. | 43.9 | | 11/05/02 | (a) | | | 04026318 Boyd
Creek | Lake Superior | Lat 46°37'14", long 90°58'10", in NE 1/4 SE 1/4 sec.22, T.48 N., R.5 W., Bayfield County, Hydrologic Unit 04010301, at Ondassagon Road, near Ashland. | 3.12 | 1975-77 | 11/04/02 | 0.38 | | | | | STREAMS TRIBUTARY TO LAKE | MICHIGAN | | | | | | 04072185 Trout
Creek | Duck Creek | Lat 44°32'10", long 88°07'48", in NE 1/4 SE 1/4 sec.24, T.24 N., R.19 E., Brown County, Hydrologic Unit 04030103, at culvert on County Highway FF, 2.2 mi southwest of Howard. | 15.4 | 1969
1976
1997-2002 | 02/18/03
03/19/03
04/21/03
05/20/03
06/09/03
07/17/03
07/31/03
08/11/03 | 1.01
6.20
18.8
4.34
5.17
0.77
17.6
3.85
0.19 | | | 04072233 Lancaster
Brook | Duck Creek | Lat 44°33'29", long 88°06'10", in NE 1/4 NW 1/4 sec.17, T.24 N., R.20 E., Brown County, Hydrologic Unit 04030103, at Shawano Avenue at Howard. | | 1997-2002 | 03/19/03
04/21/03
05/20/03
06/09/03
07/17/03
07/31/03
08/11/03 | 3.79
15.1
4.50
6.93
1.02
17.7
4.34
0.43 | | | 04072490 Portage
Canal | Fox River | Lat 43°32'19", long 89°27'32", in NE 1/4 NW 1/4 sec.8, T.12 N., R.9 E., Columbia County, Hydrologic Unit 04030201, at bridge on U.S. Highway 51, at Portage. | 0.05 | 1965-66
1969-71
1974
1983
1991-95
2001 | 05/06/03 | 2.31 | | | | | CHIPPEWA RIVER BASI | N | | | | | | 05357213 Little John
Lake Tributary | Allequash Creek | Lat 46°01'29", long 89°39'00", in NE 1/4 NW 1/4 sec.20, T.41 N., R.7 E., Vilas County, Hydrologic Unit 07050002, at confluence with Allequash Creek, near Boulder Junction. | | 1992-2002 | 10/23/02
05/12/03
09/04/03 | 0.84
6.42
0.75 | | | 05357230 North
Creek | Trout River | Lat 46°04'43", long 89°40'02", in SW 1/4 NE 1/4 sec.31, T.42 N., R.7 E., Vilas County, Hydrologic Unit 07050002, at inlet to Trout Lake, 2.6 mi southwest of Boulder Junction. | 3.58 | 1992-96
1998-2002 | 05/12/03
06/30/03
09/04/03 | 17.5
1.37
1.22 | | | | | | Drainage | Measured | Measu | rements | |---|--------------------|---|----------------------------|--------------------------------|--|--| | Stream | Tributary to | Location | area
(mi ²) | previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | CHIPPEWA RIVER BASINCON | TINUED | | | | | 05357239 Mann
Creek | Trout River | Lat 46°00'41", long 89°40'33", in NW 1/4 NW 1/4 sec.30, T.41 N., R.7 E., Vilas County, Hydrologic Unit 07050002, at County Trunk Highway N, near Boulder Junction. | | 1991-96
1998-2002 | 05/12/03
09/09/03 | 16.2
2.09 | | 05369945 Eau Galle
River | Chippewa River | Lat 44°52'02", long 92°15'07", in SE 1/4 NW 1/4 sec. 31, T.28 N., R.15 W., St. Croix County, Hydrologic Unit 07050005, approximately 550 ft upstyream from French Creek and at Spring Valley. | 47.9 | (a)
2001 | 10/01/01
11/26/01
12/05/01
03/14/02
03/28/02
04/11/02
05/23/02
05/30/02
06/20/02
07/16/02
09/18/02 |
12.0
23.7
53.1
104
162
323
20.2
15.7
50.6
15.0
135
17.0 | | | | ROCK RIVER BASIN | | | | | | 05425830 Maunesha
River | Crawfish River | Lat 43°13'10", long 89°08'05", in SW 1/4 NE 1/4 sec. 25, T.9 N., R.11 E., Dane County, Hydrologic Unit 07090002, at country road, 4.7 mi northeast of Sun Prairie. | 37.1 | 1967
1990 | 09/11/03 | 0.86 | | 05427800 Token
Creek | Yahara River | Lat 43°10'52", long 89°19'28", in SW 1/4 SW 1/4 sec. 4, T.8 N., R.10 E., Dane County, Hydrologic Unit 07090001, 8.0 mi northeast of State Capitol Building in Madison. | 24.3 | (b) | 09/11/03 | 15.2 | | 05427900 Sixmile
Creek | Yahara River | Lat 43°10'29", long 89°25'58", in NE 1/4 NW 1/4 sec. 16, T.8 N., R.9 E., Dane County, Hydrologic Unit 07090002, 1.5 mi southeast of Waunakee. | 41.1 | (c) | 09/11/03 | 2.28 | | 05428600 West
Branch Stark-
weather Creek | Yahara River | Lat 43°05'58", long 89°20'18", in SE 1/4 NW 1/4 sec. 5, T.7 N., R.10 E., Dane County, Hydrologic Unit 07090001, 2.9 mi northeast of State Capitol Building in Madison. | 12.1 | 1990 | 09/12/03 | 0.89 | | 05428650 East
Branch Stark-
weather Creek | Starkweather Creek | Lat 43°05'57", long 89°19'54", in SW 1/4 NE 1/4 sec. 5, T.7 N., R.10 E., Dane County, Hydrologic Unit 07090001, 3.2 mi northeast of State Capitol Building in Madison. | 8.89 | 1990 | 09/12/03 | 0.17 | | 05429280 Nine
Springs Creek | Yahara River | Lat 43°01'51", long 89°20'50", in NE 1/4 NE 1/4 sec. 31, T.7 N., R.10 E., Dane County, Hydrologic Unit 07090001, at Moorland Road, 3.5 mi northeast of State Capitol Building in Madison. | 10.8 | 1990 | 09/11/03 | 7.01 | | | | | Drainago | Measured | Measurements | | | |---------------------------|----------------------------|---|--|--------------------------------|--------------|--|--| | Stream | Tributary to | Location | Drainage
area
(mi ²) | previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | | ROCK RIVER BASINCONTIN | NUED | | | | | | 05429580 Door Creek | Yahara River | Lat 43°02'54", long 89°13'54", in NE 1/4 NE 1/4 sec. 30, T.7 N., R.11 E., Dane County, Hydrologic Unit 07090001, 2.5 mi southwest of Cottage Grove. | 15.3 | (d) | 09/11/03 | 1.28 | | | 05429720 Yahara
River | Rock River | Lat 42°52'52", long 89°12'39", in NE 1/4 SE 1/4 sec. 20, T.5 N., R.11 E., Dane County, Hydrologic Unit 07090001, at dam, 2.5 mi south of Stoughton. | 414 | 1990 | 09/11/03 | 31.0 | | | 05436000 Mt. Vernon Creek | West Branch Sugar
River | Lat 42°55'20", long 89°37'30", in NW 1/4 SW 1/4 sec. 12, T.5 N., R.7 E., Dane County, Hydrologic Unit 07090004, 2.5 mi southeast of Mt. Vernon. | 16.4 | (e) | 09/11/03 | 11.5 | | ⁽a) Discharge not measured because of backwater effects from Lake Superior ⁽b) Continuous-record station 1964-66, 1976-81 ⁽c) Continuous-record station 1976-82 ⁽d) Continuous-record station 1976-79 ⁽e) Continuous-record station 1954-65, 1976-80 Water-quality data in this section are for samples collected at gaging stations and other sites on streams for reconnaissance or other purposes on a non-continuous basis. | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dissolved oxygen, mg/L (00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | Alkalinity, wat flt inc tit field, mg/L as CaCO3 (39086) | Bicarbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | Carbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | Chloride,
water,
fltrd,
mg/L
(00940) | Sulfate
water,
fltrd,
mg/L
(00945) | |-----------------------|------|--------------------------------------|-------------------------------|---|--------------------------------|---|--|-----------------------------------|--|--|--|--|--| | | | 04072050 I | JUCK CKI | EEK AT SE | MINAKI | KUAD NE. | AK UNEIL | A, WI (LA | 11 44 27 37 | N LONG (| 13 U8W |) | | | OCT 2002
08
NOV | 1245 | 4.9 | 10 | 742 | 8.6 | 7.5 | 810 | 10.5 | 172 | 208 | 1 | 75.9 | 134 | | 05
DEC | 0840 | 4.4 | 40 | 738 | 12.6 | 7.9 | 1,130 | | 293 | 352 | 2 | 113 | 136 | | 04
JAN 2003 | 1245 | 2.2 | 40 | 743 | 15.6 | 7.8 | 1,640 | 0.5 | 417 | 502 | 3 | 200 | 143 | | 08
FEB | 1330 | 4.9 | 40 | 723 | 12.2 | 7.6 | 1,490 | 0.0 | 345 | 418 | 1 | 191 | 140 | | 05
MAR | 1450 | 3.5 | 40 | 742 | 10.8 | 7.2 | 1,670 | -0.2 | 423 | 513 | 1 | 228 | 92.8 | | 04 | 1315 | 4.6 | 40 | 739 | 13.0 | 7.4 | 2,350 | -0.2 | 467 | 565 | 2 | 425 | 117 | | 18 | 1350 | 190 | 10 | 743 | 15.1 | 7.4 | 401 | -0.2 | 81 | 98 | <1 | | | | APR
10 | 1350 | 29 | 10 | 738 | 13.2 | 7.8 | 898 | 6.4 | 211 | 251 | 3 | 86.6 | 105 | | 23 | 0930 | 114 | 10 | 738
749 | 10.8 | 7.8
7.8 | 834 | 7.3 | 220 | 269 | <1 | 80.0
 | 103 | | MAY | 0730 | 114 | 10 | 747 | 10.0 | 7.0 | 034 | 7.5 | 220 | 20) | \1 | | | | 06 | 0745 | 102 | 10 | 737 | 9.3 | 7.7 | 768 | 8.9 | 203 | 248 | <1 | 63.3 | 86.3 | | 13 | 1210 | 258 | 10 | 740 | 9.7 | 7.7 | 733 | 11.9 | 216 | 263 | <1 | | | | 29 | 1025 | 9.2 | 40 | 740 | 8.2 | 7.9 | 900 | 15.4 | 273 | 321 | 6 | | | | JUN
03 | 1430 | 15 | 40 | 742 | 11.2 | 8.1 | 852 | 17.9 | 283 | 323 | 11 | 75.0 | 69.4 | | 18 | 1100 | 17 | 10 | 741 | 7.6 | 7.6 | 948 | 19.9 | 267 | 325 | <1 | | 07. - | | JUL | | | | | | , | | -,,, | | | | | | | 08 | 1145 | 1.9 | 40 | 735 | 5.4 | 7.7 | 1,060 | 20.6 | 273 | 332 | 3 | 103 | 131 | | 22 | 1145 | 0.86 | 40 | 743 | 6.4 | 7.6 | 913 | 20.4 | 286 | 348 | 4 | | | | AUG
06 | 1300 | 287 | 10 | 734 | 6.9 | 7.5 | 492 | 20.7 | 159 | 194 | 0.0 | 25.0 | 40.2 | | SEP
03 | 1015 | 1.3 | 40 | 749 | 7.8 | 7.8 | 911 | 18.0 | 301 | 355 | 6 | 100 | 47.5 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | Alkalinity, wat flt inc tit field, mg/L as CaCO3 (39086) | Bicarbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | Carbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | Chloride,
water,
fltrd,
mg/L
(00940) | Sulfate
water,
fltrd,
mg/L
(00945) | |-----------------------|------|--------------------------------------|-------------------------------|---|--|---|---|-----------------------------------|--|--|--|--|--| | | | 040869415 1 | LINCOLN | CREEK AT | 7 47TH ST | REET AT N | MILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 20V | V) | | | OCT 2002 | | | | | | | | | | | | | | | 07
NOV | 1150 | 3.1 | 10 | 746 | 8.0 | 7.8 | 603 | 12.9 | 131 | 156 | 2 | 89.1 | 34.4 | | 04 | 1455 | 0.96 | 40 | 747 | 16.5 | 8.5 | 1,330 | 6.0 | 220 | 254 | 6 | 248 | 79.9 | | DEC
03 | 1500 | 1.4 | 40 | 754 | E16.2 | 7.9 | 5,210 | -0.1 | 199 | 240 | 1 | 1,490 | 82.4 | | FEB 2003
03
MAR | 1105 | 13 | 40 | 731 | 13.2 | 7.8 | 1,820 | -0.3 | 74 | 89 | <1 | 440 | 52.0 | | MAK
06 | 1100 | 1.5 | 40 | 746 | 12.7 | 7.6 | 12,800 | -0.3 | 148 | 179 | 1 | 4,270 | 117 | | 19 | 1045 | 1.9 | 40 | 740 | 13.4 | 7.8 | 4,590 | 3.7 | 165 | 198 | 1 | | | | APR | | | | | | | | | | | | | | | 08 | 1200 | 7.1 | 40 | 753 | 13.1 | 8.1 | 13,100 | 2.5 | 122 | 147 | <1 | 3,800 | 101 | | 22
MAY | 0945 | 4.5 | 40 | 744 | 12.3 | 7.8 | 2,540 | 7.8 | 174 | 205 | 3 | | | | 08 | 1035 | 9.8 | 10 | 743 | 15.3 | 8.5 | 13,100 | 13.7 | 188 | 203 | 13 | 262 | 55.1 | | 12 | 1020 | 18 | 10 | 739 | 16.3 | 8.5 | 1,150 | 12.2 | 194 | 226 | 5 | | | | 28 | 0930 | 2.6 | 10 | 739 | 6.5 | 7.6 | 2,120 | 16.2 | 266 | 324 | <1 | | | | JUN | | | | | | | , - | | | | | | | | 02 | 1010 | 2.5 | 10 | 745 | 7.6 | 7.6 | 1,570 | 14.6 | 237 | 289 | <1 | 337 | 59.0 | | 19 | 1105 | 2.4 | 40 | 748 | 10.7 | 7.8 | 1,620 | 18.9 | 234 | 285 | <1 | | | | JUL | | | | | | | , | | | | | | | | 07 | 1055 | 17 | 10 | 739 | 6.9 | 7.6 | 506 | 22.2 | 82 | 100 | <1 | 79.6 | 18.5 | | 21 | 1110 | 3.6 | 40 | 737 | 13.2 | 8.1 | 1,360 | 23.4 | 190 | 213 | 9 | | | | AUG | | | | | | | , | | | | | | | | 07 | 1100 | 2.2 | 10 | 744 | 10.2 | 7.9 | 643 | 26.0 | 112 | 129 | 3 | 115 | 25.9 | | SEP | | | | | | | | | | | | | | | 02 | 1215 | 1.8 | 40 | 752 | 11.5 | 8.1 | 1,020 | 21.4 | 182 | 206 | 7 | 195 | 48.9 | | | | | | | | | | | | | | | | FR WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) |
Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Particulate nitrogen, susp, water, mg/L (49570) | Phosphorus, water, unfltrd mg/L (00665) | Total
carbon,
suspnd
sedimnt
total,
mg/L
(00694) | Inorganic carbon, suspnd sedimnt total, mg/L (00688) | Organic
carbon,
suspnd
sedimnt
total,
mg/L
(00689) | Organic
carbon,
water,
fltrd,
mg/L
(00681) | 1,4-
Naphth-
oquin-
one,
water,
fltrd,
ug/L
(61611) | 1-Naph-
thol,
water,
fltrd
0.7u GF
ug/L
(49295) | |----------------|--|--|---|--|--|---|---|--|--|--|---|--|---| | | | 04072050 Г | UCK CRI | EEK AT SE | MINARY | ROAD NE | AR ONEID | A, WI (LA | T 44 27 57 | 'N LONG (| 88 13 08W |) | | | OCT 2002 | 0.52 | 0.04 | 0.56 | E 00.4 | 0.22 | 0.05 | 0.26 | 0.4 | 0.1 | 0.4 | | | | | 08
NOV | 0.53 | < 0.04 | 0.56 | E.004 | 0.22 | 0.05 | 0.26 | 0.4 | <0.1 | 0.4 | 7.7 | | | | 05
DEC | 0.82 | < 0.04 | 1.87 | 0.008 | 0.07 | 0.04 | 0.096 | 0.2 | < 0.1 | 0.2 | 10.8 | | | | 04
JAN 2003 | 0.93 | E.04 | 3.96 | 0.013 | 0.11 | 0.05 | 0.165 | 0.3 | < 0.1 | 0.3 | 10.5 | | | | 08
FEB | 1.8 | 1.01 | 2.70 | 0.034 | 0.22 | < 0.02 | 0.24 | 0.1 | < 0.1 | 0.1 | 7.0 | | | | 05 | 1.4 | 0.64 | 6.80 | 0.116 | 0.10 | 0.09 | 0.158 | 0.5 | < 0.1 | 0.5 | 6.0 | | | | MAR
04 | 4.7 | 3.49 | 6.18 | 0.139 | 0.08 | 0.16 | 0.172 | 1.0 | < 0.1 | 1.0 | 8.6 | | | | 18
APR | 4.3 | 0.53 | 3.27 | 0.184 | 0.32 | | 0.55 | | | | | | | | 10 | 1.2 | 0.06 | 3.63 | 0.027 | 0.04 | 0.06 | 0.091 | 0.3 | < 0.1 | 0.3 | 13.9 | | | | 23
MAY | 1.6 | E.03 | 6.62 | 0.039 | 0.05 | | 0.096 | | | | | | | | 06 | 1.7 | 0.10 | 1.64 | 0.034 | 0.11 | 0.21 | 0.20 | 1.3 | < 0.1 | 1.3 | 17.9 | | | | 13
29 | 1.9
1.6 | <0.04
0.07 | 6.75
1.03 | 0.057
0.046 | 0.07
0.17 | | 0.138
0.24 | | | | | | | | JUN
03 | 1.9 | < 0.04 | 0.85 | 0.028 | 0.13 | 0.06 | 0.28 | 0.4 | < 0.1 | 0.4 | 22.3 | | | | 18 | 1.9 | < 0.04 | 5.34 | 0.090 | 0.14 | | 0.22 | | | | | | | | JUL
08 | 1.3 | 0.10 | 0.33 | 0.009 | 0.40 | 0.10 | 0.50 | 0.6 | < 0.1 | 0.6 | 16.6 | | | | 22
AUG | 1.5 | 0.07 | 0.28 | E.006 | 0.45 | | 0.53 | | | | | | | | 06
SEP | | | | | | 0.09 | | 0.8 | < 0.1 | 0.8 | 21.8 | | | | 03 | 1.5 | < 0.04 | 0.54 | E.006 | 0.35 | 0.13 | 0.44 | 1.0 | < 0.1 | 1.0 | 18.6 | | | | | 0 | 40869415 L | INCOLN | CREEK AT | 47TH STI | REET AT N | /ILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 20V | V) | | | OCT 2002 | | | | | | | | | | | | | | | 07
NOV | 0.29 | < 0.04 | 0.55 | 0.028 | 0.09 | 0.04 | 0.135 | 0.3 | < 0.1 | 0.3 | 4.9 | < 0.05 | < 0.09 | | 04
DEC | 0.24 | < 0.04 | 0.43 | E.004 | 0.07 | < 0.02 | 0.077 | < 0.1 | < 0.1 | < 0.1 | 2.9 | < 0.05 | < 0.09 | | 03 | 0.55 | 0.23 | 0.70 | 0.028 | 0.19 | 0.05 | 0.21 | 0.5 | < 0.1 | 0.5 | 3.1 | < 0.05 | < 0.09 | | FEB 2003
03 | 2.7 | 1.35 | 3.76 | 0.127 | 0.26 | 0.59 | 0.42 | 12.6 | < 0.1 | 12.6 | 16.3 | < 0.05 | < 0.09 | | MAR
06 | 1.1 | 0.38 | 0.47 | 0.058 | 0.17 | 0.08 | 0.28 | 0.9 | < 0.1 | 0.9 | 7.7 | < 0.05 | < 0.09 | | 19 | E.83 | E.21 | E.84 | E.047 | E.10 | | E.175 | | | | | < 0.05 | < 0.09 | | APR
08 | 0.53 | 0.13 | 0.86 | 0.040 | 0.05 | 0.10 | 0.111 | 1.3 | < 0.1 | 1.3 | 5.1 | < 0.05 | < 0.09 | | 22
MAY | 0.45 | < 0.04 | 0.58 | 0.008 | 0.06 | | 0.113 | | | | | < 0.05 | < 0.09 | | 08 | 0.37 | < 0.04 | 0.94 | < 0.008 | 0.03 | 0.06 | E.072 | 0.4 | < 0.1 | 0.4 | 4.3 | < 0.05 | < 0.09 | | 12
28 | 0.48
0.58 | <0.04
0.07 | 0.95
0.23 | 0.014
0.036 | 0.02
0.19 | | 0.067
0.25 | | | | | <0.05
<0.05 | <0.09
<0.09 | | JUN
02 | 0.47 | 0.05 | 0.48 | 0.021 | 0.19 | 0.06 | 0.25 | 0.5 | <0.1 | 0.5 | 3.8 | < 0.05 | < 0.09 | | 19 | 0.48 | 0.03 | 0.25 | 0.021 | 0.20 | | 0.26 | | | | 3.6
 | < 0.05 | < 0.09 | | JUL
07 | 0.62 | 0.07 | 0.42 | 0.033 | 0.12 | 0.15 | 0.195 | 0.9 | < 0.1 | 0.9 | 6.2 | | | | 21
AUG | 0.43 | < 0.04 | < 0.06 | < 0.008 | 0.33 | | 0.39 | | | | | < 0.05 | < 0.09 | | 07 | 0.39 | < 0.04 | 0.07 | 0.020 | 0.15 | 0.03 | 0.199 | 0.2 | < 0.1 | 0.2 | 7.0 | < 0.05 | < 0.09 | | SEP
02 | 0.46 | < 0.04 | < 0.06 | < 0.008 | 0.32 | 0.03 | 0.37 | 0.2 | <0.1 | 0.2 | 3.6 | < 0.05 | < 0.09 | | Date | 2-(4-t-Butyl-phenoxy)cyclo-hexanol wat flt ug/L (61637) | 2,5-Di-
chloro-
aniline
water,
fltrd,
ug/L
(61614) | 2,6-Diethylaniline water fltrd 0.7u GF ug/L (82660) | 2-[(2-
Et-6-Me
-Ph)-
-amino]
propan-
1-ol,
ug/L
(61615) | 2Amino-
N-iso-
propyl-
benz-
amide,
wat flt
ug/L
(61617) | 2Chloro
-2,6'-'
diethyl
acet-
anilide
wat flt
ug/L
(61618) | CIAT,
water,
fltrd,
ug/L
(04040) | 2-Ethyl
-6-
methyl-
aniline
water,
fltrd,
ug/L
(61620) | 3-(Tri-
fluoro-
methyl)
aniline
water,
fltrd,
ug/L
(61630) | 3,4-Di-
chloro-
aniline
water
fltrd,
ug/L
(61625) | 3,5-Di-
chloro-
aniline
water,
fltrd,
ug/L
(61627) | 3-Phenoxy-
benzyl
alcohol
water,
fltrd,
ug/L
(61629) | 4-
(MeOH)-
pendi-
meth-
alin,
wat flt
ug/L
(61665) | |----------------|---|--|---|--|---|---|--|---|---|---|--|--|---| | | (| 04072050 | DUCK CRI | EEK AT SE | EMINARY | ROAD NE. | AR ONEID | A, WI (LA | T 44 27 57 | 'N LONG (| 088 13 08W |) | | | OCT 2002 | | | < 0.006 | | | | E.021 | | | | | | | | 08
NOV | | | <0.000 | | | | E.021 | | | | | | | | 05
DEC | | | < 0.006 | | | | E.035 | | | | | | | | 04
JAN 2003 | | | < 0.006 | | | | E.033 | | | | | | | | 08 | | | < 0.006 | | | | E.018 | | | | | | | | FEB
05 | | | < 0.006 | | | | E.054 | | | | | | | | MAR
04 | | | < 0.006 | | | | E.043 | | | | | | | | 18 | | | < 0.006 | | | | E.036 | | | | | | | | APR
10 | | | < 0.006 | | | | E.029 | | | | | | | | 23 | | | < 0.006 | | | | E.040 | | | | | | | | MAY
06 | | | < 0.006 | | | | E.026 | | | | | | | | 13 | | | < 0.006 | | | | E.075 | | | | | | | | 29
JUN | | | < 0.006 | | | | E.046 | | | | | | | | 03 | | | < 0.006 | | | | E.063 | | | | | | | | 18
JUL | | | < 0.006 | | | | E.177 | | | | | | | | 08
22 | | | <0.006
<0.006 | | | | E.057
E.063 | | | | | | | | AUG | | | | | | | | | | | | | | | 06
SEP | | | <0.006 | | | | E.146
E.037 | | | | | | | | 03 | | | <0.006 | | | | | | | | | | | | | 04 | 10869415 | LINCOLN | CREEK A' | r 47TH STI | REET AT I | MILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 201 | V) | | | OCT 2002
07 | < 0.01 | < 0.03 | < 0.006 | | < 0.005 | < 0.005 | E.007 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | | | | NOV
04 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.012 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | | | DEC
03 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.012 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | < 0.1 | | FEB 2003
03 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.012 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | < 0.1 | | MAR
06 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | < 0.020 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | < 0.1 | | 19 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.013 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | < 0.1 | | APR
08 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.011 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | | | 22 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.033 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | < 0.1 | | MAY
08 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.038 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | < 0.1 | | 12 | < 0.01 | < 0.03 | < 0.006 | < 0.1 | < 0.005 | < 0.005 | E.027 | < 0.004 | < 0.01 | < 0.004 | < 0.005 | < 0.05 | < 0.1 | | 28
JUN | < 0.01 | < 0.03 | < 0.006 | <0.1 | < 0.005 | < 0.005 | E.018 | < 0.004 | < 0.01 | 0.063 | < 0.005 | < 0.05 | <0.1 | | 02
19 | <0.01
<0.01 | <0.03
<0.03 | <0.006
<0.006 | <0.1
<0.1 | <0.005
<0.005 | <0.005
<0.005 | E.070
E.021 | <0.004
<0.004 | <0.01
<0.01 | 0.084
0.038 | <0.005
<0.005 | <0.05
<0.05 | <0.1
<0.1 | | JUL | | | | \0.1 | | | | | | | | | | | 07
21 | <0.01
<0.01 | <0.03
<0.03 | <0.006
<0.006 | <0.1
<0.1 |
<0.005
<0.005 | <0.005
<0.005 | E.029
E.014 | <0.004
<0.004 | <0.01
<0.01 | $0.018 \\ 0.014$ | <0.005
<0.005 | <0.05 | <0.1 | | AUG | | | | | | | | | | | | | | | 07
SEP | <0.01 | <0.03 | < 0.006 | <0.1 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | <0.01 | 0.009 | < 0.005 | < 0.05 | | | 02 | < 0.01 | < 0.03 | < 0.006 | <0.1 | < 0.005 | < 0.005 | E.013 | < 0.004 | < 0.01 | 0.009 | < 0.005 | | | | Date | 4,4-Di'
chloro-
benzo-
phen-
one,
wat flt
ug/L
(61631) | 4Chloro
2methyl
phenol,
water,
fltrd,
ug/L
(61633) | 4Chloro
phenyl-
methyl
sulfone
water,
fltrd,
ug/L
(61634) | Aceto-
chlor,
water,
fltrd,
ug/L
(49260) | Ala-
chlor,
water,
fltrd,
ug/L
(46342) | alpha-
Endo-
sulfan,
water,
fltrd,
ug/L
(34362) | alpha-
HCH,
water,
fltrd,
ug/L
(34253) | alpha-
HCH-d6,
sur2002
/9002,
wat unf
percent
recovry
(99224) | alpha-
HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | Atra-
zine,
water,
fltrd,
ug/L
(39632) | Azin-
phos-
methyl
oxon,
water,
fltrd,
ug/L
(61635) | Azin-
phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | Ben-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673) | |-----------------------|---|--|--|---|---|---|---|--|---|---|--|--|---| | | | 04072050 I | DUCK CRI | EEK AT SE | EMINARY | ROAD NE. | AR ONEID | OA, WI (LA | AT 44 27 57 | N LONG (| 088 13 08W |) | | | OCT 2002
08
NOV | | | | < 0.006 | < 0.004 | | < 0.005 | | 106 | 0.050 | | < 0.050 | < 0.010 | | 05
DEC | | | | < 0.006 | < 0.004 | | < 0.005 | | 104 | 0.062 | | < 0.050 | < 0.010 | | 04
JAN 2003 | | | | < 0.006 | < 0.004 | | < 0.005 | | 103 | 0.053 | | < 0.050 | < 0.010 | | 08
FEB | | | | < 0.006 | < 0.004 | | < 0.005 | | 98.1 | 0.042 | | < 0.050 | < 0.010 | | 05
MAR | | | | < 0.006 | < 0.004 | | < 0.005 | | 99.1 | 0.041 | | < 0.050 | < 0.010 | | 04 | | | | < 0.006 | < 0.004 | | < 0.005 | | 92.4 | 0.041 | | < 0.050 | < 0.010 | | 18
APR | | | | < 0.006 | < 0.004 | | < 0.005 | | 92.0 | 0.076 | | < 0.050 | < 0.010 | | 10
23 | | | | <0.006
0.008 | <0.004
<0.004 | | <0.005
<0.005 | | 86.2
85.6 | 0.053
0.079 | | <0.050
<0.050 | <0.010
<0.010 | | MAY | | | | | | | | | | | | | | | 06
13 | | | | 0.013
0.127 | E.004
0.239 | | <0.005
<0.005 | | 93.5
108 | 0.070
0.556 | | <0.050
<0.050 | <0.010
<0.010 | | 29 | | | | 0.026 | 0.007 | | < 0.005 | | 86.5 | 0.134 | | < 0.050 | < 0.010 | | JUN
03 | | | | 0.047 | 0.015 | | < 0.005 | | 80.0 | 0.211 | | < 0.050 | < 0.010 | | 18 | | | | 0.208 | 0.007 | | < 0.005 | | 88.6 | 2.19 | | < 0.050 | < 0.010 | | JUL
08
22 | | | | E.005
<0.006 | <0.004
<0.004 | | <0.005
<0.005 | | 99.1
103 | 0.362
0.289 | | <0.050
<0.050 | <0.010
<0.010 | | AUG
06 | | | | 0.016 | < 0.010 | | < 0.005 | | 88.8 | 0.403 | | < 0.050 | < 0.010 | | SEP
03 | | | | < 0.006 | < 0.004 | | < 0.005 | | 106 | 0.123 | | < 0.050 | < 0.010 | | 00 | 0 | 40869415 I | INCOLN | | | REET AT N | | | | | 087 58 20V | | 10.010 | | OCT 2002 | 0 | +0007+13 1 | EnteoErt | CKLLKT | 1 47111.51 | KEET III I | VIIL WATER | EE, WI (E | 711 45 05 4 |)II LOIIG | 007 30 201 | •) | | | 07
NOV | < 0.003 | E.006 | | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 111 | 108 | 0.013 | < 0.02 | < 0.050 | < 0.010 | | 04
DEC | < 0.003 | < 0.006 | < 0.03 | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 93.2 | 102 | 0.012 | < 0.02 | < 0.050 | < 0.010 | | 03
FEB 2003 | < 0.003 | < 0.006 | < 0.03 | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 103 | 102 | 0.015 | < 0.02 | < 0.050 | < 0.010 | | 03
MAR | < 0.003 | < 0.006 | < 0.03 | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 99.1 | 100 | 0.022 | < 0.02 | < 0.050 | < 0.010 | | 06
19 | <0.003
<0.003 | <0.006
<0.006 | <0.03
<0.03 | <0.006
<0.006 | <0.004
<0.004 | <0.005
<0.005 | <0.005
<0.005 | 85.2
91.7 | 95.4
95.3 | 0.017
E.016 | <0.02
<0.02 | <0.050
<0.050 | <0.010
<0.010 | | APR | | | | | | | | | | | | | | | 08
22 | <0.003
<0.003 | <0.006
E.004 | <0.03
<0.03 | <0.006
0.049 | <0.004
0.006 | <0.005
<0.005 | <0.005
<0.005 | 83.5
90.8 | 85.3
85.6 | 0.031
0.121 | <0.02
<0.02 | <0.070
<0.050 | <0.010
<0.010 | | MAY | | | | | | | | | | | | | | | 08
12 | <0.003
<0.003 | <0.006
E.008 | <0.03
<0.03 | 0.050
0.042 | <0.004
<0.004 | <0.005
<0.005 | <0.005
<0.005 | 95.3
98.1 | 95.4
107 | 0.062
0.045 | <0.02
<0.02 | <0.050
<0.050 | <0.010
<0.010 | | 28
JUN | < 0.003 | E.003 | < 0.03 | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 94.7 | 89.2 | 0.025 | < 0.02 | < 0.050 | < 0.010 | | 02 | < 0.003 | E.007 | < 0.03 | 0.051 | 0.008 | < 0.005 | < 0.005 | 93.6 | 108 | 0.297 | < 0.02 | < 0.050 | < 0.010 | | 19
J UL | < 0.003 | < 0.006 | < 0.03 | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 104 | 91.6 | 0.051 | < 0.02 | < 0.050 | < 0.010 | | 07
21 | <0.003
<0.003 | <0.006
<0.006 | <0.03
<0.03 | 0.009
<0.006 | <0.004
<0.004 | <0.005
<0.005 | <0.005
<0.005 | 86.1
83.7 | 95.4
103 | $0.062 \\ 0.022$ | <0.02
<0.03 | <0.050
<0.050 | <0.010
<0.010 | | AUG
07 | < 0.003 | E.007 | < 0.03 | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 89.4 | 96.4 | 0.016 | < 0.02 | < 0.050 | < 0.010 | | SEP
02 | < 0.003 | < 0.006 | < 0.03 | < 0.006 | < 0.004 | < 0.005 | < 0.005 | 90.4 | 81.3 | 0.018 | < 0.02 | < 0.050 | <0.010 | | Date | beta-
Endo-
sulfan,
water,
fltrd,
ug/L
(34357) | Bifen-
thrin,
water,
fltrd,
ug/L
(61580) | Butylate, water, fltrd, ug/L (04028) | Carbaryl, water, fltrd 0.7u GF ug/L (82680) | Carbo-
furan,
water,
fltrd
0.7u GF
ug/L
(82674) | Chlor-
pyrifos
oxon,
water,
fltrd,
ug/L
(61636) | Chlor-
pyrifos
water,
fltrd,
ug/L
(38933) | cis-
Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | cis-
Propi-
cona-
zole,
water,
fltrd,
ug/L
(79846) | Cyana-
zine,
water,
fltrd,
ug/L
(04041) | Cyclo-
ate,
water,
fltrd,
ug/L
(04031) | Cyflu-
thrin,
water,
fltrd,
ug/L
(61585) | lambda-
Cyhalo-
thrin,
water,
fltrd,
ug/L
(61595) | |-----------------------|--|---|--------------------------------------|---|---|---|--|---|---|--|---|---|---| | | , | 04072030 | DUCK CKI | EEK AI SE | MINAKI | KOAD NE. | AK ONEID | A, WI (LA | 11 44 27 37 | N LONG (| 000 13 UOW | , | | | OCT 2002
08
NOV | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | 0.018 | | | | | 05
DEC | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | 04
JAN 2003 | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | E.014 | | | | | 08 | | | 0.004 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | FEB
05
MAR | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | 04
18 | | | <0.010
<0.002 | <0.041
<0.041 | <0.020
<0.020 | | <0.005
<0.005 | <0.006
<0.006 | | E.009
<0.018 | | | | | APR | | | | | | | | 10.000 | | | | | | | 10
23 | | | <0.002
<0.002 | <0.041
<0.041 | <0.020
<0.020 | | <0.005
<0.005 | <0.006
<0.006 | | <0.018
<0.018 | | | | | MAY
06 | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | 13 | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | 29
JUN | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | 03
18 | | | <0.002
<0.002 | <0.041
<0.041 | <0.020
<0.020 | | <0.005
<0.005 | <0.006
<0.006 | | <0.018
<0.018 | | | | | JUL | | | < 0.002 | -0.041 | -0.020 | | -0.005 | -0.006 | | -0.010 | | | | | 08
22
AUG | | | <0.002 | <0.041
<0.041 | <0.020
<0.020 | | <0.005
<0.005 | <0.006
<0.006 | | <0.018
<0.018 | | | | | 06
SEP | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | 03 | | | < 0.002 | < 0.041 | < 0.020 | | < 0.005 | < 0.006 | | < 0.018 | | | | | | O | 40869415 | LINCOLN | CREEK AT | Γ 47TH STI | REET AT N | MILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 201 | V) | | | OCT 2002 | 0.01 | 0.005 | 0.002 | E 000 | 0.020 | 0.06 | 0.005 | 0.006 | 0.000 | 0.010 | 0.005 | 0.000 |
0.000 | | 07
NOV | <0.01 | <0.005 | <0.002 | E.009 | <0.020 | <0.06 | <0.005 | <0.006 | <0.008 | <0.018 | <0.005 | <0.008 | <0.009 | | 04
DEC | < 0.01 | < 0.005 | < 0.002 | < 0.041 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | <0.008 | < 0.018 | < 0.005 | <0.008 | < 0.009 | | 03
FEB 2003 | < 0.01 | < 0.005 | < 0.002 | < 0.041 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | <0.008 | < 0.018 | < 0.005 | <0.008 | < 0.009 | | 03
MAR | < 0.01 | < 0.005 | < 0.002 | < 0.041 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | < 0.008 | < 0.018 | < 0.005 | < 0.008 | < 0.009 | | 06
19 | <0.01
<0.01 | <0.005
<0.005 | <0.002
<0.002 | <0.041
<0.041 | <0.040
<0.020 | <0.06
<0.06 | <0.005
<0.005 | <0.006
<0.006 | <0.008
<0.008 | <0.018
<0.018 | <0.005
<0.005 | <0.008
<0.008 | <0.009
<0.009 | | APR
08 | < 0.01 | < 0.005 | < 0.002 | < 0.041 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | < 0.008 | < 0.018 | < 0.005 | < 0.008 | < 0.009 | | 22
MAY | < 0.01 | < 0.005 | < 0.002 | < 0.041 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | < 0.008 | < 0.018 | < 0.005 | < 0.008 | < 0.009 | | 08 | < 0.01 | < 0.005 | < 0.002 | E.005 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | < 0.008 | < 0.018 | < 0.005 | < 0.008 | < 0.009 | | 12 | < 0.01 | < 0.005 | < 0.002 | < 0.041 | <0.020 | < 0.06 | < 0.005 | < 0.006 | <0.008 | < 0.018 | < 0.005 | <0.008 | <0.009
<0.009 | | 28
JUN | < 0.01 | < 0.005 | < 0.002 | E.005 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | <0.008 | < 0.018 | < 0.005 | <0.008 | <0.009 | | 02
19 | <0.01
<0.01 | <0.005
<0.005 | <0.002
<0.002 | E.016
E.012 | <0.020
<0.020 | <0.06
<0.06 | <0.005
<0.005 | <0.006
<0.006 | <0.008
<0.008 | <0.018
<0.018 | <0.005
<0.005 | <0.008
<0.008 | <0.009
<0.009 | | JUL | | | | | | | | | | | | | | | 07
21 | <0.01
<0.01 | <0.005
<0.005 | <0.002
<0.002 | E.034
E.005 | <0.020
<0.020 | <0.06
<0.06 | <0.005
<0.005 | <0.006
<0.006 | <0.008
<0.008 | <0.018
<0.018 | <0.005
<0.005 | <0.008 | <0.009
<0.009 | | AUG
07
SEP | < 0.01 | < 0.005 | < 0.002 | E.038 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | < 0.008 | < 0.018 | < 0.005 | < 0.008 | < 0.009 | | 02 | < 0.01 | < 0.005 | < 0.002 | < 0.041 | < 0.020 | < 0.06 | < 0.005 | < 0.006 | < 0.008 | < 0.018 | < 0.005 | < 0.008 | < 0.009 | | Date | Cyper-
methrin
water,
fltrd,
ug/L
(61586) | DCPA,
water
fltrd
0.7u GF
ug/L
(82682) | Desulf-
inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | Diazi-
non,
water,
fltrd,
ug/L
(39572) | Diazi-
non-d10
sur2002
/9002,
wat unf
percent
recovry
(99223) | Diazi-
non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | Dicrotophos,
water
fltrd,
ug/L
(38454) | Diel-
drin,
water,
fltrd,
ug/L
(39381) | Dimethoate,
water,
fltrd
0.7u GF
ug/L
(82662) | Disulf-
oton
sulfone
water,
fltrd,
ug/L
(61640) | Disulf-
oton
sulf-
oxide,
water,
fltrd,
ug/L
(61641) | Disul-
foton,
water,
fltrd
0.7u GF
ug/L
(82677) | e-Di-
metho-
morph,
water,
fltrd,
ug/L
(79844) | |------------------|--|---|--|---|--|---|--|---|--|---|---|---|--| | | | 04072050 1 | DUCK CRI | EEK AT SE | MINARY | ROAD NE | AR ONEID | OA, WI (LA | AT 44 27 57 | N LONG | 088 13 08W |) | | | OCT 2002
08 | | < 0.003 | < 0.004 | 0.006 | | 125 | | < 0.005 | | | | < 0.02 | | | NOV
05 | | < 0.003 | < 0.004 | < 0.005 | | 126 | | < 0.005 | | | | <0.02 | | | DEC | | | | | | | | | | | | | | | 04
JAN 2003 | | < 0.003 | < 0.004 | < 0.005 | | 107 | | < 0.005 | | | | < 0.02 | | | 08
FEB | | < 0.003 | < 0.004 | < 0.005 | | 124 | | < 0.005 | | | | < 0.02 | | | 05 | | < 0.003 | < 0.004 | < 0.005 | | 110 | | < 0.005 | | | | < 0.02 | | | MAR
04 | | < 0.003 | < 0.004 | < 0.005 | | 107 | | < 0.005 | | | | < 0.02 | | | 18
APR | | < 0.003 | < 0.004 | < 0.005 | | 129 | | < 0.005 | | | | < 0.02 | | | 10 | | < 0.003 | < 0.004 | < 0.005 | | 120 | | < 0.005 | | | | < 0.02 | | | 23
MAY | | < 0.003 | < 0.004 | < 0.005 | | 105 | | < 0.005 | | | | < 0.02 | | | 06 | | < 0.003 | < 0.004 | < 0.005 | | 114 | | < 0.005 | | | | < 0.02 | | | 13
29 | | <0.003
<0.003 | <0.004
<0.004 | <0.005
<0.005 | | 107
116 | | <0.005
<0.005 | | | | <0.02
<0.02 | | | JUN | | | | | | 00.2 | | | | | | | | | 03
18 | | <0.003
<0.003 | <0.004
<0.004 | <0.005
<0.005 | | 89.2
127 | | <0.005
<0.005 | | | | <0.02
<0.02 | | | JUL
08 | | < 0.003 | < 0.004 | < 0.005 | | 100 | | < 0.005 | | | | < 0.02 | | | 22 | | < 0.003 | < 0.004 | < 0.005 | | 112 | | < 0.005 | | | | < 0.02 | | | AUG
06
SEP | | < 0.003 | < 0.004 | < 0.005 | | 99.1 | | < 0.005 | | | | < 0.02 | | | 03 | | < 0.003 | < 0.004 | < 0.005 | | 130 | | < 0.005 | | | | < 0.02 | | | | 0 | 40869415 | LINCOLN | CREEK AT | T 47TH STI | REET AT N | MILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 20V | V) | | | OCT 2002 | | | | | | | | | | | | | | | 07
NOV | < 0.009 | < 0.003 | < 0.004 | 0.066 | 102 | 126 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 04
DEC | < 0.009 | < 0.003 | < 0.004 | 0.006 | 89.8 | 133 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 03 | < 0.009 | < 0.003 | < 0.004 | E.009 | 112 | 111 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | FEB 2003
03 | < 0.009 | < 0.003 | < 0.004 | < 0.005 | 103 | 113 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | MAR
06 | < 0.009 | < 0.003 | < 0.004 | 0.027 | 105 | 127 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 19 | < 0.009 | < 0.003 | < 0.004 | < 0.005 | 114 | E125 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | APR
08 | < 0.009 | < 0.003 | < 0.004 | < 0.005 | 95.3 | 112 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 22 | < 0.009 | < 0.003 | < 0.004 | 0.007 | 96.3 | 108 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | MAY
08 | < 0.009 | < 0.003 | < 0.004 | 0.014 | 116 | 113 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 12 | < 0.009 | < 0.003 | < 0.004 | 0.013 | 103 | 115 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 28
JUN | < 0.009 | < 0.003 | < 0.004 | 0.009 | 102 | 113 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 02 | < 0.009 | < 0.003 | < 0.004 | 0.024 | 110 | 125 | <0.08 | < 0.005 | <0.006 | <0.02 | <0.002 | <0.02 | <0.02 | | 19
JUL | < 0.009 | < 0.003 | < 0.004 | 0.025 | 98.1 | 138 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 07
21 | <0.009
<0.009 | E.002
<0.003 | <0.004
<0.004 | 0.056
0.010 | 106
87.1 | 104
117 | <0.08
<0.08 | <0.005
<0.005 | <0.006
<0.006 | <0.02
<0.02 | <0.002
<0.002 | <0.02
<0.02 | <0.02
<0.02 | | AUG | | | | | | | | | | | | | | | 07
SEP | < 0.009 | < 0.003 | < 0.004 | 0.027 | 107 | 94.8 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | 02 | < 0.009 | < 0.003 | < 0.004 | E.004 | 90.9 | 121 | < 0.08 | < 0.005 | < 0.006 | < 0.02 | < 0.002 | < 0.02 | < 0.02 | | Date | Endo-
sulfan
ether,
water,
fltrd,
ug/L
(61642) | Endo-
sulfan
sulfate
water,
fltrd,
ug/L
(61590) | EPTC,
water,
fltrd
0.7u GF
ug/L
(82668) | Ethal-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82663) | Ethion
monoxon
water,
fltrd,
ug/L
(61644) | Ethion,
water,
fltrd,
ug/L
(82346) | Etho-
prop,
water,
fltrd
0.7u GF
ug/L
(82672) | Fenamiphos sulfone water, fltrd, ug/L (61645) | Fenamiphos sulfoxide, water, fltrd, ug/L (61646) | Fenamiphos, water, fltrd, ug/L (61591) | Fenthion sulf-oxide, water, fltrd, ug/L (61647) | Fen-
thion,
water,
fltrd,
ug/L
(38801) | Desulf-
inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | |-----------------------|--|---|--|---|--|--|---|---|--|--|---|---|---| | | | 04072050 | DUCK CRI | EEK AT SE | MINARY | ROAD NE. | AR ONEID | A, WI (LA | T 44 27 57 | N LONG (| 088 13 08W |) | | | OCT 2002
08
NOV | | | < 0.002 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | 05 | | | < 0.002 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | DEC
04
JAN 2003 | | | 0.002 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | 08
FEB | |
| 0.003 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | 05
MAR | | | < 0.002 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | 04
18 | | | 0.003
<0.004 | <0.009
<0.009 | | | <0.005
<0.005 | | | | | | <0.009
<0.009 | | APR
10
23 | | | <0.002
<0.002 | <0.009
<0.009 | | | <0.005
<0.005 | | | | | | <0.009
<0.009 | | MAY
06 | | | 0.005 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | 13
29 | | | 0.007
E.002 | <0.009
<0.009 | | | <0.005
<0.005 | | | | | | <0.009
<0.009 | | JUN
03
18 | | | <0.002
<0.002 | <0.009
<0.009 | | | <0.005
<0.005 | |
 | | | | <0.009
<0.009 | | JUL
08 | | | E.002 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | 22
AUG | | | < 0.002 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | 06
SEP | | | < 0.002 | <0.009 | | | < 0.005 | | | | | | < 0.009 | | 03 | | | < 0.002 | < 0.009 | | | < 0.005 | | | | | | < 0.009 | | | O | 40869415 | LINCOLN | CREEK AT | T 47TH STI | REET AT N | MILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 20V | V) | | | OCT 2002
07
NOV | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 04
DEC | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 03
FEB 2003 | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 03
MAR | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | <0.008 | < 0.02 | < 0.009 | | 06
19 | <0.004
<0.004 | <0.006
<0.006 | <0.002
<0.002 | <0.009
<0.009 | <0.03
<0.03 | <0.004
<0.004 | <0.005
<0.005 | <0.008
<0.008 | <0.03
<0.03 | <0.03
<0.03 | <0.008
<0.008 | <0.02
<0.02 | <0.009
<0.009 | | APR | | < 0.006 | <0.002 | <0.009 | | | | | | | | | | | 08
22 | <0.004
<0.004 | < 0.006 | < 0.002 | < 0.009 | <0.03
<0.03 | <0.004
<0.004 | <0.005
<0.005 | <0.008
<0.008 | <0.03
<0.03 | <0.03
<0.03 | <0.008
<0.008 | <0.02
<0.02 | <0.009
<0.009 | | MAY
08 | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 12 | < 0.004 | < 0.006 | < 0.045 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 28
JUN | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 02 | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 19
JUL | < 0.004 | < 0.006 | < 0.002 | <0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | 07
21
AUG | <0.004
<0.004 | <0.006
<0.006 | <0.002
<0.002 | <0.009
<0.009 | <0.03
<0.03 | <0.004
<0.004 | <0.005
<0.005 | <0.008
<0.008 | <0.03
<0.03 | <0.03
<0.03 | <0.008
<0.008 | <0.02
<0.02 | <0.009
<0.009 | | 07
SEP | < 0.004 | < 0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | <0.008 | < 0.02 | < 0.009 | | 02 | < 0.004 | <0.006 | < 0.002 | < 0.009 | < 0.03 | < 0.004 | < 0.005 | < 0.008 | < 0.03 | < 0.03 | < 0.008 | < 0.02 | < 0.009 | | Date | Fipro-
nil
sulfide
water,
fltrd,
ug/L
(62167) | Fipronil sulfone water, fltrd, ug/L (62168) | Fipro-
nil,
water,
fltrd,
ug/L
(62166) | Flume-
tralin,
water,
fltrd,
ug/L
(61592) | Fonofos
oxon,
water,
fltrd,
ug/L
(61649) | Fonofos
water,
fltrd,
ug/L
(04095) | Hexa-
zinone,
water,
fltrd,
ug/L
(04025) | Iprodione, water, fltrd, ug/L (61593) | Isofen-
phos,
water,
fltrd,
ug/L
(61594) | Lindane
water,
fltrd,
ug/L
(39341) | Linuron
water
fltrd
0.7u GF
ug/L
(82666) | Mala-
oxon,
water,
fltrd,
ug/L
(61652) | Mala-
thion,
water,
fltrd,
ug/L
(39532) | |----------------|---|---|---|--|---|--|---|---------------------------------------|---|--|---|---|--| | | | 04072050 | DUCK CR | EEK AT SI | EMINARY | ROAD NE | AR ONEID | A, WI (LA | AT 44 27 57 | 'N LONG (| 088 13 08W | 7) | | | OCT 2002 | | | | | | | | | | | | | | | 08
NOV | < 0.005 | < 0.005 | E.004 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 05
DEC | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 04
JAN 2003 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 08
FEB | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 05
MAR | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 04 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 18
APR | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | | | 10 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 23
MAY | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 06 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 13 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 29
JUN | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 03 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 18 | < 0.005 | < 0.005 | E.003 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | JUL
08 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 22 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | AUG
06 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | SEP
03 | < 0.005 | < 0.005 | < 0.007 | | | < 0.003 | | | | < 0.004 | < 0.035 | | < 0.027 | | 00 | | | | | | | | EE WI (I | | | | | 10.027 | | | (|)40869415 | LINCOLN | CKEEK A | 1 4/111 511 | KEEI AI N | IILWAUK | EE, WI (L | A1 43 03 4 | 9N LUNG | 06/ 36 201 | <i>N</i>) | | | OCT 2002 | -0.005 | -0.005 | -0.007 | -0.004 | -0.002 | -0.002 | -0.012 | .1 | -0.002 | -0.004 | -0.025 | -0.000 | -0.027 | | 07
NOV | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | <0.008 | < 0.027 | | 04
DEC | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 03
FEB 2003 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 03 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | MAR
06 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 19 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | E.020 | < 0.035 | < 0.008 | < 0.027 | | APR | | | | | | | | | | | | | | | 08
22 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | <0.002
<0.002 | < 0.003 | <0.013 | <1 | < 0.003 | <0.010
<0.004 | <0.035
<0.035 | <0.008 | <0.027 | | MAY | < 0.005 | < 0.005 | < 0.007 | < 0.004 | <0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | <0.004 | <0.033 | <0.008 | < 0.027 | | 08 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 12 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 28
JUN | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 02 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 19 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | M | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | JUL
07 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | _1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | < 0.027 | | 21 | < 0.005 | < 0.005 | <0.007 | <0.004 | <0.002 | <0.003 | <0.013 | <1
<1 | < 0.003 | <0.004 | <0.035 | <0.008 | <0.027 | | AUG | | | | | | | | | | | | | | | 07
SEP | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | < 0.008 | 0.034 | | 02 | < 0.005 | < 0.005 | < 0.007 | < 0.004 | < 0.002 | < 0.003 | < 0.013 | <1 | < 0.003 | < 0.004 | < 0.035 | <0.008 | < 0.027 | | Date | Meta-
laxyl,
water,
fltrd,
ug/L
(61596) | Methialthion water, fltrd, ug/L (61598) | c-Permethric acid methyl ester, wat flt ug/L (79842) | Methyl
para-
oxon,
water,
fltrd,
ug/L
(61664) | Methyl
para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667) | t-Permethric acid methyl ester, wat flt ug/L (79843) | Metola-
chlor,
water,
fltrd,
ug/L
(39415) | Metri-
buzin,
water,
fltrd,
ug/L
(82630) | Molinate,
water,
fltrd
0.7u GF
ug/L
(82671) | Myclo-
butanil
water,
fltrd,
ug/L
(61599) | Napropamide, water, fltrd 0.7u GF ug/L
(82684) | O-Et-O-
Me-S-Pr
-phos-
phoro-
thioate
wat flt
ug/L
(61660) | Oxy-
fluor-
fen,
water,
fltrd,
ug/L
(61600) | |----------------|--|---|--|---|--|--|--|---|--|--|--|---|---| | | (| 04072050 1 | DUCK CRE | EEK AT SE | EMINARY | ROAD NE | AR ONEID | A, WI (LA | AT 44 27 57 | 'N LONG (| 088 13 08W |) | | | OCT 2002 | | | | | | | | | | | | | | | 08
NOV | | | | | < 0.006 | | 0.063 | < 0.006 | < 0.002 | | < 0.007 | | | | 05 | | | | | < 0.006 | | 0.076 | < 0.006 | < 0.002 | | < 0.007 | | | | DEC | | | | | -0.006 | | 0.079 | -0.006 | -0.002 | | -0.007 | | | | 04
JAN 2003 | | | | | < 0.006 | | 0.078 | < 0.006 | < 0.002 | | < 0.007 | | | | 08 | | | | | < 0.006 | | 0.068 | < 0.006 | < 0.002 | | < 0.007 | | | | FEB
05 | | | | | < 0.006 | | 0.022 | < 0.006 | < 0.002 | | < 0.007 | | | | MAR | | | | | 0.006 | | 0.021 | 0.006 | | | 0.007 | | | | 04
18 | | | | | <0.006
<0.006 | | 0.031
0.156 | <0.006
<0.006 | <0.002
<0.002 | | <0.007
<0.007 | | | | APR | | | | | | | | | | | | | | | 10
23 | | | | | <0.006
<0.006 | | 0.028
0.046 | <0.006
<0.006 | <0.002
<0.002 | | <0.007
<0.007 | | | | MAY | | | | | <0.000 | | 0.040 | <0.000 | VO.002 | | \0.007 | | | | 06
13 | | | | | <0.006
<0.006 | | 0.129
0.375 | <0.006
<0.006 | <0.002
<0.002 | | < 0.007 | | | | 29 | | | | | <0.006 | | 0.373 | <0.006 | <0.002 | | <0.007
<0.007 | | | | JUN | | | | | -0.006 | | 0.152 | -0.006 | -0.002 | | -0.007 | | | | 03
18 | | | | | <0.006
<0.006 | | 0.152
1.20 | <0.006
0.017 | <0.002
<0.002 | | <0.007
<0.007 | | | | JUL | | | | | | | | | | | | | | | 08
22 | | | | | <0.006
<0.006 | | 0.099
0.088 | <0.006
<0.006 | <0.002
<0.002 | | <0.007
<0.007 | | | | AUG | | | | | | | | | | | | | | | 06
SEP | | | | | < 0.006 | | 0.318 | < 0.006 | < 0.002 | | < 0.007 | | | | 03 | | | | | < 0.006 | | 0.042 | < 0.006 | < 0.002 | | < 0.007 | | | | | 0- | 40869415 1 | LINCOLN | CREEK AT | Γ 47TH STI | REET AT N | /ILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 20V | V) | | | OCT 2002 | | | | | | | | , | | | | | | | 07 | < 0.005 | < 0.006 | < 0.04 | < 0.03 | < 0.006 | < 0.03 | E.006 | < 0.006 | < 0.002 | < 0.008 | < 0.007 | < 0.008 | < 0.007 | | NOV
04 | < 0.005 | < 0.006 | < 0.04 | < 0.03 | < 0.006 | < 0.03 | < 0.013 | < 0.006 | < 0.002 | < 0.008 | < 0.007 | < 0.008 | < 0.007 | | DEC | <0.003 | <0.000 | <0.04 | <0.03 | <0.000 | <0.03 | <0.013 | <0.000 | <0.002 | <0.008 | <0.007 | <0.008 | <0.007 | | 03 | < 0.005 | < 0.006 | < 0.04 | < 0.03 | < 0.006 | < 0.03 | E.001 | < 0.006 | < 0.002 | < 0.008 | < 0.007 | < 0.008 | < 0.007 | | FEB 2003
03 | < 0.005 | < 0.006 | < 0.04 | < 0.03 | < 0.006 | < 0.03 | E.013 | < 0.006 | < 0.002 | < 0.008 | < 0.007 | < 0.008 | < 0.007 | | MAR | | | | | .0.006 | | | | | | | | | | 06
19 | <0.005
<0.005 | <0.006
<0.006 | <0.04
<0.04 | <0.03
<0.03 | <0.006
<0.006 | <0.03
<0.03 | <0.013
<0.013 | <0.006
<0.006 | <0.002
<0.002 | <0.008
<0.008 | <0.007
<0.007 | <0.008
<0.008 | <0.007
<0.007 | | APR | | | | | | | | | | | | | | | 08
22 | <0.005
<0.005 | <0.006
<0.006 | <0.04
<0.04 | <0.03
<0.03 | <0.006
<0.006 | <0.03
<0.03 | E.011
0.053 | <0.006
<0.006 | <0.002
<0.002 | <0.008
<0.008 | <0.007
<0.007 | <0.008
<0.008 | <0.007
<0.007 | | MAY | | | | | | | | | | | | | | | 08
12 | <0.005
<0.005 | <0.006
<0.006 | <0.04
<0.04 | <0.03
<0.03 | <0.006
<0.006 | <0.03
<0.03 | 0.031
0.032 | <0.006
<0.006 | <0.002
<0.002 | <0.008
<0.008 | <0.007
<0.007 | <0.008
<0.008 | <0.007
<0.007 | | 28 | < 0.005 | < 0.006 | < 0.04 | < 0.03 | < 0.006 | < 0.03 | E.013 | < 0.006 | < 0.002 | < 0.008 | < 0.007 | < 0.008 | < 0.007 | | JUN | <0.005 | <0.006 | <0.04 | <0.02 | <0.006 | <0.02 | 0.065 | < 0.006 | <0.002 | <0.000 | <0.007 | <0.000 | <0.007 | | 02
19 | <0.005
<0.005 | <0.006
<0.006 | <0.04
<0.04 | <0.03
<0.03 | <0.006
<0.006 | <0.03
<0.03 | 0.065
E.010 | <0.006 | <0.002
<0.002 | <0.008
<0.008 | <0.007
<0.007 | <0.008
<0.008 | <0.007
<0.007 | | JUL | | | | | | | | -0.006 | | | | | | | 07
21 | <0.005
<0.005 | <0.006
<0.006 | <0.04
<0.04 | <0.03
<0.03 | <0.006
<0.006 | <0.03
<0.03 | E.011
E.003 | <0.006
<0.006 | <0.002
<0.002 | <0.008
<0.008 | <0.007
<0.007 | <0.008
<0.008 | <0.007
<0.007 | | AUG | | | | | | | | | | | | | | | 07
SEP | < 0.005 | < 0.006 | < 0.04 | < 0.03 | < 0.006 | < 0.03 | E.005 | < 0.006 | < 0.002 | <0.008 | < 0.007 | <0.008 | < 0.007 | | 02 | < 0.005 | < 0.006 | < 0.04 | < 0.03 | < 0.006 | < 0.03 | < 0.013 | < 0.006 | < 0.002 | < 0.008 | < 0.007 | < 0.008 | < 0.007 | | Date | p,p-'
DDE,
water,
fltrd,
ug/L
(34653) | Para-
oxon,
water,
fltrd,
ug/L
(61663) | Parathion, water, fltrd, ug/L (39542) | Peb-
ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | Pendimethalin, water, fltrd 0.7u GF ug/L (82683) | Phorate
oxon,
water,
fltrd,
ug/L
(61666) | Phorate
water
fltrd
0.7u GF
ug/L
(82664) | Phosmet
oxon,
water,
fltrd,
ug/L
(61668) | Phosmet
water,
fltrd,
ug/L
(61601) | Phoste-
bupirim
water,
fltrd,
ug/L
(61602) | Profenofos
water,
fltrd,
ug/L
(61603) | Prometon,
water,
fltrd,
ug/L
(04037) | Prometryn,
water,
fltrd,
ug/L
(04036) | |-----------------------|--|---|---------------------------------------|---|--|---|---|---|--|---|---|--|---| | | | 04072050 | DUCK CRI | EEK AT SE | MINARY | ROAD NE. | AR ONEID | A, WI (LA | T 44 27 57 | N LONG 0 | 988 13 08W |) | | | OCT 2002
08 | < 0.003 | | < 0.010 | < 0.004 | < 0.022 | | < 0.011 | | | | | E.01 | | | NOV
05
DEC | < 0.003 | | < 0.010 | < 0.004 | < 0.022 | | < 0.011 | | | | | < 0.01 | | | 04
JAN 2003 | < 0.003 | | < 0.010 | < 0.004 | < 0.022 | | < 0.011 | | | | | E.01 | | | 08
FEB | < 0.003 | | < 0.010 | < 0.004 | < 0.022 | | < 0.011 | | | | | E.01 | | | 05
MAR | < 0.003 | | < 0.010 | < 0.004 | < 0.022 | | < 0.011 | | | | | E.01 | | | 04
18
APR | <0.003
<0.003 | | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | <0.011
<0.011 | | | | | E.01
<0.01 | | | 10
23 | <0.003
<0.003 | | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | <0.011
<0.011 |
 | | | | <0.01
<0.01 | | | MAY
06 | < 0.003 | | <0.010 | < 0.004 | <0.022 | | < 0.011 | | | | | M | | | 13
29
JUN | <0.003
<0.003 | | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | <0.011
<0.011 | | | | | <0.01
E.01 | | | 03
18
JUL | <0.003
<0.003 | | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | <0.011
<0.011 | | | | | <0.01
M | | | 08
22
AUG | <0.003
<0.003 | | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | | <0.011
<0.011 |
 | | | | 0.03
0.01 | | | 06
SEP | < 0.003 | | < 0.010 | < 0.004 | < 0.022 | | < 0.011 | | | | | < 0.01 | | | 03 | <0.003 | | <0.010 | <0.004 | <0.022 |
DEET AT 1 | <0.011 |
EE WI (I |
ATE 42.05.4 |
ON I ONG | | E.01 | | | | O | 40869415 | LINCOLN | CREEK AT | 1 4/TH ST | REETATI | MILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 20V | V) | | | OCT 2002
07
NOV | < 0.003 | <0.008 | < 0.010 | < 0.004 | < 0.022 | < 0.10 | < 0.011 | < 0.06 | < 0.008 | < 0.005 | < 0.006 | 0.02 | < 0.005 | | 04
DEC | < 0.003 | < 0.008 | < 0.010 | < 0.004 | < 0.022 | < 0.10 | < 0.011 | < 0.06 | < 0.008 | < 0.005 | < 0.006 | 0.02 | < 0.005 | | 03
FEB 2003 | < 0.003 | < 0.008 | < 0.010 | < 0.004 | < 0.022 | < 0.10 | < 0.011 | < 0.06 | < 0.008 | < 0.005 | < 0.006 | E.01 | < 0.005 | | 03
MAR | <0.003 | <0.008 | <0.010 | < 0.004 | < 0.022 | <0.10 | < 0.011 | <0.06 | <0.008 | < 0.005 | <0.006 | 0.02 | < 0.005 | | 06
19
APR | <0.003
<0.003 | <0.008
<0.008 | <0.010
<0.010 | <0.004 | <0.022
<0.022 | <0.10
<0.10 | <0.011
<0.011 | <0.06
<0.06 | <0.008
<0.008 | <0.005
<0.005 | <0.006
<0.006 | E.01
E.03 | <0.005
<0.005 | | 08
22
MAY | <0.003
<0.003 | <0.008
<0.008 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | <0.10
<0.10 | <0.011
<0.011 | <0.06
<0.06 | <0.008
<0.008 | <0.005
<0.005 | <0.006
<0.006 | 0.02
0.02 | <0.005
<0.005 | | 08 | < 0.003 | < 0.008 | < 0.010 | < 0.004 | 0.029 | < 0.10 | < 0.011 | < 0.06 | < 0.008 | < 0.005 | < 0.006 | 0.02 | < 0.005 | | 12
28 | <0.003
<0.003 | <0.008
<0.008 | <0.010
<0.010 | <0.004
<0.004 | 0.028
<0.022 |
<0.10
<0.10 | <0.011
<0.011 | <0.06
<0.06 | <0.008
<0.008 | <0.005
<0.005 | <0.006
<0.006 | 0.02
0.03 | <0.005
<0.005 | | JUN
02 | <0.003 | <0.008 | <0.010 | <0.004 | E.013 | <0.10 | <0.011 | <0.06 | <0.008 | <0.005 | <0.006 | 0.03 | <0.005 | | 19
JUL | <0.003 | <0.008 | <0.010 | < 0.004 | < 0.022 | <0.10 | < 0.011 | <0.06 | <0.008 | < 0.005 | <0.006 | 0.02 | < 0.005 | | 07 | < 0.003 | <0.008 | < 0.010 | < 0.004 | < 0.022 | < 0.10 | < 0.011 | < 0.06 | <0.008 | < 0.005 | < 0.006 | 0.02 | < 0.005 | | 21
AUG
07 | <0.003
<0.003 | <0.008 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | <0.10 | <0.011
<0.011 | <0.06
<0.06 | <0.008 | <0.005
<0.005 | <0.006 | 0.02
0.07 | <0.005
<0.005 | | SEP
02 | <0.003 | <0.008 | <0.010 | <0.004 | <0.022 | <0.10 | <0.011 | <0.06 | <0.008 | < 0.005 | <0.006 | E.01 | <0.005 | | | Pron- | Door | Pro- | Propar- | | Sim- | | | Tebu-
pirim- | Tebu- | Teflu-
thrin | Teflu-
thrin | T.A | |----------------|------------------|------------------|------------------|-----------------|--------------------|------------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------| | | amide,
water, | Propa-
chlor, | panil,
water, | gite,
water, | Propet-
amphos, | Sima-
zine, | Sulfo-
tepp, | Sulpro-
fos, | phos
oxon, | thiuron
water | metab-
olite | metab-
olite | Teflu-
thrin, | | | fltrd | water, | fltrd | fltrd | water, | water, | water, | water, | water, | fltrd | R119365 | R152913 | water, | | Date | 0.7u GF
ug/L | fltrd,
ug/L | 0.7u GF
ug/L | 0.7u GF
ug/L | fltrd,
ug/L | fltrd,
ug/L | fltrd,
ug/L | fltrd,
ug/L | fltrd,
ug/L | 0.7u GF
ug/L | wat flt
ug/L | wat flt
ug/L | fltrd,
ug/L | | Date | (82676) | (04024) | (82679) | (82685) | (61604) | (04035) | (61605) | (38716) | (61669) | (82670) | (61671) | (61672) | (61606) | | | (| 04072050 1 | DUCK CRE | EEK AT SE | MINARY | ROAD NE | AR ONEID | A. WI (LA | T 44 27 57 | N LONG (|)88 13 08W |) | | | OCT 2002 | | | | | | | | , (| | | | , | | | 08 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | 0.012 | | | | < 0.02 | | | | | NOV
05 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | < 0.005 | | | | < 0.02 | | | | | DEC | <0.004 | <0.010 | <0.011 | <0.02 | | <0.003 | | | | <0.02 | | | | | 04
JAN 2003 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | 0.006 | | | | < 0.02 | | | | | 08 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | 0.006 | | | | < 0.02 | | | | | FEB
05 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | < 0.005 | | | | < 0.02 | | | | | MAR | | | <0.011 | | | | | | | | | | | | 04 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | E.005 | | | | E.01 | | | | | 18
APR | < 0.010 | < 0.010 | < 0.011 | < 0.02 | | 0.155 | | | | < 0.02 | | | | | 10 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | 0.024 | | | | < 0.02 | | | | | 23
MAY | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | 0.075 | | | | < 0.02 | | | | | 06 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | 0.017 | | | | < 0.02 | | | | | 13
29 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | | $0.044 \\ 0.022$ | | | | <0.02
<0.02 | | | | | JUN | | | | | | | | | | | | | | | 03
18 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | | 0.023
0.020 | | | | <0.02
<0.02 | | | | | JUL | | | | | | | | | | | | | | | 08
22 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | | 0.009
0.084 | | | | <0.02
<0.02 | | | | | AUG | | | | | | | | | | | | | | | 06
SEP | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | < 0.005 | | | | < 0.02 | | | | | 03 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | | 0.006 | | | | < 0.02 | | | | | | 04 | 40869415 | LINCOLN | CREEK AT | 47TH ST | REET AT N | ИILWAUK | EE, WI (L | AT 43 05 4 | 9N LONG | 087 58 20V | V) | | | OCT 2002 | | | | | | | | | | | | | | | 07 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.012 | < 0.003 | < 0.02 | < 0.006 | 0.03 | < 0.02 | < 0.01 | < 0.008 | | NOV
04 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.005 | < 0.003 | < 0.02 | < 0.006 | 0.06 | < 0.02 | < 0.01 | < 0.008 | | DEC | | | | | | | | | | | | | | | 03
FEB 2003 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.005 | < 0.003 | < 0.02 | < 0.006 | 0.06 | < 0.02 | < 0.01 | < 0.008 | | 03 | < 0.030 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.005 | < 0.003 | < 0.02 | < 0.006 | < 0.02 | < 0.02 | < 0.01 | < 0.008 | | MAR
06 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.010 | < 0.003 | < 0.02 | < 0.006 | < 0.07 | < 0.02 | < 0.01 | < 0.008 | | 19 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.005 | < 0.003 | < 0.02 | < 0.006 | < 0.02 | < 0.02 | < 0.01 | < 0.008 | | APR
08 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.010 | < 0.003 | < 0.02 | < 0.006 | < 0.02 | | | < 0.008 | | 22 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.010 | < 0.003 | < 0.02 | < 0.006 | 0.04 | | | < 0.008 | | MAY | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.010 | < 0.003 | < 0.02 | < 0.006 | E.04 | | | < 0.008 | | 08
12 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.010 | < 0.003 | < 0.02 | < 0.006 | 0.04 | | | < 0.008 | | 28 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.049 | < 0.003 | < 0.02 | < 0.006 | E.08 | | | < 0.008 | | JUN
02 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.122 | < 0.003 | < 0.02 | < 0.006 | < 0.02 | | | < 0.008 | | 19 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.012 | < 0.003 | < 0.02 | < 0.006 | 0.03 | | | < 0.008 | | JUL
07 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | 0.019 | < 0.003 | < 0.02 | < 0.006 | E.01 | | | < 0.008 | | 21 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.005 | < 0.003 | < 0.02 | < 0.006 | 0.04 | | | < 0.008 | | AUG
07 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.005 | < 0.003 | < 0.02 | < 0.006 | < 0.03 | | | < 0.008 | | SEP | | | | | | | | | | | | | | | 02 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.004 | < 0.005 | < 0.003 | < 0.02 | < 0.006 | 0.02 | | | < 0.008 | | Date | Teme-
phos,
water,
fltrd,
ug/L
(61607) | Terbacil, water, fltrd 0.7u GF ug/L (82665) | Ter-
bufos
oxon
sulfone
water,
fltrd,
ug/L
(61674) | Terbu-
fos,
water,
fltrd
0.7u GF
ug/L
(82675) | Ter-
buthyl-
azine,
water,
fltrd,
ug/L
(04022) | Thio-
bencarb
water
fltrd
0.7u GF
ug/L
(82681) | trans-
Propi-
cona-
zole,
water,
fltrd,
ug/L
(79847) | Tri-
allate,
water,
fltrd
0.7u GF
ug/L
(82678) | Tribu-
phos,
water,
fltrd,
ug/L
(61610) | Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661) | z-Di-
metho-
morph,
water,
fltrd,
ug/L
(79845) | Di-
chlor-
vos,
water
fltrd,
ug/L
(38775) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |-----------------------|---|---|---|---|--|--|---|--|--|--|--|---|--| | | | 04072050 | DUCK CRI | EEK AT SE | MINARY | ROAD NE | AR ONEID | A, WI (LA | AT 44 27 57 | N LONG | 088 13 08W | ") | | | OCT 2002
08
NOV | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | <0.009 | | | 2 | | 05 | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | 105 | | DEC
04
JAN 2003 | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | 134 | | 08
FEB | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | | | 05
MAR | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | 22 | | 04
18 | | <0.034
<0.034 | | <0.02
<0.02 | | <0.005
<0.005 | | <0.002
<0.002 | | <0.009
<0.009 | | | 74
27 | | APR | | | | | | | | | | | | | | | 10
23
MAY | | <0.034
<0.034 | | <0.02
<0.02 | | <0.005
<0.005 | | <0.002
<0.002 | | <0.009
<0.009 | | | 60
5 | | 06 | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | 20 | | 13
29 | | <0.034
<0.034 | | <0.02
<0.02 | | <0.005
<0.005 | | <0.002
<0.002 | | <0.009
<0.009 | | | 12
6 | | JUN
03 | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | 100 | | 18 | | < 0.034 | | < 0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | 140 | | JUL
08
22 | | <0.034
<0.034 | | <0.02
<0.02 |
 | <0.005
<0.005 |
 | <0.002
<0.002 |
 | <0.009
<0.009 |
 |
 | 100
52 | | AUG
06 | | < 0.034 | | <0.02 | | < 0.005 | | < 0.002 | | < 0.009 | | | 70 | | SEP
03 | | <0.034 | | <0.02 | | < 0.005 | | <0.002 | | <0.009 | | | 88 | | 03 | | 40869415 | | | | | | | | | 087 58 201 | | 88 | | OCT 2002 | C | 140009413 | LINCOLN | CKEEK A | 4/111311 | KEEI AI N | IILWAUK | EE, WI (L | A1 43 03 4 | 19IN LOING | 067 36 201 | (V) | | | OCT 2002
07
NOV | < 0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 1 | | 04
DEC | < 0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 14 | | 03
FEB 2003 | < 0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 2 | | 03
MAR | < 0.3 | < 0.034
| < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 93 | | 06
19 | <0.3
<0.3 | <0.034
<0.034 | <0.07
<0.07 | <0.02
<0.02 | <0.01
<0.01 | <0.005
<0.005 | <0.01
<0.01 | <0.002
<0.002 | <0.004
<0.004 | <0.009
<0.009 | <0.05
<0.05 | <0.01
<0.01 | 6
8 | | APR
08 | < 0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 5 | | 22
MAY | < 0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 5 | | 08 | < 0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | E.002 | < 0.05 | < 0.01 | 3 | | 12
28 | <0.3
<0.3 | <0.034
<0.034 | <0.07
<0.07 | <0.02
<0.02 | <0.01
<0.01 | <0.005
<0.005 | <0.01
<0.01 | <0.002
<0.002 | <0.004
<0.004 | E.002
<0.009 | <0.05
<0.05 | <0.01
<0.01 | 4
22 | | JUN
02
19 | <0.3
<0.3 | <0.034
<0.034 | <0.07
<0.07 | <0.02
<0.02 | <0.01
<0.01 | <0.005 | <0.01 | <0.002
<0.002 | <0.004
<0.004 | <0.009
<0.009 | <0.05
<0.05 | <0.01 | 170 | | JUL | | | | | | <0.005 | <0.01 | | | | | <0.01 | 157 | | 07
21
AUG | <0.3
<0.3 | <0.034
<0.034 | <0.07
<0.07 | <0.02
<0.02 | <0.01
<0.01 | <0.005
<0.005 | <0.01
<0.01 | <0.002
<0.002 | <0.004
<0.004 | <0.009
<0.009 | <0.05
<0.05 | <0.01
<0.01 | 53
105 | | 07 | < 0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 58 | | SEP
02 | <0.3 | < 0.034 | < 0.07 | < 0.02 | < 0.01 | < 0.005 | < 0.01 | < 0.002 | < 0.004 | < 0.009 | < 0.05 | < 0.01 | 63 | | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnesium,
water,
fltrd,
mg/L
(00925) | Potassium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | |-----------------------------|--------------|--------------------------------------|-------------------------------|---|--|---|--|---|--|---|---|--|---| | | | | 0400030 | JU FIKE K | IVENALE | AMBERO, | WI (LAI 4 | 13 30 00N L | LONG 000 | 00 00 W) | | | | | APR 2003
10
15
MAY | 0930
0940 | 226
497 | 70
40 | 747
730 | 12.1
10.8 | 8.1
7.8 | 202
128 | 2.5
7.0 | 23.9
13.3 | 11.0
6.21 | 1.42
1.36 | 1.97
1.44 | 100
57 | | 08
13
JUN | 0915
1000 | 388
635 | 70
40 | 741
738 | 10.7
11.3 | 7.6
7.4 | 156
121 | 8.5
7.0 | 17.3
13.9 | 8.09
6.23 | 1.10
0.99 | 1.82
1.75 | 79
54 | | 05
12
JUL | 0840
1115 | 192
492 | 70
40 | 737
738 | 11.6
9.8 | 7.4
7.5 | 225
145 | 14.0
15.0 | 27.1
16.4 | 12.2
7.59 | 1.20
0.70 | 2.27
2.42 | 108
66 | | 02
AUG | 0900 | 123 | 70 | 735 | 8.4 | 8.1 | 252 | 17.5 | 30.2 | 13.6 | 1.30 | 2.31 | 125 | | 04
27
SEP | 0930
0850 | 280
98 | 70
70 | 737
742 | 8.6
9.6 | 7.8
7.8 | 203
262 | 17.0
18.0 | 23.6
32.5 | 11.0
14.4 | 1.09
1.41 | 1.95
2.50 | 97
127 | | 15 | 0945 | 233 | 70 | 739 | 8.8 | 8.1 | 222 | 14.5 | 26.3 | 12.6 | 1.39 | 2.08 | 107 | | | 04075 | 5365 EVER | GREEN RI | VER BLW | EVERGR | EEN FALL | S NR LAN | GLADE,W | I (LAT 45 | 03 57N LC | NG 088 40 |) 34W) | | | APR 2003 | | | | | | | | | | | | | | | 10
17
MAY | 0945
1210 | 60
211 | 70
40 | 739
735 | 13.6
15.4 | 7.7
7.2 | 293
144 | 2.6
0.9 | 34.0
16.1 | 16.3
8.25 | 1.62
1.73 | 2.04
1.31 |
66 | | 06 | 1100 | 155 | 70 | 731 | 13.0 | 7.5 | 200 | 5.4 | 23.0 | 11.4 | 1.32 | 1.75 | 113 | | 13
21 | 0830
1015 | 113
83 | 70
70 | 734
739 | 12.4
12.4 | 7.6
7.9 | 222
274 | 6.7
8.3 | 26.9
34.1 | 12.8
16.4 | 1.20
1.40 | 1.80
2.07 | 108
140 | | JUN
04 | 1000 | 71 | 70 | 738 | 10.9 | 8.2 | 312 | 12.3 | 36.8 | 18.0 | 1.33 | 2.26 | 159 | | JUL
08 | 0805 | 61 | 70 | 735 | 10.2 | 7.8 | 331 | 15.9 | 41.3 | 19.8 | 1.45 | 2.38 | 166 | | AUG
06 | 0820 | 64 | 70 | 734 | 10.0 | 7.7 | 322 | 16.2 | 35.8 | 18.0 | 1.40 | 2.35 | 159 | | 26 | 1015 | 61 | 70 | 735 | 10.6 | 7.9 | 323 | 17.5 | 37.9 | 18.8 | 1.41 | 2.20 | 164 | | | | 040 | 87204 OA | K CREEK | AT SOUTH | I MILWAU | JKEE, WI | (LAT 42 55 | 5 30N LON | G 087 52 1 | 2W) | | | | NOV 2002 | | | | | | | | | | | | | | | 04 | 1000 | 2.1 | | | | | | | | | | | | | 07 | 1015 | 2.7 | | | | | | | | | | | | | 13
APR 2003 | 1000 | 3.3 | | | | | | | | | | | | | 09
MAY | 1010 | 15 | 70 | 738 | 13.1 | 7.8 | M | 0.8 | 112 | 41.4 | 9.03 | 1,020 | | | 01 | 1115 | 137 | 40 | 740 | 9.8 | 7.6 | 978 | 9.0 | 34.6 | 13.1 | 4.14 | 129 | 88 | | 05 | 1010 | 154 | 70 | 729 | 10.1 | 7.5 | 889 | 8.8 | 38.1 | 15.0 | 3.93 | 105 | 107 | | 09
20 | 1055
1000 | 265
24 | 40
70 | 744
740 | 9.9
9.3 | 7.5
7.7 | 750
1,510 | 10.3
15.0 | 42.2
82.0 | 17.3
36.2 | 4.79
4.64 | 78.8
173 | 144
223 | | JUN | 1000 | ∠ → | 70 | 7+0 | 1.3 | 1.1 | 1,510 | 13.0 | 02.0 | 30.2 | 7.04 | 113 | 443 | | 03
JUL | 1000 | 8.1 | 70 | 742 | 9.8 | 7.5 | 1,570 | 12.3 | 85.7 | 36.9 | 4.73 | 148 | 255 | | 09
AUG | 1000 | 21 | 70 | 739 | 6.5 | 7.2 | 729 | 19.6 | 41.5 | 15.7 | 3.61 | 86.5 | 125 | | 05
25 | 1000
1005 | 5.3
0.54 | 70
70 | 743
748 | 6.7
7.3 | 7.2
7.4 | 854
1,480 | 19.2
21.7 | 48.5
100 | 19.2
43.5 | 4.05
3.84 | 89.7
129 | 141
260 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Chloride,
water,
fltrd,
mg/L
(00940) | Sulfate
water,
fltrd,
mg/L
(00945) | Ammonia
+
org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, fltrd, mg/L (00666) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01119) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01114) | Zinc,
water,
fltrd,
ug/L
(01090) | |-----------------------------|--|--|---|--|---|--|--|--|--|--|--|--|--| | | | | 040665 | 00 PIKE RI | VER AT A | MBERG, | WI (LAT 4 | 5 30 00N L | ONG 088 (| 00 00W) | | | | | APR 2003
10
15
MAY | 2.39
1.58 | 8.0
5.1 | 0.28
0.54 | 0.05
0.08 | 0.17
0.11 | <0.02
<0.02 | <0.04
E.02 |
 |
 | 132
225 |
 |
 |
 | | 08
13 | 2.62
2.19 | 6.8
5.3 | 0.43
0.62 | <0.04
<0.04 | 0.12
0.13 | <0.02
<0.02 | E.02
<0.04 | | | 144
165 | | | | | JUN
05
12
JUL | 2.80
2.10 | 7.3
4.7 | 0.33
0.59 | <0.04
<0.04 | E.06
E.06 | <0.02 | <0.04
<0.04 |
 |
 | 159
207 |
 |
 |
 | | 02 | 3.15 | 8.1 | 0.23 | < 0.04 | 0.07 | < 0.02 | < 0.04 | | | 124 | | | | | AUG
04
27
SEP | 2.24
3.64 | 7.4
7.7 | 0.41
0.24 | <0.04
<0.04 | 0.08
E.05 | <0.02
<0.02 | <0.04
<0.04 |
 |
 | 166
95 |
 |
 |
 | | 15 | 2.94 | 8.4 | 0.31 | < 0.04 | 0.07 | < 0.18 | < 0.04 | | | 83 | | | | | | 04075 | 365 EVER | GREEN R | IVER BLW | EVERGRI | EEN FALL | S NR LAN | GLADE,W | I (LAT 45 | 03 57N LC | NG 088 40 | 34W) | | | APR 2003
10
17
MAY | 2.33 |
5.6 | 0.18
0.57 | E.03
0.10 | 0.98
0.45 | E.01
<0.02 | E.03
E.02 |
 |
 | 18
108 |
 |
 |
 | | 06
13
21 | 2.75
3.19
3.27 | 7.1
7.3
8.0 | 0.49
0.37
0.25 | E.02
<0.04
<0.04 | 0.60
0.47
0.59 | <0.02
<0.02
<0.02 | E.02
<0.04
<0.04 |

 |

 | 87
71
34 |

 |

 |

 | | JUN
04 | 3.74 | 8.3 | 0.14 | < 0.04 | 0.51 | < 0.02 | < 0.04 | | | 18 | | | | | JUL
08
AUG | 3.69 | 8.5 | 0.15 | < 0.04 | 0.73 | E.01 | E.03 | | | 18 | | | | | 06
26 | 3.57
3.52 | 8.2
7.8 | 0.17
0.14 | <0.04
<0.04 | 0.65
0.66 | E.01
E.01 | E.02
<0.04 | | | 24
18 | | |
 | | | | 040 | 87204 OA | K CREEK A | T SOUTH | MILWAU | KEE, WI | (LAT 42 55 | 30N LON | G 087 52 1 | 2W) | | | | NOV 2002
04
07 | |
 | |
 | | |
 |
M
M | 1 2 | | <1
M | <1
<1 | <20
<20 | | 13
APR 2003 | | | | | | | | M | 2 | | <1 | <1 | <20 | | 09
MAY | | | 0.76 | 0.15 | 0.96 | <0.02 | <0.04 | | | 55 | | | | | 01
05
09 | 220
187
130 | 29.5
34.9
35.7 | 0.63
0.71
0.73 | 0.19
0.12
0.14 | 0.77
0.76
1.29 | <0.02
E.02
0.03 | E.03
0.04
0.05 |
 |
 | 33
38
32 |
 |
 |

 | | 20
JUN | 301 | 77.9 | 0.53 | E.02 | 0.71 | < 0.02 | < 0.04 | | | 57 | | | | | 03
JUL | 272 | 81.0 | 0.63 | 0.04 | 0.46 | < 0.02 | < 0.04 | | | 71 | | | | | 09
AUG | 129 | 30.4 | 0.68 | 0.14 | 0.56 | 0.04 | 0.07 | | | 74 | | | | | 05
25 | 149
239 | 46.3
120 | 0.50
0.34 | 0.08
E.04 | 0.38
0.27 | 0.03
E.02 | 0.05
E.02 | | | 34
27 | | | | | Date | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01094) | 1-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(81696) | 2-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(30194) | 9H-
Fluor-
ene,
water,
unfltrd
ug/L
(34381) | Ace-
naphth-
ene,
water,
unfltrd
ug/L
(34205) | Ace-
naphth-
ylene,
water,
unftrd
ug/L
(34200) | Anthracene,
water,
unftrd
ug/L
(34220) | Benzo-
[a]-
anthra-
cene,
water,
unfltrd
ug/L
(34526) | Benzo-
[a]-
pyrene,
water,
unfltrd
ug/L
(34247) | Benzo-
[b]-
fluor-
anthene
water
unfltrd
ug/L
(34230) | Benzo-
[g,h,i]
-per-
ylene,
water,
unfltrd
ug/L
(34521) | Benzo-
[k]-
fluor-
anthene
water
unfltrd
ug/L
(34242) | Chrysene,
water,
unftrd
ug/L
(34320) | |-----------|--|--|--|---|---|--|--|--|---|--|--|--|--| | | | | 0406650 | 00 PIKE R | IVER AT A | AMBERG, | WI (LAT | 45 30 00N I | LONG 088 | 00 00W) | | | | | APR 2003 | | | | | | | | | | | | | | | 10
15 | | | | | | | | | | | | | | | MAY | | | | | | | | | | | | | | | 08
13 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 05
12 | | | | | | | | | | | | | | | JUL | | | | | | | | | | | | | | | 02
AUG | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | 27
SEP | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | | 04075 | 365 EVER | GREEN RI | VER BLW | EVERGR | EEN FALL | S NR LAN | IGLADE,W | /I (LAT 45 | 03 57N LC | ONG 088 40 |) 34W) | | | APR 2003 | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 17
MAY | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | 13
21 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 04
JUL | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | AUG
06 | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | | | | 040 | 87204 OA | K CREEK | AT SOUTI | H MILWAU | JKEE, WI | (LAT 42 5 | 5 30N LON | G 087 52 1 | 2W) | | | | NOV 2002 | | | | | | | , | | | | | | | | 04 | <20 | < 0.046 | < 0.034 | < 0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | < 0.11 | < 0.078 | < 0.070 | < 0.027 | | 07
13 | <20
<20 | <0.046
<0.046 | <0.034
<0.034 | <0.20
<0.20 | <0.060
<0.060 | <0.072
<0.072 | <0.021
<0.021 | <0.062
<0.062 | <0.070
<0.070 | <0.11
<0.11 | <0.078
<0.078 | <0.070
<0.070 | <0.027
<0.027 | | APR 2003 | \20 | <0.040 | <0.034 | ₹0.20 | <0.000 | <0.072 | <0.021 | <0.002 | <0.070 | <0.11 | <0.076 | <0.070 | <0.027 | | 09
MAY | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | 09
20 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 03
JUL | | | | | | | | | | | | | | | 09
AUG | | | | | | | | | | | | | | | 05
25 | | | | | | | | | | | | | | | 43 | | | | | | | | | | | | | | | Date | Dibenzo-
[a,h]-
anthracene,
wat unf
ug/L
(34556) | Fluoranthene
water
unfltrd
ug/L
(34376) | Indeno[1,2,-
3-cd]-
pyrene,
water,
unfltrd
ug/L
(34403) | Phenan-
threne,
water,
unfltrd
ug/L
(34461) | Pyrene,
water,
unfltrd
ug/L
(34469) | Naphthalene,
water,
unfltrd
ug/L
(34696) | Suspnd.
sediment,
sieve
diametr
percent
<.063mm
(70331) | Suspended
sediment
concen-
tration
mg/L
(80154) | |----------------|---|---|---|--|---|--|---|--| | | 04066 | 500 PIKE RIVE | R AT AMB | ERG, WI (L | AT 45 30 001 | N LONG 088 (| 00 00W) | | | APR 2003
10 | | | | | | | 82 | 40 | | 15 | | | | | | | 82
80 | 38 | | MAY
08 | | | | | | | 78 | 34 | | 13 | | | | | | | 77 | 29 | | JUN
05 | | | | | | | | 31 | | 12 | | | | | | | | 44 | | JUL
02 | | | | | | | | 40 | | AUG | | | | | | | | 40 | | 04
27 | | | | | | | | 50
41 | | SEP SEP | | | | | | | | | | 15 | | | | | | | | 30 | | 04075365 H | EVERGREEN | RIVER BLW EV | ERGREEN | FALLS NR | LANGLADE | ,WI (LAT 45 | 03 57N LONG | 088 40 34W) | | APR 2003 | | | | | | | | | | 10
17 | | | | | | | | 24
15 | | MAY | | | | | | | | | | 06
13 | | | | | | | | 18
8 | | 21 | | | | | | | | 5 | | JUN
04 | | | | | | | | 29 | | JUL | | | | | | | | 29 | | 08
AUG | | | | | | | | 43 | | 06 | | | | | | | | 29 | | 26 | | | | | | | | 37 | | | 04087204 O | AK CREEK AT | SOUTH MII | LWAUKEE, | WI (LAT 42 | 2 55 30N LON | G 087 52 12W |) | | NOV 2002 | | | | | | | | | | 04
07 | <0.038
<0.038 | <0.080
<0.080 | <0.12
<0.12 | <0.040
<0.040 | <0.070
<0.070 | <0.038
<0.038 | | 3 3 | | 13 | < 0.038 | < 0.080 | <0.12 | < 0.040 | < 0.070 | < 0.038 | | 3 | | APR 2003
09 | | | | | | | | 7 | | MAY | | | | | | | | / | | 01 | | | | | | | | 230 | | 05
09 | |
 | | | | | | 117
320 | | 20 | | | | | | | | 11 | | JUN
03 | | | | | | | | 191 | | JUL | | | | | | | | | | 09
AUG | | | | | | | | 78 | | 05 | | | | | | | | 97 | | 25 | | | | | | | | 177 | | | | | WAILK-(| QUALITT. | DAIA, W | TEK TEA | K OCTOB | EK 2002 IV | | | | 3.71. 1. | | |-----------------|--------------|--------------------------------------|--|---|--------------------------------|--|---|-----------------------------------|---|--|--|---|--| | | | | | | | pH, | Specif. | | Ammonia
+ | Ammonia
+ | | Nitrite
+ | | | Date | Time | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dissolved oxygen, mg/L (00300) | water,
unfltrd
field,
std
units
(00400) | conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | org-N,
water,
fltrd,
mg/L
as N
(00623) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | | | | (|)4072185 T | TROUT CR | EEK NEA | R HOWAR | D, WI (LA | T 44 32 10 | N LONG 0 | 88 07 48W | 7) | | | | OCT 2002 | 1270 | | 0.040 | | | | 025 | | 0.00 | 0.44 | 0.04 | 4.00 | 0.010 | | 17
NOV | 1250 | 1.0 | 8,010 | 745 | 14.2 | 8.2 | 837 | 6.0 | 0.38 | 0.41 | < 0.04 | 1.03 | 0.010 | | 11
DEC | 1140 | E1.0 | 70 | 748 | 7.2 | 7.3 | 639 | 4.3 | 0.28 | 0.45 | < 0.04 | 1.15 | 0.009 | | 04
JAN 2003 | 1345 | 0.76 | 70 | 751 | 18.0 | | | | 0.35 | 0.40 | < 0.04 | 3.38 | 0.008 | | 21
FEB | 1140 | E.50 | 70 | 752 | 12.3 | 7.3 | 1,610 | 0.0 | 1.1 | 1.5 | 0.44 | 5.34 | 0.505 | | 18
MAR | 1430 | 1.0 | 70 | 741 | 13.7 | | | -0.3 | 0.56 | 0.62 | 0.12 | 4.62 | 0.070 | | 19
26 | 1325
1220 | 6.2
E11 | 10
70 | 741
745 | 12.2
14.7 | 7.8
7.5 | 441
861 | 0.0
0.2 | 2.0
1.4 | 2.2
1.5 | 0.87
0.49 | 1.97
3.57 | 0.071
0.117 | | APR
21 | 1145 | 19 | 10 | 737 | 10.8 | 8.0 | 740 | 9.1 | 1.2 | 1.6 | 0.04 | 5.52 | 0.077 | | MAY
20 | 1500 | 4.3 | 10 | 752 | 12.8 | 8.7 | 650 | 19.4 | 1.1 | 1.2 | < 0.04 | 0.23 | 0.014 | | JUN
09 | 1150 | 5.2 | 10 | 739 | 9.8 | 8.1 | 805 | 14.2 | 0.82 | 0.85 | < 0.04 | 0.91 | 0.057 | | JUL
17
31 | 1000
1300 | 0.77
18 | 70
10 | 747
741 | 7.9
8.9 | 8.3
7.5 | 794
493 | 20.4
18.9 | 0.51
0.61 | 0.65
1.6 | <0.04
<0.04 | 0.74
0.95 | 0.011
0.014 | | AUG
11 | 1305 |
3.9 | 10 | 746 | 8.6 | 7.8 | 784 | 19.3 | 0.70 | 0.79 | < 0.04 | 1.15 | E.004 | | SEP
11 | 1040 | 0.19 | 70 | 754 | 8.7 | 8.0 | | 19.0 | 0.42 | 0.55 | < 0.04 | 0.64 | E.004 | | | 0407 | 72233 LAN | CASTER B | ROOK AT | SHAWAN | IO AVENU | E AT HOV | VARD, WI | (LAT 44 3 | 3 29N LO | NG 088 06 1 | 0W) | | | OCT 2002 | 1155 | 1.6 | 10 | 745 | 14.0 | 7.9 | 837 | 5.3 | 0.34 | 0.40 | < 0.04 | 1.63 | 0.006 | | 17
NOV | 1155 | 1.6 | | 745 | | | | | | | | | | | 11
DEC | 1110 | E3.4 | 70 | 748 | 6.3 | 6.9 | 641 | | <0.10 | 0.43 | < 0.04 | 1.56 | 0.014 | | 04
JAN 2003 | 1545 | 2.0 | 70 | 751 | 16.8 | 8.0 | 972 | -0.2 | 0.26 | 0.33 | < 0.04 | 3.60 | 0.010 | | 21
FEB | 1245 | E1.0 | 70 | 752 | 14.5 | 7.5 | 1,190 | 0.0 | 0.54 | 0.59 | 0.20 | 5.27 | 0.084 | | 19
MAR | 0750 | E.10 | 70 | 747 | 12.5 | 7.6 | 845 | -0.3 | 0.51 | 0.55 | 0.17 | 3.69 | 0.049 | | 19 | 1155 | 3.8 | 10 | 731 | 12.2 | 7.7 | 656 | 0.0 | 1.1 | 1.4 | 0.31 | 1.28 | 0.038 | | 26
APR | 1120 | 8.3 | 10 | 745 | 14.6 | 7.5 | 737 | 0.3 | 0.79 | 0.93 | 0.27 | 1.46 | 0.032 | | 21
MAY | 1245 | 15 | 10 | 737 | 11.0 | 8.1 | 806 | 8.5 | 0.61 | 0.74 | E.04 | 1.24 | 0.012 | | 20
JUN | 1550 | 4.5 | 10 | 752 | 8.3 | 8.3 | 779 | 17.1 | 0.52 | 0.57 | < 0.04 | 0.68 | 0.026 | | 09
JUL | 1305 | 6.9 | 10 | 739 | 9.7 | 8.0 | 836 | 14.6 | 0.78 | 0.83 | < 0.04 | 1.38 | 0.133 | | 17 | 0905 | 1.0 | 70 | 745 | 8.0 | 8.1 | 828 | 18.8 | 0.47 | 0.65 | <0.04 | 1.51 | 0.014 | | 31
AUG | 1415 | 18 | 10 | 741 | 9.0 | 7.6 | 442 | 18.8 | 0.70 | 0.93 | <0.04 | 0.43 | 0.066 | | 11
SEP | 1120 | 4.3 | 10 | 746 | 8.7 | 7.7 | 786 | 18.5 | 0.45 | 0.59 | < 0.04 | 1.70 | E.005 | | 11 | 1150 | 0.43 | 70 | 754 | 9.1 | 7.9 | 560 | 19.2 | 0.35 | 0.43 | < 0.04 | 1.52 | E.006 | | Date | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | 2,6-Diethylaniline water fltrd 0.7u GF ug/L (82660) | CIAT,
water,
fltrd,
ug/L
(04040) | Aceto-
chlor,
water,
fltrd,
ug/L
(49260) | Ala-
chlor,
water,
fltrd,
ug/L
(46342) | alpha-
HCH,
water,
fltrd,
ug/L
(34253) | alpha-
HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | Atrazine, water, fltrd, ug/L (39632) | Azin-
phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | Ben-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673) | Butylate,
water,
fltrd,
ug/L
(04028) | |------------------|--|--|---|---|--|---|---|---|---|--------------------------------------|--|---|--| | | | (| 04072185 | TROUT CR | EEK NEA | R HOWAR | D, WI (LA | AT 44 32 10 | N LONG 08 | 38 07 48W |) | | | | OCT 2002 | | | | | | | | | | | | | | | 17
NOV | < 0.02 | 0.034 | 0.043 | < 0.002 | E.037 | < 0.004 | < 0.002 | < 0.005 | 100 | 0.051 | < 0.050 | < 0.010 | < 0.002 | | 11
DEC | < 0.02 | 0.014 | 0.022 | < 0.006 | E.028 | < 0.006 | < 0.004 | < 0.005 | 93.0 | 0.040 | < 0.050 | < 0.010 | < 0.002 | | 04 | < 0.02 | 0.008 | 0.013 | < 0.006 | E.043 | < 0.006 | < 0.004 | < 0.005 | 102 | 0.060 | < 0.050 | < 0.010 | < 0.002 | | JAN 2003
21 | 0.03 | 0.041 | 0.107 | < 0.006 | E.099 | < 0.006 | < 0.004 | < 0.005 | 103 | 0.112 | < 0.050 | < 0.010 | < 0.002 | | FEB
18
MAR | E.01 | 0.024 | 0.035 | < 0.006 | E.072 | < 0.006 | < 0.020 | < 0.005 | 112 | 0.082 | < 0.050 | < 0.010 | < 0.002 | | 19 | 0.27 | 0.32 | 0.39 | < 0.006 | E.031 | <0.006 | < 0.004 | < 0.005 | 95.6 | 0.041 | < 0.050 | < 0.010 | < 0.002 | | 26
APR | 0.06 | 0.092 | 0.132 | < 0.006 | E.036 | < 0.006 | < 0.004 | < 0.005 | 86.4 | 0.032 | < 0.050 | < 0.010 | < 0.002 | | 21
MAY | 0.04 | 0.069 | 0.148 | < 0.006 | E.073 | 0.023 | E.004 | < 0.005 | 107 | 0.139 | < 0.050 | < 0.010 | < 0.002 | | 20
JUN | 0.02 | 0.051 | 0.085 | < 0.006 | E.026 | 0.011 | < 0.004 | < 0.005 | 92.7 | 0.047 | < 0.050 | < 0.010 | < 0.002 | | 09 | 0.03 | 0.079 | 0.110 | < 0.006 | E.032 | 0.007 | < 0.004 | < 0.005 | 102 | 0.354 | < 0.050 | < 0.010 | < 0.002 | | JUL
17 | 0.13 | 0.163 | 0.193 | < 0.006 | E.032 | < 0.006 | < 0.004 | < 0.005 | 80.8 | 0.114 | < 0.050 | < 0.010 | < 0.002 | | 31
AUG | 0.05 | 0.077 | 0.39 | < 0.006 | E.014 | < 0.006 | < 0.004 | < 0.005 | 109 | 0.038 | < 0.050 | < 0.010 | < 0.002 | | 11
SEP | 0.09 | 0.115 | 0.154 | < 0.006 | E.049 | < 0.006 | < 0.004 | < 0.005 | 92.8 | 0.068 | < 0.050 | < 0.010 | < 0.002 | | 11 | 0.08 | 0.106 | 0.142 | < 0.006 | E.025 | < 0.006 | < 0.004 | < 0.005 | 87.2 | 0.050 | < 0.050 | < 0.010 | < 0.002 | | | 04072 | 2233 LAN | CASTER E | BROOK AT | SHAWAN | NO AVENU | JE AT HOV | WARD, WI | (LAT 44 3 | 3 29N LO | NG 088 06 | 10W) | | | OCT 2002 | -0.02 | 0.011 | 0.016 | <0.002 | E 025 | -0.004 | <0.002 | -0.005 | 06.6 | 0.019 | <0.050 | ٠0.010 | <0.002 | | 17
NOV | <0.02 | 0.011 | 0.016 | <0.002 | E.025 | <0.004 | <0.002 | <0.005 | 96.6 | 0.018 | <0.050 | <0.010 | <0.002 | | 11
DEC | < 0.02 | 0.012 | 0.020 | < 0.006 | E.017 | < 0.006 | < 0.004 | < 0.005 | 92.7 | 0.014 | < 0.050 | < 0.010 | < 0.002 | | 04
JAN 2003 | < 0.02 | 0.006 | 0.011 | < 0.006 | E.032 | < 0.006 | < 0.004 | < 0.005 | 100 | 0.019 | < 0.050 | < 0.010 | < 0.002 | | 21
FEB | E.01 | 0.014 | 0.016 | < 0.006 | E.044 | < 0.006 | < 0.004 | < 0.005 | 91.1 | 0.026 | < 0.050 | < 0.010 | < 0.002 | | 19 | < 0.02 | 0.011 | 0.017 | < 0.006 | E.034 | < 0.006 | < 0.004 | < 0.005 | 99.0 | 0.017 | < 0.050 | < 0.010 | < 0.002 | | MAR
19 | 0.06 | 0.085 | 0.148 | < 0.006 | E.013 | < 0.006 | < 0.004 | < 0.005 | 93.5 | 0.014 | < 0.050 | < 0.010 | < 0.002 | | 26
APR | E.01 | 0.032 | 0.062 | < 0.006 | E.012 | < 0.006 | < 0.004 | < 0.005 | 92.7 | 0.010 | < 0.050 | < 0.010 | < 0.002 | | 21
MAY | < 0.02 | 0.021 | 0.051 | < 0.006 | E.018 | 0.008 | < 0.004 | < 0.005 | 106 | 0.042 | < 0.050 | < 0.010 | < 0.002 | | 20 | < 0.02 | 0.016 | 0.031 | < 0.006 | E.015 | 0.017 | < 0.004 | < 0.005 | 85.5 | 0.026 | < 0.050 | < 0.010 | < 0.002 | | JUN
09 | < 0.02 | 0.031 | 0.055 | < 0.006 | E.028 | E.005 | 0.005 | < 0.005 | 100 | 1.11 | < 0.050 | < 0.010 | < 0.002 | | JUL
17 | 0.04 | 0.065 | 0.100 | < 0.006 | E.022 | < 0.006 | < 0.004 | < 0.005 | 106 | 0.037 | < 0.050 | < 0.010 | < 0.002 | | 31
AUG | < 0.02 | 0.056 | 0.177 | < 0.006 | E.023 | < 0.006 | < 0.004 | < 0.005 | 108 | 0.072 | < 0.050 | < 0.010 | < 0.002 | | 11
SEP | 0.04 | 0.051 | 0.092 | < 0.006 | E.015 | < 0.006 | < 0.004 | < 0.005 | 88.1 | 0.019 | < 0.050 | < 0.010 | < 0.002 | | 11 | 0.03 | 0.049 | 0.066 | < 0.006 | E.015 | < 0.006 | < 0.004 | < 0.005 | 93.9 | 0.017 | < 0.050 | < 0.010 | < 0.002 | | Date | Carbaryl, water, fltrd 0.7u GF ug/L (82680) | Carbo-
furan,
water,
fltrd
0.7u GF
ug/L
(82674) | Chlor-
pyrifos
water,
fltrd,
ug/L
(38933) | cis-
Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | Cyana-
zine,
water,
fltrd,
ug/L
(04041) | DCPA,
water
fltrd
0.7u GF
ug/L
(82682) | Desulf-
inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | Diazi-
non,
water,
fltrd,
ug/L
(39572) | Diazi-
non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | Dieldrin,
water,
fltrd,
ug/L
(39381) | Disul-
foton,
water,
fltrd
0.7u GF
ug/L
(82677) | EPTC,
water,
fltrd
0.7u GF
ug/L
(82668) | Ethal-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82663) | |-----------------------|---|---|--|---|--|---|--|---|---|--|---|--|---| | | | (| 04072185 | TROUT CR | EEK NEA | R HOWAR | D, WI (LA | AT 44 32 10 | N LONG | 88 07 48W |) | | | | OCT 2002
17
NOV | <0.041 | <0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 114 | < 0.005 | < 0.02 | < 0.002 | <0.009 | | 11 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 106 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | DEC
04
JAN 2003 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 108 | < 0.005 | < 0.02 | < 0.002 | <0.009 | | 21
FEB | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 116 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 18
MAR | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 127 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 19
26 | <0.041
<0.041 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | <0.003
<0.003 | <0.004
<0.004 | <0.005
<0.005 | 132
98.3 | <0.005
<0.005 |
<0.02
<0.02 | <0.002
<0.002 | <0.009
<0.009 | | APR | | | | | | | | | | | | | | | 21
MAY | <0.041 | <0.020 | < 0.005 | < 0.006 | <0.018 | < 0.003 | < 0.004 | < 0.005 | 126 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 20
JUN | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 107 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 09
JUL | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | 0.007 | 117 | < 0.005 | < 0.02 | 0.003 | < 0.009 | | 17
31 | <0.041
E.009 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | <0.003
<0.003 | <0.004
<0.004 | 0.009
<0.005 | 90.6
131 | <0.005
<0.005 | <0.02
<0.02 | 0.002
<0.002 | <0.009
<0.009 | | AUG
11 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 103 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | SEP
11 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 109 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | | 0407 | 2233 LAN | CASTER E | BROOK AT | SHAWAN | IO AVENU | E AT HOV | VARD, WI | (LAT 44 3 | 3 29N LO | NG 088 06 | 10W) | | | OCT 2002 | 0.044 | 0.000 | 0.005 | 0.007 | 0.010 | 0.002 | 0.004 | 0.005 | 100 | 0.005 | | 0.000 | 0.000 | | 17
NOV | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 109 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 11
DEC | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 108 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 04
JAN 2003 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 105 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 21
FEB | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 112 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 19
MAR | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 118 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | 19
26 | <0.041
<0.041 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | <0.003
<0.003 | <0.004
<0.004 | <0.005
<0.005 | 127
101 | <0.005
<0.005 | <0.02
<0.02 | <0.002
<0.002 | <0.009
<0.009 | | APR
21 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 125 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | MAY
20 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 97.1 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | JUN
09 | <0.041 | < 0.020 | < 0.007 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | 0.012 | 117 | < 0.005 | < 0.02 | < 0.002 | <0.009 | | JUL
17
31 | <0.041
<0.041 | <0.020
<0.020 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | <0.003
<0.003 | <0.004
<0.004 | 0.039
0.024 | 113
127 | <0.005
<0.005 | <0.02
<0.02 | <0.002
<0.002 | <0.009
<0.009 | | AUG
11 | < 0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | E.002 | 102 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | | SEP
11 | <0.041 | < 0.020 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 105 | < 0.005 | < 0.02 | < 0.002 | <0.009 | | Date | Etho-
prop,
water,
fltrd
0.7u GF
ug/L
(82672) | Desulf-
inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | Fipro-
nil
sulfide
water,
fltrd,
ug/L
(62167) | Fipro-
nil
sulfone
water,
fltrd,
ug/L
(62168) | Fipro-
nil,
water,
fltrd,
ug/L
(62166) | Fonofos
water,
fltrd,
ug/L
(04095) | Lindane
water,
fltrd,
ug/L
(39341) | Linuron
water
fltrd
0.7u GF
ug/L
(82666) | Malathion,
water,
fltrd,
ug/L
(39532) | Methyl
para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667) | Metola-
chlor,
water,
fltrd,
ug/L
(39415) | Metri-
buzin,
water,
fltrd,
ug/L
(82630) | Molinate,
water,
fltrd
0.7u GF
ug/L
(82671) | |------------------------|---|---|---|---|---|--|--|---|---|--|--|---|--| | | | (| 04072185 | TROUT CF | REEK NEA | R HOWAR | D, WI (LA | AT 44 32 10 | N LONG | 088 07 48W |) | | | | OCT 2002
17
NOV | < 0.005 | <0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | <0.004 | <0.035 | < 0.027 | < 0.006 | 0.020 | < 0.006 | <0.002 | | 11
DEC | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.013 | < 0.006 | < 0.002 | | 04
JAN 2003 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.010 | < 0.006 | < 0.002 | | 21
FEB | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.019 | < 0.006 | < 0.002 | | 18
MAR | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.019 | < 0.006 | < 0.002 | | 19
26
APR | <0.005
<0.005 | <0.009
<0.009 | <0.005
<0.005 | <0.005
<0.005 | <0.007
<0.007 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027 | <0.006
<0.006 | 0.040
0.031 | <0.006
<0.006 | <0.002
<0.002 | | 21 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.128 | < 0.006 | < 0.002 | | MAY
20
JUN | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.032 | < 0.006 | < 0.002 | | 09
JUL | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.558 | < 0.006 | < 0.002 | | 17
31
AUG | <0.005
<0.005 | <0.009
<0.009 | <0.005
<0.005 | <0.005
<0.005 | <0.007
<0.007 | <0.003
<0.003 | 0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | <0.006
<0.006 | 0.133
0.045 | <0.006
<0.006 | <0.002
<0.002 | | 11
SEP | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.109 | < 0.006 | < 0.002 | | 11 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.021 | < 0.006 | < 0.002 | | | 0407 | 2233 LAN | CASTER I | BROOK AT | SHAWAN | NO AVENU | JE AT HOV | WARD, WI | (LAT 44 | 33 29N LO | NG 088 06 | 10W) | | | OCT 2002
17 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.012 | < 0.006 | < 0.002 | | NOV
11 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.009 | < 0.006 | < 0.002 | | DEC
04 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.005 | < 0.006 | < 0.002 | | JAN 2003
21 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.008 | < 0.006 | < 0.002 | | FEB
19 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | | MAR
19
26
APR | <0.005
<0.005 | <0.009
<0.009 | <0.005
<0.005 | <0.005
<0.005 | <0.007
<0.007 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027 | <0.006
<0.006 | 0.026
0.014 | <0.006
<0.006 | <0.002
<0.002 | | 21 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.023 | < 0.006 | < 0.002 | | MAY
20 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 0.033 | < 0.006 | < 0.002 | | JUN
09 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | 1.83 | < 0.006 | < 0.002 | | JUL
17
31 | <0.005
<0.005 | <0.009
<0.009 | <0.005
<0.005 | <0.005
<0.005 | <0.007
<0.007 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | <0.006
<0.006 | 0.020
0.083 | <0.006
<0.006 | <0.002
<0.002 | | AUG
11 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | < 0.006 | E.011 | < 0.006 | < 0.002 | | SEP
11 | < 0.005 | <0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | <0.006 | E.009 | < 0.006 | < 0.002 | | Date | Napropamide,
water,
fltrd
0.7u GF
ug/L
(82684) | p,p-'
DDE,
water,
fltrd,
ug/L
(34653) | Parathion,
water,
fltrd,
ug/L
(39542) | Peb-
ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | Pendimethalin, water, fltrd 0.7u GF ug/L (82683) | Phorate
water
fltrd
0.7u GF
ug/L
(82664) | Prometon,
water,
fltrd,
ug/L
(04037) | Pron-
amide,
water,
fltrd
0.7u GF
ug/L
(82676) | Propa-
chlor,
water,
fltrd,
ug/L
(04024) | Propanil, water, fltrd 0.7u GF ug/L (82679) | Propargite,
water,
fltrd
0.7u GF
ug/L
(82685) | Sima-
zine,
water,
fltrd,
ug/L
(04035) | Tebu-
thiuron
water
fltrd
0.7u GF
ug/L
(82670) | |-----------------------|---|--|---|---|--
---|--|--|---|---|--|---|--| | | | | 04072185 | TROUT CR | REEK NEA | R HOWAR | D, WI (LA | AT 44 32 10 | N LONG (| 088 07 48W |) | | | | OCT 2002
17
NOV | < 0.007 | < 0.003 | < 0.007 | < 0.002 | <0.010 | < 0.011 | E.01 | < 0.004 | < 0.010 | <0.011 | < 0.02 | E.010 | <0.02 | | 11
DEC | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.011 | < 0.02 | | 04
JAN 2003 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.011 | < 0.02 | | 21
FEB | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | 0.02 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.024 | < 0.02 | | 18
MAR | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.017 | < 0.02 | | 19
26 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | <0.011
<0.011 | <0.01
M | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | <0.007
0.007 | <0.02
<0.02 | | APR | | | | | | | | | < 0.010 | | | | <0.02 | | 21
MAY | < 0.007 | < 0.003 | <0.010 | < 0.004 | < 0.022 | < 0.011 | M | < 0.004 | | < 0.011 | < 0.02 | 0.007 | | | 20
JUN | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | | 09
JUL | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | E.005 | < 0.02 | | 17
31
AUG | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | <0.011
<0.011 | E.01
E.01 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | $0.007 \\ 0.010$ | <0.02
<0.02 | | 11
SEP | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.007 | < 0.02 | | 11 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.010 | < 0.02 | | | 0407 | 2233 LAN | ICASTER I | BROOK AT | SHAWAN | IO AVENU | E AT HOV | WARD, WI | (LAT 44 3 | 33 29N LOI | NG 088 06 | 10W) | | | OCT 2002
17 | < 0.007 | < 0.003 | < 0.007 | < 0.002 | < 0.010 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | E.011 | < 0.02 | | NOV
11 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.010 | < 0.02 | | DEC
04 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.012 | < 0.02 | | JAN 2003
21 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.022 | < 0.02 | | FEB
19 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | | MAR
19
26 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | <0.011
<0.011 | <0.01
E.01 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | 0.013
0.010 | <0.02
<0.02 | | APR
21 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.224 | < 0.02 | | MAY
20 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | 0.02 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.022 | < 0.02 | | JUN
09 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.016 | M | | JUL
17
31 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | <0.011
<0.011 | 0.04
0.02 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | 0.031
0.009 | <0.02
<0.02 | | AUG
11 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | 0.08 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | 0.014 | < 0.02 | | SEP
11 | < 0.007 | < 0.003 | <0.010 | <0.004 | <0.022 | < 0.011 | E.01 | < 0.004 | < 0.010 | <0.011 | < 0.02 | 0.011 | < 0.02 | | Date | (82665) | Terbufos,
water, fltrd
0.7u GF ug/L
(82675) | (82681) | Triallate,
water, fltrd
0.7u GF ug/L
(82678) | Trifluralin,
water, fltrd
0.7u GF ug/L
(82661) | Suspended
sediment
concentration
mg/L
(80154) | |------------------|--------------|--|-------------|---|---|---| | | 04072185 TRO | UT CREEK NE | EAR HOWARD. | , WI (LAT 44 32 | 10N LONG 088 07 | 7 48W) | | OCT 2002 | | | | | | | | 17
NOV | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 48 | | 11
DEC | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 127 | | 04
JAN 2003 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 179 | | 21 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 177 | | FEB
18
MAR | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 128 | | MAR
19 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 50 | | 26 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 67 | | APR | -0.024 | -0.02 | .0.005 | .0.002 | .0.000 | 0.0 | | 21
MAY | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 98 | | 20
JUN | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 9 | | 09 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 65 | | JUL
17 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 65 | | 31 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 236 | | AUG | 0.024 | 0.00 | 0.005 | | 0.000 | 405 | | 11
SEP | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 197 | | 11 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | | | 04072233 LA | NCASTER BRO | OK AT SHAW | ANO AVENUE | AT HOWARD, V | VI (LAT 44 33 29N | LONG 088 06 10W) | | OCT 2002 | | | | | | | | 17 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 45 | | NOV
11 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | <0.009 | 99 | | DEC | | | | | | | | 04
JAN 2003 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 108 | | 21
FEB | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 63 | | 19 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 21 | | MAR
19 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 60 | | 26 | <0.034 | <0.02 | < 0.005 | <0.002 | < 0.009 | 76 | | APR | | | | | | | | 21
MAY | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 117 | | 20 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 16 | | JUN
09 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 93 | | JUL
17 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 110 | | 31 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | | | AUG | -0.024 | <0.02 | <0.005 | z0.002 | ~ 0.000 | 100 | | 11
SEP | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | 100 | | 11 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | | | | | Instan- | | Phos- | |----------------|--------------|---------------|-------------------|--------------------| | | | taneous | Sam- | phorus, | | | | dis- | pling | water, | | | | charge, | method, | unfltrd | | Date | Time | cfs | code | mg/L | | | | (00061) | (82398) | (00665) | | 04073470 PUCHY | 'AN RIVER AT | GREEN LAKE, W | VI (LAT 43 50 48N | N LONG 088 57 36W) | | OCT 2002 | | | | | | 16 | 1145 | 17 | 10 | 0.019 | | NOV | | | | | | 29 | 1455 | 13 | 10 | 0.014 | | JAN 2003 | | | | | | 03 | 1243 | 12 | 10 | 0.018 | | 30 | 1456 | 15 | 10 | 0.025 | | FEB | | | | | | 28 | 1130 | 22 | 10 | 0.029 | | MAR | | | | | | 18 | 1215 | 24 | 10 | 0.037 | | APR | | | | | | 01 | 1525 | 14 | 10 | 0.046 | | 22 | 1125 | 49 | 10 | 0.031 | | MAY | 4045 | 40 | 40 | 0.024 | | 07 | 1015 | 48 | 10 | 0.031 | | 13 | 1630 | 283 | 10 | 0.037 | | JUN | 0000 | <i>7</i> 1 | 10 | 0.070 | | 24 | 0908 | 61 | 10 | 0.070 | | JUL | 1205 | 46 | 10 | 0.027 | | 10 | 1205 | 46 | 10 | 0.037 | | 31
SEP | 1215 | 27 | 10 | 0.036 | | | 1200 | 12 | 10 | 0.040 | | 10 | 1200 | 13 | 10 | 0.048 | | | | | | | | Date | Time | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, air, deg C (00020) | Temper-
ature,
water,
deg C
(00010) | Chloride,
water,
fltrd,
mg/L
(00940) | Sulfate
water,
fltrd,
mg/L
(00945) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | |----------------------------|------|--------------------------------------|--|---|--|---|--|--|---------------------------------|---|--|--|---| | | | 040780885 | MID BR | EMBARR <i>A</i> | SS R @ EI | LAND RD | NR ELANI | D, WI (LA | T 44 52 131 | N LONG 08 | 89 10 08W) | | | | NOV 2002
07 | 1400 | 16 | 10 | 720 | 13.5 | 7.8 |
E348 | 364 | 13.0 | 2.9 | 7.09 | 7.4 | 0.36 | | | 0- | 40780895 P | ACKARD | CREEK AT | BLUEBIR | D ROAD | NEAR ELA | ND, WI (l | LAT 44 52 | 18N LONG | 089 10 25 | W) | | | NOV 2002
07 | 1200 | 13 | 10 | 739 | 13.0 | 7.7 | 33 | 380 | 7.5 | 2.5 | 3.08 | 3.1 | 0.46 | | | 0407 | 80922 MID | BR EMBA | RRASS R | @ TOWNI | INE RD N | IR WITTEN | NBERG, W | I (LAT 44 | 51 21N LO | NG 089 09 | 51W) | | | NOV 2002
07
MAR 2003 | 1500 | | 10 | 720 | 13.8 | 7.9 | 363 | 372 | 12.0 | 3.0 | 8.24 | 7.3 | 0.38 | | 21 | 0955 | | 10 | 719 | 13.2 | 7.1 | | 224 | 5.5 | -0.2 | 10.8 | 7.0 | 1.6 | | JUN
11 | 1350 | 240 | 30 | | 8.2 | 8.1 | | 184 | | 12.9 | | | | | | 0538 | 81255 VALI | ENTINE C | REEK AT I | MORRISO | N ROAD N | EAR HAT | FIELD, WI | (LAT 44 2 | 21 21N LOI | NG 090 44 | 29W) | | | NOV 2002
08 | 1030 | 1.0 | 10 | 727 | 11.2 | 6.0 | 43 | 38 | 14.0 | 6.4 | 3.14 | 4.7 | 0.31 | | | 0538 | 1260 DICKI | EY CREEK | @ COUN | TY TRUNI | K HGHWY | K NR HA | TFIELD,W | I (LAT 44 | 20 30N LO | NG 090 44 | 46W) | | | NOV 2002
08 | 1200 | 6.2 | 10 | 727 | 11.4 | 5.7 | 374 | 28 | 16.0 | 5.7 | 13.0 | 7.0 | 1.1 | | | 0538 | 81265 MOR | RISON CR | EEK AT M | IOUTH NE | AR BLAC | K RIVER I | FALLS, WI | (LAT 44 2 | 21 23N LOI | NG 090 45 | 58W) | | | NOV 2002
08
MAR 2003 | 0930 | 68 | 10 | 739 | 12.3 | 5.6 | 31 | 27 | 7.5 | 4.2 | 1.78 | 3.7 | 0.46 | | 20 | 1240 | | 10 | 733 | 16.7 | 5.6 | | 30 | 5.0 | -0.2 | 2.32 | 3.9 | 0.71 | | | | | | QUILLIII | DATA, WA | | | | | | | | | |---|---|---|---|--|--|---|--|--|--|--|--|---|---| | Date | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Particulate nitrogen, susp, water, mg/L (49570) | Phosphorus, water, unfltrd mg/L (00665) | Total
carbon,
suspnd
sedimnt
total,
mg/L
(00694) | Inor-
ganic
carbon,
suspnd
sedimnt
total,
mg/L
(00688) | Organic
carbon,
suspnd
sedimnt
total,
mg/L
(00689) | Organic
carbon,
water,
fltrd,
mg/L
(00681) | 2,6-Diethylaniline water fltrd 0.7u GF ug/L (82660) | CIAT,
water,
fltrd,
ug/L
(04040) | Aceto-
chlor,
water,
fltrd,
ug/L
(49260) | | | | 040780885 | MID BR | EMBARR A | ASS R @ El | LAND RD | NR ELAN | D, WI (LA | T 44 52 131 | N LONG 0 | 89 10 08W) | | | | NOV 2002 | | | | | | | | | | | | | | | 07 | < 0.050 | 1.49 | | | 0.03 | 0.014 | 0.3 | < 0.1 | 0.3 | 8.5 | | | | | | 04 | 0780895 P. | ACKARD | CREEK A | Γ BLUEBIF | RD ROAD | NEAR ELA | AND, WI | LAT 44 52 | 18N LONG | G 089 10 25 | W) | | | NOV 2002 | | | | | | | | , | | | | | | | 07 | E.024 | 0.07 | | | 0.03 | 0.024 | 0.4 | < 0.1 | 0.4 | 9.6 | | | | | | 04078 | 0922 MID | BR EMBA | ARRASS R | @ TOWNI | INE RD N | IR WITTEN | NBERG. W | I (LAT 44 | 51 21N LC | NG 089 09 | 51W) | | | NOV 2002 | | | | | | | | , | - (| | | | | | NOV 2002
07 | < 0.050 | 1.40 | | | < 0.02 | 0.016 | 0.2 | < 0.1 | 0.2 | 8.6 | | | | | MAR 2003 | | 1.10 | 0.014 | 0.04 | 0.20 | 0.022 | 1.0 | .0.1 | E1.0 | 15.0 | | | | | 21
JUN | 0.40 | 1.10 | 0.014 | 0.04 | 0.29 | 0.023 | 1.8 | <0.1 | E1.8 | 15.0 | | | | | 11 | | | | | | | | | | | < 0.006 | E.026 | 0.231 | | | 0538 | 1255 VALI | ENTINE C | REEK AT | MORRISO | N ROAD N | EAR HAT | FIELD, WI | (LAT 44 2 | 21 21N LO | NG 090 44 | 29W) | | | NOV 2002 | | | | | | | | | | | | | | | 08 | 0.316 | 0.08 | | | < 0.02 | 0.027 | E.1 | < 0.1 | E.1 | 8.4 | | | | | | 05381 | 260 DICKI | EY CREEI | K @ COUN | TY TRUN | K HGHWY | K NR HA | TFIELD,W | I (LAT 44 | 20 30N LC | ONG 090 44 | 46W) | | | NOV 2002 | | | | | | | | | | | | | | | 08 | E.024 | 1.20 | | | 0.03 | 0.024 | E.4 | < 0.1 | E.4 | 10.0 | | | | | | 0538 | 1265 MOR | RISON CI | REEK AT N | MOUTH NE | EAR BLAC | K RIVER I | FALLS, WI | (LAT 44 2 | 21 23N LO | NG 090 45 | 58W) | | | NOV 2002 | | | | | | | | | | | | | | | 08 | < 0.050 | 0.08 | | | 0.06 | 0.032 | 0.5 | < 0.1 | 0.5 | 10.4 | | | | | MAR 2003
20 | 0.20 | 0.11 | < 0.008 | < 0.02 | 0.13 | 0.009 | 1.1 | <0.1 | E1.0 | 12.0 | | | | | 20
 0.20 | 0.11 | VO.000 | Q0.02 | 0.15 | 0.007 | 1.1 | VO.1 | L1.0 | 12.0 | alpha- | | Azin- | Ben- | | | | | cis- | | | | | A la- | alpha- | HCH-d6, | Atra- | phos- | flur- | Rutyl_ | Car- | Carbo- | Chlor- | Per- | Cyana- | DCPA | | | Ala-
chlor, | alpha-
HCH, | HCH-d6,
surrog,
wat flt | Atra-
zine, | | | Butyl-
ate, | Car-
baryl,
water, | furan,
water, | Chlor-
pyrifos | | Cyana-
zine, | DCPA,
water | | | chlor,
water, | HCH,
water, | HCH-d6,
surrog,
wat flt
0.7u GF | zine,
water, | phos-
methyl,
water,
fltrd | flur-
alin,
water,
fltrd | ate,
water, | baryl,
water,
fltrd | furan,
water,
fltrd | pyrifos
water, | Per-
methrin
water
fltrd | zine,
water, | water
fltrd | | Date | chlor,
water,
fltrd, | HCH,
water,
fltrd, | HCH-d6,
surrog,
wat flt
0.7u GF
percent | zine,
water,
fltrd, | phos-
methyl,
water,
fltrd
0.7u GF | flur-
alin,
water,
fltrd
0.7u GF | ate,
water,
fltrd, | baryl,
water,
fltrd
0.7u GF | furan,
water,
fltrd
0.7u GF | pyrifos
water,
fltrd, | Per-
methrin
water
fltrd
0.7u GF | zine,
water,
fltrd, | water
fltrd
0.7u GF | | Date | chlor,
water, | HCH,
water, | HCH-d6,
surrog,
wat flt
0.7u GF | zine,
water, | phos-
methyl,
water,
fltrd | flur-
alin,
water,
fltrd | ate,
water, | baryl,
water,
fltrd | furan,
water,
fltrd | pyrifos
water, | Per-
methrin
water
fltrd | zine,
water, | water
fltrd | | Date | chlor,
water,
fltrd,
ug/L | HCH,
water,
fltrd,
ug/L
(34253) | HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | zine,
water,
fltrd,
ug/L
(39632) | phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | fluralin,
water,
fltrd
0.7u GF
ug/L
(82673) | ate,
water,
fltrd,
ug/L
(04028) | baryl,
water,
fltrd
0.7u GF
ug/L
(82680) | furan,
water,
fltrd
0.7u GF
ug/L
(82674) | pyrifos
water,
fltrd,
ug/L
(38933) | Per-
methrin
water
fltrd
0.7u GF
ug/L | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | Date NOV 2002 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253) | HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | zine,
water,
fltrd,
ug/L
(39632) | phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | fluralin,
water,
fltrd
0.7u GF
ug/L
(82673) | ate,
water,
fltrd,
ug/L
(04028) | baryl,
water,
fltrd
0.7u GF
ug/L
(82680) | furan,
water,
fltrd
0.7u GF
ug/L
(82674) | pyrifos
water,
fltrd,
ug/L
(38933) | Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253) | HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | zine,
water,
fltrd,
ug/L
(39632) | phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | fluralin,
water,
fltrd
0.7u GF
ug/L
(82673) | ate,
water,
fltrd,
ug/L
(04028) | baryl,
water,
fltrd
0.7u GF
ug/L
(82680) | furan,
water,
fltrd
0.7u GF
ug/L
(82674) | pyrifos
water,
fltrd,
ug/L
(38933) | Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253)
040780885 | HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065)
MID BR | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA | phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686)
ASS R @ El | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673)
LAND RD | ate,
water,
fltrd,
ug/L
(04028)
NR ELAN | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0 | Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253)
040780885 | HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065)
MID BR | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA | phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686)
ASS R @ El | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673)
LAND RD | ate,
water,
fltrd,
ug/L
(04028)
NR ELAN | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0 | Permethrin water fltrd 0.7u GF ug/L (82687) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253)
040780885 | HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065)
MID BR | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA | phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686)
ASS R @ El | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673)
LAND RD | ate,
water,
fltrd,
ug/L
(04028)
NR ELAN | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0 | Permethrin water fltrd 0.7u GF ug/L (82687) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253)
040780885

0780895 P. | HCH-d6,
surrog,
wat fit
0.7u GF
percent
recovry
(91065)
MID BR

ACKARD | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK A | phos-
methyl,
water,
filtrd
0.7u GF
ug/L
(82686)
ASS R @ El | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673)
LAND RD | ate,
water,
fltrd,
ug/L
(04028)
NR ELAN

NEAR ELA | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0 | Permethrin water fltrd 0.7u GF ug/L (82687) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253)
040780885

0780895 P. | HCH-d6,
surrog,
wat fit
0.7u GF
percent
recovry
(91065)
MID BR

ACKARD | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK A | phos-
methyl,
water,
filtrd
0.7u GF
ug/L
(82686)
ASS R @ El | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673)
LAND RD | ate,
water,
fltrd,
ug/L
(04028)
NR ELAN

NEAR ELA | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0 | Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07
NOV 2002
07 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253)
040780885

0780895 P. | HCH-d6,
surrog,
wat fit
0.7u GF
percent
recovry
(91065)
MID BR

ACKARD | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK A | phos-
methyl,
water,
filtrd
0.7u GF
ug/L
(82686)
ASS R @ El | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673)
LAND RD | ate,
water,
fltrd,
ug/L
(04028)
NR ELAN

NEAR ELA | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0 | Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07 | chlor,
water,
fltrd,
ug/L
(46342) | HCH,
water,
fltrd,
ug/L
(34253)
040780885

0780895 P. | HCH-d6,
surrog,
wat fit
0.7u GF
percent
recovry
(91065)
MID BR

ACKARD | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK A | phos-
methyl,
water,
filtrd
0.7u GF
ug/L
(82686)
ASS R @ El | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673)
LAND RD | ate,
water,
fltrd,
ug/L
(04028)
NR ELAN

NEAR ELA | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0 | Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
| chlor,
water,
fltrd,
ug/L
(46342)

04078
 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 10922 MID | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD BR EMBA | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK AT

ARRASS R | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El F BLUEBIF @ TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD | ate, water, fltrd, ug/L (04028) NR ELAN NEAR ELA IR WITTER | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA

AND, WI (I

NBERG, W | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 13l

LAT 44 52

I (LAT 44 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LC | Per- methrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 DNG 089 09 | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21 | chlor,
water,
fltrd,
ug/L
(46342)

04078

0.006 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 09922 MID <0.005 | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD BR EMBA | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK AC | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El T BLUEBIF TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD | até, water, water, fltrd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA

AND, WI (I

NBERG, W | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131

LAT 44 52

I (LAT 44 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO | Permethrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 ONG 089 09 < <- 0.006 | zine, water, fltrd, ug/L (04041) W) <151W) <0.018 | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | chlor,
water,
fltrd,
ug/L
(46342)

04078

0.006
0538 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 09922 MID <0.005 | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD BR EMBA | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK AC | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El T BLUEBIF TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD | até, water, water, fltrd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA

AND, WI (I

NBERG, W | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131

LAT 44 52

I (LAT 44 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO | Per- methrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 DNG 089 09 | zine, water, fltrd, ug/L (04041) W) <151W) <0.018 | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | chlor,
water,
fltrd,
ug/L
(46342)

04078

0.006
0538 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 09922 MID <0.005 | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD BR EMBA | zine,
water,
fltrd,
ug/L
(39632)
EMBARRA

CREEK AC | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El T BLUEBIF TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD | até, water, water, fltrd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 | baryl,
water,
fltrd
0.7u GF
ug/L
(82680)
D, WI (LA

AND, WI (I

NBERG, W | furan,
water,
fltrd
0.7u GF
ug/L
(82674)
T 44 52 131

LAT 44 52

I (LAT 44 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO | Permethrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 ONG 089 09 < <- 0.006 | zine, water, fltrd, ug/L (04041) W) <151W) <0.018 | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | chlor, water, fltrd, ug/L (46342) 04078 0.006 0538 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD BR EMBA 108 ENTINE C | zine, water, fltrd, ug/L (39632) EMBARRA CREEK AT ARRASS R 0.120 EREEK AT | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El F BLUEBIF <0.050 MORRISO: | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD <interd <0.010="" n="" n<="" road="" td=""><td>ate, water, flutd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT</td><td>baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041</td><td>furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l LAT 44 52 I (LAT 44 <0.020</td><td>pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO

<0.005
21 21N LO</td><td>Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 20NG 089 09 < <0.006 NG 090 44</td><td>zine, water, fltrd, ug/L (04041) W) 51W) <0.018 29W)</td><td>water
fltrd
0.7u GF
ug/L
(82682)</td></interd> | ate, water, flutd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT | baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041 | furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l LAT 44 52 I (LAT 44 <0.020 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO

<0.005
21 21N LO | Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 20NG 089 09 < <0.006 NG 090 44 | zine, water, fltrd, ug/L (04041) W) 51W) <0.018 29W) | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | chlor, water, fltrd, ug/L (46342) 04078 0.006 0538 05381 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD BR EMBA 108 ENTINE C | zine, water, fltrd, ug/L (39632) EMBARRA CREEK AT ARRASS R 0.120 EREEK AT | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El F BLUEBIF <0.050 MORRISO: | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD <interd <0.010="" n="" n<="" road="" td=""><td>ate, water, flutd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT</td><td>baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041</td><td>furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l LAT 44 52 I (LAT 44 <0.020</td><td>pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO

<0.005
21 21N LO</td><td>Permethrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 ONG 089 09 < <- 0.006</td><td>zine, water, fltrd, ug/L (04041) W) 51W) <0.018 29W)</td><td>water
fltrd
0.7u GF
ug/L
(82682)</td></interd> | ate, water, flutd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT | baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041 | furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l LAT 44 52 I (LAT 44 <0.020 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO

<0.005
21 21N LO | Permethrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 ONG 089 09 < <- 0.006 | zine, water, fltrd, ug/L (04041) W) 51W) <0.018 29W) | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | chlor, water, fltrd, ug/L (46342) 04078 0.006 0538 05381 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD BR EMBA 108 ENTINE C | zine, water, fltrd, ug/L (39632) EMBARRA CREEK AT ARRASS R 0.120 EREEK AT | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El F BLUEBIF <0.050 MORRISO: | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD <interd <0.010="" n="" n<="" road="" td=""><td>ate, water, flutd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT</td><td>baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041</td><td>furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l LAT 44 52 I (LAT 44 <0.020</td><td>pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO

<0.005
21 21N LO</td><td>Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 20NG 089 09 < <0.006 NG 090 44</td><td>zine, water, fltrd, ug/L (04041) W) 51W) <0.018 29W)</td><td>water
fltrd
0.7u GF
ug/L
(82682)</td></interd> | ate, water, flutd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT | baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041 | furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l LAT 44 52 I (LAT 44 <0.020 | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

51 21N LO

<0.005
21 21N LO | Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 20NG 089 09 < <0.006 NG 090 44 | zine, water, fltrd, ug/L (04041) W) 51W) <0.018 29W) | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | chlor, water, fltrd, ug/L (46342) 04078 0.006 0538 05381 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 0922 MID <0.005 1255 VALI | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD 108 ENTINE C | zine, water, fltrd, ug/L (39632) EMBARRA CREEK AT ARRASS R 0.120 PREEK AT THE COUNTY AREA COU | phosmethyl, water, fltrd
0.7u GF ug/L (82686) ASS R @ El T BLUEBIF TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD < CO.010 N ROAD N K HGHWY | até, water, fltrd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT 'K NR HA | baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041 FIELD, WI TFIELD, WI TFIELD, WI | furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

<0.005
21 21N LO

20 30N LO | Permethrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) | zine, water, fltrd, ug/L (04041) W) <0.018 29W) 46W) | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | chlor, water, fltrd, ug/L (46342) 04078 0.006 0538 05381 0538 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 0922 MID <0.005 1255 VALI | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD 108 ENTINE C | zine, water, fltrd, ug/L (39632) EMBARRA CREEK AT ARRASS R 0.120 PREEK AT THE COUNTY AREA COU | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El T BLUEBIF TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD < CO.010 N ROAD N K HGHWY | até, water, fltrd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT 'K NR HA | baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041 FIELD, WI TFIELD, WI TFIELD, WI | furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

<0.005
21 21N LO

20 30N LO | Permethrin water filtrd 0.7u GF ug/L (82687) 89 10 08W) G 089 10 25 20NG 089 09 < <0.006 NG 090 44 | zine, water, fltrd, ug/L (04041) W) <0.018 29W) 46W) | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | chlor, water, fltrd, ug/L (46342) 04078 0.006 0538 05381 0538 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 0922 MID <0.005 1255 VALI 260 DICKI | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD 108 ENTINE C | zine, water, fltrd, ug/L (39632) EMBARRA CREEK AT ARRASS R 0.120 PREEK AT THE COUNTY AREA COU | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El T BLUEBIF TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD < CO.010 N ROAD N K HGHWY | até, water, fltrd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT 'K NR HA | baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041 FIELD, WI TFIELD, WI TFIELD, WI | furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

<0.005
21 21N LO

20 30N LO | Permethrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) | zine, water, fltrd, ug/L (04041) W) <0.018 29W) 46W) | water
fltrd
0.7u GF
ug/L
(82682) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | chlor, water, fltrd, ug/L (46342) 04078 04078 0.006 0538 05381 0538 | HCH, water, fltrd, ug/L (34253) 040780885 0780895 P 0922 MID <0.005 1255 VALI 260 DICKI | HCH-d6, surrog, wat fit 0.7u GF percent recovry (91065) MID BR ACKARD 108 ENTINE C | zine, water, fltrd, ug/L (39632) EMBARRA CREEK AT ARRASS R 0.120 PREEK AT THE COUNTY AREA COU | phosmethyl, water, fltrd 0.7u GF ug/L (82686) ASS R @ El T BLUEBIF TOWNI | fluralin, water, fltrd 0.7u GF ug/L (82673) LAND RD RD ROAD < CO.010 N ROAD N K HGHWY | até, water, fltrd, ug/L (04028) NR ELANI NEAR ELA IR WITTER <0.002 IEAR HAT 'K NR HA | baryl, water, fltrd 0.7u GF ug/L (82680) D, WI (LA AND, WI (I NBERG, W <0.041 FIELD, WI TFIELD, WI TFIELD, WI | furan, water, fltrd 0.7u GF ug/L (82674) T 44 52 13l | pyrifos
water,
fltrd,
ug/L
(38933)
N LONG 0

18N LONG

<0.005
21 21N LO

20 30N LO | Permethrin water fltrd 0.7u GF ug/L (82687) 89 10 08W) | zine, water, fltrd, ug/L (04041) W) <0.018 29W) 46W) | water
fltrd
0.7u GF
ug/L
(82682) | | | | | WAIEK- | QUALITY | DATA, WA | TIEK IEA | IK OCTOB | LK 2002 IV | J SEI TEN | DER 2003 | | | | |---|--|---|---|--|--|--|---|--|--|--|---|---|--| | Date | Desulf-
inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | Diazinon,
water,
fltrd,
ug/L
(39572) | Diazi-
non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | Dieldrin,
water,
fltrd,
ug/L
(39381) | Disulfoton,
water,
fltrd
0.7u GF
ug/L
(82677) | EPTC,
water,
fltrd
0.7u GF
ug/L
(82668) | Ethal-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82663) | Etho-
prop,
water,
fltrd
0.7u GF
ug/L
(82672) | Desulf-
inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | Fipro-
nil
sulfide
water,
fltrd,
ug/L
(62167) | Fipronil sulfone water, fltrd, ug/L (62168) | Fipronil, water, fltrd, ug/L (62166) | Fonofos
water,
fltrd,
ug/L
(04095) | | | | 040780885 | MID BR | EMBARRA | ASS R @ El | LAND RD | NR ELAN | D, WI (LA | T 44 52 13 | N LONG 0 | 89 10 08W) | | | | NOV 2002 | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | | 04 | 0780895 P. | ACK ARD | CREEK AT | r BI LIEBIE | D ROAD | NEAR EL | AND WI | ΔΤ // 52 | 18N I ONG | 3 080 10 25 | W) | | | | 04 | 0700075 17 | ACKAKD | CKLLKA | DECEDII | ND ROAD | NEAK EE | 111D, WI (I | LA1 77 J2 | TOTA LOTA | 3 007 10 23 | **) | | | NOV 2002
07 | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | | 04078 | 30922 MID | BR EMBA | ARRASS R | @ TOWNI | LINE RD N | IR WITTE | NBERG, W | I (LAT 44 | 51 21N LC | NG 089 09 | 51W) | | | NOV 2002 | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | MAR 2003
21 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 11 | < 0.004 | < 0.005 | 127 | < 0.005 | < 0.02 | < 0.002 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | | | 0538 | 1255 VALI | ENTINE C | REEK AT | MORRISO | N ROAD N | EAR HAT | FIELD, WI | (LAT 44 | 21 21N LO | NG 090 44 | 29W) | | | NOV 2002 | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | | 05381 | 260 DICK | EV CDEEI | z @ COUN | TV TDI MI | к исиму | V NID LIA | TEIEI D W | I (I AT 44 | 20 30N I C | NG 000 44 | 46W) | | | | 05561 | 200 DICK | ET CKEEL | x @ COON | I I IKUN | K HOHW I | KINKIIA | TTTLLD, W | 1 (LA1 44 | 20 30N LC | JNG 050 44 | +0 W) | | | NOV 2002
08 | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | | 0538 | 1265 MOR | RISON CI | REEK AT N | MOUTH NE | EAR BLAC | K RIVER | FALLS, WI | (LAT 44 | 21 23N LO | NG 090 45 | 58W) | | | NOV 2002 | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | MAR 2003
20 | Methyl | | | | | | | | Pendi- | | | | | | 16 1 | para- | M . 1 | M | Moli- | Naprop- | | D | Peb- | meth- | DI . | | | Lindane | Linuron
water | Mala-
thion | para-
thion, | Metola-
chlor | Metri-
buzin | nate, | amide, | p,p-'
DDE | Para-
thion | ulate, | meth-
alin, | Phorate water | | | Lindane
water, | water
fltrd | Mala-
thion,
water, | para- | Metola-
chlor,
water, | Metri-
buzin,
water, | | amide,
water,
fltrd | p,p-'
DDE,
water, | Para-
thion,
water, | ulate,
water,
fltrd | meth-
alin,
water,
fltrd | water
fltrd | | Data | water,
fltrd, | water
fltrd
0.7u GF | thion,
water,
fltrd, | para-
thion,
water,
fltrd
0.7u GF | chlor,
water,
fltrd, | buzin,
water,
fltrd, | nate,
water,
fltrd
0.7u GF | amide,
water,
fltrd
0.7u GF | DDE,
water,
fltrd, | thion,
water,
fltrd, | ulate,
water,
fltrd
0.7u GF | meth-
alin,
water,
fltrd
0.7u GF | water
fltrd
0.7u GF | | Date | water,
fltrd,
ug/L | water
fltrd
0.7u GF
ug/L | thion,
water,
fltrd,
ug/L | para-
thion,
water,
fltrd
0.7u GF
ug/L | chlor,
water,
fltrd,
ug/L | buzin,
water,
fltrd,
ug/L | nate,
water,
fltrd
0.7u GF
ug/L | amide,
water,
fltrd
0.7u GF
ug/L | DDE,
water,
fltrd,
ug/L | thion,
water,
fltrd,
ug/L | ulate,
water,
fltrd
0.7u GF
ug/L | meth-
alin,
water,
fltrd
0.7u GF
ug/L | water
fltrd
0.7u GF
ug/L | | Date | water,
fltrd, | water
fltrd
0.7u GF
ug/L
(82666) | thion,
water,
fltrd,
ug/L
(39532) | parathion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415) |
buzin,
water,
fltrd,
ug/L
(82630) | nate,
water,
fltrd
0.7u GF
ug/L
(82671) | amide,
water,
fltrd
0.7u GF
ug/L
(82684) | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542) | ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF | | | water,
fltrd,
ug/L | water
fltrd
0.7u GF
ug/L
(82666) | thion,
water,
fltrd,
ug/L
(39532) | parathion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415) | buzin,
water,
fltrd,
ug/L
(82630) | nate,
water,
fltrd
0.7u GF
ug/L
(82671) | amide,
water,
fltrd
0.7u GF
ug/L
(82684) | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542) | ulate,
water,
fltrd
0.7u GF
ug/L | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002 | water,
fltrd,
ug/L | water
fltrd
0.7u GF
ug/L
(82666) | thion,
water,
fltrd,
ug/L
(39532) | parathion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415) | buzin,
water,
fltrd,
ug/L
(82630) | nate,
water,
fltrd
0.7u GF
ug/L
(82671) | amide,
water,
fltrd
0.7u GF
ug/L
(82684) | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542) | ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L | | | water,
fltrd,
ug/L | water
fltrd
0.7u GF
ug/L
(82666) | thion,
water,
fltrd,
ug/L
(39532) | parathion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415) | buzin,
water,
fltrd,
ug/L
(82630) | nate,
water,
fltrd
0.7u GF
ug/L
(82671) | amide,
water,
fltrd
0.7u GF
ug/L
(82684) | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542) | ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666) | thion,
water,
fltrd,
ug/L
(39532)
MID BR | para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ El | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885 | thion,
water,
fltrd,
ug/L
(39532)
MID BR | para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ El | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885 | thion,
water,
fltrd,
ug/L
(39532)
MID BR | para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ El | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885 | thion,
water,
fltrd,
ug/L
(39532)
MID BR

ACKARD | para-
thion,
water,
filtrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ EI | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD

RD ROAD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN

NEAR ELA | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA' | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13

LAT 44 52 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0

18N LONG | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885

 | thion,
water,
fltrd,
ug/L
(39532)
MID BR

ACKARD | para-
thion,
water,
filtrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ EI | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD

RD ROAD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN

NEAR ELA | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA' | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13

LAT 44 52 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0

18N LONG | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885

 | thion,
water,
fltrd,
ug/L
(39532)
MID BR

ACKARD | para-
thion,
water,
filtrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ EI | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD

RD ROAD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN

NEAR ELA | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA' | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13

LAT 44 52 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0

18N LONG | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885

 | thion,
water,
fltrd,
ug/L
(39532)
MID BR

ACKARD | para-
thion,
water,
filtrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ EI | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD

RD ROAD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN

NEAR ELA | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA' | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13

LAT 44 52 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0

18N LONG | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885

 | thion,
water,
fltrd,
ug/L
(39532)
MID BR

ACKARD | para-
thion,
water,
filtrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ EI | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD

RD ROAD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN

NEAR ELA | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA' | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52 13

LAT 44 52 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0

18N LONG | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003 | water,
fltrd,
ug/L
(39341) | water
fltrd
0.7u GF
ug/L
(82666)
040780885

 | thion,
water,
fltrd,
ug/L
(39532)
MID BR

ACKARD | para-
thion,
water,
filtrd
0.7u GF
ug/L
(82667)
EMBARRA | chlor,
water,
fltrd,
ug/L
(39415)
ASS R @ EI | buzin,
water,
fltrd,
ug/L
(82630)
LAND RD

RD ROAD | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
NR ELAN

NEAR ELA | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA' | DDE,
water,
fltrd,
ug/L
(34653)
T 44 52
13

LAT 44 52 | thion,
water,
fltrd,
ug/L
(39542)
N LONG 0

18N LONG | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN | water, fltrd, ug/L (39341) 04078 <0.004 | water fltrd 0.7u GF ug/L (82666) 040780885 00780895 P 80922 MID <0.035 | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 | para- thion, water, fltrd 0.7u GF ug/L (82667) EMBARRA CREEK AT ARRASS R <0.006 | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD LINE RD N <0.006 | nate, water, fltrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTER <0.002 | amidé,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA
AND, WI (I

NBERG, W | DDE, water, fltrd, ug/L (34653) T 44 52 13 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25

ONG 089 09

<0.004 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | water, fltrd, ug/L (39341) 04078 <0.004 | water
fltrd
0.7u GF
ug/L
(82666)
040780885

.0780895 P.

80922 MID | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 | para- thion, water, fltrd 0.7u GF ug/L (82667) EMBARRA CREEK AT ARRASS R <0.006 | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD LINE RD N <0.006 | nate, water, fltrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTER <0.002 | amidé,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA
AND, WI (I

NBERG, W | DDE, water, fltrd, ug/L (34653) T 44 52 13 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25

ONG 089 09

<0.004 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | water, fltrd, ug/L (39341) 04078 <0.004 | water fltrd 0.7u GF ug/L (82666) 040780885 00780895 P 80922 MID <0.035 | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 | para- thion, water, fltrd 0.7u GF ug/L (82667) EMBARRA CREEK AT ARRASS R <0.006 | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD LINE RD N <0.006 | nate, water, fltrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTER <0.002 | amidé,
water,
fltrd
0.7u GF
ug/L
(82684)
D, WI (LA
AND, WI (I

NBERG, W | DDE, water, fltrd, ug/L (34653) T 44 52 13 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25

ONG 089 09

<0.004 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | water, fltrd, ug/L (39341) 04078 <0.004 0538 | water fltrd 0.7u GF ug/L (82666) 040780885 0780895 P 80922 MID <0.035 | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, filtrd 0.7u GF ug/L (82667) EMBARRA CREEK AT ARRASS R <0.006 | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD LINE RD N <0.006 N ROAD N | nate, water, water, filtrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTE! <0.002 IEAR HAT | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA' AND, WI (I NBERG, W <0.007 | DDE, water, fltrd, ug/L (34653) T 44 52 13 LAT 44 52 I (LAT 44 <0.003 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LC <0.010 21 21N LO | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25

ONG 089 09

<0.004
NG 090 44 | meth- alin, water, fltrd 0.7u GF ug/L (82683) W) <0.022 29W) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | water, fltrd, ug/L (39341) 04078 <0.004 0538 | water fltrd 0.7u GF ug/L (82666) 040780885 00780895 P 80922 MID <0.035 | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, filtrd 0.7u GF ug/L (82667) EMBARRA CREEK AT ARRASS R <0.006 | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD LINE RD N <0.006 N ROAD N | nate, water, water, filtrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTE! <0.002 IEAR HAT | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA' AND, WI (I NBERG, W <0.007 | DDE, water, fltrd, ug/L (34653) T 44 52 13 LAT 44 52 I (LAT 44 <0.003 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LC <0.010 21 21N LO | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25

ONG 089 09

<0.004
NG 090 44 | meth- alin, water, fltrd 0.7u GF ug/L (82683) W) <0.022 29W) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | water, fltrd, ug/L (39341) 04078 <0.004 0538 | water fltrd 0.7u GF ug/L (82666) 040780885 0780895 P 80922 MID <0.035 | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, filtrd 0.7u GF ug/L (82667) EMBARRA CREEK AT ARRASS R <0.006 | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD LINE RD N <0.006 N ROAD N | nate, water, water, filtrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTE! <0.002 IEAR HAT | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA' AND, WI (I NBERG, W <0.007 | DDE, water, fltrd, ug/L (34653) T 44 52 13 LAT 44 52 I (LAT 44 <0.003 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LC <0.010 21 21N LO | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25

ONG 089 09

<0.004
NG 090 44 | meth- alin, water, fltrd 0.7u GF ug/L (82683) W) <0.022 29W) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11 | water, fltrd, ug/L (39341) 04078 <0.004 0538 | water fltrd 0.7u GF ug/L (82666) 040780885 0780895 P 80922 MID <0.035 | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, filtrd 0.7u GF ug/L (82667) EMBARRA CREEK AT ARRASS R <0.006 | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD LINE RD N <0.006 N ROAD N | nate, water, water, fltrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTEI <0.002 IEAR HAT | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA' AND, WI (I NBERG, W <0.007 | DDE, water, fltrd, ug/L (34653) T 44 52 13 LAT 44 52 I (LAT 44 <0.003 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 21 21N LO | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
89 10 08W)

G 089 10 25

ONG 089 09

<0.004
NG 090 44 | meth- alin, water, fltrd 0.7u GF ug/L (82683) W) <0.022 29W) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | water, fltrd, ug/L (39341) 04078 <0.004 0538 05381 | water fltrd 0.7u GF ug/L (82666) 040780885 0780895 P 80922 MID <0.035 | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, fltrd 0.7u GF ug/L (82667) EMBARRA CREEK AT 4ARRASS R <0.006 EREEK AT I | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD <0.006 N ROAD N K HGHWY | nate, water, filtrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTEI <0.002 IEAR HAT Y K NR HA | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA AND, WI (I NBERG, W <0.007 FIELD, WI TFIELD, WI | DDE, water, fltrd, ug/L (34653) T 44 52 13 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 21 21N LO 20 30N LO | ulate, water, fltrd 0.7u GF ug/L (82669) 89 10 08W) G 089 10 25 ONG 089 09 <-0.004 NG 090 44 ONG 090 44 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | water, fltrd, ug/L (39341) 04078 <0.004 0538 05381 | water fltrd 0.7u GF ug/L (82666) 040780885 0780895 P 80922 MID <0.035 1255 VALI | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, fltrd 0.7u GF ug/L (82667) EMBARRA CREEK AT 4ARRASS R <0.006 EREEK AT I | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD <0.006 N ROAD N K HGHWY | nate, water, filtrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTEI <0.002 IEAR HAT Y K NR HA | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA AND, WI (I NBERG, W <0.007 FIELD, WI TFIELD, WI | DDE, water, fltrd, ug/L (34653) T 44 52 13 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 21 21N LO 20 30N LO | ulate, water, fltrd 0.7u GF ug/L (82669) 89 10 08W) G 089 10 25 ONG 089 09 <-0.004 NG 090 44 ONG 090 44 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08
NOV 2002
08 | water, fltrd, ug/L (39341) 04078
<0.004 0538 05381 | water fltrd 0.7u GF ug/L (82666) 040780885 0780895 P 80922 MID <0.035 1255 VALI | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, fltrd 0.7u GF ug/L (82667) EMBARRA CREEK AT 4ARRASS R <0.006 EREEK AT I | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD <0.006 N ROAD N K HGHWY | nate, water, filtrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTEI <0.002 IEAR HAT Y K NR HA | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA AND, WI (I NBERG, W <0.007 FIELD, WI TFIELD, WI | DDE, water, fltrd, ug/L (34653) T 44 52 13 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 21 21N LO 20 30N LO | ulate, water, fltrd 0.7u GF ug/L (82669) 89 10 08W) G 089 10 25 ONG 089 09 <-0.004 NG 090 44 ONG 090 44 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L
(82664) | | NOV 2002
07
NOV 2002
07
NOV 2002
07
MAR 2003
21
JUN
11
NOV 2002
08 | water, fltrd, ug/L (39341) 04078 <0.004 0538 05381 | water fltrd 0.7u GF ug/L (82666) 040780885 0780895 P 80922 MID <0.035 1255 VALI | thion, water, fltrd, ug/L (39532) MID BR ACKARD BR EMBA <0.027 ENTINE C | para- thion, water, fltrd 0.7u GF ug/L (82667) EMBARRA CREEK AT 4ARRASS R <0.006 EREEK AT I | chlor, water, fltrd, ug/L (39415) ASS R @ El F BLUEBIF @ TOWNI E.009 MORRISO | buzin, water, fltrd, ug/L (82630) LAND RD RD ROAD <0.006 N ROAD N K HGHWY | nate, water, filtrd 0.7u GF ug/L (82671) NR ELAN NEAR ELA IR WITTEI <0.002 IEAR HAT Y K NR HA | amide, water, fltrd 0.7u GF ug/L (82684) D, WI (LA AND, WI (I NBERG, W <0.007 FIELD, WI TFIELD, WI | DDE, water, fltrd, ug/L (34653) T 44 52 13 | thion, water, fltrd, ug/L (39542) N LONG 0 18N LONG 51 21N LO <0.010 21 21N LO 20 30N LO | ulate, water, fltrd 0.7u GF ug/L (82669) 89 10 08W) G 089 10 25 ONG 089 09 <-0.004 NG 090 44 ONG 090 44 | methalin, water, fltrd 0.7u GF ug/L (82683) | water
fltrd
0.7u GF
ug/L
(82664) | ## WATER-QUALITY ANALYSES AT MISCELLANEOUS SITES | | | | WATER-0 | QUALITY | DATA, WA | ATER YEA | R OCTOB | ER 2002 TO |) SEPTEM | BER 2003 | | | | |----------------|--|---|--|---|--|---|--|--|---|---|--|--|--| | Date | Prometon,
water,
fltrd,
ug/L
(04037) | Pronamide,
water,
fltrd
0.7u GF
ug/L
(82676) | Propachlor, water, fltrd, ug/L (04024) | Propanil, water, fltrd 0.7u GF ug/L (82679) | Propargite,
water,
fltrd
0.7u GF
ug/L
(82685) | Sima-
zine,
water,
fltrd,
ug/L
(04035) | Tebu-
thiuron
water
fltrd
0.7u GF
ug/L
(82670) | Terbacil,
water,
fltrd
0.7u GF
ug/L
(82665) | Terbu-
fos,
water,
fltrd
0.7u GF
ug/L
(82675) | Thiobencarb
water
fltrd
0.7u GF
ug/L
(82681) | Tri-
allate,
water,
fltrd
0.7u GF
ug/L
(82678) | Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661) | Suspnd.
sedi-
ment,
sieve
diametr
percent
<.063mm
(70331) | | | | 040780885 | MID BR | EMBARR <i>A</i> | ASS R @ El | LAND RD | NR ELANI | D, WI (LA | T 44 52 131 | N LONG 0 | 89 10 08W) |) | | | NOV 2002
07 | | | | | | | | | | | | | 45 | | | 04 | .0780895 P. | ACKARD | CREEK AT | Γ BLUEBIF | RD ROAD | NEAR ELA | AND, WI (I | LAT 44 52 | 18N LONG | G 089 10 25 | (W) | | | NOV 2002 | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | 59 | | | 04078 | 80922 MID | BR EMBA | ARRASS R | @ TOWNI | LINE RD N | IR WITTEN | NBERG, W | I (LAT 44 | 51 21N LC | NG 089 09 | 51W) | | | NOV 2002
07 | | | | | | | | | | | | | 55 | | MAR 2003 | | | | | | | | | | | | | | | 21
JUN | | | | | | | | | | | | | 62 | | 11 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | < 0.002 | < 0.009 | | | | 0538 | 1255 VAL | ENTINE C | REEK AT | MORRISO: | N ROAD N | EAR HAT | FIELD, WI | (LAT 44 2 | 21 21N LO | NG 090 44 | 29W) | | | NOV 2002
08 | | | | | | | | | | | | | 63 | | | 05381 | 260 DICK | EY CREEK | (@ COUN | TY TRUNI | K HGHWY | K NR HA | TFIELD W | I (LAT 44 | 20 30N LC | NG 090 44 | 1 46W) | | | NOV 2002 | 03301 | 200 Dien | ET CREEL | r c coort | TT TROT | it itoli w i | 11 1 11 11 11 1 | TT IEEE, W | I (EZII II | 20 3011 20 | 7110 070 1 | . 1011) | | | 08 | | | | | | | | | | | | | 72 | | | 0538 | 1265 MOR | RISON CF | REEK AT N | OUTH NE | EAR BLAC | K RIVER I | FALLS, WI | (LAT 44 2 | 21 23N LO | NG 090 45 | 58W) | | | NOV 2002 | | | | | | | | | | | | | 7.4 | | 08
MAR 2003 | | | | | | | | | | | | | 74 | | 20 | | | | | | | | | | | | | 79 | | | Date | | | | co | spended se
ncentration
0154) | | | | | | | | | | | 040780885 | MID BR | EMBARRA | ASS R @ El | LAND RD | NR ELANI | D, WI (LA | T 44 52 131 | N LONG 0 | 89 10 08W) |) | | | | NOV | 2002 | | | | | | | | | | | | | | 07 | | | | | 4 | | | | | | | | | | | .0780895 P | ACKARD | CREEK AT | Γ BLUEBIF | RD ROAD | NEAR ELA | AND, WI (l | LAT 44 52 | 18N LONG | G 089 10 25 | (W) | | | | NOV
07 | | | | | 5 | | | | | | | | | | |
30922 MID | BR EMBA | ARRASS R | @ TOWNI | | IR WITTEN | NBERG. W | I (LAT 44 | 51 21N LC | NG 089 09 |) 51W) | | | | NOV | | | | | | | , , , , | ` | | | | | | | 07
MAR | | | | | 6 | | | | | | | | | | 21
JUN
11 | | | | | 9 | | | | | | | | | | 0538 | 1255 VAL | ENTINE C | REEK AT | MORRISO | N ROAD N | EAR HAT | FIELD, WI | (LAT 44 2 | 21 21N LO | NG 090 44 | 29W) | | | | NOV
08 | | | | | 7 | | | ` | | | Ź | | | | 05381 | 260 DICK | EY CREE | k @ COUN | TY TRUN | K HGHWY | K NR HA | TFIELD,W | I (LAT 44 | 20 30N LC | NG 090 44 | 46W) | | | | NOV | | | | | _ | | | | | | | | | | 08 | | | | | 6 | | | | | | | | | | | 1265 MOR | RISON CF | REEK AT N | 4OUTH NE | EAR BLAC | K RIVER I | FALLS, WI | (LAT 44 2 | 21 23N LO | NG 090 45 | 58W) | | | | NOV
08 | | | | | 6 | | | | | | | | | | MAR
20 | 2003 | | | | 9 | | | | | | | | | | 20 | • | | | | _ | | | | | | | | | Beginning
Date | Beginning
Time | Ending
date
143203088035 | Ending
time | Sam-
pling
method,
code
(82398) | Tur-
bidity,
NTU
(00076) | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | Calcium
water,
fltrd,
mg/L
(00915) | Calcium
water
unfltrd
recover
-able,
mg/L
(00916) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Magnes-
ium,
water,
unfltrd
recover
-able,
mg/L
(00921) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | |----------------------------|-------------------|--------------------------------|----------------|---|-----------------------------------|---|--|--|---|--|--|--|---| | | | 143203000033 | 7700 51.14 | 1711(15110 | JI II II K | 001 711 0 | KLLI DI | 1, W1 (L/1 | 1 44 32 031 | T LOITO OC | 00 03 34 11) | | | | OCT 2002
04
MAY 2003 | 0414 | 20021004 | 1219 | 50 | 2.0 | 7.4 | 62 | | 7.2 | | 2.7 | 21 | | | 07 | 1419 | 20030,07 | 1640 | 50 | <1.0 | 7.6 | 104 | | | | | 33 | | | 09 | 0355 | 20030509 | 0658 | 50 | | | | | | | | | | | 10 | 2206 | 20030511 | 0457 | 50 | 1.6 | 7.4 | 58 | | | | | 20 | | | 30 | 2125 | 20030531 | 0112 | 50 | 2.1 | 7.5 | 110 | | | | | 28 | | | JUN
10 | 0616 | 20030610 | 0908 | 50 | <1.0 | 7.5 | 43 | | | | | 15 | | | 24 | 0751 | 20030610 | 0818 | 50 | <1.0 | 7.5
7.5 | 43
94 | | | | | 20 | | | 28 | 1010 | 20030624 | 1,344 | 50 | <1.0 | 7.3 | 67 | 7.40 | 7.5 | 2.40 | 2.6 | 20 | | | JUL | 1010 | 20030020 | 1,544 | 30 | \1.0 | 7.5 | 07 | 7.40 | 7.5 | 2.40 | 2.0 | 20 | | | 04 | 0743 | 20030704 | 0833 | 50 | 1.4 | 7.0 | 60 | 6.00 | 14.6 | 1.80 | 6.7 | 16 | | | 26 | 0723 | 20030726 | [1017 | 50 | <1.0 | | | 6.90 | 11.8 | 2.30 | 4.8 | | | | | 112 | 20500002550 | O CT MAI | ONG HOCD | ITAL INILI | T DIDE AT | CDEEN E |) A V/ W/I /I | AT 44.22 | OSN LONG | 10000255 | 11 7) | | | | 443 | 205088035500 | J 51. MAI | KYS HUSP | HAL INLE | ET PIPE AT | GREEN E | SAY, WI (I | LAT 44 32 | USIN LONG | 1 088 03 33 | W) | | | OCT 2002 | | | | | | | | | | | | | | | 04 | 0411 | 20021004 | 1103 | 50 | 5.2 | 7.2 | 79 | | 6.8 | | 2.6 | 16 | | | APR 2003 | | | | | | | | | | | | | | | 15 | 1730 | 20030415 | 1922 | 50 | | | | | | | | | | | MAY | 1417 | 20020507 | 1647 | 50 | .1.0 | | 402 | | | | | 45 | | | 07
09 | 1417
0314 | 20030507
20030509 | 1647
0800 | 50
50 | <1.0 | 7.7 | 493 | | | | | 45 | | | 10 | 2154 | 20030509 | 0509 | 50 | 2.9 | 8.0 | 340 | | | | | 31 | | | 30 | 2041 | 20030531 | 0500 | 50 | 3.8 | 6.9 | 692 | | | | | 31 | | | JUN | 2011 |
20030331 | 0500 | 50 | 3.0 | 0.7 | 0,2 | | | | | 31 | | | 10 | 0616 | 20030610 | 0758 | 50 | | | | | | | | | | | 10 | 0720 | 20030610 | 0905 | 50 | | | | | | | | | | | 24 | 0749 | 20030624 | 0823 | 50 | | 7.7 | 544 | | | | | 38 | | | 28 | 0946 | 20030628 | 1348 | 50 | <1.0 | 7.3 | 208 | 12.4 | 13.1 | 4.00 | 4.9 | 26 | | | JUL | 07.41 | 20020704 | 0005 | 50 | 1.0 | 0.0 | 202 | 10.0 | 02.6 | 4.70 | 20 | 4.4 | 27 | | 04
26 | 0741
0721 | 20030704
20030726 | 0825
1004 | 50
50 | 1.2
5.4 | 8.0
8.1 | 292
209 | 19.9
16.7 | 83.6
86.3 | 4.70
3.50 | 32
36 | 44
101 | 37
43 | | ∠0 | 0/21 | 20030726 | 1004 | 30 | 3.4 | 0.1 | 209 | 10.7 | 80.3 | 5.50 | 30 | 101 | 43 | | OCT 2002 04 very color of the t | Date | Residue
on
evap.
at
105degC
wat unf
mg/L
(00500) | Residue
on
evap.
at
180degC
wat flt
mg/L
(70300)
4320308803 | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530)
35400 ST. | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625)
MARYS Ho | Nitrite + nitrate water fltrd, mg/L as N (00631) OSPITAL | Phosphorus, water, fltrd, mg/L (00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Copper,
water,
fltrd,
ug/L
(01040)
AY, WI (LA | Copper,
water,
unfltrd
recover
-able,
ug/L
(01119)
AT 44 32 03 | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01094)
088 03 54W | 1-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(81696) | 2-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(30194) | |---|----------|---|---|--|--|--|--|--|--|---|--|--|--|--| | MAY 2003 MAY 2003 O7 | OCT 2002 | | | | | | | | | | | | | | | 09 | 04 | <50 | 54 | 5 | 0.21 | < 0.022 | 0.009 | 0.019 | M | 6 | 40 | 50 | < 0.046 | < 0.034 | | 10 | | 74 | | 3 | | | | | M | 11 | 80 | 100 | < 0.046 | < 0.034 | | 30 | | | | | | | | | | | | | | | | JUN 10 < 50 | | | | | | | | | | | | | | | | 10 | | | 70 | 6 | | | 0.008 | 0.023 | 10 | 13 | 80 | 100 | < 0.046 | < 0.034 | | 24 | | | .50 | 0 | | | 0.011 | 0.024 | 3.6 | 0 | 40 | 70 | | | | 28 | | | | | | | | | | | | | | | | JUL 04 < 50 | | | | | | | | | | | | | | | | 04 | | | <30 | 3 | | | 0.010 | 0.020 | 10 | 12 | 00 | 70 | <0.040 | <0.034 | | 26 40 0.007 0.069 10 22 70 150 | | | < 50 | 82 | | | 0.006 | 0.113 | 10 | 47 | 210 | 500 | | | | OCT 2002 04 76 <50 20 0.36 <0.022 0.015 0.052 M 6 20 40 0.1 <0.2 APR 2003 15 | | | | | | | | | | | | | | | | OCT 2002 04 76 <50 | 20 | | | | | | | | | | | | | | | 04 76 <50 20 0.36 <0.022 0.015 0.052 M 6 20 40 0.1 <0.2 APR 2003 15 | | 4432 | 050880355 | 00 ST. MA | ARYS HOS | PITAL INI | LET PIPE A | AT GREEN | BAY, WI | (LAT 44 32 | 2 05N LON | G 088 03 5 | 5W) | | | 04 76 <50 20 0.36 <0.022 0.015 0.052 M 6 20 40 0.1 <0.2 APR 2003 15 | OCT 2002 | | | | | | | | | | | | | | | APR 2003 15 MAY 07 982 296 59 0.0029 0.129 M 10 20 80 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0. | | 76 | <50 | 20 | 0.36 | < 0.022 | 0.015 | 0.052 | М | 6 | 20 | 40 | 0.1 | <0.2 | | 15 | | , 0 | 100 | -0 | 0.50 | 10.022 | 0.015 | 0.002 | | Ü | | .0 | 0.1 | 10.2 | | 07 382 296 59 0.029 0.129 M 10 <20 80 <0.1 <0.1
09 708 60 0.006 0.095 10
10 198 152 0.021 0.153 M 12 <20 90 0.4 <0.6
30 456 31 <0.005 0.072 M 11 40 60 <0.046 JUN
10 33 0.080 | | | | | | | | | | | | | | | | 09 708 60 0.006 0.095 | MAY | | | | | | | | | | | | | | | 10 198 152 0.021 0.153 M 12 <20 90 0.4 <0.6 30 456 31 <0.005 0.072 M 11 40 60 <0.046 JUN 10 33 0.080 | 07 | 382 | 296 | 59 | | | 0.029 | 0.129 | M | 10 | <20 | 80 | < 0.1 | < 0.1 | | 30 456 31 <0.005 0.072 M 11 40 60 <0.046 JUN 10 33 0.080 | 09 | | 708 | 60 | | | 0.006 | 0.095 | | | | | | | | JUN
10 33 0.080 | | | | | | | | | | | | | | < 0.6 | | 10 33 0.080 | | | 456 | 31 | | | < 0.005 | 0.072 | M | 11 | 40 | 60 | < 0.046 | | | | | | | | | | | | | | | | | | | 10 18 0.057 | 24 328 110 0.079 0.220 | | | | | | | | | | | | | | | | 28 116 15 0.056 0.093 M 7 30 50 <0.046 <0.034 | | | 116 | 15 | | | 0.056 | 0.093 | M | 7 | 30 | 50 | <0.046 | <0.034 | | JUL
04 192 362 0.036 0.394 M 56 30 220 | | | 102 | 362 | | | 0.036 | 0.304 | М | 56 | 30 | 220 | | | | 04 192 362 0.036 0.394 M 56 30 220 26 140 539 0.030 0.462 M 28 <20 180 | | | | | | | | | | | | | | | | Date | 9H-
Fluor-
ene,
water,
unfltrd
ug/L
(34381) | Ace-
naphth-
ene,
water,
unfltrd
ug/L
(34205) | Ace-naphth-ylene, water, unfltrd ug/L (34200) | Anthra-
cene,
water,
unfltrd
ug/L
(34220)
MARYS H | Benzo-
[a]-
anthra-
cene,
water,
unfltrd
ug/L
(34526) | Benzo-
[a]-
pyrene,
water,
unfltrd
ug/L
(34247) | Benzo-
[b]-
fluor-
anthene
water
unfltrd
ug/L
(34230)
GREEN BA | Benzo-
[g,h,i]
-per-
ylene,
water,
unfltrd
ug/L
(34521)
AY, WI (LA | Benzo-
[k]-
fluor-
anthene
water
unfltrd
ug/L
(34242) | Chrys-
ene,
water,
unfltrd
ug/L
(34320)
BN LONG | Di-
benzo-
[a,h]-
anthra-
cene,
wat unf
ug/L
(34556)
088 03 54W | Fluor-
anthene
water
unfltrd
ug/L
(34376) | Indeno-
[1,2,-
3-cd]-
pyrene,
water,
unfltrd
ug/L
(34403) | |----------------|---|---|---|---|--|---|--|--|--|---|---|--|--| | OCT 2002 | | | | | | | | | | | | | | | 04
MAY 2003 | < 0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | < 0.11 | < 0.078 | < 0.070 | M | < 0.038 | M | < 0.12 | | 07
09 | < 0.20 | < 0.060 | <0.072 | <0.021 | < 0.062 | < 0.070 | < 0.11 | < 0.078 | < 0.070 | < 0.027 | < 0.038 | < 0.080 | < 0.12 | | 10 | <0.20 | < 0.060 | < 0.072 | < 0.021 |
М |
M |
М | M | < 0.070 | M | < 0.038 |
M | M | | 30
JUN | < 0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | < 0.11 | < 0.078 | < 0.070 | M | < 0.038 | M | < 0.12 | | 10 | | | | | | | | | | | | | | | 24
28 | <0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | < 0.11 | < 0.078 | < 0.070 | < 0.027 | < 0.038 | < 0.080 | <0.12 | | JUL
04 | | | | | | | | | | | | | |
| 26 | | | | | | | | | | | | | | | | 4432 | 050880355 | 00 ST. MA | ARYS HOS | PITAL INL | ET PIPE A | T GREEN | BAY, WI | (LAT 44 32 | 2 05N LON | IG 088 03 5 | 5W) | | | OCT 2002 | | | | | | | | | | | | | | | 04
APR 2003 | 1 | M | < 0.072 | 1 | 8 | 11 | 15 | 11 | 7 | 12 | <2 | 30 | 11 | | 15 | | | | | | | | | | | | | | | MAY
07 | M | M | | 1 | 7 | 13 | 20 | 14 | 9 | 17 | <2 | 42 | 14 | | 09
10 | 4 | 4 | | 7 | 28 |
44 | 48 | 38 | 23 | 43 |
<7 | 120 | 36 | | 30 | < 0.20 | < 0.060 | | M | 2 | 3 | 5 | 3 | 2 | 4 | < 0.50 | 13 | 3 | | JUN
10 | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 24
28 | <0.20 | <0.060 | <0.072 | | | 2 | 4 | 3 | 2 | 4 | <0.40 | 10 | 3 | | JUL | | | | | | _ | • | - | _ | • | | | - | | 04
26 | | | | | | | | | | | | | | | Date | Phenanthrene,
water, unfltrd
ug/L
(34461) | Pyrene,
water, unfltrd
ug/L
(34469) | Naphthalene,
water, unfltrd
ug/L
(34696) | Suspended sediment
concentration
mg/L
(80154) | Runoff, volume
Thousands of cubic feet
(99904) | |----------------|--|--|---|--|--| | 44320308 | 8035400 ST. MA | ARYS HOSPITAI | L ROOF AT GREE | N BAY, WI (LAT 44 32 0 | 3N LONG 088 03 54W) | | OCT 2002 | | | | | | | 04 | < 0.040 | M | < 0.038 | | 1.4 | | MAY 2003
07 | < 0.040 | < 0.070 | < 0.038 | 2 | 0.29 | | 07
09 | <0.040 | <0.070 | <0.038 | | 0.29 | | 10 | M | M | < 0.038 | 17 | 1.0 | | 30 | < 0.040 | M | < 0.038 | | 0.24 | | JUN | | | | 4.0 | | | 10
24 | | | | 10 | 1.2
0.13 | | 24
28 | <0.040 | <0.070 | <0.038 | 3 | 1.0 | | JUL | \0.040 | <0.070 | <0.036 | 3 | 1.0 | | 04 | | | | | 0.49 | | 26 | | | | | 0.73 | | 44320508803 | 35500 ST. MAR | YS HOSPITAL IN | NLET PIPE AT GR | EEN BAY, WI (LAT 44 3 | 2 05N LONG 088 03 55W) | | | | | | | | | OCT 2002
04 | 15 | 24 | M | | 13 | | APR 2003 | 13 | 24 | IVI | == | 13 | | 15 | | | | 435 | | | MAY | | | | | | | 07 | 14 | 32 | M | 70 | 0.75 | | 09 | | | | | 1.2 | | 10 | 62 | 90 | M | 175 | 8.5 | | 30
JUN | 4 | 8 | < 0.038 | | 2.1 | | 10 | | | | | 8.2 | | 10 | | | | | 9.7 | | 24 | | | | | 1.5 | | 28 | | | M | | 7.0 | | JUL | | | | | | | 04 | | | | | 7.0 | | 26 | | | | | 7.9 | | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Phosphorus,
water, fltrd,
mg/L
(00666) | Phosphorus,
water, unfltrd
mg/L
(00665) | |----------------|-----------|---|--|---|--| | 05333974 CRY | STAL BROO | K AT HWY 70 NE | EAR SPOONE | R, WI (LAT 45 48 : | 51N LONG 091 46 32W) | | OCT 2002
24 | 1450 | 20 | 70 | 0.033 | 0.041 | | DEC | - 10 0 | | , - | 0.033 | ***** | | 20
MAR 2003 | 0910 | 19 | 10 | | 0.051 | | 18 | 1140 | 19 | 70 | 0.030 | 0.049 | | APR
29 | 1300 | 18 | 70 | 0.027 | 0.041 | | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Phosphorus,
water, fltrd,
mg/L
(00666) | Phosphorus,
water, unfltrd
mg/L
(00665) | |--------------------|--------------|---|--|---|--| | 05358177 BUTTERN | UT LAKE TRI | BUTARY AT CTH B N | R BUTTERNUT, ' | WI (LAT 45 59 05N | LONG 090 30 55W) | | MAR 2003
20 | 1650 | 0.01 | 70 | | 0.138 | | APR
17 | 1805 | 0.82 | 70 | | 0.040 | | 21
MAY | 1425 | 2.3 | 70 | | 0.036 | | 13 | 0925 | 2.0 | 70 | | 0.032 | | 05358179 SCHNUR I | LAKE OUTLET | Γ AT LAKESIDE DR N | R PARK FALLS, | WI (LAT 45 58 32N | LONG 090 30 43W) | | NOV 2002 | | | | | | | 15
DEC | 0900 | 0.79 | 70 | 0.009 | 0.027 | | 12
JAN 2003 | 1215 | 0.48 | 70 | 0.009 | 0.036 | | 16
FEB | 0955 | 0.36 | 70 | 0.008 | 0.030 | | 13 | 1415 | 0.40 | 70 | 0.005 | 0.032 | | MAR
11 | 1120 | 0.43 | 70 | 0.017 | 0.025 | | 20 | 1710 | 0.60 | 70 | 0.007 | 0.023 | | APR | 1120 | 1.4 | 70 | 0.010 | 0.020 | | 15
18 | 1130
1135 | 1.4
2.2 | 70
70 | 0.010
0.006 | 0.020
0.017 | | 21 | 1545 | 7.2 | 70
70 | < 0.005 | 0.017 | | MAY | 1343 | 1.2 | 70 | <0.003 | 0.020 | | 13
JUN | 1025 | 9.4 | 70 | 0.009 | 0.021 | | 17
JUL | 1840 | 0.98 | 70 | 0.008 | 0.016 | | 16
AUG | 1455 | 0.25 | 70 | | 0.020 | | 12 | 2005 | E.10 | 70 | | 0.025 | | 05358186 SE TRIB T | O BUTTERNU | JT L @ LAKESIDE DR | NR PARK FALL | S (LAT 45 57 22N | LONG 090 30 51W) | | NOV 2002 | | | | | | | 15
DEC | 0840 | 0.06 | 70 | | 0.031 | | 12
JAN 2003 | 1315 | 0.03 | 70 | | 0.037 | | 16
FEB | 1045 | 0.01 | 70 | | 0.090 | | 13
MAR | 1500 | 0.01 | 70 | | 0.039 | | 20
APR | 1755 | 0.14 | 70 | | 0.066 | | 15 | 1210 | 0.54 | 70 | | 0.079 | | 18 | 1210 | 0.43 | 70 | | 0.049 | | 21 | 1610 | 0.71 | 70 | | 0.054 | | MAY
13 | 1055 | 0.48 | 70 | | 0.026 | | JUN
17 | 1920 | 0.06 | 70 | | 0.040 | | AUG
12 | 0815 | E.01 | 70 | | 0.072 | | SEP
16 | 1900 | E.05 | 70 | | 0.045 | | | | | | | | # | DEC 2002 12 0930 0.01 70 0.142 | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Phosphorus,
water, fltrd,
mg/L
(00666) | Phosphorus,
water, unfltrd
mg/L
(00665) | |--|-----------------|-----------------|---|--|---|--| | DEC 2002 12 0930 0.01 70 0.142 | 053581865 SW TI | RIB NO.1 TO BUT | ` ' | ` / | ` ' | ` ′ | | 12 0930 0.01 70 0.142 | | | | | (====================================== | | | APR 14 1955 | 12 | 0930 | 0.01 | 70 | | 0.142 | | APR 114 1955 0.25 70 0.053 17 1830 0.94 70 0.124 21 1305 4.4 70 0.115 MAY 13 1325 3.7 70 0.086 05358187 SW TRIB NO.2 TO BUTTERNUT L @ CTH B NR PARK FALLS (LAT 45 57 14N LONG 090 31 53W) NOV 2002 14 1700 0.19 70 0.070 DEC 12 0855 0.01 70 0.149 MAR 2003 20 1630 0.22 70 0.222 APR 114 2005 0.48 70 0.135 17 1845 1.3 70 0.114 21 1235 4.2 70 0.114 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.088 MAY 13 1300 3.6 70 0.088 JUN 17 1720 0.05 70 0.068 JUN 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0802 1.1 70 0.037 0.065 21 1030 1.1 70 0.037 0.065 21 1030 1.1 70 0.037 0.065 21 1040 6.7 70 0.021 0.052 MAY 13 1155 1.0 70 0.023 0.040 JUN 17 1620 0.53 70 0.023 0.040 | | 1.410 | 0.45 | 70 | | 0.220 | | 17 1830 0.94 70 0.124 21 1305 4.4 70 0.115 MAY 13 1325 3.7 70 0.086 05358187 SW TRIB NO.2 TO BUTTERNUT L @ CTH B NR PARK FALLS (LAT 45 57 14N LONG 090 31 53W) NOV 2002 | | 1410 | 0.45 | 70 | | 0.339 | | 21 1305 | 14 | 1955 | 0.25 | 70 | | 0.053 | | MAY 13 1325 3.7 70 0.086 05358187 SW TRIB NO.2 TO BUTTERNUT L @ CTH B NR PARK FALLS (LAT 45 57 14N LONG 090 31 53W) NOV 2002 14 1700 0.19 70 0.070 DEC 12 0855 0.01 70 0.149 MAR 2003 20 1630 0.22 70 0.222 APR 14 2005 0.48 70 0.135 17 1845 1.3 70 0.114 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.088 MAY 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.027 0.064 18 0825 1.9 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.023 0.040 JUN 17 1620 0.53 70 0.023 0.040 | 17 | 1830 | 0.94 | 70 | | 0.124 | | 13 1325 3.7 70 0.086 05358187 SW TRIB NO.2 TO BUTTERNUT L @ CTH B NR PARK FALLS (LAT 45 57 14N LONG 090 31 53W) NOV 2002 14 1700 0.19 70 0.070 DEC 12 0855 0.01 70 0.149 MAR 2003 20 1630 0.22 70 0.222 APR 14 2005 0.48 70 0.135 17 1845 1.3 70 0.114 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.088 MAY 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.027 0.064 18 0825 1.9 70 0.037 0.0021 0.052
MAY 13 1155 1.0 70 0.023 0.040 JUN 17 1640 6.7 70 0.021 0.052 MAY 13 1155 1.0 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.044 JUN 17 1620 0.53 70 0.032 0.040 JUN 17 1620 0.53 70 0.032 0.048 | 21 | 1305 | 4.4 | 70 | | 0.115 | | 05358187 SW TRIB NO.2 TO BUTTERNUT L @ CTH B NR PARK FALLS (LAT 45 57 14N LONG 090 31 53W) NOV 2002 14 1700 0.19 70 0.070 DEC 0.01 70 0.149 MAR 2003 20 1630 0.22 70 0.222 APR 14 2005 0.48 70 0.135 17 1845 1.3 70 0.014 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 1AN 2003 16 1120 0.01 70 0.058 | MAY | | | | | | | NOV 2002 14 1700 0.19 70 0.070 DEC 12 0855 0.01 70 0.149 MAR 2003 20 1630 0.22 70 0.222 APR 14 2005 0.48 70 0.135 17 1845 1.3 70 0.114 21 1235 4.2 70 0.114 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.088 MAY 117 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.022 0.048 JUL JUL | 13 | 1325 | 3.7 | 70 | | 0.086 | | 14 1700 0.19 70 0.070 | 05358187 SW TR | RIB NO.2 TO BUT | TERNUT L @ CTH B | NR PARK FALLS | (LAT 45 57 14N LC | NG 090 31 53W) | | DEC 12 0855 0.01 70 0.149 MAR 2003 20 1630 0.22 70 0.222 APR 14 2005 0.48 70 0.135 17 1845 1.3 70 0.114 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.088 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0805 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.037 0.065 21 1640 6.7 70 0.037 0.065 21 1640 6.7 70 0.027 0.064 MAY 13 1155 10 70 0.023 0.040 JUN 13 1155 10 70 0.023 0.040 JUN 13 1155 10 70 0.023 0.040 JUN 13 1155 10 70 0.023 0.040 | NOV 2002 | | | | | | | 12 0855 0.01 70 0.149 | | 1700 | 0.19 | 70 | | 0.070 | | APR 14 2005 | | 0855 | 0.01 | 70 | | 0.149 | | APR 14 2005 0.48 70 0.135 17 1845 1.3 70 0.114 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.025 0.034 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0825 1.9 70 0.027 0.064 18 0825 1.9 70 0.027 0.065 21 1640 6.7 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 | MAR 2003 | | | | | | | 14 2005 0.48 70 0.135 17 1845 1.3 70 0.014 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0.745 0.96 70 0.027 0.064 18 0.825 1.9 70 0.037 0.065 21 1640 6.7 70 0.023 0.040 JUN 13 | 20 | 1630 | 0.22 | 70 | | 0.222 | | 17 | APR | | | | | | | 21 1235 4.2 70 0.088 MAY 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUN 17 1620 0.53 70 0.032 0.048 | 14 | 2005 | 0.48 | 70 | | 0.135 | | MAY 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUN 17 1620 0.53 70 0.032 0.048 | 17 | 1845 | 1.3 | 70 | | 0.114 | | 13 1300 3.6 70 0.068 JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL 10.0 0.53 70 0.032 0.048 | 21 | 1235 | 4.2 | 70 | | 0.088 | | JUN 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | MAY | | | | | | | 17 1720 0.05 70 0.300 JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | 13 | 1300 | 3.6 | 70 | | 0.068 | | JUL 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.032 0.048 JUN 17 1620 0.53 70 0.032 0.048 | JUN | | | | | | | 15 1325 0.01 70 0.208 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | 17 | 1720 | 0.05 | 70 | | 0.300 | | 05358188 MUD LAKE OUTLET NR BUTTERNUT LAKE NR PARK FALLS,WI (LAT 45 56 38N LONG 090 31 32W) NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL 10L 0.052 0.048 10L 0.002 0.048 | JUL | | | | | | | NOV 2002 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | 15 | 1325 | 0.01 | 70 | | 0.208 | | 15 0800 0.88 70 0.025 0.033 DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | 05358188 MUD LA | KE OUTLET NR | BUTTERNUT LAKE N | NR PARK FALLS, | WI (LAT 45 56 38N | LONG 090 31 32W) | | DEC 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | NOV 2002 | | | | | | | 12 0800 0.37 70 0.032 0.044 JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 0800 | 0.88 | 70 | 0.025 | 0.033 | | JAN 2003 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 0800 | 0.37 | 70 | 0.032 | 0.044 | | 16 1120 0.01 70 0.058 0.137 MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 0000 | 0.57 | 70 | 0.032 | 0.011 | | MAR 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 1120 | 0.01 | 70 | 0.058 | 0.137 | | 21 1030 1.1 70 0.033 0.080 APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 1120 | 0.01 | 70 | 0.050 | 0.137 | | APR 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 1030 | 1.1 | 70 | 0.033 | 0.080 | | 15 0745 0.96 70 0.027 0.064 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL |
| 1000 | | , , | 0.022 | 0.000 | | 18 0825 1.9 70 0.037 0.065 21 1640 6.7 70 0.021 0.052 MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 0745 | 0.96 | 70 | 0.027 | 0.064 | | 21 1640 6.7 70 0.021 0.052
MAY
13 1155 10 70 0.023 0.040
JUN
17 1620 0.53 70 0.032 0.048
JUL | | | | | | | | MAY 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | | | | | | | 13 1155 10 70 0.023 0.040 JUN 17 1620 0.53 70 0.032 0.048 JUL | | 10.0 | 0.7 | , , | 0.021 | 0.002 | | JUN
17 1620 0.53 70 0.032 0.048
JUL | | 1155 | 10 | 70 | 0.023 | 0.040 | | 17 1620 0.53 70 0.032 0.048
JUL | | | - * | | ***-* | *** ** | | JUL | | 1620 | 0.53 | 70 | 0.032 | 0.048 | | | | - 3-0 | | . • | | | | | | 1110 | 0.29 | 70 | | 0.062 | | Date | Time | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field, std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phosphorus,
water, unfltrd
mg/L
(00665) | |----------------------------|--------------|--------------------------------------|--|--|--|--|-----------------------------------|--|--| | 05390680 | MUSKEI | LLUNGE CK- | MUSKELLU | JNGE L OT | L-NR EAG | LE RIVER | ,WI (LAT | 45 57 06N LO | NG 089 23 24W) | | OCT 2002
11
29 | 1200
0800 | 3.4 | 70
70 |
 |
 |
 |
 | 0.013
0.015 | 0.037
0.036 | | JAN 2003
09 | 1305 | 2.5 | 70 | 10.0 | 7.2 | 91 | 2.4 | 0.018 | 0.043 | | MAR
12
MAY | 1545 | 2.6 | 70 | 9.9 | 6.7 | 106 | 0.8 | 0.009 | 0.011 | | 06 | 1310 | 4.4 | 70 | | | | | 0.014 | 0.046 | | JUN
17 | 1150 | 3.4 | 70 | | | | | 0.021 | 0.060 | | JUL
16 | 0845 | 1.5 | 70 | | | | | 0.024 | 0.040 | | AUG
13
SEP | 0920 | 1.1 | 70 | | | | | 0.012 | 0.040 | | 25 | 0800 | 1.5 | 70 | | | | | 0.015 | 0.040 | | 05390681 | MUSKE | ELLUNGE CK | AT TRAIL | CROSSING | NR EAGL | E RIVER,V | WI (LAT 4 | 5 56 52N LON | IG 089 24 10W) | | OCT 2002
11
29 | 1105
0900 | 19
4.6 | 70
70 | |
 | |
 | 0.020
0.018 | 0.041
0.037 | | JAN 2003
09 | 1200 | 2.8 | 70 | 11.9 | 7.4 | 88 | 0.6 | 0.033 | 0.054 | | MAR
12 | 1630 | 3.9 | 70 | 10.0 | 6.8 | 98 | 0.0 | 0.023 | 0.049 | | MAY | | | | | | | | | | | 06
JUN | 1335 | 7.8 | 70 | | | | | 0.022 | 0.058 | | 17
JUL | 1210 | 5.6 | 70 | | | | | 0.031 | 0.073 | | 16
AUG | 0915 | 3.2 | 70 | | | | | 0.027 | 0.047 | | 13
SEP | 0945 | 1.9 | 70 | | | | | 0.026 | 0.043 | | 25 | 0850 | 2.1 | 70 | | | | | 0.023 | 0.039 | | | 5390685 | MUSKELLU | NGE CREEK | NEAR ST. | GERMAIN | N, WI (LA | Γ 45 56 011 | N LONG 089 2 | 5 29W) | | OCT 2002
29
JAN 2003 | 1030 | 8.9 | 70 | | | | | 0.020 | 0.032 | | 09
MAR | 1100 | 5.9 | 70 | 10.8 | 7.4 | 83 | 0.0 | 0.030 | 0.049 | | 12 | 1745 | 6.1 | 70 | 8.1 | 6.9 | 91 | 0.0 | 0.020 | 0.042 | | MAY
06
JUN | 1450 | 11 | 70 | | | | | 0.027 | 0.068 | | 17 | 1315 | 7.5 | 70 | | | | | 0.043 | 0.064 | | JUL
16 | 1040 | 5.4 | 70 | | | | | 0.038 | 0.060 | | AUG
13 | 0800 | 4.6 | 70 | | | | | 0.037 | 0.048 | | SEP
25 | 1005 | 4.7 | 70 | | | | | 0.025 | 0.035 | | Date | Time | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH, water,
unfltrd c
field,
std
units
(00400) | Specif.
onductance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | Phosphorus,
water,
unfltrd
mg/L
(00665) | |----------------------------------|--------------|---|---|--|--|--|--|---| | 0539070 | 1 LITTLE | E SAINT GERM | IAIN CREE | K NEAR EAGI | LE RIVER, W | (LAT 45 53 | 55N LONG 08 | 89 27 10W) | | OCT 2002
11
29
JAN 2003 | 1235
0655 | 20 | 70
70 |
 |
 |
 |
 | 0.044
0.029 | | 09 | 1605 | 14 | 70 | 9.0 | 7.2 | 85 | 2.5 | 0.043 | | MAR
13 | 0820 | 5.6 | 70 | 7.1 | 6.5 | 106 | 0.3 | 0.040 | | MAY
06 | 1230 | 2.2 | 70 | | | | | 0.033 | | JUN
17 | 1050 | 7.2 | 70 | | | | | 0.036 | | JUL
16 | 0745 | 6.2 | 70 | | | | | 0.036 | | AUG
13 | 1100 | 6.7 | 70 | | | | | 0.081 | | SEP
25 | 1025 | 6.1 | 70 | | | | | 0.065 | | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | at 105 deg. C,
sus pended,
mg/L
(00530) | water, unfltrd
mg/L as N
(00625) | mg/L as N
(00608) | Nitrite +
nitrate
water fltrd,
mg/L as N
(00631) | Phos phorus,
water unfltrd
mg/L
(00665) | | | 05 TRIB | TO PHEASAN | ΓBRANCH | TRIB AT MID | DLETON, WI | (LAT 43 07 | 20N LONG 08 | 39 29 19W) | | MAR 2003
15
MAY | 1530 | E.40 | 70 | 35 | 43 | | 0.027 | 9.47 | | 09
10 | 0245
2240 | E1.6 >1.6 | 50
50 | 3,200
4,470 | 150
37 | 54.0 | 0.005
0.152 | 37.1
16.0 | | 4307340892 | 91500 TR | IB TO PHEAS | ANT BRAN | CH TRIB SITE
15W) | 22 AT MIDDL | ETON,WI (L | AT 43 07 34N | LONG 089 29 | | MAR 2003
15
MAY | 1545 | E.40 | 70 | 66 | 62 | | 0.059 | 12.7 | | 09
10 | 0230
2230 | >1.6
>1.6 | 50
50 | 2,400
7,880 | 74
43 | 22.6 | 0.096
0.108 | 21.6
18.4 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Ortho-
phosphate,
water, fltrd,
mg/L as P
(00671) | Phosphorus,
water,
unfltrd
mg/L
(00665) | Suspended
sediment
concentration
mg/L
(80154) | |-----------------|------------|---|--|---|---|---| | 430327088224900 | 0 NAGAWIO | CKA LAKE TRIB AT | GARRISON CT A | T DELAFIELD,W | /I (LAT 43 03 27) | N LONG 088 22 49W) | | MAY 2003 | | | | | | | | 01 | 1200 | | 50 | | 0.737 | 1,210 | | 01 | 1215 | | 50 | | 0.739 | 1,230 | | 05 | 1145 | | 70 | | 0.132 | 8 | | 09 | 0930 | 0.46 | 70 | | 0.118 | 12 | | JUL | | | | | ***** | | | 06 | 1200 | | 50 | | 0.358 | 410 | | 15 | 1200 | | 50 | | 0.687 | 1,040 | | SEP | 1200 | | | | 0.007 | 1,0.0 | | 14 | 0800 | | 50 | | 0.368 | 321 | | 430328088230300 | 0 NAGAWIC | KA LAKE TRIB @ MI | LWAUKEE ST A | ΓDELAFIELD,W | I (LAT 43 03 28N | LONG 088 23 03W) | | DEC 2002 | | | | | | | | 16 | 1445 | 0.61 | 10 | | 0.022 | 53 | | JAN 2003 | | | | | | | | 08 | 1150 | 0.45 | 10 | | 0.025 | 20 | | FEB | | | - 4 | | ***-* | | | 13 | 1315 | 0.39 | 70 | | 0.015 | 13 | | MAY | | | | | | | | 05 | 1225 | 1.1 | 70 | | 0.094 | 22 | | 09 | 1000 | 2.2 | 70 | | 0.117 | 33 | | JUN | 1000 | 2.2 | , , | | 0.117 | 22 | | 03 | 1105 | 0.51 | 70 | | 0.155 | 32 | | AUG | 1105 | 0.51 | 70 | | 0.155 | 32 | | 04 | 1350 | 0.34 | 70 | 0.023 | 0.155 | 10 | | SEP | 1330 | 0.54 | 70 | 0.023 | 0.133 | 10 | | 03 | 1430 | | 70 | | 0.021 | 14 | | 4305010882 | 235400 NAG | AWICKA LAKE TRII | BUTARY NR NAS | SHOTAH, WI (LA | AT 43 05 01N LO | NG 088 23 54W) | | MAY 2003 | | | | | | | | 01 | 1200 | | 50 | | 1.18 | 36 | | 01 | 1215 | | 50 | | 1.18 | 24 | | 01 | 1230 | | 50 | | 1.16 | 18 | | 09 | 1245 | | 70 | | 0.298 | 60 | | 09 | 1243 | | 70 | | 0.290 | 00 | ## $054064509\ \ BLACK\ EARTH\ CREEK\ LOW\ FLOW\ \#3\ NR\ CROSS\ PLAINS, WI\ (LAT\ 43\ 05\ 49N\ LONG\ 089\ 37\ 32W)$ | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Turbid-
ity,
wat unf
lab,
Hach
2100AN
NTU
(99872) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potassium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | |----------|------|--------------------------------------|-------------------------------|--|---|--|---|--|---|--|--|---|--| | APR 2003 | | | | | | | | | | | | | | | 29 | 1130 | 1.5 | 50 | 6.8 | 756 | 15.6 | 8.4 | 632 | 13.0 | | | | | | JUN | | | | | | | | | | | | | | | 12 | 1315 | 1.0 | 10 | 7.1 | 740 | 11.3 | 8.2 | 631 | 15.5 | | | | | | JUL | | | | | | | | | | | | | | | 24 | 1215 | 0.84 | 10 | 4.6 | 747 | 10.3 | 8.1 | 638 | 19.0 | | | | | | AUG | | | | | | | | | | | | | | | 12 | 1100 | 0.66 | 10 | 9.4 | 753 | 11.1 | 8.2 | 657 | 18.5 | 77.3 | 41.5 | 1.08 | 9.27 | | 26 | 1430 | 0.52 | 10 | 9.6 | 730 | 8.9 | 8.1 | 656 | 25.0 | |
| | | | SEP | | | | | | | | | | | | | | | 25 | 1000 | 0.52 | 10 | 4.7 | 757 | 11.0 | 8.4 | 662 | 9.5 | | | | | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 #### $054064509\ \ BLACK\ EARTH\ CREEK\ LOW\ FLOW\ \#3\ NR\ CROSS\ PLAINS,\ WI\ (LAT\ 43\ 05\ 49N\ LONG\ 089\ 37\ 32W)$ | Date | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(90410) | Chloride,
water,
fltrd,
mg/L
(00940) | Fluoride,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
on
evap.
at
180degC
wat flt
mg/L
(70300) | Ammonia
+ org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | |--|--|---|--|--|---|---|--|---|---|--|--|--|--| | APR 2003 | | | | | | | | | | | | | | | 29
JUN | 290 | 25.5 | < 0.17 | | 16.5 | | 0.60 | < 0.04 | 2.66 | 0.019 | E.02 | < 0.04 | 0.09 | | 12
JUL | 302 | 21.9 | < 0.2 | | 12.0 | | 0.49 | E.04 | 2.81 | 0.043 | 0.06 | 0.06 | 0.11 | | 24
AUG | 306 | 23.4 | <0.2 | | 12.6 | | 0.36 | <0.04 | 2.83 | 0.036 | 0.10 | 0.11 | 0.15 | | 12
26
SEP | 316 | 21.4
22.0 | <0.2
<0.2 | 18.8 | 14.6
13.5 | 382 | 0.26
0.35 | E.03
<0.04 | 3.42
3.36 | 0.066
0.056 | 0.11
0.12 | 0.12
0.15 | 0.16
0.17 | | 25 | 264 | 23.9 | < 0.2 | | 14.4 | | 0.18 | E.03 | 4.19 | 0.024 | 0.08 | 0.08 | 0.10 | | | | | | | | | | | | | | | | | Date | COD,
high
level,
water,
unfltrd
mg/L
(00340) | Fecal
coli-
form,
M-FC
0.7u MF
col/
100 mL
(31625) | Fecal
strep-
tococci
KF
MF,
col/
100 mL
(31673) | Arsenic
water
unfltrd
ug/L
(01002) | Boron,
water,
unfltrd
recover
-able,
ug/L
(01022) | Cadmium
water,
unfltrd
ug/L
(01027) | Chromium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | | APR 2003
29 | high
level,
water,
unfltrd
mg/L | coli-
form,
M-FC
0.7u MF
col/
100 mL | strep-
tococci
KF
MF,
col/
100 mL | water
unfltrd
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
ug/L | ium,
water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
fltrd,
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
recover
-able,
ug/L | ese,
water,
fltrd,
ug/L | | APR 2003
29
JUN
12 | high
level,
water,
unfltrd
mg/L
(00340) | coli-
form,
M-FC
0.7u MF
col/
100 mL
(31625) | strep-
tococci
KF
MF,
col/
100 mL
(31673) | water
unfltrd
ug/L
(01002) | water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
ug/L | ium,
water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
fltrd,
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
recover
-able,
ug/L | ese,
water,
fltrd,
ug/L | | APR 2003
29
JUN
12
JUL
24 | high
level,
water,
unfltrd
mg/L
(00340) | coli-
form,
M-FC
0.7u MF
col/
100 mL
(31625) | strep-
tococci
KF
MF,
col/
100 mL
(31673) | water
unfltrd
ug/L
(01002) | water,
unfltrd
recover
-able,
ug/L
(01022) | water,
unfltrd
ug/L
(01027) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
unfltrd
recover
-able,
ug/L
(01037) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | water,
unfltrd
recover
-able,
ug/L
(01045) | water,
unfltrd
recover
-able,
ug/L
(01051) | ese,
water,
fltrd,
ug/L
(01056) | | APR 2003
29
JUN
12
JUL | high
level,
water,
unfltrd
mg/L
(00340)
20 | coli-
form,
M-FC
0.7u MF
col/
100 mL
(31625)
37
200 | strep-
tococci
KF
MF,
col/
100 mL
(31673) | water
unfltrd
ug/L
(01002) | water,
unfltrd
recover
-able,
ug/L
(01022) | water,
unfltrd
ug/L
(01027) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
unfltrd
recover
-able,
ug/L
(01037) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | water,
unfltrd
recover
-able,
ug/L
(01045) | water,
unfltrd
recover
-able,
ug/L
(01051) | ese,
water,
fltrd,
ug/L
(01056) | | Date | Manganese,
water, unfltrd
recoverable,
ug/L
(01055) | Mercury
water, unfltrd
recoverable,
ug/L
(71900) | Nickel,
water, unfltrd
recoverable,
ug/L
(01067) | Zinc,
water, unfltrd
recoverable,
ug/L
(01092) | Suspended
sediment
concentration
mg/L
(80154) | |-----------|---|--|--|--|---| | APR 2003 | | | | | | | 29 | | | | | 5 | | JUN | | | | | | | 12 | | | | | 17 | | JUL | | | | | | | 24 | | | | | 17 | | AUG
12 | 104 | -0.02 | -2.0 | 5 | 22 | | | 104 | < 0.02 | <2.0 | 3 | 23 | | 26 | | | | | 50 | | SEP | | | | | | | 25 | | | | | 32 | | Date | Time | Dissolved
oxygen,
mg/L
(00300) | pH,
water, unfltrd
field, std
units
(00400) | Specif.
conductance,
wat unf
uS/cm 25 degC
(00095) | Temperature,
water,
deg C
(00010) | |----------|------|---|---|--|--| | AUG 2003 | | | | | | | 15 | 0520 | 8.1 | 8.0 | 666 | 18.2 | | 15 | 0550 | 8.1 | 8.1 | 666 | 18.1 | | 15 | 0620 | 8.1 | 8.1 | 666 | 18.0 | | 15 | 0650 | 8.2 | 8.1 | 666 | 17.9 | | 15 | 0720 | 8.3 | 8.1 | 666 | 17.9 | | 15 | 0750 | 8.4 | 8.1 | 667 | 17.9 | | 15 | 0820 | 8.6 | 8.1 | 667 | 18.0 | | 15 | 0850 | 8.8 | 8.1 | 667 | 18.2 | | 15 | 0920 | 8.9 | 8.1 | 666 | 18.5 | | 15 | 0950 | 9.1 | 8.1 | 666 | 18.9 | # #### 05427270 KOSHKONONG CREEK NEAR SUN PRAIRIE, WI (LAT 43 08 58N LONG 089 14 13W) | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Turbid-
ity,
wat unf
lab,
Hach
2100AN
NTU
(99872) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potassium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | |-----------------|--|---|--|--|---|---|--|--|---|--|--|--|--| | APR 2003
30 | 0930 | 5.2 | 50 | 5.0 | 747 | 7.9 | 7.5 | 1,440 | 11.5 | | | | | | JUN
12 | 1100 | 5.6 | 10 | 5.7 | 743 | 8.6 | 7.6 | 1,480 | 16.0 | | | | | | JUL
23 | 1115 | 4.8 | 10 | 4.4 | 747 | 10.4 | 8.1 | 1,450 | 19.0 | | | | | | AUG
13
26 | 0745
1220 | 2.0
4.6 | 10
10 | 6.1
2.1 |
753
733 | 9.2
9.1 | 8.0
7.9 | 1,670
1,480 | 19.0
21.5 | 69.6
 | 41.8 | 12.2 | 227 | | SEP
29 | 1135 | 5.5 | 10 | 1.9 | 753 | 9.4 | 8.2 | 1,580 | 18.0 | | | | | | Date | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(90410) | Chloride,
water,
fltrd,
mg/L
(00940) | Fluoride,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
on
evap.
at
180degC
wat flt
mg/L
(70300) | Ammonia
+ org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | | APR 2003
30 | 276 | 248 | 0.62 | | 54.8 | | 1.3 | 0.24 | 14.4 | 0.130 | 0.37 | 0.37 | 0.51 | | JUN
12 | 280 | 252 | 0.7 | | 44.5 | | 1.0 | E.21 | 13.8 | E.076 | 0.54 | 0.63 | 0.68 | | JUL
23 | 254 | 258 | 0.8 | | 43.0 | | 1.1 | 0.05 | 15.6 | 0.035 | 0.57 | 0.60 | 0.65 | | AUG
13
26 | 243 | 327
271 | 0.7
0.7 | 16.3 | 40.7
48.5 | 961
 | 1.4
1.2 | 0.06
0.04 | 17.9
13.5 | 0.096
0.067 | 0.79
0.52 | 0.88
0.61 | 0.88
0.64 | | SEP
29 | 268 | 282 | 0.9 | | 47.8 | | 1.1 | 0.06 | 16.2 | 0.047 | 0.73 | 0.79 | 0.83 | | Date | COD,
high
level,
water,
unfltrd
mg/L
(00340) | Fecal
coli-
form,
M-FC
0.7u MF
col/
100 mL
(31625) | Fecal
strep-
tococci
KF
MF,
col/
100 mL
(31673) | Arsenic
water
unfltrd
ug/L
(01002) | Boron,
water,
unfltrd
recover
-able,
ug/L
(01022) | Cadmium
water,
unfltrd
ug/L
(01027) | Chromium, water, unfltrd recover -able, ug/L (01034) | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | | APR 2003
30 | 30 | 1,500 | | | | | | | | | | | | | JUN
12 | 30 | 300 | | | | | | | | | | | | | JUL
23 | 30 | 450 | | | | | | | | | | | | | AUG
13
26 | 30
30 | 330
1,100 | 260 | <2 | 197
 | <0.2 | <0.8 | <3.4 | 5.4 | 109 | 160 | <1
 | 12.7 | | SEP
29 | 30 | 240 | | | | | | | | | | | | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 #### 05427270 KOSHKONONG CREEK NEAR SUN PRAIRIE, WI (LAT 43 08 58N LONG 089 14 13W) | | Mangan- | | | | Sus- | |----------|---------|---------|---------|---------|---------| | | ese, | Mercury | Nickel, | Zinc, | pended | | | water, | water, | water, | water, | sedi- | | | unfltrd | unfltrd | unfltrd | unfltrd | ment | | | recover | recover | recover | recover | concen- | | | -able, | -able, | -able, | -able, | tration | | Date | ug/L | ug/L | ug/L | ug/L | mg/L | | | (01055) | (71900) | (01067) | (01092) | (80154) | | APR 2003 | | | | | | | 30 | | | | | 4 | | JUN | | | | | | | 12 | | | | | 7 | | JUL | | | | | | | 23 | | | | | 2 | | AUG | | | | | | | 13 | 11.9 | < 0.02 | E1.9 | 28 | 2 | | 26 | | | | | 10 | | SEP | | | | | | | 29 | | | | | 1 | | | | | | | | | Date | Time | Dissolved
oxygen,
mg/L
(00300) | pH,
water, unfltrd
field, std
units
(00400) | Specif.
conductance,
wat unf
uS/cm 25 degC
(00095) | Temperature,
water,
deg C
(00010) | |----------|------|---|---|--|--| | AUG 2003 | | | | | | | 13 | 0530 | 7.8 | 7.8 | 1,750 | 19.0 | | 13 | 0600 | 7.6 | 7.9 | 1,730 | 18.9 | | 13 | 0630 | 7.6 | 7.9 | 1,700 | 18.9 | | 13 | 0700 | 7.9 | 7.9 | 1,680 | 18.8 | | 13 | 0730 | 8.7 | 8.0 | 1,670 | 18.9 | | 13 | 0745 | 9.2 | 8.0 | 1,670 | 19.0 | | 13 | 0800 | 9.8 | 8.1 | 1,670 | 19.1 | | 13 | 0830 | 11.2 | 8.1 | 1,700 | 19.4 | | 13 | 0900 | 12.5 | 8.2 | 1,770 | 19.7 | | 13 | 0930 | 13.1 | 8.3 | 1,770 | 19.9 | | 13 | 1000 | 13.3 | 8.3 | 1,760 | 20.0 | | 13 | 1030 | 13.4 | 8.3 | 1,740 | 20.1 | ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 ## $05427507\,$ KOSHKONONG CREEK NEAR ROCKDALE, WI (LAT 42 57 05N LONG 089 01 37W) | Date | Time | Instantaneous
discharge,
cfs
(00061) | Sampling
method,
code
(82398) | Turbid-
ity,
wat unf
lab,
Hach
2100AN
NTU
(99872) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potassium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | |-----------------|--|---|--|--|---|---|--|--|---|--|--|--|--| | APR 2003
30 | 0745 | 48 | 50 | 34 | 747 | 8.5 | 7.7 | 888 | 12.5 | | | | | | JUN
12 | 0740 | 48 | 10 | 65 | 750 | 8.1 | 7.8 | 811 | 15.5 | | | | | | JUL
23 | 0730 | 32 | 10 | 37 | 758 | 7.6 | 8.0 | 874 | 19.0 | | | | | | AUG
11
26 | 0815
0945 | 18
16 | 10
10 | 46
33 | 754
743 | 8.0
6.9 | 8.2
7.9 | 905
1,030 | 21.0
22.5 | 71.5 | 45.3 | 3.57 | 55.2 | | SEP
29 | 0830 | 16 | 10 | 7.1 | 761 | 10.3 | 8.4 | 1,020 | 8.5 | | | | | | Date | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(90410) | Chloride,
water,
fltrd,
mg/L
(00940) | Fluoride,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
on
evap.
at
180degC
wat fit
mg/L
(70300) | Ammonia
+ org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Orthophosphate, water, fltrd, mg/L as P (00671) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | | APR 2003 | 222 | 62.7 | 0.10 | | 70.0 | | 1.2 | 0.24 | 2.00 | 0.007 | 0.07 | 0.06 | 0.27 | | 30
JUN | 322 | 62.7 | 0.19 | | 72.8 | | 1.2 | 0.24 | 3.98 | 0.086 | 0.07 | 0.06 | 0.27 | | 12
JUL | 309 | 49.0 | 0.2 | | 55.3 | | 0.91 | 0.28 | 3.70 | 0.113 | E.12 | 0.13 | 0.39 | | 23
AUG | 319 | 75.0 | 0.2 | | 43.5 | | 0.75 | 0.13 | 3.82 | 0.075 | 0.15 | 0.18 | 0.31 | | 11
26 | 323 | 92.7
121 | 0.2
0.3 | 9.52 | 36.7
36.9 | 531 | 0.81
0.99 | 0.18
0.26 | 3.80
3.98 | 0.108
0.136 | 0.17
0.20 | 0.21
0.24 | 0.37
0.37 | | SEP
29 | 302 | 123 | 0.3 | | 38.5 | | 0.74 | 0.24 | 5.00 | 0.100 | 0.14 | 0.16 | 0.21 | | Date | COD,
high
level,
water,
unfltrd
mg/L
(00340) | Fecal
coli-
form,
M-FC
0.7u MF
col/
100 mL
(31625) | Fecal
strep-
tococci
KF
MF,
col/
100 mL
(31673) | Arsenic
water
unfltrd
ug/L
(01002) | Boron,
water,
unfltrd
recover
-able,
ug/L
(01022) | Cadmium
water,
unfltrd
ug/L
(01027) | Chromium, water, unfltrd recover -able, ug/L (01034) | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | | APR 2003
30 | 40 | 200 | | | | | | | | | | | | | JUN
12 | 40 | 1,700 | | | | | | | | | | | | | JUL | | | | | | | | | | | | | | | 23
AUG | 20 | 580 | 200 | | | | | | | | 1.700 | | | | 11
26
SEP | 10
30 | 1,200
1,000 | 380 | 2 | 62
 | <0.2 | 1.3 | <3.4 | 2.6 | 14
 | 1,790
 | 2 | 90.3 | | 29 | 10 | 580 | | | | | | | | | | | | # WATER-QUALITY ANALYSES AT MISCELLANEOUS SITES WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 # 05427507 KOSHKONONG CREEK NEAR ROCKDALE, WI (LAT 42 57 05N LONG 089 01 37W) | Date | Manganese,
water, unfltrd
recoverable,
ug/L
(01055) | Mercury
water, unfltrd
recoverable,
ug/L
(71900) | Nickel,
water, unfltrd
recoverable,
ug/L
(01067) | Zinc,
water, unfltrd
recoverable,
ug/L
(01092) | Suspended sediment concentration mg/L (80154) | |--|--
--|---|---|--| | APR 2003 | | | | | | | 30 | | | | | 82 | | JUN
12 | | | | | 180 | | JUL
23 | | | | | 89 | | AUG | | | | | | | 11 | 165 | 0.03 | 2.8 | 11 | 115 | | 26
SEP | | | | | 82 | | 29 | | | | | 17 | | Date | Time | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | | AUG 200 |)3 | | | | | | 11
11
11
11
11
11
11
11
11
11 | 0530
0600
0630
0700
0730
0800
0815
0830
0900
0930
1000 | 7.9
7.9
7.9
7.9
7.9
8.0
8.0
8.1
8.2
8.3 | 8.1
8.1
8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.2 | 922
917
913
910
908
906
905
904
904
903
903 | 21.1
20.9
20.8
20.8
20.8
21.0
20.9
21.0
21.0
21.2 | | 11 | 1030 | 8.4 | 8.2 | 903 | 21.3 | ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 # $054235980\ \ WEST\ BRANCH\ SUGAR\ RIVER\ NEAR\ MT.\ VERNON,\ WI\ (LAT\ 42\ 54\ 47N\ LONG\ 089\ 37\ 19W)$ | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Turbid-
ity,
wat unf
lab,
Hach
2100AN
NTU
(99872) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potassium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | |-----------------------|--|---|--|--|---|---|--|--|---|--|--|--|---| | MAY 2003
19 | 0945 | 15 | 50 | 11 | 753 | 9.7 | 7.8 | 661 | 13.5 | | | | | | JUN
13 | 0750 | 12 | 10 | 17 | 748 | 9.0 | 7.7 | 698 | 13.5 | | | | | | JUL
24 | 0900 | 11 | 10 | 27 | 753 | 9.4 | 7.9 | 697 | 14.5 | | | | | | AUG
14 | 0745 | 10 | 10 | 14 | 755 | | 8.0 | 719 | 16.0 | 68.1 | 39.2 | 2.43 | 29.7 | | 27
SEP | 0800 | 8.9 | 10 | 11 | 751 | 7.5 | 7.9 | 713 | 17.5 | | | | | | 25 | 1245 | 11 | 10 | 3.0 | 755 | 11.8 | 8.3 | 714 | 11.5 | | | | | | Date | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(90410) | Chloride,
water,
fltrd,
mg/L
(00940) | Fluoride,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
on
evap.
at
180degC
wat flt
mg/L
(70300) | Ammonia
+ org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Orthophosphate, water, fltrd, mg/L as P (00671) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phosphorus, water, unfltrd mg/L (00665) | | MAY 2003
19
JUN | 273 | 34.4 | <0.2 | | 18.8 | | 0.29 | 0.07 | 5.46 | 0.045 | 0.04 | 0.06 | 0.12 | | 13 | 274 | 43.2 | < 0.2 | | 18.5 | | 0.25 | 0.07 | 6.54 | 0.042 | E.12 | 0.07 | 0.16 | | JUL
24
AUG | 277 | 46.7 | < 0.2 | | 18.2 | | 0.21 | < 0.04 | 5.69 | 0.014 | 0.05 | 0.06 | 0.12 | | 14
27
SEP |
279 | 50.4
47.4 | 0.2
<0.2 | 9.70
 | 18.5
17.1 | 408 | 0.25
0.29 | E.02
E.02 | 6.33
5.93 | 0.032
0.048 | 0.05
0.06 | 0.06
0.07 | 0.10
0.11 | | 25 | 253 | 50.2 | 0.2 | | 19.0 | | 0.22 | < 0.04 | 5.62 | 0.013 | 0.04 | 0.05 | 0.06 | | Date | COD,
high
level,
water,
unfltrd
mg/L
(00340) | Fecal
coli-
form,
M-FC
0.7u MF
col/
100 mL
(31625) | Fecal
strep-
tococci
KF
MF,
col/
100 mL
(31673) | Arsenic
water
unfltrd
ug/L
(01002) | Boron,
water,
unfltrd
recover
-able,
ug/L
(01022) | Cadmium
water,
unfltrd
ug/L
(01027) | Chromium, water, unfltrd recover -able, ug/L (01034) | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Manganese,
water,
fltrd,
ug/L
(01056) | | MAY 2003
19 | 10 | 830 | | | | | | | | | | | | | JUN
13 | 20 | 2,000 | | | | | | | | | | | | | JUL
24 | <10 | 700 | | | | | | | | | | | | | AUG
14
27 | <10
10 | 1,400
970 | 3,100 | <2 | 31 | <0.2 | <0.8 | <3.4 | E1.0 | E6 | 400 | M
 | 51.0 | | SEP 25 | <10 | 360 | | | | | | | | | | | | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 ### 054235980 WEST BRANCH SUGAR RIVER NEAR MT. VERNON, WI (LAT 42 54 47N LONG 089 37 19W) | Date | Manganese,
water, unfltrd
recoverable,
ug/L
(01055) | Mercury
water, unfltrd
recoverable,
ug/L
(71900) | Nickel,
water, unfltrd
recoverable,
ug/L
(01067) | Zinc,
water, unfltrd
recoverable,
ug/L
(01092) | Suspended
sediment
concentration
mg/L
(80154) | |-----------|---|--|--|--|---| | MAY 2003 | | | | | | | 19 | | | | | 48 | | JUN | | | | | | | 13 | | | | | 84 | | JUL | | | | | | | 24 | | | | | 63 | | AUG | 57.5 | 0.02 | 2.0 | ~ | 70 | | 14 | 57.5 | < 0.02 | <2.0 | 5 | 78 | | 27 | | | | | 60 | | SEP
25 | | | | | 33 | | ۷۶ | | | | | 33 | | Date | Time | Dissolved
oxygen,
mg/L
(00300) | pH,
water, unfltrd
field, std
units
(00400) | Specif.
conductance,
wat unf
uS/cm 25 degC
(00095) | Temperature,
water,
deg C
(00010) | |----------|------|---|---|--|--| | AUG 2003 | | | | | | | 22 | 0520 | 7.1 | 7.9 | 718 | 18.5 | | 22 | 0550 | 7.1 | 8.0 | 716 | 18.2 | | 22 | 0620 | 7.2 | 8.0 | 714 | 18.0 | | 22 | 0650 | 7.3 | 8.0 | 713 | 17.7 | | 22 | 0720 | 7.4 | 8.0 | 713 | 17.5 | | 22 | 0750 | 7.6 | 8.0 | 712 | 17.4 | | 22 | 0820 | 7.8 | 8.0 | 712 | 17.3 | | 22 | 0850 | 8.3 | 8.0 | 713 | 17.4 | | 22 | 0920 | 8.9 | 8.1 | 715 | 17.5 | | 22 | 0950 | 9.4 | 8.1 | 719 | 17.6 | Water-quality data were collected at the following sites for the period May to October 2003. Samples are either equal-width increment (EWI) samples (sample code 10) or grab samples (sample code 70). ### WATER-QUALITY DATA, MAY TO OCTOBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Ammonia
+ org-N,
water,
unfiltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Suspended sediment concentration mg/L (80154) | |--------------------------|------|--------------------------------------|---|--|---|--|---|--|--|---|---|--|---| | | | (| 04027500 | WHITE RI | VER NEAF | R ASHLAN | D, WI (LA | T 46 29 54 | 4N LONG 0 | 90 54 11W |) | | | | MAY
2003
22
JUN | 0732 | 670 | 70 | 11.2 | 7.6 | 94 | 13.0 | 0.86 | 0.020 | <0.022 | 0.020 | 0.054 | 20 | | 19 | 1400 | 209 | 70 | 8.5 | 8.0 | 176 | 19.3 | 0.22 | 0.035 | < 0.022 | 0.017 | 0.045 | 16 | | JUL
16 | 1537 | 190 | 30 | 9.0 | 7.7 | 177 | 19.9 | 0.25 | 0.029 | < 0.022 | 0.018 | 0.045 | 11 | |
AUG
20 | 1225 | 183 | 70 | 8.3 | 8.1 | 182 | 22.8 | 0.17 | 0.041 | < 0.022 | 0.016 | 0.050 | 16 | | SEP
17 | 1137 | 180 | 30 | 9.8 | 7.9 | 187 | 15.3 | 0.27 | 0.017 | < 0.022 | 0.014 | 0.036 | 9 | | OCT
15 | 1135 | 177 | 70 | 10.5 | 8.1 | 187 | 10.2 | 0.26 | < 0.013 | < 0.022 | 0.013 | 0.028 | 7 | | | | | | ST | REAMS TI | RIBUTARY | Y TO LAKI | E MICHIG | AN | | | | | | | | 04067 | 500 MENO | OMINEE R | IVER NEA | R MC ALI | LISTER, W | I (LAT 45 | 5 19 33N LO | NG 087 39 | 48W) | | | | MAY
2003
20 | 1355 | 7,260 | 30 | 11.7 | 7.8 | 145 | 14.9 | 0.37 | 0.030 | 0.142 | 0.012 | 0.026 | 6 | | JUN
16 | 1630 | 4,040 | 30 | 10.4 | 8.0 | 209 | 22.2 | 0.45 | 0.034 | 0.127 | 0.012 | 0.051 | 14 | | JUL
15 | 0839 | 1,500 | 30 | 9.1 | 8.2 | 284 | 23.5 | 0.31 | 0.024 | < 0.022 | 0.011 | 0.027 | 2 | | AUG
19 | 0940 | 1,490 | 30 | | 8.1 | 275 | 25.2 | 0.26 | 0.013 | < 0.022 | 0.010 | 0.025 | 3 | | SEP
16 | 0859 | 2,240 | 30 | 8.1 | 8.2 | 293 | 18.4 | 0.37 | < 0.013 | 0.041 | 0.019 | 0.042 | 5 | | OCT
14 | 0900 | 1,650 | 30 | 9.8 | 8.4 | 292 | 13.4 | 0.46 | < 0.013 | < 0.022 | 0.008 | 0.024 | <2 | | | | (|)4069500 I | PESHTIGO | RIVER A | ΓPESHTIG | O, WI (LA | AT 45 02 4 | 9N LONG 0 | 87 44 40W | ') | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 1135 | 1,410 | 30 | 8.9 | 7.9 | 217 | 15.7 | 0.59 | 0.074 | 0.228 | 0.016 | 0.029 | 3 | | 16
JUL | 1430 | 1,160 | 30 | 9.0 | 7.8 | 246 | 21.0 | 0.62 | 0.063 | 0.249 | 0.019 | 0.039 | 3 | | 15
AUG | 1004 | 448 | 30 | 8.4 | 8.0 | 264 | 23.1 | 0.51 | 0.018 | 0.210 | 0.014 | 0.031 | <2 | | 19
SEP | 0800 | 477 | 30 | | 8.1 | 283 | 24.9 | 0.43 | 0.017 | 0.100 | 0.009 | 0.024 | <2 | | 16
OCT | 0719 | 1,570 | 30 | 6.6 | 8.0 | 310 | 17.1 | 0.64 | 0.045 | 0.301 | 0.024 | 0.038 | 2 | | 14 | 0740 | 396 | 30 | 9.1 | 9.1 | 296 | 14.1 | 0.41 | < 0.013 | 0.271 | 0.009 | 0.026 | 2 | | | | (| 04071000 (| DCONTO R | RIVER NE | AR GILLET | TT, WI (LA | AT 44 51 5 | 5N LONG 0 | 88 18 00W | ") | | | | MAY
2003
19 | 1903 | 887 | 30 | 9.0 | 7.7 | 214 | 15.6 | 0.65 | 0.032 | 0.139 | 0.012 | 0.030 | 7 | | JUN
17 | 0725 | 689 | 30 | 8.6 | 7.8 | 232 | 18.8 | 0.72 | 0.036 | 0.208 | 0.020 | 0.054 | 19 | | JUL
14 | 1716 | 346 | 30 | 9.7 | 8.4 | 287 | 22.9 | 0.35 | 0.014 | 0.201 | 0.012 | 0.032 | 7 | | AUG
18 | 1710 | 315 | 30 | 8.3 | 8.5 | 283 | 26.5 | 0.27 | 0.019 | 0.206 | 0.011 | 0.025 | 5 | | SEP
15 | 1626 | 760 | 30 | 9.0 | 7.7 | 277 | 18.0 | 0.75 | 0.029 | 0.228 | 0.022 | 0.065 | 19 | | OCT
13 | 1552 | 324 | 30 | 10.8 | 8.1 | 298 | 13.6 | 0.37 | < 0.013 | 0.050 | 0.008 | 0.027 | 2 | | | Field | Secchi | |------|-----------|---------| | | turbidity | Tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### STREAMS TRIBUTARY TO LAKE SUPERIOR--Continued # 04027500 WHITE RIVER NEAR ASHLAND, WI $\left(\text{LAT 46 29 54N LONG 090 54 11W} \right)$ | | 35.000 | |------|--------| | | | | 35.9 | 40.000 | | | | | | 40.000 | | | | | | 30.000 | | | | | | 30.000 | | | | | | 65.000 | | | 35.9 | ### STREAMS TRIBUTARY TO LAKE MICHIGAN--Continued # 04067500 MENOMINEE RIVER NEAR MC ALLISTER, WI (LAT 45 19 33N LONG 087 39 48W) | MAY 2003 | | | |----------|------|--------| | 20 | | 120.00 | | JUN | | | | 16 | 4.80 | 120.00 | | JUL | | | | 15 | | 120.00 | | AUG | | | | 19 | | 120.00 | | SEP | | | | 16 | | 100.00 | | OCT | | | | 14 | | 120.00 | | | | | # 04069500 PESHTIGO RIVER AT PESHTIGO, WI (LAT 45 02 49N LONG 087 44 40W) | MAY 2003 | | | |----------|------|--------| | 20 | | 120.00 | | JUN | | | | 16 | 3.80 | 120.00 | | JUL | | | | 15 | | 120.00 | | AUG | | | | 19 | | 120.00 | | SEP | | | | 16 | | 120.00 | | OCT | | | | 14 | | 120.00 | | | | | ### 04071000 OCONTO RIVER NEAR GILLETT, WI (LAT 44 51 55N LONG 088 18 00W) | MAY 2003 | | | |----------|------|--------| | 19 | | 120.00 | | JUN | | | | 17 | 15.5 | 92.000 | | JUL | | | | 14 | | 120.00 | | AUG | | | | 18 | | 120.00 | | SEP | | | | 15 | | 80.000 | | OCT | | | | 13 | | 120.00 | | | | | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | Dis-
solved
oxygen,
mg/L
(00300)
STREAMS | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Suspended sediment concentration mg/L (80154) | |--------------------------|------|--------------------------------------|---|---|---|---|---|---|--|---|---|--|---| | | | 04071949 | 96 SOUTH | BRANCH | SUAMICO | RIVER A | T KUNESH | I (LAT 44 | 37 03N LO | NG 088 11 | 12W) | | | | MAY
2003
20
JUN | 0832 | 4.1 | 10 | 7.6 | 7.6 | 800 | 14.6 | 0.49 | 0.058 | 0.936 | 0.023 | 0.030 | 4 | | 16
JUL | 1145 | 3.4 | 10 | 11.7 | 8.1 | 844 | 17.4 | 1.6 | 0.076 | 8.67 | 0.124 | 0.148 | <2 | | 14
AUG | 1844 | 0.13 | 70 | 7.1 | 7.2 | 1,220 | 18.7 | 1.1 | 0.039 | 6.86 | 0.140 | 0.198 | <2 | | 18
SEP | 1810 | 0.42 | 70 | 6.7 | 8.0 | 826 | 23.9 | 1.2 | 0.051 | 2.25 | 0.268 | 0.295 | 4 | | 15
OCT | 1725 | 5.9 | 70 | 5.5 | 7.2 | 540 | 17.0 | 1.7 | 0.049 | 1.02 | 0.541 | 0.606 | 5 | | 13 | 1731 | 0.14 | 30 | 3.5 | 7.2 | 1,030 | 13.7 | 2.6 | 0.022 | 1.40 | 0.618 | 1.07 | 15 | | | | | 0407350 | 0 FOX RIV | VER AT BI | ERLIN, WI | (LAT 43 5 | 57 14N LO | NG 088 57 (| 08W) | | | | | MAY
2003
19
JUN | 1330 | 2,010 | 30 | 6.4 | 7.9 | 356 | 17.3 | 1.5 | 0.038 | 0.183 | 0.020 | 0.100 | 30 | | 16 | 1412 | 1,280 | 30 | 8.1 | 8.2 | 376 | 24.2 | 1.6 | 0.070 | 0.270 | 0.025 | 0.128 | 52 | | JUL
14 | 1141 | 824 | 30 | 10.9 | 8.6 | 363 | 24.1 | 2.2 | 0.015 | 0.305 | 0.014 | 0.148 | 61 | | AUG
20 | 1615 | 438 | 30 | 12.7 | 9.0 | 343 | 28.0 | 1.8 | < 0.013 | < 0.022 | 0.011 | 0.137 | 54 | | SEP
15 | 1051 | 606 | 30 | 8.2 | 8.1 | 361 | 18.6 | 1.7 | 0.023 | 0.450 | 0.015 | 0.149 | 58 | | OCT
17 | 0859 | 534 | 30 | 9.6 | 8.4 | 375 | 10.1 | 0.97 | < 0.013 | 0.521 | 0.008 | 0.069 | 22 | | | | 04 | 4077400 W | OLF RIVE | R NEAR S | HAWANO | , WI (LAT | 44 50 09N | LONG 088 | 37 30W) | | | | | MAY
2003 | | | | | | | | | | | | | | | 19
JUN | 1710 | E1280 | 10 | 9.1 | 7.9 | 196 | 15.7 | 0.78 | 0.050 | 0.371 | 0.029 | 0.046 | 6 | | 17
JUL | 0950 | E970 | 30 | 7.8 | 7.9 | 220 | 21.4 | 0.46 | 0.073 | 0.191 | 0.021 | 0.045 | 8 | | 14
AUG | 1505 | E360 | 70 | 7.6 | 8.2 | 289 | 22.8 | 0.73 | 0.049 | 0.260 | 0.016 | 0.036 | 5 | | 18
SEP | 1510 | E290 | 70 | 5.3 | 8.2 | 271 | 24.7 | 0.41 | 0.044 | 0.112 | 0.014 | 0.032 | 4 | | 15
OCT | 1449 | E400 | 70 | 9.4 | 8.0 | 251 | 16.9 | 0.65 | 0.031 | 0.127 | 0.015 | 0.032 | 7 | | 13 | 1415 | E290 | 70 | 9.8 | 8.2 | 280 | 13.4 | 0.40 | < 0.013 | 0.165 | 0.006 | 0.024 | 4 | | | | 0407760 | 01 WEST E | BRANCH R | ED RIVER | R NEAR NI | EOPIT, WI | (LAT 44 5 | 57 51N LON | IG 088 59 | 18W) | | | | MAY
2003 | | | | | | | | | | | | | | | 19
JUN | 1435 | 45 | 10 | 9.8 | 8.1 | 323 | 13.0 | 2.0 | 0.072 | 4.04 | 0.106 | 0.135 | 2 | | 17
JUL | 1200 | 28 | 10 | 10.2 | 8.1 | 381 | 16.9 | 0.52 | 0.036 | 1.23 | 0.037 | 0.059 | 8 | | 14
AUG | 1245 | 22 | 10 | 10.5 | 7.8 | 430 | 17.9 | 0.33 | 0.021 | 1.45 | 0.036 | 0.052 | 4 | | 18
SEP | 1245 | 16 | 70 | 8.6 | 8.1 | 458 | 19.9 | 0.31 | 0.015 | 1.34 | 0.042 | 0.053 | <2 | | 15
OCT | 1219 | 43 | 30 | 9.9 | 7.3 | 326 | 13.7 | 1.0 | 0.030 | 0.589 | 0.043 | 0.074 | 12 | | 13 | 1206 | 24 | 70 | 10.7 | 8.5 | 408 | 10.5 | 0.40 | < 0.013 | 1.02 | 0.015 | 0.025 | 4 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### STREAMS TRIBUTARY TO LAKE MICHIGAN--Continued # 040719496 SOUTH BRANCH SUAMICO RIVER AT KUNESH (LAT 44 37 03N LONG 088 11 12W) | MAY | | | |------|------|--------| | 2003 | | | | 20 | | 120.00 | | JUN | | | | 16 | 2.10 | 120.00 | | JUL | | | | 14 | | 120.00 | | AUG | | | | 18 | | 120.00 | | SEP | | | | 15 | | 80.000 | | OCT | | | | 13 | | 30.000 | | | | | ### 04073500 FOX RIVER AT BERLIN, WI (LAT 43 57 14N LONG 088 57 08W) | MAY | | | |------|------|--------| | 2003 | | | | 19 | 25.8 | 42.000 | | JUN | | | | 16 | | 25.000 | | JUL | | | | 14 | | 22.000 | | AUG | | | | 20 | 54.0 | 26.000 | | SEP | | | | 15 | | 23.000 | | OCT | | | | 17 | 17.5 | 45.000 | | | | | ### 04077400 WOLF RIVER NEAR SHAWANO, WI (LAT 44 50 09N LONG 088 37 30W) | MAY | | | |------|------|--------| | 2003 | | | | 19 | | 120.00 | | JUN | | | | 17 | 6.80 | 92.000 | | JUL | | | | 14 | | 120.00 | | AUG | | | | 18 | | 120.00 | | SEP | | | | 15 | | 120.00 | | OCT | | 120.00 | | 13 | | 120.00 | # $04077601\ \ WEST\ BRANCH\ RED\ RIVER\ NEAR\ NEOPIT,\ WI\ \ (LAT\ 44\ 57\ 51N\ LONG\ 088\ 59\ 18W)$ | MAY | | | |------------|------|--------| | 2003
19 | | 120.00 | | JUN
17 | 7.50 | 120.00 | | JUL
14 | | 120.00 | | AUG
18 | | 120.00 | | SEP | | | | 15
OCT | | 105.00 | | 13 | | 120.00 | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | | | | | WAII | LK-QUALI | IIDAIA | , MAT TO | OCTOBEN | | | Mississ | | | |-------------|------
-----------------------------------|---|-------------------------------|--|---|--|---|--|--|---|--|---| | Date | Time | Dis-
charge,
cfs
(00060) | Instantaneous
discharge,
cfs
(00061) | Sampling method, code (82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Ammonia + org-N, water, unfltrd mg/L as N (00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phosphorus, water, unfltrd mg/L (00665) | | | | 0.4076 | 2500 ELED | | | | | | | NG 000 44 | 1011 | | | | 3.6.37 | | 04078 | 3500 EMB | ARRASS R | IVER NEA | ак емван | RRASS, WI | (LAT 44 4 | 43 29N LO | NG 088 44 | 10W) | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 1030 | | 452 | 30 | 9.1 | 8.2 | 325 | 14.9 | 0.73 | 0.060 | 1.11 | 0.034 | 0.047 | | 17
JUL | 0909 | | 316 | 70 | 7.3 | 7.9 | 330 | 19.7 | 0.74 | 0.089 | 1.11 | 0.055 | 0.083 | | 15
AUG | 0733 | | 160 | 30 | 7.0 | 8.2 | 470 | 21.3 | 0.57 | 0.036 | 1.71 | 0.046 | 0.067 | | 20
SEP | 0730 | | 110 | 30 | 6.3 | 8.2 | 476 | 23.1 | 0.46 | 0.019 | 1.04 | 0.025 | 0.040 | | 15 | 1645 | | 490 | 30 | 9.1 | 8.2 | 364 | 17.9 | 0.94 | 0.059 | 0.786 | 0.048 | 0.078 | | OCT
16 | 0844 | | 160 | 30 | 9.5 | 8.0 | 479 | 8.8 | 0.50 | < 0.013 | 1.24 | 0.018 | 0.025 | | | | (| 04079000 V | WOLF RIV | ER AT NE | W LONDO | N, WI (LA | T 44 23 32 | N LONG | 088 44 25W) |) | | | | MAY | | | | | | | | | | | | | | | 2003
20 | 0745 | | 4,130 | 30 | 5.7 | 7.6 | 307 | 16.3 | 1.1 | 0.062 | 0.316 | 0.071 | 0.095 | | JUN
16 | 1826 | | 3,140 | 70 | | 7.5 | 302 | 20.7 | 1.1 | 0.083 | 0.430 | 0.091 | 0.136 | | JUL
14 | 1711 | | 1,160 | 30 | 10.6 | 8.3 | 421 | 24.0 | 0.67 | 0.020 | 1.08 | 0.045 | 0.102 | | AUG
20 | 0945 | | 928 | 30 | 7.3 | 8.3 | 420 | 24.9 | 0.59 | 0.026 | 0.254 | 0.041 | 0.102 | | SEP
15 | 1524 | | 1,290 | 30 | 8.1 | 8.2 | 425 | 19.0 | 0.66 | 0.078 | 0.687 | 0.063 | 0.141 | | OCT
16 | 1351 | | 926 | 70 | 9.6 | 8.1 | 465 | 11.0 | 0.41 | < 0.013 | 0.810 | 0.023 | 0.041 | | 10 | 1331 | | | | | | | | | G 088 51 55 | | 0.023 | 0.041 | | MAY | | 0.10 | COCCO EII | TEE WOE | i id v Eit 71 | T ROTAL | 1011, 111 (| 2211 1121 | isiv Eorv | 3 000 21 22 | ***) | | | | 2003
19 | 1905 | | E930 | 70 | 8.8 | 8.1 | 354 | 16.9 | 0.79 | 0.057 | 1.16 | 0.033 | 0.052 | | JUN
16 | 1613 | | E730 | 10 | 9.1 | 8.2 | 367 | 23.3 | 0.91 | 0.068 | 1.01 | 0.049 | 0.073 | | JUL | | | E330 | | | 8.6 | | | | | | | 0.040 | | 14
AUG | 1608 | | | 70 | 14.2 | | 447 | 23.5 | 0.41 | 0.026 | 1.49 | 0.025 | | | 20
SEP | 1130 | | E280 | 30 | 9.2 | 8.3 | 461 | 24.2 | 0.42 | 0.042 | 1.23 | 0.022 | 0.036 | | 15
OCT | 1435 | | E360 | 30 | 9.2 | 8.1 | 408 | 18.2 | 0.74 | 0.043 | 1.06 | 0.030 | 0.058 | | 16 | 1254 | | E280 | 30 | 11.0 | 8.2 | 466 | 10.1 | 0.32 | < 0.013 | 1.63 | 0.012 | 0.018 | | | 040 | 084500 FO | X R AT RA | PIDE CRO | CHE DAM | I NEAR W | RIGHTSTC | OWN, WI (| LAT 44 19 | 9 03N LONG | G 088 11 50 |)W) | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 1320 | 9,460 | | 30 | 9.0 | 8.3 | 392 | 16.6 | 1.1 | 0.168 | 0.298 | 0.037 | 0.092 | | 17
JUL | 1140 | 6,000 | | 30 | 8.3 | 8.5 | 382 | 23.0 | 0.96 | 0.057 | 0.370 | 0.031 | 0.109 | | 15
AUG | 1003 | 2,040 | | 30 | 9.6 | 8.9 | 391 | 24.8 | 1.2 | 0.024 | 0.111 | 0.092 | 0.187 | | 19 | 1825 | 1,990 | | 30 | 13.5 | 9.0 | 416 | 28.0 | 1.1 | 0.026 | 0.124 | 0.072 | 0.209 | | SEP
16 | 0758 | 3,010 | | 30 | 8.9 | 8.5 | 420 | 20.0 | 1.4 | 0.090 | 0.604 | 0.102 | 0.212 | | OCT
16 | 1559 | 2,160 | | 30 | 9.1 | 8.2 | 414 | 13.2 | 1.0 | 0.249 | 0.190 | 0.074 | 0.124 | | | | | | | | | | | | | | | | | | Sus- | | | |------|---------|-----------|---------| | | pended | | | | | sedi- | | | | | ment | Field | Secchi | | | concen- | turbidity | tube | | | tration | (NTU) | (cm) | | Date | mg/L | 99905 | 99910 | | | (80154) | (99905) | (99910) | ### STREAMS TRIBUTARY TO LAKE MICHIGAN--Continued ### 04078500 EMBARRASS RIVER NEAR EMBARRASS, WI (LAT 44 43 29N LONG 088 44 10W) | MAY | | | | |------|----|------|--------| | 2003 | | | | | 20 | 6 | 4.60 | 120.00 | | JUN | | | | | 17 | 13 | | 84.000 | | JUL | | | | | 15 | 6 | | 120.00 | | AUG | | | | | 20 | 2 | 1.10 | 120.00 | | SEP | | | | | 15 | 13 | | 87.000 | | OCT | | | | | 16 | <2 | 2.10 | 120.00 | | | | | | ### 04079000 WOLF RIVER AT NEW LONDON, WI (LAT 44 23 32N LONG 088 44 25W) | MAY | | | | |------|----|------|--------| | 2003 | | | | | 20 | 10 | 8.00 | 96.000 | | JUN | | | | | 16 | 20 | | 53.000 | | JUL | | | | | 14 | 33 | | 35.000 | | AUG | | | | | 20 | 25 | 32.0 | 46.000 | | SEP | | | | | 15 | 66 | | 45.000 | | OCT | | | | | 16 | 6 | 5.70 | 120.00 | ### 04080000 LITTLE WOLF RIVER AT ROYALTON, WI (LAT 44 24 45N LONG 088 51 55W) | MAY | | | | |------|----|------|--------| | 2003 | | | | | 19 | 7 | 6.50 | 62.000 | | JUN | | | | | 16 | 10 | | 87.000 | | JUL | | | | | 14 | <2 | | 120.00 | | AUG | | | | | 20 | <2 | 2.30 | 120.00 | | SEP | | | | | 15 | 11 | | 120.00 | | OCT | | | | | 16 | 2 | 1.40 | 120.00 | | | | | | # 04084500 FOX R AT RAPIDE CROCHE DAM NEAR WRIGHTSTOWN, WI $\,$ (LAT 44 19 03N LONG 088 11 50W) | MAY | | | | |------|-----|-------|--------| | 2003 | | | | | 20 | 22 | 26.5 | 50.000 | | JUN | | | 46.000 | | 17 | 17 | | 46.000 | | JUL | 22 | | 20.000 | | 15 | 23 | | 38.000 | | AUG | 20 | | •• ••• | | 19 | 38 | 65.0 | 22.000 | | SEP | 2.5 | | 24000 | | 16 | 35 | | 24.000 | | OCT | | 2.4.2 | 40.000 | | 16 | 16 | 24.2 | 48.000 | WATER-QUALITY DATA, MAY TO OCTOBER 2003 Ammonia Nitrite | | | | | | | ьП | Specif. | | Ammonia
+ | | Nitrite | | | |------------|------|-----------------------------------|--------------------------------------|-------------------------------|--|---|---|-----------------------------------|--|--|---|--|---| | Date | Time | Dis-
charge,
cfs
(00060) | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phosphorus, water, unfltrd mg/L (00665) | | | | | | STREAM | MS TRIBUT | TARY TO | LAKE MIC | HIGANC | Continued | | | | | | | | 040 | 86000 SHE | EBOYGAN | RIVER AT | Г SHEBOY | GAN, WI | (LAT 43 44 | 4 25N LON | IG 087 45 3 | 5W) | | | | MAY | | | | | | | | | | | | | | | 2003
20 | 1610 | | 490 | 30 | 9.9 | 8.4 | 600 | 18.0 | 1.7 | 0.047 | 1.17 | 0.053 | 0.169 | | JUN
17 | 1421 | | 128 | 10 | 13.3 | 8.8 | 679 | 23.0 | 1.8 | 0.057 | 0.170 | 0.026 | 0.186 | | JUL
15 | 1205 | | 122 | 30 | 12.2 | 9.1 | 591 | 24.4 | 2.0 | 0.021 | < 0.022 | 0.044 | 0.266 | | AUG
19 | 1615 | | 58 | 30 | 13.5 | 8.9 | 668 | 26.9 | 1.1 | < 0.013 | 2.79 | 0.061 | 0.132 | | SEP
16 | 1021 | | 68 | 30 | 8.7 | 8.2 | 633 | 17.4 | 0.84 | 0.119 | 0.940 | 0.064 | 0.113 | | OCT
15 | 1628 | | 58 | 30 | 10.9 | 8.4 | 711 | 12.7 | 0.58 | 0.044 | 0.290 | 0.029 | 0.085 | | | | 040 | 87000 MIL | WAUKEE | RIVER AT | Γ MILWAU | JKEE, WI | (LAT 43 06 | 6 00N LON | NG 087 54 3 | 2W) | | | | MAY | | | | | | | | | | | | | | | 2003 | 1845 | | 537 | 30 | 9.5 | 8.3 | 734 | 18.0 | 1.0 | 0.048 | 1.07 | 0.066 | 0.119 | | JUN
17 | 1700 | | 209 | 30 | 13.6 | 8.7 | 772 | 24.6 | 1.2 | 0.040 | 0.700 | 0.044 | 0.131 | | JUL
15 | 1342 | | 136 | 30 | 11.9 | 8.6 | 848 | 25.0 | 1.4 | 0.059 | 0.126 | 0.105 | 0.244 | | AUG
19 | 1415 | | 50 | 30 | 11.3 | 8.6 | 852 | 27.2 | 1.2 | 0.024 | 2.12 | 0.138 | 0.231 | | SEP
16 | 1151 | | 191 | 30 | 7.2 | 8.2 | 839 | 20.2 | 0.93 | 0.074 | 0.200 | 0.105 | 0.167 | | OCT
15 | 1442 | | 66 | 30 | 7.9 | 8.4 | 853 | 14.0 | 0.74 | < 0.013 | 0.410 | 0.045 | 0.109 | | | | | | | ST | . CROIX R | RIVER BAS | IN | | | | | | | | | 05 | 332500 NA | AMEKAGO | N RIVER | NEAR TRI | EGO, WI (I | LAT 45 56 | 53N LONG | G 091 53 17 | W) | | | | MAY | | | | | | | | | | | | | | | 2003 | 1149 | 790 | | 70 | 10.4 | 7.6 | 120 | 14.9 | 0.49 | 0.040 | 0.121 | 0.014 | 0.030 | | JUN
19 | 1100 | 511 | | 30 | 7.6 | 7.7 | 154 | 22.6 | 0.36 | 0.044 | 0.100 | 0.014 | 0.033 | | JUL
17 | 1016 | 460 | | 30 | 8.3 | 8.4 | 162 | 22.3 | 0.32 | 0.036 | 0.083 | 0.016 | 0.039 | | AUG
21 | 0753 | 360 | | 70 | 7.4 | 8.3 | 178 | 25.4 | 0.20 | 0.040 | 0.027 | 0.011 | 0.030 | | SEP
18 | 0658 | 320 | | 70 | 8.5 | 8.3 | 181 | 18.9 | < 0.14 | 0.020 | 0.087 | 0.024 | 0.048 | | OCT
16 | 0819 | 690 | | 70 | 9.4 | 8.5 | 181 | 12.5 | 0.37 | < 0.013 | 0.059 | 0.009 | 0.023 | | | | 05 | 333500 ST | C. CROIX R | IVER NEA | R DANBU | JRY, WI (I | LAT 46 04 3 | 30N LONG | G 092 14
50° | W) | | | | MAY | | | | | | | | | | | | | | | 2003 | 1347 | | 3,320 | 30 | 9.6 | 7.2 | 78 | 13.5 | 0.59 | 0.023 | 0.050 | 0.013 | 0.024 | | JUN
19 | 0830 | | 1,290 | 30 | 8.7 | 7.7 | 114 | 18.9 | 0.38 | 0.027 | 0.080 | 0.015 | 0.034 | | JUL
17 | 1142 | | 1,280 | 30 | 9.1 | 8.1 | 128 | 23.1 | 0.46 | < 0.013 | < 0.022 | 0.014 | 0.033 | | AUG
21 | 0945 | | 743 | 30 | 8.0 | 8.1 | 141 | 24.3 | 0.21 | < 0.013 | < 0.022 | 0.009 | 0.021 | | SEP
18 | 0834 | | 707 | 30 | 8.8 | 8.2 | 144 | 18.6 | 0.20 | < 0.013 | < 0.022 | 0.010 | 0.016 | | OCT
16 | 1000 | | 811 | 30 | 11.5 | 7.9 | 141 | 7.2 | 0.35 | < 0.013 | < 0.022 | 0.008 | 0.014 | | | | | | | | | | | | | | | | | | Sus- | | | |------|---------|-----------|---------| | | pended | | | | | sedi- | | | | | ment | Field | Secchi | | | concen- | turbidity | tube | | | tration | (NTU) | (cm) | | Date | mg/L | 99905 | 99910 | | | (80154) | (99905) | (99910) | ### STREAMS TRIBUTARY TO LAKE MICHIGAN--Continued ### 04086000 SHEBOYGAN RIVER AT SHEBOYGAN, WI (LAT 43 44 25N LONG 087 45 35W) | MAY | | | | |------|----|------|--------| | 2003 | | | | | 20 | 59 | 62.3 | 48.000 | | JUN | | | | | 17 | 59 | | 15.000 | | JUL | | | | | 15 | 67 | | 18.000 | | AUG | | | | | 19 | 11 | 16.2 | 54.000 | | SEP | | | | | 16 | 14 | | 50.000 | | OCT | | | | | 15 | 9 | | 46.000 | | | | | | # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI $(\mathrm{LAT}\ 43\ 06\ 00N\ \mathrm{LONG}\ 087\ 54\ 32W)$ | MAY | | | | |------|----|------|--------| | 2003 | | | | | 20 | 14 | 16.6 | 52.000 | | JUN | | | | | 17 | 18 | | 38.000 | | JUL | | | | | 15 | 23 | | 30.000 | | AUG | | | | | 19 | 14 | 16.2 | 46.000 | | SEP | | | | | 16 | 15 | | 43.000 | | OCT | | | | | 15 | 14 | | 42.000 | ST. CROIX RIVER BASIN--Continued ### 05332500 NAMEKAGON RIVER NEAR TREGO, WI (LAT 45 56 53N LONG 091 53 17W) | MAY | | | | |-----------|-----|------|--------| | 2003 | 3 | | 120.00 | | JUN | | 4.60 | | | 19
JUL | 3 | 1.60 | 120.00 | | 17 | 4 | | 120.00 | | AUG
21 | <2 | | 120.00 | | SEP
18 | <2. | | 120.00 | | OCT | ~2 | | | | 16 | <2 | | 120.00 | # 05333500 ST. CROIX RIVER NEAR DANBURY, WI (LAT 46 04 30N LONG 092 14 50W) | MAY | | | | |-----------|------------|------|--------| | 2003 | 2 | | 120.00 | | JUN | _ | 2.00 | | | 19
JUL | 5 | 3.80 | 120.00 | | 17 | 5 | | 120.00 | | AUG
21 | <2. | | 120.00 | | SEP SEP | \ 2 | | 120.00 | | 18 | <2 | | 120.00 | | OCT
16 | 2 | | 120.00 | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | | | | | | II | Smaaif | | Ammonia | | Nitrite | | | Sus- | |-------------------|------|--------------------------------------|--|--|---|---|-----------------------------------|--|--|---|--|---|--| | Date | Time | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phosphorus,
water,
unfltrd
mg/L
(00665) | pended
sedi-
ment
concen-
tration
mg/L
(80154) | | | | | | | ST. CROI | X RIVER E | BASINCo | ntinued | | | | | | | | | 05340 | 500 ST. CF | ROIX RIVI | ER AT ST. | CROIX FA | LLS, WI | LAT 45 24 | 25N LONG | G 092 38 49 | W) | | | | MAY
2003 | | | | | | | | | | | | | | | 22
JUN | 1633 | 13,500 | 70 | 11.1 | 7.3 | 189 | 14.3 | 0.85 | 0.032 | 0.108 | 0.026 | 0.057 | 11 | | 18
JUL | 1930 | 5,560 | 70 | 7.3 | 7.7 | 144 | 23.8 | 0.64 | 0.037 | 0.150 | 0.027 | 0.057 | 7 | | 17
AUG | 1421 | 7,090 | 70 | 7.8 | 7.6 | 146 | 23.6 | 0.89 | 0.023 | 0.159 | 0.055 | 0.092 | 8 | | 21
SEP | 1145 | 1,960 | 70 | 7.5 | 8.1 | 191 | 26.6 | 0.41 | 0.018 | 0.098 | 0.010 | 0.034 | 4 | | 18
OCT | 1050 | 1,820 | 70 | 9.5 | 8.2 | 199 | 18.9 | 0.42 | 0.018 | 0.178 | 0.013 | 0.037 | 4 | | 16 | 1205 | 2,020 | 70 | 11.1 | 7.9 | 199 | 11.6 | 0.49 | < 0.013 | 0.122 | 0.011 | 0.024 | 3 | | | | | | | | PPEWA RI | | | | | | | | | 3.6.37 | | 05 | 356500 CF | IIPPEWA I | RIVER NE. | AR BRUCE | E, WI (LAT | Γ 45 27 081 | N LONG 09 | 1 15 39W) | | | | | MAY
2003
21 | 0816 | 6,520 | 30 | 9.6 | 6.5 | 52 | 13.1 | 0.62 | 0.025 | 0.087 | 0.018 | 0.034 | 4 | | JUN
18 | 0715 | 1,560 | 30 | 8.1 | 7.5 | 80 | 21.1 | 0.47 | 0.051 | 0.133 | 0.021 | 0.044 | 8 | | JUL
15 | 1855 | 938 | 30 | 9.6 | 7.9 | 99 | 22.5 | 0.39 | 0.018 | 0.148 | 0.021 | 0.037 | 4 | | AUG
19 | 1910 | 598 | 30 | | 7.9 | 114 | 26.0 | 0.30 | 0.022 | 0.130 | 0.012 | 0.024 | <2 | | SEP
16 | 1757 | 515 | 30 | 10.3 | 8.1 | 112 | 18.0 | 0.20 | < 0.013 | 0.163 | 0.012 | 0.021 | <2 | | OCT
14 | 1749 | 634 | 30 | 10.8 | 8.2 | 118 | 12.1 | 0.60 | < 0.013 | 0.064 | 0.011 | 0.022 | <2 | | | | 0535833 | 0 NORTH | FORK FLA | AMBEAU I | RIVER AT | OXBO, WI | (LAT 45 | 51 33N LO | NG 090 42 | 29W) | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 1600 | E2180 | 30 | 10.2 | 7.1 | 76 | 15.5 | 0.46 | 0.031 | 0.074 | 0.013 | 0.029 | 5 | | 19
JUL | 1630 | E510 | 10 | 8.4 | 7.6 | 96 | 23.6 | 0.35 | 0.030 | 0.079 | 0.022 | 0.041 | 4 | | 16
AUG | 1225 | E530 | 30 | 9.2 | 7.5 | 122 | 21.7 | 0.33 | 0.018 | < 0.022 | 0.022 | 0.035 | <2 | | 20
SEP | 1020 | E240 | 30 | | 8.0 | 147 | 24.2 | 0.38 | 0.021 | < 0.022 | 0.020 | 0.029 | <2 | | 17
OCT | 0928 | E210 | 30 | 7.2 | 7.4 | 167 | 17.9 | 0.48 | < 0.013 | 0.030 | 0.018 | 0.030 | <2 | | 15 | 0935 | E200 | 30 | 10.0 | 8.0 | 163 | 9.3 | 0.50 | < 0.013 | < 0.022 | 0.014 | 0.032 | 3 | | | | 05359500 | SOUTH FO | ORK FLAN | MBEAU RI | VER NR PI | HILLIPS, V | VI (LAT 4 | 5 42 08N LO | ONG 090 3 | 6 58W) | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 1350 | E1870 | 30 | 10.1 | 6.9 | 49 | 14.1 | 0.68 | 0.020 | 0.024 | 0.014 | 0.027 | 4 | | 20
JUL | 0900 | E440 | 30 | 8.5 | 7.4 | 71 | 20.4 | 0.48 | 0.031 | 0.072 | 0.024 | 0.045 | 6 | | 16
AUG | 1045 | E450 | 30 | 9.0 | 7.7 | 77 | 21.0 | 0.59 | 0.030 | < 0.022 | 0.023 | 0.038 | <2 | | 20
SEP | 0900 | E200 | 30 | | 8.4 | 79 | 23.8 | 0.46 | 0.027 | 0.025 | 0.013 | 0.028 | 3 | | 17
OCT | 0823 | E180 | 30 | 7.9 | 7.5 | 109 | 17.2 | 0.39 | 0.016 | < 0.022 | 0.012 | 0.027 | 3 | | 15 | 0832 | E180 | 30 | 10.5 | 8.7 | 108 | 9.7 | 0.52 | < 0.013 | < 0.022 | 0.011 | 0.022 | <2 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### ST. CROIX RIVER BASIN--Continued # 05340500 ST. CROIX RIVER AT ST. CROIX FALLS, WI (LAT 45 24 25N LONG 092 38 49W) | MAY | | | |-----------|------|---------| | 2003 | | 0.5.000 | | 22
JUN | | 85.000 | | 18 | 6.10 | 105.00 | | JUL | | | | 17 | | 90.000 | | AUG | | | | 21 | | 120.00 | | SEP
18 | | 120.00 | | OCT | | 120.00 | | 16 | | 120.00 | | 10 | | 120.00 | #### CHIPPEWA RIVER BASIN--Continued ### 05356500 CHIPPEWA RIVER NEAR BRUCE, WI (LAT 45 27 08N LONG 091 15 39W) | MAY | | | |------|------|--------| | 2003 | | | | 21 | | 90.000 | | JUN | | | | 18 | 6.00 | 110.00 | | JUL | | 420.00 | | 15 | | 120.00 | | AUG | | 120.00 | | 19 | | 120.00 | | SEP | | 120.00 | | 16 | | 120.00 | | OCT | | 120.00 | | 14 | | 120.00 | # $05358330\ \ NORTH\ FORK\ FLAMBEAU\ RIVER\ AT\ OXBO, WI\ (LAT\ 45\ 51\ 33N\ LONG\ 090\ 42\ 29W)$ ``` MAY 2003 - - 120.00 JUN 19... 2.60 120.00 JUL 16... -- 120.00 AUG 20... -- 120.00 SEP 17... -- 120.00 OCT 15... -- 120.00 ``` ### 05359500 SOUTH FORK FLAMBEAU RIVER NR PHILLIPS, WI (LAT 45 42 08N LONG 090 36 58W) | MAY | | | |-----------|------|--------| | 2003 | | | | 21 | | 120.00 | | JUN | 2.10 | 120.00 | | 20
JUL | 3.10 | 120.00 | | 16 | | 120.00 | | AUG | | 120.00 | | 20 | | 120.00 | | SEP | | | | 17 | | 120.00 | | OCT | | | | 15 | | 120.00 | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | | | | | WAIE | K-QUALII | I DATA, I | MAY 100 | CIOBER | 2003 | | | | | |-------------|------|--------------------------------------|--|--------------------------------|--|---|-----------------------------------|--|--|---|--|---|--| | | | | | | pH, | Specif. | | Ammonia
+ | | Nitrite
+ | | | Sus-
pended | | Date | Time | Instantaneous discharge, cfs (00061) | Sampling
method,
code
(82398) | Dissolved oxygen, mg/L (00300) | water,
unfltrd
field,
std
units
(00400) | conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phosphorus,
water,
unfltrd
mg/L
(00665) | sedi-
ment
concen-
tration
mg/L
(80154) | | | | | | | CHIPPEW | A RIVER I | BASINCo | ntinued | | | | | | | | | 053 | 360500 FL | AMBEAU | RIVER NE | AR BRUC |
E, WI (LA | T 45 22 21 | N LONG 09 | 01 12 34W) | | | | | MAY | | | | | | | | | | | | | | | 2003 | 0950 | 5,020 | 70 | 9.8 | 6.8 | 57 | 14.4 | 0.95 | 0.035 | 0.087 | 0.019 | 0.033 | 3 | | JUN
18 | 0900 | 1,170 | 30 | 8.1 | 7.2 | 81 | 21.1 | 0.39 | 0.038 | 0.138 | 0.022 | 0.039 | 3 | | JUL
15 | 1743 | 1,210 | 30 | 8.1 | 7.7 | 94 | 22.7 | 0.40 | 0.022 | 0.097 | 0.023 | 0.042 | 3 | | AUG
19 | 1810 | 550 | 30 | | 7.8 | 122 | 25.5 | 0.48 | 0.019 | < 0.022 | 0.010 | 0.030 | <2 | | SEP
16 | 1730 | 484 | 30 | 8.7 | 7.9 | 145 | 19.5 | 0.30 | < 0.013 | 0.108 | 0.016 | 0.032 | 2 | | OCT
14 | 1700 | 472 | 30 | 11.0 | 8.1 | 143 | 13.1 | 0.54 | < 0.013 | 0.029 | 0.013 | 0.031 | 3 | | | | | 05362000 | JUMP RIV | ER AT SH | IELDON, W | VI (LAT 45 | 5 18 29N L | ONG 090 5 | 7 23W) | | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 1144 | 917 | 30 | 10.8 | 7.0 | 65 | 14.1 | 0.62 | 0.027 | 0.031 | 0.028 | 0.036 | <2 | | 17
JUL | 1800 | 371 | 30 | 5.3 | 8.2 | 82 | 24.9 | 0.72 | 0.024 | 0.038 | 0.038 | 0.064 | 3 | | 16
AUG | 0817 | 127 | 30 | 8.8 | 8.7 | 139 | 20.9 | 0.50 | 0.525 | < 0.022 | 0.025 | 0.042 | <2 | | 19
SEP | 1645 | 45 | 30 | | 8.7 | 184 | 30.2 | 0.44 | 0.024 | < 0.022 | 0.014 | 0.031 | | | 16
OCT | 1604 | 52 | 30 | 12.0 | 8.4 | 161 | 20.6 | 0.21 | < 0.013 | < 0.022 | 0.009 | 0.017 | 2 | | 14 | 1535 | 119 | 30 | 11.4 | 8.1 | 188 | 12.9 | 0.48 | < 0.013 | < 0.022 | 0.009 | 0.027 | 2 | | | | 053665 | 500 EAU C | LAIRE RI | VER NEAF | R FALL CR | EEK, WI | (LAT 44 48 | 35N LON | G 091 16 54 | 1W) | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 1116 | E860 | 30 | 9.6 | 7.3 | 85 | 14.1 | 0.59 | 0.030 | 0.420 | 0.087 | 0.080 | 7 | | 16
JUL | 1723 | E350 | 30 | 8.6 | 7.4 | 106 | 24.1 | 0.63 | 0.032 | 0.420 | 0.051 | 0.114 | 11 | | 14
AUG | 1817 | E120 | 30 | 9.0 | 7.8 | 109 | 22.3 | 0.48 | 0.025 | 0.449 | 0.052 | 0.079 | 2 | | 18
SEP | 1747 | E40 | 70 | 10.3 | 9.1 | 111 | 27.6 | 0.76 | 0.015 | 0.380 | 0.023 | 0.094 | 6 | | 15
OCT | 1725 | E50 | 70 | 13.4 | 8.6 | 116 | 19.8 | 0.70 | 0.014 | 0.559 | 0.027 | 0.073 | 6 | | 14 | 1730 | E110 | 70 | 11.9 | 8.5 | 116 | 13.1 | 0.56 | 0.020 | 0.651 | 0.033 | 0.063 | 3 | | | | 053 | 67500 RED | CEDAR I | RIVER NE | AR COLFA | X, WI (LA | AT 45 03 1 | 1N LONG | 91 42 43W |) | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 1346 | E1690 | 30 | 9.6 | 7.7 | 138 | 14.6 | 0.59 | 0.033 | 0.820 | 0.052 | 0.107 | 14 | | 17
JUL | 0818 | E790 | 10 | 7.6 | 7.7 | 163 | 21.2 | 0.60 | 0.042 | 1.32 | 0.068 | 0.136 | 11 | | 15
AUG | 0838 | E1150 | 30 | 7.9 | 7.4 | 146 | 19.4 | 0.96 | 0.057 | 1.09 | 0.113 | 0.269 | 32 | | 19
SEP | 0805 | E530 | 30 | 7.0 | 7.7 | 187 | 23.9 | 0.48 | 0.017 | 1.23 | 0.093 | 0.126 | 4 | | 16
OCT | 0730 | E500 | 30 | 8.8 | 7.7 | 194 | 14.8 | 0.52 | < 0.013 | 1.44 | 0.081 | 0.109 | 3 | | 15 | 0745 | E760 | 30 | 9.3 | 7.9 | 189 | 10.1 | 0.64 | 0.014 | 1.37 | 0.066 | 0.124 | 11 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### CHIPPEWA RIVER BASIN--Continued # 05360500 FLAMBEAU RIVER NEAR BRUCE, WI (LAT 45 22 21N LONG 091 12 34W) | MAY | | | |------|------|--------| | 2003 | | | | 21 | | 120.00 | | JUN | | | | 18 | 1.40 | 120.00 | | JUL | | | | 15 | | 120.00 | | AUG | | | | 19 | | 120.00 | | SEP | | | | 16 | | 120.00 | | OCT | | | | 14 | | 120.00 | | | | | ### $05362000\,$ JUMP RIVER AT SHELDON, WI (LAT 45 18 29N LONG 090 57 23W) | MAY | | | |-----------|------|--------| | 2003 | | 120.00 | | JUN | | | | 17
JUL | 2.20 | 120.00 | | 16 | | 120.00 | | AUG | | | | 19 | | 120.00 | | SEP
16 | | 120.00 | | OCT | | 400.00 | | 14 | | 120.00 | ### 05366500 EAU CLAIRE RIVER NEAR FALL CREEK, WI (LAT 44 48 35N LONG 091 16 54W) | MAY | | | |-----------|------|--------| | 2003 | | 65.000 | | JUN | | < | | 16
JUL | | 62.000 | | 14 | 3.80 | 120.00 | | AUG
18 | | 100.00 | | SEP | 0.00 | 120.00 | | 15
OCT | 8.00 | 120.00 | | 14 | | 120.00 | # 05367500 RED CEDAR RIVER NEAR COLFAX, WI (LAT 45 03 11N LONG 091 42 43W) | MAY
2003 | | | |-------------|------|--------| | 20 | | 70.000 | | JUN
17 | | 86.000 | | JUL
15 | 33.8 | 40.000 | | AUG | 33.6 | | | 19
SEP | | 120.00 | | 16 | 2.80 | 120.00 | | OCT
15 | | 110.00 | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | | | | | WAT | ER-QUALI | TY DATA | , MAY TO | OCTOBE | R 2003 | | | | | |-------------|------|--------------------------------------|-------------------------------|--------------------------------|--|---|---|--|--|---|--|---|--| | | | | | | pH, | Specif. | | Ammonia
+ | | Nitrite
+ | | | Sus-
pended | | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Dissolved oxygen, mg/L (00300) | water,
unfltrd
field,
std
units
(00400) | conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phosphorus,
water,
unfltrd
mg/L
(00665) | sedi-
ment
concen-
tration
mg/L
(80154) | | | | | | | CHIPPE | WA RIVER | BASINC | Continued | | | | | | | | | (| 05369500 | CHIPPEWA | A RIVER A | T DURAN | D, WI (LA | T 44 37 42 | 2N LONG 0 | 91 58 08W |) | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 1612 | 2,250 | 30 | 9.7 | 7.4 | 89 | 15.6 | 0.62 | 0.035 | 0.330 | 0.034 | 0.074 | 18 | | 17
JUL | 1041 | 9,040 | 30 | 8.7 | 7.7 | 147 | 22.0 | 0.44 | 0.018 | 0.578 | 0.030 | 0.078 | 14 | | 15
AUG | 1043 | 6,900 | 30 | 9.0 | 8.1 | 166 | 22.6 | 0.91 | 0.028 | 0.675 | 0.041 | 0.150 | 42 | | 19
SEP | 1030 | 3,050 | 30 | 8.6 | 8.6 | 203 | 25.8 | 0.56 | < 0.013 | 0.566 | 0.023 | 0.080 | 9 | | 16 | 0945 | 2,900 | 30 | 9.6 | 8.8 | 196 | 17.8 | 0.63 | < 0.013 | 0.640 | 0.030 | 0.077 | 8 | | OCT
15 | 1025 | 3,590 | 30 | 10.9 | 8.6 | 200 | 11.3 | 0.69 | < 0.013 | 0.969 | 0.018 | 0.070 | 7 | | | | | | | в | JFFALO R | IVER BAS | IN | | | | | | | | | | 05372000 | BUFFALO | O RIVER N | EAR TELI | L, WI (LAT | Γ 44 23 301 | N LONG 09 | 1 50 55W) | | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 1800 | E550 | 30 | 10.1 | 8.1 | 305 | 16.9 | 0.83 | 0.017 | 2.39 | 0.119 | 0.377 | 106 | | 17
JUL | 1224 | E340 | 30 | 8.4 | 7.9 | 331 | 22.0 | 0.55 | 0.027 | 2.69 | 0.130 | 0.454 | 113 | | 15
AUG | 1252 | E300 | 30 | 8.6 | 8.0 | 345 | 21.5 | 0.88 | 0.030 | 2.45 | 0.148 | 0.471 | 111 | | 19
SEP | 1230 | E210 | 30 | 8.2 | 8.1 | 358 | 24.6 | 0.33 | < 0.013 | 2.49 | 0.155 | 0.283 | 42 | | 16 | 1130 | E230 | 30 | 10.3 | 8.3 | 344 | 15.5 | 0.54 | < 0.013 | 2.28 | 0.128 | 0.260 | 30 | | OCT
15 | 1215 | E260 | 30 | 10.7 | 8.2 | 354 | 9.9 | 0.38 | < 0.013 | 2.30 | 0.127 | 0.261 | 19 | | | | | | | TREN | /IPEALEAU | J RIVER B | ASIN | | | | | | | | | 05 | 379500 TI | REMPEAL | EAU RIVE | R AT DOD | GE, WI (L | AT 44 07 | 54N LONG | 091 33 10 | W) | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 0814 | 720 | 30 | 9.5 | 7.9 | 277 | 14.0 | 0.80 | 0.033 | 1.96 | 0.132 | 0.552 | 104 | | 17
JUL | 1506 | 445 | 30 | 8.3 | 7.8 | 308 | 24.0 | 0.70 | 0.028 | 2.00 | 0.142 | 0.504 | 95 | | 15
AUG | 1444 | 387 | 30 | 8.7 | 8.0 | 313 | 23.9 | 0.49 | 0.036 | 2.00 | 0.154 | 0.430 | 61 | | 19 | 1407 | 276 | 30 | 8.2 | 8.1 | 320 | 26.0 | 0.33 | < 0.013 | 1.99 | 0.182 | 0.367 | 45 | | SEP
16 | 1315 | 294 | 30 | 9.7 | 8.1 | 306 | 18.0 | 0.44 | < 0.013 | 1.90 | 0.157 | 0.293 | 21 | | OCT
15 | 1400 | 341 | 30 | 10.4 | 8.1 | 314 | 11.4 | 0.51 | < 0.013 | 1.68 | 0.164 | 0.271 | 12 | | | | | | | F | BLACK RI | VER BASII | N | | | | | | | | | 0538119 | 95 VISMA | L CREEK | NEAR BLA | ACK RIVE | R FALLS, V | WI (LAT | 14 23 13N L | ONG 090 4 | 45 53W) | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 0843 | 6.8 | 10 | 11.2 | 6.6 | 47 | 10.3 | 0.57 | 0.025 | 0.160 | 0.014 | 0.036 | 10 | | 16 | 1325 | | 10 | 10.0 | 7.1 | 55 | 16.0 | 0.23 | 0.041 | 0.244 | 0.020 | 0.028 | 6 | | JUL
14 | 1610 | | 10 | 9.9 | 7.4 | 62 | 15.9 | 0.56 | 0.014 | 0.233 | 0.015 | 0.020 | <2 | | AUG
18 | 1555 | 0.80 | 10 | 9.5 | 7.5 | 63 | 18.4 | < 0.14 | 0.014 | 0.227 | 0.014 | 0.021 | <2 | | SEP
15 | 1515 | 0.99 | 10 | 12.6 | 7.7 | 67 | 13.3 | 0.19 | < 0.013 | 0.240 | 0.016 | 0.021 | <2 | | OCT
14 | 1515 | 0.89 | 10 | 9.7 | 7.6 | 67 | 10.8 | 0.20 | < 0.013 | 0.080 | 0.014 | 0.021 | <2 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### CHIPPEWA RIVER BASIN--Continued # 05369500 CHIPPEWA RIVER AT DURAND, WI $\left(\text{LAT 44 37 42N LONG 091 58 08W} \right)$ | MAY | | | |------|------|--------| | 2003 | | | | 20 | | 80.000 | | JUN | | | | 17 | | 77.000 | | JUL | | | | 15 | 26.2 | 42.000 | | AUG | | | | 19 | | 78.000 | | SEP | | | | 16 | 15.0 | 120.00 | | OCT | | | | 15 | | 96.000 | | | | | #### **BUFFALO RIVER BASIN--Continued** ### 05372000 BUFFALO RIVER NEAR TELL, WI (LAT 44 23 30N LONG 091 50 55W) | MAY | | | |------------|------|--------| | 2003
20 | | 42.000 | | JUN
17 | | 27.000 | | JUL
15 | 92.4 | 22.000 | | AUG
19 | | 55.000 | | SEP
16 | 22.8 | 64.000 | | OCT | 22.0 | | | 15 | | 82.000 | ### TREMPEALEAU RIVER BASIN--Continued # 05379500 TREMPEALEAU RIVER AT DODGE, WI
$(\mathrm{LAT}\,44\,07\,54\mathrm{N}\,\mathrm{LONG}\,091\,33\,10\mathrm{W})$ | MAY | | | |------|------|--------| | 2003 | | | | 21 | | 27.000 | | JUN | | | | 17 | | 25.000 | | JUL | | | | 15 | 42.3 | 37.000 | | AUG | | | | 19 | | 46.000 | | SEP | | | | 16 | 18.3 | 80.000 | | OCT | | | | 15 | | 94.000 | ### BLACK RIVER BASIN--Continued # $05381195\ \ VISMAL\ CREEK\ NEAR\ BLACK\ RIVER\ FALLS,\ WI\ \ (LAT\ 44\ 23\ 13N\ LONG\ 090\ 45\ 53W)$ | MAY | | | |------|-------|--------| | 2003 | | | | 20 | | 84.000 | | JUN | | | | 16 | | 120.00 | | JUL | | | | 14 | 0.400 | 120.00 | | AUG | | | | 18 | | 120.00 | | SEP | | | | 15 | 0.700 | 120.00 | | OCT | | | | 14 | | 120.00 | | | | | | | | | | WAIL | K-QUALIT | I DAIA, I | MAT 100 | Ammonia | | Nitrite | | | Sus- | |--------------------------|------|--------------------------------------|-------------------------------|--|---|--|---|--|--|---|--|---|--| | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus,
water,
fltrd,
mg/L
(00666) | Phosphorus, water, unfltrd mg/L (00665) | pended
sedi-
ment
concen-
tration
mg/L
(80154) | | | | | | | BLACK | RIVER BA | ASINCont | inued | | | | | | | | | 05381 | 350 LEVIS | CREEK A | T BLACK | RIVER FA | LLS, WI | LAT 44 18 | 3 42N LONG | G 090 48 23 | (W) | | | | MAY
2003 | | | | | | | | | | | | | | | 19
JUN | 1745 | 41 | 10 | 9.5 | 6.4 | 56 | 15.9 | 0.64 | 0.035 | 0.140 | 0.009 | 0.023 | 7 | | 16
JUL | 1527 | | 10 | 9.2 | 6.5 | 73 | 18.8 | 0.27 | 0.031 | 0.254 | 0.011 | 0.031 | | | 14
AUG | 1400 | 16 | 10 | 9.5 | 6.8 | 96 | 15.8 | 0.36 | 0.020 | 0.439 | 0.015 | 0.032 | <2 | | 18
SEP | 1406 | 10 | 10 | 10.3 | 7.6 | 99 | 16.2 | < 0.14 | < 0.013 | 0.449 | 0.009 | 0.019 | <2 | | 15
OCT | 1330 | 12 | 10 | 12.8 | 7.0 | 98 | 12.4 | 0.16 | < 0.013 | 0.424 | 0.012 | 0.022 | <2 | | 14 | 1345 | 11 | 10 | 10.0 | 7.3 | 97 | 10.6 | 0.26 | <0.013 | 0.306 | 0.010 | 0.014 | <2 | | 3.6.37 | | 053 | 382000 BLA | ACK RIVE | R NEAR G | ALESVILL | E, WI (LA | AT 44 03 31 | 7N LONG 0 | 91 17 14W |) | | | | MAY
2003
21
JUN | 1108 | 3,140 | 70 | 9.1 | 7.3 | 95 | 15.2 | 0.79 | 0.043 | 0.450 | 0.074 | 0.170 | 27 | | 17 | 1711 | 1,480 | 70 | 11.0 | 8.2 | 106 | 24.7 | 0.79 | 0.019 | 0.298 | 0.071 | 0.156 | 14 | | JUL
15 | 1652 | 677 | 70 | 11.8 | 8.8 | 149 | 25.8 | 0.78 | < 0.013 | 0.376 | 0.061 | 0.154 | 19 | | AUG
19 | 1538 | 369 | 10 | 11.7 | 8.8 | 171 | 27.7 | 0.61 | < 0.013 | 0.313 | 0.055 | 0.146 | 17 | | SEP
16
OCT | 1445 | 374 | 70 | 12.1 | 8.5 | 172 | 21.8 | 0.38 | 0.014 | 0.730 | 0.060 | 0.110 | 6 | | 15 | 1600 | 418 | 70 | 13.1 | 8.9 | 164 | 12.6 | 0.36 | < 0.013 | 0.457 | 0.039 | 0.074 | 3 | | | | | | | LA CROSS | SE RIVER | BASINCo | ontinued | | | | | | | | | 0538 | 3075 LAC | ROSSE RI | VER NEAF | R LA CROS | SSE, WI (L | AT 43 51 | 38N LONG | 091 12 36 | W) | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 1330 | 342 | 30 | 15.2 | 9.3 | 324 | 16.8 | 1.3 | 0.015 | 0.395 | 0.014 | 0.193 | 79 | | 17
JUL | 1844 | 316 | 30 | 12.4 | 9.0 | 299 | 26.3 | 1.2 | 0.023 | 0.208 | 0.020 | 0.196 | 84 | | 17
AUG | 1915 | 270 | 30 | 9.1 | 8.7 | 340 | 26.8 | 1.1 | 0.024 | 0.340 | 0.087 | 0.214 | 52 | | 19
SEP | 1725 | 207 | 30 | 9.8 | 8.8 | 342 | 28.3 | 0.98 | < 0.013 | 0.192 | 0.131 | 0.277 | 57 | | 16
OCT | 1545 | 227 | 30 | 8.7 | 8.2 | 349 | 21.3 | 0.59 | 0.104 | 0.530 | 0.088 | 0.153 | 29 | | 15 | 1715 | 270 | 30 | 11.1 | 8.5 | 353 | 13.4 | 0.51 | < 0.013 | 0.833 | 0.054 | 0.117 | 18 | | | | | | | | | IVER BASI | | | | | | | | MAN | 053 | 393705 WISC | CONSIN R-I | HISTORIC | CHL-@ G | RANDFAT | HER FALI | LS DAM (| LAT 45 18 4 | 46N LONG | 3 089 47 07 | W) | | | MAY
2003
20 | 1908 | E5700 | 30 | 10.4 | 7.3 | 60 | 15.3 | 0.54 | 0.027 | 0.033 | 0.014 | 0.038 | 4 | | JUN
17 | 1530 | E1710 | 30 | 5.1 | 7.1 | 73 | 23.4 | 0.41 | 0.035 | 0.054 | 0.018 | 0.052 | 4 | | JUL
15 | 1401 | E1580 | 70 | 9.0 | 8.0 | 85 | 21.9 | 0.51 | 0.036 | < 0.022 | 0.024 | 0.055 | 4 | | AUG
19 | 1330 | E1480 | 70 | | 7.8 | 96 | 25.1 | 0.59 | 0.047 | 0.033 | 0.018 | 0.057 | 3 | | SEP
16 | 1258 | E1250 | 70 | 9.5 | 7.7 | 98 | 18.7 | 0.66 | 0.033 | 0.041 | 0.017 | 0.051 | 5 | | OCT
14 | 1301 | E1170 | 70 | 10.7 | 8.1 | 103 | 12.9 | 0.67 | <0.013 | <0.022 | 0.017 | 0.058 | 5 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### BLACK RIVER BASIN--Continued # $05381350\ \ LEVIS\ CREEK\ AT\ BLACK\ RIVER\ FALLS,\ WI\ (LAT\ 44\ 18\ 42N\ LONG\ 090\ 48\ 23W)$ | MAY 2003 | | | |-----------|------------------|--------| | 19 | | 105.00 | | JUN | | | | 16 | | 120.00 | | JUL | - - - | 420.00 | | 14 | 6.50 | 120.00 | | AUG
18 | | 120.00 | | SEP | | 120.00 | | 15 | 4.80 | 120.00 | | OCT. | 7.00 | 120.00 | | 14 | | 120.00 | | | | 0.00 | ### 05382000 BLACK RIVER NEAR GALESVILLE, WI (LAT 44 03 37N LONG 091 17 14W) | MAY 2003 | | | |----------|------|--------| | 21 | | 47.000 | | JUN | | | | 17 | | 40.000 | | JUL | | | | 15 | 13.2 | 59.000 | | AUG | | | | 19 | | 54.000 | | SEP | | | | 16 | 11.4 | 120.00 | | OCT | | | | 15 | | 120.00 | ### LA CROSSE RIVER BASIN--Continued ### 05383075 LA CROSSE RIVER NEAR LA CROSSE, WI (LAT 43 51 38N LONG 091 12 36W) | MAY 2003 | | | |----------|------|--------| | 21 | | 23.000 | | JUN | | | | 17 | | 24.000 | | JUL | | | | 17 | 42.3 | 36.000 | | AUG | | 24.000 | | 19 | | 31.000 | | SEP | 15.4 | 66,000 | | 16 | 17.4 | 66.000 | | OCT | | 55.000 | | 15 | | 55.000 | ### WISCONSIN RIVER BASIN--Continued ### 05393705 WISCONSIN R-HISTORIC CHL-@ GRANDFATHER FALLS DAM (LAT 45 18 46N LONG 089 47 07W) | MAY 2003 | | | |----------|------|--------| | 20 | | 120.00 | | JUN | | | | 17 | 4.00 | 100.00 | | JUL | | | | 15 | | 105.00 | | AUG | | | | 19 | | 110.00 | | SEP | | | | 16 | | 95.000 | | OCT | | | | 14 | | 95.000 | | | | | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010)
ASINCon | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625)
tinued | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |-------------------|------|--------------------------------------|-------------------------------|--|---|--|--|---|--|---|---|--|--| | | 0 | 5401035 DITC | H NO.6 S. I | BRANCH | ΓENMILE (| CRK NR B | ANCROFT | , WI (LA | Γ 44 16 42N | LONG 08 | 9 36 23W) | | | | MAY
2003
19 | 1700 | 15 | 10 | 9.5 | 8.1 | 439 | 13.0 | 0.22 | 0.019 | 11.4 | 0.019 | 0.031 | 8 | | JUN
16 | 1141 | 15 | 10 | 9.7 | 8.1 | 439 | 14.8 | 0.40 | 0.047 | 7.57 | 0.034 | 0.052 | 9 | | JUL
14 | 1329 | 5.5 | 10 | 10.9 | 8.3 | 424 | 19.3 | 0.57 | 0.047 | 7.38 | 0.066 | 0.091 | 5 | | AUG
20 | 1330 | 0.96 | 10 | 10.3 | 8.5 | 409 | 22.5 | 0.43 | 0.022 | 7.14 | 0.060 | 0.071 | <2 | | SEP
15 | 1246 | 1.7 | 10 | 10.3 | 8.1 | 432 | 14.1 | 0.44 | 0.016 | 6.25 | 0.051 | 0.064 | <2 | | OCT
13 | 1513 | 1.9 | 10 | 9.4 | 7.8 | 428 | 11.5 | 0.59 | < 0.013 | 7.41 | 0.040 | 0.047 | <2 | | | | 054035 | 00 LEMON | | VER AT N | EW LISBO | N, WI (LA | | N LONG 09 | 90 09 40W |) | | | | MAY | | | | | | | | | | | | | | | 2003
19 | 1444 | E590 | 30 | 6.9 | 7.0 | 117 | 17.4 | 1.3 | 0.099 | 0.240 | 0.058 | 0.106 | 6 | | JUN
16 | 1102 | E510 | 30 | 6.8 | 7.5 | 128 | 21.1 | 0.84 | 0.116 | 0.303 | 0.072 | 0.145 | | | JUL
14
AUG | 1100 | E300 | 30 | 8.0 | 7.6 | 183 | 21.4 | 0.69 | 0.049 | 0.523 | 0.057 | 0.123 | 9 | | 18 | 1114 | E170 | 30 | 7.1 | 7.7 | 212 | 23.1 | 0.48 | 0.040 | 0.443 | 0.053 | 0.101 | 3 | | SEP
15 | 1130 | E170 | 30 | 10.0 | 7.6 | 227 | 17.0 | 0.74 | 0.072 | 0.420 | 0.081 | 0.158 | 27 | | OCT
14 | 1200 | E120 | 30 | 6.5 | 7.4 | 198 | 12.5 | 0.60 | 0.024 | 0.084 | 0.067 | 0.104 | 2 | | | | 0540 | 4024 WISO | CONSIN R | IVER AT F | PORTAGE, | WI (LAT | 43 32 10N | LONG 089 | 28 24W) | | | | | MAY
2003 | | | | | | | | | | | | |
| | 19
JUN | 0930 | E12000 | 30 | 9.9 | 7.6 | 139 | 15.4 | 0.91 | 0.023 | 0.559 | 0.022 | 0.078 | 15 | | 16
JUL | 0853 | E6500 | 70 | 8.0 | 7.4 | 142 | 20.4 | 0.64 | 0.071 | 0.460 | 0.031 | 0.060 | 7 | | 14
AUG | 0848 | E3900 | 30 | 10.6 | 8.3 | 166 | 22.8 | 1.1 | 0.029 | 0.099 | 0.015 | 0.077 | 10 | | 20
SEP | 1845 | E3400 | 30 | 10.5 | 8.8 | 188 | 29.0 | 0.99 | 0.023 | 0.079 | 0.014 | 0.080 | 14 | | 15
OCT | 0830 | E3090 | 30 | 8.1 | 7.8 | 197 | 18.1 | 0.80 | 0.021 | 0.164 | 0.021 | 0.066 | 12 | | 14 | 0822 | E2720 | 30 | 8.8 | 7.8 | 118 | 13.9 | 0.91 | 0.025 | 0.153 | 0.014 | 0.046 | 8 | | | | 05405 | 000 BARA | BOO RIV | ER NEAR | BARABOC | , WI (LAT | T 43 28 51N | N LONG 089 | 9 38 09W) | | | | | MAY
2003 | | | | | | | | | | | | | | | 19
JUN | 1007 | 540 | 30 | 8.6 | 7.9 | 336 | 16.0 | 0.93 | 0.090 | 1.19 | 0.064 | 0.202 | 75 | | 16
JUL | 0858 | 260 | 30 | 7.1 | 8.0 | 396 | 19.4 | 0.55 | 0.069 | 1.35 | 0.077 | 0.198 | 67 | | 14
AUG | 0909 | 279 | 30 | 7.6 | 8.0 | 368 | 20.3 | 0.98 | 0.032 | 1.16 | 0.076 | 0.224 | 71 | | 18
SEP | 0842 | 165 | 30 | 6.8 | 8.2 | 429 | 22.5 | 0.75 | < 0.013 | 0.937 | 0.075 | 0.205 | 46 | | 15
OCT | 0900 | 405 | 30 | 9.8 | 7.9 | 362 | 16.9 | 0.95 | 0.060 | 1.13 | 0.119 | 0.286 | 77 | | 14 | 0935 | 249 | 30 | 7.7 | 7.7 | 423 | 12.9 | 0.58 | < 0.013 | 0.984 | 0.110 | 0.199 | 23 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | | | | | # WISCONSIN RIVER BASIN--Continued # 3W) | | | Wiscottish (R V Ex Exist) Communica | |-------------------|-----------|---| | 05401 | 035 DITCH | NO.6 S. BRANCH TENMILE CRK NR BANCROFT, WI (LAT 44 16 42N LONG 089 36 23V | | MAY
2003 | | | | 19
JUN | 4.90 | 120.00 | | 16
JUL | | 120.00 | | 14
AUG | | 101.00 | | 20
SEP | 1.10 | 120.00 | | 15 | | 120.00 | | OCT
13 | | 120.00 | | | 0540350 | 0 LEMONWEIR RIVER AT NEW LISBON, WI (LAT 43 52 47N LONG 090 09 40W) | | MAY
2003 | | | | 19 | | 71.000 | | JUN
16
JUL | | 55.000 | | 14 | 18.8 | 54.000 | | AUG
18
SEP | | 95.000 | | 15 | 19.1 | 70.000 | | OCT
14 | | 58.000 | | | 05404 | 024 WISCONSIN RIVER AT PORTAGE, WI (LAT 43 32 10N LONG 089 28 24W) | | MAY | | | | 2003
19
JUN | 13.2 | 45.000 | | 16 | | 97.000 | | JUL
14 | | 57.000 | | AUG
20 | 12.6 | 56.000 | | SEP
15 | | 72.000 | | OCT
14 | | 85.000 | | | 054050 | 00 BARABOO RIVER NEAR BARABOO, WI (LAT 43 28 51N LONG 089 38 09W) | | MAY | | | | 2003
19 | | 24.000 | | JUN
16 | | 20.000 | | JUL
14 | 69.5 | 18.000 | | AUG
18 | | 20.000 | | SEP
15 | 83.7 | 16.000 | | OCT
14 | | 38.000 | | | | | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | | | | | WILL | it QUILLI | 1 271171, 1 | | Ammonia | | Nitrite | | | Sus- | |-------------------|------|--------------------------------------|-------------------------------|--|---|--|-----------------------------------|---|--|--|--|---|--| | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | + org-N, water, unfltrd mg/L as N (00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | +
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | pended
sedi-
ment
concen-
tration
mg/L
(80154) | | | | | | , | WISCONS | IN RIVER | BASINCo | ontinued | | | | | | | | | 05 | 407000 WIS | SCONSIN I | RIVER AT | MUSCOD | A, WI (LA | T 43 11 53 | N LONG 09 | 90 26 36W |) | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 1633 | 15,400 | 30 | 11.3 | 8.3 | 186 | 17.9 | 1.1 | 0.024 | 0.460 | 0.018 | 0.082 | 21 | | 18
JUL | 1119 | 6,700 | 30 | 9.2 | 8.1 | 183 | 25.0 | 0.72 | 0.018 | 0.469 | 0.020 | 0.074 | 13 | | 18
AUG | 1000 | 6,540 | 30 | 8.8 | 8.2 | 232 | 23.7 | 0.55 | 0.020 | 0.447 | 0.022 | 0.028 | 25 | | 20
SEP | 0930 | 3,310 | 30 | 8.8 | 9.0 | 253 | 26.0 | 1.2 | < 0.013 | < 0.034 | 0.007 | 0.108 | 31 | | 17
OCT | 1015 | 4,700 | 30 | 9.8 | 8.4 | 277 | 20.3 | 1.0 | < 0.013 | 0.260 | 0.011 | 0.096 | 19 | | 16 | 1130 | 4,200 | 30 | 11.1 | 8.5 | 283 | 10.6 | 0.89 | < 0.013 | 0.305 | 0.008 | 0.054 | 9 | | | | 0: | 5410490 KI | CKAPOO I | RIVER AT | STEUBEN | I, WI (LAT | 7 43 10 581 | N LONG 09 | 0 51 30W) | | | | | MAY
2003
21 | 1839 | 536 | 30 | 9.7 | 8.2 | 479 | 16.9 | 0.44 | 0.032 | 0.861 | 0.053 | 0.160 | 96 | | JUN
18 | 0914 | 386 | 30 | 8.5 | 8.1 | 502 | 20.6 | 0.37 | 0.034 | 1.06 | 0.066 | 0.160 | 81 | | JUL
18 | 0800 | 380 | 30 | 8.8 | 8.2 | 500 | 21.1 | 0.34 | 0.020 | 0.950 | 0.075 | 0.163 | 67 | | AUG
20 | 0805 | 303 | 30 | 7.6 | 8.2 | 491 | 22.5 | 0.20 | < 0.013 | 0.585 | 0.061 | 0.109 | 33 | | SEP
17 | 0800 | 351 | 30 | 9.3 | 8.2 | 479 | 16.4 | 0.42 | < 0.013 | 0.630 | 0.068 | 0.131 | 35 | | OCT
16 | 0930 | 339 | 30 | 10.5 | 8.2 | 480 | 9.4 | 0.31 | < 0.013 | 0.720 | 0.045 | 0.079 | 12 | | | | | | | GF | RANT RIVI | ER BASIN | | | | | | | | | | | 05413500 | GRANT R | IVER AT E | BURTON, V | WI (LAT 4 | 2 43 13N I | ONG 090 4 | 9 09W) | | | | | MAY
2003 | | | | | | | | | | | | | | | 22
JUN | 0848 | 145 | 30 | | | | | 0.82 | 0.066 | 4.69 | 0.133 | 0.264 | 105 | | 18 | 1345 | 101 | 30 | 8.1 | 8.0 | 642 | 23.9 | 0.46 | 0.078 | 2.86 | 0.140 | 0.212 | 54 | | JUL
18 | 1300 | 98 | 30 | 8.9 | 8.3 | 669 | 23.9 | 0.68 | 0.032 | 2.99 | 0.164 | 0.220 | 29 | | AUG
20 | 1241 | 79 | 30 | 8.8 | 8.2 | 638 | 25.3 | 0.42 | < 0.013 | 2.42 | 0.131 | 0.166 | 15 | | SEP
17 | 1300 | 88 | 30 | 9.7 | 8.2 | 634 | 18.5 | 1.1 | < 0.013 | 3.05 | 0.211 | 0.249 | 9 | | OCT
16 | 1400 | 89 | 30 | 15.0 | 8.5 | 628 | 10.0 | 0.55 | < 0.013 | 3.11 | 0.104 | 0.125 | 2 | | | | | | | R | OCK RIVE | ER BASIN | | | | | | | | | | 0: | 5426000 CF | RAWFISH | RIVER AT | MILFORD | , WI (LAT | 7 43 06 001 | N LONG 08 | 8 50 58W) | | | | | MAY
2003 | | | | | | | | | | | | | | | 20
JUN | 2030 | 696 | 30 | 12.6 | 8.6 | 674 | 18.6 | 2.4 | 0.036 | 1.92 | 0.052 | 0.263 | 67 | | 18
JUL | 1603 | 180 | 30 | | 8.6 | 667 | 28.0 | 3.2 | 0.049 | 0.040 | 0.085 | 0.490 | 107 | | 16
AUG | 1433 | 135 | 30 | 12.7 | 8.8 | 642 | 27.9 | 3.4 | 0.024 | < 0.022 | 0.233 | 0.694 | 109 | | 19 | 1130 | 52 | 30 | 5.6 | 8.5 | 720 | 25.1 | 3.4 | 0.029 | 0.216 | 0.309 | 0.849 | 96 | | SEP
17 | 0742 | 105 | 30 | 8.7 | 8.8 | 661 | 18.2 | 2.2 | < 0.013 | 0.100 | 0.126 | 0.467 | 72 | | OCT
14 | 1123 | 98 | 30 | 7.2 | 8.6 | 631 | 14.3 | 2.5 | < 0.013 | < 0.022 | 0.050 | 0.503 | 79 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### WISCONSIN RIVER BASIN--Continued # 05407000 WISCONSIN RIVER AT MUSCODA, WI (LAT 43 11 53N LONG 090 26 36W) | MAY | | | |------|------|--------| | 2003 | | | | 21 | | 41.000 | | JUN | | | | 18 | | 57.000 | | JUL | | | | 18 | 18.7 | 70.000 | | AUG | | | | 20 | | 34.000 | | SEP | | | | 17 | 19.9 | 54.000 | | OCT | | | | 16 | | 82.000 | | | | | ### 05410490 KICKAPOO RIVER AT STEUBEN, WI (LAT 43 10 58N LONG 090 51 30W) | MAY | | | |------------|------|--------| | 2003
21 | | 30.000 | | JUN
18 | | 29.000 | | JUL
18 | 49.8 | 68.000 | | AUG | 49.8 | | | 20
SEP | | 62.000 | | 17
OCT | 27.2 | 52.000 | | 16 | | 84.000 | ### GRANT RIVER BASIN--Continued # $05413500 \;\; GRANT \; RIVER \; AT \; BURTON, \; WI \;\; (LAT \; 42 \; 43 \; 13N \; LONG \; 090 \; 49 \; 09W)$ | MAY | | | |-----------|------|--------| | 2003 | | | | 22 | | 20.000 | | JUN | | 22.000 | | 18 | | 33.000 | | JUL
18 | 28.0 | 66.000 | | AUG | 26.0 | 00.000 | | 20 | | 67.000 | | SEP | | | | 17 | 8.80 | 108.00 | | OCT | | | | 16 | | 120.00 | #### ROCK RIVER BASIN--Continued # $05426000 \;\; \text{CRAWFISH RIVER AT MILFORD, WI} \;\; (\text{LAT} \; 43 \; 06 \; 00 \text{N LONG} \; 088 \; 50 \; 58 \text{W})$ | MAY | | | |-----------|------|--------| | 2003 | | | | 20 | 67.4 | 36.000 | | JUN | | | | 18 | | 18.000 | | JUL | | 0.000 | | 16
AUG | | 9.000 | | AUG
19 | 146 | 12.000 | | SEP | 140 | 12.000 | | 17 | | 11.000 | | OCT | | 11.000 | | 14 | | 12.000 | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sam-
pling
method,
code
(82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010)
ASINCon | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | |-------------------|------|--------------------------------------|---|--|---|--|--
---|--|---|--|--|--| | | | | 05426460 | BARK RI | | | | | LONG 088 | 3 42 05W) | | | | | MAY
2003
21 | 1555 | E260 | 30 | 9.8 | 8.1 | 378 | 17.5 | 1.4 | 0.101 | 2.06 | 0.056 | 0.135 | 34 | | JUN
18 | 1411 | E90 | 30 | 6.5 | 8.1 | 668 | 24.6 | 1.4 | 0.178 | 0.760 | 0.105 | 0.217 | 64 | | JUL
16 | 1301 | E50 | 30 | 6.8 | 7.8 | 677 | 23.9 | 1.9 | 0.135 | 5.13 | 0.087 | 0.214 | 53 | | AUG
18 | 1845 | E50 | 30 | 7.2 | 8.2 | 708 | 26.7 | 1.1 | 0.123 | 0.492 | 0.094 | 0.191 | 30 | | SEP
16 | 1606 | E30 | 70 | 7.9 | 8.1 | 664 | 20.0 | 1.5 | 0.157 | 2.83 | 0.078 | 0.172 | 52 | | OCT
15 | 1025 | E50 | 30 | 8.2 | 8.1 | 714 | 10.3 | 0.73 | 0.034 | 0.484 | 0.053 | 0.089 | 10 | | 20 | | | | | | | | | LAT 42 55 | | | | 10 | | MAY | | | | | | | | | | | | | | | 2003 | 1700 | 2,430 | 30 | 12.6 | 8.3 | 673 | 18.6 | 2.0 | 0.047 | 1.19 | 0.040 | 0.218 | 51 | | JUN
18 | 1306 | 895 | 30 | 7.9 | 8.4 | 692 | 24.8 | 2.3 | 0.123 | 2.67 | 0.113 | 0.306 | 56 | | JUL
16 | 1205 | 575 | 30 | 11.2 | 8.5 | 648 | 25.6 | 2.4 | 0.026 | 1.28 | 0.099 | 0.333 | 48 | | AUG
19 | 0915 | 132 | 30 | 6.1 | 8.5 | 711 | 25.6 | 2.3 | 0.022 | < 0.022 | 0.094 | 0.399 | 52 | | SEP
16 | 1652 | 336 | 30 | 11.3 | 8.6 | 725 | 20.8 | 2.0 | 0.195 | 0.810 | 0.125 | 0.315 | 33 | | OCT
14 | 1346 | 254 | 30 | 8.6 | 8.6 | 707 | 15.6 | 2.1 | 0.018 | 0.190 | 0.145 | 0.287 | 52 | | | | (| 05430175 | YAHARA F | RIVER NE | AR FULTO | N, WI (LA | AT 42 49 35 | N LONG 0 | 89 10 19W |) | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 0700 | 621 | 30 | 9.6 | 8.3 | 613 | 15.3 | 1.3 | 0.188 | 1.38 | 0.036 | 0.109 | 44 | | 18
JUL | 1135 | 303 | 30 | 8.8 | 8.5 | 586 | 25.7 | 1.4 | 0.048 | 0.230 | 0.060 | 0.216 | 52 | | 16
AUG | 1028 | 209 | 30 | 8.9 | 8.2 | 910 | 22.1 | 2.1 | 0.139 | 5.01 | 0.099 | 0.305 | 84 | | 18
SEP | 1115 | 149 | 30 | 10.5 | 8.4 | 1,220 | 22.9 | 1.4 | 0.066 | 6.54 | 0.119 | 0.262 | 39 | | 17
OCT | 1203 | 144 | 30 | 10.8 | 8.4 | 669 | 18.8 | 1.1 | 0.025 | 5.44 | 0.113 | 0.204 | 28 | | 14 | 1528 | 358 | 30 | 11.0 | 8.5 | 691 | 16.2 | 1.9 | 0.041 | 2.53 | 0.049 | 0.192 | 110 | | | | | 054305 | 00 ROCK | RIVER AT | AFTON, V | VI (LAT 4 | 2 36 33N L | ONG 089 0 | 4 14W) | | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 1100 | 3,340 | 30 | 9.1 | 8.2 | 670 | 17.7 | 1.6 | 0.199 | 1.96 | 0.051 | 0.139 | 32 | | 18
JUL | 1004 | 1,530 | 70 | 8.2 | 8.5 | 740 | 23.6 | 1.7 | 0.091 | 1.10 | 0.121 | 0.204 | 13 | | 16
AUG | 0911 | 1,010 | 70 | 8.2 | 8.1 | 748 | 23.0 | 2.1 | 0.357 | 1.89 | 0.178 | 0.305 | 26 | | 18
SEP | 1445 | 547 | 30 | 16.9 | 8.8 | 790 | 27.1 | 2.1 | 0.015 | 0.033 | 0.180 | 0.379 | 36 | | 17
OCT | 0933 | 592 | 30 | 8.7 | 8.2 | 877 | 17.9 | 1.8 | 0.176 | 4.10 | 0.171 | 0.281 | 16 | | 15 | 0803 | 796 | 30 | 9.0 | 8.4 | 846 | 13.1 | 1.9 | 0.025 | 3.22 | 0.108 | 0.241 | 19 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### ROCK RIVER BASIN--Continued # $05426460\,$ BARK RIVER NEAR HEBRON, WI (LAT 42 53 39N LONG 088 42 05W) | 39.2 | 32.000 | |------|--------------------------| | | | | | 22.000 | | | | | | 17.000 | | | | | 41.2 | 36.000 | | | | | | 15.000 | | | | | | 90.000 | | | 39.2

41.2
 | # $05427085\ ROCK\ RIVER\ AT\ ROBERT\ STREET\ AT\ FORT\ ATKINSON, WI\ (LAT\ 42\ 55\ 39N\ LONG\ 088\ 50\ 34W)$ | MAY 2003 | | | |----------|------|--------| | 21 | 49.5 | 20.000 | | JUN | | | | 18 | | 29.000 | | JUL | | | | 16 | | 15.000 | | AUG | | | | 19 | 67.0 | 16.000 | | SEP | | | | 16 | | 15.000 | | OCT | | | | 14 | | 16.000 | | | | | ### 05430175 YAHARA RIVER NEAR FULTON, WI (LAT 42 49 35N LONG 089 10 19W) | MAY 2003 | | | |-----------|------|--------| | 21 | 27.3 | 64.000 | | JUN | | | | 18 | | 36.000 | | JUL | | 24.000 | | 16 | | 21.000 | | AUG | 20.6 | 55,000 | | 18
SEP | 38.6 | 55.000 | | 17 | | 33.000 | | OCT | | 33.000 | | 1/1 | | 31.000 | | 17 | | 51.000 | ### 05430500 ROCK RIVER AT AFTON, WI (LAT 42 36 33N LONG 089 04 14W) | MAY 2003 | | | |----------|------|--------| | 21 | 34.0 | 45.000 | | JUN | | | | 18 | | 62.000 | | JUL | | | | 16 | | 25.000 | | AUG | | | | 18 | 40.8 | 25.000 | | SEP | | | | 17 | | 34.000 | | OCT | | | | 15 | | 39.000 | | | | | WATER-QUALITY DATA, MAY TO OCTOBER 2003 | Date | Time | Instantaneous discharge, cfs (00061) | Sampling method, code (82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Phosphorus, water, fltrd, mg/L (00666) | Phosphorus, water, unfltrd mg/L (00665) | Suspended sediment concentration mg/L (80154) | |-------------------|------|--------------------------------------|-------------------------------|--|---|--|---|--|--|---|--|---|---| | | | | | | ROCE | K RIVER B | ASINCor | tinued | | | | | | | | | 0543 | 4500 PECA | ATONICA | RIVER AT | MARTIN | TOWN, WI | (LAT 42 | 30 34N LON | NG 089 47 | 58W) | | | | MAY
2003
22 | 1203 | 707 | 30 | | | | | 1.0 | 0.097 | 4.95 | 0.095 | 0.291 | 150 | | JUN
18 | 1655 | 440 | 30 | 7.6 | 8.0 | 638 | 22.3 | 0.81 | 0.078 | 4.54 | 0.109 | 0.271 | 146 | | JUL
18 | 1530 | 359 | 30 | 8.0 | 8.2 | 659 | 24.6 | 0.84 | 0.030 | 4.18 | 0.141 | 0.267 | 89 | | AUG
20 | 1530 | 263 | 30 | 10.8 | 8.4 | 634 | 25.9 | 0.69 | < 0.013 | 3.18 | 0.098 | 0.201 | 51 | | SEP
17 | 1615 | 408 | 30 | 8.4 | 8.1 | 568 | 18.8 | 1.1 | 0.515 | 2.83 | 0.169 | 0.275 | 59 | | OCT
16 | 1630 | 334 | 30 | 10.5 | 8.2 | 618 | 11.7 | 0.80 | 0.025 | 3.06 | 0.077 | 0.143 | 33 | | | | 0: | 5436500 SI | UGAR RIV | ER NEAR | BRODHE | AD, WI (L | AT 42 36 4 | 12N LONG | 089 23 53V | V) | | | | MAY | | | | | | | | | | | | | | | 2003
21 | 0910 | 456 | 30 | 9.3 | 8.1 | 584 | 16.2 | 1.1 | 0.109 | 5.30 | 0.087 | 0.214 | 65 | | JUN
18 | 0829 | 212 | 10 | 8.2 | 8.3 | 619 | 23.2 | 0.95 | 0.023 | 3.16 | 0.028 | 0.156 | 13 | | JUL
16 | 0751 | 271 | 30 | 8.1 | 8.4 | 574 | 23.5 | 1.6 | 0.014 | 3.33 | 0.038 | 0.263 | 82 | | AUG
18 | 1315 | 145 | 30 | 12.2 | 8.6 | 608 | 27.3 | 1.0 | 0.022 | 0.107 | 0.056 | 0.184 | 34 | | SEP
17 | 1046 | 241 | 30 | 8.9 | 8.1 | 567 | 18.7 | 1.2 | 0.084 | 2.90 | 0.142 | 0.235 | 45 | | OCT
14 | 1712 | 201 | 30 | 9.6 | 8.2 | 637 | 14.5 | 0.67 | < 0.013 | 3.52 | 0.080 | 0.158 | 34 | | | | | | | II | LINOIS RI | IVER BAS | IN | | | | | | | | | 05 | 545750 FC | OX RIVER | NEAR NE | W MUNST | ER, WI (L | AT 42 36 | 39N LONG | 088 13 33 | W) | | | | MAY
2003 | | | | | | | | | | | | | | | 21
JUN | 1340 | 722 | 30 | 10.6 | 8.2 | 824 | 17.7 | 1.5 | 0.023 | 1.53 | 0.018 | 0.141 | 63 | | 17 | 1953 | 234 | 10 | 9.4 | 8.5 | 871 | 26.0 | 1.2 | 0.056 | 0.790 | 0.014 | 0.122 | 28 | | JUL
15 | 1622 | 482 | 30 | 12.8 | 8.6 | 770 | 26.9 | 2.7 | 0.019 | 0.876 | 0.016 | 0.265 | 106 | | AUG
18 | 1700 | 145 | 30 | 12.9 | 8.7 | 937 | 28.1 | 1.6 | 0.022 | 0.644 | 0.015 | 0.174 | 31 | | SEP
16 | 1408 | 109 | 30 | 10.4 | 8.3 | 1,010 | 20.2 | 1.6 | 0.170 | 2.15 | 0.030 | 0.160 | 22 | | OCT
15 | 1218 | 155 | 30 | 9.9 | 8.4 | 1,000 | 12.2 | 1.4 | < 0.013 | 1.05 | 0.022 | 0.120 | 20 | | | Field | Secchi | |------|-----------|---------| | | turbidity | tube | | | (NTU) | (cm) | | Date | 99905 | 99910 | | | (99905) | (99910) | ### ROCK RIVER BASIN--Continued # 05434500 PECATONICA RIVER AT MARTINTOWN, WI (LAT 42 30 34N LONG 089 47 58W) | MAY | | | |------|------|--------| | 2003 | | | | 22 | | 14.000 | | JUN | | | | 18 | | 14.000 | | JUL | | | | 18 | 73.2 | 38.000 | | AUG | | | | 20 | | 29.000 | | SEP | | | | 17 | 51.0 | 30.000 | | OCT | | | | 16 | | 38.000 | | | | | ### 05436500 SUGAR RIVER NEAR BRODHEAD, WI (LAT 42 36 42N LONG 089 23 53W) | MAY | | | |-----------|------|--------| | 2003 | 77.7 | 18.000 | | JUN | | | | 18
JUL | | 20.000 | | 16 | | 12.000 | | AUG
18 | 34.9 | 36.000 | | SEP | 34.9 | 30.000 | | 17 | | 19.000 | | OCT
14 | | 27.000 | ### ILLINOIS RIVER BASIN--Continued # 05545750 FOX RIVER NEAR NEW MUNSTER, WI (LAT 42 36 39N LONG 088 13 33W) | MAY | | | |------------|------|--------| | 2003
21 | 70.8 | 24.000 | | JUN | | 21.000 | | 17
JUL | | 31.000 | | 15 | | 11.000 | | AUG
18 | 31.7 | 28.000 | | SEP
16 | | 25.000 | | OCT | | 23.000 | | 15 | | 39.000 | ### MISCELLANEOUS WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 The data were collected to evaluate the effectiveness of PCB contaminated sediment removal from ditches in the upstream reaches of Pine Creek (a tributary of USGS gage 04085395 South Branch Manitowoc River at Hayton). | | - | | | | • | | | | | | | | | |----------------|------|---|--|---
--|---|---|---|---|---|---|---|---| | Date | Time | PCB
congenr
193,
suspnd
sediment,
ngL
(00056) | PCB
congenr
198,
suspnd
sediment,
ng/L
(00058) | PCB
congenr
89, suspnd
sediment
ng/L
(00003) | PCB
congnnr
83,
suspnd
sediment
(00004) | Temper-
ature,
water,
deg C
(00010) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Chloro-
phyll a
wat unf
trichr.
method,
uncorr,
ug/L
(32210) | PCB
congenr
101,
water,
fltrd,
ng/L
(19029) | PCB
congenr
118,
water,
fltrd,
ng/L
(19040) | PCB
congenr
136,
water,
fltrd,
ng/L
(19034) | PCB
congenr
141,
water,
fltrd,
ng/L
(19043) | PCB
congenr
146,
water,
fltrd,
ng/L
(19041) | | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003
23 | 1415 | <0.01
43572508 | <0.01
88045602 | 0.01
HARP PCB | 0.07
SITE B | 24.8
AT NEW H | 5
OLSTEIN, | 1.05
, WI (LAT | 0.40
43 57 25N | 0.26
LONG 088 | 0.04
04 56W) | 0.02 | 0.02 | | JUN 2003 | | | | | | | | | | | | | | | 23 | 1605 | 0.02 | < 0.01 | 0.01 | 0.13 | 27.6 | <2 | 4.42 | 1.8 | 1.2 | 0.21 | 0.09 | 0.12 | | | | 43571708 | 88044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003
23 | 1115 | < 0.01 | <0.01 | <0.01 | 0.01 | 18.2 | 6 | 3.00 | 0.02 | 0.02 | <0.03 | <0.01 | < 0.01 | | | | 43573408 | 88045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 0715 | 0.08 | | 0.04 | 0.55 | 19.4 | 4 | 2.41 | 12 | 8.8 | 1.2 | 0.51 | 0.99 | | | | 4357340 | 88045605 | HARP PCB | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 1005 | 0.20 | | 0.18 | 2.30 | 22.2 | <2 | 3.41 | 30 | 23 | 3.5 | 1.6 | 2.1 | | | | 4357340 | 88044606 | HARP PCB | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 46W) | | | | JUN 2003
24 | 1305 | 0.15 | | | 1.10 | 28.4 | 6 | 2.27 | 14 | 8.5 | 1.6 | 0.80 | 0.94 | | | | 43573908 | 88044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003
24 | 1535 | 0.07 | < 0.01 | 0.02 | 0.29 | 25.4 | 16 | 2.58 | 2.1 | 1.4 | 0.27 | 0.13 | 0.17 | | | 040 | 853926 PIN | NE CREEK | X AT MEGO | ERS ROA | AD NEAR N | EW HOLS | STEIN, WI | (LAT 43 5 | 8 18N LON | IG 088 03 5 | 4W) | | | JUN 2003
25 | 0720 | 0.54 | 0.06 | 0.16 | 2.60 | 19.8 | 22 | 2.75 | 5.2 | 3.3 | 0.64 | 0.31 | 0.47 | # ${\tt MISCELLANEOUS~WATER-QUALITY~DATA,~WATER~YEAR~OCTOBER~2002~TO~SEPTEMBER~2003-Continued}$ | Date | PCB
congenr
149,
water,
fltrd,
ng/L
(19039) | PCB
congenr
151,
water,
fltrd,
ng/L
(19037) | PCB
congenr
17,
water,
fltrd,
ng/L
(19007) | PCB
congenr
174,
water,
fltrd,
ng/L
(19050) | PCB
congenr
177,
water,
fltrd,
ng/L
(19051) | PCB
congenr
178,
water,
fltrd,
ng/L
(19046) | PCB
congenr
18,
water,
fltrd,
ng/L
(19006) | PCB
congenr
180,
water,
fltrd,
ng/L
(19054) | PCB
congenr
183,
water,
fltrd,
ng/L
(19048) | PCB
congenr
185,
water,
fltrd,
ng/L
(19049) | PCB
congenr
19,
water,
fltrd,
ng/L
(19005) | PCB
congenr
194,
water,
fltrd,
ng/L
(19060) | PCB
congenr
199,
water,
fltrd,
ng/L
(19055) | |----------------|---|---|--|---|---|---|--|---|---|---|--|---|---| | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003
23 | 0.11 | 0.03 | < 0.03 | < 0.01 | < 0.01 | < 0.01 | 0.02 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | | | 43572508 | 88045602 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | ĺ | | | | 23 | 0.50 | 0.17 | 0.32 | 0.04 | 0.03 | < 0.01 | 0.20 | 0.05 | 0.02 | < 0.01 | 0.06 | < 0.01 | < 0.01 | | | | 43571708 | 88044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003
23 | 0.03 | < 0.01 | <0.03 | <0.01 | < 0.03 | <0.01 | 0.10 | <0.01 | <0.01 | < 0.03 | < 0.34 | < 0.01 | <0.01 | | | | 43573408 | 88045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 3.4 | 0.99 | 0.08 | 0.23 | 0.21 | 0.07 | 0.07 | 0.31 | 0.12 | 0.02 | | 0.01 | | | | | 4357340 | 88045605 | HARP PCB | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 9.5 | 2.4 | 0.31 | 0.57 | 0.41 | 0.14 | 0.36 | 0.82 | 0.27 | 0.04 | 0.06 | 0.02 | | | | | 4357340 | 88044606 | HARP PCB | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 46W) | | | | JUN 2003
24 | 4.2 | 1.2 | 0.31 | 0.36 | 0.25 | 0.09 | 0.32 | 0.52 | 0.17 | 0.02 | 0.06 | 0.03 | | | | | 43573908 | 88044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003
24 | 0.71 | 0.24 | 0.59 | 0.07 | 0.04 | 0.02 | 0.42 | 0.09 | 0.03 | | 0.10 | < 0.01 | | | | 0408 | 353926 PIN | NE CREEK | K AT MEGO | ERS ROA | D NEAR N | EW HOLS | STEIN, WI | (LAT 43 5 | 8 18N LON | IG 088 03 5 | 54W) | | | JUN 2003
25 | 1.8 | 0.62 | 1.0 | 0.19 | 0.14 | 0.07 | 1.2 | 0.30 | 0.10 | 0.02 | 0.16 | 0.03 | | | | PCB |----------------|-----------------|-----------------|----------------|----------------|-------------|---------------|----------------|----------------|----------------|----------------|-------------|---------------|---------------| | | congenr
201, | congenr
206, | congenr
22, | congenr
26, | congenr 33, | congenr 40, | congenr
44, | congenr
45, | congenr
46, | congenr
49, | congenr 52, | congenr
6, | congenr
7, | | | water, | | fltrd, | Date | ng/L | | (19057) | (19061) | (19013) | (19010) | (19012) | (19022) | (19019) | (19014) | (19015) | (19017) | (19016) | (19003) | (19002) | | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003 | | | | | | | | | | | | | | | 23 | < 0.02 | < 0.01 | < 0.02 | < 0.01 | 0.02 | 0.03 | 0.28 | < 0.01 | < 0.01 | 0.11 | 0.52 | < 0.02 | < 0.01 | | | | 43572508 | 88045602 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003 | 0.00 | 0.01 | 0.07 | 0.44 | 0.04 | 0.06 | | 0.05 | 0.26 | 1.7 | 2.6 | 0.02 | 0.01 | | 23 | < 0.02 | < 0.01 | 0.07 | 0.44 | 0.04 | 0.06 | 1.4 | 0.05 | 0.26 | 1.7 | 3.6 | < 0.02 | < 0.01 | | | | 43571708 | 88044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003 | | | | | | | | | | | | | | | 23 | < 0.02 | < 0.01 | < 0.18 | < 0.01 | < 0.01 | < 0.01 | 0.07 | < 0.01 | < 0.01 | 0.07 | 0.13 | < 0.02 | < 0.01 | | | | 1257210 | 00045604 | II A DD DCD | CITE D | ATE NIESSA II | OI CEEIN | 33/I /I A/E | 42 57 2 4NI | LONG 000 | 04.5(11) | | | | | | 435/3408 | 88045604 | HARP PCB | SHE D | AI NEW H | OLSTEIN, | WI (LAI | 43 5 / 34N . | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 0.03 | | | 0.74 | 0.05 | 0.15 | 4.1 | 0.07 | 0.13 | 4.6 | 12 | | | | | | 4357340 | 88045605 | HARP PCE | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | HIN 2002 | | | | | | | , | | | | / | | | | JUN 2003
24 | 0.05 | | 0.03 | 2.1 | 0.19 | 0.60 | 17 | 0.30 | 0.41 | 13 | 40 | 0.04 | 0.02 | | 27 | 0.03 | | | | | | | | | | | 0.04 | 0.02 | | | | 4357340 | 88044606 | HARP PCE | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N I | LONG 088 | 04 46W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 0.07 | | | 1.8 | 0.15 | 0.28 | 7.1 | 0.19 | 0.31 | 5.6 | 19 | 0.07 | 0.03 | | | | 43573009 | 88044507 | HARP PCB | SITE G | AT NEW H | OI STEIN | WI (LAT | 43 57 30N | I ONG 088 | 04.45W) | | | | | | 43373700 | 30044307 | HARI I CD | SIIL U | AI NEW II | OLSTEIN, | WI (LAI | 43 31 331N . | LONG 000 | 04 43 **) | | | | JUN 2003 | 0.00 | | 0.10 | | 0.11 | 0.12 | 2.2 | 0.00 | 0.42 | 2.0 | | 0.07 | 0.02 | | 24 | < 0.02 | | 0.10 | 1.5 | 0.11 | 0.12 | 2.3 | 0.09 | 0.43 | 2.9 | 5.5 | 0.07 | < 0.03 | | | 0408 | 353926 PIN | NE CREEK | AT MEGO | GERS ROA | AD NEAR N | EW HOLS | TEIN, WI | (LAT 43 58 | 8 18N LON | IG 088 03 5 | 4W) | | | JUN 2003 | | | | | | | | | | | | | | | 25 | 0.08 | | 0.18 | 6.7 | 0.40 | 0.29 | 6.8 | 0.22 | 0.87 | 8.9 | 17 | 0.30 | 0.05 | | | | | | | | | | | | | | | | | | PCB
----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | | congenr congnrs | congnrs | congnrs | congnrs | congnrs | congnrs | | | 74, | 82, | 85, | 87, | 91, | 97, | 99, | 132+153 | 135+144 | 137+176 | 138+163 | 16 + 32 | 170+190 | | | water,
fltrd. | water,
fltrd. | water,
fltrd. | water,
fltrd. | water,
fltrd. | water,
fltrd, | water,
fltrd. | water,
fltrd. | water,
fltrd. | water,
fltrd. | water,
fltrd. | water,
fltrd, | water,
fltrd, | | Date | ng/L | | (19023) | (19036) | (19033) | (19032) | (19026) | (19031) | (19030) | (19042) | (19038) | (19044) | (19045) | (19009) | (19056) | | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003 | | | | | | | | | | | | | | | 23 | 0.04 | 0.06 | 0.09 | 0.25 | 0.07 | 0.11 | 0.12 | 0.24 | 0.04 | < 0.01 | 0.20 | < 0.04 | < 0.01 | | | | 4357250 | 88045602 | HARP PCE | SITE B | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003 | 0.14 | 0.10 | 0.21 | 0.01 | 0.46 | 0.46 | 0.67 | 1.0 | 0.20 | 0.01 | 0.05 | 0.60 | 0.04 | | 23 | 0.14 | 0.18 | 0.31 | 0.81 | 0.46 | 0.46 | 0.67 | 1.0 | 0.20 | < 0.01 | 0.95 | 0.68 | 0.04 | | | | 4357170 | 88044403 | HARP PCE | SITE C | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003 | | | | | | | | | | | | | | | 23 | < 0.03 | < 0.01 | < 0.01 | < 0.05 | < 0.07 | 0.02 | 0.02 | < 0.06 | < 0.01 | < 0.01 | < 0.04 | < 0.02 | < 0.08 | | | | 4357340 | 88045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 0.22 | 0.80 | 1.8 | 4.4 | 1.8 | 2.7 | 4.3 | 7.7 | 1.3 | | 8.1 | 0.07 | 0.25 | | | | 4357340 | 88045605 | HARP PCE | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 0.82 | 2.3 | 4.4 | 12 | 4.9 | 7.1 | 11 | 19 | 3.6 | 0.02 | 18 | 0.54 | 0.63 | | | | 4357340 | 88044606 | HARP PCE | SITE E | AT NEW H | OI STEIN | WI (IAT. | 43 57 34N I | ONG 088 | 04.46 W) | | | | | | 7337370 | 00044000 | IIAKI I CL | JIIL I | AINLWII | OLSTEIN, | WI (LAI | TJ J/ JTIN I | LOING 000 | 04 40 11) | | | | JUN 2003
24 | 0.32 | 1.0 | 2.1 | 6.1 | 2.2 | 3.1 | 4.5 | 8.3 | 1.5 | < 0.01 | 8.2 | 0.68 | 0.37 | | | | 4357390 | 88044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 0.12 | 0.21 | 0.37 | 0.97 | 0.63 | 0.53 | 0.81 | 1.3 | 0.30 | | 1.2 | 1.3 | 0.06 | | | | | | K AT MEGO | | | | | | 2 10N I ON | | 4W /) | | | | 0408 | 533920 PII | NE CKEE! | X AT MEGC | JEKS KUA | NEAK N | EW HOLS | orgin, wi | (LAI 43 38 | 5 TOIN LOIN | IG 089 03 3 | 4 vv) | | | JUN 2003 | 0.20 | 0.42 | 0.77 | 2.0 | 1.6 | 1.2 | 2.0 | 2.1 | 0.70 | -0.01 | 2.0 | 2.6 | 0.17 | | 25 | 0.29 | 0.43 | 0.77 | 2.0 | 1.6 | 1.3 | 2.0 | 3.1 | 0.79 | < 0.01 | 2.9 | 2.6 | 0.17 | | Date | PCB
congnrs
171+202
water,
fltrd,
ng/L
(19052) | PCB
congnrs
172+197
water,
fltrd,
ng/L
(19053) | PCB
congnrs
182+187
water,
fltrd,
ng/L
(19047) | PCB
congnrs
195+208
water,
fltrd,
ng/L
(19059) | PCB
congnrs
196+203
water,
fltrd,
ng/L
(19058) | PCB
congnrs
28 + 31
water,
fltrd,
ng/L
(19011) | PCB congnrs 37 + 42 water, fltrd, ng/L (19020) | PCB
congnrs
41 +
64 + 71
water,
fltrd,
ng/L
(19021) | PCB
congnrs
47 + 48
water,
fltrd,
ng/L
(19018) | PCB congnrs 5 + 8, water, fltrd, ng/L (19004) | PCB
congnrs
56 + 60
water,
fltrd,
ng/L
(19027) | PCB
congnrs
70 + 76
water,
fltrd,
ng/L
(19024) | PCB
congnrs
77+110
water,
fltrd,
ng/L
(19035) | |----------------|--|--|--|--|--|--|--|--|--|---|--|--|---| | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003
23 | < 0.01 | < 0.01 | < 0.01 | <0.01 | < 0.03 | 0.04 | 0.04 | 0.10 | 0.03 | < 0.05 | 0.06 | 0.19 | 0.57 | | | | 43572508 | 88045602 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003
23 | 0.01 | < 0.01 | 0.04 | <0.01 | < 0.03 | 1.0 | 0.57 | 0.72 | 1.0 | < 0.05 | 0.17 | 0.76 | 2.5 | | | | 43571708 | 88044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003
23 | < 0.01 | < 0.01 | < 0.02 | <0.01 | < 0.07 | < 0.04 | < 0.02 | < 0.02 | < 0.02 | < 0.05 | 0.02 | < 0.03 | 0.07 | | | | 43573408 | 88045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 0.06 | 0.05 | 0.21 | | 0.03 | 0.28 | 1.1 | 1.2 | 1.3 | | 0.33 | 3.4 | 15 | | | | 4357340 | 88045605 | HARP PCE | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 0.10 | 0.16 | 0.41 | 0.01 | 0.06 | 0.92 | 2.8 | 4.2 | 3.3 | | 1.3 | 12 | 39 | | | | 4357340 | 88044606 | HARP PCE | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 46W) | | | | JUN 2003
24 | 0.07 | 0.10 | 0.28 | 0.01 | 0.07 | 0.90 | 1.3 | 1.9 | 1.6 | | 0.61 | 4.5 | 17 | | | | 43573908 | 88044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003
24 | 0.01 | 0.02 | 0.06 | | < 0.03 | 1.5 | 0.91 | 1.1 | 1.6 | < 0.07 | 0.20 | 1.0 | 3.1 | | | 0408 | 853926 PIN | NE CREEK | AT MEGO | GERS ROA | D NEAR N | EW HOLS | TEIN, WI | (LAT 43 5 | 8 18N LON | IG 088 03 5 | 4W) | | | JUN 2003
25 | 0.04 | 0.04 | 0.20 | 0.01 | 0.07 | 3.0 | 2.4 | 3.0 | 3.5 | 0.11 | 0.52 | 2.4 | 8.3 | | | PCB |----------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------| | | congnrs
84 + 92 | congenr
101. | congenr
118. | congenr
136, | congenr
141. | congenr
146. | congenr
149, | congenr
151. | congenr
17. | congenr
174. | congenr
177. | congenr
178. | congenr
18, | | | water, | suspnd | _ | fltrd, | sedimnt | Date | ng/L
(19028) | ng/L
(19092) | ng/L
(19103) | ng/L
(19097) | ng/L
(19106) | ng/L
(19104) | ng/L
(19102) | ng/L
(19100) | ng/L
(19070) | ng/L
(19113) | ng/L
(19114) | ng/L
(19109) | ng/L
(19069) | | | (19020) | (/ | ` / | (/ | (/ | (/ | (/ | (/ | (/ | (/ | , | (19109) | (19009) | | | | 43572008 | 38050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003 | | | | | | | | | | | | | | | 23 | 0.51 | 0.91 | 0.79 | 0.12 | 0.15 | 0.14 | 0.46 | 0.12 | < 0.03 | 0.12 | 0.08 | 0.03 | < 0.01 | | | | 43572508 | 88045602 | HARP PCB | SITE B A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 23 | 2.4 | 1.4 | 1.2 | 0.22 | 0.18 | 0.23 | 0.69 | 0.21 | < 0.03 | 0.16 | 0.11 | 0.04 | < 0.01 | | | | 43571709 | 28044403 | HARP PCB | SITE C | AT NEW H | OI STEIN | W/I /I AT | /3 57 17N i | I ONG 088 | 04.44 W /) | | | | | | 43371700 | 30044403 | IIAKI ICD | SIIL C | AT IND W II | OLSTEIN, | WI (LAI | 43 37 17IN | LONG 000 | 04 44 W) | | | | JUN 2003
23 | < 0.02 | 0.22 | 0.15 | < 0.03 | 0.03 | 0.04 | 0.10 | 0.03 | < 0.03 | 0.03 | 0.02 | 0.01 | < 0.01 | | 23 | <0.02 | | | | | | | | | | | 0.01 | <0.01 | | | | 43573408 | 38045604 | HARP PCB | SITE D A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 10 | 7.6 | 6.7 | 1.1 | 0.65 | 1.2 | 3.7 | 0.94 | | 0.48 | 0.42 | 0.14 | | | | | 43573408 | 88045605 | HARP PCB | SITE E A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N I | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 34 | 31 | 26 | 5.1 | 2.9 | 3.9 | 13 | 3.5 | | 1.7 | 1.2 | 0.41 | | | | | 43573409 | 88044606 | HARP PCB | SITE E / | T NEW H | OI STEIN | WI (IAT. | 12 57 24NI I | ONG 088 | 04.46 W) | | | | | | 43373400 | 30044000 | IIAKI I CD | SILE I' F | AT IND W III | JESTEIN, | WI (LAI | +5 57 5411 1 | LONG 000 | 04 40 W) | | | | JUN 2003
24 | 15 | 15 | 13 | 2.3 | 1.8 | 2.2 | 6.9 | 2.0 | | 1.2 | 0.88 | 0.33 | 0.04 | | 24 | 13 | | | | | | | | | | | 0.55 | 0.04 | | | | 43573908 | 38044507 | HARP PCB | SITE G A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 3.2 | 2.7 | 2.6 | 0.54 | 0.44 | 0.56 | 1.6 | 0.51 | 0.04 | 0.42 | 0.31 | 0.14 | 0.03 | | | 0408 | 353926 PIN | NE CREEK | AT MEGG | ERS ROA | D NEAR N | EW HOLS | TEIN, WI | (LAT 43 58 | 8 18N LON | G 088 03 5 | 4W) | | | JUN 2003 | | | | | | | | | | | | | | | 25 | 8.8 | 17 | 17 | 3.9 | 3.0 | 4.3 | 14 | 3.9 | 0.24 | 3.2 | 2.6 | 1.2 | 0.28 | | | | | | | | | | | | | | | | | Date |
PCB
congenr
180,
suspnd
sedimnt
ng/L
(19117) | PCB
congenr
183,
suspnd
sedimnt
ng/L
(19111) | PCB
congenr
185,
suspnd
sedimnt
ng/L
(19112) | PCB
congenr
19,
suspnd
sedimnt
ng/L
(19068) | PCB
congenr
194,
suspnd
sedimnt
ng/L
(19123) | PCB
congenr
199,
suspnd
sedimnt
ng/L
(19118) | PCB
congenr
201,
suspnd
sedimnt
ng/L
(19120) | PCB
congenr
206,
suspnd
sedimnt
ng/L
(19124) | PCB
congenr
22,
suspnd
sedimnt
ng/L
(19076) | PCB
congenr
26,
suspnd
sedimnt
ng/L
(19073) | PCB
congenr
33,
suspnd
sedimnt
ng/L
(19075) | PCB
congenr
40,
suspnd
sedimnt
ng/L
(19085) | PCB
congenr
44,
suspnd
sedimnt
ng/L
(19082) | |----------------|--|--|--|---|--|--|--|--|---|---|---|---|---| | | (17117) | ` / | | ` / | ` / | AT NEW H | , | ` / | , | , , | , | (17003) | (17002) | | | | 45572000 | 86030601 | HARP PCD | SIIE A | AINEW I | OLSTEIN, | WI (LAI | 43 37 20IN | LUNG 088 | 03 08W) | | | | JUN 2003
23 | 0.24 | 0.07 | 0.01 | < 0.01 | 0.04 | < 0.01 | 0.07 | 0.01 | < 0.02 | < 0.01 | < 0.01 | 0.01 | 0.16 | | | | 43572508 | 88045602 | HARP PCE | SITE B | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003
23 | 0.31 | 0.08 | 0.01 | <0.01 | 0.05 | < 0.01 | 0.09 | 0.02 | < 0.02 | 0.04 | <0.01 | <0.01 | 0.29 | | | | 43571708 | 88044403 | HARP PCE | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003
23 | 0.04 | 0.02 | <0.01 | < 0.01 | 0.02 | < 0.01 | 0.03 | < 0.01 | < 0.02 | < 0.01 | < 0.01 | < 0.01 | 0.06 | | | | 43573408 | 88045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 0.79 | 0.27 | 0.04 | | 0.07 | < 0.01 | 0.12 | 0.03 | | 0.10 | | 0.03 | 1.1 | | | | 4357340 | 88045605 | HARP PCE | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 3.1 | 0.90 | 0.13 | | 0.21 | 0.02 | 0.32 | 0.06 | | 0.42 | | 0.19 | 5.6 | | | | 4357340 | 88044606 | HARP PCE | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N I | LONG 088 | 04 46W) | | | | JUN 2003
24 | 2.3 | 0.64 | 0.10 | | 0.28 | 0.03 | 0.48 | 0.08 | | 0.42 | 0.11 | 0.13 | 2.7 | | | | 43573908 | 88044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003
24 | 0.82 | 0.22 | 0.04 | | 0.16 | 0.02 | 0.28 | 0.05 | | 0.25 | 0.02 | 0.02 | 0.78 | | | 0408 | 353926 PIN | NE CREEK | AT MEGO | GERS ROA | AD NEAR N | EW HOLS | TEIN, WI | (LAT 43 58 | 8 18N LON | IG 088 03 5 | 54W) | | | JUN 2003
25 | 6.5 | 1.7 | 0.30 | | 1.5 | 0.19 | 2.5 | 0.46 | | 3.6 | 0.23 | 0.17 | 6.7 | # ${\tt MISCELLANEOUS~WATER-QUALITY~DATA,~WATER~YEAR~OCTOBER~2002~TO~SEPTEMBER~2003-Continued}$ | | PCB congenr | PCB
congenr | PCB congenr | PCB congenr | PCB congenr | PCB congenr | PCB
congenr | |----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--| | | 45, | 46, | 49, | 52, | 6, | 7, | 74, | 82, | 85, | 87, | 91, | 97, | 99, | | | | suspnd
sedimnt | | Date | ng/L | | | (19077) | (19078) | (19080) | (19079) | (19066) | (19065) | (19086) | (19099) | (19096) | (19095) | (19089) | (19094) | (19093) | | | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | | JUN 2003 | | | | | | | | | | | | | | | | 23 | < 0.01 | < 0.01 | 0.08 | 0.34 | < 0.02 | < 0.01 | 0.06 | 0.10 | 0.21 | 0.52 | 0.11 | 0.23 | 0.32 | | | | | 43572508 | 88045602 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | | JUN 2003 | 0.04 | 0.04 | 0.46 | 0.50 | 0.00 | 0.04 | 0.07 | 0.40 | | 0.44 | | 0.00 | 0.55 | | | 23 | < 0.01 | 0.04 | 0.46 | 0.78 | < 0.02 | < 0.01 | 0.06 | 0.12 | 0.27 | 0.61 | 0.27 | 0.33 | 0.57 | | | | | 43571708 | 38044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | | JUN 2003 | 0.04 | 0.04 | 0.00 | 0.40 | 0.00 | 0.04 | 0.04 | 0.04 | 0.04 | 0.00 | 0.00 | 0.04 | 0.00 | | | 23 | < 0.01 | < 0.01 | 0.08 | 0.18 | < 0.02 | < 0.01 | 0.01 | 0.01 | 0.04 | 0.09 | 0.03 | 0.04 | 0.08 | | | | | 43573408 | 38045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | | JUN 2003 | | 0.02 | 1.0 | 2.0 | | | 0.10 | 0.22 | 1.2 | 2.0 | 0.05 | 1.7 | 2.1 | | | 24 | | 0.02 | 1.3 | 3.0 | | | 0.10 | 0.32 | 1.3 | 2.8 | 0.95 | 1.7 | 3.1 | | | | | 43573408 | 88045605 | HARP PCB | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | | JUN 2003 | 0.0= | 0.40 | | | | | 0.40 | | . . | | | - 0 | | | | 24 | 0.07 | 0.10 | 5.0 | 16 | | | 0.49 | 1.9 | 5.0 | 12 | 4.5 | 7.0 | 12 | | | | | 43573408 | 88044606 | HARP PCB | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N I | LONG 088 | 04 46W) | | | | | JUN 2003 | | 0.06 | 2.6 | 7 4 | | 0.04 | 0.24 | | 2.6 | | 2.0 | 2.2 | - A | | | 24 | | 0.06 | 2.6 | 7.4 | | 0.04 | 0.24 | 1.1 | 2.6 | 6.4 | 2.0 | 3.3 | 5.4 | | | | | 43573908 | 38044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | | JUN 2003 | 0.01 | 0.00 | 1.0 | 2.0 | | | 0.00 | 0.24 | 0.56 | 1.0 | 0.61 | 0.65 | 1.0 | | | 24 | 0.01 | 0.09 | 1.2 | 2.0 | | | 0.08 | 0.24 | 0.56 | 1.2 | 0.61 | 0.65 | 1.2 | | | | 0408 | 353926 PIN | NE CREEK | AT MEGO | ERS ROA | D NEAR N | EW HOLS | TEIN, WI | (LAT 43 5 | 8 18N LON | IG 088 03 5 | 4W) | | | | JUN 2003 | 0.12 | 0.55 | 10 | 16 | | | 0.56 | 1.5 | 2.4 | 7.5 | 4.4 | 4.5 | 0.2 | | | 25 | 0.12 | 0.55 | 10 | 16 | | | 0.56 | 1.5 | 3.4 | 7.5 | 4.4 | 4.5 | 8.3 | | | | PCB |----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | | congnrs
132+153 | congnrs
135+144 | congnrs
137+176 | congnrs
138+163 | congnrs
16 + 32 | congnrs
170+190 | congnrs
171+202 | congnrs
172+197 | congnrs
182+187 | congnrs
195+208 | congnrs
196+203 | congnrs
24 + 27 | congnrs
24 + 27 | | | suspnd water, | | | sedimnt fltrd, | | Date | ng/L | | (19105) | (19101) | (19107) | (19108) | (19072) | (19119) | (19115) | (19116) | (19110) | (19122) | (19121) | (19071) | (19008) | | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003 | | 0.45 | 0.04 | 4.0 | | 0.45 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | | 0.04 | | 23 | 1.1 | 0.17 | < 0.01 | 1.3 | < 0.02 | 0.15 | 0.03 | 0.04 | 0.08 | 0.02 | 0.08 | < 0.01 | 0.01 | | | | 43572508 | 88045602 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003 | | 0.00 | 0.04 | 4.0 | | | 0.04 | | 0.40 | 0.00 | 0.40 | | | | 23 | 1.6 | 0.26 | < 0.01 | 1.8 | < 0.02 | 0.21 | 0.04 | 0.05 | 0.12 | 0.02 | 0.10 | < 0.01 | 0.02 | | | | 43571708 | 88044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003 | | 0.04 | 0.04 | | | 0.00 | 0.00 | 0.04 | 0.02 | 0.04 | 0.02 | | 0.04 | | 23 | 0.22 | 0.04 | < 0.01 | 0.25 | < 0.02 | 0.03 | 0.02 | < 0.01 | 0.03 | < 0.01 | < 0.03 | < 0.01 | < 0.01 | | | | 43573408 | 88045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 7.9 | 1.3 | 0.02 | 9.5 | | 0.68 | 0.13 | 0.15 | 0.41 | 0.04 | 0.15 | | | | | | 4357340 | 88045605 | HARP PCB | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 29 | 4.8 | 0.06 | 31 | | 2.4 | 0.37 | 0.58 | 1.2 | 0.10 | 0.37 | | 0.04 | | | | 4357340 | 88044606 | HARP PCB | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N I | LONG 088 | 04 46W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 16 | 2.6 | 0.04 | 18 | | 1.6 | 0.27 | 0.41 | 0.96 | 0.13 | 0.54 | | 0.03 | | | | 43573908 | 88044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003 | | | | | | | | | | | | | | | 24 | 3.6 | 0.65 | 0.02 | 4.1 | 0.06 | 0.51 | 0.10 | 0.13 | 0.38 | 0.07 | 0.32 | | < 0.04 | | | 0408 | 353926 PIN | NE CREEK | AT MEGG | ERS ROA | D NEAR N | EW HOLS | TEIN, WI | (LAT 43 5 | 8 18N LON | G 088 03 5 | 4W) | | | JUN 2003 | | | | | | | | | | | | | | | 25 | 26 | 5.4 | 0.16 | 28 | 0.66 | 3.9 | 0.77 | 1.0 | 3.2 | 0.60 | 2.7 | | 0.07 | | | | | | | | | | | | | | | | # MISCELLANEOUS WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued | Date | PCB
congnrs
28 + 31
suspnd
sedimnt
ng/L
(19074) | PCB
congnrs
37 + 42
suspnd
sedimnt
ng/L
(19083) | PCB
congnrs
41 +
64 + 71
suspnd
sedimnt
ng/L
(19084) | PCB
congnrs
47 + 48
suspnd
sedimnt
ng/L
(19081) |
PCB
congnrs
5 + 8,
suspnd
sedimnt
ng/L
(19067) | PCB
congnrs
56 + 60
suspnd
sedimnt
ng/L
(19090) | PCB
congnrs
70 + 76
suspnd
sedimnt
ng/L
(19087) | PCB
congnrs
77+110
suspnd
sedimnt
ng/L
(19098) | PCB
congnrs
84 + 92
suspnd
sedimnt
ng/L
(19091) | PCB
congenr
66,
suspnd
sediment,
ng/L
(00001) | PCB
congenr
95,
suspend
sediment,
ng/L
(00002) | PCB
congenr
158,
suspnd
sediment,
ng/L
(00005) | PCB
congenr
207,
suspnd
sediment,
ng/L
(00008) | |----------------|---|---|---|---|--|---|---|--|---|---|--|--|--| | | | 43572008 | 88050801 I | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003
23 | < 0.04 | 0.02 | 0.07 | 0.02 | < 0.05 | 0.06 | 0.22 | 1.2 | 0.81 | 0.11 | 0.78 | 0.15 | <0.0070 | | | | 4357250 | 88045602 1 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003
23 | 0.12 | 0.15 | 0.19 | 0.32 | < 0.05 | 0.07 | 0.31 | 1.9 | 1.4 | 0.33 | 1.20 | 0.20 | <0.0070 | | | | 4357170 | 88044403 1 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003
23 | < 0.04 | 0.02 | < 0.02 | 0.03 | < 0.05 | < 0.02 | 0.05 | 0.27 | 0.17 | 0.04 | 0.16 | 0.02 | < 0.0070 | | | | 43573408 | 88045604 I | HARP PCB | SITE D | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | < 0.04 | 0.32 | 0.33 | 0.45 | | 0.12 | 1.5 | 9.4 | 6.3 | 1.10 | 6.10 | 0.99 | | | | | 4357340 | 88045605 | HARP PCB | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | 0.19 | 1.2 | 1.8 | 1.6 | | 0.69 | 6.9 | 39 | 29 | 4.30 | 30.0 | 3.40 | | | | | 4357340 | 88044606 | HARP PCB | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 46W) | | | | JUN 2003
24 | 0.30 | 0.63 | 0.98 | 0.92 | | 0.43 | 3.2 | 19 | 13 | 2.00 | 14.0 | 1.90 | | | | | 43573908 | 88044507 I | HARP PCB | SITE G | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003
24 | 0.26 | 0.37 | 0.47 | 0.76 | | 0.14 | 0.79 | 4.0 | 3.2 | 0.69 | 2.70 | 0.44 | <0.0070 | | | 0408 | 353926 PIN | NE CREEK | AT MEGO | ERS ROA | D NEAR N | EW HOLS | TEIN, WI | (LAT 43 5 | 8 18N LON | IG 088 03 5 | 54W) | | | JUN 2003
25 | 1.8 | 2.9 | 3.5 | 4.8 | | 1.0 | 4.9 | 32 | 26 | 4.90 | 21.0 | 2.90 | 0.0 | # MISCELLANEOUS WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued | Date | PCB
congnrs
3 water
flted
(99901) | PCB
congnrs
4/10 water
fltrd
(99902) | PCB
congnrs
25 water
fltrd
(99903) | PCB
congnrs
53 water
fltrd
(99904) | PCB
congnrs
51 water
fltrd
(99905) | PCB
congnrs
63 water
fltrd
(99906) | PCB
congnrs
66 water
fltrd
(99907) | PCB
congnrs
95 water
fltrd
(99908) | PCB
congnrs
898 water
fltrd
(99909) | PCB
congnrs
83 water
fltrd
(99910) | PCB
congnrs
158 water
fltrd
(99911) | PCB
congnrs
193 water
fltrd
(99912) | PCB
congnrs
198 water
fltrd
(99913) | |----------------|---|--|--|--|--|--|--|--|---|--|---|---|---| | | | 43572008 | 88050801 | HARP PCB | SITE A | AT NEW H | OLSTEIN, | WI (LAT | 43 57 20N | LONG 088 | 05 08W) | | | | JUN 2003
23 | < 0.43 | < 0.05 | < 0.01 | 0.02 | < 0.007 | < 0.025 | 0.088 | 0.590 | 0.007 | 0.030 | 0.025 | < 0.015 | < 0.015 | | | | 43572508 | 88045602 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | | JUN 2003
23 | <0.43 | < 0.05 | 0.28 | 0.62 | 0.290 | 0.054 | 0.840 | 2.70 | 0.016 | 0.180 | 0.110 | < 0.015 | < 0.015 | | | | 43571708 | 88044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN, | WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | | JUN 2003
23 | <0.43 | < 0.05 | < 0.02 | <0.01 | < 0.007 | < 0.025 | <0.023 | 0.058 | <0.014 | < 0.009 | <0.015 | < 0.015 | < 0.015 | | | | 43573408 | 88045604 | HARP PCB | SITE D | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | | | 0.36 | 0.39 | 0.085 | 0.061 | 2.50 | 14.0 | 0.063 | 0.890 | 0.890 | 0.027 | | | | | 43573408 | 38045605 | HARP PCE | SITE E | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | | JUN 2003
24 | | | 0.99 | 1.1 | 0.260 | 0.190 | 7.60 | 43.0 | 0.230 | 2.400 | 2.100 | 0.057 | | | | | 43573408 | 38044606 | HARP PCE | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N l | LONG 088 | 04 46W) | | | | JUN 2003
24 | | | 0.78 | 0.86 | 0.290 | 0.085 | 2.50 | 19.0 | 0.093 | 1.000 | 0.980 | 0.045 | | | | | 43573908 | 88044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN, | WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | | JUN 2003
24 | | | 0.78 | 1.0 | 0.560 | 0.089 | 0.900 | 3.50 | 0.022 | 0.250 | 0.150 | | | | | 040 | 853926 PIN | E CREEK | AT MEGO | ERS ROA | D NEAR N | EW HOLS | STEIN, WI | (LAT 43 58 | 8 18N LON | NG 088 03 5 | 4W) | | | JUN 2003
25 | | | 2.9 | 2.2 | 1.00 | 0.250 | 2.20 | 9.20 | 0.054 | 0.710 | 0.380 | 0.023 | | # MISCELLANEOUS WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued | Date | PCB
congenr
207, water
fltrd, ng/L
(99914) | sediment
(99915) | sediment
(99916) | sediment
(99917) | PCB
congnrs
53 suspnd
sediment
(99918) | 51 suspnd
sediment
(99919) | sediment
(99920) | 128 water
fltrd
(99922) | fltrd
(99923) | PCB
congnrs
128 suspnd
sediment
(99924) | PCB
congenr
167,
suspnd
sediment
ng/L
(99925) | |----------------|--|---------------------|---------------------|---------------------|--|----------------------------------|---------------------|-------------------------------|------------------|---|---| | HD1 2002 | 43572008 | 38050801 | HARP PCB | SITE A | AT NEW H | IOLSTEIN. | , WI (LAT | 43 57 20N | LONG 088 | (05 08W) | | | JUN 2003
23 | < 0.007 | < 0.430 | < 0.050 | < 0.012 | < 0.008 | < 0.007 | < 0.025 | 0.040 | < 0.012 | 0.250 | 0.057 | | | 43572508 | 88045602 | HARP PCB | SITE B | AT NEW H | OLSTEIN, | , WI (LAT | 43 57 25N | LONG 088 | 04 56W) | | | JUN 2003
23 | < 0.007 | <0.430 | < 0.050 | 0.038 | 0.094 | 0.051 | < 0.025 | 0.170 | 0.036 | 0.350 | 0.084 | | | 43571708 | 38044403 | HARP PCB | SITE C | AT NEW H | OLSTEIN. | , WI (LAT | 43 57 17N | LONG 088 | 04 44W) | | | JUN 2003
23 | < 0.007 | <0.430 | < 0.050 | < 0.012 | < 0.008 | < 0.007 | <0.025 | < 0.009 | < 0.012 | 0.041 | < 0.012 | | | 43573408 | 38045604 | HARP PCB | SITE D | AT NEW H | IOLSTEIN. | , WI (LAT | 43 57 34N | LONG 088 | (04 56W) | | | JUN 2003
24 | | | | 0.028 | 0.074 | 0.010 | < 0.025 | 1.300 | 0.300 | 1.800 | 0.440 | | | 43573408 | 88045605 | HARP PCB | SITE E | AT NEW H | IOLSTEIN, | , WI (LAT | 43 57 34N | LONG 088 | 04 56W) | | | JUN 2003
24 | | | | 0.180 | 0.310 | 0.070 | 0.100 | 2.900 | 0.700 | 5.600 | 1.500 | | | 43573408 | 88044606 | HARP PCB | SITE F | AT NEW H | OLSTEIN, | WI (LAT | 43 57 34N | LONG 088 | 04 46W) | | | JUN 2003
24 | | | | 0.200 | 0.300 | 0.091 | 0.068 | 1.400 | 0.290 | 3.200 | 0.830 | | | 43573908 | 38044507 | HARP PCB | SITE G | AT NEW H | OLSTEIN. | , WI (LAT | 43 57 39N | LONG 088 | 04 45W) | | | JUN 2003
24 | | | | 0.160 | 0.220 | 0.150 | 0.052 | 0.200 | 0.039 | 0.750 | 0.180 | | 0408 | 853926 PIN | NE CREEK | X AT MEGG | ERS ROA | D NEAR N | NEW HOLS | STEIN, WI | (LAT 43 5 | 8 18N LON | IG 088 03 5 | 4W) | | JUN 2003
25 | | | | 1.900 | 1.400 | 0.800 | 0.430 | 0.440 | 0.090 | 5.100 | 1.200 | ## 430515089300601 STONEFIELD INFILTRATION POND AT MIDDLETON, WI Samples with a medium code of 6 are samples taken from the water table below the Stonefield Infiltration Basin; samples collected from monitoring well ST-Deep with 6-inch screen about 34 ft below ground level. Samples with a medium code of 9 are samples of ponded stormwater runoff collected from the Stonefield Infiltration Basin, a dry basin that fills with stormwater runoff during precipitation events. Samples with a medium code of F are samples taken from the vadose zone below the Stonefield Infiltration Basin; samples collected from suction lysimeter ST-19 with porous cup about 19 ft below ground level. | | | | WAILK | QUALITI | DAIA, WA | TILK ILA | IK OCTOD | LIC 2002 TO | J JLI ILIVI |
DER 2003 | | | | |----------------|--------------|----------------|---|---|--|---|--|--|---|---|--|--|--| | Date | Time | Medium
code | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conductance,
wat unf
lab,
uS/cm
25 degC
(90095) | Calcium
water,
fltrd,
mg/L
(00915) | Calcium
water
unfltrd
recover
-able,
mg/L
(00916) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Magnes-
ium,
water,
unfltrd
recover
-able,
mg/L
(00921) | Potassium,
water,
fltrd,
mg/L
(00935) | Potassium,
water,
unfltrd
recover
-able,
mg/L
(00939) | Sodium,
water,
fltrd,
mg/L
(00930) | Sodium,
water,
unfltrd
recover
-able,
mg/L
(00923) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | | APR 2003
07 | 1350 | 6 | 7.4 | 856 | 89.6 | 144 | 44.0 | 77 | | | 23.6 | 26 | 418 | | 11 | 1115 | 6 | 7.3 | 858 | 90.4 | 266 | 44.3 | 140 | | | 23.2 | 27 | 398 | | 18
18 | 0830
0845 | 6
6 |
7.4 |
889 | 89.7
 | 139 | 45.3 | 73 | | | 22.4 | 24 | 387 | | 19 | 1635 | 6 | 7.6 | 892 | 80.9 | 116 | 40.3 | 60 | | | 22.1 | 25 | 389 | | 25
25 | 1015
1025 | 6
6 | 7.3 | 887 | 88.3 | 215 | 44.2 | 120 | | | 26.6 | 28 | 397
 | | 30 | 2030 | 6 | 7.5 | 819 | 79.2 | 101 | 38.7 | 53 | | | 23.2 | 26 | 378 | | MAY
02 | 1000 | 6 | 7.5 | 831 | | | | | | | | | 402 | | 02
05 | 1010
1420 | 6
6 | 7.5 |
804 | 78.6
78.0 | 93.1
126 | 38.5
38.1 | 48
68 | | | 25.1
23.9 | 28
29 | 363 | | 09 | 0930 | 6 | 7.5 | 794 | 78.6 | 124 | 38.4 | 66 | | | 23.7 | 29 | 374 | | 16
23 | 1000
0910 | 6
6 | 7.5
7.5 | 1,320
1,060 | 112
89.3 | 148
135 | 55.8
43.6 | 75
68 | | | 38.3
41.6 | 44
48 | 357
379 | | 30 | 1110 | 6 | 7.5 | 1,070 | 98.4 | 116 | 48.8 | 58 | | | 57.3 | 59 | 378 | | JUN
06 | 1302 | 6 | 7.8 | 1,060 | 94.2 | 101 | 46.3 | 50 | 5.00 | 6.0 | 51.2 | 57 | 373 | | 13 | 0735 | 6 | 7.5 | 1,150 | 99.4 | 124 | 49.1 | 63 | 4.00 | 6.0 | 59.8 | 65 | 432 | | 15
15 | 1408
1528 | 6
6 |
7.6 | 1,230 | 100 |
110 | 49.0 |
51 | 5.00 | 5.0 | 60.9 | 64 |
357 | | 15 | 1606 | 6 | | | | | | | | | | | | | 20
21 | 1328
1950 | 6
6 | 7.5
7.5 | 1,290
1,310 | 114
115 | 120
127 | 54.7
56.5 | 58
61 | 5.00
6.00 | 6.0
6.0 | 58.6
61.6 | 62
66 | 367
358 | | 22 | 1900 | 6 | 7.6 | 1,330 | 116 | 123 | 55.6 | 58 | 5.00 | 6.0 | 60.5 | 65 | 357 | | 23
24 | 1930
1600 | 6
6 | 7.5
7.4 | 1,330
1,340 | 116
116 | 124
125 | 55.8
56.4 | 59
59 | 6.00
6.00 | 6.0
6.0 | 62.1
65.5 | 67
67 | 355
354 | | 25 | 1615 | 6 | 7.6 | 1,360 | 109 | 123 | 52.3 | 59 | 6.00 | 7.0 | 60.9 | 70 | 355 | | 26
27 | 1325
0845 | 6
6 | 7.5
7.6 | 1,350
1,360 | 118
117 | 132
130 | 57.5
57.1 | 62
62 | 6.00
6.00 | 7.0
6.0 | 68.5
69.9 | 70
75 | 357
357 | | JUL
04 | | | 7.5 | | | | | 66 | | | | 75 | 353 | | 11 | 1817
1705 | 6
6 | 7.5
7.5 | 1,390
1,430 | 118
120 | 137
143 | 56.9
57.7 | 69 | | | 72.8
75.1 | 77 | 354 | | 18
25 | 1124
1033 | 6
6 | 7.6
8.1 | 1,430
1,380 | 126
93.1 | 170 | 60.0
35.2 | 78 | | | 76.6
125 | 74 | 357
395 | | 25 | 1055 | 6 | 7.5 | 1,320 | 101 | 120 | 47.5 | 54 | | | 68.5 | 74 | 363 | | AUG
01 | 0920 | 6 | 7.5 | 1,280 | 109 | 118 | 51.2 | 54 | | | 83.7 | 80 | 382 | | 08 | 0925 | 6 | 7.2 | 1,320 | 106 | 147 | 52.2 | 72 | | | 78.5 | 92 | 389 | | 15
22 | 1150
0905 | 6
6 | 7.3
7.3 | 1,320
1,310 | 108
101 | 121
115 | 53.0
49.4 | 59
55 | | | 83.7
75.6 | 89
88 | 393
385 | | 29 | 1145 | 6 | 7.5 | 1,330 | 104 | 112 | 51.1 | 55 | | | 89.5 | 89 | 393 | | SEP
05 | 1305 | 6 | 7.6 | 1,300 | 102 | 113 | 49.9 | 56 | | | 93.8 | 98 | 399 | | 12 | 1445 | 6 | 7.7 | 1,260 | 96.6 | 106 | 45.3 | 52 | | | 89.1 | 98 | 397 | | 19 | 1120 | 6 | 7.7 | 1,270 | 92.0 | 106 | 43.6 | 53 | | | 95.6 | 100 | 423 | | MAR | | | | | | | | | | | | | | | 14 | 1715 | 9 | 7.0 | 716 | | 10.8 | | 4.8 | | | | 100 | 42 | | 14
28 | 1720
0947 | 9
9 | 7.5 | 121 | | 6.0 | | 1.5 | | | | 12 |
25 | | 28 | 1015 | 9 | 7.4 | 840 | | 138 | | 72 | | | | 25 | 423 | | APR
18 | 0735 | 9 | 8.2 | 1,120 | 51.6 | 52.5 | 24.3 | 24 | | | 142 | 140 | 251 | | 19 | 1503 | 9 | 7.0 | 558 | 9.90 | 14.5 | 2.10 | 4.8 | | | 82.9 | 84 | 33 | | 19
19 | 1533
1603 | 9
9 | 7.2
7.3 | 299
176 | 9.30
5.50 | 10.4
6.4 | 3.40
1.80 | 4.1
2.2 | | | 39.5
17.8 | 41
18 | 34
28 | | 30 | 1250 | 9 | | | | | | | | | | | | | 30
MAY | 1255 | 9 | | | 3.50 | 3.7 | 0.70 | 0.80 | | | 3.70 | 4.0 | | | 05 | 0853 | 9 | 7.5 | 98 | 8.40 | 8.9 | 2.40 | 2.6 | | | 6.00 | 6.4 | 34 | | 09
10 | 0840
2053 | 9
9 | 7.6
6.9 | 159
218 | 15.3
18.1 | 16.2
20.1 | 5.30
6.00 | 5.6
6.6 | | | 8.60
13.8 | 9.5
15 | 66
58 | # 430515089300601 STONEFIELD INFILTRATION POND AT MIDDLETON, WI--Continued | | Alka-
linity, | -u · | Residue
on | Residue
total | DAIA, WF | Cadmium | | Chrom-
ium, | J JLI ILW | Copper, | | | Lead, | |--|---|--|--|---|--|---|--|---|--|---|--|--|---| | Date | wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chloride,
water,
fltrd,
mg/L
(00940) | evap.
at
105degC
wat unf
mg/L
(00500) | at 105
deg. C,
sus-
pended,
mg/L
(00530) | Cadmium
water,
fltrd,
ug/L
(01025) | water,
unfltrd
recover
-able,
ug/L
(01113) | Chromium,
water,
fltrd,
ug/L
(01030) | water,
unfltrd
recover
-able,
ug/L
(01118) | Copper,
water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01119) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | water,
unfltrd
recover
-able,
ug/L
(01114) | | APR 2003
07
11 | 351 | 40.7
41.5 | 2,280
15,400 | 1,900
13,200 |
 | 18
18
19
25 | 354
351
360 | 51.3
50.9
44.4 | 1,510
3,050
1,680 | 926
2,420
1,200 |

 | 25
30 | 362 | 31.0 | 1,130 | 528 | | | | | | | | | | | MAY
02
02 | 362 | 30.9 | 1,540 | 864 | | | | | | | | | | | 05
05
09
16
23
30 | 369

 | 23.4
23.3
207
102
109 | 1,020
942
1,400
1,060
1,250 | 532
470
500
452
652 |

 |

 |

 |

 |

 |

 |

 |

 |

 | | JUN
06
13 |
364 | 111
148 | 1,180
3,980 | 484
3,240 |
 | M
1 | M
M | 6
16 | M
M | 8
14 | <100
<100 | M
<1 | 2
16 | | 15
15 | | |
786 | 5 | M | <0.25 | <1 | <5 |
M | 15 | <100 | <1 | <5 | | 15
20
21
22
23
24
25
26
27 |

 | 188
194
203
206
207
212
212
212 | 1,740
1,280
1,350
1,200
1,230
1,350
1,910
1,470 | 872
424
436
300
410
412
1,070
508 |

 |
M
M
M
M
M
M
M | M
M
M
M
M
M
M
M | 5
6
3
7
10
9
26 |
M
M
M
M
M
10
20
10 | 8
7
6
5
7
13
22
12 | <100
200
300
<100
<100
<100
<100
<100 | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < |
<1
<1
<1
<1
1
<1
3
<1 | | JUL
04
11
18
25
25 |

347 | 228
241
293
212
248 | 1,440
1,900
1,650

6,900 | 500
900
700

4,010 |

 | AUG
01
08
15
22
29
SEP | 360
375
382
375 | 223
188
193
188
195 | 9,930
2,820
3,350
2,520
1,500 | 6,720
1,410
2,580
1,760
690 |

 | 05
12
19 |

 | 183
171
163 | 1,420
2,450
1,650 | 788
1,580
852 |

 | MAR
14
14
28
28 |

360 | 169

14.2
33.9 | 448

86
2,120 | 4

7
1,440 |

 | APR
18
19
19
19
30
30 |

 | 206
131
56.6
26.4

4.6 | 632
438
258
150

54 | 3
109
66
31

18 |

 |

 |

 |

 |

 |

 |

 |

 |

 | | MAY
05
09
10 |

 | 4.8
5.7
22.1 | 74
146
440 | 3
30
268 |

 # 430515089300601 STONEFIELD
INFILTRATION POND AT MIDDLETON, WI--Continued | Date | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01123) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01094) | 1-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(81696) | 2-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(30194) | 9H-
Fluor-
ene,
water,
unfltrd
ug/L
(34381) | Ace-
naphth-
ene,
water,
unfltrd
ug/L
(34205) | Ace-
naphth-
ylene,
water,
unfltrd
ug/L
(34200) | Anthracene,
water,
unfltrd
ug/L
(34220) | Benzo-
[a]-
anthra-
cene,
water,
unfltrd
ug/L
(34526) | Benzo-
[a]-
pyrene,
water,
unfltrd
ug/L
(34247) | Benzo-
[b]-
fluor-
anthene
water
unfltrd
ug/L
(34230) | |-----------|--|--|--|--|--|--|---|---|---|---|--|---|--| | APR 2003 | | | 60 | 200 | | | | | | | | | | | 07
11 | | | 60
30 | 200
240 | | | | | | | | | | | 18
18 | | | 30 | 130 | | | | | | | | | | | 19 | | | 20 | 140 | | | | | | | | | | | 25
25 | | | 20 |
170 | | | | | | | | | | | 30 | | | 20 | 70 | | | | | | | | | | | MAY
02 | | | | | | | | | | | | | | | 02 | | | <20 | 40 | | | | | | | | | | | 05
09 | | | 80
30 | 210
140 | | | | | | | | | | | 16 | | | <20 | 50 | | | | | | | | | | | 23
30 | | | <20
20 | 70
40 | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 06
13 | M
M | M
310 | <20
<20 | <20
60 | | | | | | | | | | | 15 | | | | | < 0.046 | < 0.034 | < 0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | < 0.11 | | 15
15 | <1
 | <1
 | 30 | 30 | <0.046 | < 0.034 | <0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | <0.11 | | 20
21 | 20
M | 20
10 | 30
20 | 40
20 | | | | | | | | | | | 22 | M | M | 20 | 20 | | | | | | | | | | | 23 | M
M | M
10 | 20 | <20
20 | | | | | | | | | | | 24
25 | 10 | 20 | <20
20 | 20 | | | | | | | | | | | 26
27 | 10
M | 90
30 | 20
20 | 50
20 | | | | | | | | | | | JUL | IVI | 30 | | | | | | | | | | | | | 04
11 | | | <20
20 | 40
40 | | | | | | | | | | | 18 | | | 30 | 90 | | | | | | | | | | | 25
25 | | | 20
<20 | <20 | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 01
08 | | | 20
40 | 30
110 | | | | | | | | | | | 15 | | | 20 | 40 | | | | | | | | | | | 22
29 | | | <20
70 | <20
80 | | | | | | | | | | | SEP
05 | | | 20 | 50 | | | | | | | | | | | 12 | | | 30
20 | 50
40 | | | | | | | | | | | 19 | | | 30 | 60 | | | | | | | | | | | MAD | | | | | | | | | | | | | | | MAR
14 | | | | 20 | | | | | | | | | | | 14 | | | | | M | 0.1 | < 0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | M | < 0.11 | | 28
28 | | | | <20
130 | | | | | | | | | | | APR
18 | | | <20 | <20 | | | | | | | | | | | 19 | | | 20 | 80 | | | | | | | | | | | 19
19 | | | <20
<20 | 50
40 | | | | | | | | | | | 30 | | | | | < 0.046 | < 0.034 | < 0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | M | | 30
MAY | | | <20 | <20 | | | | | | | | | | | 05 | | | <20 | <20 | | | | | | | | | | | 09
10 | | | <20
20 | <20
20 | | | | | | | | | | | 10 | | | 20 | 20 | | | | | | | | | | # 430515089300601 STONEFIELD INFILTRATION POND AT MIDDLETON, WI--Continued | Date | Benzo-
[g,h,i]
-per-
ylene,
water,
unfltrd
ug/L
(34521) | Benzo-
[k]-
fluor-
anthene
water
unfltrd
ug/L
(34242) | Chrys-
ene,
water,
unfltrd
ug/L
(34320) | Dibenzo-
[a,h]-
anthra-
cene,
wat unf
ug/L
(34556) | Fluor-
anthene
water
unfltrd
ug/L
(34376) | Indeno-
[1,2,-
3-cd]-
pyrene,
water,
unfltrd
ug/L
(34403) | Phenan-
threne,
water,
unfltrd
ug/L
(34461) | Pyrene,
water,
unfltrd
ug/L
(34469) | Naphthalene,
water,
unfltrd
ug/L
(34696) | |----------------|--|--|--|--|--|--|--|---|--| | APR 2003 | | | | | | | | | | | 07
11 | | | | | | | | | | | 18 | | | | | | | | | | | 18
19 | | | | | | | | | | | 25 | | | | | | | | | | | 25 | | | | | | | | | | | 30
MAY | | | | | | | | | | | 02 | | | | | | | | | | | 02
05 | | | | | | | | | | | 09 | | | | | | | | | | | 16 | | | | | | | | | | | 23
30 | | | | | | | | | | | JUN | | | | | | | | | | | 06 | | | | | | | | | | | 13
15
15 | <0.078 | <0.070 | <0.027 | <0.038 | <0.080 | <0.12 | <0.040 | <0.070 | <0.038 | | 15 | < 0.078 | < 0.070 | < 0.027 | < 0.038 | < 0.080 | < 0.12 | < 0.040 | < 0.070 | < 0.038 | | 20 | | | | | | | | | | | 21
22 | | | | | | | | | | | 23 | | | | | | | | | | | 24
25 | | | | | | | | | | | 26 | | | | | | | | | | | 27
JUL | | | | | | | | | | | 04 | | | | | | | | | | | 11
18 | | | | | | | | | | | 25 | | | | | | | | | | | 25
AUG | | | | | | | | | | | 01 | | | | | | | | | | | 08 | | | | | | | | | | | 15
22 | | | | | | | | | | | 29 | | | | | | | | | | | SEP
05 | | | | | | | | | | | 12 | | | | | | | | | | | 19 | | | | | | | | | | | MAR | | | | | | | | | | | 14
14 |
М | < 0.070 | M | < 0.038 | M | <0.12 | M | M | M | | 28 | | | | | | | | | | | 28
APR | | | | | | | | | | | 18 | | | | | | | | | | | 19 | | | | | | | | | | | 19
19 | | | | | | | | | | | 30 | M | < 0.070 | M | < 0.038 | M | < 0.12 | M | M | < 0.038 | | 30 | | | | | | | | | | | MAY
05 | | | | | | | | | | | 09 | | | | | | | | | | | 10 | | | | | | | | | | # 430515089300601 STONEFIELD INFILTRATION POND AT MIDDLETON, WI--Continued | Date | Time | Medium
code | pH,
water,
unfltrd
lab,
std
units
(00403) | Specif.
conduc-
tance,
wat unf
lab,
uS/cm
25 degC
(90095) | Calcium
water,
fltrd,
mg/L
(00915) | Calcium
water
unfltrd
recover
-able,
mg/L
(00916) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Magnes-
ium,
water,
unfltrd
recover
-able,
mg/L
(00921) | Potassium,
water,
fltrd,
mg/L
(00935) | Potas-
sium,
water,
unfltrd
recover
-able,
mg/L
(00939) | Sodium,
water,
fltrd,
mg/L
(00930) | Sodium,
water,
unfltrd
recover
-able,
mg/L
(00923) | ANC,
wat unf
fixed
end pt,
lab,
mg/L as
CaCO3
(00417) | |-----------|--------------|----------------|---|--|--|---|--|--|---|--|--|--|--| | JUN 2003 | | | | | | | | | | | | | | | 06 | 1915 | 9
9 | 7.4 | 202 | 16.6 | 17.2 | 4.80 | 5.2 | 4.00 | 5.0 | 10.0 | 12 | 59 | | 06
24 | 1916
0719 | 9 | 7.3
6.7 | 195
76 | 16.3
6.00 | 16.7
6.7 | 4.80
1.60 | 5.1
1.8 | 4.00
3.00 | 4.0
3.0 | 10.1
1.80 | 12
1.6 | 57
21 | | 24 | 0721 | 9 | 7.0 | 356 | 28.2 | 31.9 | 9.00 | 10 | 12.0 | 14.0 | 16.0 | 18 | 113 | | 24 | 0751 | 9 | 6.8 | 79 | 6.20 | 6.6 | 2.10 | 2.1 | 5.00 | 6.0 | 2.60 | 2.6 | 23 | | 24 | 0821 | 9 | 6.9 | 139 | 9.20 | 11.1 | 3.30 | 4.0 | 9.00 | 11.0 | 4.80 | 5.7 | 41 | | 25
25 | 1540
1610 | 9
9 | 6.8
6.9 | 128
109 | 8.00
6.90 | 9.1
7.9 | 2.60
2.30 | 3.0
2.6 | 6.00
6.00 | 7.0
7.0 | 5.10
4.00 | 5.7
4.4 | 38
32 | | SEP | 1010 | 7 | 0.9 | 109 | 0.50 | 1.9 | 2.30 | 2.0 | 0.00 | 7.0 | 4.00 | 7.7 | 32 | | 12 | 1405 | 9 | 7.1 | 312 | 18.2 | 19.9 | 9.40 | 10 | | | 8.50 | 9.4 | 76 | | 12 | 1440 | 9 | 6.9 | 86 | 6.80 | 6.1 | 3.00 | 2.7 | | | 2.70 | 2.7 | 25 | | 12
14 | 1520
1023 | 9
9 | 7.1
7.4 | 62
66 | 4.50
6.50 | 4.8
6.5 | 1.70
2.40 | 2.1
2.5 | | | 1.60
1.80 | 1.7
1.5 | 20
26 | | 14 | 1023 | 7 | 7.4 | 00 | 0.50 | 0.5 | 2.40 | 2.3 | | | 1.00 | 1.5 | 20 | | | | | | | | | | | | | | | | | MAR | 0953 | F | 8.2 | 1,800 | | | | | | | | | 469 | | 28
APR | 0933 | Г | 0.2 | 1,800 | | | | | | | | | 409 | | 01 | 1538 | F | 8.1 | 1,560 | | | | | | | | | 476 | | 01 | 1655 | F | 7.7 | 855 | | 96.0 | | 48 | | | | 23
| 346 | | 01 | 1713 | F | | | | 100 | | | | | | 100 | | | 02
07 | 1025
1321 | F
F | | | | 100 | | 42 | | | | 190 | | | 25 | 1100 | F | | | 116 | | 50.4 | | | | 49.9 | | | | 30 | 2000 | F | | | 79.7 | | 36.0 | | | | 27.0 | | | | 30 | 2003 | F | | | 98.8 | | 42.7 | | | | 51.1 | | | | MAY
02 | 0915 | F | | | 66.0 | | 30.1 | | | | 23.3 | | | | 09 | 0850 | F | 7.5 | 1,770 | 143 | | 62.7 | | | | 76.3 | | 325 | | 16 | 0925 | F | 7.5 | 2,100 | 123 | | 54.4 | | | | 123 | | 348 | | 23 | 0846 | F | 7.5 | 1,820 | 112 | | 48.9 | | | | 135 | | 372 | | 30 | 1043 | F | 7.6 | 2,190 | 138 | | 59.6 | | | | 144 | | 346 | | JUN
06 | 1234 | F | 7.9 | 2,360 | 174 | 177 | 74.4 | 77 | 7.00 | 8.0 | 178 | 180 | 355 | | 23 | 1909 | F | 7.8 | 1,430 | 93.9 | 101 | 38.0 | 40 | 6.00 | 6.0 | 150 | 160 | 384 | | 24 | 1535 | F | | | 94.5 | 98.0 | 37.7 | 39 | 5.00 | 6.0 | 148 | 160 | | | 25 | 1544 | F
F |
0.1 | 1 410 | 86.2 | 97.8 | 34.1 | 39 | 5.00 | 6.0 | 142 | 150 | 200 | | 26
27 | 1255
0820 | F
F | 8.1
7.8 | 1,410
1,390 | 89.4
91.3 | 96.7
96.0 | 35.1
35.9 | 37
38 | 5.00
6.00 | 5.0
6.0 | 147
149 | 160
160 | 398
398 | | JUL | 0020 | | 7.0 | 1,570 | 71.5 | 70.0 | 33.7 | 30 | 0.00 | 0.0 | 147 | 100 | 370 | | 11 | 1644 | F | 7.6 | 1,410 | 89.2 | | 34.8 | | | | 159 | | 392 | | 18 | 1135 | F | 7.9 | 1,250 | 87.0 | | 32.9 | | | | 128 | | 403 | | AUG
01 | 0855 | F | 7.7 | 1,480 | 105 | | 40.6 | | | | 138 | | 401 | | 29 | 1113 | F | 7.7 | 1,100 | 67.7 | 74.9 | 27.2 | 30 | | | 125 | 140 | 458 | | SEP | | | | , | | | | | | | | | | | 05 | 1247 | F | 8.2 | 1,060 | 61.6 | 72.6 | 24.2 | 29 | | | 111 | 130 | 453 | | 12
19 | 1420
1027 | F
F | 8.0
7.9 | 1,040
1,000 | 66.2
66.4 | | 25.1
25.1 | | | | 115
100 | | 460
443 | | 17 | 1041 | 1 | 1.7 | 1,000 | 00. T | | 23.1 | | - | | 100 | | T-TJ | # 430515089300601 STONEFIELD INFILTRATION POND AT MIDDLETON, WI--Continued | Date | Chloride,
water,
fltrd,
mg/L
(00940) | Residue
on
evap.
at
105degC
wat unf
mg/L
(00500) | Residue
total
at 105
deg. C,
sus-
pended,
mg/L
(00530) | Cadmium
water,
unfltrd
recover
-able,
ug/L
(01113) | Chromium,
water,
fltrd,
ug/L
(01030) | Chromium, water, unfltrd recover -able, ug/L (01118) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01119) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01114) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01123) | |----------------------------|--|---|---|--|--|--|--|--|--|--|--|--|--| | JUN 2003
06
06
24 | 15.3
14.5
2.1 | 180
172
220 | 38
21
124 | M
M
M | <1
<1
M | <1
1
2 | 10
10
M | 14
15
7 | 200
200
200 | <1
<1
<1 | 2
<1
1 | 50
50
30 | 60
50
40 | | 24
24
24
25
25 | 30.2
3.0
9.0
9.5
6.7 | 504
116
150
184
189 | 161
18
17
73
45 | M
M
M
M | M <1 <1 <1 <1 <1 | 2
<1
<1
<1
<1 | 10
M
M
M
M | 16
7
11
10
10 | 800
200
200
300
200 | <1
<1
<1
<1
<1 | 1
<1
<1
1 | 170
30
40
50
50 | 180
40
60
60
60 | | SEP
12 | 36.9 | 302 | 82 | IVI | | | IVI | | 200 | | | | | | 12 | 5.8 | 86 | 21 | | | | | | | | | | | | 12 | 3.7 | 60 | 21 | | | | | | | | | | | | 14 | 2.0 | 54 | 3 | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 28 | 315 | 1,090 | 20 | | | | | | | | | | | | APR | | | | | | | | | | | | | | | 01 | 236 | 932 | 5 | | | | | | | | | | | | 01
01 | 39.2 | 562
 | 8 | | | | | | | | | | | | 02 | | | | | | | | | | | | | | | 07 | 183 | 848 | <5 | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | 30
MAY | | | | | | | | | | | | | | | 02 | 270 | | | | | | | | | | | | | | 09
16 | 379
468 | | | | | | | | | | | | | | 23 | 431 | | | | | | | | | | | | | | 30 | 507 | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 06 | 588 | | | M | <1 | <1 | M | 9 | <100 | M | <1 | <1 | <1 | | 23
24 | 228 | | | <0.05
<0.05 | <1
<1 | <1
<1 | 20
M | 24
16 | <100
<100 | <1
<1 | <1
<1 | M
<1 | M
M | | 25 | | | | < 0.05 | <1 | <1 | M | 5 | <100 | <1 | <1 | M | <1 | | 26 | 213 | | | M | <1 | 1 | 10 | 7 | <100 | <1 | <1 | <1 | <1 | | 27 | 207 | | | < 0.05 | <1 | <1 | M | 7 | <100 | <1 | <1 | <1 | <1 | | JUL | | | | | | | | | | | | | | | 11
18 | 220
158 | | | | | | | | | | | | | | AUG | 138 | | | | | | | | | | | | | | 01 | 239 | | | | | | | | | | | | | | 29 | 81.2 | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 05 | 71.6 | | | | | | | | | | | | | | 12
19 | 64.9
53.7 | | | | | | | | | | | | | | 17 | 33.1 | | | | | | | | | | | | | # 430515089300601 STONEFIELD INFILTRATION POND AT MIDDLETON, WI--Continued | Date | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01094) | 1-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(81696) | 2-
Methyl-
naphth-
alene,
water,
unfltrd
ug/L
(30194) | 9H-
Fluor-
ene,
water,
unfltrd
ug/L
(34381) | Ace-
naphth-
ene,
water,
unfltrd
ug/L
(34205) | Ace-
naphth-
ylene,
water,
unfltrd
ug/L
(34200) | Anthracene,
water,
unfltrd
ug/L
(34220) | Benzo-
[a]-
anthra-
cene,
water,
unfltrd
ug/L
(34526) | Benzo-
[a]-
pyrene,
water,
unfltrd
ug/L
(34247) | Benzo-
[b]-
fluor-
anthene
water
unfltrd
ug/L
(34230) | Benzo-
[g,h,i]
-per-
ylene,
water,
unfltrd
ug/L
(34521) | Benzo-
[k]-
fluor-
anthene
water
unfltrd
ug/L
(34242) | |--|--|--|--|--|---|---|---|---|--|---|--|--|--| | JUN 2003 | | | | | | | | | | | | | | | 06 | <20 | 20 | | | | | | | | | | | | | 06 | <20 | <20 | | | | | | | | | | | | | 24 | 30 | 40 | | | | | | | | | | | | | 24 | 30
<20 | 40 | | | | | | | | | | | | | 24
24 | <20
<20 | 20
20 | | | | | | | | | | | | | 25 | <20 | 20 | | | | | | | | | | | | | 25 | <20 | 20 | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 12 | <20 | 20 | | | | | | | | | | | | | 12
12 | <20
<20 | <20
<20 | | | | | | | | | | | | | 14 | <20 | <20 | | | | | | | | | | | | | | 120 | 120 | MAR | | | | | | | | | | | | | | | 28
APR | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | | 01 | | 20 | | | | | | | | | | | | | 0.4 | | | | | 0.00 | 0.060 | 0.050 | | | | | | | | 01 | | | < 0.046 | < 0.034 | < 0.20 | < 0.060 | < 0.072 | < 0.021 | < 0.062 | < 0.070 | < 0.11 | < 0.078 | < 0.070 | | 02 | | 30 | | | | | | | | | | | | | 02
07 | | 30 | | | | | | | | | | | | | 02
07
25 |
40 | 30

 |

 | 02
07
25
30 |
40
20 | 30 | | | | | | | | | | | | | 02
07
25 |
40 | 30

 |

 | 02
07
25
30
30
MAY
02 | 40
20
20
20 | 30

 |

 | 02
07
25
30
30
MAY
02
09 | 40
20
20
20
20 | 30 |

 | 02
07
25
30
30
MAY
02
09
16 | 20
20
20
20
20
20 | 30 |

 |

 |

 |

 |

 |

 |

 |

 |

 |

 |

 | | 02
07
25
30
30
MAY
02
09
16
23 | 20
20
20
20
20
20
20
20
20
<20 | 30 | |

 | | | |

 |

 | |

 | | | | 02
07
25
30
30
MAY
02
09
16 | 20
20
20
20
20
20 | 30 |

 |

 |

 |

 |

 | |

 |

 | |

 |

 | |
02
07
25
30
30
MAY
02
09
16
23
30
JUN
06 | 20
20
20
20
20
20
20
20
20
20
20
20
20 | 30 20 | |

 | | | | |

 | | | | | | 02
07
25
30
30
MAY
02
09
16
23
30
JUN
06
23 | 20
20
20
20
20
20
20
20
<20
<20
<20
<20 | 30

20
160 | | | | | | | | | | | | | 02
07
25
30
MAY
02
09
16
23
30
JUN
06
23 | 20
20
20
20
20
20
20
<20
<20
<20
<20
<20 | 30

20
160
30 | | | | | | | | | | | | | 02
07
25
30
30
MAY
02
09
16
23
30
JUN
06
23
24
25 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 30

20
160
30
30 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 23 24 25 26 |
40
20
20
20
20
20
<20
<20
<20
<20
20
20
20 | 30

20
160
30
30
20 | | | | | | | | | | | | | 02
07
25
30
30
MAY
02
09
16
23
30
JUN
06
23
24
25 | | 30

20
160
30
30 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 24 25 26 27 JUL | | 30

20
160
30
30
20
20 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 23 24 25 26 27 JUL 11 18 | | 30

20
160
30
30
20
20 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 23 24 25 26 27 JUL 11 18 AUG | | 30

20
160
30
20
20 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 24 25 26 27 JUL 11 18 AUG 01 | | 30

20
160
30
30
20
20 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 24 25 26 27 JUL 11 18 AUG 01 29 SEP | | 30

20
160
30
20
20 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 23 24 25 27 JUL 11 18 AUG 01 29 SEP 05 | | 30

20
160
30
30
20
20 | | | | | | | | | | | | | 02 07 25 30 30 MAY 02 09 16 23 30 JUN 06 24 25 26 27 JUL 11 18 AUG 01 29 SEP | | 30

20
160
30
30
20
20 | | | | | | | | | | | | # 430515089300601 STONEFIELD INFILTRATION POND AT MIDDLETON, WI--Continued | Date | Chrysene,
water,
unfltrd
ug/L
(34320) | Di-
benzo-
[a,h]-
anthra-
cene,
wat unf
ug/L
(34556) | Fluor-
anthene
water
unfltrd
ug/L
(34376) | Indeno-
[1,2,-
3-cd]-
pyrene,
water,
unfltrd
ug/L
(34403) | Phenan-
threne,
water,
unfltrd
ug/L
(34461) | Pyrene,
water,
unfltrd
ug/L
(34469) | Naphthalene,
water,
unfltrd
ug/L
(34696) | |----------|---|---|--|--|--|---|--| | JUN 2003 | | | | | | | | | 06 | | | | | | | | | 06 | | | | | | | | | 24 | | | | | | | | | 24 | | | | | | | | | 24 | | | | | | | | | 24 | | | | | | | | | 25 | | | | | | | | | 25 | | | | | | | | | SEP | | | | | | | | | 12 | | | | | | | | | 12 | | | | | | | | | 12
14 | | | | | | | | | 14 | | | | | | | | | | | | | | | | | | MAR | | | | | | | | | 28 | | | | | | | | | APR | | | | | | | | | 01 | | | | | | | | | 01 | | | | | | | | | 01 | < 0.027 | < 0.038 | < 0.080 | < 0.12 | < 0.040 | < 0.070 | < 0.038 | | 02 | | | | | | | | | 07 | | | | | | | | | 25 | | | | | | | | | 30
30 | | | | | | | | | MAY | | | | | | | | | 02 | | | | | | | | | 09 | | | | | | | | | 16 | | | | | | | | | 23 | | | | | | | | | 30 | | | | | | | | | JUN | | | | | | | | | 06 | | | | | | | | | 23 | | | | | | | | | 24 | | | | | | | | | 25 | | | | | | | | | 26
27 | | | | | | | | | JUL | | | | | | | | | 11 | | | | | | | | | 18 | | | | | | | | | AUG | | | | | | | | | 01 | | | | | | | | | 29 | | | | | | | | | SEP | | | | | | | | | 05 | | | | | | | | | 12 | | | | | | | | | 19 | | | | | | | | Figure 5. Location of observation wells in Wisconsin. Listed below are the wells for which water-level data are available, in addition to those published in this report, which can be accessed from the web site: http://water-use.gov. | COUNTY | LOCAL WELL NUMBER | LATITUDE/LONGITUDE | |-------------|-------------------|--------------------| | Ashland | AS-0054 | 461109090373001 | | Ashland | AS-0349 | 463527090434201 | | Ashland | AS-0380 | 463635090481101 | | Brown | BN-0013 | 443325088071301 | | Brown | BN-0890 | 443833088021801 | | Barron | BR-0046 | 451514091582101 | | Barron | BR-0153 | 452430091353201 | | Columbia | CO-0134 | 432504089114801 | | Columbia | CO-0620 | 432921089245901 | | Crawford | CR-0059 | 431332091043401 | | Dane | DN-0005 | 430429089230301 | | Dane | DN-0064 | 430427089284901 | | Dane | DN-0083 | 431312089475301 | | Dane | DN-0146 | 430343089184701 | | Dane | DN-0441 | 431231089192101 | | Dane | DN-0927 | 435629089353901 | | Dane | DN-1136 | 430638089353101 | | Dane | DN-1289 | 425958089321601 | | Dane | DN-1297 | 430406089232901 | | Dane | DN-1355 | 431233089103201 | | Douglas | DS-0001 | 463217091342801 | | Florence | FC-0004 | 454836088394901 | | Fond du Lac | FL-0659 | 434231088311801 | | Forest | FR-0087 | 455620088593901 | | Forest | FR-0866 | 452836088534001 | | Forest | FR-0867 | 452837088534001 | | Forest | FR-0868 | 452836088533801 | | Green Lake | GL-0032 | 434238088592501 | | Green Lake | GL-0047 | 435011089045701 | | Green | GN-0074 | 423059089395201 | | Grant | GR-0029 | 425246091042101 | | Grant | GR-0132 | 425246091042102 | | Grant | GR-0133 | 425246091042103 | | Grant | GR-0134 | 425246091042104 | | COUNTY | LOCAL WELL NUMBER | LATITUDE/LONGITUDE | |-------------|-------------------|--------------------| | Iowa | IW-0110 | 430943089562601 | | Jefferson | JE-0849 | 425332088352201 | | Kenosha | KE-0006 | 423907087521701 | | Kenosha | KE-0021 | 423819088090301 | | Kewaunee | KW-0030 | 443400087270001 | | Langlade | LA-0537 | 452603089111601 | | Lafayette | LF-0294 | 423455090043301 | | Milwaukee | ML-0118 | 430706087583601 | | Milwaukee | ML-0120 | 430412087545801 | | Monroe | MO-0010 | 434823090461401 | | Marathon | MR-0027 | 445814090045501 | | Marathon | MR-0100 | 445913089374501 | | Outagamie | OU-0416 | 443353088194201 | | Polk | PK-0040 | 453013092314601 | | Pepin | PP-0039 | 443046092170401 | | Pepin | PP-0040 | 443624091512401 | | Portage | PT-0036 | 441833089315601 | | Portage | PT-0059 | 441454089432801 | | Portage | PT-0276 | 442810089194501 | | Portage | PT-0376 | 442623089302701 | | Rock | RO-0040 | 423019089020401 | | Shawano | SH-0027 | 444627088321401 | | Shawano | SH-0225 | 444204088214701 | | Sauk | SK-0230 | 433605090133701 | | Sawyer | SW-0007 | 460005091291801 | | Trempealeau | TR-0071 | 441743091153101 | | Vernon | VE-0008 | 433928091102501 | | Vernon | VE-0052 | 432842090494401 | | Vernon | VE-0071 | 433630090531601 | | Vernon | VE-0117 | 433921091132101 | | Vernon | VE-0271 | 433921091132102 | | Vernon | VE-0272 | 433921091132103 | | Vilas | VI-0003 | 460258089151901 | | Walworth | WW-0009 | 424004088440601 | | Walworth | WW-0083 | 423315088350301 | | Walworth | WW-0908 | 425006088271501 | | COUNTY | LOCAL WELL NUMBER | LATITUDE/LONGITUDE | |----------|-------------------|--------------------| | Washburn | WB-0048 | 460039091500101 | | Wood | WD-0066 | 441827090075001 | | Waukesha | WK-1301 | 425607088173001 | | Waupaca | WP-0013 | 442353088443801 | | Waupaca | WP-0771 | 443821088490801 | | Waushara | WS-0105 | 440345089151701 | #### ADAMS COUNTY 435759089490001. Local number, AD-17/06E/08-0076. LOCATION.--Lat 43°57′59", long 89°49′00", Hydrologic Unit 07070003. Owner: Wis. Dept. of Natural Resources. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 1.25 in., depth 21 ft, cased to 19 ft, well point 19-21 ft. INSTRUMENTATION.--Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 955 ft above sea level. Measuring point: top of casing, 1.50 ft above land-surface datum. PERIOD OF RECORD.--September 1969 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.69 ft below land-surface datum. May 29, 1973; lowest water level measured, 18.14 ft below land-surface datum, Mar. 7, 1977. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------------------|-------------------------|------------------|-------------------------|------------------|-------------------------|--------------------|-------------------------|--------------------|-------------------------|--------|----------------| | OCT 07
14 | 15.49
15.34 | NOV 18
DEC 02 | 15.69
15.99 | JAN 07
MAY 27 | 16.45
16.10 | JUN 30
JUL 07 | 15.94
15.90 | AUG 11
21 | 16.46
16.79 | SEP 22 | 16.59 | | 21 | 15.39 | 09 | 16.05 | JUN 02 | 16.00 | 14 | 15.93 | 25 | 16.90 | | | | 28
NOV 04
11 | 15.48
15.59
15.65 | 16
23
30 | 16.29
16.37
16.45 | 09
16
23 | 16.02
16.26
16.14 | 21
28
AUG 04 | 16.07
16.40
16.06 | SEP 02
08
15 | 16.65
16.99
16.63 | | | WATER YEAR 2003 HIGHEST 15.34 OCT 14, 2002 LOWEST 16.99 SEP 08, 2003 #### BROWN COUNTY 443228088003101. Local number, BN-24/20E/24-0076. LOCATION.--Lat 44°32'28", long 88°00'31", Hydrologic Unit 04030204. Owner: Wisconsin Public Service Corp. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 5
in., depth 500 ft, cased to 150 ft, open end. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 590 ft above sea level. Measuring point: top of 3-in. pipe, 4.00 ft above land-surface datum. PERIOD OF RECORD .-- April 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured. 41.24 ft below land-surface datum, May 3, 1961; lowest water level measured, 248.97 ft below land-surface datum, Aug. 30, 1955. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 30 | 152.80 | DEC 30 | 160.40 | FEB 26 | 159.10 | APR 29 | 133.40 | JUN 30 | 149.80 | AUG 28 | 156.30 | | NOV 27 | 148.17 | JAN 27 | 165.90 | MAR 26 | 148.85 | MAY 29 | 143.25 | JUL 16 | 157.50 | SEP 25 | 154.10 | WATER YEAR 2003 HIGHEST 133.40 APR 29, 2003 LOWEST 165.90 JAN 27, 2003 #### BURNETT COUNTY 455224092215601. Local number, BT-39/16W/17-0002. LOCATION .-- Lat 45°52'24", long 92°21'56", Hydrologic Unit 07030001. Owner: Wis. Dept. of Natural Resources. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in., depth 46 ft, cased to 46 ft, perforated 44.5-46 ft. INSTRUMENTATION.--Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 981 ft above sea level. Measuring point: pointer on float gage, 4.87 ft above land-surface datum. PERIOD OF RECORD .-- May 1937 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.33 ft below land-surface datum, June 28, 1968; lowest water level measured, 37.90 ft below land-surface datum, Aug. 21, 1992. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 04 | 32.17 | DEC 06 | 31.98 | FEB 07 | 32.06 | APR 11 | 32.31 | JUN 13 | 31.88 | AUG 15 | 31.39 | | 11 | 32.15 | 13 | 31.98 | 14 | 32.07 | 18 | 32.30 | 20 | 31.81 | 22 | 31.40 | | 18 | 32.06 | 20 | 31.90 | 21 | 32.25 | 25 | 32.29 | 27 | 31.75 | 29 | 31.46 | | 25 | 32.06 | 27 | 32.01 | 28 | 32.19 | MAY 02 | 32.26 | JUL 04 | 31.73 | SEP 05 | 31.42 | | NOV 01 | 32.14 | JAN 03 | 32.18 | MAR 07 | 32.14 | 09 | 32.09 | 11 | 31.60 | 12 | 31.44 | | 08 | 32.18 | 10 | 32.06 | 14 | 32.20 | 16 | 32.25 | 18 | 31.54 | 19 | 31.30 | | 15 | 32.13 | 17 | 32.07 | 21 | 32.19 | 23 | 31.97 | 25 | 31.48 | 26 | 31.20 | | 22 | 32.05 | 24 | 32.06 | 28 | 32.24 | 30 | 31.98 | AUG 01 | 31.47 | | | | 29 | 32.10 | 31 | 32.10 | APR 04 | 32.35 | JUN 06 | 31.95 | 08 | 31.48 | | | WATER YEAR 2003 HIGHEST 31.20 SEP 26, 2003 LOWEST 32.35 APR 04, 2003 #### DANE COUNTY 430456089190601. Local number, DN-07/10E/09-0105. LOCATION.--Lat 43°04'56", long 89°19'06", Hydrologic Unit 07070005. Owner: City of Madison. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in., depth 380 ft, cased to 85 ft, open end. INSTRUMENTATION .-- Continuous water-level recorder. DATUM.--Elevation of land-surface datum is 870 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD.--September 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.91 ft below land-surface datum, July 11, 1993; lowest water level measured, 32.35 ft below land-surface datum, May 27, 1977. # WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | WATER | | WATER | | WATE | R | WATER | |----------|----------|---------|-----------|---------|---------|--------------|-------| | DATE | LEVEL | DATE | LEVEL | DATI | E LEVE | DATE | LEVEL | | OCT 15 | 26.26 | NOV 15 | 26.22 | DEC 1 | 0 28.41 | JUN 10 | 28.95 | | WATER YI | EAR 2003 | HIGHEST | 25 18 NOV | 02 2002 | LOWEST | 32 60 AUG 08 | 2003 | #### DODGE COUNTY 432407088552701. Local number, DG-11/13E/23-0081. LOCATION.--Lat 43°24'15", long 88°55'26", Hydrologic Unit 07090002. Owner: Wis. Dept. of Transportation. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 125 ft, cased to 57 ft, open end. INSTRUMENTATION.--Water level measured bi-monthly by observer. DATUM.--Elevation of land-surface datum is 880 ft above sea level. Measuring point: 0.25-in. hole in side of casing, 1.30 ft above land-surface datum. PERIOD OF RECORD .-- November 1964 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.00 ft below land-surface datum, Dec. 4, 1991; lowest water level measured, 26.67 ft below land-surface datum, Feb. 3, 1965. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 12
NOV 23 | 22.65
22.02 | DEC 21
JAN 07 | 22.10
22.18 | FEB 08
MAR 20 | 22.92
22.86 | APR 18
MAY 10 | 21.50
20.20 | JUN 10
JUL 01 | 19.56
20.92 | AUG 04
SEP 06 | 21.51
23.60 | | WATER Y | EAR 2003 | HIGHEST | 19.56 JUN 1 | 0, 2003 LO | WEST 23.6 | 60 SEP 06, 20 | 03 | | | | | ## DOOR COUNTY 451518087042601. Local number, DR-32/28E/15-0317. LOCATION.--Lat 44°15'18", long 87°04'26", Hydrologic Unit 04030102. Owner: Town of Liberty. AQUIFER .-- Silurian dolomite. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 4 in., depth 155 ft, cased to 153 ft. INSTRUMENTATION .-- Water level measured by observer. DATUM.--Elevation of land-surface datum is 580 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD .-- June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.70 ft below land-surface datum, Mar. 27, 1986; lowest water level measured, 45.66 ft below land-surface datum, Jan. 2, 2003. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 01 | 42.27 | JAN 02 | 45.66 | MAR 12 | 45.02 | MAY 01 | 37.52 | AUG 08 | 43.52 | | DEC 02 | 43.47 | FEB 11 | 44.74 | APR 02 | 36.28 | JUL 07 | 42.36 | SEP 04 | 44.29 | WATER YEAR 2003 HIGHEST 36.28 APR 02, 2003 LOWEST 45.66 JAN 02, 2003 ## DOUGLAS COUNTY 461921091484201. Local number, DS-44/12W/01-0327. LOCATION.--Lat 46°19'21", long 91°48'42", Hydrologic Unit 04010301. Owner: Wis. Dept. of Natural Resources. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 148 ft, cased to 145 ft. INSTRUMENTATION .-- Water level measured by observer. DATUM.--Elevation of land-surface datum is 1,090 ft above sea level. Measuring point: hole in pump base, 4.33 ft above land-surface datum. PERIOD OF RECORD .-- June 1968 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 72.16 ft above land-surface datum, Dec. 28, 1972; lowest water level measured, 81.05 ft below land-surface datum, July 7, 1971. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 01 | 77.65 | DEC 02 | 78.34 | FEB 03 | 78.45 | APR 03 | 78.51 | JUN 05 | 78.47 | AUG 01 | 77.92 | | NOV 01 | 77.95 | JAN 03 | 78.47 | MAR 05 | 78.47 | MAY 01 | 78.44 | JUL 01 | 77.86 | SEP 03 | 78.04 | WATER YEAR 2003 HIGHEST 77.65 OCT 01, 2002 LOWEST 78.51 APR 03, 2003 ## GRANT COUNTY 425551090391301. Local number, GR-05/02W/06-0005 LOCATION.--Lat 42°55'51", long 90°39'13", Hydrologic Unit 07060003. Owner: Homer Yelinek. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 5 in., depth 35 ft, cased to 5 ft, open end. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 980 ft above sea level. Measuring point: edge of pump base, 0.50 ft above land-surface datum. PERIOD OF RECORD .-- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.52 ft below land-surface datum, July 22, 1993; lowest water level measured, 19.03 ft below land-surface datum, Aug. 17, 1965. WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 10
NOV 01 | 14.51
14.82 | DEC 31
MAR 24 | 15.33
15.48 | APR 21
MAY 12 | 15.85
14.64 | JUN 09
JUL 11 | 15.75
16.42 | AUG 08
SEP 04 | 17.12
17.58 | | WATER Y | EAR 2003 | HIGHEST | 14.51 OCT 1 | 0, 2002 LC | WEST 17 | 7.58 SEP 04, 200 |)3 | | | # GREEN COUNTY 424427089494701. Local number, GN-03/06E/18-0002. LOCATION.--Lat 42°44'27", long 89°49'47", Hydrologic Unit 07090003. Owner: Earl Waddington. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 6 in., depth 150 ft. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 1,020 ft above sea level. Measuring point: hole in pump base, 0.50 ft above land-surface datum. PERIOD OF RECORD .-- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 118.96 ft below land-surface datum, June 1, 1999; lowest water level measured, 143.94 ft below
land-surface datum, Feb. 18, 1960. WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 03
NOV 15 | | JAN 13
MAR 18 | 102.0 | APR 24
JUN 12 | | JUL 30
SEP 26 | | | WATER Y | EAR 2003 | HIGHEST 1 | 31.34 OCT (| 3, 2002 LO | WEST 133.0 | 67 SEP 26, 20 | 003 | ## IOWA COUNTY 425644090101901. Local number, IW-06/03E/32-0032. LOCATION.--Lat 42°56'44", long 90°10'19", Hydrologic Unit 07090003. Owner: Archie Lee. AQUIFER .-- Galena-Platteville. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 6 in., depth 92 ft. INSTRUMENTATION .-- Water level measured bi-monthly by observer. DATUM.--Elevation of land-surface datum is 1,200 ft above sea level. Measuring point: 0.25-in. hole in top of casing, at land-surface datum. PERIOD OF RECORD.--August 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.02 ft below land-surface datum, July 22, 1993; lowest water level measured, 68.81 ft below land-surface datum, Aug. 18, 1965. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | WATER | | WATER | | WATE | ₹ | WATER | |---------|----------|---------|-----------|----------|---------|------------------|-------| | DATE | LEVEL | DATE | LEVEL | DATE | E LEVEI | DATE | LEVEL | | | | | | | | | | | OCT 03 | 55.93 | JAN 14 | 56.45 | APR 17 | 7 56.66 | JUL 30 | 57.66 | | NOV 15 | 55.88 | MAR 19 | 56.92 | JUN 12 | 2 57.01 | SEP 25 | 60.23 | | WATER Y | EAR 2003 | HIGHEST | 55.88 NOV | 15, 2002 | LOWEST | 60.23 SEP 25, 20 | 003 | ## JACKSON COUNTY 441810090484001. Local number, JA-21/04W/13-0038. LOCATION.--Lat 44°18'10", long 90°48'40", Hydrologic Unit 07040007. Owner: Brockway Sanitation District. AQUIFER .-- Alluvium. WELL CHARACTERISTICS.--Drilled municipal well, diameter 18 in., depth 80 ft, cased to 80 ft, open end. INSTRUMENTATION .-- Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 856 ft above sea level. Measuring point: top of vent pipe, 2.5 ft above land-surface datum. PERIOD OF RECORD.--October 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.64 ft below land-surface datum, Sept. 10, 1993; lowest water level measured, 59.00 ft below land-surface datum, Sept. 26, 2003. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 04 | 56.10 | DEC 06 | 55.30 | FEB 07 | 56.10 | APR 11 | 55.80 | JUN 13 | 57.30 | AUG 15 | 56.80 | | 11 | 56.10 | 13 | 55.30 | 14 | 56.10 | 18 | 55.80 | 20 | 57.30 | 22 | 56.70 | | 18 | 55.90 | 20 | 55.30 | 21 | 57.30 | 25 | 57.50 | 27 | 57.50 | 29 | 58.10 | | 25 | 55.70 | 27 | 55.10 | 28 | 56.10 | MAY 02 | 57.30 | JUL 04 | 57.80 | SEP 05 | 58.20 | | NOV 01 | 56.10 | JAN 03 | 55.10 | MAR 07 | 55.60 | 09 | 57.30 | 11 | 58.30 | 12 | 58.30 | | 08 | 56.30 | 10 | 55.10 | 14 | 56.00 | 16 | 57.40 | 18 | 58.50 | 19 | 58.10 | | 15 | 56.30 | 17 | 55.90 | 21 | 55.60 | 23 | 57.30 | 25 | 57.50 | 26 | 59.00 | | 22 | 55.80 | 24 | 56.10 | 28 | 57.30 | 30 | 57.40 | AUG 01 | 56.40 | | | | 29 | 55.40 | 31 | 55.90 | APR 04 | 55.70 | JUN 06 | 56.70 | 08 | 56.40 | | | WATER YEAR 2003 HIGHEST 55.10 DEC 27, 2002 JAN 03 AND 10, 2003 LOWEST 59.00 SEP 26, 2003 ## KENOSHA COUNTY 423214087503801. Local number, KE-01 /22E/13-0046. LOCATION.--Lat 42°32'14", long 87°50'38", Hydrologic Unit 04040002. Owner: St. Joseph Home. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled well, diameter 6 in., depth 135 ft, cased to 82 ft, open end. INSTRUMENTATION .-- Water level measured by observer. DATUM.--Elevation of land-surface datum is 645 ft above sea level. Measuring point: top of casing, 1.60 ft above land-surface datum. PERIOD OF RECORD.--January 1961 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.00 ft below land-surface datum, Mar. 16, 1961; lowest water level measured, 46.02 ft below land-surface datum, June 6, 1978. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 30
NOV 25 | 17.61
16.87 | DEC 26
FEB 21 | 17.29
18.37 | MAR 27
APR 23 | 17.15
16.09 | MAY 28
JUN 30 | 16.35
21.19 | JUL 24
AUG 26 | 18.31
21.80 | SEP 26 | 19.01 | WATER YEAR 2003 HIGHEST 16.09 APR 23, 2003 LOWEST 21.80 AUG 26, 2003 ## LAFAYETTE COUNTY 423114090161101. Local number, LF-01/02E/33-0057. LOCATION.--Lat 42°31'13", long 90°16'11", Hydrologic Unit 07060005. Owner: Coulthard Estate. AQUIFER .-- Galena-Platteville. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in., depth 265 ft, cased to 16 ft, open end. INSTRUMENTATION .-- Water level measured by observer. DATUM.--Elevation of land-surface datum is 1,000 ft above sea level. Measuring point: top of casing, 3.00 ft above land-surface datum. PERIOD OF RECORD .-- April 1952 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.00 ft below land-surface datum, June 26, 1996; lowest water level, 130.99 ft below land-surface datum, Oct. 27, 1959. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 03
NOV 15 | 26.01
26.41 | JAN 13
MAR 18 | 27.88
28.16 | APR 24
JUN 12 | 27.87
27.05 | JUL 30
SEP 26 | 27.62
27.11 | | WATER Y | EAR 2003 | HIGHEST | 26.01 OCT 0 | 3, 2002 LC | WEST 28.1 | 6 MAR 18, 2 | 003 | 424004090220601. Local number, LF-02/01E/04-0011. LOCATION.--Lat 42°40'04", long 90°22'06", Hydrologic Unit 07060005. Owner: Ed Wiegel. AQUIFER .-- Sandstone. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 6 in., depth 64 ft. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 1,010 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD .-- March 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.58 ft below land-surface datum, July 22, 1993; lowest water level measured, 38.81 ft below land-surface datum, Aug. 1, 1977. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 03
NOV 15 | 26.46
26.60 | JAN 13
MAR 18 | | APR 24
JUN 12 | 27.31
26.98 | JUL 30
SEP 26 | 27.49
26.74 | | WATER Y | EAR 2003 | HIGHEST | 26.46 OCT 0 | 3, 2002 LC | OWEST 27.66 | 6 MAR 18, 2 | 2003 | #### MANITOWOC COUNTY 440430087420401. Local number, MN-19/23E/35-0028. LOCATION.--Lat 44°04'30", long 87°42'04", Hydrologic Unit 04030101. Owner: Wis. Dept. of Transportation. AQUIFER .-- Silurian dolomite. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in., depth 147 ft, cased to 133 ft, open end. INSTRUMENTATION .-- Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 670 ft above sea level. Measuring point: 0.25-in. hole in pump base, 1.00 ft above land-surface datum. PERIOD OF RECORD.--June 1968 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.37 ft below land-surface datum, May 4, 1993; lowest water level measured, 32.22 ft below land-surface datum, Dec. 28, 1989. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | WATER | |--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------| | DATE | LEVEL | | OCT 01 | 29.56 | DEC 10 | 29.32 | FEB 04 | 29.78 | APR 09 | 29.96 | JUN 18 | 30.16 | AUG 21 | 32.84 | | 15 | 30.00 | 17 | 29.33 | 11 | 29.77 | 16 | 29.92 | 24 | 30.20 | 26 | 35.49 | | 22 | 29.60 | 23 | 29.89 | 18 | 29.70 | 23 | 30.01 | JUL 02 | 30.21 | SEP 03 | 34.82 | | 29 | 29.19 | 30 | 29.30 | 25 | 30.30 | MAY 07 | 30.12 | 09 | 30.95 | 09 | 33.10 | | NOV 05 | 29.17 | JAN 07 | 29.34 | MAR 04 | 29.80 | 15 | 29.59 | 15 | 30.34 | 16 | 32.22 | | 12 | 29.27 | 14 | 29.50 | 11 | 29.78 | 21 | 29.19 | 24 | 32.36 | 22 | 32.41 | | 19 | 29.17 | 21 | 29.61 | 25 | 30.02 | 27 | 29.85 | 30 | 33.27 | 30 | 32.12 | | DEC 02 | 29.30 | 28 | 30.05 | APR 01 | 29.83 | JUN 01 | 29.72 | AUG 05 | 32.33 | | | WATER YEAR 2003 HIGHEST 29.17 NOV 05 AND 19, 2002 LOWEST 35.49 AUG 26, 2003 ### MARATHON COUNTY 444709089265301. Local number, MR-27/09E/31-0028. $LOCATION.--Lat\ 44^\circ47'09", long\ 89°26'53", Hydrologic\ Unit\ 07070002.\ Owner:\ U.S.\ Geol.\ Survey.$ AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in., depth 27 ft, cased to 25 ft, well point 25-27 ft. INSTRUMENTATION--Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 1,229 ft above sea level. Measuring point: top of pipe, 0.80 ft above land-surface datum. PERIOD OF RECORD.--November 1944 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.18 ft below land-surface datum, Aug. 1, 1993; lowest water level measured, 26.09 ft
below land-surface datum, Mar. 30, 1959. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 28 | 20.30 | DEC 26 | 20.00 | FEB 27 | 20.30 | APR 30 | 20.30 | JUN 27 | 20.50 | AUG 20 | 19.10 | | NOV 27 | 20.00 | JAN 31 | 20.20 | MAR 29 | 20.30 | MAY 30 | 19.90 | JUL 28 | 19.20 | SEP 29 | 19.20 | WATER YEAR 2003 HIGHEST 19.10 AUG 20, 2003 LOWEST 20.50 JUN 27, 2003 ## MARINETTE COUNTY 453816087590101. Local number, MT-37/20E/34-0007. LOCATION.--Lat 45°38'16", long 87°59'01", Hydrologic Unit 04030108. Owner: Wis. Dept. of Natural Resources. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in., depth 33 ft, cased to 33 ft, open end. INSTRUMENTATION.--Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 980 ft above sea level. Measuring point: pointer on float gage, 4.00 ft above land-surface datum. PERIOD OF RECORD.--March 1939 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.01 ft below land-surface datum, May 17, 1960; lowest water level measured, 23.26 ft below land-surface datum, Nov. 2, 1948. WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 01 | 20.89 | DEC 10 | 20.77 | FEB 18 | 20.92 | APR 22 | 20.43 | JUN 24 | 20.21 | SEP 02 | 20.92 | | 08 | 20.65 | 17 | 20.78 | 25 | 20.94 | 29 | 20.18 | JUL 01 | 20.37 | 09 | 21.04 | | 15 | 20.51 | 30 | 20.81 | MAR 04 | 20.99 | MAY 06 | 20.16 | 08 | 20.50 | 17 | 21.09 | | 25 | 20.53 | JAN 07 | 20.62 | 12 | 21.01 | 13 | 20.11 | 15 | 20.60 | 23 | 21.09 | | 29 | 20.52 | 14 | 20.85 | 19 | 21.04 | 20 | 20.06 | 22 | 20.68 | 30 | 21.04 | | NOV 05 | 20.51 | 21 | 20.86 | 25 | 21.20 | 27 | 20.05 | 29 | 20.80 | | | | 12 | 20.59 | 28 | 20.88 | APR 01 | 20.95 | JUN 03 | 20.10 | AUG 13 | 20.64 | | | | 19 | 20.61 | FEB 04 | 20.88 | 08 | 20.88 | 10 | 20.15 | 19 | 20.70 | | | | DEC 03 | 20.75 | 11 | 20.90 | 15 | 20.86 | 17 | 20.09 | 26 | 20.85 | | | WATER YEAR 2003 HIGHEST 20.05 MAY 27, 2003 LOWEST 21.20 MAR 25, 2003 #### MARQUETTE COUNTY 435244089293401. Local number, MQ-16/08E/12-0009. LOCATION.--Lat 43°52'44", long 89°29'34", Hydrologic Unit 04030201. Owner: Village of Westfield. AQUIFER .-- Sandstone. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 6 in., depth 274 ft. INSTRUMENTATION .-- Water level measured bi-monthly by observer. DATUM.--Elevation of land-surface datum is 880 ft above sea level. Measuring point: top of casing, at land-surface datum. PERIOD OF RECORD .-- October 1949 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.15 ft below land-surface datum, July 13, 1993; lowest water level measured, 19.69 ft below land-surface datum, Jan. 25, 1999. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 04
NOV 09 | 15.28
15.35 | DEC 07
JAN 01 | 15.54
15.62 | JAN 26
MAR 20 | 15.75
15.90 | APR 18
MAY 10 | 15.85
15.42 | JUN 27
SEP 19 | 15.57
16.17 | | WATER Y | EAR 2003 | HIGHEST | 15.28 OCT 0 | 04, 2002 LO | WEST 16. | 17 SEP 19, 20 | 03 | | | 433956089275601. Local number, MQ-14/09E/30-0026. LOCATION .-- Lat 43°39'56", long 89°27'56", Hydrologic Unit 04030201. Owner: Leslie Mountford. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 6 in., depth 170 ft, cased to 145 ft, open end. INSTRUMENTATION .-- Water level measured bi-monthly by observer. DATUM.--Elevation of land-surface datum is 800 ft above sea level. Measuring point: 0.25-in. hole in cap of casing, 0.75 ft above land-surface datum. PERIOD OF RECORD .-- May 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.80 ft below land-surface datum, Apr. 2, 1973; lowest water level measured, 19.36 ft below land-surface datum, Jan. 26, 2003. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 04 | 17.73 | DEC 07 | 17.99 | JAN 26 | 19.36 | APR 18 | 13.74 | JUN 27 | 17.54 | | NOV 09 | 17.71 | JAN 01 | 18.10 | MAR 20 | 18.60 | MAY 10 | 17.33 | SEP 19 | 18.71 | WATER YEAR 2003 HIGHEST 13.74 APR 18, 2003 LOWEST 19.36 JAN 26, 2003 #### MILWAUKEE COUNTY 425613088014301. Local number, ML-06/21E/32-0148. LOCATION.--Lat 42°56'13", long 88°01'43", Hydrologic Unit 04040002. Owner: Milwaukee County. AQUIFER .-- Silurian dolomite. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 5 in., depth 180 ft, cased to 43 ft, open end. INSTRUMENTTION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 774 ft above sea level. Measuring point: top of 0.25-in. pipe, at land-surface datum. PERIOD OF RECORD.--September 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.56 ft below land-surface datum, May 4, 1951; lowest water level measured, 40.03 ft below land-surface datum, Aug. 13, 1971. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | | WATER
LEVEL | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 12
NOV 23 | 31.85
33.76 | DEC 21
JAN 07 | 34.36
34.38 | APR 18
MAY 10 | | JUN 10
JUL 01 | 33.90
34.45 | AUG 04
SEP 06 | 35.11
37.05 | | WATER Y | EAR 2003 | HIGHEST 3 | 31.85 OCT | 12, 2002 L | OWEST 3 | 7.05 SEP 06, 20 | 003 | | | ## MONROE COUNTY 434342090495601. Local number, MO-15/04W/34-0002. LOCATION.--Lat 43°43'42", long 90°49'56", Hydrologic Unit 07060001. Owner: Joseph Anderson. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 5 in., depth 44 ft. INSTRUMENTTION.--Water level measured by observer. DATUM.--Elevation of land-surface datum is 1,100 ft above sea level. Measuring point: top of casing, 0.50 ft above land-surface datum. REMARKS .-- No measurements made in 1981-82 water year. PERIOD OF RECORD .-- July 1934 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.70 ft below land-surface datum, Apr. 10, 1976; lowest water level measured, 18.68 ft below land-surface datum, Feb. 23, 1935. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |----------|----------------|---------|----------------|----------|----------------|-------------|----------------| | OCT 02 | 7.31 | NOV 14 | 7.63 | JAN 03 | 7.71 | JUL 10 | 7.69 | | WATER VI | EAR 2003 | HIGHEST | 7.31 OCT 02 | 2002 1.0 | WEST 771 | IAN 03 2003 | 2 | ## MONROE COUNTY—Continued 440026090390101. Local number, MO-18/02W/29-0017. LOCATION.--Lat 44°00'26", long 90°39'01", Hydrologic Unit 07040006. Owner: U.S. Army. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 9 in., depth 192 ft, cased to 109 ft, open end. INSTRUMENTATION .-- Continuous water-level recorder. DATUM.--Elevation of land-surface datum is 909 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD.--November 1949 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.48 ft below land-surface datum, Sept. 29, 1965; lowest water level, 8.62 ft below land-surface datum, Oct. 7, 1987. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|------|------|------|------|------|------|------|------|------|------|------| | 5 | 5.60 | 3.47 | 4.87 | 5.58 | 6.57 | 5.69 | 5.86 | 5.70 | 5.11 | 5.18 | 6.60 | 7.04 | | 10 | 5.41 | 3.33 | 4.34 | 5.92 | 6.55 | 5.80 | 5.82 | 5.63 | 5.29 | 5.57 | 6.90 | 7.08 | | 15 | 5.41 | 3.38 | 4.62 | 6.42 | 6.56 | 5.92 | 5.87 | 5.55 | 5.37 | | 7.29 | 7.02 | | 20 | 5.49 | 3.56 | 5.06 | 6.63 | 4.73 | 5.61 | 5.87 | 5.38 | 4.68 | | 7.45 | 7.03 | | 25 | 5.53 | 3.64 | 5.31 | 6.62 | 4.91 | 5.85 | 5.82 | 5.24 | 4.87 | | 7.14 | 6.96 | | EOM | 5.69 | 4.51 | 5.57 | 6.54 | 4.99 | 5.90 | 5.72 | 5.27 | 5.29 | | 7.21 | 6.58 | WATER YEAR 2003 HIGHEST 3.30 NOV 09, 2002 LOWEST 7.69 AUG 24, 2003 ## OCONTO COUNTY 450819088263901. Local number, OC-31/16E/25-0179. LOCATION .-- Lat 45°08'19", long 88°26'392", Hydrologic Unit 04030104. Owner: U.S. Forest Service. AQUIFER .-- Prairie du Chien. WELL CHARACTERISTICS.--Drilled public water-table well, diameter 6 in., depth 46 ft, cased to 38 ft, open end. INSTRUMENTATION .-- Water level measured by observer. DATUM.--Elevation of land-surface datum is 920 ft above sea level. Measuring point: hole in pump base, 2.00 ft above land-surface datum. PERIOD OF RECORD.--September 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.54 ft below land-surface datum, June 30, 1993; lowest water level measured, 20.52 ft below land-surface datum, May 12, 1999. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------
--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 01 | 18.70 | DEC 02 | 18.75 | FEB 02 | 19.09 | APR 01 | 18.84 | JUN 01 | 18.02 | AUG 01 | 18.55 | | NOV 01 | 18.53 | JAN 01 | 18.89 | MAR 01 | 19.27 | MAY 01 | 18.14 | JUL 01 | 18.22 | SEP 01 | 18.89 | WATER YEAR 2003 HIGHEST 18.02 JUN 01, 2003 LOWEST 19.27 MAR 01, 2003 ## ONEIDA COUNTY 453720089215401. Local number, ON-36/09E/09-0024. LOCATION.--Lat 45°37'20", long 89°21'54", Hydrologic Unit 07070001. Owner: U.S. Geol. Survey. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in., depth 33 ft, cased to 37 ft, well point 31-33 ft. INSTRUMENTATION .-- Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 1,560 ft above sea level. Measuring point: top of casing, 0.80 ft above land-surface datum. PERIOD OF RECORD.--November 1944 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.67 ft below land-surface datum, Aug. 3, 1968; lowest water level measured, 23.16 ft below land-surface datum, Mar. 12, 1990. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 04
NOV 03 | 19.85
19.55 | DEC 03
JAN 05 | 19.65
20.05 | FEB 04
MAR 05 | 20.34
20.64 | APR 02
MAY 05 | 20.71
20.28 | JUN 05
JUL 02 | 19.90
20.04 | AUG 04
SEP 04 | 20.38
20.60 | | WATER Y | EAR 2003 | HIGHEST | 19.55 NOV (| 03, 2002 LC | OWEST 20. | 71 APR 02, 20 | 003 | | | | | ## POLK COUNTY 452352092332001. Local number, PK-34/18W/26-0093. LOCATION.--Lat 45°23'52", long 92°33'20", Hydrologic Unit 07030005. Owner: Wis. Dept. of Transportation. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in., depth 64 ft, cased to 60 ft, open end. INSTRUMENTATION .-- Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 1,140 ft above sea level. Measuring point: hole in pump base, 2.00 ft above land-surface datum. PERIOD OF RECORD.--March 10, 1966 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.72 ft below land-surface datum, June 20, 1973; lowest water level measured, 36.13 ft below land-surface datum, Mar. 22, 1989. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | OCT 11
NOV 15 | 26.60
26.50 | DEC 13
JAN 14 | 26.70
27.50 | FEB 13
MAR 14 | 27.90
28.20 | APR 16
MAY 15 | 28.10
27.30 | JUN 16
JUL 15 | 26.80
26.20 | AUG 20
SEP 23 | 26.10
26.10 | | WATER Y | EAR 2003 | HIGHEST 2 | 26.10 AUG 2 | 20, 2003 SEP | 23, 2003 | LOWEST 28 | .20 MAR 1 | 4, 2003 | | | | #### PORTAGE COUNTY 442810089194501. Local number, PT-23/10E/18-0276. LOCATION.--Lat 44°28'10", long 89°19'45", Hydrologic Unit 04030202. Owner: Portage County. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Driven unused water-table well, diameter 1.25 in., depth 17 ft, cased to 15 ft. INSTRUMENTATION .-- Water level measured by observer. DATUM.--Elevation of land-surface datum is 1,090 ft above sea level. Measuring point: rim of casing, 3.50 ft above land-surface datum. PERIOD OF RECORD .-- July 1958 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.01 ft below land-surface datum, Apr. 22, 1974; lowest water level measured, 11.09 ft below land-surface datum, Mar. 3, 1959. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |----------------------------|----------------------|----------------------------|----------------------|------------------------|----------------------|------------------------|----------------------|--------|----------------| | OCT 07
NOV 14
DEC 31 | 6.06
6.17
7.00 | JAN 26
MAR 20
APR 20 | 7.42
7.73
5.29 | MAY 25
JUN 24
25 | 5.10
5.90
5.90 | JUL 03
20
AUG 29 | 6.08
7.00
7.40 | SEP 29 | 7.50 | WATER YEAR 2003 HIGHEST 5.10 MAY 25, 2003 LOWEST 7.73 MAR 20, 2003 ## PRICE COUNTY 453311090065301. Local number, PR-35/03E/04-0065. LOCATION.--Lat 45°33'11", long 90°06'53", Hydrologic Unit 07070001. Owner: Town of Knox. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 6 in., depth 118 ft, cased to 118 ft, open end. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 1,695 ft above sea level. Measuring point: top of casing, 2.00 ft above land-surface datum. PERIOD OF RECORD .-- October 1986 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.10 ft above land-surface datum, July 14, 1997; lowest water level measured, 10.96 ft below land-surface datum, Feb. 15, 1990. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |---------|----------------|---------|----------------|----------|----------------|-----------|----------------| | OCT 28 | 4.90 | NOV 16 | 5.50 | DEC 22 | 6.10 | MAR 27 | 7.75 | | WATED V | EAD 2003 | HIGHEST | 4.00 OCT 28 | 2002 1.0 | WEST 775 | MAD 27 20 | 03 | ## RACINE COUNTY 424119088081801. Local number, RA-03/20E/28-0062. LOCATION.--Lat 42°41'19", long 88°08'18", Hydrologic Unit 07120006. Owner: Wis. Dept .of Transportation. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled artesian well, diameter 6 in., depth 104 ft, cased to 104 ft, open hole. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 800 ft above sea level. Measuring point: hole in pump base, 1.50 ft above land-surface datum. PERIOD OF RECORD.--November 1963 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.21 ft below land-surface datum, Apr. 28, 1988; lowest water level measured, 31.50 ft below land-surface datum, Aug. 27, 2003. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 16
NOV 13 | 25.69
25.63 | DEC 11
JAN 29 | 25.88
26.28 | FEB 26
MAR 26 | 26.84
27.00 | APR 22
MAY 30 | 27.19
26.64 | JUL 28
AUG 27 | 29.83
31.50 | SEP 29 | 30.69 | WATER YEAR 2003 HIGHEST 25.63 NOV 13, 2002 LOWEST 31.50 AUG 27, 2003 ## RICHLAND COUNTY 431840090203201. Local number, RI-10/01E/26-0023. LOCATION.--Lat 43°18'40", long 90°20'32", Hydrologic Unit 07070005. Owner: Koch Tractor, Inc. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in., depth 160 ft, cased to 135 ft, open end. INSTRUMENTATION .-- Water level measured by observer. DATUM.--Elevation of land-surface datum is 725 ft above sea level. Measuring point: top of 1-in. breather pipe, 1.00 ft above land-surface datum. PERIOD OF RECORD.--February 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.11 ft below land-surface datum, May 22, 1973; lowest water level measured, 16.45 ft below land-surface datum, Mar. 14, 1991. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 02 | 13.44 | JAN 14 | 14.22 | APR 17 | 14.09 | JUL 30 | 14.23 | | NOV 14 | 13.72 | MAR 19 | 14.62 | JUN 12 | 13.60 | SEP 25 | 14.56 | WATER YEAR 2003 HIGHEST 13.44 OCT 02, 2002 LOWEST 14.62 MAR 19, 2003 ## SAUK COUNTY 432100089440001. Local number, SK-10/06E/02-0003. LOCATION .-- Lat 43°21'00", long 89°44'00", Hydrologic Unit 07070005. Owner: Badger Army Ammunition Plant. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 451 ft, cased to 160 ft, open end. INSTRUMENTATION .-- Continuous water-level recorder. DATUM.--Elevation of land-surface datum is 884 ft above sea level. Measuring point: hole in platform, at land-surface datum. REMARKS.--Water level affected by pumping of nearby wells. PERIOD OF RECORD .-- May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 67.23 ft below land-surface datum, Aug. 10, 1993; lowest water level, 83.92 ft below land-surface datum, Aug. 2, 1946. | | WATI | ER LEVELS | IN FEET B | ELOW LAN | D SURFAC | E DATUM, | WATER Y | EAR OCTO | BER 2002 T | O SEPTEM | BER 2003 | | |-----|-------|-----------|-----------|----------|----------|----------|---------|----------|------------|----------|----------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 5 | 74.75 | 75.48 | 76.24 | 76.68 | 77.29 | 77.54 | 78.13 | 78.00 | 78.33 | 78.74 | 79.15 | 79.90 | | 10 | 74.81 | 75.54 | 76.22 | 76.71 | 77.22 | 77.71 | 78.06 | 78.15 | 78.35 | 78.75 | 79.35 | 79.99 | | 15 | 74.91 | 75.93 | 76.40 | 76.87 | 77.45 | 77.63 | 77.88 | 78.39 | 78.55 | 78.82 | 79.42 | 79.97 | | 20 | 75.11 | 75.88 | 76.28 | 76.88 | 77.33 | 77.73 | 78.01 | 78.54 | 78.57 | 78.88 | 79.46 | 80.15 | | 25 | 75.14 | 76.11 | 76.53 | 76.96 | 77.61 | 77.90 | 78.12 | 78.32 | 78.54 | 79.06 | 79.63 | 80.14 | | EOM | 75.29 |
76.12 | 76.61 | 77.05 | 77.47 | 77.92 | 78.22 | 78.35 | 78.68 | 79.06 | 79.82 | 80.19 | WATER YEAR 2003 HIGHEST 74.57 OCT 04, 2002 LOWEST 80.19 SEP 30, 2003 ## SAWYER COUNTY 455841091235301. Local number, SW-40/08W/05-231. LOCATION.--Lat 45°58'41", long 90°23'53", Hydrologic Unit 07050001. Owner: U.S. Geological Survey. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Driven unused water-table well, diameter 3 in., depth 11 ft, cased to 9 ft. INSTRUMENTATION .-- Continuous water-level recorder. DATUM.--Elevation of land-surface datum is 1,310 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD.--October 2002 to September 2003. EXTREMES FOR CURRENT YEAR.--Highest water level, 5.67 ft below land-surface datum, Nov. 15; lowest water level, 6.30 ft below land-surface datum, May 7. # WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|------------------------------|---|--|---|--|---|--|---|--|---|--| | 5.84 | 5.68 | 5.72 | 5.86 | 6.07 | 6.14 | 6.13 | 6.27 | 6.05 | 6.15 | 6.13 | 6.14 | | 5.79 | 5.72 | 5.82 | 5.85 | 6.01 | 6.08 | 6.09 | 6.21 | 5.99 | 6.12 | 6.19 | 6.13 | | 5.78 | 5.67 | 5.79 | 5.90 | 6.01 | 6.06 | 6.08 | 6.15 | 6.09 | 6.10 | 6.13 | 6.17 | | 5.76 | 5.75 | 5.75 | 6.02 | 6.03 | 6.05 | 5.96 | 6.12 | 6.14 | 6.20 | 6.17 | 6.13 | | 5.72 | 5.74 | 5.73 | 5.92 | 6.17 | 6.19 | 6.03 | 6.09 | 6.07 | 6.12 | 6.15 | 6.11 | | 5.73 | 5.76 | 5.79 | 5.97 | 6.05 | 6.08 | 6.00 | 6.02 | 6.08 | 6.13 | 6.16 | 6.12 | | | 5.79
5.78
5.76
5.72 | 5.84 5.68
5.79 5.72
5.78 5.67
5.76 5.75
5.72 5.74 | 5.84 5.68 5.72 5.79 5.72 5.82 5.78 5.67 5.79 5.76 5.75 5.75 5.72 5.74 5.73 | 5.84 5.68 5.72 5.86 5.79 5.72 5.82 5.85 5.78 5.67 5.79 5.90 5.76 5.75 5.75 6.02 5.72 5.74 5.73 5.92 | 5.84 5.68 5.72 5.86 6.07 5.79 5.72 5.82 5.85 6.01 5.78 5.67 5.79 5.90 6.01 5.76 5.75 5.75 6.02 6.03 5.72 5.74 5.73 5.92 6.17 | 5.84 5.68 5.72 5.86 6.07 6.14 5.79 5.72 5.82 5.85 6.01 6.08 5.78 5.67 5.79 5.90 6.01 6.06 5.76 5.75 5.75 6.02 6.03 6.05 5.72 5.74 5.73 5.92 6.17 6.19 | 5.84 5.68 5.72 5.86 6.07 6.14 6.13 5.79 5.72 5.82 5.85 6.01 6.08 6.09 5.78 5.67 5.79 5.90 6.01 6.06 6.08 5.76 5.75 5.75 6.02 6.03 6.05 5.96 5.72 5.74 5.73 5.92 6.17 6.19 6.03 | 5.84 5.68 5.72 5.86 6.07 6.14 6.13 6.27 5.79 5.72 5.82 5.85 6.01 6.08 6.09 6.21 5.78 5.67 5.79 5.90 6.01 6.06 6.08 6.15 5.76 5.75 5.75 6.02 6.03 6.05 5.96 6.12 5.72 5.74 5.73 5.92 6.17 6.19 6.03 6.09 | 5.84 5.68 5.72 5.86 6.07 6.14 6.13 6.27 6.05 5.79 5.72 5.82 5.85 6.01 6.08 6.09 6.21 5.99 5.78 5.67 5.79 5.90 6.01 6.06 6.08 6.15 6.09 5.76 5.75 5.75 6.02 6.03 6.05 5.96 6.12 6.14 5.72 5.74 5.73 5.92 6.17 6.19 6.03 6.09 6.07 | 5.84 5.68 5.72 5.86 6.07 6.14 6.13 6.27 6.05 6.15 5.79 5.72 5.82 5.85 6.01 6.08 6.09 6.21 5.99 6.12 5.78 5.67 5.79 5.90 6.01 6.06 6.08 6.15 6.09 6.10 5.76 5.75 5.75 6.02 6.03 6.05 5.96 6.12 6.14 6.20 5.72 5.74 5.73 5.92 6.17 6.19 6.03 6.09 6.07 6.12 | 5.84 5.68 5.72 5.86 6.07 6.14 6.13 6.27 6.05 6.15 6.13 5.79 5.72 5.82 5.85 6.01 6.08 6.09 6.21 5.99 6.12 6.19 5.78 5.67 5.79 5.90 6.01 6.06 6.08 6.15 6.09 6.10 6.13 5.76 5.75 5.75 6.02 6.03 6.05 5.96 6.12 6.14 6.20 6.17 5.72 5.74 5.73 5.92 6.17 6.19 6.03 6.09 6.07 6.12 6.15 | WATER YEAR 2003 HIGHEST 5.76 NOV 15, 2002 LOWEST 6.30 MAY 07, 2003 ## TAYLOR COUNTY 450947090483902. Local number, TA-31/04W/13-0001. LOCATION.--Lat 45°09'47", long 90°48'39", Hydrologic Unit 07050005. Owner: Village of Gilman. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 18 in., depth 26 ft, cased to 16 ft, screened 16-26 ft. INSTRUMENTATION .-- Continuous water-level recorder. DATUM.--Elevation of land-surface datum is 1,200 ft above sea level. Measuring point: top of casing, 2.00 ft above land-surface datum. REMARKS.--Water level affected by pumping of nearby wells. PERIOD OF RECORD .-- April 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.69 ft below land-surface datum, June 21, 1993; lowest water level, 13.11 ft below land-surface datum, Oct. 15, 1959. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|------|------|------|------|------|------|------|------|-------|-------|-------| | 5 | 7.62 | 8.89 | 9.62 | 9.76 | 9.80 | 9.63 | 8.61 | 8.70 | 9.49 | 9.54 | 10.12 | 10.60 | | 10 | 6.94 | 9.04 | 9.69 | 9.81 | 9.81 | 9.71 | 9.22 | 8.01 | 9.22 | 9.74 | 10.16 | 10.60 | | 15 | 8.00 | 9.20 | 9.78 | 9.68 | 9.83 | 9.62 | 8.94 | 6.51 | 8.88 | 9.82 | 10.33 | 10.55 | | 20 | 8.51 | 9.31 | 9.65 | 9.67 | 9.83 | 8.44 | 5.42 | 7.97 | 9.43 | 10.02 | 10.45 | 10.48 | | 25 | 8.51 | 9.45 | 9.69 | 9.57 | 9.86 | 8.53 | 7.08 | 8.65 | 9.20 | 10.22 | 10.49 | 10.52 | | EOM | 8.64 | 9.52 | 9.82 | 9.46 | 9.71 | 8.32 | 8.24 | 9.19 | 9.29 | 10.30 | 10.60 | 10.41 | WATER YEAR 2003 HIGHEST 5.19 MAY 12, 2003 LOWEST 10.61 SEP 01, 02, 03, 12, 2003 ## TREMPEALEAU COUNTY 440422091182901. Local number, TR-19/08W/35-0001. LOCATION.--Lat 44°04'22", long 91°18'29", Hydrologic Unit 07040007. Owner: Mrs. William Davidson. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in., depth 195 ft. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 820 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD.--October 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 131.38 ft below land-surface datum, Sept. 7, 1993; lowest water level measured, 146.56 ft below land-surface datum, Sept. 1, 1959. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 04 | 139.34 | DEC 01 | 139.99 | FEB 05 | 140.70 | APR 12 | 139.72 | JUN 05 | 139.25 | AUG 02 | 140.80 | | NOV 04 | 139.96 | JAN 01 | 140.01 | MAR 01 | 140.11 | MAY 01 | 138.39 | JUL 01 | 139.67 | SEP 06 | 141.02 | WATER YEAR 2003 HIGHEST 138.39 MAY 01, 2003 LOWEST 141.02 SEP 06, 2003 #### TREMPEALEAU COUNTY—Continued 440414091270401. Local number, TR-19/09W/33-0009. LOCATION.--Lat 44°04'14", long 91°27'04", Hydrologic
Unit 07040005. Owner: Village of Centerville. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled public-supply water-table, diameter 6 in., depth 71 ft, cased to 66 ft, screened 66-71 ft. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 740 ft above sea level. Measuring point: top of breather pipe, at land-surface datum. REMARKS.--Water level affected by pumping of nearby wells. PERIOD OF RECORD .-- May 1953 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.80 ft below land-surface datum, Oct. 12, 1993, and Apr. 12, 1994; lowest water level measured, 57.11 ft below land-surface datum, Mar. 16, 1965. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM. WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 03 | 49.70 | DEC 04 | 46.50 | FEB 03 | 49.90 | APR 01 | 44.50 | JUN 05 | 50.60 | | NOV 04 | 45.80 | JAN 03 | 48.00 | MAR 03 | 50.10 | MAY 02 | 50.60 | AUG 02 | 51.10 | WATER YEAR 2003 HIGHEST 44.50 APR 01, 2003 LOWEST 51.10 AUG 02, 2003 #### VILAS COUNTY 455517089144001. Local number, VI-40/10E/28-0033. LOCATION.--Lat 45°55'17", long 89°14'40", Hydrologic Unit 07070001. Owner: Trees for Tomorrow, Inc. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled observation water table well, diameter 6 in., depth 37 ft, cased to 37 ft. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 1,640 ft above sea level. Measuring point: top of casing, 0.75 ft above land-surface datum. PERIOD OF RECORD .-- December 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.41 ft below land-surface datum, May 14, 1997; lowest water level measured, 16.22 ft below land-surface datum, Apr. 4, 2001. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 17
NOV 15 | 14.58
14.61 | JAN 15
FEB 18 | 15.03
15.05 | MAR 13
APR 16 | 15.42
15.38 | MAY 30
JUN 17 | 14.58
14.61 | JUL 14
AUG 13 | 15.09
15.25 | SEP 19 | 15.50 | WATER YEAR 2003 HIGHEST 14.58 OCT 17, 2002 MAY 30, 2003 LOWEST 15.50 SEP 19, 2003 # WALWORTH COUNTY 423532088254601. Local number, WW-02/17E/36-0037. LOCATION.--Lat 42°35'32", long 88°25'46", Hydrologic Unit 07120006. Owner: Lake Geneva Water Works. AOUIFER --Sandstone WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in., depth 820 ft, cased to 10 in., 0-214 ft; 8 in., 214-227 ft, open end. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 860 ft above sea level. Measuring point: top of casing, 2.00 ft above land-surface datum. PERIOD OF RECORD.--February 1962 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 129.48 ft below land-surface datum, Feb. 14, 1962; lowest water level measured, 250.71 ft below land-surface datum, Aug. 21, 2000. # WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|----------------| | OCT 12
NOV 23 | 217.93
220.18 | DEC 21
JAN 07 | 217.23
215.61 | FEB 08
MAR 08 | 213.74
214.51 | APR 18
MAY 10 | 214.44
213.67 | JUN 10
JUL 01 | 215.33
217.31 | AUG 04 | 218.90 | WATER YEAR 2003 HIGHEST 213.67 MAY 10, 2003 LOWEST 220.18 NOV 23, 2002 #### WAUKESHA COUNTY 425535088131701. Local number, WK-05/19E/02-0031. LOCATION.--Lat 42°55'35", long 88°13'17", Hydrologic Unit 07120006. Owner: William Bahl. AQUIFER .-- Silurian dolomite. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 508 ft, cased to 434 ft, open end. INSTRUMENTATION .-- Water level measured monthly. DATUM.--Elevation of land-surface datum is 962 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD.--May 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 126.06 ft below land-surface datum, May 10, 1973; lowest water level, 139.51 ft below land-surface datum, Sept. 6, 2003. #### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 135.18 | DEC 21 | 135.69 | FEB 08 | 136.11 | APR 18 | 136.60 | JUN 10 | 136.52 | AUG 04 | 138.46 | | NOV 23 | 135.46 | JAN 07 | 135.87 | MAR 08 | 136.21 | MAY 10 | 136.27 | JUL 01 | 137.36 | SEP 06 | 139.51 | WATER YEAR 2003 HIGHEST 135.18 OCT 12, 2002 LOWEST 139.51 SEP 06, 2003 ## WAUPACA COUNTY 441545088522901. Local number, WP-21/13E/25-0002. LOCATION.--Lat 44°15'45", long 88°52'29", Hydrologic Unit 04030202. Owner: Village of Fremont. AQUIFER .-- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 205 ft, cased to 109 ft, open end. INSTRUMENTATION .-- Water level measured weekly by observer. DATUM.--Elevation of land-surface datum is 764 ft above sea level. Measuring point: hole in cap, 1.00 ft above land-surface datum. PERIOD OF RECORD .-- August 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.65 ft below land-surface datum, Apr. 7, 1979; lowest water level measured, 17.45 ft below land-surface datum, May 12, 1997. ## WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 31
DEC 31 | 13.99
14.11 | JAN 31
FEB 28 | 14.20
14.29 | APR 04
MAY 02 | 13.31
13.09 | AUG 29 | 13.90 | WATER YEAR 2003 HIGHEST 13.09 MAY 02, 2003 LOWEST 14.29 FEB 28, 2003 #### WAUSHARA COUNTY 440713089320801. Local number, WS-19/08E/15-0008. LOCATION.--Lat 44°07'13", long 89°32'08", Hydrologic Unit 07070003. Owner: University of Wisconsin Experiment Farm, Hancock. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 4 in., depth 18 ft, cased to 18 ft. INSTRUMENTATION .-- Continuous water-level recorder. DATUM.--Elevation of land-surface datum is 1,080 ft above sea level. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD .-- May 1951 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 5.88 ft below land-surface datum, July 5, 1973; lowest water level, 15.34 ft below land-surface datum, Apr. 25, 1959. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 5 | 9.46 | 9.79 | 10.13 | 10.51 | 10.91 | 11.27 | 11.59 | 11.79 | 11.36 | 11.89 | 12.48 | 13.13 | | 10 | 9.50 | 9.84 | 10.19 | 10.57 | 10.97 | 11.33 | 11.63 | 11.80 | 11.32 | 11.96 | 12.58 | 13.24 | | 15 | 9.56 | 9.92 | 10.25 | 10.64 | 11.05 | 11.37 | 11.67 | 11.55 | 11.39 | 11.98 | 12.72 | 13.25 | | 20 | 9.62 | 9.96 | 10.28 | 10.70 | 11.10 | 11.37 | 11.71 | 11.30 | 11.58 | 12.12 | 12.82 | 13.29 | | 25 | 9.66 | 10.03 | 10.37 | 10.76 | 11.17 | | 11.75 | 11.18 | 11.70 | 12.26 | 12.90 | 13.33 | | EOM | 9.75 | 10.08 | 10.44 | 10.84 | 11.21 | 11.53 | 11.77 | 11.26 | 11.74 | 12.36 | 13.00 | 13.35 | WATER YEAR 2003 HIGHEST 9.43 OCT 01, 2002 LOWEST 13.35 SEP 29 AND 30, 2003 ## WINNEBAGO COUNTY 440122088324601. Local number, WI-18/16E/23-0006. LOCATION .-- Lat 44°01'22", long 88°2'46", Hydrologic Unit 04030201. Owner: City of Oshkosh. AQUIFER .-- Sandstone. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 8 in., depth 200 ft. INSTRUMENTATION .-- Water level measured monthly by observer. DATUM.--Elevation of land-surface datum is 765 ft above sea level. Measuring point: top of 1-in. pipe, at land-surface datum. REMARKS.--Water level affected by pumping of nearby wells. PERIOD OF RECORD .-- August 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.65 ft below land-surface datum, Apr. 28, 1993; lowest water level measured, 45.13 ft below land-surface datum, Jan. 1, 1966. ### WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 30 | 21.42 | NOV 26 | 21.92 | DEC 20 | 21.03 | JAN 23 | 22.78 | FEB 28 | 22.35 | MAR 25 | 22.65 | WATER YEAR 2003 HIGHEST 21.03 DEC 20, 2002 LOWEST 22.78 JAN 23, 2003 #### GROUND-WATER QUALITY Data for the following sites represent ground-water samples collected as part of a major aquifer study conducted in the Western Lake Michigan Drainages study unit of the National Water-Quality Assessment (NAWQA) Program. Major aquifer study samples were collected from domestic and institutional wells in the glacial aquifer in Wisconsin and Michigan. Samples collected in Michigan are identified by County and State. Analytical results from samples identified with an asterisk (*) indicate that this sample likely passed through a cation-exchange water softener. Because of this, measured cation concentrations from these samples
are not expected to be representative of ambient ground water from this aquifer, and therefore are not reported. GEOLOGICAL UNIT .-- 100SDGV, sand and gravel (glacial) aquifer, consists of unconsolidated deposits of the Quaternary System. | | Local
identifier | Station number | Date | Time | Geologic
unit | Depth
of
well,
feet
below
LSD
(72008) | Depth
to
water
level,
feet
below
LSD
(72019) | Flow rate, instantaneous gal/min (00059) | Sam-
pling
method,
code
(82398) | Tur-
bidity,
NTU
(00076) | Baro-
metric
pres-
sure,
mm Hg
(00025) | |---------------|---|---|----------------------------------|----------------------|-------------------------------|---|---|--|---|-----------------------------------|---| | | | | | COL | JMBIA COU | JNTY | | | | | | | | CO-12/09E/11-0740 | 433136089235301 | 05-20-03 | 1000 | 100SDGV | 134 | 31.24 | | 4,040 | 0.06 | 740 | | | | | | FLOI | RENCE COU | NTY | | | | | | | | FC-38/15E/02-0095 | 454749088345301 | 05-27-03 | 1300 | 100SDGV | 82 | 48.00 | | 4,040 | 3.8 | 723 | | FOREST COUNTY | | | | | | | | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 453149088570801
453247088425701
454258088411601 | 05-28-03
06-11-03
05-29-03 | 1700
1400
1200 | 100SDGV
100SDGV
100SDGV | 81
65
83 | 6.00
48.00
40.00 | 5.0 | 4,040
4,040
4,040 | 1.2
0.66
8.9 | 715
733
717 | | | | | | GREE | N LAKE CO | UNTY | | | | | | | | GL-17/12E/33-0105 | 435343089040601 | 05-21-03 | 1000 | 100SDGV | 140 | -5.75 | | 4,040 | 0.05 | 747 | | | | | | LANG | GLADE COU | JNTY | | | | | | | | LA-33/13E/08-1319 | 452121088541301 | 05-28-03 | 1000 | 100SDGV | 75 | 35.00 | | 4,040 | 0.49 | 715 | | | | | | IRON CO | OUNTY, MIC | CHIGAN | | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 460000088235501
460308088130601
462416088191901 | 06-24-03
06-24-03
06-25-03 | 1300
0900
1700 | 100SDGV
100SDGV
100SDGV | 60
86
60 | 36.58
30.11
 |

 | 4,040
4,040
4,040 | 0.41
0.66
2.7 | 722
722
711 | | | | | | MAR | ATHON CO | UNTY | | | | | | | | MR-26/10E/23-1216 | 444302089144401 | 06-09-03 | 1500 | 100SDGV | 49 | 16.00 | 5.0 | 4,040 | 0.67 | 730 | | | | | | MAR | NETTE CO | JNTY | | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 451854087545501
453021088055801
454107088011001 | 06-23-03
07-23-03
06-23-03 | 1100
1600
1500 | 100SDGV
100SDGV
100SDGV | 106
82
48 | 26.72

24.12 |

 | 4,040
4,040
4,040 | 1.1
0.46
0.14 | 731
735
729 | | | | | | MAR(| QUETTE CO | UNTY | | | | | | | | MQ-17/10E/28-0121 | 435453089184701 | 05-20-03 | 1400 | 100SDGV | 137 | -1.20 | | 4,040 | 9.9 | | | | | | | MENO | OMINEE CO | UNTY | | | | | | | | *ME-28/16E/19-0239 | 445358088352801 | 06-11-03 | 1000 | 100SDGV | 40 | 16.00 | 4.0 | 4,040 | 0.15 | 729 | | | | | | OCO | ONTO COU | NTY | | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 450755088125301
451805088363101 | 07-23-03
08-03-03 | 1100
1100 | 100SDGV
100SDGV | 64
105 | 65.13 | | 4,040
4,040 | 0.29
12 | 744
722 | | | | | | | | | | | | | | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | (| | -, | | | | | | | | |---|----------------------------------|--|---|--|---|--|--|---|--|--|--| | Local
identifier | Date | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potassium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | Alkalinity, wat flt inc tit field, mg/L as CaCO3 (39086) | Bromide
water,
fltrd,
mg/L
(71870) | | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | 0.1 | 8.1 | 397 | 10.7 | 36.0 | 27.9 | 0.93 | 3.06 | 202 | 0.02 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | 0.1 | 7.9 | 283 | 7.9 | 36.7 | 14.1 | 1.30 | 2.21 | 192 | < 0.02 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | 10.2
8.3
2.7 | 8.0
8.2
7.5 | 420
214
301 | 8.4
9.9
7.3 | 46.3
21.2
32.7 | 23.1
9.81
15.5 | 0.64
0.85
0.94 | 2.29
4.77
1.78 | 219
65
169 | E.02
0.02
<0.02 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | 0.2 | 7.7 | 533 | 10.3 | 61.7 | 33.5 | 1.81 | 2.25 | 376 | 0.03 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | 2.7 | 7.9 | 318 | 9.1 | 31.2 | 16.6 | 0.66 | 3.85 | 169 | E.01 | | | | | | IRON CC | UNTY, M | ICHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | 10.0
0.1
0.1 | 7.8
8.5
8.5 | 298
201
221 | 8.9
7.9
6.7 | 33.5
22.4
28.2 | 17.7
11.0
8.80 | 0.64
1.11
2.15 | 1.63
2.08
2.08 | 136
90
99 | 0.02
E.01
E.02 | | | | | | | THON CC | | | | | | | | MR-26/10E/23-1216 | 06-09-03 | 2.8 | 7.6 | 566 | 9.2 | 64.6 | 29.2 | 1.65 | 5.61 | 237 | 0.02 | | | | | | MARI | NETTE CC | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | 0.1
0.2
8.0 | 8.3
9.1
8.2 | 391
213
246 | 8.7
8.8
8.4 | 26.9
25.0
28.9 | 27.4
11.7
8.66 | 1.88
1.56
0.76 | 4.98
2.34
1.87 | 209
116
112 | 0.02
0.02
E.01 | | | | | | | UETTE CO | | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | 3.8 | 7.9 | 329 | 10.2 | 36.2 | 20.1 | 0.70 | 1.58 | 169 | E.01 | | | | | | | MINEE CO | DUNTY | | | | | | | *ME-28/16E/19-0239 | 06-11-03 | 1.0 | 7.9 | 275 | 9.7 | | | | | 134 | 0.02 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | 0.2
6.0 | 8.4
7.8 | 518
317 | 11.0
9.6 | 70.3
39.4 | 29.7
18.5 | 0.95
5.68 | 3.11
2.45 | 269
160 | 0.10
0.03 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Chloride,
water,
fltrd,
mg/L
(00940) | Fluoride,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
on
evap.
at
180degC
wat flt
mg/L
(70300) | Ammonia
+ org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | |---|----------------------------------|--|--|--|--|---|--|--|---|--|--| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | 3.08 | < 0.2 | 17.0 | 17.8 | 226 | E.07 | E.02 | 0.08 | < 0.008 | E.02 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | 0.71 | < 0.2 | 17.7 | < 0.2 | 161 | 0.22 | 0.13 | < 0.06 | < 0.008 | E.02 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | 1.76
13.5
1.45 | <0.2
<0.2
<0.2 | 13.5
15.7
16.5 | 7.6
6.5
<0.2 | 235
124
171 | <0.10
E.08
0.79 | <0.04
<0.04
0.57 | 1.16
3.71
<0.06 | <0.008
<0.008
<0.008 | 0.02
<0.02
0.03 | | | | | | GREEN | LAKE CO | OUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | 0.89 | < 0.2 | 13.5 | 13.6 | 305 | < 0.10 | < 0.04 | < 0.06 | E.004 | < 0.02 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | 5.15 | < 0.2 | 14.1 | 9.9 | 175 | < 0.10 | < 0.04 | 1.08 | < 0.008 | E.01 | | | | | | IRON CO | UNTY, M | ICHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | 9.23
0.41
0.90 | <0.2
<0.2
<0.2 | 12.0
10.3
12.6 | 5.7
9.8
12.9 | 174
107
122 | <0.10
E.05
0.11 | <0.04
E.04
<0.04 | 0.83
<0.06
<0.06 | <0.008
<0.008
E.004 | <0.02
E.01
<0.02 | | MD
26/10E/22 1216 | 06.00.02 | 16.0 | 0.4 | | THON CC | | E 00 | -0.04 | 7.07 | -0.000 | -0.00 | | MR-26/10E/23-1216 | 06-09-03 | 16.0 | 0.4 | 14.5 | 22.2
NETTE CO | 295 | E.09 | < 0.04 | 7.97 | < 0.008 | < 0.02 | | MT-33/21E/20-0258 | 06-23-03 | 0.98 | <0.2 | 16.1 | 9.2 | 220 | < 0.10 | < 0.04 | < 0.06 | < 0.008 | E.01 | | MT-35/19E/15-0261
MT-37/20E/08-0259 | 07-23-03
06-23-03 | 1.07
3.48 | <0.2
<0.2 | 16.0
9.11 | 5.6
9.8 | <10
146 | E.06
<0.10 | E.03
<0.04 | <0.06
0.07 | <0.008
<0.008 | E.01
<0.02 | | | | | | MARQ | UETTE CO | DUNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | 1.61 | < 0.2 | 13.2 | 6.8 | 184 | < 0.10 | < 0.04 | 1.27 | < 0.008 | E.01 | | | | | | MENO | MINEE CO | DUNTY | | | | | | | *ME-28/16E/19-0239 | 06-11-03 | 3.71 | < 0.2 | 13.3 | 11.3 | 172 | | | 0.09 | < 0.008 | < 0.02 | | | | | | OCO | NTO COU | INTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | 3.57
5.26 | <0.2
<0.2 | 22.6
15.1 | 15.1
6.5 | 311
184 | 0.35
<0.10 | 0.25
<0.04 | <0.06
0.19 | <0.008
<0.008 | <0.02
<0.02 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332) | E coli,
MI MF,
water,
col/
100 mL
(90901) | Total
coli-
form,
MI MF,
water,
col/
100 mL
(90900) | Aluminum,
water,
fltrd,
ug/L
(01106) | Antimony, water, fltrd, ug/L (01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Barium,
water,
fltrd,
ug/L
(01005) | Beryllium,
water,
fltrd,
ug/L
(01010) | |--------------------------------------|----------------------|---|--|--|--|--|--|--------------------------------------|--|--|---| | CO-12/09E/11-0740 | 05-20-03 | E.3 | 2 | 2 | мы со
<1 | <1 | <2 | < 0.30 | 5.6 | 53 | < 0.06 | | CO-12/09E/11-0740 | 03-20-03 | E.3 | 2 | | | | <2 | <0.30 | 3.0 | 33 | <0.00 | | | | | | | ENCE CO | | | | | | | | FC-38/15E/02-0095 | 05-27-03 | 3.5 | 2 | 2 | <1 | <1 | <2 | < 0.30 | 23.1 | 40 | < 0.06 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657 | 05-28-03 | 0.6 | 2 | 2 | <1 | <1 | M | < 0.30 | 0.8 | 7 | < 0.06 | | FR-35/14E/02-0658 | 06-11-03 | 0.5 | 2 | 2 | <1 | <1 | E1 | < 0.30 | < 0.3 | 7 | < 0.06 | | FR-37/14E/01-0870 | 05-29-03 | 2.6 | 2 | 2 | <1 | <1 | <2 | < 0.30 | 4.5 | 31 | < 0.06 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | E.2 | 2 | 2 | <1 | <1 | <2 | < 0.30 | 0.9 | 159 | < 0.06 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | 0.8 | 2 | 2 | <1 | <1 | <2 | < 0.30 | E.2 | 7 | < 0.06 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42NI 22NI 25 ADD 01 | 06 24 02 | 0.6 | 2 | | | | E1 | -0.20 | Ea | 4 | -0.06 | | 42N 33W 35ABB 01
42N 31W 08BCD 01 | 06-24-03
06-24-03 | 0.6
0.6 | 2
2 | 2 2 | <1
<1 | <1
<1 | E1
<2 | <0.30
<0.30 | E.2
<0.3 | 4
17 | <0.06
<0.06 | | 46N 32W 09BB 01 | 06-25-03 | 0.3 | $\frac{2}{2}$ | $\frac{2}{2}$ | <1 | <1 | E1 | < 0.30 | 4.1 | 11 | < 0.06 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | 0.8 | 2 | 2 | <1 | <1 | <2 | < 0.30 | E.2 | 23 | < 0.06 | | WIK-20/10E/25-1210 | 00-09-03 | 0.8 | 2 | | | | <2 | <0.30 | E.Z | 23 | <0.00 | | | | | | MARII | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258 | 06-23-03 | 1.1 | 2 | 2 | <1 | <1 | <2 | < 0.30 | 2.7 | 48 | < 0.06 | | MT-35/19E/15-0261 | 07-23-03 | 0.4 | 2 | 2 | <1 | <1 | <2 | < 0.30 | 5.7 | 37 | < 0.06 | | MT-37/20E/08-0259 | 06-23-03 | 0.6 | 2 | 2 | <1 | <1 | E2 | < 0.30 | 15.1 | 3 | < 0.06 | | | | | | MARQ | UETTE CO | DUNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | E.2 | 2 | 2 | <1 | <1 | <2 | < 0.30 | E.2 | 63 | < 0.06 | | | | | | MENO | MINEE CO | UNTY | | | | | | | *ME-28/16E/19-0239 | 06-11-03 | 0.7 | 2 | 2 | <1 | E1 | | | | | | | | | | | осо | NTO COU | NTY | | | | | | | OC-31/18E/26-0235 | 07-23-03 | 1.4 | 2 | 2 | <1 | <1 | <2 | < 0.30 | 1.2 | 39 | < 0.06 | | OC-33/15E/34-0234 | 08-03-03 | 0.6 | $\frac{2}{2}$ | $\frac{2}{2}$ | <1 | <1 | <2 | < 0.30 | 1.1 | 16 | < 0.06 | | | | | | | | | | | | | | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Boron,
water,
fltrd,
ug/L
(01020) | Cadmium
water,
fltrd,
ug/L
(01025) | Chromium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | Hydro-
gen
sulfide
water
unfltrd
mg/L
(71875) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Lithium
water,
fltrd,
ug/L
(01130) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | |---|----------------------------------|---|--|--|---|--|---|--|--|--|--| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | 10 | < 0.04 | < 0.8 | 0.210 | 1.1 | ND | 29 | < 0.08 | 2.0 | 25.0 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | 12 | < 0.04 | < 0.8 | 0.095 | < 0.2 | M.0 | 983 | 0.09 | 4.6 | 382 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | E5
13
14 | <0.04
<0.04
<0.04 | 1.2
1.2
<0.8 | 0.100
0.082
0.084 | 2.0
15.4
<0.2 | ND
ND
M.0 | <8
39
2,370 | 0.08
<0.08
<0.08 | 1.3
1.2
2.5 | E.1
8.8
373 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | 17 | < 0.04 | < 0.8 | 0.438 | E.2 | M.0 | 1,950 | < 0.08 | 2.0 | 77.2 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | 9 | < 0.04 | < 0.8 | 0.075 | 2.7 | ND | E8 | 0.14 | 1.1 | 0.6 | | | | | | IRON CO | UNTY, M | ICHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | 9
28
8 | <0.04
<0.04
<0.04 | 1.0
E.4
<0.8 | 0.067
0.045
0.073 | 5.5
E.1
0.4 | ND
ND
ND | <8
263
156 | 1.18
E.07
<0.08 | 0.9
2.9
3.2 | 1.7
24.3
10.7 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | 18 | < 0.04 | E.4 | 0.136 | 14.7 | ND | 16 | 0.28 | 2.5 | 3.0 | | | | | | MARIN | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | 22
11
E5 | <0.04
<0.04
<0.04 | <0.8
<0.8
E.6 | 0.533
0.053
0.074 | 0.5
<0.2
0.8 | ND
ND
ND | 84
97
<8 | E.06
<0.08
E.05 | 5.4
1.9
0.9 | 11.9
27.5
<0.2 | | | | | | MARQ | UETTE CO | DUNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | E7 | < 0.04 | 1.2 | 0.086 | 14.7 | ND | <10 | < 0.08 | 1.2 | 4.8 | | | | | | MENO | MINEE CO | DUNTY | | | | | | | *ME-28/16E/19-0239 | 06-11-03 | | | | | | ND | | | | | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | 12
19 | <0.04
<0.04 | <0.8
1.1 | 0.216
0.101 | E.2
7.2 | M.0
ND | 967
<8 | <0.08
0.17 | 2.5
1.9 | 27.3
2.2 | | | | | | -, | | | | | | 2 (D: | | |---|----------------------------------|--|--|--|--|--|---|--|--|---|--| | Local
identifier | Date | Molybdenum,
water,
fltrd,
ug/L
(01060) | Nickel,
water,
fltrd,
ug/L
(01065) | Selenium,
water,
fltrd,
ug/L
(01145) | Silver,
water,
fltrd,
ug/L
(01075) | Stront-
ium,
water,
fltrd,
ug/L
(01080) | Thall-
ium,
water,
fltrd,
ug/L
(01057) | Vanadium,
water,
fltrd,
ug/L
(01085) | Zinc,
water,
fltrd,
ug/L
(01090) | 2,6-Diethylaniline water fltrd 0.7u GF ug/L (82660) | CIAT,
water,
fltrd,
ug/L
(04040) | | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | 0.6 | 1.78 | < 0.5 | < 0.2 | 66.9 | < 0.04 | 0.3 | 3 | < 0.006 | E.059 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | 1.3 | 1.52 | < 0.5 | < 0.2 | 61.8 | < 0.04 | 2.2 | 10 | < 0.006 | < 0.006 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.3
<0.3
E.3 |
1.61
0.81
1.09 | <0.5
<0.5
<0.5 | <0.2
<0.2
<0.2 | 42.2
32.9
42.6 | <0.04
<0.04
<0.04 | 3.8
0.4
1.9 | 1
9
4 | <0.006
<0.006
<0.006 | E.003
<0.006
<0.006 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | 0.3 | 2.58 | < 0.5 | E.2 | 650 | < 0.04 | 0.2 | <1 | < 0.006 | < 0.006 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.3 | 1.09 | < 0.5 | < 0.2 | 40.2 | < 0.04 | 2.8 | 24 | < 0.006 | E.004 | | | | | | IRON CO | UNTY, M | ICHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.3
1.3
1.2 | 1.05
0.82
1.27 | <0.5
<0.5
<0.5 | <0.2
<0.2
<0.2 | 28.9
127
37.4 | <0.04
<0.04
<0.04 | 1.3
0.4
0.4 | 2
5
2 | <0.006
<0.006
<0.006 | <0.006
<0.006
<0.006 | | | | | | MARA | THON CC | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | 0.8 | 2.11 | < 0.5 | < 0.2 | 71.1 | < 0.04 | 0.9 | 3 | < 0.006 | E.035 | | | | | | MARII | NETTE CC | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | 0.5
0.7
<0.3 | 1.10
0.71
1.05 | <0.5
<0.5
E.3 | <0.2
<0.2
<0.2 | 197
62.7
22.9 | <0.04
<0.04
<0.04 | 3.1
0.5
3.7 | 3
<1
6 | <0.006
<0.006
<0.006 | <0.006
<0.006
<0.006 | | | | | | MARQ | UETTE CO | DUNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | 0.4 | 1.62 | E.3 | < 0.2 | 37.4 | < 0.04 | 0.6 | 7 | < 0.006 | < 0.006 | | | | | | MENO | MINEE CO | DUNTY | | | | | | | *ME-28/16E/19-0239 | 06-11-03 | | | | | | | | | < 0.006 | < 0.006 | | | | | | осо | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | 0.4
0.6 | 2.10
1.28 | <0.5
<0.5 | <0.2
<0.2 | 72.8
26.6 | <0.04
<0.04 | 0.8
2.3 | 2
4 | <0.006
<0.006 | <0.006
<0.006 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Aceto-
chlor,
water,
fltrd,
ug/L
(49260) | Ala-
chlor,
water,
fltrd,
ug/L
(46342) | alpha-
HCH,
water,
fltrd,
ug/L
(34253) | alpha-
HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | Atra-
zine,
water,
fltrd,
ug/L
(39632) | Azin-
phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | Ben-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673) | Butylate,
water,
fltrd,
ug/L
(04028) | Carbaryl,
water,
fltrd
0.7u GF
ug/L
(82680) | Carbo-
furan,
water,
fltrd
0.7u GF
ug/L
(82674) | |---|----------------------------------|---|---|---|---|---|--|---|--|--|---| | CO-12/09E/11-0740 | 05-20-03 | < 0.006 | < 0.004 | < 0.005 | 95.4 | E.004 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.006 | < 0.004 | < 0.005 | 91.4 | < 0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.006
<0.006
<0.006 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 88.4
86.9
86.4 | <0.007
<0.007
<0.007 | <0.050
<0.050
<0.050 | <0.010
<0.010
<0.010 | <0.002
<0.002
<0.002 | <0.041
<0.041
<0.041 | <0.020
<0.020
<0.020 | | | | | | GREEN | I LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.006 | < 0.004 | < 0.005 | 91.9 | < 0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.006 | < 0.004 | < 0.005 | 90.5 | < 0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | IRON CO | UNTY, M | ICHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.006
<0.006
<0.006 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 94.5
89.9
85.2 | <0.007
<0.007
<0.007 | <0.050
<0.050
<0.050 | <0.010
<0.010
<0.010 | <0.002
<0.002
<0.002 | <0.041
<0.041
<0.041 | <0.020
<0.020
<0.020 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.006 | < 0.004 | < 0.005 | 104 | 0.040 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | MARII | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.006
<0.006
<0.006 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 90.1
96.2
82.5 | <0.007
<0.007
<0.007 | <0.050
<0.050
<0.050 | <0.010
<0.010
<0.010 | <0.002
<0.002
<0.002 | <0.041
<0.041
<0.041 | <0.020
<0.020
<0.020 | | | | | | MARQ | UETTE CO | DUNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.006 | < 0.004 | < 0.005 | 96.2 | < 0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.006 | < 0.004 | < 0.005 | 88.8 | < 0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.006
<0.006 | <0.004
<0.004 | <0.005
<0.005 | 100
104 | <0.007
E.003 | <0.050
<0.050 | <0.010
<0.010 | <0.002
<0.002 | <0.041
<0.041 | <0.020
<0.020 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Chlor-
pyrifos
water,
fltrd,
ug/L
(38933) | cis-
Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | Cyana-
zine,
water,
fltrd,
ug/L
(04041) | DCPA,
water
fltrd
0.7u GF
ug/L
(82682) | Desulf-
inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | Diazi-
non,
water,
fltrd,
ug/L
(39572) | Diazi-
non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | Dieldrin,
water,
fltrd,
ug/L
(39381) | Disulfoton,
water,
fltrd
0.7u GF
ug/L
(82677) | EPTC,
water,
fltrd
0.7u GF
ug/L
(82668) | |---|----------------------------------|--|---|--|---|--|---|---|--|--|--| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 102 | < 0.005 | < 0.02 | < 0.002 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 111 | < 0.005 | < 0.02 | < 0.002 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.005
<0.005
<0.005 | <0.006
<0.006
<0.006 | <0.018
<0.018
<0.018 | <0.003
<0.003
<0.003 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 95.3
101
106 | <0.005
<0.005
<0.005 | <0.02
<0.02
<0.02 | <0.002
<0.002
<0.002 | | | | | | GREEN | I LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 102 | < 0.005 | < 0.02 | < 0.002 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 98.1 | < 0.005 | < 0.02 | < 0.002 | | | | | | IRON CC | UNTY, M | ICHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.005
<0.005
<0.005 | <0.006
<0.006
<0.006 | <0.018
<0.018
<0.018 | <0.003
<0.003
<0.003 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 94.5
92.8
90.3 | <0.005
<0.005
<0.005 | <0.02
<0.02
<0.02 | <0.002
<0.002
<0.002 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 118 | < 0.005 | < 0.02 | < 0.002 | | | | | | MARI | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.005
<0.005
<0.005 | <0.006
<0.006
<0.006 | <0.018
<0.018
<0.018 | <0.003
<0.003
<0.003 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 120
105
119 | <0.005
<0.005
<0.005 | <0.02
<0.02
<0.02 | <0.002
<0.002
<0.002 | | | | | | MARQ | UETTE CO | DUNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 105 | < 0.005 | < 0.02 | < 0.002 | | | | | | MENO | MINEE CO | DUNTY | | | | | | | ME-28/16E/19-0239 |
06-11-03 | < 0.005 | < 0.006 | < 0.018 | < 0.003 | < 0.004 | < 0.005 | 101 | < 0.005 | < 0.02 | < 0.002 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.005
<0.005 | <0.006
<0.006 | <0.018
<0.018 | <0.003
<0.003 | <0.004
<0.004 | <0.005
<0.005 | 112
119 | <0.005
<0.005 | <0.02
<0.02 | <0.002
<0.002 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Ethal-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82663) | Etho-
prop,
water,
fltrd
0.7u GF
ug/L
(82672) | Desulf-
inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | Fipronil sulfide water, fltrd, ug/L (62167) | Fipronil sulfone water, fltrd, ug/L (62168) | Fipronil, water, fltrd, ug/L (62166) | Fonofos
water,
fltrd,
ug/L
(04095) | Lindane
water,
fltrd,
ug/L
(39341) | Linuron
water
fltrd
0.7u GF
ug/L
(82666) | Mala-
thion,
water,
fltrd,
ug/L
(39532) | |---|----------------------------------|---|---|---|---|---|--------------------------------------|--|--|---|--| | CO-12/09E/11-0740 | 05-20-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | FLOR | ENCE CO | JNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.009
<0.009
<0.009 | <0.005
<0.005
<0.005 | <0.009
<0.009
<0.009 | <0.005
<0.005
<0.005 | <0.005
<0.005
<0.005 | <0.007
<0.007
<0.007 | <0.003
<0.003
<0.003 | <0.004
<0.004
<0.004 | <0.035
<0.035
<0.035 | <0.027
<0.027
<0.027 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | | LADE CO | | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.009 | < 0.005 | <0.009 | <0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | | UNTY, MI | | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.009
<0.009
<0.009 | <0.005
<0.005
<0.005 | <0.009
<0.009
<0.009 | <0.005
<0.005
<0.005 | <0.005
<0.005
<0.005 | <0.007
<0.007
<0.007 | <0.003
<0.003
<0.003 | <0.004
<0.004
<0.004 | <0.035
<0.035
<0.035 | <0.027
<0.027
<0.027 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | MARIN | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.009
<0.009
<0.009 | <0.005
<0.005
<0.005 | <0.009
<0.009
<0.009 | <0.005
<0.005
<0.005 | <0.005
<0.005
<0.005 | <0.007
<0.007
<0.007 | <0.003
<0.003
<0.003 | <0.004
<0.004
<0.004 | <0.035
<0.035
<0.035 | <0.027
<0.027
<0.027 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.009
<0.009 | <0.005
<0.005 | <0.009
<0.009 | <0.005
<0.005 | <0.005
<0.005 | <0.007
<0.007 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Methyl
para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667) | Metola-
chlor,
water,
fltrd,
ug/L
(39415) | Metri-
buzin,
water,
fltrd,
ug/L
(82630) | Molinate,
water,
fltrd
0.7u GF
ug/L
(82671) | Napropamide,
water,
fltrd
0.7u GF
ug/L
(82684) | p,p-'
DDE,
water,
fltrd,
ug/L
(34653) | Parathion,
water,
fltrd,
ug/L
(39542) | Peb-
ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | Pendimethalin, water, fltrd 0.7u GF ug/L (82683) | Phorate
water
fltrd
0.7u GF
ug/L
(82664) | |---|----------------------------------|--|--|---|--|---|--|---|---|--|---| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.006
<0.006
<0.006 | <0.013
<0.013
<0.013 | <0.006
<0.006
<0.006 | <0.002
<0.002
<0.002 | <0.007
<0.007
<0.007 | <0.003
<0.003
<0.003 | <0.010
<0.010
<0.010 | <0.004
<0.004
<0.004 | <0.022
<0.022
<0.022 | <0.011
<0.011
<0.011 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.006
<0.006
<0.006 | <0.013
<0.013
<0.013 | <0.006
<0.006
<0.006 | <0.002
<0.002
<0.002 | <0.007
<0.007
<0.007 | <0.003
<0.003
<0.003 | <0.010
<0.010
<0.010 | <0.004
<0.004
<0.004 | <0.022
<0.022
<0.022 | <0.011
<0.011
<0.011 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.006 | E.004 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | | | | | | MARII | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.006
<0.006
<0.006 | <0.013
<0.013
<0.013 | <0.006
<0.006
<0.006 | <0.002
<0.002
<0.002 | <0.007
<0.007
<0.007 | <0.003
<0.003
<0.003 | <0.010
<0.010
<0.010 | <0.004
<0.004
<0.004 | <0.022
<0.022
<0.022 | <0.011
<0.011
<0.011 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.006 | < 0.013 | < 0.006 | < 0.002 | < 0.007 | < 0.003 | < 0.010 | < 0.004 | < 0.022 | < 0.011 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.006
<0.006 | <0.013
<0.013 | <0.006
<0.006 | <0.002
<0.002 | <0.007
<0.007 | <0.003
<0.003 | <0.010
<0.010 | <0.004
<0.004 | <0.022
<0.022 | <0.011
<0.011 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Prometon,
water,
fltrd,
ug/L
(04037) | Pron-
amide,
water,
fltrd
0.7u GF
ug/L
(82676) | Propachlor, water, fltrd, ug/L (04024) | Propanil, water, fltrd 0.7u GF ug/L (82679) | Propargite,
water,
fltrd
0.7u GF
ug/L
(82685) | Sima-
zine,
water,
fltrd,
ug/L
(04035) | Tebu-
thiuron
water
fltrd
0.7u GF
ug/L
(82670) | Terbacil,
water,
fltrd
0.7u GF
ug/L
(82665) | Terbu-
fos,
water,
fltrd
0.7u GF
ug/L
(82675) | Thiobencarb
water
fltrd
0.7u GF
ug/L
(82681) | |---|----------------------------------|--|--|--|---|--|---|--|--
---|---| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | FOR | REST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.01
<0.01
<0.01 | <0.004
<0.004
<0.004 | <0.010
<0.010
<0.010 | <0.011
<0.011
<0.011 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | <0.02
<0.02
<0.02 | <0.034
<0.034
<0.034 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | | | | | | GREEN | N LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | LANC | GLADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | IRON CC | OUNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.01
<0.01
<0.01 | <0.004
<0.004
<0.004 | <0.010
<0.010
<0.010 | <0.011
<0.011
<0.011 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | <0.02
<0.02
<0.02 | <0.034
<0.034
<0.034 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | | | | | | MARA | ATHON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | MARI | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.01
<0.01
<0.01 | <0.004
<0.004
<0.004 | <0.010
<0.010
<0.010 | <0.011
<0.011
<0.011 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | <0.02
<0.02
<0.02 | <0.034
<0.034
<0.034 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | | NTO COU | | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.01
<0.01 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | <0.005
<0.005 | <0.02
<0.02 | <0.034
<0.034 | <0.02
<0.02 | <0.005
<0.005 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | William Control of the th | | | | | | | | | | | | | |--|----------------------------------|--|--|--|--|--|--|--|--|---|--|--| | Local
identifier | Date | Tri-
allate,
water,
fltrd
0.7u GF
ug/L
(82678) | Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661) | 1,1,1,2
-Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(77562) | 1,1,1-
Tri-
chloro-
ethane,
water,
unfltrd
ug/L
(34506) | 1,1,2,2
-Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(34516) | CFC-113
water
unfltrd
ug/L
(77652) | 1,1,2-
Tri-
chloro-
ethane,
water,
unfltrd
ug/L
(34511) | 1,1-Di-
chloro-
ethane,
water
unfltrd
ug/L
(34496) | 1,1-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34501) | 1,1-Di-
chloro-
propene
water
unfltrd
ug/L
(77168) | | | | | | | COLU | MBIA CO | UNTY | | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.002 | < 0.009 | < 0.03 | < 0.03 | < 0.09 | < 0.06 | < 0.06 | < 0.04 | < 0.04 | < 0.05 | | | | | | | FLOR | ENCE CO | JNTY | | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.002 | < 0.009 | < 0.03 | < 0.03 | < 0.09 | < 0.06 | < 0.06 | < 0.04 | < 0.04 | < 0.05 | | | | | | | FOR | EST COU | NTY | | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.002
<0.002
<0.002 | <0.009
<0.009
<0.009 | <0.03
<0.03
<0.03 | E.02
<0.03
<0.03 | <0.09
<0.09
<0.09 | <0.06
<0.06
<0.06 | <0.06
<0.06
<0.06 | <0.04
<0.04
<0.04 | <0.04
<0.04
<0.04 | <0.05
<0.05
<0.05 | | | | | | | GREEN | LAKE CO | UNTY | | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.002 | < 0.009 | < 0.03 | < 0.03 | < 0.09 | < 0.06 | < 0.06 | < 0.04 | < 0.04 | < 0.05 | | | | | | | LANG | LADE CO | UNTY | | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.002 | < 0.009 | < 0.03 | < 0.03 | < 0.09 | < 0.06 | < 0.06 | < 0.04 | < 0.04 | < 0.05 | | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.002
<0.002
<0.002 | <0.009
<0.009
<0.009 | <0.03
<0.03
<0.03 | <0.03
<0.03
<0.03
ATHON CO | <0.09
<0.09
<0.09 | <0.06
<0.06
<0.06 | <0.06
<0.06
<0.06 | <0.04
<0.04
<0.04 | <0.04
<0.04
<0.04 | <0.05
<0.05
<0.05 | | | MR-26/10E/23-1216 | 06-09-03 | < 0.002 | < 0.009 | <0.03 | <0.03 | <0.09 | < 0.06 | < 0.06 | < 0.04 | < 0.04 | < 0.05 | | | WIK-20/10E/23-1210 | 00-09-03 | <0.002 | <0.009 | | NETTE CO | | <0.00 | <0.00 | <0.04 | <0.04 | <0.03 | | | MT 22/21E/20 0259 | 06 22 02 | -0.002 | -0.000 | | <0.03 | <0.09 | -0.06 | -0.06 | -0.04 | -0.04 | -0.05 | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.002
<0.002
<0.002 | <0.009
<0.009
<0.009 | <0.03
<0.03
<0.03 | <0.03
<0.03
<0.03 | <0.09
<0.09
<0.09 | <0.06
<0.06
<0.06 | <0.06
<0.06
<0.06 | <0.04
<0.04
<0.04 | <0.04
<0.04
<0.04 | <0.05
<0.05
<0.05 | | | | | | | MARQ | UETTE CO | UNTY | | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.002 | < 0.009 | < 0.03 | < 0.03 | < 0.09 | < 0.06 | < 0.06 | < 0.04 | < 0.04 | < 0.05 | | | | | | | MENO | MINEE CC | UNTY | | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.002 | < 0.009 | < 0.03 | < 0.03 | < 0.09 | < 0.06 | < 0.06 | < 0.04 | < 0.04 | < 0.05 | | | | | | | oco | NTO COU | NTY | | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.002
<0.002 | <0.009
<0.009 | <0.03
<0.03 | <0.03
<0.03 | <0.09
<0.09 | <0.06
<0.06 | <0.06
<0.06 | <0.04
<0.04 | <0.04
<0.04 | <0.05
<0.05 | | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | ***** | | 211 1 27117 | .,IIDI | 12.1100 | . CELIC E | 02 10 DEI | LLIDLK | _000 | | | |---|----------------------------------|--|--|---|---
---|---|---|--|--|--| | Local
identifier | Date | 1,2,3,4
Tetra-
methyl-
benzene
water
unfltrd
ug/L
(49999) | 1,2,3,5
Tetra-
methyl-
benzene
water
unfltrd
ug/L
(50000) | 1,2,3-
Tri-
chloro-
benzene
water
unfltrd
ug/L
(77613) | 1,2,3-
Tri-
chloro-
propane
water
unfltrd
ug/L
(77443) | 1,2,3-
Tri-
methyl-
benzene
water
unfltrd
ug/L
(77221) | 1,2,4-
Tri-
chloro-
benzene
water
unfltrd
ug/L
(34551) | 1,2,4-
Tri-
methyl-
benzene
water
unfltrd
ug/L
(77222) | Dibromo
chloro-
propane
water
unfltrd
ug/L
(82625) | 1,2-Di-
bromo-
ethane,
water,
unfltrd
ug/L
(77651) | 1,2-Di-
chloro-
benzene
water
unfltrd
ug/L
(34536) | | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.2
<0.2
<0.2 | <0.2
<0.2
<0.2 | <0.3
<0.3
<0.3 | <0.16
<0.16
<0.16 | <0.1
<0.1
<0.1 | <0.1
<0.1
<0.1 | <0.06
<0.06
<0.06 | <0.5
<0.5
<0.5 | <0.04
<0.04
<0.04 | <0.03
<0.03
<0.03 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | IRON CO | UNTY, M | ICHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | | <0.2
<0.2
<0.2 | <0.2
<0.2
<0.2 | <0.3
<0.3
<0.3 | <0.16
<0.16
<0.16
ATHON CO | <0.1
<0.1
<0.1 | <0.1
<0.1
<0.1 | E.05
<0.06
<0.06 | <0.5
<0.5
<0.5 | <0.04
<0.04
<0.04 | <0.03
<0.03
<0.03 | | MD 26/10E/22 1216 | 06 00 02 | -0.2 | -0.2 | | | | -0.1 | 40.0¢ | -0.5 | -0.04 | -0.02 | | MR-26/10E/23-1216 | 06-09-03 | < 0.2 | < 0.2 | <0.3 | <0.16
NETTE CO | <0.1 | <0.1 | < 0.06 | <0.5 | < 0.04 | < 0.03 | | MT 22/21E/20 0250 | 06 22 02 | .0.2 | .0.2 | | | | .0.1 | E 06 | .0.5 | .0.04 | .0.02 | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.2
<0.2
<0.2 | <0.2
<0.2
<0.2 | <0.3
<0.3
<0.3 | <0.16
<0.16
<0.16 | <0.1
<0.1
<0.1 | <0.1
<0.1
<0.1 | E.06
<0.06
<0.06 | <0.5
<0.5
<0.5 | <0.04
<0.04
<0.04 | <0.03
<0.03
<0.03 | | | | | | MARQ | UETTE CO | DUNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | MENO | MINEE CO | OUNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.2
<0.2 | <0.2
<0.2 | <0.3
<0.3 | <0.16
<0.16 | <0.1
<0.1 | <0.1
<0.1 | <0.06
E.09 | <0.5
<0.5 | <0.04
<0.04 | <0.03
<0.03 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | 1,2-Di-
chloro-
ethane,
water,
unfltrd
ug/L
(32103) | 1,2-Di-
chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832) | 1,2-Di-
chloro-
propane
water
unfltrd
ug/L
(34541) | 1,3,5-
Tri-
methyl-
benzene
water
unfltrd
ug/L
(77226) | 1,3-Di-
chloro-
benzene
water
unfltrd
ug/L
(34566) | 1,3-Di-
chloro-
propane
water
unfltrd
ug/L
(77173) | 1,4-Di-
chloro-
benzene
water
unfltrd
ug/L
(34571) | 14Bromo
fluoro-
benzene
surrog.
VOC Sch
wat unf
pct rcv
(99834) | 2,2-Di-
chloro-
propane
water
unfltrd
ug/L
(77170) | 2-
Chloro-
toluene
water
unfltrd
ug/L
(77275) | |---|----------------------------------|---|--|--|---|--|--|--|--|--|---| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.1 | 101 | < 0.03 | < 0.04 | < 0.03 | < 0.1 | < 0.05 | 86.4 | < 0.05 | < 0.04 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.1 | 103 | < 0.03 | < 0.04 | < 0.03 | < 0.1 | < 0.05 | 82.7 | < 0.05 | < 0.04 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.1
<0.1
<0.1 | 103
111
102 | <0.03
<0.03
<0.03 | <0.04
<0.04
<0.04 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.05
<0.05
<0.05 | 81.6
95.9
77.6 | <0.05
<0.05
<0.05 | <0.04
<0.04
<0.04 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.1 | 109 | < 0.03 | < 0.04 | < 0.03 | < 0.1 | < 0.05 | 81.5 | < 0.05 | < 0.04 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.1 | 106 | < 0.03 | < 0.04 | < 0.03 | < 0.1 | < 0.05 | 81.7 | < 0.05 | < 0.04 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.1
<0.1
<0.1 | 123
126
138 | <0.03
<0.03
<0.03 | <0.04
<0.04
<0.04 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.05
<0.05
<0.05 | 108
108
72.4 | <0.05
<0.05
<0.05 | <0.04
<0.04
<0.04 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.1 | 112 | < 0.03 | < 0.04 | < 0.03 | < 0.1 | < 0.05 | 89.7 | < 0.05 | < 0.04 | | | | | | MARII | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.1
<0.1
<0.1 | 112
114
117 | <0.03
<0.03
<0.03 | <0.04
<0.04
<0.04 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.05
<0.05
<0.05 | 106
76.3
109 | <0.05
<0.05
<0.05 | <0.04
<0.04
<0.04 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.1 | 102 | < 0.03 | < 0.04 | < 0.03 | < 0.1 | < 0.05 | 87.5 | < 0.05 | < 0.04 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.1 | 111 | < 0.03 | < 0.04 | < 0.03 | < 0.1 | < 0.05 | 95.5 | < 0.05 | < 0.04 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.1
<0.1 | 113
106 | <0.03
<0.03 | <0.04
<0.04 | <0.03
<0.03 | <0.1
<0.1 | <0.05
<0.05 | 76.1
83.0 | <0.05
<0.05 | <0.04
<0.04 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | (| | -, | | | | | | | Bromo- | |---|----------------------------------|--|---|---|---|--|---|--|--|---|--| | Local
identifier | Date | 2-
Ethyl-
toluene
water
unfltrd
ug/L
(77220) | 3-
Chloro-
propene
water
unfltrd
ug/L
(78109) | 4-
Chloro-
toluene
water
unfltrd
ug/L
(77277) | 4-Iso-
propyl-
toluene
water
unfltrd
ug/L
(77356) | Acetone
water
unfltrd
ug/L
(81552) | Acrylo-
nitrile
water
unfltrd
ug/L
(34215) | Benzene
water
unfltrd
ug/L
(34030) | Bromo-
benzene
water
unfltrd
ug/L
(81555) | Bromo-
chloro-
methane
water
unfltrd
ug/L
(77297) | di-
chloro-
methane
water
unfltrd
ug/L
(32101) | | | | (77220) | (,010)) | | MBIA CO | | (0.210) | (5.050) | (01000) | (=>.) | (52101) | | CO-12/09E/11-0740 | 05-20-03 | < 0.06 | < 0.12 | < 0.05 | <0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | FLOR | ENCE CO | JNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | FOR | EST COU | NTY | | | | | |
 FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.06
<0.06
<0.06 | <0.12
<0.12
<0.12 | <0.05
<0.05
<0.05 | <0.12
<0.12
<0.12 | <7
<7
<7 | <1
<1
<1 | <0.04
<0.04
<0.04 | <0.04
<0.04
<0.04 | <0.12
<0.12
<0.12 | <0.05
<0.05
<0.05 | | | | | | GREEN | LAKE CO | OUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.06
<0.06
<0.06 | <0.12
<0.12
<0.12 | <0.05
<0.05
<0.05 | <0.12
<0.12
<0.12 | <7
<7
<7 | <1
<1
<1 | <0.04
<0.04
<0.04 | <0.04
<0.04
<0.04 | <0.12
<0.12
<0.12 | <0.05
<0.05
<0.05 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | MARI | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.06
<0.06
<0.06 | <0.12
<0.12
<0.12 | <0.05
<0.05
<0.05 | <0.12
<0.12
<0.12 | <7
<7
<7 | <1
<1
<1 | <0.04
<0.04
<0.04 | <0.04
<0.04
<0.04 | <0.12
<0.12
<0.12 | <0.05
<0.05
<0.05 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | | NTO COU | | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.06
<0.06 | <0.12
<0.12 | <0.05
<0.05 | <0.12
<0.12 | <7
<7 | <1
<1 | <0.04
<0.04 | <0.04
<0.04 | <0.12
<0.12 | <0.05
<0.05 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Bromoethene, water, unfltrd ug/L (50002) | Bromomethane water unfltrd ug/L (34413) | Carbon
di-
sulfide
water
unfltrd
ug/L
(77041) | Chloro-
benzene
water
unfltrd
ug/L
(34301) | Chloro-
ethane,
water,
unfltrd
ug/L
(34311) | Chloro-
methane
water
unfltrd
ug/L
(34418) | cis-
1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093) | cis-
1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34704) | Di-
bromo-
chloro-
methane
water
unfltrd
ug/L
(32105) | Di-
bromo-
methane
water
unfltrd
ug/L
(30217) | |---|----------------------------------|--|---|---|---|--|---|---|--|--|---| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.1 | < 0.3 | < 0.07 | < 0.03 | < 0.1 | < 0.2 | < 0.04 | < 0.09 | < 0.2 | < 0.05 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.1 | < 0.3 | < 0.07 | < 0.03 | < 0.1 | < 0.2 | < 0.04 | < 0.09 | < 0.2 | < 0.05 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.1
<0.1
<0.1 | <0.3
<0.3
<0.3 | <0.07
E.02
E.03 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.2
<0.2
<0.2 | <0.04
<0.04
<0.04 | <0.09
<0.09
<0.09 | <0.2
<0.2
<0.2 | <0.05
<0.05
<0.05 | | | | | | GREEN | I LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.1 | < 0.3 | < 0.07 | < 0.03 | < 0.1 | < 0.2 | < 0.04 | < 0.09 | < 0.2 | < 0.05 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.1 | < 0.3 | < 0.07 | < 0.03 | < 0.1 | < 0.2 | < 0.04 | < 0.09 | < 0.2 | < 0.05 | | | | | | IRON CC | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.1
<0.1
<0.1 | <0.3
<0.3
<0.3 | <0.07
<0.07
<0.07 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.2
<0.2
<0.2 | <0.04
<0.04
<0.04 | <0.09
<0.09
<0.09 | <0.2
<0.2
<0.2 | <0.05
<0.05
<0.05 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.1 | < 0.3 | < 0.07 | < 0.03 | < 0.1 | < 0.2 | < 0.04 | < 0.09 | < 0.2 | < 0.05 | | | | | | MARI | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.1
<0.1
<0.1 | <0.3
<0.3
<0.3 | <0.07
0.16
<0.07 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.2
<0.2
<0.2 | <0.04
<0.04
<0.04 | <0.09
<0.09
<0.09 | <0.2
<0.2
<0.2 | <0.05
<0.05
<0.05 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.1 | < 0.3 | < 0.07 | < 0.03 | < 0.1 | < 0.2 | < 0.04 | < 0.09 | < 0.2 | < 0.05 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.1 | < 0.3 | < 0.07 | < 0.03 | < 0.1 | < 0.2 | < 0.04 | < 0.09 | < 0.2 | < 0.05 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.1
<0.1 | <0.3
<0.3 | <0.07
<0.07 | <0.03
<0.03 | <0.1
<0.1 | <0.2
<0.2 | <0.04
<0.04 | <0.09
<0.09 | <0.2
<0.2 | <0.05
<0.05 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Di-
chloro-
di-
fluoro-
methane
wat unf
ug/L
(34668) | Di-
chloro-
methane
water
unfltrd
ug/L
(34423) | Diethyl ether, water, unfltrd ug/L (81576) | Diiso-
propyl
ether,
water,
unfltrd
ug/L
(81577) | Ethyl
methac-
rylate,
water,
unfltrd
ug/L
(73570) | Ethyl
methyl
ketone,
water,
unfltrd
ug/L
(81595) | Ethylbenzene water unfltrd ug/L (34371) | Hexa-
chloro-
buta-
diene,
water,
unfltrd
ug/L
(39702) | Hexa-
chloro-
ethane,
water,
unfltrd
ug/L
(34396) | Iodo-
methane
water
unfltrd
ug/L
(77424) | |---|----------------------------------|---|--|--|--|---|--|---|---|---|---| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | FLOR | ENCE CO | UNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.18
<0.18
<0.18 | <0.2
<0.2
<0.2 | <0.2
<0.2
<0.2 | <0.10
<0.10
E.04 | <0.2
<0.2
<0.2 | <5.0
<5.0
<5.0 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.2
<0.2
<0.2 | <0.35
<0.35
<0.35 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.18
<0.18
<0.18 | <0.2
<0.2
<0.2 | <0.2
<0.2
<0.2 | <0.10
<0.10
<0.10 | <0.2
<0.2
<0.2 | <5.0
<5.0
<5.0 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.2
<0.2
<0.2 | <0.35
<0.35
<0.35 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | MARIN | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.18
<0.18
<0.18 | <0.2
<0.2
<0.2 | <0.2
<0.2
<0.2 | <0.10
<0.10
<0.10 | <0.2
<0.2
<0.2 | <5.0
<5.0
<5.0 | <0.03
<0.03
<0.03 | <0.1
<0.1
<0.1 | <0.2
<0.2
<0.2 | <0.35
<0.35
<0.35 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | OCO | NTO COU | NTY |
 | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.18
<0.18 | <0.2
<0.2 | <0.2
<0.2 | <0.10
<0.10 | <0.2
<0.2 | <5.0
<5.0 | <0.03
<0.03 | <0.1
<0.1 | <0.2
<0.2 | <0.35
<0.35 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Iso-
butyl
methyl
ketone,
water,
unfltrd
ug/L
(78133) | Iso-
propyl-
benzene
water
unfltrd
ug/L
(77223) | Methyl
acrylo-
nitrile
water
unfltrd
ug/L
(81593) | Methyl
acryl-
ate,
water,
unfltrd
ug/L
(49991) | Methyl
methac-
rylate,
water,
unfltrd
ug/L
(81597) | Methyl
tert-
pentyl
ether,
water,
unfltrd
ug/L
(50005) | meta-
+ para-
Xylene,
water,
unfltrd
ug/L
(85795) | Naphthalene,
water,
unfltrd
ug/L
(34696) | Methyl
n-butyl
ketone,
water,
unfltrd
ug/L
(77103) | n-Butyl
benzene
water
unfltrd
ug/L
(77342) | |---|----------------------------------|--|---|---|--|--|---|---|--|--|---| | CO 10/00E/11 07/0 | 05 20 02 | .0.4 | .0.06 | | | | -0.00 | .0.06 | .0.5 | .0.7 | .0.2 | | CO-12/09E/11-0740 | 05-20-03 | < 0.4 | < 0.06 | <0.6 | <2.0 | <0.3 | <0.08 | < 0.06 | <0.5 | <0.7 | < 0.2 | | | | | | | ENCE CO | | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.4 | < 0.06 | < 0.6 | <2.0 | < 0.3 | < 0.08 | < 0.06 | < 0.5 | < 0.7 | < 0.2 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.4
<0.4
<0.4 | <0.06
<0.06
<0.06 | <0.6
<0.6
<0.6 | <2.0
<2.0
<2.0 | <0.3
<0.3
<0.3 | <0.08
<0.08
<0.08 | <0.06
<0.06
<0.06 | <0.5
<0.5
<0.5 | <0.7
<0.7
<0.7 | <0.2
<0.2
<0.2 | | | | | | GREEN | LAKE CO | DUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.4 | < 0.06 | < 0.6 | <2.0 | < 0.3 | < 0.08 | < 0.06 | < 0.5 | < 0.7 | < 0.2 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.4 | < 0.06 | < 0.6 | <2.0 | < 0.3 | < 0.08 | < 0.06 | < 0.5 | < 0.7 | < 0.2 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.4
<0.4
<0.4 | <0.06
<0.06
<0.06 | <0.6
<0.6
<0.6
MARA | <2.0
<2.0
<2.0
THON CO | <0.3
<0.3
<0.3
UNTY | <0.08
<0.08
<0.08 | <0.06
<0.06
<0.06 | <0.5
<0.5
<0.5 | <0.7
<0.7
<0.7 | <0.2
<0.2
<0.2 | | MR-26/10E/23-1216 | 06-09-03 | < 0.4 | < 0.06 | < 0.6 | <2.0 | < 0.3 | < 0.08 | < 0.06 | < 0.5 | < 0.7 | < 0.2 | | | | | | MARIN | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.4
<0.4
<0.4 | <0.06
<0.06
<0.06 | <0.6
<0.6
<0.6 | <2.0
<2.0
<2.0 | <0.3
<0.3
<0.3 | <0.08
<0.08
<0.08 | <0.06
<0.06
<0.06 | <0.5
<0.5
<0.5 | <0.7
<0.7
<0.7 | <0.2
<0.2
<0.2 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.4 | < 0.06 | < 0.6 | <2.0 | < 0.3 | < 0.08 | < 0.06 | < 0.5 | < 0.7 | < 0.2 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.4 | < 0.06 | < 0.6 | <2.0 | < 0.3 | < 0.08 | < 0.06 | < 0.5 | < 0.7 | < 0.2 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.4
<0.4 | <0.06
<0.06 | <0.6
<0.6 | <2.0
<2.0 | <0.3
<0.3 | <0.08
<0.08 | <0.06
<0.06 | <0.5
<0.5 | <0.7
<0.7 | <0.2
<0.2 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | n-
propyl-
benzene
water
unfltrd
ug/L
(77224) | o-
Xylene,
water,
unfltrd
ug/L
(77135) | sec-
Butyl-
benzene
water
unfltrd
ug/L
(77350) | Styrene
water
unfltrd
ug/L
(77128) | t-Butyl
ethyl
ether,
water,
unfltrd
ug/L
(50004) | Methyl
t-butyl
ether,
water,
unfltrd
ug/L
(78032) | tert-
Butyl-
benzene
water
unfltrd
ug/L
(77353) | Tetra-
chloro-
ethene,
water,
unfltrd
ug/L
(34475) | Tetra-
chloro-
methane
water
unfltrd
ug/L
(32102) | Tetra-
hydro-
furan,
water,
unfltrd
ug/L
(81607) | |---|----------------------------------|---|---|--|--|--|---|---|--|---|--| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | FLOR | ENCE CO | JNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.04
<0.04
<0.04 | <0.07
<0.07
<0.07 | <0.06
<0.06
<0.06 | <0.04
<0.04
<0.04 | <0.05
<0.05
<0.05 | E.1
<0.2
<0.2 | <0.10
<0.10
<0.10 | <0.03
E.01
<0.03 | <0.06
<0.06
<0.06 | <2
<2
<2 | | | | | | GREEN | LAKE CO | OUNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.04
<0.04
<0.04 | <0.07
<0.07
<0.07 | <0.06
<0.06
<0.06 | <0.04
<0.04
<0.04 | <0.05
<0.05
<0.05 | <0.2
<0.2
<0.2 | <0.10
<0.10
<0.10 | <0.03
<0.03
<0.03 | <0.06
<0.06
<0.06 | <2
<2
<2 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | MARIN | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | <0.04
<0.04
<0.04 | <0.07
<0.07
<0.07 | <0.06
<0.06
<0.06 | <0.04
<0.04
<0.04 | <0.05
<0.05
<0.05 | <0.2
<0.2
<0.2 | <0.10
<0.10
<0.10 | <0.03
<0.03
<0.03 | <0.06
<0.06
<0.06 | <2
<2
<2 | | | | | | MARQ | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | MENO | MINEE CO | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.04
<0.04 | <0.07
<0.07 | <0.06
<0.06 | <0.04
<0.04 | <0.05
<0.05 | <0.2
<0.2 | <0.10
<0.10 | <0.03
<0.03 | <0.06
<0.06 | <2
<2 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Toluene
water
unfltrd
ug/L
(34010) | Toluene
-d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833) | trans-
1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546) | trans-
1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34699) | trans-
1,4-Di-
chloro-
2-
butene,
wat unf
ug/L
(73547) | Tri-
bromo-
methane
water
unfltrd
ug/L
(32104) | Tri-
chloro-
ethene,
water,
unfltrd
ug/L
(39180) | Tri-
chloro-
fluoro-
methane
water
unfltrd
ug/L
(34488) | Tri-
chloro-
methane
water
unfltrd
ug/L
(32106) | Vinyl
chlor-
ide,
water,
unfltrd
ug/L
(39175) | |---|----------------------------------|--|---|---|--|---|--|--|--|---
---| | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | < 0.05 | 97.3 | < 0.03 | < 0.09 | < 0.7 | < 0.10 | < 0.04 | < 0.09 | < 0.02 | < 0.1 | | | | | | FLOR | ENCE COU | JNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | < 0.05 | 95.1 | < 0.03 | < 0.09 | < 0.7 | < 0.10 | < 0.04 | < 0.09 | < 0.02 | < 0.1 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | <0.05
<0.05
<0.05 | 94.5
96.2
90.5 | <0.03
<0.03
<0.03 | <0.09
<0.09
<0.09 | <0.7
<0.7
<0.7 | <0.10
<0.10
<0.10 | <0.04
<0.04
<0.04 | <0.09
<0.09
<0.09 | <0.02
<0.02
<0.02 | <0.1
<0.1
<0.1 | | | | | | GREEN | LAKE CO | UNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | < 0.05 | 93.2 | < 0.03 | < 0.09 | < 0.7 | < 0.10 | < 0.04 | < 0.09 | < 0.02 | < 0.1 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | < 0.05 | 93.7 | < 0.03 | < 0.09 | < 0.7 | < 0.10 | < 0.04 | < 0.09 | < 0.02 | < 0.1 | | | | | | IRON CO | UNTY, MI | CHIGAN | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | <0.05
<0.05
<0.05 | 102
102
98.7 | <0.03
<0.03
<0.03 | <0.09
<0.09
<0.09 | <0.7
<0.7
<0.7 | <0.10
<0.10
<0.10 | <0.04
<0.04
<0.04 | <0.09
<0.09
E.09 | <0.02
<0.02
<0.02 | <0.1
<0.1
<0.1 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | < 0.05 | 98.5 | < 0.03 | < 0.09 | < 0.7 | < 0.10 | < 0.04 | < 0.09 | < 0.02 | < 0.1 | | | | | | MARII | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | E.01
<0.05
<0.05 | 99.4
97.9
101 | <0.03
<0.03
<0.03 | <0.09
<0.09
<0.09 | <0.7
<0.7
<0.7 | <0.10
<0.10
<0.10 | <0.04
<0.04
<0.04 | <0.09
<0.09
<0.09 | <0.02
<0.02
<0.02 | <0.1
<0.1
<0.1 | | | | | | MARQ | UETTE CC | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | < 0.05 | 96.9 | < 0.03 | < 0.09 | < 0.7 | < 0.10 | < 0.04 | < 0.09 | < 0.02 | < 0.1 | | | | | | MENO | MINEE CC | UNTY | | | | | | | ME-28/16E/19-0239 | 06-11-03 | < 0.05 | 97.6 | < 0.03 | < 0.09 | < 0.7 | < 0.10 | < 0.04 | < 0.09 | < 0.02 | < 0.1 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | <0.05
<0.05 | 98.0
98.9 | <0.03
<0.03 | <0.09
<0.09 | <0.7
<0.7 | <0.10
<0.10 | <0.04
<0.04 | <0.09
<0.09 | <0.02
<0.02 | <0.1
<0.1 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | • | | * | | | | | | | | |---|----------------------------------|--|---|---|--|--|---|---|---|--| | Local
identifier | Date | Ra-226,
water,
fltrd,
radon
method
pCi/L
(09511) | Ra-228,
water,
fltrd,
pCi/L
(81366) | Rn-222
2-sigma
water
unfltrd
pCi/L
(76002) | Rn-222,
water,
unfltrd
pCi/L
(82303) | Tritium
2-sigma
water
unfltrd
pCi/L
(75985) | Tritium
water
unfltrd
pCi/L
(07000) | Uranium
natural
water,
fltrd,
ug/L
(22703) | Number
of
TICS
from
VOC
by GCMS
number
(99871) | | | | | | COLU | MBIA CO | UNTY | | | | | | | CO-12/09E/11-0740 | 05-20-03 | 0.03 | M | 22 | 310 | | | 0.06 | 1 | | | | | | FLORI | ENCE CO | JNTY | | | | | | | FC-38/15E/02-0095 | 05-27-03 | 0.19 | M | 35 | 980 | | | 0.05 | 0.0 | | | | | | FOR | EST COU | NTY | | | | | | | FR-35/12E/11-0657
FR-35/14E/02-0658
FR-37/14E/01-0870 | 05-28-03
06-11-03
05-29-03 | 0.02
M
0.08 | M
M
M | 40
19
22 | 1,340
140
170 |

 |

 | 0.50
E.01
E.01 | 0.0
0.0
0.0 | | | | | | GREEN | LAKE CO | UNTY | | | | | | | GL-17/12E/33-0105 | 05-21-03 | 0.26 | M | 21 | 230 | | | 1.11 | 0.0 | | | | | | LANG | LADE CO | UNTY | | | | | | | LA-33/13E/08-1319 | 05-28-03 | M | M | 24 | 260 | 2.6 | 42 | 0.25 | 0.0 | | | | | | IRO | ON COUN | ГΥ | | | | | | | 42N 33W 35ABB 01
42N 31W 08BCD 01
46N 32W 09BB 01 | 06-24-03
06-24-03
06-25-03 | 0.02
0.08
0.10 | 1
1
M | 23
23 | 190
210
280 | 2.6
 |
44
 | 0.12
E.01
0.51 | 0.0
0.0
0.0 | | | | | | MARA | THON CO | UNTY | | | | | | | MR-26/10E/23-1216 | 06-09-03 | 0.03 | M | 33 | 1,120 | 1.9 | 36 | 1.58 | 0.0 | | | | | | MARIN | NETTE CO | UNTY | | | | | | | MT-33/21E/20-0258
MT-35/19E/15-0261
MT-37/20E/08-0259 | 06-23-03
07-23-03
06-23-03 | 0.57
0.10
0.01 | 1
M
1 | 29
20
 | 770
160
420 | 1.0

 | M

 | 1.90
0.06
0.13 | 0.0
0.0
0.0 | | | | | | MARQU | UETTE CO | UNTY | | | | | | | MQ-17/10E/28-0121 | 05-20-03 | 0.04 | M | 19 | 150 | 1.0 | 5 | 0.46 | 0.0 | | | | | | MENO | MINEE CO | UNTY | | | | | | | *ME-28/16E/19-0239 | 06-11-03 | | | 21 | 270 | | | 0.10 | 0.0 | | | | | | OCO | NTO COU | NTY | | | | | | | OC-31/18E/26-0235
OC-33/15E/34-0234 | 07-23-03
08-03-03 | 0.18
0.04 | M
M | 19
24 | 130
320 | | | 0.08
0.49 | 0.0
0.0 | | | | | | | | | | | | | | | Local
identifier | Station | number | Date | Time | Geologic
unit | Depth
of
well,
feet
below
LSD
(72008) | Depth
to
water
level,
feet
below
LSD
(72019) | Flow rate, instantaneous gal/min (00059) | Sam-
pling
method,
code
(82398) | Turbidity, NTU (00076) | Baro-
metric
pres-
sure,
mm Hg
(00025) | |---|--|--|---|--|--|--|---|--|---|--|---| | | | | | OZA | UKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 43321508 | 88010001 | 05-22-03 | 1400 | 100SDGV | 93 | 9.12 | | 4,040 | 0.24 | | | | | | | POR' | TAGE COU | INTY | | | | | | | PT-22/10E/36-1434 | 44200808 | 89135201 | 07-29-03 | 1500 | 100SDGV | 118 | | | 4,040 | 0.59 | 732 | | | | | | SHAV | WANO COU | JNTY | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 44381008
44522008 | | 06-12-03
06-09-03 | 1100
1100 | 100SDGV
100SDGV | | 35.00 | 10.0 | 4,040
4,040 | 77
0.10 | 716
730 | | | | | | VII | LAS COUN | TY | | | | | | | VI-41/12E/33-0095 | 45591908 | 89003201 | 07-24-03 | 1100 | 100SDGV | 45 | | | 4,040 | 4.1 | 716 | | | | | | WASHI | NGTON C | OUNTY | | | | | | | WN-10/19E/13-0997 | 43195308 | 88113701 | 05-22-03 | 1000 | 100SDGV | 94 | 31.96 | | 4,040 | 0.93 | 747 | | | | | | WAU | PACA COU | JNTY | | | | | | | WP-23/14E/25-0831 | 44255608 | 88443501 | 06-10-03 | 1500 | 100SDGV | 84 | 16.00 | 10.0 | 4,040 | 0.26 | 727 | | | | | | WAUS | SHARA CO | UNTY | | | | | | | WS-18/10E/15-1055
WS-18/13E/11-1056
*WS-20/11E/03-1054 | 44015708
44024008
44135708 | 88544101 | 06-05-03
05-21-03
06-10-03 | 1100
1300
1100 | 100SDGV
100SDGV
100SDGV | 145 | 3.58
1.95
10.00 |
5.0 | 4,040
4,040
4,040 | 0.73
1.4
0.10 |

727 | | | | | | | E COUNTY | | | | ,- | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 46170308
46173908 | | 06-26-03
06-25-03 | 1100
1100 | 100SDGV
100SDGV | 67 | 9.65 | | 4,040
4,040 | 0.51
0.48 | 712
726 | | | | | | | | | | | | | | | Local
identifier | Date | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temperature, water, deg C (00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | Alkalinity, wat flt inc tit field, mg/L as CaCO3 (39086) | Bromide
water,
fltrd,
mg/L
(71870) | | | Date | solved
oxygen,
mg/L | water,
unfltrd
field,
std
units | conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | ature,
water,
deg C | water,
fltrd,
mg/L
(00915) | ium,
water,
fltrd,
mg/L | sium,
water,
fltrd,
mg/L | water,
fltrd,
mg/L | linity,
wat flt
inc tit
field,
mg/L as
CaCO3 | water,
fltrd,
mg/L | | | Date 05-22-03 | solved
oxygen,
mg/L | water,
unfltrd
field,
std
units |
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | ature,
water,
deg C
(00010) | water,
fltrd,
mg/L
(00915) | ium,
water,
fltrd,
mg/L | sium,
water,
fltrd,
mg/L | water,
fltrd,
mg/L | linity,
wat flt
inc tit
field,
mg/L as
CaCO3 | water,
fltrd,
mg/L | | identifier | | solved
oxygen,
mg/L
(00300) | water,
unfltrd
field,
std
units
(00400) | conductance,
wat unf
uS/cm
25 degC
(00095)
OZA | ature,
water,
deg C
(00010)
UKEE COU | water,
fltrd,
mg/L
(00915)
JNTY
78.4 | ium,
water,
fltrd,
mg/L
(00925) | sium,
water,
fltrd,
mg/L
(00935) | water,
fltrd,
mg/L
(00930) | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | water,
fltrd,
mg/L
(71870) | | identifier | | solved
oxygen,
mg/L
(00300) | water,
unfltrd
field,
std
units
(00400) | conductance,
wat unf
uS/cm
25 degC
(00095)
OZA | ature,
water,
deg C
(00010)
UKEE COU | water,
fltrd,
mg/L
(00915)
JNTY
78.4 | ium,
water,
fltrd,
mg/L
(00925) | sium,
water,
fltrd,
mg/L
(00935) | water,
fltrd,
mg/L
(00930) | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | water,
fltrd,
mg/L
(71870) | | identifier OZ-12/21E/05-0582 | 05-22-03 | solved
oxygen,
mg/L
(00300) | water,
unfiltrd
field,
std
units
(00400)
7.8 | conductance,
wat unf
uS/cm
25 degC
(00095)
OZA
698
POR' | ature,
water,
deg C
(00010)
UKEE COU
9.7 | water,
fltrd,
mg/L
(00915)
UNTY
78.4
UNTY
56.1 | ium,
water,
fltrd,
mg/L
(00925) | sium,
water,
fltrd,
mg/L
(00935) | water,
fltrd,
mg/L
(00930) | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | water,
fltrd,
mg/L
(71870) | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3 | water,
unfiltrd
field,
std
units
(00400)
7.8
7.2 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR' 449 SHAN 291 | ature,
water,
deg C
(00010)
UKEE COU
9.7
TAGE COU
10.5
WANO COU | water,
fltrd,
mg/L
(00915)
UNTY
78.4
UNTY
56.1
UNTY | ium,
water,
fltrd,
mg/L
(00925)
42.5
28.4 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91 | water,
fltrd,
mg/L
(00930)
3.82
2.27 | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086)
426
234 | water,
fltrd,
mg/L
(71870)
0.04
0.02 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 | 05-22-03
07-29-03 | solved
oxygen,
mg/L
(00300)
0.1 | water,
unfiltrd
field,
std
units
(00400)
7.8 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR 449 SHAV 291 661 | ature,
water,
deg C
(00010)
UKEE COU
9.7
TAGE COU
10.5
WANO COU
10.7
11.3 | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 | ium,
water,
fltrd,
mg/L
(00925)
42.5 | sium,
water,
fltrd,
mg/L
(00935)
1.26 | water,
fltrd,
mg/L
(00930)
3.82
2.27 | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086)
426 | water,
fltrd,
mg/L
(71870)
0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3
0.2
5.3 | water, unfltrd field, std units (00400) 7.8 7.2 8.8 7.2 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR' 449 SHAV 291 661 | ature,
water,
deg C
(00010)
UKEE COU
9.7
TAGE COU
10.5
WANO COU
10.7
11.3 | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 | ium,
water,
fltrd,
mg/L
(00925)
42.5
28.4 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91
1.09
1.43 | water,
fltrd,
mg/L
(00930)
3.82
2.27
27.0
3.12 | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086)
426
234 | water,
fltrd,
mg/L
(71870)
0.04
0.02
0.02 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3 | water,
unfiltrd
field,
std
units
(00400)
7.8
7.2 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR' 449 SHAV 291 661 VII 57 | ature,
water,
deg C
(00010)
UKEE COU
9.7
TAGE COU
10.5
WANO COU
10.7
11.3
LAS COUN
8.1 | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 TY 25.1 | ium,
water,
fltrd,
mg/L
(00925)
42.5
28.4 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91 | water,
fltrd,
mg/L
(00930)
3.82
2.27 | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086)
426
234 | water,
fltrd,
mg/L
(71870)
0.04
0.02 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3
0.2
5.3 | water, unfltrd field, std units (00400) 7.8 7.2 8.8 7.2 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR' 449 SHAV 291 661 VII 57 | ature,
water,
deg C
(00010)
UKEE COU
9.7
TAGE COU
10.5
WANO COU
10.7
11.3 | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 TY 25.1 | ium,
water,
fltrd,
mg/L
(00925)
42.5
28.4
13.3
39.2 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91
1.09
1.43 | water,
fltrd,
mg/L
(00930)
3.82
2.27
27.0
3.12
4.41 | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086)
426
234 | water,
fltrd,
mg/L
(71870)
0.04
0.02
0.02 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3
0.2
5.3 | water, unfiltrd field, std units (00400) 7.8 7.2 8.8 7.2 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR 449 SHAV 291 661 VII 57 WASHI 1,040 | ature, water, water, deg C (00010) UKEE COU 9.7 TAGE COU 10.5 WANO COU 10.7 11.3 LAS COUN 8.1 ENGTON CO | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 TY 25.1 OUNTY 95.3 | ium,
water,
fltrd,
mg/L
(00925)
42.5
28.4 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91
1.09
1.43 | water,
fltrd,
mg/L
(00930)
3.82
2.27
27.0
3.12 | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086)
426
234
150
327 | water, fltrd, mg/L (71870) 0.04 0.02 0.02 <0.02 <0.02 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3
0.2
5.3 | water, unfiltrd field, std units (00400) 7.8 7.2 8.8 7.2 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR 449 SHAV 291 661 VII 57 WASHI 1,040 | ature, water, water, deg C (00010) UKEE COU 9.7 TAGE COU 10.5 WANO COU 10.7 11.3 LAS COUN 8.1 | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 TY 25.1 OUNTY 95.3 | ium,
water,
fltrd,
mg/L
(00925)
42.5
28.4
13.3
39.2 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91
1.09
1.43 | water,
fltrd,
mg/L
(00930)
3.82
2.27
27.0
3.12
4.41 | linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086)
426
234
150
327 | water, fltrd, mg/L (71870) 0.04 0.02 0.02 <0.02 <0.02 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3
0.2
5.3
9.0 | water, unfltrd field, std units (00400) 7.8 7.2 8.8 7.2 6.4 7.7 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR' 449 SHAV 291 661 VII 57 WASHI 1,040 WAU 615 | ature, water, water, deg C (00010) UKEE COU 9.7 TAGE COU 10.5 WANO COU 10.7 11.3 LAS COUN 8.1 NGTON CO 10.0 PACA COU | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 TY 25.1 OUNTY 95.3 UNTY 67.3 | ium, water, fltrd, mg/L (00925) 42.5 28.4 13.3 39.2 4.85 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91
1.09
1.43
1.48 | water, fltrd, mg/L (00930) 3.82 2.27 27.0 3.12 4.41 37.1 | linity, wat flt inc tit field, mg/L as CaCO3 (39086) 426 234 150 327 20 449 | water, fltrd, mg/L (71870) 0.04 0.02 0.02 0.02 0.02 0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | solved
oxygen,
mg/L
(00300)
0.1
7.3
0.2
5.3
9.0 | water, unfltrd field, std units (00400) 7.8 7.2 8.8 7.2 6.4 7.7 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR' 449 SHAV 291 661 VII 57 WASHI 1,040 WAU 615 | ature, water, water, deg C (00010) UKEE COU 9.7 TAGE COU 10.5 WANO COU 10.7 11.3 LAS COUN 8.1 NGTON CO 10.0 PACA COU 10.3 | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 TY 25.1 OUNTY 95.3 UNTY 67.3 | ium, water, fltrd, mg/L (00925) 42.5 28.4 13.3 39.2 4.85 | sium,
water,
fltrd,
mg/L
(00935)
1.26
0.91
1.09
1.43
1.48 | water, fltrd, mg/L (00930) 3.82 2.27 27.0 3.12 4.41 37.1 | linity, wat flt inc tit field, mg/L as CaCO3 (39086) 426 234 150 327 20 449 | water, fltrd, mg/L (71870) 0.04 0.02 0.02 0.02 0.02 0.04 | | identifier
OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | solved oxygen, mg/L (00300) 0.1 7.3 0.2 5.3 9.0 0.1 0.2 2.1 0.1 | water, unfltrd field, std units (00400) 7.8 7.2 8.8 7.2 6.4 7.7 7.9 7.9 8.1 7.7 | conductance, wat unf uS/cm 25 degC (00095) OZA 698 POR' 449 SHAV 291 661 VII 57 WASHI 1,040 WAU 615 WAUS 349 422 465 | ature, water, water, deg C (00010) UKEE COU 9.7 TAGE COU 10.5 WANO COU 10.7 11.3 LAS COUN 8.1 INGTON CO 10.0 PACA COU 10.3 SHARA CO 13.5 10.6 | water, fltrd, mg/L (00915) UNTY 78.4 UNTY 56.1 UNTY 16.4 77.9 TY 25.1 OUNTY 95.3 UNTY 67.3 UNTY 39.9 24.9 | ium, water, fltrd, mg/L (00925) 42.5 28.4 13.3 39.2 4.85 52.1 38.2 21.4 30.6 | sium, water, fltrd, mg/L (00935) 1.26 0.91 1.09 1.43 1.48 1.42 1.91 0.50 | water, fltrd, mg/L (00930) 3.82 2.27 27.0 3.12 4.41 37.1 3.82 | linity, wat flt inc tit field, mg/L as CaCO3 (39086) 426 234 150 327 20 449 280 | water, fltrd, mg/L (71870) 0.04 0.02 0.02 0.02 -0.02 0.04 0.03 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | WA. | IEK-QUAI | ATT DATE | A, WAILK | 12.11.00 | | Ammonia | | Nitrite | | Ortho- | |---|--|---|--|--|--|--|--|---|--|---|--| | Local
identifier | Date | Chloride,
water,
fltrd,
mg/L
(00940) | Fluoride,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | on
evap.
at
180degC
wat flt
mg/L
(70300) | org-N,
water,
fltrd,
mg/L
as N
(00623) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | | | | | | OZAU | JKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | 14.5 | < 0.2 | 16.3 | 57.9 | 436 | E.06 | E.03 | < 0.06 | < 0.008 | < 0.02 | | | | | | PORT | TAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | 3.52 | < 0.2 | 15.1 | 11.6 | 252 | < 0.10 | < 0.04 | 1.55 | < 0.008 | < 0.02 | | | | | | | VANO CO | | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | 1.76
20.6 | 0.3
0.3 | 18.6
15.6 | 9.8
10.6 | 185
371 | E.10
0.10 | 0.09
<0.04 | <0.06
4.30 | <0.008
<0.008 | <0.02
<0.02 | | | | | | VIL | AS COUN | TY | | | | | | | VI-41/12E/33-0095 | 07-24-03 | 0.29 | < 0.2 | 10.4 | 5.2 | 44 | < 0.10 | < 0.04 | 0.13 | < 0.008 | < 0.02 | | | | | | WASHI | NGTON C | OUNTY | | | | | | | WN-10/19E/13-0997 | 05-22-03 | 115 | < 0.2 | 20.6 | 41.2 | 611 | 0.32 | 0.26 | < 0.06 | <0.008 | < 0.02 | | | | | | | PACA CO | | | | | | | | WP-23/14E/25-0831 | 06-10-03 | 16.3 | 0.2 | 17.9 | 36.6 | 331 | <0.10 | < 0.04 | < 0.06 | < 0.008 | < 0.02 | | WS-18/10E/15-1055 | 06-05-03 | 1.40 | <0.2 | 13.3 | HARA CC
17.0 | 205 | E.06 | E.02 | 0.56 | < 0.008 | | | WS-18/13E/11-1056
*WS-20/11E/03-1054 | 05-21-03 | 1.31
1.76 | 0.2 | 21.4
13.2 | 8.3 | 233 | 0.14 | 0.12 | < 0.06 | <0.008
<0.008
<0.008 | E.02 | | "WS-20/11E/03-1034 | 00-10-03 | 1.70 | <0.2 | 13.2
ARQUETTE | 27.5
F COUNTY | 288
Z MICHIG | ΔN | | 0.76 | <0.008 | <0.02 | | 45N 30W 20ADA 01 | 06-26-03 | 1.67 | <0.2 | 11.7 | 5.5 | 78 | <0.10 | < 0.04 | E.06 | E.005 | < 0.02 | | | 06-25-03 | 1.19 | < 0.2 | 9.83 | 14.6 | 199 | < 0.10 | < 0.04 | < 0.06 | < 0.008 | E.01 | | 45N 24W 16CBC 01 | 00-23-03 | 1.17 | ₹0.2 | 9.63 | 14.0 | 1// | VO.10 | ₹0.0∓ | | | | | Local identifier | Date | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332) | E coli,
MI MF,
water,
col/
100 mL
(90901) | Total
coli-
form,
MI MF,
water,
col/
100 mL
(90900) | Aluminum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Barium,
water,
fltrd,
ug/L
(01005) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | | Local
identifier | Date | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU | E coli,
MI MF,
water,
col/
100 mL
(90901)
UKEE COU | Total
coli-
form,
MI MF,
water,
col/
100 mL
(90900) | Aluminum,
water,
fltrd,
ug/L
(01106) | Antimony, water, fltrd, ug/L (01095) | water,
fltrd,
ug/L
(01000) | water,
fltrd,
ug/L
(01005) | ium,
water,
fltrd,
ug/L
(01010) | | Local | |
Organic
carbon,
water,
fltrd,
mg/L | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU | E coli,
MI MF,
water,
col/
100 mL
(90901)
UKEE COU | Total coliform, MI MF, water, col/ 100 mL (90900) UNTY <1 | Alum-
inum,
water,
fltrd,
ug/L | Anti-
mony,
water,
fltrd,
ug/L | water,
fltrd,
ug/L | water,
fltrd,
ug/L | ium,
water,
fltrd,
ug/L | | Local identifier OZ-12/21E/05-0582 | Date 05-22-03 | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU
2 | E coli,
MI MF,
water,
col/
100 mL
(90901)
JKEE COU
<1 | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) | water,
fltrd,
ug/L
(01000) | water,
fltrd,
ug/L
(01005) | ium,
water,
fltrd,
ug/L
(01010) | | Local
identifier | Date | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU
2
PORT | E coli,
MI MF,
water,
col/
100 mL
(90901)
UKEE COU
<1
TAGE COU | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 | Aluminum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | water,
fltrd,
ug/L
(01000) | water,
fltrd,
ug/L
(01005) | ium,
water,
fltrd,
ug/L
(01010) | | Local identifier OZ-12/21E/05-0582 | Date 05-22-03 | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU
2
PORT | E coli,
MI MF,
water,
col/
100 mL
(90901)
JKEE COU
<1 | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) | water,
fltrd,
ug/L
(01000) | water,
fltrd,
ug/L
(01005) | ium,
water,
fltrd,
ug/L
(01010) | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 | Date 05-22-03 07-29-03 | Organic
carbon,
water,
fltrd,
mg/L
(00681)
0.9 | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU
2
PORT
2
SHAW
2 | E coli, MI MF, water, col/ 100 mL (90901) VARGE COU <1 VANO CO <1 <1 <1 | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 UNTY <1 E38 | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) <0.30 | water,
fltrd,
ug/L
(01000)
2.2
E.1 | water,
fltrd,
ug/L
(01005)
80 | ium,
water,
fltrd,
ug/L
(01010)
<0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | Date 05-22-03 07-29-03 06-12-03 06-09-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU
2
PORT
2
SHAW
2
2 | E coli, MI MF, water, col/ 100 mL (90901) UKEE COU <1 TAGE COU <1 VANO CO <1 <1 CLAS COUN | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 UNTY <1 E38 | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 | water,
fltrd,
ug/L
(01000)
2.2
E.1
4.6
0.4 | water,
fltrd,
ug/L
(01005)
80
13 | ium,
water,
fltrd,
ug/L
(01010)
<0.06
<0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | Date 05-22-03 07-29-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge
som, Ec
CN13hst
2-step,
pres(1)
abs(2)
/L
(99332)
OZAU
2
PORT
2
SHAW
2
2
VIII | E coli, MI MF, water, col/ 100 mL (90901) VARE COU <1 VANO CO <1 <1 CAS COUN <1 | Total coliform, MI MF, water, col/ 100 mL (90900) UNTY <1 UNTY <1 UNTY <1 E38 UNTY <1 | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 | water,
fltrd,
ug/L
(01000)
2.2
E.1 | water,
fltrd,
ug/L
(01005)
80 | ium,
water,
fltrd,
ug/L
(01010)
<0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | Date 05-22-03 07-29-03 06-12-03 06-09-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 0.8 1.1 | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335)
2
2
2 | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 2 VIL 2 WASHII | E coli, MI MF, water, col/ 100 mL (90901) UKEE COU <1 TAGE COU <1 VANO CO <1 <1 LAS COUN <1 | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 JNTY <1 S38 JTY <1 OUNTY | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 <0.30 | water, fltrd, ug/L (01000) 2.2 E.1 4.6 0.4 <0.3 | water,
fltrd,
ug/L
(01005)
80
13
83
21 | ium,
water,
fltrd,
ug/L
(01010)
<0.06
<0.06
<0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | Date 05-22-03 07-29-03 06-12-03 06-09-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335) | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 2 WASHII 2 | E coli, MI MF, water, col/ 100 mL (90901) VARE COU <1 VANO CO <1 CAS COUN <1 NGTON C <1 | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 UNTY <1 E38 JTY <1 OUNTY <1 | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 | water,
fltrd,
ug/L
(01000)
2.2
E.1
4.6
0.4 | water,
fltrd,
ug/L
(01005)
80
13 | ium,
water,
fltrd,
ug/L
(01010)
<0.06
<0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | Date 05-22-03 07-29-03 06-12-03 06-09-03 07-24-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 0.8 1.1 0.6 | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335)
2
2
2
2 | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 VIL 2 WASHII 2 WASHII 2 | E coli, MI MF, water, col/ 100 mL (90901) UKEE COU <1 VANO CO <1 <1 AS COUN <1 NGTON C <1 PACA COI | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 UNTY <1 E38 JTY <1 OUNTY <1 | Aluminum, water, fltrd, ug/L (01106) <2 <2 M <2 <2 <2 | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 | water, fltrd, ug/L (01000) 2.2 E.1 4.6 0.4 <0.3 | water, fltrd, ug/L (01005) 80 13 83 21 M | ium, water, fltrd, ug/L (01010) <0.06 <0.06 <0.06 <0.06 <0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | Date 05-22-03 07-29-03 06-12-03 06-09-03 07-24-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 0.8 1.1 | Colipge
F-spec,
FAMP,
2-step,
pres(1)
abs(2)
/L
(99335)
2
2
2 | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 2 VIL 2 WASHII 2 WASHII 2 | E coli, MI MF, water, col/ 100 mL (90901) VARE COU <1 VANO CO <1 CAS COUN <1 NGTON C <1 | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 JNTY <1 JNTY <1 COUNTY <1 COUNTY <1 UNTY <1 UNTY <1 UNTY <1 UNTY <1 | Aluminum, water, fltrd, ug/L (01106) | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 <0.30 | water, fltrd, ug/L (01000) 2.2 E.1 4.6 0.4 <0.3 | water,
fltrd,
ug/L
(01005)
80
13
83
21 | ium,
water,
fltrd,
ug/L
(01010)
<0.06
<0.06
<0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | Date 05-22-03 07-29-03 06-12-03 06-09-03 07-24-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 0.8 1.1 0.6 | Colipge F-spec, FAMP, 2-step, pres(1) abs(2) /L (99335) 2 2 2 2 2 2 | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 2 VIII 2 WASHII 2 WAUS 2 | E coli, MI MF, water, col/ 100 mL (90901) UKEE COU <1 FAGE COU <1 VANO CO <1 <1 NGTON C <1 PACA COI <1 | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 JNTY <1 JNTY <1 COUNTY <1 COUNTY <1 UNTY <1 UNTY <1 UNTY <1 UNTY <1 | Aluminum, water, fltrd, ug/L (01106) <2 <2 M <2 <2 <2 | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 | water, fltrd, ug/L (01000) 2.2 E.1 4.6 0.4 <0.3 | water, fltrd, ug/L (01005) 80 13 83 21 M 72 31 | ium, water, fltrd, ug/L (01010) <0.06 <0.06 <0.06 <0.06 <0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 | Date 05-22-03 07-29-03 06-12-03 06-09-03 07-24-03 06-10-03 06-05-03 05-21-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 0.8 1.1 0.6 0.7 | Colipge F-spec, FAMP, 2-step, pres(1) abs(2) /L (99335) 2 2 2 2 2 | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 2 WASHII 2 WAUS WAU | E coli, MI MF, water, col/ 100 mL (90901) VANO COI COL COL COL COL COL COL COL | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 JNTY <1 COUNTY <1 COUNTY <1 UNTY <1 COUNTY <1 UNTY <1 COUNTY <1
UNTY <1 | Aluminum, water, fltrd, ug/L (01106) <2 <2 <4 <2 <2 <2 <2 <2 <2 <2 | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 | water, fltrd, ug/L (01000) 2.2 E.1 4.6 0.4 <0.3 E.2 0.8 | water, fltrd, ug/L (01005) 80 13 83 21 M 72 | ium, water, fltm, ug/L (01010) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | Date 05-22-03 07-29-03 06-12-03 06-09-03 07-24-03 06-10-03 06-05-03 05-21-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 0.8 1.1 0.6 0.7 0.6 | Colipge F-spec, FAMP, 2-step, pres(1) abs(2) /L (99335) 2 2 2 2 2 2 2 2 2 | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 2 VII 2 WASHII 2 WAUS 2 WAUS 2 2 | E coli, MI MF, water, col/ 100 mL (90901) VANO COI CAS COUN | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 JNTY <1 COUNTY <1 COUNTY <1 UNTY <1 COUNTY <1 UNTY <1 COUNTY <1 UNTY <1 UNTY <1 UNTY <1 | Aluminum, water, fltrd, ug/L (01106) <2 <2 <2 <2 <2 <2 <2 <2 <2 < | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 | water, fltrd, ug/L (01000) 2.2 E.1 4.6 0.4 <0.3 E.2 0.8 E.2 | water, fltrd, ug/L (01005) 80 13 83 21 M 72 31 | ium, water, fltrd, ug/L (01010) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | | Local identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | Date 05-22-03 07-29-03 06-12-03 06-09-03 07-24-03 06-10-03 06-05-03 05-21-03 06-10-03 | Organic carbon, water, fltrd, mg/L (00681) 0.9 0.5 0.8 1.1 0.6 0.7 0.6 | Colipge F-spec, FAMP, 2-step, pres(1) abs(2) /L (99335) 2 2 2 2 2 2 2 2 2 | Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332) OZAU 2 PORT 2 SHAW 2 2 WASHII 2 WAUS 2 WAUS 2 2 2 2 2 | E coli, MI MF, water, col/ 100 mL (90901) VANO COI CAS COUN | Total coliform, MI MF, water, col/ 100 mL (90900) JNTY <1 JNTY <1 JNTY <1 COUNTY <1 COUNTY <1 UNTY <1 COUNTY <1 UNTY <1 COUNTY <1 UNTY <1 UNTY <1 UNTY <1 | Aluminum, water, fltrd, ug/L (01106) <2 <2 <2 <2 <2 <2 <2 <2 <2 < | Antimony, water, fltrd, ug/L (01095) <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 | water, fltrd, ug/L (01000) 2.2 E.1 4.6 0.4 <0.3 E.2 0.8 E.2 | water, fltrd, ug/L (01005) 80 13 83 21 M 72 31 | ium, water, fltrd, ug/L (01010) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Boron,
water,
fltrd,
ug/L
(01020) | Cadmium
water,
fltrd,
ug/L
(01025) | Chromium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | Hydro-
gen
sulfide
water
unfltrd
mg/L
(71875) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Lithium
water,
fltrd,
ug/L
(01130) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | |---|--|---|--|--|--|--|---|---|--|--|--| | | | | | OZAU | UKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | 10 | < 0.04 | < 0.8 | 0.433 | 0.4 | M.0 | 899 | < 0.08 | 4.1 | 19.1 | | | | | | PORT | TAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | E7 | < 0.04 | 1.1 | 0.129 | 8.9 | ND | <8 | 0.12 | 1.3 | 0.4 | | | | | | SHAV | VANO CO | UNTY | | | | | | | SH-25/16E/14-0231 | 06-12-03 | 97 | < 0.04 | < 0.8 | 0.080 | < 0.2 | M.0 | 189 | < 0.08 | 3.6 | 10.6 | | SH-28/13E/26-0232 | 06-09-03 | 22 | E.02 | 1.5 | 0.185 | 21.4 | ND | E4 | 5.01 | 2.9 | 0.3 | | VI 41/10E/22 0005 | 07.24.02 | .7 | .0.04 | | LAS COUN | | NID | .0 | 0.10 | | 4.6 | | VI-41/12E/33-0095 | 07-24-03 | <7 | < 0.04 | 0.9 | 0.025 | 70.1 | ND | <8 | 0.19 | 1.1 | 4.6 | | WW. 10/10E/12 0007 | 05 22 02 | 26 | 0.04 | | NGTON C | | 1.50 | 640 | 0.00 | 4.0 | 57.4 | | WN-10/19E/13-0997 | 05-22-03 | 26 | < 0.04 | <0.8 | 0.663 | 0.5 | M.0 | 648 | <0.08 | 4.8 | 57.4 | | | 06.40.00 | | 0.04 | | PACA COI | | 3.5.0 | | 0.00 | 4.0 | 20.5 | | WP-23/14E/25-0831 | 06-10-03 | 12 | < 0.04 | <0.8 | 0.290 | 0.6 | M.0 | 641 | <0.08 | 4.8 | 28.5 | | | | | | | HARA CO | | | | | | | | WS-18/10E/15-1055
WS-18/13E/11-1056
*WS-20/11E/03-1054 | 06-05-03
05-21-03
06-10-03 | <7
84 | <0.04
<0.04 | <0.8
<0.8 | 0.147
0.300 | 3.7
E.2 | ND
M.0
ND | 38
358 | <0.08
E.06 | 0.9
4.8 | 12.4
19.3 | | | | | MA | RQUETTE | E COUNTY | , MICHIG | AN | | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | 9
8 | <0.04
<0.04 | <0.8
E.4 | 0.093
0.044 | 1.2
1.1 | ND
ND | E4
10 | <0.08
<0.08 | 3.3
<0.5 | 1.8
0.7 | | Local
identifier | Date | Molyb-
denum,
water,
fltrd,
ug/L
(01060) | Nickel,
water,
fltrd,
ug/L
(01065) | Selenium,
water,
fltrd,
ug/L
(01145) | Silver,
water,
fltrd,
ug/L
(01075) | Stront-
ium,
water,
fltrd,
ug/L | Thall-
ium,
water,
fltrd,
ug/L
(01057) | Vanad-
ium,
water,
fltrd,
ug/L
(01085) | Zinc,
water,
fltrd,
ug/L
(01090) | 2,6-Di-
ethyl-
aniline
water
fltrd
0.7u GF
ug/L
(82660) | CIAT,
water,
fltrd,
ug/L
(04040) | | | | | | | | (01080) | (01037) | (01003) | (01090) | (02000) | (0+0+0) | | OZ-12/21E/05-0582 | 05-22-03 | | | OZAU | UKEE COU | ` ' | (01037) | (01063) | (01090) | (02000) | (04040) | | | | 0.9 | 3.09 | OZAU
<0.5 | UKEE COU
<0.2 | ` ' | <0.04 | 0.1 | 4 | <0.006 | <0.006 | | | | 0.9 | 3.09 | <0.5 | | JNTY
145 | | Ì | | | Ì | | PT-22/10E/36-1434 | 07-29-03 | 0.9 | 3.09
2.36 | <0.5 | <0.2 | JNTY
145 | | Ì | | | Ì | | PT-22/10E/36-1434 | 07-29-03 | | | <0.5
PORT
<0.5 | <0.2
ΓAGE COU | JNTY
145
JNTY
37.3 | <0.04 | 0.1 | 4 | <0.006 | <0.006 | | PT-22/10E/36-1434
SH-25/16E/14-0231
SH-28/13E/26-0232 | 07-29-03
06-12-03
06-09-03 | | | <0.5
PORT
<0.5 | <0.2
FAGE COU
<0.2 | JNTY
145
JNTY
37.3 | <0.04 | 0.1 | 4 | <0.006 | <0.006 | | SH-25/16E/14-0231 | 06-12-03 | 0.4
5.0 | 2.36
0.80 | <0.5
PORT
<0.5
SHAV
<0.5
0.6 | <0.2 FAGE COU <0.2 VANO COI <0.2 | JNTY
145
JNTY
37.3
UNTY
229
56.7 | <0.04
<0.04
<0.04 | 0.1
2.3
0.3 | 3 <1 | <0.006
<0.006 | <0.006 E.013 <0.006 | | SH-25/16E/14-0231 | 06-12-03 | 0.4
5.0 | 2.36
0.80 | <0.5
PORT
<0.5
SHAV
<0.5
0.6 | <0.2
FAGE COU
<0.2
VANO COI
<0.2
<0.2 | JNTY
145
JNTY
37.3
UNTY
229
56.7 | <0.04
<0.04
<0.04 | 0.1
2.3
0.3 | 3 <1 | <0.006
<0.006 | <0.006 E.013 <0.006 | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | 0.4
5.0
0.7 | 2.36
0.80
2.60 | <0.5
PORT
<0.5
SHAV
<0.5
0.6
VII
<0.5 | <0.2 FAGE COU <0.2 VANO COI <0.2 <0.2 <0.2 <0.2 AS COUN | JNTY 145 JNTY 37.3 UNTY 229 56.7 JTY 18.6 | <0.04
<0.04
<0.04
<0.04 | 0.1
2.3
0.3
2.1 | 4
3
<1
165 | <0.006
<0.006
<0.006
<0.006 | <0.006 E.013 <0.006 E.018 | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03
07-24-03 | 0.4
5.0
0.7 | 2.36
0.80
2.60 | <0.5
PORT
<0.5
SHAV
<0.5
0.6
VII
<0.5 | <0.2 FAGE COU <0.2 VANO COI <0.2 <0.2 <0.2 AS COUN <0.2 | JNTY 145 JNTY 37.3 UNTY 229 56.7 JTY 18.6 | <0.04
<0.04
<0.04
<0.04 | 0.1
2.3
0.3
2.1 | 4
3
<1
165 | <0.006
<0.006
<0.006
<0.006 | <0.006 E.013 <0.006 E.018 | | SH-25/16E/14-0231
SH-28/13E/26-0232
VI-41/12E/33-0095 | 06-12-03
06-09-03
07-24-03 | 0.4
5.0
0.7
<0.3 | 2.36
0.80
2.60
0.56 | <0.5 PORT <0.5 SHAV <0.5 0.6 VII <0.5 WASHII <0.5 | <0.2 FAGE COU <0.2 VANO COI <0.2 <0.2 <0.2 LAS COUN <0.2 NGTON C | JNTY 145 JNTY 37.3 UNTY 229 56.7 JTY 18.6 OUNTY 275 | <0.04
<0.04
<0.04
<0.04
<0.04 | 0.1
2.3
0.3
2.1 | 4
3
<1
165
6 | <0.006
<0.006
<0.006
<0.006
<0.006 | <0.006 E.013 <0.006 E.018 <0.006 | | SH-25/16E/14-0231
SH-28/13E/26-0232
VI-41/12E/33-0095 | 06-12-03
06-09-03
07-24-03 | 0.4
5.0
0.7
<0.3 | 2.36
0.80
2.60
0.56 | <0.5 PORT <0.5 SHAV <0.5 0.6 VII <0.5 WASHII <0.5 | <0.2 FAGE COU <0.2 VANO COI <0.2 <0.2 AS COUN <0.2 NGTON C <0.2 | JNTY 145 JNTY 37.3 UNTY 229 56.7 JTY 18.6 OUNTY 275 | <0.04
<0.04
<0.04
<0.04
<0.04 | 0.1
2.3
0.3
2.1 | 4
3
<1
165
6 | <0.006
<0.006
<0.006
<0.006
<0.006 | <0.006 E.013 <0.006 E.018 <0.006 | | SH-25/16E/14-0231
SH-28/13E/26-0232
VI-41/12E/33-0095
WN-10/19E/13-0997 | 06-12-03
06-09-03
07-24-03 | 0.4
5.0
0.7
<0.3 | 2.36
0.80
2.60
0.56
3.56 | <0.5 PORT <0.5 SHAV <0.5 0.6 VII <0.5 WASHI <0.5 WAU <0.5 | <0.2 FAGE COU <0.2 VANO COI <0.2 <0.2 AS COUN <0.2 NGTON C <0.2 PACA COI | JNTY 145 JNTY 37.3 UNTY 229 56.7 JTY 18.6 OUNTY 275 UNTY 67.3 | <0.04
<0.04
<0.04
<0.04
<0.04 | 0.1
2.3
0.3
2.1
0.2 | 4
3
<1
165
6 | <0.006 <0.006 <0.006
<0.006 <0.006 <0.006 | <0.006 E.013 <0.006 E.018 <0.006 <0.006 | | SH-25/16E/14-0231
SH-28/13E/26-0232
VI-41/12E/33-0095
WN-10/19E/13-0997 | 06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | 0.4
5.0
0.7
<0.3 | 2.36
0.80
2.60
0.56
3.56 | <0.5 PORT <0.5 SHAV <0.5 0.6 VII <0.5 WASHI <0.5 WAU <0.5 | <0.2 FAGE COU <0.2 VANO COI <0.2 <0.2 LAS COUN <0.2 NGTON C <0.2 PACA COI <0.2 | JNTY 145 JNTY 37.3 UNTY 229 56.7 JTY 18.6 OUNTY 275 UNTY 67.3 | <0.04
<0.04
<0.04
<0.04
<0.04 | 0.1
2.3
0.3
2.1
0.2 | 4
3
<1
165
6 | <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | <0.006 E.013 <0.006 E.018 <0.006 <0.006 | | SH-25/16E/14-0231
SH-28/13E/26-0232
VI-41/12E/33-0095
WN-10/19E/13-0997
WP-23/14E/25-0831
WS-18/10E/15-1055
WS-18/13E/11-1056 | 06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | 0.4 5.0 0.7 <0.3 0.6 1.1 E.2 | 2.36
0.80
2.60
0.56
3.56
1.75
0.61
1.20 | <0.5 PORT <0.5 SHAV <0.5 0.6 VII <0.5 WASHI <0.5 WAUS <0.5 CO.5 VAUS | <0.2 FAGE COU <0.2 VANO COI <0.2 <0.2 LAS COUN <0.2 NGTON C <0.2 PACA COI <0.2 CHARA COI <0.2 <0.2 | JNTY 145 JNTY 37.3 UNTY 229 56.7 ITY 18.6 OUNTY 275 UNTY 67.3 OUNTY 37.3 | <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 | 0.1 2.3 0.3 2.1 0.2 0.1 2.8 1.6 | 4 3 <1 165 6 1 2 | <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | <0.006 E.013 <0.006 E.018 <0.006 <0.006 <0.006 <0.006 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Aceto-
chlor,
water,
fltrd,
ug/L
(49260) | Ala-
chlor,
water,
fltrd,
ug/L
(46342) | alpha-
HCH,
water,
fltrd,
ug/L
(34253) | alpha-
HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | Atra-
zine,
water,
fltrd,
ug/L
(39632) | Azin-
phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | Ben-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673) | Butylate,
water,
fltrd,
ug/L
(04028) | Carbaryl,
water,
fltrd
0.7u GF
ug/L
(82680) | Carbo-
furan,
water,
fltrd
0.7u GF
ug/L
(82674) | |---|--|--|---|---|--|---|---|--|--|---|---| | | | | | OZA | UKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | < 0.006 | < 0.004 | < 0.005 | 92.8 | < 0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | POR | TAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | < 0.006 | < 0.004 | < 0.005 | 90.4 | 0.009 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | SHAV | WANO CO | UNTY | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | <0.006
<0.006 | <0.004
<0.004 | <0.005
<0.005 | 84.9
102 | <0.007
E.006 | <0.050
<0.050 | <0.010
<0.010 | <0.002
<0.002 | <0.041
<0.041 | <0.020
<0.020 | | | | | | | LAS COUN | | | | | | | | VI-41/12E/33-0095 | 07-24-03 | < 0.006 | < 0.004 | <0.005 | 117 | <0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | WN 10/10E/12 0007 | 05 22 02 | -0.006 | -0.004 | | NGTON C | | <0.050 | ~ 0.010 | <0.002 | -0.041 | -0.020 | | WN-10/19E/13-0997 | 05-22-03 | <0.006 | < 0.004 | <0.005
WAU | 97.2
PACA COI | <0.007
UNTY | <0.050 | <0.010 | <0.002 | <0.041 | <0.020 | | WP-23/14E/25-0831 | 06-10-03 | < 0.006 | < 0.004 | < 0.005 | 101 | < 0.007 | < 0.050 | < 0.010 | < 0.002 | < 0.041 | < 0.020 | | | | | | WAUS | SHARA CO | UNTY | | | | | | | WS-18/10E/15-1055
WS-18/13E/11-1056
WS-20/11E/03-1054 | 06-05-03
05-21-03
06-10-03 | <0.006
<0.006
<0.006 | <0.004
<0.004
<0.004 | <0.005
<0.005
<0.005 | 81.6
86.7
102 | <0.007
<0.007
<0.007 | <0.050
<0.050
<0.050 | <0.010
<0.010
<0.010 | <0.002
<0.002
<0.002 | <0.041
<0.041
<0.041 | <0.020
<0.020
<0.020 | | | | | MA | ARQUETT | E COUNTY | , MICHIG | AN | | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | <0.006
<0.006 | <0.004
<0.004 | <0.005
<0.005 | 83.0
95.3 | <0.007
<0.007 | <0.050
<0.050 | <0.010
<0.010 | <0.002
<0.002 | <0.041
<0.041 | <0.020
<0.020 | | | | | | | | | | | | | | | Local
identifier | Date | Chlor-
pyrifos
water,
fltrd,
ug/L
(38933) | cis-
Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | Cyana-
zine,
water,
fltrd,
ug/L
(04041) | DCPA,
water
fltrd
0.7u GF
ug/L
(82682) | Desulf-
inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | Diazi-
non,
water,
fltrd,
ug/L
(39572) | Diazi-
non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | Dieldrin,
water,
fltrd,
ug/L
(39381) | Disul-
foton,
water,
fltrd
0.7u GF
ug/L
(82677) | EPTC,
water,
fltrd
0.7u GF
ug/L
(82668) | | identifier | | pyrifos
water,
fltrd,
ug/L
(38933) | Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | zine,
water,
fltrd,
ug/L
(04041) | water
fltrd
0.7u GF
ug/L
(82682)
UKEE COU | inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170)
JNTY | non,
water,
fltrd,
ug/L
(39572) | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | drin,
water,
fltrd,
ug/L
(39381) | foton,
water,
fltrd
0.7u GF
ug/L
(82677) | water,
fltrd
0.7u GF
ug/L
(82668) | | | Date 05-22-03 | pyrifos
water,
fltrd,
ug/L | Per-
methrin
water
fltrd
0.7u GF
ug/L | zine,
water,
fltrd,
ug/L
(04041)
OZA ¹
<0.018 | water
fltrd
0.7u GF
ug/L
(82682) | inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170)
JNTY
<0.004 | non,
water,
fltrd,
ug/L | non-d10
surrog.
wat flt
0.7u GF
percent
recovry | drin,
water,
fltrd,
ug/L | foton,
water,
fltrd
0.7u GF
ug/L | water,
fltrd
0.7u GF
ug/L | | identifier | | pyrifos
water,
fltrd,
ug/L
(38933) | Per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | zine,
water,
fltrd,
ug/L
(04041)
OZA ¹
<0.018 | water
fltrd
0.7u GF
ug/L
(82682)
UKEE COU
<0.003 | inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170)
JNTY
<0.004 | non,
water,
fltrd,
ug/L
(39572) | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | drin,
water,
fltrd,
ug/L
(39381) | foton,
water,
fltrd
0.7u GF
ug/L
(82677) | water,
fltrd
0.7u GF
ug/L
(82668) | | identifier OZ-12/21E/05-0582 | 05-22-03 |
pyrifos
water,
fltrd,
ug/L
(38933)
<0.005 | Permethrin water fltrd 0.7u GF ug/L (82687) | zine,
water,
fltrd,
ug/L
(04041)
OZAi
<0.018
POR'
<0.018 | water
fltrd
0.7u GF
ug/L
(82682)
UKEE COU
<0.003 | inyl fipro- nil, water, fltrd, ug/L (62170) UNTY <0.004 UNTY <0.004 | non,
water,
fltrd,
ug/L
(39572) | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | drin,
water,
fltrd,
ug/L
(39381)
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677) | water,
fltrd
0.7u GF
ug/L
(82668)
<0.002 | | identifier OZ-12/21E/05-0582 | 05-22-03 | pyrifos
water,
fltrd,
ug/L
(38933)
<0.005 | Permethrin water fltrd 0.7u GF ug/L (82687) | zine,
water,
fltrd,
ug/L
(04041)
OZA'
<0.018
POR'
<0.018
SHAV
<0.018
<0.018 | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 WANO COI <0.003 <0.003 | inyl fipro- nil, water, fltrd, ug/L (62170) JNTY <0.004 JNTY <0.004 UNTY <0.004 <0.004 | non,
water,
fltrd,
ug/L
(39572) | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | drin,
water,
fltrd,
ug/L
(39381)
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677) | water,
fltrd
0.7u GF
ug/L
(82668)
<0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | pyrifos
water,
fltrd,
ug/L
(38933)
<0.005
<0.005 | Permethrin water fltrd 0.7u GF ug/L (82687) <0.006 <0.006 | zine,
water,
fltrd,
ug/L
(04041)
OZA'
<0.018
POR'
<0.018
SHAV
<0.018
VII | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 WANO COI <0.003 <0.003 | inyl fipro- nil, water, fltrd, ug/L (62170) UNTY <0.004 UNTY <0.004 UNTY <0.004 TTY | non,
water,
fltrd,
ug/L
(39572)
<0.005
<0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
89.5 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677)
<0.02
<0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | pyrifos
water,
fltrd,
ug/L
(38933)
<0.005 | Permethrin water fltrd 0.7u GF ug/L (82687) <0.006 | zine, water, water, fltrd, ug/L (04041) OZA' <0.018 POR' <0.018 SHAV <0.018 VII <0.018 | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 VANO COU <0.003 <0.003 LAS COUN <0.003 | inyl fipro- nil, water, fltrd, ug/L (62170) JNTY <0.004 JNTY <0.004 UNTY <0.004 TTY <0.004 | non,
water,
fltrd,
ug/L
(39572)
<0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
89.5 | drin,
water,
fltrd,
ug/L
(39381)
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677)
<0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | pyrifos
water,
fltrd,
ug/L
(38933)
<0.005
<0.005
<0.005 | Permethrin water filtrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006 <0.006 | zine, water, fltrd, ug/L (04041) OZA' <0.018 POR' <0.018 SHAV <0.018 VII <0.018 WASHI | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 VANO COU <0.003 <0.003 LAS COUN <0.003 | inyl fipro- nil, water, fltrd, ug/L (62170) JNTY <0.004 JNTY <0.004 UNTY <0.004 TTY <0.004 OUNTY | non,
water,
fltrd,
ug/L
(39572)
<0.005
<0.005
<0.005 | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063)
89.5
107 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005
<0.005
<0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | pyrifos
water,
fltrd,
ug/L
(38933)
<0.005
<0.005 | Permethrin water fltrd 0.7u GF ug/L (82687) <0.006 <0.006 | zine, water, fltrd, ug/L (04041) OZAi <0.018 POR <0.018 SHAV <0.018 <0.018 VII <0.018 WASHI <0.018 | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 VANO COI <0.003 <0.003 LAS COUN <0.003 | inyl fipro- nil, water, fltrd, ug/L (62170) UNTY <0.004 UNTY <0.004 UNTY <0.004 TY <0.004 OUNTY <0.004 | non,
water,
fltrd,
ug/L
(39572)
<0.005
<0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
89.5 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005 | foton,
water,
fltrd
0.7u GF
ug/L
(82677)
<0.02
<0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | pyrifos
water,
fltrd,
ug/L
(38933)
<0.005
<0.005
<0.005 | Permethrin water filtrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006 <0.006 | zine, water, fltrd, ug/L (04041) OZAi <0.018 POR <0.018 SHAV <0.018 <0.018 VII <0.018 WASHI <0.018 | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 VANO COU <0.003 <0.003 LAS COUN <0.003 | inyl fipro- nil, water, fltrd, ug/L (62170) UNTY <0.004 UNTY <0.004 UNTY <0.004 TY <0.004 OUNTY <0.004 | non,
water,
fltrd,
ug/L
(39572)
<0.005
<0.005
<0.005 | non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063)
89.5
107 | drin,
water,
fltrd,
ug/L
(39381)
<0.005
<0.005
<0.005
<0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | pyrifos
water,
fltm,
ug/L
(38933)
<0.005
<0.005
<0.005
<0.005 | Permethrin water filtrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006 <0.006 <0.006 | zine, water, fltrd, ug/L (04041) OZA' <0.018 POR' <0.018 SHAV <0.018 VII <0.018 WASHI <0.018 WAU <0.018 | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 <0.003 <0.003 <0.003 LAS COUN <0.003 (NGTON C <0.003 PACA COU | inyl fipronil, water, fltrd, ug/L (62170) JNTY <0.004 | non,
water,
fltrd,
ug/L
(39572)
<0.005
<0.005
<0.005
<0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
89.5
107
109
113 | drin, water, flurd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | pyrifos
water,
fltm,
ug/L
(38933)
<0.005
<0.005
<0.005
<0.005 | Permethrin water filtrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006 <0.006 <0.006 | zine, water, fltrd, ug/L (04041) OZA' <0.018 POR' <0.018 SHAV <0.018 VII <0.018 WASHI <0.018 WAU <0.018 | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 VANO COI <0.003 <0.003 LAS COUN <0.003 TAGE COUNT <0.003 TAGE COUNT T | inyl fipronil, water, fltrd, ug/L (62170) JNTY <0.004 | non,
water,
fltrd,
ug/L
(39572)
<0.005
<0.005
<0.005
<0.005 | non-d10
surrog.
wat fit
0.7u GF
percent
recovry
(91063)
89.5
107
109
113 | drin, water, flurd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | pyrifos water, fltrd, ug/L (38933) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | Permethrin water fltrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | zine, water, fltrd, ug/L (04041) OZAi <0.018 POR <0.018 SHAV <0.018 <0.018 VII <0.018 WASHI <0.018 WAUS <0.018 VAUS <0.018 VAUS | water fltrd 0.7u GF ug/L (82682) UKEE COU <0.003 TAGE COU <0.003 VANO COI <0.003 CO.003 | inyl fipro- nil, water, fltrd, ug/L (62170) UNTY <0.004 | non, water, fltrd, ug/L (39572) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | non-d10 surrog. wat fit 0.7u GF percent recovry (91063) 89.5 107 109 113 127 96.3 111 | drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | water, fltrd 0.7u GF ug/L (82668) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | Ethal-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82663) | Etho-
prop,
water,
fltrd
0.7u GF
ug/L
(82672) | Desulf-
inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | Fipro-
nil
sulfide
water,
fltrd,
ug/L
(62167) | Fipro-
nil
sulfone
water,
fltrd,
ug/L
(62168) | Fipro-
nil,
water,
fltrd,
ug/L
(62166) | Fonofos
water,
fltrd,
ug/L
(04095) | Lindane
water,
fltrd,
ug/L
(39341) | Linuron
water
fltrd
0.7u GF
ug/L
(82666) |
Malathion,
water,
fltrd,
ug/L
(39532) | |---|--|--|--|--|---|--|---|---|---|--|--| | | | (02003) | (02072) | · · · | UKEE COU | ` ′ | (02100) | (010)3) | (3)3 (1) | (02000) | (3)332) | | OZ-12/21E/05-0582 | 05-22-03 | < 0.009 | < 0.005 | < 0.009 | <0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | | TAGE COU | | | | | | | | PT-22/10E/36-1434 | 07-29-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | SHAV | WANO CO | UNTY | | | | | | | SH-25/16E/14-0231 | 06-12-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | SH-28/13E/26-0232 | 06-09-03 | < 0.009 | < 0.005 | <0.009 | <0.005 | <0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | TH 41/19F/22 0005 | 07.24.02 | 0.000 | 0.005 | | LAS COUN | | 0.007 | 0.002 | 0.004 | 0.025 | 0.025 | | VI-41/12E/33-0095 | 07-24-03 | < 0.009 | < 0.005 | <0.009 | <0.005 | <0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | WN-10/19E/13-0997 | 05-22-03 | < 0.009 | < 0.005 | <0.009 | NGTON C
<0.005 | <0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | W1V-10/17E/13-077/ | 03-22-03 | <0.00) | <0.003 | | PACA CO | | <0.007 | <0.003 | <0.004 | <0.033 | \0.027 | | WP-23/14E/25-0831 | 06-10-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | <0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | | SHARA CC | | | | | | | | WS-18/10E/15-1055 | 06-05-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | WS-18/13E/11-1056
WS-20/11E/03-1054 | 05-21-03
06-10-03 | <0.009
<0.009 | <0.005
<0.005 | <0.009
<0.009 | <0.005
<0.005 | <0.005
<0.005 | <0.007
<0.007 | <0.003
<0.003 | <0.004
<0.004 | <0.035
<0.035 | <0.027
<0.027 | | | | | MA | ARQUETTI | E COUNTY | Y, MICHIG | AN | | | | | | 45N 30W 20ADA 01 | 06-26-03 | <0.009 | < 0.005 | <0.009 | < 0.005 | < 0.005 | < 0.007 | <0.003 | < 0.004 | < 0.035 | < 0.027 | | 45N 24W 16CBC 01 | 06-25-03 | < 0.009 | < 0.005 | < 0.009 | < 0.005 | < 0.005 | < 0.007 | < 0.003 | < 0.004 | < 0.035 | < 0.027 | | | | | | | | | | | | | | | | | Methyl
para-
thion, | Metola- | Metri- | Moli-
nate, | Naprop-
amide, | p,p-' | Para- | Peb-
ulate, | Pendi-
meth-
alin, | Phorate | | Local
identifier | Date | para-
thion,
water,
fltrd
0.7u GF
ug/L | chlor,
water,
fltrd,
ug/L | buzin,
water,
fltrd,
ug/L | nate,
water,
fltrd
0.7u GF
ug/L | amide,
water,
fltrd
0.7u GF
ug/L | DDE,
water,
fltrd,
ug/L | thion,
water,
fltrd,
ug/L | ulate,
water,
fltrd
0.7u GF
ug/L | methalin,
water,
fltrd
0.7u GF
ug/L | water
fltrd
0.7u GF
ug/L | | | Date | para-
thion,
water,
fltrd
0.7u GF | chlor,
water,
fltrd, | buzin,
water,
fltrd,
ug/L
(82630) | nate,
water,
fltrd
0.7u GF
ug/L
(82671) | amide,
water,
fltrd
0.7u GF
ug/L
(82684) | DDE,
water,
fltrd, | thion,
water,
fltrd, | ulate,
water,
fltrd
0.7u GF | meth-
alin,
water,
fltrd
0.7u GF | water
fltrd
0.7u GF | | | Date 05-22-03 | para-
thion,
water,
fltrd
0.7u GF
ug/L | chlor,
water,
fltrd,
ug/L | buzin,
water,
fltrd,
ug/L
(82630) | nate,
water,
fltrd
0.7u GF
ug/L | amide,
water,
fltrd
0.7u GF
ug/L
(82684) | DDE,
water,
fltrd,
ug/L | thion,
water,
fltrd,
ug/L | ulate,
water,
fltrd
0.7u GF
ug/L | methalin,
water,
fltrd
0.7u GF
ug/L | water
fltrd
0.7u GF
ug/L | | identifier | | para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415) | buzin,
water,
fltrd,
ug/L
(82630)
OZAI | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
UKEE COU | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007 | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542) | ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L
(82664) | | identifier | | parathion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415) | buzin,
water,
fltrd,
ug/L
(82630)
OZAI | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
UKEE COU | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007 | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542) | ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | methalin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L
(82664) | | identifier OZ-12/21E/05-0582 | 05-22-03 | parathion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415)
<0.013 | buzin,
water,
fltrd,
ug/L
(82630)
OZAI
<0.006
PORT | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
UKEE COU
<0.002 | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007
JNTY
<0.007 | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542)
<0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | meth-
alin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L
(82664) | | identifier OZ-12/21E/05-0582 | 05-22-03 | parathion,
water,
fltrd
0.7u GF
ug/L
(82667) | chlor,
water,
fltrd,
ug/L
(39415)
<0.013 | buzin,
water,
fltrd,
ug/L
(82630)
OZAI
<0.006
PORT
<0.006
SHAV
<0.006 | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
UKEE COU
<0.002
TAGE COU
<0.002
WANO CO
<0.002
<0.002 | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007
JNTY
<0.007
UNTY
<0.007 | DDE,
water,
fltrd,
ug/L
(34653) | thion,
water,
fltrd,
ug/L
(39542)
<0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669) | meth-
alin,
water,
fltrd
0.7u GF
ug/L
(82683) | water
fltrd
0.7u GF
ug/L
(82664) | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | parathion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 | chlor,
water,
fltrd,
ug/L
(39415)
<0.013
<0.013 | buzin,
water,
fltrd,
ug/L
(82630)
OZAV
<0.006
PORT
<0.006
SHAV
<0.006
<0.006 | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
UKEE COU
<0.002
TAGE COU
<0.002
VANO CO
<0.002
<0.002 | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007
JNTY
<0.007
UNTY
<0.007
VNTY | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 | thion,
water,
fltrd,
ug/L
(39542)
<0.010
<0.010
<0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
<0.004
<0.004 | meth-
alin,
water,
fltrd
0.7u GF
ug/L
(82683)
<0.022
<0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667)
<0.006 | chlor,
water,
fltrd,
ug/L
(39415)
<0.013 | buzin,
water,
fltrd,
ug/L
(82630)
OZAI
<0.006
PORT
<0.006
SHAV
<0.006
VII
<0.006 | nate,
water,
fltrd
0.7u GF
ug/L
(82671)
UKEE COU
<0.002
TAGE COU
<0.002
VANO CO
<0.002
<0.002
LAS COUN | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007
JNTY
<0.007
UNTY
<0.007
<0.007
VTY
<0.007 | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 | thion,
water,
fltrd,
ug/L
(39542)
<0.010
<0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
<0.004 | methalin, water, fltrd 0.7u GF ug/L (82683) <0.022 <0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | para- thion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006
 chlor, water, fltrd, ug/L (39415) <0.013 <0.013 <0.013 <0.013 | buzin,
water,
fltrd,
ug/L
(82630)
OZAI
<0.006
PORT
<0.006
SHAV
<0.006
VII
<0.006
WASHI | nate, water, fltrd 0.7u GF ug/L (82671) UKEE COU <0.002 TAGE COU <0.002 VANO CO <0.002 <0.002 LAS COUN <0.002 NGTON C | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007
JNTY
<0.007
UNTY
<0.007
VTY
<0.007
OUNTY | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 <0.003 | thion, water, fltrd, ug/L (39542) <0.010 <0.010 <0.010 <0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
<0.004
<0.004
<0.004
<0.004 | meth- alin, water, filtrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 <0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | parathion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 | chlor,
water,
fltrd,
ug/L
(39415)
<0.013
<0.013 | buzin,
water,
fltrd,
ug/L
(82630)
OZAV
<0.006
PORT
<0.006
SHAV
<0.006
<0.006
VIII
<0.006
WASHI
<0.006 | nate, water, fltrd 0.7u GF ug/L (82671) UKEE COU <0.002 TAGE COU <0.002 VANO CO <0.002 <0.002 -C.002 COU <0.002 AS COUN <0.002 NGTON CO <0.002 | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007
JNTY
<0.007
UNTY
<0.007
VTY
<0.007
OUNTY
<0.007 | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 | thion,
water,
fltrd,
ug/L
(39542)
<0.010
<0.010
<0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
<0.004
<0.004 | meth-
alin,
water,
fltrd
0.7u GF
ug/L
(82683)
<0.022
<0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | para- thion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006 | chlor, water, fltrd, ug/L (39415) <0.013 <0.013 <0.013 <0.013 | buzin,
water,
fltrd,
ug/L
(82630)
OZAV
<0.006
PORT
<0.006
SHAV
<0.006
<0.006
VIII
<0.006
WASHI
<0.006 | nate, water, fltrd 0.7u GF ug/L (82671) UKEE COU <0.002 TAGE COU <0.002 VANO CO <0.002 <0.002 LAS COUN <0.002 NGTON C | amide,
water,
fltrd
0.7u GF
ug/L
(82684)
JNTY
<0.007
JNTY
<0.007
UNTY
<0.007
VTY
<0.007
OUNTY
<0.007 | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 <0.003 | thion, water, fltrd, ug/L (39542) <0.010 <0.010 <0.010 <0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
<0.004
<0.004
<0.004
<0.004 | meth- alin, water, filtrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 <0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | para- thion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006 <0.006 | chlor, water, fltrd, ug/L (39415) <0.013 <0.013 <0.013 <0.013 <0.013 | buzin, water, fltrd, ug/L (82630) OZAV <0.006 PORT <0.006 SHAV <0.006 VII <0.006 WASHI <0.006 WAU <0.006 | nate, water, fltrd 0.7u GF ug/L (82671) UKEE COU <0.002 TAGE COU <0.002 VANO CO <0.002 <0.002 -CAS COUN <0.002 NGTON C <0.002 PACA CO | amide, water, fltrd 0.7u GF ug/L (82684) UNTY <0.007 UNTY <0.007 UNTY <0.007 UNTY <0.007 OUNTY <0.007 UNTY <0.007 UNTY <0.007 | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 <0.003 <0.003 | thion, water, fltrd, ug/L (39542) <0.010 <0.010 <0.010 <0.010 <0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
<0.004
<0.004
<0.004
<0.004
<0.004 | meth- alin, water, filtrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 <0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | para- thion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006 <0.006 | chlor, water, fltrd, ug/L (39415) <0.013 <0.013 <0.013 <0.013 <0.013 | buzin, water, fltrd, ug/L (82630) OZAV <0.006 PORT <0.006 SHAV <0.006 VII <0.006 WASHI <0.006 WAU <0.006 | nate, water, filtrd 0.7u GF ug/L (82671) UKEE COU <0.002 TAGE COU <0.002 VANO CO <0.002 <0.002 -CAS COUN <0.002 NGTON C <0.002 PACA CO <0.002 | amide, water, fltrd 0.7u GF ug/L (82684) UNTY <0.007 UNTY <0.007 UNTY <0.007 UNTY <0.007 OUNTY <0.007 UNTY <0.007 UNTY <0.007 | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 <0.003 <0.003 | thion, water, fltrd, ug/L (39542) <0.010 <0.010 <0.010 <0.010 <0.010 | ulate,
water,
fltrd
0.7u GF
ug/L
(82669)
<0.004
<0.004
<0.004
<0.004
<0.004 | meth- alin, water, filtrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 <0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | para- thion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 | chlor, water, fltrd, ug/L (39415) <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 | buzin, water, fltrd, ug/L (82630) OZAV <0.006 PORT <0.006 SHAV <0.006 VIII <0.006 WASHI <0.006 WAUS <0.006 CO.006 VAUS | nate, water, fltrd 0.7u GF ug/L (82671) UKEE COU <0.002 TAGE COU <0.002 VANO CO <0.002 -0.002 -0.002 AS COUN <0.002 NGTON C <0.002 PACA CO <0.002 SHARA CO <0.002 <0.002 <0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 | amide, water, fltrd 0.7u GF ug/L (82684) JNTY <0.007 JNTY <0.007 UNTY | DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 | thion, water, fltrd, ug/L (39542) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | ulate, water, fltrd 0.7u GF ug/L (82669) <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 | methalin, water, filtrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 | water fltrd 0.7u GF ug/L (82664) <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | | , | | TOBER 20 | | | | | | |---|--|---|---|---|--|---|--|---|--|---|--| | Local
identifier | Date | Prometon,
water,
fltrd,
ug/L
(04037) | Pron-
amide,
water,
fltrd
0.7u GF
ug/L
(82676) | Propa-
chlor,
water,
fltrd,
ug/L
(04024) | Propanil, water, fltrd 0.7u GF ug/L (82679) | Propargite,
water,
fltrd
0.7u GF
ug/L
(82685) | Sima-
zine,
water,
fltrd,
ug/L
(04035) | Tebu-
thiuron
water
fltrd
0.7u GF
ug/L
(82670) | Terbacil,
water,
fltrd
0.7u GF
ug/L
(82665) | Terbu-
fos,
water,
fltrd
0.7u GF
ug/L
(82675) | Thiobencarb
water
fltrd
0.7u GF
ug/L
(82681) | | | | | | OZAI | UKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | PORT | ΓAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | SHAV | VANO COI | UNTY | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | <0.01
<0.01 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | <0.005
<0.005 | <0.02
<0.02 | <0.034
<0.034 | <0.02
<0.02 | <0.005
<0.005 | | | | | | VII | LAS COUN | TY | | | | | | | VI-41/12E/33-0095 | 07-24-03 | < 0.01 | < 0.004 | < 0.010 | < 0.011 | < 0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | | | | | WASHI | NGTON C | OUNTY | | | | | | | WN-10/19E/13-0997 | 05-22-03 | < 0.01 | < 0.004 | <0.010 | <0.011 | <0.02 | < 0.005 | < 0.02 | < 0.034 | < 0.02 | < 0.005 | | WD 22/14F/25 0021 | 06 10 02 | .0.01 | -0.004 | | PACA COU | | .0.005 | .0.02 | .0.024 | .0.02 | .0.005 | | WP-23/14E/25-0831 | 06-10-03 | <0.01 | <0.004 | <0.010
WAUS | <0.011
SHARA CO | <0.02
UNTY | < 0.005 | <0.02 | <0.034 | <0.02 | < 0.005 |
| WS-18/10E/15-1055
WS-18/13E/11-1056
WS-20/11E/03-1054 | 06-05-03
05-21-03
06-10-03 | <0.01
<0.01
<0.01 | <0.004
<0.004
<0.004 | <0.010
<0.010
<0.010 | <0.011
<0.011
<0.011 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | <0.02
<0.02
<0.02 | <0.034
<0.034
<0.034 | <0.02
<0.02
<0.02 | <0.005
<0.005
<0.005 | | | | | MA | ARQUETTI | E COUNTY | , MICHIG | AN | | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | <0.01
<0.01 | <0.004
<0.004 | <0.010
<0.010 | <0.011
<0.011 | <0.02
<0.02 | <0.005
<0.005 | <0.02
<0.02 | <0.034
<0.034 | <0.02
<0.02 | <0.005
<0.005 | | | | | | | | | | | | | | | Local
identifier | Date | Tri-
allate,
water,
fltrd
0.7u GF
ug/L
(82678) | Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661) | 1,1,1,2
-Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(77562) | 1,1,1-
Tri-
chloro-
ethane,
water,
unfltrd
ug/L
(34506) | 1,1,2,2
-Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(34516) | CFC-113
water
unfltrd
ug/L
(77652) | 1,1,2-
Tri-
chloro-
ethane,
water,
unfltrd
ug/L
(34511) | 1,1-Di-
chloro-
ethane,
water
unfltrd
ug/L
(34496) | 1,1-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34501) | 1,1-Di-
chloro-
propene
water
unfltrd
ug/L
(77168) | | | Date | allate,
water,
fltrd
0.7u GF
ug/L | flur-
alin,
water,
fltrd
0.7u GF
ug/L | -Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(77562) | Tri-
chloro-
ethane,
water,
unfltrd
ug/L | -Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(34516) | water
unfltrd
ug/L | Tri-
chloro-
ethane,
water,
unfltrd
ug/L | chloro-
ethane,
water
unfltrd
ug/L | chloro-
ethene,
water,
unfltrd
ug/L | chloro-
propene
water
unfltrd
ug/L | | | Date 05-22-03 | allate,
water,
fltrd
0.7u GF
ug/L | flur-
alin,
water,
fltrd
0.7u GF
ug/L | -Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(77562)
OZAI
<0.03 | Tri-
chloro-
ethane,
water,
unfltrd
ug/L
(34506)
UKEE COU | -Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(34516)
UNTY
<0.09 | water
unfltrd
ug/L | Tri-
chloro-
ethane,
water,
unfltrd
ug/L | chloro-
ethane,
water
unfltrd
ug/L | chloro-
ethene,
water,
unfltrd
ug/L | chloro-
propene
water
unfltrd
ug/L | | identifier OZ-12/21E/05-0582 | 05-22-03 | allate,
water,
fltrd
0.7u GF
ug/L
(82678) | fluralin,
water,
fltrd
0.7u GF
ug/L
(82661) | -Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(77562)
OZAI
<0.03 | Tri- chloro- ethane, water, unfltrd ug/L (34506) UKEE COU <0.03 | -Tetra-
chloro-
ethane,
water,
unfltrd
ug/L
(34516)
JNTY
<0.09 | water
unfltrd
ug/L
(77652) | Tri-chloro-ethane, water, unfltrd ug/L (34511) | chloro-
ethane,
water
unfltrd
ug/L
(34496) | chloro-
ethene,
water,
unfltrd
ug/L
(34501) | chloro-
propene
water
unfitrd
ug/L
(77168) | | identifier | | allate,
water,
fltrd
0.7u GF
ug/L
(82678) | flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82661) | -Tetra-chloro-ethane, water, unfltrd ug/L (77562) OZAI <0.03 PORT | Tri-
chloro-
ethane,
water,
unfltrd
ug/L
(34506)
UKEE COU | -Tetra-chloro-ethane, water, unfltrd ug/L (34516) UNTY <0.09 UNTY <0.09 | water
unfltrd
ug/L
(77652) | Tri-
chloro-
ethane,
water,
unfltrd
ug/L
(34511) | chloro-
ethane,
water
unfltrd
ug/L
(34496) | chloro-
ethene,
water,
unfltrd
ug/L
(34501) | chloro-
propene
water
unfltrd
ug/L
(77168) | | identifier OZ-12/21E/05-0582 | 05-22-03 | allate,
water,
fltrd
0.7u GF
ug/L
(82678) | fluralin,
water,
fltrd
0.7u GF
ug/L
(82661) | -Tetra-chloro-ethane, water, unfltrd ug/L (77562) OZAI <0.03 PORT | Tri- chloro- ethane, water, unfltrd ug/L (34506) UKEE COU <0.03 FAGE COU <0.03 | -Tetra-chloro-ethane, water, unfltrd ug/L (34516) UNTY <0.09 UNTY <0.09 | water
unfltrd
ug/L
(77652) | Tri-chloro-ethane, water, unfltrd ug/L (34511) | chloro-
ethane,
water
unfltrd
ug/L
(34496) | chloro-
ethene,
water,
unfltrd
ug/L
(34501) | chloro-
propene
water
unfitrd
ug/L
(77168) | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 | -Tetra-chloro-ethane, water, unfltrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 | Tri- chloro- ethane, water, unfltrd ug/L (34506) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 | -Tetra-chloro-ethane, water, unfltrd ug/L (34516) UNTY <0.09 UNTY <0.09 UNTY <0.09 <0.09 | water
unfltrd
ug/L
(77652)
<0.06
<0.06 | Tri-chloro-ethane, water, unfltrd ug/L (34511) <0.06 <0.06 | chloroethane, water unfltrd ug/L (34496) <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 | chloro-propene water unfltrd ug/L (77168) <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 | -Tetra-chloro-ethane, water, unfltrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 | Tri- chloro- ethane, water, unfltrd ug/L (34506) UKEE COU <0.03 TAGE COU <0.03 VANO COI <0.03 <0.03 | -Tetra-chloro-ethane, water, unfltrd ug/L (34516) UNTY <0.09 UNTY <0.09 UNTY <0.09 <0.09 | water
unfltrd
ug/L
(77652)
<0.06
<0.06 | Tri-chloro-ethane, water, unfltrd ug/L (34511) <0.06 <0.06 | chloroethane, water unfltrd ug/L (34496) <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 | chloro-propene water unfltrd ug/L (77168) <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002
<0.002
<0.002
<0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 | -Tetra-chloro-ethane, water, unfitrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 VII <0.03 WASHI | Tri- chloro- ethane, water, unfltrd ug/L (34506) UKEE COU <0.03 TAGE COU <0.03 VANO COI <0.03 <0.03 .AS COUN <0.03 NGTON CO | -Tetra-chloro-ethance, water, unfltrd ug/L (34516) UNTY <0.09 UNTY <0.09 UNTY <0.09 -(0.09) UNTY | water unfltrd ug/L (77652) <0.06 <0.06 <0.06 <0.06 | Tri- chloro- ethane, water, unfltrd ug/L (34511) <0.06 <0.06 <0.06 <0.06 | chloro-ethane, water unfiltrd ug/L (34496) <0.04 <0.04 <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 <0.04 <0.04 | chloro-propene water unfiltrd ug/L (77168) <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | allate,
water,
fltrd
0.7u GF
ug/L
(82678)
<0.002
<0.002
<0.002
<0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 | -Tetra-chloro-ethane, water, unfltrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 VII <0.03 WASHI <0.03 | Tri-chloro-ethane, water, unfiltrd ug/L (34506) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 <0.03 AS COUN <0.03 NGTON CO <0.03 | -Tetra-chloro-ethane, water, unfiltrd ug/L (34516) UNTY <0.09 UNTY <0.09 UNTY <0.09 -TTY <0.09 -TTY <0.09 -TTY <0.09 | water unfltrd ug/L (77652) <0.06 <0.06 <0.06 | Tri-chloro-ethane, water, unfltrd ug/L (34511) <0.06 <0.06 <0.06 | chloro-ethane, water unfltrd ug/L (34496) <0.04 <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 <0.04 | chloro-
propene
water
unfltrd
ug/L
(77168)
<0.05
<0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 | -Tetra-chloro-ethane, water, unfiltrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 VIII <0.03 WASHI <0.03 | Tri- chloro- ethane, water, unfiltrd ug/L (34506) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 CO.03 AS COUN <0.03 MGTON CO <0.03 PACA COU | -Tetra-chloro-ethane, water, unfiltrd ug/L (34516) UNTY <0.09 UNTY <0.09 UNTY <0.09 TY <0.09 UNTY <0.09 UNTY <0.09 UNTY | water unfltrd ug/L (77652) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | Tri-chloro-ethane, water, unfltrd ug/L (34511) <0.06 <0.06 <0.06 <0.06 <0.06 | chloro-ethane, water unfltrd ug/L (34496) <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-propene water unfltrd ug/L (77168) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 | -Tetra-chloro-ethane, water, unfiltrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 VII <0.03 WASHI <0.03 WAU <0.03 | Tri- chloro- ethane, water, unfltrd ug/L (34506) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 <0.03 .AS COUN <0.03 NGTON CO <0.03 PACA COI <0.03 | -Tetra-chloro-ethance, water, unfltrd ug/L (34516) UNTY <0.09 | water unfltrd ug/L (77652) <0.06 <0.06 <0.06 <0.06 | Tri- chloro- ethane,
water, unfltrd ug/L (34511) <0.06 <0.06 <0.06 <0.06 | chloro-ethane, water unfiltrd ug/L (34496) <0.04 <0.04 <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 <0.04 <0.04 | chloro-propene water unfiltrd ug/L (77168) <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 | -Tetra-chloro-ethane, water, unfiltrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 VII <0.03 WASHI <0.03 WAU <0.03 | Tri- chloro- ethane, water, unfiltrd ug/L (34506) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 CO.03 AS COUN <0.03 MGTON CO <0.03 PACA COU | -Tetra-chloro-ethance, water, unfltrd ug/L (34516) UNTY <0.09 | water unfltrd ug/L (77652) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | Tri-chloro-ethane, water, unfltrd ug/L (34511) <0.06 <0.06 <0.06 <0.06 <0.06 | chloro-ethane, water unfltrd ug/L (34496) <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-propene water unfltrd ug/L (77168) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | allate, water, fltrd 0.7u GF ug/L (82678) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 | fluralin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 | -Tetra-chloro-ethane, water, unfltrd ug/L (77562) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 VII <0.03 WASHI <0.03 WAUS <0.03 <0.03 <0.03 <0.03 | Tri- chloro- ethane, water, unfltrd ug/L (34506) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 .AS COUN <0.03 NGTON CO <0.03 PACA COI <0.03 SHARA COI <0.03 <0.03 | -Tetra-chloro-ethane, water, unfiltrd ug/L (34516) UNTY <0.09 | water unfltrd ug/L (77652) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | Tri-chloro-ethane, water, unfltrd ug/L (34511) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | chloro-ethane, water unfltrd ug/L (34496) <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-ethene, water, unfltrd ug/L (34501) <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-propene water unfltrd ug/L (77168) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | ***** | LIC QUAIL | | i, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 Li III OC | TOBER 20 | 02 10 5L1 | ILMBLIC | 2000 | | | |---|--|---|---|--|--|---|--|---|---|--|---| | Local
identifier | Date | 1,2,3,4
Tetra-
methyl-
benzene
water
unfltrd
ug/L
(49999) | 1,2,3,5
Tetra-
methyl-
benzene
water
unfltrd
ug/L
(50000) | 1,2,3-
Tri-
chloro-
benzene
water
unfltrd
ug/L
(77613) | 1,2,3-
Tri-
chloro-
propane
water
unfltrd
ug/L
(77443) | 1,2,3-
Tri-
methyl-
benzene
water
unfltrd
ug/L
(77221) | 1,2,4-
Tri-
chloro-
benzene
water
unfltrd
ug/L
(34551) | 1,2,4-
Tri-
methyl-
benzene
water
unfltrd
ug/L
(77222) | Dibromo
chloro-
propane
water
unfltrd
ug/L
(82625) | 1,2-Di-
bromo-
ethane,
water,
unfltrd
ug/L
(77651) | 1,2-Di-
chloro-
benzene
water
unfltrd
ug/L
(34536) | | | | | | OZAI | UKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | PORT | ΓAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | SHAV | VANO CO | UNTY | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | <0.2
<0.2 | <0.2
<0.2 | <0.3
<0.3 | <0.16
<0.16 | <0.1
<0.1 | <0.1
<0.1 | <0.06
<0.06 | <0.5
<0.5 | <0.04
<0.04 | <0.03
<0.03 | | | | | | VII | LAS COUN | ITY | | | | | | | VI-41/12E/33-0095 | 07-24-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | E.09 | < 0.5 | < 0.04 | < 0.03 | | | | | | WASHI | NGTON C | OUNTY | | | | | | | WN-10/19E/13-0997 | 05-22-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | WAU | PACA CO | UNTY | | | | | | | WP-23/14E/25-0831 | 06-10-03 | < 0.2 | < 0.2 | < 0.3 | < 0.16 | < 0.1 | < 0.1 | < 0.06 | < 0.5 | < 0.04 | < 0.03 | | | | | | WAUS | SHARA CO | UNTY | | | | | | | WS-18/10E/15-1055
WS-18/13E/11-1056 | 06-05-03
05-21-03 | <0.2
<0.2 | <0.2
<0.2 | <0.3
<0.3 | <0.16
<0.16 | <0.1
<0.1 | <0.1
<0.1 | <0.06
<0.06 | <0.5
<0.5 | <0.04
<0.04 | <0.03
<0.03 | | WS-20/11E/03-1054 | 06-10-03 | <0.2 | <0.2 | <0.3 | < 0.16 | <0.1 | <0.1 | < 0.06 | <0.5 | < 0.04 | < 0.03 | | | | | MA | RQUETTI | E COUNTY | , MICHIG | AN | | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | <0.2
<0.2 | <0.2
<0.2 | <0.3
<0.3 | <0.16
<0.16 | <0.1
<0.1 | <0.1
<0.1 | 0.24
E.06 | <0.5
<0.5 | <0.04
<0.04 | <0.03
<0.03 | | | | | | | | | | | | | | | Local
identifier | Date | 1,2-Di-
chloro-
ethane,
water,
unfltrd
ug/L
(32103) | 1,2-Di-
chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832) | 1,2-Di-
chloro-
propane
water
unfltrd
ug/L
(34541) | 1,3,5-
Tri-
methyl-
benzene
water
unfltrd
ug/L
(77226) | 1,3-Di-
chloro-
benzene
water
unfltrd
ug/L
(34566) | 1,3-Di-
chloro-
propane
water
unfltrd
ug/L
(77173) | 1,4-Di-
chloro-
benzene
water
unfltrd
ug/L
(34571) | 14Bromo
fluoro-
benzene
surrog.
VOC Sch
wat unf
pct rcv
(99834) | 2,2-Di-
chloro-
propane
water
unfltrd
ug/L
(77170) | 2-
Chloro-
toluene
water
unfltrd
ug/L
(77275) | | | Date | chloro-
ethane,
water,
unfltrd
ug/L | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv | chloro-
propane
water
unfltrd
ug/L
(34541) | Tri-
methyl-
benzene
water
unfltrd
ug/L | chloro-
benzene
water
unfltrd
ug/L
(34566) | chloro-
propane
water
unfltrd
ug/L | chloro-
benzene
water
unfltrd
ug/L | fluoro-
benzene
surrog.
VOC Sch
wat unf
pct rcv |
chloro-
propane
water
unfltrd
ug/L | Chloro-
toluene
water
unfltrd
ug/L | | | Date 05-22-03 | chloro-
ethane,
water,
unfltrd
ug/L | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv | chloro-
propane
water
unfltrd
ug/L
(34541)
OZAI | Tri-
methyl-
benzene
water
unfltrd
ug/L
(77226) | chloro-
benzene
water
unfltrd
ug/L
(34566)
JNTY
<0.03 | chloro-
propane
water
unfltrd
ug/L | chloro-
benzene
water
unfltrd
ug/L | fluoro-
benzene
surrog.
VOC Sch
wat unf
pct rcv | chloro-
propane
water
unfltrd
ug/L | Chloro-
toluene
water
unfltrd
ug/L | | identifier | | chloro-
ethane,
water,
unfltrd
ug/L
(32103) | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832) | chloro-
propane
water
unfltrd
ug/L
(34541)
OZAI | Tri- methyl- benzene water unfltrd ug/L (77226) UKEE COU | chloro-
benzene
water
unfltrd
ug/L
(34566)
JNTY
<0.03 | chloro-
propane
water
unfltrd
ug/L
(77173) | chloro-
benzene
water
unfltrd
ug/L
(34571) | fluoro-
benzene
surrog.
VOC Sch
wat unf
pct rcv
(99834) | chloro-
propane
water
unfltrd
ug/L
(77170) | Chloro-
toluene
water
unfltrd
ug/L
(77275) | | identifier
OZ-12/21E/05-0582 | 05-22-03 | chloro-
ethane,
water,
unfltrd
ug/L
(32103) | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832) | chloro-
propane
water
unfltrd
ug/L
(34541)
OZAI
<0.03
PORT | Tri- methyl- benzene water unfltrd ug/L (77226) UKEE COU <0.04 | chloro-
benzene
water
unfltrd
ug/L
(34566)
JNTY
<0.03
JNTY
<0.03 | chloro-
propane
water
unfltrd
ug/L
(77173) | chloro-
benzene
water
unfltrd
ug/L
(34571) | fluoro-
benzene
surrog.
VOC Sch
wat unf
pet rev
(99834) | chloro-
propane
water
unfltrd
ug/L
(77170) | Chloro-
toluene
water
unfitrd
ug/L
(77275) | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | chloroethane, water, unfltrd ug/L (32103) <0.1 <0.1 | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832)
104 | chloro-
propane
water
unfltrd
ug/L
(34541)
OZAI
<0.03
PORT
<0.03
SHAV | Trimethylbenzene water unfiltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COU <0.04 | chloro-
benzene
water
unfltrd
ug/L
(34566)
UNTY
<0.03
UNTY
<0.03
UNTY
<0.03 | chloro-
propane
water
unfltrd
ug/L
(77173)
<0.1
<0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05 | fluoro-
benzene
surrog.
VOC Sch
wat unf
pet rev
(99834)
81.8 | chloro-
propane
water
unfltrd
ug/L
(77170)
<0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 | 05-22-03
07-29-03 | chloro-
ethane,
water,
unfltrd
ug/L
(32103)
<0.1 | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rev
(99832) | chloro-propane water unfiltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 | Trimethylbenzene water unfltrd ug/L (77226) UKEE COU <0.04 TAGE COU <0.04 VANO COI <0.04 <0.04 | chloro-
benzene
water
unfltrd
ug/L
(34566)
JNTY
<0.03
JNTY
<0.03
UNTY
<0.03
<0.03 | chloro-
propane
water
unfltrd
ug/L
(77173)
<0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05 | fluoro-
benzene
surrog.
VOC Sch
wat unf
pet rev
(99834)
81.8 | chloro-
propane
water
unfltrd
ug/L
(77170)
<0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | chloro-ethane, water, unfltrd ug/L (32103) <0.1 <0.1 <0.1 | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832)
104
129 | chloro-propane water unfiltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 VIII | Trimethylbenzene water unfiltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COI <0.04 <0.04 LAS COUN | chloro-
benzene
water
unfltrd
ug/L
(34566)
JNTY
<0.03
JNTY
<0.03
UNTY
<0.03
UNTY | chloro-propane water unfiltrd ug/L (77173) <0.1 <0.1 <0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05
<0.05 | fluoro-
benzene
surrog.
VOC Sch
wat unf
pet rev
(99834)
81.8 | chloro-
propane
water
unfltrd
ug/L
(77170)
<0.05
<0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | chloroethane, water, unfltrd ug/L (32103) <0.1 <0.1 | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832)
104 | chloro-propane water unfltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 VIII <0.03 | Trimethylbenzene water unfiltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COI <0.04 <0.04 LAS COUN <0.04 | chloro-
benzene
water
unfltrd
ug/L
(34566)
JNTY
<0.03
JNTY
<0.03
UNTY
<0.03
<0.03 | chloro-
propane
water
unfltrd
ug/L
(77173)
<0.1
<0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05 | fluoro-
benzene
surrog.
VOC Sch
wat unf
pet rev
(99834)
81.8 | chloro-
propane
water
unfltrd
ug/L
(77170)
<0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03 | chloro-ethane, water, unfiltrd ug/L (32103) <0.1 <0.1 <0.1 <0.1 | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rev
(99832)
104
129
115
113 | chloro-propane water unfiltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 VII <0.03 WASHI | Trimethylbenzene water unfltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COI <0.04 <0.04 AS COUN <0.04 NGTON CO | chlorobenzene water unfltrd ug/L (34566) JNTY <0.03 JNTY <0.03 UNTY <0.03 UNTY <0.03 OUNTY OUNTY | chloro-
propane
water
unfltrd
ug/L
(77173)
<0.1
<0.1
<0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05
<0.05
<0.05 | fluorobenzene surrog. VOC Sch wat unf pet rev (99834) 81.8 102 96.8 91.8 | chloro-
propane
water
unfltrd
ug/L
(77170)
<0.05
<0.05
<0.05 | Chlorotoluene water unfiltrd ug/L (77275) <0.04 <0.04 <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | chloro-ethane, water, unfltrd ug/L (32103) <0.1 <0.1 <0.1 | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rcv
(99832)
104
129 | chloro-propane water unfiltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 VIII <0.03 WASHI <0.03 | Trimethylbenzene water unfiltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COU <0.04 <0.04 LAS COUN <0.04 NGTON C | chlorobenzene water unfltrd ug/L (34566) JNTY <0.03 JNTY <0.03 JNTY <0.03 COUNTY <0.03 COUNTY <0.03 | chloro-propane water unfiltrd ug/L (77173) <0.1 <0.1 <0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05
<0.05 | fluoro-
benzene
surrog.
VOC Sch
wat unf
pet rev
(99834)
81.8 | chloro-
propane
water
unfltrd
ug/L
(77170)
<0.05
<0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | chloroethane, water, unfltrd ug/L (32103) <0.1 <0.1 <0.1 <0.1 <0.1 | chloro-ethane-d4, sur Sch2090 wat unf pct rcv (99832) 104 129 115 113 119 | chloro-propane water unfltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 <0.03 VII <0.03 WASHI <0.03 WAU | Trimethylbenzene water unfltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COI <0.04 PACA COI PACA COI | chlorobenzene water unfltrd ug/L (34566) UNTY <0.03 UNTY <0.03 UNTY <0.03 COUNTY <0.03 UNTY <0.03 UNTY <0.03 UNTY | chloro-propane water unfiltrd ug/L (77173) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05
<0.05
<0.05
<0.05 | fluoro-benzene surrog. VOC Sch wat unf pet rev (99834) 81.8 102 96.8 91.8 85.9 | chloro-propane water unfltrd ug/L (77170) <0.05 <0.05 <0.05 <0.05 <0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 <0.04 <0.04 <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03 | chloro-ethane, water, unfiltrd ug/L (32103) <0.1 <0.1 <0.1 <0.1 | chloro-
ethane-
d4, sur
Sch2090
wat unf
pct rev
(99832)
104
129
115
113 | chloro-propane water unfltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 VIII <0.03 WASHI <0.03 WASHI <0.03 | Trimethylbenzene water unfltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COI <0.04 <0.04 -0.04 AS COUN <0.04 NGTON C <0.04 PACA COI <0.04 | chloro-benzene water unfiltrd ug/L (34566) JNTY <0.03 | chloro-
propane
water
unfltrd
ug/L
(77173)
<0.1
<0.1
<0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05
<0.05
<0.05 | fluorobenzene surrog. VOC Sch wat unf pet rev (99834) 81.8 102 96.8 91.8 | chloro-
propane
water
unfltrd
ug/L
(77170)
<0.05
<0.05
<0.05 | Chlorotoluene water unfiltrd ug/L (77275) <0.04 <0.04 <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 |
05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | chloroethane, water, unfltrd ug/L (32103) <0.1 <0.1 <0.1 <0.1 <0.1 | chloro-ethane-d4, sur Sch2090 wat unf pct rcv (99832) 104 129 115 113 119 | chloro-propane water unfltrd ug/L (34541) OZAI <0.03 PORT <0.03 SHAV <0.03 VIII <0.03 WASHI <0.03 WASHI <0.03 | Trimethylbenzene water unfltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COI <0.04 PACA COI PACA COI | chloro-benzene water unfiltrd ug/L (34566) JNTY <0.03 | chloro-propane water unfiltrd ug/L (77173) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | chloro-
benzene
water
unfltrd
ug/L
(34571)
<0.05
<0.05
<0.05
<0.05 | fluoro-benzene surrog. VOC Sch wat unf pet rev (99834) 81.8 102 96.8 91.8 85.9 | chloro-propane water unfltrd ug/L (77170) <0.05 <0.05 <0.05 <0.05 <0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 <0.04 <0.04 <0.04 <0.04 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | chloroethane, water, unfltrd ug/L (32103) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | chloro-ethane-d4, sur Sch2090 wat unf pct rcv (99832) 104 129 115 113 119 103 116 135 106 117 | chloro-propane water unfltrd ug/L (34541) OZAI < 0.03 PORT < 0.03 SHAW < 0.03 CO.03 WASHI < 0.03 WAUS < 0.03 CO.03 | Trimethylbenzene water unfltrd ug/L (77226) UKEE COU <0.04 FAGE COU <0.04 VANO COI <0.04 VANO COI <0.04 AS COUN <0.04 NGTON C <0.04 PACA COI <0.04 GHARA COI <0.04 <0.04 | chloro-benzene water unfltrd ug/L (34566) JNTY <0.03 | chloro-propane water unfiltrd ug/L (77173) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | chloro-benzene water unfltrd ug/L (34571) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | fluoro-benzene surrog. VOC Sch wat unf pet rev (99834) 81.8 102 96.8 91.8 85.9 83.1 90.1 | chloro-propane water unfltrd ug/L (77170) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | Chlorotoluene water unfltrd ug/L (77275) <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | **** | IEK-QUAL | | -, | | TOBER 20 | | | | | | |---|--|--|---|---|---|--|---|---|--|---|--| | Local
identifier | Date | 2-
Ethyl-
toluene
water
unfltrd
ug/L
(77220) | 3-
Chloro-
propene
water
unfltrd
ug/L
(78109) | 4-
Chloro-
toluene
water
unfltrd
ug/L
(77277) | 4-Iso-
propyl-
toluene
water
unfltrd
ug/L
(77356) | Acetone
water
unfltrd
ug/L
(81552) | Acrylo-
nitrile
water
unfltrd
ug/L
(34215) | Benzene
water
unfltrd
ug/L
(34030) | Bromo-
benzene
water
unfltrd
ug/L
(81555) | Bromo-
chloro-
methane
water
unfltrd
ug/L
(77297) | Bromo-
di-
chloro-
methane
water
unfltrd
ug/L
(32101) | | | | | | OZA | UKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | POR | TAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | SHAV | WANO CO | UNTY | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | <0.06
<0.06 | <0.12
<0.12 | <0.05
<0.05 | <0.12
<0.12 | <7
<7 | <1
<1 | <0.04
<0.04 | <0.04
<0.04 | <0.12
<0.12 | <0.05
<0.05 | | | | | | VII | LAS COUN | TY | | | | | | | VI-41/12E/33-0095 | 07-24-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | WASHI | NGTON C | OUNTY | | | | | | | WN-10/19E/13-0997 | 05-22-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | WAU | PACA COU | JNTY | | | | | | | WP-23/14E/25-0831 | 06-10-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | | WAUS | SHARA CO | UNTY | | | | | | | WS-18/10E/15-1055
WS-18/13E/11-1056 | 06-05-03
05-21-03 | <0.06
<0.06 | <0.12
<0.12 | <0.05
<0.05 | <0.12
<0.12 | <7
<7 | <1
<1 | <0.04
<0.04 | <0.04
<0.04 | <0.12
<0.12 | <0.05
<0.05 | | WS-20/11E/03-1054 | 06-10-03 | < 0.06 | < 0.12 | < 0.05 | < 0.12 | <7 | <1 | < 0.04 | < 0.04 | < 0.12 | < 0.05 | | | | | MA | ARQUETTI | E COUNTY | , MICHIG | AN | | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | <0.06
<0.06 | <0.12
<0.12 | <0.05
<0.05 | <0.12
<0.12 | <7
<7 | <1
<1 | <0.04
<0.04 | <0.04
<0.04 | <0.12
<0.12 | <0.05
<0.05 | | | | | | | | | | | | | | | Local
identifier | Date | Bromoethene, water, unfltrd ug/L (50002) | Bromomethane water unfltrd ug/L (34413) | Carbon
di-
sulfide
water
unfltrd
ug/L
(77041) | Chloro-
benzene
water
unfltrd
ug/L
(34301) | Chloro-
ethane,
water,
unfltrd
ug/L
(34311) | Chloro-
methane
water
unfltrd
ug/L
(34418) | cis-
1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093) | cis-
1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34704) | Di-
bromo-
chloro-
methane
water
unfltrd
ug/L
(32105) | Di-
bromo-
methane
water
unfltrd
ug/L
(30217) | | | Date | ethene,
water,
unfltrd
ug/L | methane
water
unfltrd
ug/L | di-
sulfide
water
unfltrd
ug/L
(77041) | benzene
water
unfltrd
ug/L | ethane,
water,
unfltrd
ug/L
(34311) | methane
water
unfltrd
ug/L | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L | bromo-
chloro-
methane
water
unfltrd
ug/L | bromo-
methane
water
unfltrd
ug/L | | | Date 05-22-03 | ethene,
water,
unfltrd
ug/L | methane
water
unfltrd
ug/L | di-
sulfide
water
unfltrd
ug/L
(77041)
OZAI | benzene
water
unfltrd
ug/L
(34301)
UKEE COU
<0.03 | ethane,
water,
unfltrd
ug/L
(34311)
UNTY
<0.1 | methane
water
unfltrd
ug/L | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L | bromo-
chloro-
methane
water
unfltrd
ug/L | bromo-
methane
water
unfltrd
ug/L | | identifier OZ-12/21E/05-0582 | | ethene,
water,
unfltrd
ug/L
(50002) | methane
water
unfltrd
ug/L
(34413) | di-
sulfide
water
unfltrd
ug/L
(77041)
OZAI | benzene
water
unfltrd
ug/L
(34301)
UKEE COU | ethane,
water,
unfltrd
ug/L
(34311)
UNTY
<0.1 | methane
water
unfltrd
ug/L
(34418) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093) | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34704) | bromo-
chloro-
methane
water
unfltrd
ug/L
(32105) | bromomethane water unfltrd ug/L (30217) | | identifier | 05-22-03 | ethene,
water,
unfltrd
ug/L
(50002) | methane
water
unfltrd
ug/L
(34413) | di-
sulfide
water
unfltrd
ug/L
(77041)
OZAI
<0.07
PORT | benzene
water
unfltrd
ug/L
(34301)
UKEE COU
<0.03 | ethane,
water,
unfltrd
ug/L
(34311)
UNTY
<0.1
UNTY
<0.1 | methane
water
unfltrd
ug/L
(34418) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093) | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34704) | bromo-
chloro-
methane
water
unfltrd
ug/L
(32105) | bromo-
methane
water
unfltrd
ug/L
(30217) | | identifier OZ-12/21E/05-0582 | 05-22-03 | ethene,
water,
unfltrd
ug/L
(50002) | methane
water
unfltrd
ug/L
(34413) | di-
sulfide
water
unfltrd
ug/L
(77041)
OZAI
<0.07
PORT | benzene
water
unfltrd
ug/L
(34301)
UKEE COU
<0.03
FAGE COU | ethane,
water,
unfltrd
ug/L
(34311)
UNTY
<0.1
UNTY
<0.1 | methane
water
unfltrd
ug/L
(34418) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093) | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34704) | bromo-
chloro-
methane
water
unfltrd
ug/L
(32105) | bromomethane water unfltrd ug/L (30217) | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | ethene,
water,
unfltrd
ug/L
(50002)
<0.1
<0.1 | methane water unfitted ug/L (34413) <0.3 <0.3
| di-
sulfide
water
unfltrd
ug/L
(77041)
OZAI
<0.07
PORT
<0.07
SHAV
E.10
0.21 | benzene
water
unfltrd
ug/L
(34301)
UKEE COU
<0.03
FAGE COU
<0.03
WANO COI | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093)
<0.04 | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34704)
<0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 | bromomethane water unfltrd ug/L (30217) <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | ethene,
water,
unfltrd
ug/L
(50002)
<0.1
<0.1 | methane water unfitted ug/L (34413) <0.3 <0.3 | di-
sulfide
water
unfltrd
ug/L
(77041)
OZAI
<0.07
PORT
<0.07
SHAV
E.10
0.21 | benzene
water
unfltrd
ug/L
(34301)
UKEE COU
<0.03
TAGE COU
<0.03
WANO COI
<0.03
<0.03 | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093)
<0.04 | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34704)
<0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 | bromomethane water unfltrd ug/L (30217) <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | ethene, water, unfltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 | methane water unfitrd ug/L (34413) <0.3 <0.3 <0.3 | disulfide water unfltrd ug/L (77041) OZAN <0.07 PORT <0.07 SHAV E.10 0.21 VIII <0.07 | benzene
water
unfltrd
ug/L
(34301)
UKEE COU
<0.03
FAGE COU
<0.03
VANO COI
<0.03
<0.03 | ethane, water, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 TTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093)
<0.04
<0.04 | 1,3-Di- chloro- propene water unfltrd ug/L (34704) <0.09 <0.09 | bromochloro- methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 | bromomethane water unfiltrd ug/L (30217) <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | ethene, water, unfltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 | methane water unfitrd ug/L (34413) <0.3 <0.3 <0.3 | disulfide water unfltrd ug/L (77041) OZAN <0.07 PORT <0.07 SHAV E.10 0.21 VIII <0.07 | benzene water unfltrd ug/L (34301) UKEE COU <0.03 TAGE COU <0.03 VANO COI <0.03 <0.03 LAS COUN <0.03 | ethane, water, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 TTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(77093)
<0.04
<0.04 | 1,3-Di- chloro- propene water unfltrd ug/L (34704) <0.09 <0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 <0.2 | bromomethane water unfiltrd ug/L (30217) <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | ethene, water, unfltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 <0.1 | methane water unfiltrd ug/L (34413) <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 | di-
sulfide
water
unfltrd
ug/L
(77041)
OZAI
<0.07
PORT
<0.07
SHAV
E.10
0.21
VII
<0.07
WASHI
<0.07 | benzene water unfiltrd ug/L (34301) UKEE COU <0.03 TAGE COU <0.03 VANO COI <0.03 CAS COUN <0.03 NGTON CO <0.03 PACA COU | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 TY <0.1 TY <0.1 UNTY | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 <0.2 <0.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093) <0.04 <0.04 <0.04 <0.04 <0.04 | 1,3-Di-chloro-propene water unfltrd ug/L (34704) <0.09 <0.09 <0.09 <0.09 <0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | bromomethane water unfltrd ug/L (30217) <0.05 <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | ethene, water, unfiltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 | methane water unfiltrd ug/L (34413) <0.3 <0.3 <0.3 <0.3 <0.3 | di- sulfide water unfiltrd ug/L (77041) OZAI <0.07 PORT <0.07 SHAV E.10 0.21 VII <0.07 WASHI <0.07 WASHI <0.07 | benzene water unfilrd ug/L (34301) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 CAS COUN <0.03 NGTON CO <0.03 PACA COU <0.03 | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 CO.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 OUNTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 <0.2 <0.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093) <0.04 <0.04 <0.04 <0.04 | 1,3-Di- chloro- propene water unfltrd ug/L (34704) <0.09 <0.09 <0.09 <0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 <0.2 <0.2 | bromomethane water unfltrd ug/L (30217) <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03 | ethene, water, unfiltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | methane water unfiltrd ug/L (34413) <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 | di- sulfide water unfltrd ug/L (77041) OZAI <0.07 PORT <0.07 SHAW E.10 0.21 VII <0.07 WASHI <0.07 WAU <0.07 WAU < | benzene water unfltrd ug/L (34301) UKEE COU <0.03 TAGE COU <0.03 VANO COI <0.03 -0.03 LAS COUN <0.03 PACA COU <0.03 GHARA CO | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 TY <0.1 TY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093) <0.04 <0.04 <0.04 <0.04 <0.04 | 1,3-Di- chloro- propene water unfltrd ug/L (34704) <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | bromomethane water unfiltrd ug/L (30217) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | ethene, water, unfltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 <0.1 | methane water unfiltrd ug/L (34413) <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 | di- sulfide water unfiltrd ug/L (77041) OZAI <0.07 PORT <0.07 SHAV E.10 0.21 VII <0.07 WASHI <0.07 WASHI <0.07 | benzene water unfilrd ug/L (34301) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 CAS COUN <0.03 NGTON CO <0.03 PACA COU <0.03 | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 UNTY <0.1 UNTY <0.1 CO.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 UNTY <0.1 OUNTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 <0.2 <0.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093) <0.04 <0.04 <0.04 <0.04 <0.04 | 1,3-Di-chloro-propene water unfltrd ug/L (34704) <0.09 <0.09 <0.09 <0.09 <0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | bromomethane water unfltrd ug/L (30217) <0.05 <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03 | ethene, water, unfiltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | methane water unfiltrd ug/L (34413) <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 | di- sulfide water unfltrd ug/L (77041) OZAI <0.07 PORT <0.07 SHAW E.10 0.21 VII <0.07 WASHI <0.07 WAUS <0.07 C0.07 C0.07 C0.07 C0.07 | benzene water unfltrd ug/L (34301) UKEE COU <0.03 FAGE COU <0.03 VANO COU <0.03 CAS COUN <0.03 NGTON CO <0.03 PACA COU <0.03 SHARA CO <0.03 <0.03 <0.03 | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 OUNTY <0.1 OUNTY <0.1 UNTY <0.1 OUNTY <0.1 OUNTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093) <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 | 1,3-Di- chloro- propene water unfltrd ug/L (34704) <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | bromomethane water unfiltrd ug/L (30217) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03
06-10-03 | ethene, water, unfiltrd ug/L (50002) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | methane water unfiltrd ug/L (34413) <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 | di- sulfide water unfltrd ug/L (77041) OZAI <0.07 PORT <0.07 SHAW E.10 0.21 VII <0.07 WASHI <0.07 WAUS <0.07 C0.07 C0.07 C0.07 C0.07 | benzene water unfilrd ug/L (34301) UKEE COU <0.03 FAGE COU <0.03 VANO COI <0.03 CAS COUN <0.03 NGTON CO <0.03 PACA COU <0.03 GHARA COU <0.03 <0.03 | ethane, water, unfiltrd ug/L (34311) UNTY <0.1 OUNTY <0.1 OUNTY <0.1 UNTY <0.1 OUNTY <0.1 OUNTY <0.1 | methane water unfiltrd ug/L (34418) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093) <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 | 1,3-Di- chloro- propene water unfltrd ug/L (34704) <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 | bromo-chloro-methane water unfltrd ug/L (32105) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | bromomethane water unfltrd ug/L (30217) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | WATER-QUALITY DATA,
WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | Di-
chloro-
di-
fluoro- | Di-
chloro-
methane | Di-
ethyl
ether, | Diiso-
propyl
ether, | Ethyl
methac-
rylate, | Ethyl
methyl
ketone, | Ethyl-
benzene | Hexa-
chloro-
buta-
diene, | Hexa-
chloro-
ethane, | Iodo-
methane | |---|--|--|---|--|---|--|---|---|--|---|---| | Local
identifier | Date | methane
wat unf
ug/L | water
unfltrd
ug/L | water,
unfltrd
ug/L | water,
unfltrd
ug/L | water,
unfltrd
ug/L | water,
unfltrd
ug/L | water
unfltrd
ug/L | water,
unfltrd
ug/L | water,
unfltrd
ug/L | water
unfltrd
ug/L | | исиппе | Date | (34668) | (34423) | (81576) | (81577) | (73570) | (81595) | (34371) | (39702) | (34396) | (77424) | | | | | | OZA | UKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | <5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | PORT | TAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | | VANO CO | | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | <0.18
<0.18 | <0.2
<0.2 | <0.2
<0.2 | <0.10
<0.10 | <0.2
<0.2 | <5.0
<5.0 | <0.03
<0.03 | <0.1
<0.1 | <0.2
<0.2 | <0.35
<0.35 | | | | | | | LAS COUN | | | | | | | | VI-41/12E/33-0095 | 07-24-03 | < 0.18 | <0.2 | <0.2 | <0.10 | <0.2 | <5.0 | < 0.03 | <0.1 | <0.2 | < 0.35 | | **************** | 07.00.00 | 0.40 | | | NGTON C | | . . | 0.02 | 0.4 | | 0.25 | | WN-10/19E/13-0997 | 05-22-03 | <0.18 | <0.2 | <0.2
WAU | <0.10
PACA CO | <0.2
UNTY | <5.0 | <0.03 | <0.1 | <0.2 | <0.35 | | WP-23/14E/25-0831 | 06-10-03 | < 0.18 | < 0.2 | < 0.2 | < 0.10 | < 0.2 | < 5.0 | < 0.03 | < 0.1 | < 0.2 | < 0.35 | | | | | | WAUS | SHARA CC | UNTY | | | | | | | WS-18/10E/15-1055 | 06-05-03 | < 0.18 | <0.2 | <0.2 | < 0.10 | <0.2 | <5.0 | < 0.03 | <0.1 | <0.2 | < 0.35 | | WS-18/13E/11-1056
WS-20/11E/03-1054 | 05-21-03
06-10-03 | <0.18
<0.18 | <0.2
<0.2 | <0.2
<0.2 | <0.10
<0.10 | <0.2
<0.2 | <5.0
<5.0 | <0.03
<0.03 | <0.1
<0.1 | <0.2
<0.2 | <0.35
<0.35 | | | | | MA | RQUETTI | E COUNTY | , MICHIG | AN | | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | <0.18
<0.18 | <0.2
<0.2 | <0.2
<0.2 | <0.10
<0.10 | <0.2
<0.2 | <5.0
<5.0 | <0.03
<0.03 | <0.1
<0.1 | <0.2
<0.2 | <0.35
<0.35 | Local
identifier | Date | Iso-
butyl
methyl
ketone,
water,
unfltrd
ug/L
(78133) | Iso-
propyl-
benzene
water
unfltrd
ug/L
(77223) | Methyl
acrylo-
nitrile
water
unfltrd
ug/L
(81593) | Methyl
acryl-
ate,
water,
unfltrd
ug/L
(49991) | Methyl
methac-
rylate,
water,
unfltrd
ug/L
(81597) | Methyl
tert-
pentyl
ether,
water,
unfltrd
ug/L
(50005) | meta-
+ para-
Xylene,
water,
unfltrd
ug/L
(85795) | Naphthalene, water, unfltrd ug/L (34696) | Methyl
n-butyl
ketone,
water,
unfltrd
ug/L | n-Butyl
benzene
water
unfltrd
ug/L
(77342) | | | Date | butyl
methyl
ketone,
water,
unfltrd | propyl-
benzene
water
unfltrd | acrylo-
nitrile
water
unfltrd
ug/L
(81593) | acryl-
ate,
water,
unfltrd | methac-
rylate,
water,
unfltrd
ug/L
(81597) | tert-
pentyl
ether,
water,
unfltrd | + para-
Xylene,
water,
unfltrd | alene,
water,
unfltrd | n-butyl
ketone,
water,
unfltrd | benzene
water
unfltrd | | | Date 05-22-03 | butyl
methyl
ketone,
water,
unfltrd
ug/L | propyl-
benzene
water
unfltrd
ug/L | acrylo-
nitrile
water
unfltrd
ug/L
(81593) | acryl-
ate,
water,
unfltrd
ug/L
(49991) | methac-
rylate,
water,
unfltrd
ug/L
(81597) | tert-
pentyl
ether,
water,
unfltrd
ug/L | + para-
Xylene,
water,
unfltrd
ug/L | alene,
water,
unfltrd
ug/L | n-butyl
ketone,
water,
unfltrd
ug/L | benzene
water
unfltrd
ug/L | | identifier OZ-12/21E/05-0582 | 05-22-03 | butyl
methyl
ketone,
water,
unfltrd
ug/L
(78133) | propyl-
benzene
water
unfltrd
ug/L
(77223) | acrylo-
nitrile
water
unfltrd
ug/L
(81593)
OZAI | acryl-
ate,
water,
unfltrd
ug/L
(49991)
UKEE COU
<2.0 | methac-rylate, water, unfltrd ug/L (81597) JNTY <0.3 JNTY | tert-
pentyl
ether,
water,
unfltrd
ug/L
(50005) | + para-
Xylene,
water,
unfltrd
ug/L
(85795) | alene,
water,
unfltrd
ug/L
(34696) | n-butyl
ketone,
water,
unfltrd
ug/L
(77103) | benzene
water
unfltrd
ug/L
(77342) | | identifier | | butyl
methyl
ketone,
water,
unfltrd
ug/L
(78133) | propyl-
benzene
water
unfltrd
ug/L
(77223) | acrylo-
nitrile
water
unfltrd
ug/L
(81593)
OZAI
<0.6
PORT | acryl-
ate,
water,
unfltrd
ug/L
(49991)
UKEE COU | methac-rylate, water, unfltrd ug/L (81597) JNTY <0.3 JNTY <0.3 | tert-
pentyl
ether,
water,
unfltrd
ug/L
(50005) | + para-
Xylene,
water,
unfltrd
ug/L
(85795) | alene,
water,
unfltrd
ug/L
(34696) | n-butyl
ketone,
water,
unfltrd
ug/L
(77103) | benzene
water
unfltrd
ug/L
(77342) | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | butyl
methyl
ketone,
water,
unfltrd
ug/L
(78133)
<0.4
<0.4 | propylbenzene water unfltrd ug/L (77223) <0.06 <0.06 | acrylo-
nitrile
water
unfltrd
ug/L
(81593)
OZAI
<0.6
PORT
<0.6
SHAV | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 VANO CO <2.0 | methac-rylate, water, unfltrd ug/L (81597) JNTY <0.3 JNTY <0.3 UNTY <0.3 | tert-
pentyl ether,
water,
unfltrd
ug/L
(50005)
<0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06 | alene,
water,
unfltrd
ug/L
(34696)
<0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 | benzene
water
unfitrd
ug/L
(77342)
<0.2
<0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 | 05-22-03
07-29-03 | butyl
methyl
ketone,
water,
unfltrd
ug/L
(78133)
<0.4 | propyl-
benzene
water
unfltrd
ug/L
(77223)
<0.06 | acrylo-
nitrile
water
unfltrd
ug/L
(81593)
OZAI
<0.6
PORT
<0.6
SHAV
<0.6
<0.6 | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 VANO CO <2.0 <2.0 <2.0 | methac-rylate, water, unfltrd ug/L (81597) JNTY <0.3 JNTY <0.3 UNTY <0.3 UNTY <0.3 | tert-
pentyl
ether,
water,
unfltrd
ug/L
(50005)
<0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06 | alene,
water,
unfltrd
ug/L
(34696)
<0.5 | n-butyl
ketone,
water,
unfltrd
ug/L
(77103)
<0.7 | benzene
water
unfltrd
ug/L
(77342)
<0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 | propyl-
benzene
water
unfltrd
ug/L
(77223)
<0.06
<0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 <0.6 VIII | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 <2.0 <2.0 <as coun<="" td=""><td>methacrylate, water, unfltrd ug/L (81597) JNTY <0.3 JNTY <0.3 UNTY <0.3 UNTY <0.3 ITY</td><td>tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08</td><td>+ para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06
<0.06</td><td>alene,
water,
unfltrd
ug/L
(34696)
<0.5
<0.5</td><td>n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7</td><td>benzene water unfltrd ug/L
(77342) <0.2 <0.2 <0.2 <0.2</td></as> | methacrylate, water, unfltrd ug/L (81597) JNTY <0.3 JNTY <0.3 UNTY <0.3 UNTY <0.3 ITY | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06
<0.06 | alene,
water,
unfltrd
ug/L
(34696)
<0.5
<0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7 | benzene water unfltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | butyl
methyl
ketone,
water,
unfltrd
ug/L
(78133)
<0.4
<0.4 | propylbenzene water unfltrd ug/L (77223) <0.06 <0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 <0.6 VIII <0.6 | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 VANO CO <2.0 <2.0 <2.0 <2.0 <2.0 | methacrylate, water, unfltrd ug/L (81597) UNTY <0.3 UNTY <0.3 UNTY <0.3 CO.3 UNTY <0.3 UNTY <0.3 CO.3 | tert-
pentyl ether,
water,
unfltrd
ug/L
(50005)
<0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06 | alene,
water,
unfltrd
ug/L
(34696)
<0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 | benzene
water
unfitrd
ug/L
(77342)
<0.2
<0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4 <0.4 | propyl-
benzene
water
unfltrd
ug/L
(77223)
<0.06
<0.06
<0.06
<0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 VII <0.6 WASHI | acryl- ate, water, unfiltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 VANO CO <2.0 <2.0 CAS COUN <2.0 MGTON C | methacrylate, water, unfltrd ug/L (81597) JNTY <0.3 JNTY <0.3 UNTY <0.3 UNTY <0.3 OUNTY | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06
<0.06
E.02
E.02 | alene,
water,
unfltrd
ug/L
(34696)
<0.5
<0.5
<0.5 | n-butyl ketone, water, unfiltrd ug/L (77103) <0.7 <0.7 <0.7 <0.7 | benzene water unfltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 | propyl-
benzene
water
unfltrd
ug/L
(77223)
<0.06
<0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 <0.6 VII <0.6 WASHI <0.6 | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 VANO CO <2.0 <2.0 AS COUN <2.0 NGTON C <2.0 | methacrylate, water, unfltrd ug/L (81597) UNTY <0.3 UNTY <0.3 UNTY <0.3 COUNTY <0.3 OUNTY <0.3 | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06
<0.06 | alene,
water,
unfltrd
ug/L
(34696)
<0.5
<0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7 | benzene water unfltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 | propylbenzene water unfltrd ug/L (77223) <0.06 <0.06 <0.06 <0.06 <0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 <0.6 VII <0.6 WASHI <0.6 WAU | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 <2.0 <2.0 <2.0 AS COUN <2.0 NGTON C <2.0 PACA COU | methacrylate, water, unfltrd ug/L (81597) UNTY <0.3 UNTY <0.3 UNTY <0.3 COUNTY <0.3 UNTY <0.3 UNTY <0.3 UNTY <0.3 UNTY <0.3 UNTY <0.3 | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08 <0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06
<0.06
E.02
E.02
<0.06 | alene, water, unfltrd ug/L (34696) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 | benzene water unfltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4 <0.4 | propyl-
benzene
water
unfltrd
ug/L
(77223)
<0.06
<0.06
<0.06
<0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 VII <0.6 WASHI <0.6 WAU <0.6 | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 VANO CO <2.0 <2.0 AS COUN <2.0 NGTON C <2.0 | methacrylate, water, unfiltrd ug/L (81597) JNTY <0.3 JNTY <0.3 UNTY <0.3 COUNTY <0.3 UNTY <0.3 UNTY <0.3 UNTY <0.3 UNTY <0.3 | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06
<0.06
E.02
E.02 | alene,
water,
unfltrd
ug/L
(34696)
<0.5
<0.5
<0.5 | n-butyl ketone, water, unfiltrd ug/L (77103) <0.7 <0.7 <0.7 <0.7 | benzene water unfltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 | propylbenzene water unfltrd ug/L (77223) <0.06 <0.06 <0.06 <0.06 <0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 VII <0.6 WASHI <0.6 WAU <0.6 | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 <2.0 <2.0 AS COUN <2.0 PACA COU <2.0 PACA COU <2.0 | methacrylate, water, unfiltrd ug/L (81597) JNTY <0.3 JNTY <0.3 UNTY <0.3 COUNTY <0.3 UNTY <0.3 UNTY <0.3 UNTY <0.3 UNTY <0.3 | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08 <0.08 | + para-
Xylene,
water,
unfltrd
ug/L
(85795)
<0.06
<0.06
E.02
E.02
<0.06 | alene, water, unfltrd ug/L (34696) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 | benzene water unfltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 | propylbenzene water unfltrd ug/L (77223) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 VII <0.6 WASHI <0.6 WAUS <0.6 CO.6 | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 <2.0 <2.0 AS COUN <2.0 PACA COU <2.0 CHARA COU <2.0 <2.0 <2.0 <2.0 | methac-rylate, water, unfltrd ug/L (81597) JNTY | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 | + para-Xylene, water, unfltrd ug/L (85795) <0.06 <0.06 E.02 E.02 <0.06 <0.06 <0.06 | alene, water, unfltrd ug/L (34696) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 | benzene water unfiltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 | propyl-benzene water unfltrd ug/L (77223) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 <0.6 WASHI <0.6 WAUS <0.6 C.6 C.6 WAUS <0.6 C.6 C.6 C.6 C.6 C.6 C.6 C.6 C.6 C.6 C | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 <2.0 AS COUN <2.0 AS COUN <2.0 PACA COU <2.0 CAS COUN | methac-rylate, water, unfltrd ug/L (81597) JNTY | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 | + para-Xylene, water, unfltrd ug/L (85795) <0.06 <0.06 E.02 E.02 <0.06 <0.06 <0.06 | alene, water, unfltrd ug/L (34696) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 | benzene water unfiltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
05-21-03
06-10-03 | butyl methyl ketone, water, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 | propyl-benzene water unfltrd ug/L (77223) <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 | acrylo- nitrile water unfltrd ug/L (81593) OZAI <0.6 PORT <0.6 SHAV <0.6 <0.6 WASHI <0.6 WAUS <0.6 C.6 C.6 WAUS <0.6 C.6 C.6 C.6 C.6 C.6 C.6 C.6 C.6 C.6 C | acryl- ate, water, unfltrd ug/L (49991) UKEE COU <2.0 FAGE COU <2.0 <2.0 AS COUN <2.0 AS COUN <2.0 PACA COU <2.0 CAS COUN | methac-rylate, water, unfltrd ug/L (81597) JNTY | tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 | + para-Xylene, water, unfltrd ug/L (85795) <0.06 <0.06 E.02 E.02 <0.06 <0.06 <0.06 | alene, water, unfltrd ug/L (34696) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | n-butyl ketone, water, unfltrd ug/L (77103) <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 | benzene water unfiltrd ug/L (77342) <0.2 <0.2 <0.2 <0.2 <0.2
<0.2 <0.2 <0.2 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Local
identifier | Date | n-
propyl-
benzene
water
unfltrd
ug/L
(77224) | o-
Xylene,
water,
unfltrd
ug/L
(77135) | sec-
Butyl-
benzene
water
unfltrd
ug/L
(77350) | Styrene
water
unfltrd
ug/L
(77128) | t-Butyl
ethyl
ether,
water,
unfltrd
ug/L
(50004) | Methyl
t-butyl
ether,
water,
unfltrd
ug/L
(78032) | tert-
Butyl-
benzene
water
unfltrd
ug/L
(77353) | Tetra-
chloro-
ethene,
water,
unfltrd
ug/L
(34475) | Tetra-
chloro-
methane
water
unfltrd
ug/L
(32102) | Tetra-
hydro-
furan,
water,
unfltrd
ug/L
(81607) | |---|--|--|--|---|--|---|--|--|--|---|---| | | | | | OZAU | JKEE COU | JNTY | | | | | | | OZ-12/21E/05-0582 | 05-22-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | PORT | TAGE COU | JNTY | | | | | | | PT-22/10E/36-1434 | 07-29-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | SHAV | VANO COI | UNTY | | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | <0.04
<0.04 | <0.07
<0.07 | <0.06
<0.06 | <0.04
<0.04 | <0.05
<0.05 | <0.2
<0.2 | <0.10
<0.10 | <0.03
<0.03 | <0.06
<0.06 | M
<2 | | | | | | VII | AS COUN | TY | | | | | | | VI-41/12E/33-0095 | 07-24-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | WASHI | NGTON C | OUNTY | | | | | | | WN-10/19E/13-0997 | 05-22-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | WAU | PACA COU | JNTY | | | | | | | WP-23/14E/25-0831 | 06-10-03 | < 0.04 | < 0.07 | < 0.06 | < 0.04 | < 0.05 | < 0.2 | < 0.10 | < 0.03 | < 0.06 | <2 | | | | | | WAUS | HARA CO | UNTY | | | | | | | WS-18/10E/15-1055
WS-18/13E/11-1056
WS-20/11E/03-1054 | 06-05-03
05-21-03
06-10-03 | <0.04
<0.04
<0.04 | <0.07
<0.07
<0.07 | <0.06
<0.06
<0.06 | <0.04
<0.04
<0.04 | <0.05
<0.05
<0.05 | <0.2
<0.2
<0.2 | <0.10
<0.10
<0.10 | <0.03
<0.03
<0.03 | <0.06
<0.06
<0.06 | <2
<2
<2 | | | | | MA | RQUETTI | E COUNTY | , MICHIG | AN | | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | <0.04
<0.04 | <0.07
<0.07 | <0.06
<0.06 | <0.04
<0.04 | <0.05
<0.05 | <0.2
<0.2 | <0.10
<0.10 | <0.03
<0.03 | <0.06
<0.06 | <2
<2 | | | | | Toluene | trans- | trans- | trans- | | | т: | | | | Local
identifier | Date | Toluene
water
unfltrd
ug/L
(34010) | -d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546) | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34699) | 1,4-Di-
chloro-
2-
butene,
wat unf
ug/L
(73547) | Tri-
bromo-
methane
water
unfltrd
ug/L
(32104) | Tri-
chloro-
ethene,
water,
unfltrd
ug/L
(39180) | Tri-
chloro-
fluoro-
methane
water
unfltrd
ug/L
(34488) | Tri-
chloro-
methane
water
unfltrd
ug/L
(32106) | Vinyl
chlor-
ide,
water,
unfltrd
ug/L
(39175) | | | Date | water
unfltrd
ug/L | -d8,
surrog,
Sch2090
wat unf
percent
recovry | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546) | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L | 1,4-Di-
chloro-
2-
butene,
wat unf
ug/L
(73547) | bromo-
methane
water
unfltrd
ug/L | chloro-
ethene,
water,
unfltrd
ug/L | chloro-
fluoro-
methane
water
unfltrd
ug/L | chloro-
methane
water
unfltrd
ug/L | chlor-
ide,
water,
unfltrd
ug/L | | | Date 05-22-03 | water
unfltrd
ug/L | -d8,
surrog,
Sch2090
wat unf
percent
recovry | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546) | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34699) | 1,4-Di-
chloro-
2-
butene,
wat unf
ug/L
(73547) | bromo-
methane
water
unfltrd
ug/L | chloro-
ethene,
water,
unfltrd
ug/L | chloro-
fluoro-
methane
water
unfltrd
ug/L | chloro-
methane
water
unfltrd
ug/L | chlor-
ide,
water,
unfltrd
ug/L | | identifier | | water
unfltrd
ug/L
(34010) | -d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546)
OZAI | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34699)
UKEE COU | 1,4-Di-
chloro-
2-
butene,
wat unf
ug/L
(73547)
JNTY
<0.7 | bromo-
methane
water
unfltrd
ug/L
(32104) | chloro-
ethene,
water,
unfltrd
ug/L
(39180) | chloro-
fluoro-
methane
water
unfltrd
ug/L
(34488) | chloro-
methane
water
unfltrd
ug/L
(32106) | chlor-
ide,
water,
unfltrd
ug/L
(39175) | | identifier | | water
unfltrd
ug/L
(34010) | -d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546)
OZAI | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34699)
JKEE COU
<0.09 | 1,4-Di-
chloro-
2-
butene,
wat unf
ug/L
(73547)
JNTY
<0.7 | bromo-
methane
water
unfltrd
ug/L
(32104) | chloro-
ethene,
water,
unfltrd
ug/L
(39180) | chloro-
fluoro-
methane
water
unfltrd
ug/L
(34488) | chloro-
methane
water
unfltrd
ug/L
(32106) | chlor-
ide,
water,
unfltrd
ug/L
(39175) | | identifier OZ-12/21E/05-0582 | 05-22-03 | water
unfltrd
ug/L
(34010)
<0.05 | -d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546)
OZAU
<0.03
PORT | 1,3-Di-
chloro-
propene
water
unfltrd
ug/L
(34699)
UKEE COU
<0.09 | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 UNTY <0.7 | bromomethane water unfltrd ug/L (32104) | chloro-
ethene,
water,
unfltrd
ug/L
(39180) | chloro-
fluoro-
methane
water
unfltrd
ug/L
(34488) | chloro-
methane
water
unfltrd
ug/L
(32106) | chloride,
water,
unfltrd
ug/L
(39175) | | identifier OZ-12/21E/05-0582 | 05-22-03 | water
unfltrd
ug/L
(34010)
<0.05 | -d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833) | 1,2-Di-
chloro-
ethene,
water,
unfltrd
ug/L
(34546)
OZAU
<0.03
PORT | 1,3-Di- chloro- propene water unfltrd ug/L (34699) JKEE COU <0.09 TAGE COU <0.09 | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 UNTY <0.7 | bromomethane water unfltrd ug/L (32104) | chloro-
ethene,
water,
unfltrd
ug/L
(39180) | chloro-
fluoro-
methane
water
unfltrd
ug/L
(34488) | chloro-
methane
water
unfltrd
ug/L
(32106) | chloride,
water,
unfltrd
ug/L
(39175) | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | water
unfltrd
ug/L
(34010)
<0.05
<0.05 | -d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833)
94.5 | 1,2-Di-chloro-ethene, water, unfltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 <0.03 | 1,3-Di- chloro- propene water unfltrd ug/L (34699) UKEE COU <0.09 TAGE COU <0.09 VANO COI <0.09 | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 UNTY <0.7 UNTY <0.7 | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 | chloroethene, water, unfltrd ug/L (39180) <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 | chloro-methane water unfltrd ug/L (32106) <0.02 <0.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 | 05-22-03
07-29-03
06-12-03 | water
unfltrd
ug/L
(34010)
<0.05
<0.05 | -d8,
surrog,
Sch2090
wat unf
percent
recovry
(99833)
94.5 | 1,2-Di-chloro-ethene, water, unfltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 <0.03 VIII <0.03 | 1,3-Di- chloro- propene water unfltrd ug/L (34699) JKEE COU <0.09 TAGE COU <0.09 VANO COI <0.09 <0.09 AS COUN <0.09 | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 UNTY <0.7 UNTY <0.7 CO.7 UNTY <0.7
UNTY <0.7 CO.7 | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 | chloroethene, water, unfltrd ug/L (39180) <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 | chloro-methane water unfltrd ug/L (32106) <0.02 <0.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | water
unfltrd
ug/L
(34010)
<0.05
<0.05
E.07
E.04 | -d8, surrog, Sch2090 wat unf percent recovry (99833) 94.5 99.4 99.4 99.2 | 1,2-Di-chloro-ethene, water, unfiltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 <0.03 VIII <0.03 WASHII | 1,3-Di- chloro- propene water unfiltrd ug/L (34699) UKEE COU <0.09 TAGE COU <0.09 VANO COI <0.09 <0.09 <0.09 AS COUN <0.09 NGTON CO | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 UNTY <0.7 UNTY <0.7 TTY <0.7 OUNTY | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 <0.10 <0.10 | chloro-ethene, water, unfltrd ug/L (39180) <0.04 <0.04 <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 <0.09 <0.09 | chloro-methane water unfiltrd ug/L (32106) <0.02 <0.02 <0.02 <0.02 <0.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 <0.1 <0.1 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | water
unfltrd
ug/L
(34010)
<0.05
<0.05
E.07
E.04 | -d8, surrog, Sch2090 wat unf percent recovry (99833) 94.5 99.4 99.4 | 1,2-Di-chloro-ethene, water, unfltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 VIII <0.03 WASHII <0.03 | 1,3-Di- chloro- propene water unfltrd ug/L (34699) UKEE COU <0.09 TAGE COU <0.09 VANO COI <0.09 <0.09 .AS COUN <0.09 NGTON CO <0.09 | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 UNTY <0.7 UNTY <0.7 TTY <0.7 OUNTY <0.7 | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 <0.10 | chloro-ethene, water, unfltrd ug/L (39180) <0.04 <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 | chloro-methane water unfltrd ug/L (32106) <0.02 <0.02 <0.02 E.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 <0.1 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | water unfltrd ug/L (34010) <0.05 <0.05 E.07 E.04 <0.05 | -d8, surrog, Sch2090 wat unf percent recovry (99833) 94.5 99.4 99.4 99.2 | 1,2-Di-chloro-ethene, water, unfltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 <0.03 VII <0.03 WASHI <0.03 WASHI | 1,3-Di- chloro- propene water unfltrd ug/L (34699) JKEE COU <0.09 TAGE COU <0.09 VANO COI <0.09 <0.09 .AS COUN <0.09 NGTON CO <0.09 PACA COU | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 UNTY <0.7 UNTY <0.7 TY <0.7 UNTY | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 <0.10 <0.10 <0.10 | chloro-ethene, water, unfltrd ug/L (39180) <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 <0.09 <0.09 <0.09 | chloromethane water unfltrd ug/L (32106) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 <0.1 <0.1 <0.1 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | water
unfltrd
ug/L
(34010)
<0.05
<0.05
E.07
E.04 | -d8, surrog, Sch2090 wat unf percent recovry (99833) 94.5 99.4 99.4 99.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 VIII <0.03 WASHII <0.03 WAU <0.03 | 1,3-Di- chloro- propene water unfiltrd ug/L (34699) UKEE COU <0.09 TAGE COU <0.09 <0.09 <0.09 .AS COUN <0.09 NGTON CO <0.09 PACA COU <0.09 | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 <0.10 <0.10 | chloro-ethene, water, unfltrd ug/L (39180) <0.04 <0.04 <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 <0.09 <0.09 | chloro-methane water unfiltrd ug/L (32106) <0.02 <0.02 <0.02 <0.02 <0.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 <0.1 <0.1 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03 | water unfltrd ug/L (34010) <0.05 <0.05 E.07 E.04 <0.05 | -d8, surrog, Sch2090 wat unf percent recovry (99833) 94.5 99.4 99.4 99.2 | 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 VIII <0.03 WASHII <0.03 WAU <0.03 | 1,3-Di- chloro- propene water unfltrd ug/L (34699) JKEE COU <0.09 TAGE COU <0.09 VANO COI <0.09 <0.09 .AS COUN <0.09 NGTON CO <0.09 PACA COU | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY <0.7 | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 <0.10 <0.10 <0.10 | chloro-ethene, water, unfltrd ug/L (39180) <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 <0.09 <0.09 <0.09 | chloromethane water unfltrd ug/L (32106) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 <0.1 <0.1 <0.1 | | identifier OZ-12/21E/05-0582 PT-22/10E/36-1434 SH-25/16E/14-0231 SH-28/13E/26-0232 VI-41/12E/33-0095 WN-10/19E/13-0997 WP-23/14E/25-0831 WS-18/10E/15-1055 WS-18/13E/11-1056 | 05-22-03
07-29-03
06-12-03
06-09-03
07-24-03
05-22-03
06-10-03
06-05-03
05-21-03 | water unfitrd ug/L (34010) <0.05 <0.05 E.07 E.04 <0.05 <0.05 <0.05 | -d8, surrog, Sch2090 wat unf percent recovry (99833) 94.5 99.4 99.4 99.2 98.7 95.2 98.5 | 1,2-Di- chloro- ethene, water, unfiltrd ug/L (34546) OZAU <0.03 PORT <0.03 SHAV <0.03 VII <0.03 WASHI <0.03 WAUS <0.03 VAUS <0.03 | 1,3-Di- chloro- propene water unfltrd ug/L (34699) UKEE COU <0.09 TAGE COU <0.09 VANO COI <0.09 VANO COI <0.09 AS COUN <0.09 NGTON CO <0.09 PACA COI <0.09 HARA CO <0.09 <0.09 <0.09 | 1,4-Di- chloro- 2- butene, wat unf ug/L (73547) UNTY | bromomethane water unfltrd ug/L (32104) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | chloroethene, water, unfltrd ug/L (39180) <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 | chloro-fluoro-methane water unfltrd ug/L (34488) <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 | chloromethane water unfltrd ug/L (32106) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 | chloride, water, unfltrd ug/L (39175) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | | Local
identifier | Date | Ra-226,
water,
fltrd,
radon
method
pCi/L
(09511) | Ra-228,
water,
fltrd,
pCi/L
(81366) | Rn-222
2-sigma
water
unfltrd
pCi/L
(76002) | Rn-222,
water,
unfltrd
pCi/L
(82303) | Tritium
2-sigma
water
unfltrd
pCi/L
(75985) | Tritium
water
unfltrd
pCi/L
(07000) | Uranium
natural
water,
fltrd,
ug/L
(22703) | Number
of
TICS
from
VOC
by GCMS
number
(99871) | |--|----------------------------------|--|---|---|--|--|---|---|---| | | | | OZAU | UKEE COU | JNTY | | | | | | OZ-12/21E/05-0582 | 05-22-03 | 0.20 | M | 20 | 180 | | | 0.45 | 0.0 | | | | | PORT | ΓAGE COU | INTY | | | | | | PT-22/10E/36-1434 | 07-29-03 | 0.03 | M | 21 | 260 | | | 1.57 | 0.0 | | | | | SHAV | VANO COI | UNTY | | | | | | SH-25/16E/14-0231
SH-28/13E/26-0232 | 06-12-03
06-09-03 | 0.05
0.02 | M
M | 19
46 | 190
2,440 | 1.0 | M
 | 0.05
3.26 | 0.0
0.0 | | | | | VII | AS COUN | TY | | | | | | VI-41/12E/33-0095 | 07-24-03 | 0.03 | M | 20 | 240 | | | < 0.02 | 0.0 | | | | | WASHI | NGTON C | OUNTY | | | | | | WN-10/19E/13-0997 | 05-22-03 | 0.16 | M | 22 | 280 | 1.9 | 28 | 0.11 | 0.0 | | | | | WAU | PACA COU | JNTY | | | | | | WP-23/14E/25-0831 | 06-10-03 | 0.06 | M | 19 | 170 | | | 2.22 | 0.0 | | | | | WAUS | HARA CO | UNTY | | | | | | WS-18/10E/15-1055
WS-18/13E/11-1056
*WS-20/11E/03-1054 | 06-05-03
05-21-03
06-10-03 | 0.01
0.61 | M
2 | 18
24
25 | 140
430
500 |

 |

 | 0.32
0.30
0.28 | 0.0
0.0
0.0 | | | | MA | RQUETTI | E COUNTY | , MICHIG | AN | | | | | 45N 30W 20ADA 01
45N 24W 16CBC 01 | 06-26-03
06-25-03 | 0.11
0.10 | M
M | 28
22 | 700
180 | 1.9 | 32 | 1.00
0.06 | 0.0
0.0 | Data for the following sites are for samples collected from shallow monitoring wells in the sand and gravel aquifer. Samples were collected adjacent to lakes as part of lake studies. | | Station number | Date | Time | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Phosphorus,
water,
fltrd,
mg/L
(00666) | |----------------------------------|-----------------|----------|------|--|---|---|---|--| | | ASHL | AND COUN | TY | | | | | | | PIEZOMETER NO 1 @ BUTTERNUT LAKE | 455854090310301 | 06-17-03 | 1830 | 0.5 | 6.4 | 393 | 7.1 | 0.011 | | PIEZOMETER NO 2 @ BUTTERNUT LAKE | 455935090303700 | 06-18-03 | 0915 | 5.5 | 6.8 | 197 | 8.0 | 0.017 | | PIEZOMETER NO 3 @ BUTTERNUT LAKE | 455918090302400 | 06-18-03 | 1010 | 0.6 | 6.5 | 456 |
10.0 | 0.191 | | | PRI | CE COUNT | Y | | | | | | | PIEZOMETER NO 4 @ BUTTERNUT LAKE | 455822090305000 | 06-18-03 | 1110 | 0.6 | 6.7 | 250 | 9.2 | 0.023 | | PIEZOMETER NO 5 @ BUTTERNUT LAKE | 455651090310600 | 06-18-03 | 1145 | 2.9 | 6.1 | 160 | 10.3 | 0.014 | | PIEZOMETER NO 6 @ BUTTERNUT LAKE | 455751090313400 | 06-18-03 | 1230 | 0.6 | 6.7 | 168 | 10.6 | 0.011 | WATER-QUALITY ANALYSES, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | Station number | Date | Time | Depth
of
well,
feet
below
LSD
(72008) | Depth
to
water
level,
feet
below
LSD
(72019) | Sampling method, code (82398) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | |--|-----------------|--|------------------------------|---|---|-------------------------------|--|---|---|---| | | | W | AUKESH | A COUNT | Y | | | | | | | NAGAWICKA LAKE WELL
NO. 1 AT DELAFIELD | 430329088225600 | 07-30-03
08-14-03 | 0915
1210 | 6.34
6.34 | 0.10
0.03 | 4,080 | 2.2 | 7.5
 | 440 | 19.9 | | | | 09-03-03
09-16-03 | 1422
1440 | 6.34
6.34 | 0.09
-0.05 | 4,080 | | 7.6 | 410 | 22.9 | | NAGAWICKA LAKE WELL
NO. 2 AT DELAFIELD | 430352088225000 | 07-30-03
08-14-03 | 1345
1015 | 5.81 | 1.36
1.31 | 4,080 | 3.6 | 6.8 | 658 | 26.4 | | | | 08-14-03
09-03-03
09-16-03 | 0912
1025 | 5.81
5.81
5.81 | 1.31
1.36
1.23 | | | | | | | NAGAWICKA LAKE WELL
NO. 2A AT DELAFIELD | 430352088225001 | 08-14-03
09-03-03 | 1115
1015 | 11.69
11.69 | 1.20
1.27 | 4,080 | 0.4 | 8.2 | 1,100 | 15.7 | | NAGAWICKA LAKE WELL | | 09-16-03 | 1040 | 11.69 | 1.14 | 4,080 | 0.5 | 7.0 | 1,090 | 16.1 | | NO. 3 AT DELAFIELD | 430424088224300 | 07-24-03
07-30-03
08-14-03 | 1107
1345
1255 | 6.04
6.04
6.04 | 0.58
0.59
0.52 | 4,080 | 4.0 | 7.5 |
481 | 21.1 | | | | 09-03-03
09-16-03 | 0930
1130 | 6.04
6.04 | 0.52
0.60
0.49 | 4,080 |
 | 7.3 |
299 |
19.9 | | NAGAWICKA LAKE WELL
NO. 4 AT DELAFIELD | 430549088231600 | 07-30-03
08-14-03
09-03-03 | 1135
1305
1049 | 10.71
10.71
10.71 |

 | 4,080 | 2.2 | 8.2 | 190
 | 18.5 | | | | 09-16-03 | 1240 | 10.71 | | 4,080 | | 7.8 | 491 | 20.1 | | NAGAWICKA LAKE WELL
NO. 5 NEAR NASHOTAH | 430502088235400 | 07-24-03
07-30-03
08-14-03
09-03-03 | 1403
1035
1320
1100 | 11.60
11.60
11.60
11.60 | 0.35
0.43
0.32
0.63 | 4,080 | 0.5 | 9.9
 | 325
 | 12.2
 | | | | 09-16-03 | 1240 | 11.60 | 0.65 | 4,080 | 0.6 | 9.1 | 919 | 13.5 | | Ortho-
phosphate,
water, fltrd,
mg/L as P
(00671) | Phosphorus,
water, fltrd,
mg/L
(00666) | |---|--| | 0.004 | 0.016 | | | | | | | | 0.005 | 0.011 | | 0.023 | 0.212 | | | | | | | | | | | 0.003 | 0.034 | | | | | 0.022 | 0.040 | | | | | | 0.086 | | | | | | | | | 0.086 | | 0.081 | 0.156 | | | | | | | | 0.142 | 0.150 | | | | | | 0.089 | | | | | | 0.097 | | | 0.097 | | | phosphate, water, fltrd, mg/L as P (00671) 0.004 0.005 0.023 0.003 0.022 | ## WISCONSIN DISTRICT PUBLICATIONS The reports listed below are a partial list of reports prepared by the Wisconsin District in cooperation with other agencies since 1948. The list contains reports that are relevant and contribute significantly to understanding the hydrology of Wisconsin's water resources. The reports published in a U.S. Geological Survey series are for sale by the U.S. Geological Survey, Box 25286, Federal Center, Denver, CO 80225. For more information and prices on USGS products, contact representatives at 1-888-ASK-USGS. For access to the new Publications Warehouse, go to http://pubs.usgs.gov, or link from the complete list of USGS publications and products at: http://www.usgs.gov/pubprod/. Copies of reports published by the University of Wisconsin, Geological and Natural History Survey, can be obtained from their office at 3817 Mineral Point Road, Madison, Wisconsin 53705, (608) 263-7389. # WATER-RESOURCES INVESTIGATIONS REPORTS - Hunt, R.J., Saad, D.A., and Chapel, D.M., 2003, Numerical simulation of ground-water flow in La Crosse County, Wisconsin, and into nearby pools of the Mississippi River: U.S. Geological Survey Water-Resources Investigations Report 03–4154, 36 p. - Robertson, D.M., Rose, W.J., and Saad, D.A., 2003, Water quality and the effects of changes in phosphorus loading to Muskellunge Lake, Vilas County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 03–4011, 18 p. - Diebel, M.W., and Sullivan, D.J., 2003, Surface-water-resources information for the Ho-Chunk Nation lands and vicinity, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 02–4307, 27 p. - Fitzpatrick, F.A., 2003, Nutrient, trace-element, and ecological of Musky Bay, Lac Courte Oreilles, Wisconsin, as inferred from sediment cores: U.S. Geological Survey Water-Resources Investigations Report 02–4225, 141 p. - Dunning, C.P., 2003, Simulation of the shallow aquifer in the vicinity of Silver Lake, Washington County, Wisconsin, using analytic elements: U.S. Geological Survey Water-Resources Investigations Report 02–4204, 29 p. - Robertson, D.M., 2002, Response of the St. Croix River Pools, Wisconsin and Minnesota, to various phosphorus-loading scenarios: U.S. Geological Survey Water-Resources Investigations Report 02–4181, 36 p. - Garn, H.S., 2002, Effects of lawn fertilizer on nutrient concentration in runoff from lakeshore lawns, Lauderdale Lakes, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 02– 4130, 6 p. - Robertson, D.M., Goddard, G.L., Mergener, E.A., Rose, W.J., and Garrison, P.J., 2002, Hydrology and water quality of Geneva Lake, Walworth County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 02–4039, 73 p. - Krohelski, J.T., Rose, W.J., and Hunt, R.J., 2002, Hydrologic Investigation of Powell Marsh and its Relation to Dead Pike Lake, Vilas County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 02–4034, 20 p. - Krohelski, J.T., Lin, Yu-Feng, Rose, W.J., and Hunt, R.J., 2002, Simulation of Fish, Mud, and Crystal Lakes, and the shallow ground-water system, Dane County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 02–4014, 17 p. - Lenz, B.N., Robertson, D.M., Fallon, J.D., and Ferrin, R., 2001, Nutrient and suspended-sediment concentrations and loads and benthic-invertebrate data for tributaries to the St. Croix River, Wisconsin and Minnesota, 1997–99: U.S. Geological Surevy Water-Resources Investigations Report 01–4162, 57 p. - Steuer, J.J., and Hunt, R.J., 2001, Use of a watershed-modeling approach to assess hydrologic effects of urbanization, Middleton, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 01–4113, 49 p. - Dunning, C.P., and Yeskis, D.J., 2001, Hydrogeology and groundwater quality of the County Road A disposal site on the Bad River Indian Reservation, Ashland County, Wisconsin: 1997–98: U.S. Geological Survey Water-Resources Investigations Report 01–4082, 61 p. - Robertson, D.M., Saad, D.A., and Wieben, A.M., 2001, An alternative regionalization scheme for defining nutrient criteria for rivers and streams: U.S. Geological Survey Water-Resources Investigations Report 01–4073, 57 p. - Garn, H.S., Scudder, B.C., Richards, K.D., and Sullivan, D.J., 2001, Characteristics of water sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986–98: U.S. Geological Survey Water-Resources Investigations Report 01–4019, 54 p. - Robertson, D.M., 2000, One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois: U.S. Geological Survey Water-Resources Investigations Report 00–4258, 17 p. - Steuer, J.J., 2000, A mass-balance approach for assessing PCB movement during remediation of a PCB-contaminated deposit on the Fox River, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 00–4245, 8 p. - Robertson, D.M., and Rose, W.J., 2000, Hydrology, water quality, and phosphorus loading of Little St. Germain Lake, Vilas County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 00–4209, 8 p. - Schmidt, M.A., Richards, K.D., and Scudder, B.C., 2000, Surface-water quality, Oneida Reservation and vicinity, Wisconsin, 1997–98, U.S. Geological Survey Water-Resources Investigations Report 00–4179, 30 p. - Hunt, R.J., and Steuer, J.J., 2000, Simulation of the recharge area for Frederick Springs, Dane County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 00–4172, 33 p. - Hunt, R.J., Lin, Y., Krohelski, J.T., and Juckem, P.F., 2000, Simulation of the shallow hydrologic system in the vicinity of Middle Genesee Lake, Wisconsin, using analytic elements and parameter estimation: U.S. Geological Survey Water-Resources Investigations Report 00–4136, 16 p. - Saad, D.A., and Robertson, D.M., 2000, Water-resources-related information for the St. Croix Reservation and vicinity, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 00–4133, 65 p. - Grannemann, N.G., Hunt, R.J., Nicholas, J.R., Reilly, T.E., and Winter, T.C., 2000, The importance of ground water in the
Great Lakes Region: U.S. Geological Survey Water-Resources Investigations Report 00–4008, 14 p. - Krohelski, J.T., Feinstein, D.T., and Lenz, B.N., 1999, Simulation of stage and hydrologic budget for Shell Lake, Washburn County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 99–4209, 23 p. - Batten, W.G., Yeskis, D.J., and Dunning, C.P., 1999, Hydrogeologic properties of the Ordovician Sinnipee Group at test well BN-483, Better Brite Superfund Site, De Pere, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 99–4199, 19 p. - Waschbusch, R.J., 1999, Evaluation of the effectiveness of an urban stormwater treatment unit in Madison, Wisconsin, 1996–97: U.S. Geological Survey Water-Resources Investigations Report 99–4195, 49 p. - Steuer, J.S., Hall, D.W., and Fitzgerald, S.A., 1999, Distribution and transport of polychlorinated biphenyls and associated particulates in the Hayton Millpond, South Branch Manitowoc River, 1993– 95: U.S. Geological Survey Water-Resources Investigations Report 99–4101, 20 p. - Steuer, J.S., Fitzgerald, S.A., and Hall, D.W., 1999, Distribution and transport of polychlorinated biphenyls and associated particulates in the Milwaukee River system, Wisconsin, 1993–95: U.S. Geological Survey Water-Resources Investigations Report 99– 4100, 37 p. - Fitzpatrick, F.A., Knox, J.C., and Whitman, H.E., 1999, Effects of historical land-cover changes on flooding and sedimentation, North Fish Creek, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 99–4083, 12 p. - Waschbusch, R.J., Selbig, W.R., and Bannerman, R.T., 1999, Sources of phosphorus from two urban residential basins in Madison, Wisconsin, 1994–95, U.S. Geological Survey Water-Resources Investigations Report 99–4021, 47 p. - Saad, D.A., and Schmidt, M.A., 1999, Water-resources-related information for the Oneida Reservation and vicinity, Wisconsin, U.S. Geological Survey Water-Resources Investigations Report 98–4266, 57 p. - Saad, D.A., and Thorstenson, D.C., 1998, Flow and geochemistry along shallow ground-water flowpaths in an agricultural area in southeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 98–4179, 62 p. - Robertson, D.M., 1998, Evaluation of the surface-water sampling design in the Western Lake Michigan Drainages in relation to environmental factors affecting water quality at base flow, U.S. Geological Survey Water-Resources Investigations Report 98–4072, 53 p. - Elder, J.F., Manion, B.J., and Goddard, G.L., 1997, Mesocosm experiments to assess factors affecting phosphorus retention and release in an extended Wisconsin wetland: U.S. Geological Survey Water-Resources Investigations Report 97–4272, 14 p. - Steuer, J., Selbig, W., Hornewer, N., and Prey, J., 1997, Sources of contamination in an urban basin in Marquette, Michigan and an analysis of concentrations, loads, and data quality: U.S. Geological Survey Water-Resources Investigations Report 97– 4242, 25 p. - Walker, J.F., Saad, D.A., and Krohelski, J.T., 1998, Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 97–4218, 24 p. - Richards, K.D., Sullivan, D.J., and Stewart, J.S., 1998, Surface-water quality at fixed sites in the Western Lake Michigan Drainages, Wisconsin and Michigan, and the effects of natural and human factors, 1993–95, U.S. Geological Survey Water-Resources Investigations Report 97–4208, 40 p. - Stewart, J.S., 1998, Combining satellite data with ancillary data to produce a refined land-use/land-cover map: U.S. Geological Survey Water-Resources Investigations Report 97–4203, 11 p., 3 pl. - Peters, C.A., et al, 1997, Environmental setting and implications for water quality in the Western Lake Michigan drainage: U.S. Geological Survey Water-Resources Investigations Report 97–4196, 79 p. - Scudder, B.C., Sullivan, D.J., Fitzpatrick, F.A., and Rheaume, S.J., 1997, Trace elements and synthetic organic compounds in biota and streambed sediment of the Western Lake Michigan drainages, 1992–1995: U.S. Geological Survey Water-Resources Investigations Report 97–4192, 34 p. - Fitzgerald, S.A., 1997, Results of quality-control sampling of water, bed sediment, and tissue in the Western Lake Michigan drainages study unit of the national water-quality assessment program: U.S. Geological Survey Water-Resources Investigations Report 97–4148, 24 p. - Conlon, T.D., 1998, Hydrogeology and simulation of ground-water flow in the sandstone aquifer, northeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 97–4096, 60 p., 1 pl. - Brown, T.A., Dunning, C.P., and Sharpe, J.B., 2000, Altitude, depth, and thickness of the Galena-Platteville bedrock unit in the subcrop area of Illinois and Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 97–4054–C, 4 sheets. - Batten, W.G., Brown, T.A., Mills, P.C., and Sabin, T.J., 1997, Rockstratigraphic nomenclature, lithology, and subcrop area of the Galena-Platteville bedrock unit in Illinois and Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 97–4054–B, 1 sheet. - Goddard, G.L., and Elder, J.F., 1997, Retention of sediments and nutrients in Jackson Creek wetland near Delavan Lake, Wisconsin, 1993-95: U.S. Geological Survey Water-Resources Investigations Report 97–4014, 22 p. - Scudder, B.C., Sullivan, D.J., Rheaume, S.J., Parsons, S.R., and Lenz, B.N., 1996, Summary of biological investigations relating to water quality in the western Lake Michigan drainages, Wisconsin and Michigan: U.S. Geological Survey Water-Resources Investigations Report 96–4263, 89 p. - Garn, H.S., Olson, D.L., Seidel, T.L., and Rose, W.J., 1996, Hydrology and water quality of Lauderdale Lakes, Walworth County, Wisconsin, 1993–94: U.S. Geological Survey Water-Resources Investigations Report 96–4235, 29 p. - Conlon, T.D., 1996, Hydrogeology of the sand and gravel aquifer in the vicinity of the Wild Rose State Fish Hatchery, north-central Waushara County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 96–4213, 14 p. - Legg, A.D., Bannerman, R.T., and Panuska, J., 1996, Variation in the relation of rainfall to runoff from residential lawns in Madison, Wisconsin, July and August 1995: U.S. Geological Survey Water-Resources Investigations Report 96–4194, 11 p. - Robertson, D.M., Field, S.J., Elder, J.F., Goddard, G.L., and James, W.F., 1996, Phosphorus dynamics in Delavan Lake Inlet, Southeastern Wisconsin, 1994: U.S. Geological Survey Water-Resources Investigations Report 96–4160, 18 p. - Robertson, D.M., 1996, Use of frequency-volume analyses to estimate regionalized yields and load of sediment, phosphorus, and polychlorinated biphenyls to Lakes Michigan and Superior: U.S. Geological Survey Water-Resources Investigations Report 96–4092, 47 p. - Scudder, B.C., and Stewart, J.S., 1996, Benthic algae of benchmark streams in agricultural areas of eastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 96– 4038–E, 46p. - Sullivan, D.J. and Peterson, E.M., 1997, Fish communities of benchmark streams in agricultural areas of eastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 96–4038–D, 23 p. - Rheaume, S.J., Lenz, B.N., and Scudder, B.C., 1996, Benthic invertebrates of benchmark streams in agricultural areas of eastern Wisconsin-western Lake Michigan drainages: U.S. Geological Survey Water-Resources Investigations Report 96– 4038–C, 39 p. - Fitzpatrick, F.A., Peterson, E.M., and Stewart, J.S., 1996, Habitat characteristics of benchmark streams in agricultural areas of Eastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 96–4038–B, 35 p. - Rheaume, S.J., Stewart, J.S., and Lenz, B.N., 1996, Environmental setting of benchmark streams in agricultural areas of Eastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 96–4038–A, 50 p. - Robertson, D.M., and Saad, D.A., 1996, Water-quality assessment of the Western Lake Michigan drainages—analysis of available information on nutrients and suspended sediment, water years 1971–90: U.S. Geological Survey Water-Resources Investigations Report 96–4012, 165 p. - Rose, W.J., and Graczyk, D.J., 1996, Sediment transport, particle size, and loads in North Fish Creek in Bayfield County, Wisconsin, water years 1990–91: U.S. Geological Survey Water-Resources Investigations Report 95–4222, 18 p. - Sullivan, D.J., 1997, Fish communities of fixed sites in the Western Lake Michigan drainages, Wisconsin and Michigan, 1993–95: U.S. Geological Survey Water-Resources Investigations Report 95–4211–C, 23 p. - Fitzpatrick, F.A., and Giddings, E.M.P., 1997, Stream habitat characteristics of fixed sites in the Western Lake Michigan drainages, Wisconsin and Michigan, 1993–95: U.S. Geological Survey Water-Resources Investigations Report 95–4211–B, 58 p. - Lenz, B.N. and Rheaume, S.J., 2000, Benthic invertebrates of fixed sites in the Western Lake Michigan Drainages, Wisconsin and Michigan, 1993–95: U.S. Geological Survey Water-Resources Investigations Report 95–4211–D, 30 p. - Sullivan, D.J., Peterson, E.M., and Richards, K.D., 1995, Environmental setting of fixed sites in the Western Lake Michigan Drainages, Michigan and Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 95–4211–A, 30 p. - Batten, W.G., and Lidwin, R.A., 1995, Water resources of the Bad River Indian Reservation, northern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 95–4207, 45 p., 2 pl - Corsi, S.R., and Schuler, J.G., 1995, Discharge ratings for tainter gates and roller gates at Lock and Dam No. 7 on the Mississippi River, La Crescent, Minnesota: U.S. Geological Survey Water-Resources Investigations Report 95–4089, 17 p. - DeWild, J.F., and Krohelski, J.T., 1995, Radon-222 concentrations in ground water and soil gas on Indian Reservations in Wisconsin: U.S.
Geological Survey Water-Resources Investigations Report 95–4088, 12 p. - Batten, W.G., and Lidwin, R.A., 1996, Water resources of the Lac du Flambeau Indian Reservation, Wisconsin, 1981–86: U.S. Geological Survey Water-Resources Investigations Report 94–4025, 42 p., 3 pls. - Conlon, T.D., 1995, Hydrogeology of southwestern Sheboygan County, Wisconsin, in the vicinity of the Kettle Moraine Springs Fish Hatchery: U.S. Geological Survey Water-Resources Investigations Report 94–4106, 17 p. - Goddard, Gerald L., and Field, Stephen J., 1994, Hydrology and water quality of Whitewater and Rice Lakes in southeastern Wisconsin, 1990–91: U.S. Geological Survey Water-Resources Investigations Report 94–4101, 36 p. - Rose, W.J., 1993, Hydrology of Little Rock Lake in Vilas County, north-central Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 93–4139, 22 p. - Krohelski, J.T., Kammerer, Jr., P.A., and Conlon, T.D., 1994, Water resources of the Menominee Indian Reservation of Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 93–4053, 54 p., 4 pl. - Graczyk, D.J., 1993, Surface-water hydrology and quality, and macroinvertebrate and smallmouth bass populations in four stream basins in southwestern Wisconsin, 1987–90: U.S. Geological Survey Water-Resources Investigations Report 93–4024, 70 p. - Batten, W.G., and Conlon, T.D., 1993, Hydrogeology of glacial deposits in a preglacial bedrock valley, Waukesha County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 92–4077, 15 p. - House, L.B., 1993, Simulation of the effects of hypothetical residential development on water levels in Graber Pond, Middleton, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 92–4029, 10 p. - Krohelski, J.T., and Lidwin, R.A., 1993, Hydrology and water quality of the Forest County Potawatomi Indian Reservation, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 91–4136, 24 p. - Krug, W.R., Conger, D.H., and Gebert, W.A., 1992, Flood-frequency characteristics of Wisconsin streams: U.S. Geological Survey Water-Resources Investigations Report 91–4128, 185 p., 2 pls. - Field, S.J., 1993, Hydrology and water quality of Powers Lake, southeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 90–4126, 36 p. - Rose, W.J., 1993, Water and phosphorus budgets and trophic state, Balsam Lake, northwestern Wisconsin, 1987–1989: U.S. Geological Survey Water-Resources Investigations Report 91–4125, 28 p. - Field, S.J., 1993, Hydrology and water quality of Wind Lake in southeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 91–4107, 61 p. - Hughes, P.E., 1993, Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 91–4076, 44 p. - Kammerer, P.A., Jr., 1995, Ground-water flow and quality in Wisconsin's shallow aquifer system: U.S. Geological Survey Water-Resources Investigations Report 90–4171, 42 p., 2 pl. - Rose, W.J., 1992, Sediment transport, particle sizes, and loads in lower reaches of the Chippewa, Black, and Wisconsin Rivers in western Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 90–4124, 38 p. - Wentz, D.A., and Rose, W.J., 1991, Hydrology of Lakes Clara and Vandercook in north-central Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 89–4204, 24 p. - Patterson, G.L., 1990, Ground-water levels and quality at Crex Meadows Wildlife Area, Burnett County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 89–4129, 19 p. - Field, S.J., and Graczyk, D.J., 1990, Hydrology, aquatic macrophytes, and water quality of Black Earth Creek and its tributaries, Dane County, Wisconsin, 1985–86: U.S. Geological Survey Water-Resources Investigations Report 89–4089, 44 p. - Krug, W.R., Gebert, W.A., Graczyk, D.J., Stevens, D.L., Jr., Rochelle, B.P., Church, M.R., and Campbell, W.G., 1988, Runoff map for the Northeastern, Southeastern, and Mid-Atlantic United States for water years 1951–80: U.S. Geological Survey Water-Resources Investigations Report 88–4094, 44 p. - Rose, W.J., 1988, Water resources of the Apostle Islands National Lakeshore, Northern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 87–4220, 44 p. - Field, S.J., and Duerk, M.D., 1988, Hydrology and water quality of Delavan Lake in southeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 87–4168, 61 p. - Walker, J.F., Osen, L.L., and Hughes, P.E., 1987, Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 86–4125, 44 p. - Krohelski, J.T., Ellefson, B.R., and Storlie, C.A., 1987, Estimated use of ground water for irrigation in Wisconsin, 1984: U.S. Geological Survey Water-Resources Investigations Report 86–4079, 12 p., 1 pl. - House, L.B., 1987, Simulation of unsteady flow in the Milwaukee Harbor Estuary at Milwaukee, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 86–4050, 19 p. - Conger, D.H., 1986, Estimating magnitude and frequency of floods for Wisconsin urban streams: U.S. Geological Survey Water-Resources Investigations Report 86–4005, 18 p. - Graczyk, D.J., 1986, Water quality in the St. Croix National Scenic Riverway, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4319, 48 p. - Field, S.J., 1986, Relations between precipitation, streamflow, and water quality in the Galena River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4214, 48 p. - Emmons, P.J., 1987, An evaluation of the bedrock aquifer system in northeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4199, 48 p. - Krug, W.R., and Goddard, G.L., 1986, Effects of urbanization on streamflow, sediment loads, and channel morphology in Pheasant Branch basin near Middleton, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4068, 82 p. - Cotter, R.D., 1986, Hydrogeology and ground-water quality of Lannon-Sussex Area, northeastern Waukesha County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 84–4213, 28 p. - Field, S.J., 1985, Nonpoint-source discharges and water quality of Elk Creek basin, west-central Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 84–4094, 38 p. - Field, S.J., and Lidwin, R.A., 1984, An assessment of nonpoint-source discharges, streamflow, and water quality in Onion River, Wisconsin: U.S. Geological Survey Water-Resource Investigations Report 84–4066, 78 p. - House, L.B., 1984, Effects of urbanization on three ponds in Middleton, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 84–4051, 17 p. - Kammerer, P.A., Jr., 1984, An overview of ground-water-quality data in Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 83–4239, 58 p. - Krug, W.R., and House, L.B., 1984, Evaluation of alternative reservoirmanagement practices in the Rock River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 83–4186, 21 p. - Duerk, M.D., 1983, Automatic dilution gaging of rapidly varying flow: U.S. Geological Survey Water-Resources Investigations 83– 4088, 17 p. - Lawrence, C.L., and Ellefson, B.R., 1982, Water use in Wisconsin, 1979: U.S. Geological Survey Water-Resources Investigations 82–444, 98 p. - Kammerer, P.A., Jr., Lidwin, R.A., Mason, J.W., and Narf, R.P., 1983, Aquatic biology in Nederlo Creek, southwestern Wisconsin: U.S. Geological Survey Water Resources Investigations 82–56, 27 p. - Wentz, D.A., and Graczyk, D.J., 1982, Effects of a floodwater-retarding structure on the hydrology and ecology of Trout Creek in southwestern Wisconsin: U.S. Geological Survey Water-Resources Investigations 82–23, 68 p. - Holmstrom, B.K., 1982, Low-flow characteristics of streams in the Lake Michigan basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 81–1193, 102 p. - House, L.B., 1981, An assessment of streamflow, water quality, and the effects of construction on impoundment on Bridge Creek at Augusta, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 81–1192, 25 p. - Gebert, W.A., 1982, Low-flow characteristics of streams in the Central Wisconsin River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 81–495, 99 p. - Field, S.J., and Lidwin, R.A., 1982, Water-quality assessment of Steiner Branch basin, Lafayette County, Wisconsin: U.S. Geological Survey Water-Resources Investigations 81–52, 58 p. - Conger, D.H., 1981, Techniques for estimating magnitude and frequency of floods for Wisconsin streams: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–1214, 116 p. - Krug, W.R., and House, L.B., 1980, Streamflow model of Wisconsin River for estimating flood frequency and volume: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–1103, 44 p - Holmstrom, B.K., 1980, Low-flow characteristics of streams in the Menominee-Oconto-Peshtigo River basin, Wisconsin: Water-Resources Investigations Open-File Report 80–749, 82 p. - _____1980, Low-flow characteristics of streams in the St. Croix River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–696, 62 p. - Gebert, W.A., 1980, Low-flow characteristics of streams in the upper Wisconsin River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–691, 60 p. - Krug, W.R., 1981, Hydrologic effects of proposed changes in management practices, Winnebago Pool, Wisconsin: U.S. Geological Survey Water-Resources Investigations 80–107, 19 p. - House, L.B., and Skavroneck, S., 1981, Comparison of the propanearea tracer method and predictive equations for determination of
stream-reaeration coefficients on two small streams in Wisconsin: U.S. Geological Survey Water-Resources Investigations 80–105, 18 p. - Kontis, A.L., and Mandle, R.J., 1980, Data-base system for northern Midwest regional aquifer-system analysis: U.S. Geological Survey Water-Resources Investigations 80–104, 27 p. - Grant, R.S., and Goddard, G., 1980, Channel erosion and sediment transport in Pheasant Branch basin near Middleton, Wisconsin, a preliminary report: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–161, 19 p. - McLeod, R.S., 1980, The effects of using ground water to maintain water levels of Cedar Lake, Wisconsin: U.S. Geological Survey Water-Resources Investigations 80–23, 35 p. - Grant, R.S., and Skavroneck, S., 1980, Comparison of tracer methods and predictive models for determination of stream-reaeration coefficients on three small streams in Wisconsin: U.S. Geological Survey Water-Resources Investigations 80–19, 36 p. - Hindall, S.M., 1979, Ground-water quality in selected areas of Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 79–1594, 20 p. - Stedfast, D.A., 1979, Low-flow characteristics of streams in the Pecatonica-Sugar River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 79–1274, 92 p. - Grant, R.S., and Goddard, Gerald, 1979, Urban storm-runoff modeling—Madison, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 79–1273, 20 p. - Novitzki, R.P., and Holmstrom, B.K., 1979, Monthly and annual water budgets of Lake Wingra, Madison, Wisconsin, 1971–77: U.S. Geological Survey Water-Resources Investigations 79–100, 31 p. - Kammerer, P.A., and Sherrill, M.G., 1979, Hydrology and water quality in the Nederlo Creek basin before construction of two water-retention structures: U.S. Geological Survey Water-Resources Investigations 79–95, 42 p. - Gebert, W.A., 1979, Low-flow characteristics of streams in Lake Superior basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations 79–38, 74 p. - Holmstrom, B.K., 1979, Low-flow characteristics of Wisconsin streams at sewage-treatment plants and industrial plants: U.S. Geological Survey Water-Resources Investigations 79–31, 123 p. - Gebert, W.A., 1979, Red Cedar River basin, Wisconsin: Low-flow characteristics: U.S. Geological Survey Water-Resources Investigations 79–29, 12 p. - Holmstrom, B.K., 1979, Low-flow characteristics of streams in the Trempealeau-Black River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations 79–9, 79 p. - Sherrill, M.G., 1979, Contamination potential in the Silurian dolomite aquifer, eastern Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–108, 2 pls. - Holmstrom, B.K., 1978, Low-flow characteristics of streams in the Rock-Fox River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–85, 98 p. - Rathbun, R.E., and Grant, R.S., 1978, Comparison of the radioactive and modified techniques for measurement of stream reaeration coefficients: U.S. Geological Survey Water-Resources Investigations 78–68, 65 p. - Field, S.J., 1978, Ten-year low mean monthly discharge determinations for ungaged streams near waste-stabilization ponds in Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–49, 16 p. - Novitzki, R.P., 1978, Hydrology of the Nevin wetland near Madison, Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–48, 25 p. - Grant, R.S., 1978, Reaeration capacity of the Rock River between Lake Koshkonong, Wisconsin, and Rockton, Illinois: U.S. Geological Survey Water-Resources Investigations 77–128, 33 p. - Gebert, W.A., 1978, Low-flow characteristics of streams in the lower Wisconsin River basin: U.S. Geological Survey Water-Resources Investigations 77–118, 80 p. - Gebert, W.A., and Holmstrom, B.K., 1977, Low-flow characteristics at gaging stations on the Wisconsin, Fox, and Wolf Rivers, Wisconsin: U.S. Geological Survey Water-Resources Investigations 77–27, 20 p. - Rose, W.J., 1977, Hydrologic considerations associated with dredging spring ponds in Wisconsin: U.S. Geological Survey Water-Resources Investigations 77–18, 35 p. - Krug, W.R., 1976, Simulation of streamflow of Flambeau River at Park Falls, Wisconsin, to define low-flow characteristics: U.S. Geological Survey Water-Resources Investigations 76–116, 14 p. - Grant, R.S., 1976, Reaeration of coefficient measurements of 10 small streams in Wisconsin using radioactive tracers—with a section on the energy-dissipation model: U.S. Geological Survey Water-Resources Investigations 76–96, 50 p. - Novitzki, R.P., 1976, Recycling ground water in Waushara County, Wisconsin: Resource management for cold-water fish hatcheries: U.S. Geological Survey Water-Resources Investigations 76–20, 60 p. - Hindall, S.M., 1976, Measurement and prediction of sediment yields in Wisconsin streams: U.S. Geological Survey Water-Resources Investigations 54–75, 27 p. - Oakes, E.L., Hendrickson, G.E., and Zuehls, E.E., 1975, Hydrology of the Lake Wingra basin, Dane County, Wisconsin: U.S.Geological Survey Water-Resources Investigations 17–75, 31 p. - Gebert, W.A., and Holmstrom, B.K., 1974, Low-flow characteristics of Wisconsin streams at sewage-treatment plants: U.S. Geological Survey Water-Resources Investigations 45–74, 101 p. - Hendrickson, G.E., Knutilla, R.L., and Doonan, C.J., 1973, Hydrology and recreation of selected cold-water rivers of the St. Lawrence River basin in Michigan, New York, and Wisconsin: U.S. Geological Survey Water-Resources Investigations 8–73, 73 p. ## **OPEN-FILE REPORTS** - Graczyk, D.J., and Garn, H.S., 2003, Water quality of the Fox River and four tributaries in Green Lake County, Wisconsin, 2001–2002: U.S. Geological Survey Open-File Report 03–127, 11 p. - Wisconsin District Lakes-Studies Team, 2003, Water-quality and lakestage data for Wisconsin lakes, water year 2002: U.S. Geological Survey Open-File Report 03–99, 125 p. - Waschbusch, R.J., 2003, Data and methods of a 1999–2000 street sweeping study on an urban freeway in Milwaukee County, Wisconsin: U.S. Geological Survey Open-File Report 03–93, 41 p. - Fitzpatrick, F.A., and Peppler, M.C., 2003, Sedimentation and sediment chemistry, Neopit Mill Pond, Menominee Indian Reservation, Wisconsin, 2001: U.S. Geological Survey Open-File Report 03–23, 58 p. - Ellefson, B.R., Mueller, G.D., and Buchwald, C.A., 2002, Water use in Wisconsin, 2000: U.S. Geological Survey Open-File Report 02–356, 1 sheet. - Hueschen, K.A., Jones, S.Z., and Fuller, J.A., 2002, Water-resources investigations in Wisconsin, 2002: U.S. Geological Survey Open-File Report 02–300, 184 p. - Wisconsin District Lakes-Studies Team, 2002, Water-quality and lakestage data for Wisconsin lakes, water year 2001: U.S. Geological Survey Open-File Report 02–135, 149 p. - Garn, H.S., 2002, Surface-water quality-assurance plan for the Wisconsin District of the U.S. Geological Survey, Water Resources Division: U.S. Geological Survey Open-File Report 02–30, 52 p. - De Wild, J.F., Olson, M.L., and Olund, S.D., 2002, Determination of methyl mercury by aqueous phase ethylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection: U.S. Geological Survey Open-File Report 01–445, 14 p. - Maertz, D.E., and Fuller, J.A., 2001, Water-resources investigations in Wisconsin, 2001: U.S. Geological Survey Open-File Report 01–254, 133 p. - Walker, J.F., Graczyk, D.J., Corsi, S.R., Wierl, J.A., and Owens, D.W., 2001, Evaluation of nonpoint-source contamination, Wisconsin: water year 1999: U.S. Geological Survey Open-File Report 01–105, 37 p. - Wisconsin District Lakes-Studies Team, 2001, Water-quality and lakestage data for Wisconsin lakes, water year 2000: U.S. Geological Survey Open-File Report 01–86, 128 p. - Scudder, B.C., Selbig, J.W., and Waschbusch, R.J., 2000, Determination of the effects of fine-grained sediment and other limiting variables on trout habitat for selected streams in Wisconsin: U.S. Geological Survey Open-File Report 00–435, 25 p. - Maertz, D.E., 2000, Water-resources investigations in Wisconsin, 2000: U.S. Geological Survey Open-File Report 00–251, 117 p. - Wisconsin District Lakes-Studies Team, 2000, Water-quality and lakestage data for Wisconsin lakes, water year 1999: U.S. Geological Survey Open-File Report 00–89, 140 p. - Corsi, S.R., Greb, S.R., Bannerman, R.T., and Pitt, R.E., 1999, Evaluation of the multi-chambered treatment train, a retrofit water-quality management device: U.S. Geological Survey Open-File Report 99–270, 24 p. - Maertz, D.E., 1999, Water-resources investigations in Wisconsin, 1999: U.S. Geological Survey Open-File Report 99–229, 112 p. - Wisconsin District Lake-Studies Team, 1999, Water-quality and lakestage data for Wisconsin lakes, water year 1998: U.S. Geological Survey Open-File Report 99–98, 143 p - Krug, W. R., 1999, Simulation of the effects of operating Lakes Mendota, Monona, and Waubesa, south-central Wisconsin, as multipurpose reservoirs to maintain dry-weather flow: U.S. Geological Survey Open-File Report 99–67, 18 p. - Hall, D.W., Behrendt, T.E., and Hughes, P.E., 1998, temperature, pH, conductance, and dissolved oxygen in cross sections of 11 Lake Michigan tributaries, 1994–95: U.S. Geological Survey Open-File Report 98–567, 85 p. - Maertz, D.E., 1998, Water-resources investigations in Wisconsin: U.S. Geological Survey Open-File Report 98–295, 96 p. - Wisconsin District Lake-Studies Team, 1998, Water-quality and lakestage data for Wisconsin lakes, water year 1997: U.S. Geological Survey Open-File Report 98–78, 129 p. - Ellefson, B.R., Fan, C.H., and Ripley, J.L., 1997, Water use in Wisconsin, 1995: U.S. Geological Survey Open-File Report 97–356, 1 sheet. - Maertz, D.E., 1997, Water-resources investigations in Wisconsin, U.S. Geological Survey Open-File Report 97–351, 91 p. - Wisconsin District Lake-Studies Team, 1997, Water-quality and lakestage data for Wisconsin
lakes, water year 1996: U.S. Geological Survey Open-File Report 97–123, 134 p. - Rappold, K.F., Wierl, J.A., and Amerson, F.U., 1997, Watershed characteristics and land management in the nonpoint-source evaluation monitoring watersheds in Wisconsin: U.S. Geological Survey Open-File Report 97–119, 39 p. - Owens, D.W., Corsi, S.R., and Rappold, K.F., 1997, Evaluation of nonpoint-source contamination, Wisconsin: Selected topics for water year 1995: U.S. Geological Survey Open-File Report 96–661A, 41 p. - Bannerman, R.T., Legg, A.D., and Greb, S.R., 1996, Quality of Wisconsin stormwater 1989–94: U.S. Geological Survey Open-File Report 96–458, 26 p. - Maertz, D.E., 1996, Water-resources investigations in Wisconsin, U.S. Geological Survey Open-File Report 96–333, 74 p. - Wisconsin District Lake-Studies Team, 1996, Water-quality and lakestage data for Wisconsin lakes, water year 1995: U.S. Geological Survey Open-File Report 96–168, 123 p. - Wierl, J.A., Rappold, K.F., and Amerson, F.U., 1996, Summary of the land-use inventory for the nonpoint-source evaluation monitoring watersheds in Wisconsin: U.S. Geological Survey Open-File Report 96–123, 23 p. - Steuer, J.J., Selbig, W.R. and Hornewer, N.J., 1996, Contaminant concentrations in stormwater from eight Lake Superior basin cities, 1993–94: U.S. Geological Survey Open-File Report 96–122, 16 p. - Waschbusch, R.J., 1996, Stormwater-runoff data, Madison, Wisconsin, 1993–94: U.S. Geological Survey Open-File Report 95–733, 33 p. - Maertz, D.E., 1995, Water-resources investigations in Wisconsin, 1995: U.S. Geological Survey Open-File Report 95–328, 84 p. - Walker, J.R., Graczyk, D.J., Corsi, S.R., Owens, D.W., and Wierl, J.A., 1995, Evaluation of nonpoint-source contamination, Wisconsin: Land-use and best-management-practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmeltrunoff analysis, water year 1994: U.S. Geological Survey Open-File Report 95–320, 21 p. - Wisconsin District Lake-Studies Team, 1995, Water-quality and lakestage data for Wisconsin lakes, water year 1994: U.S. Geological Survey Open-File Report 95–190, 157 p. - Peters, C.A., 1995, National Water-Quality Assessment Program, Western Lake Michigan Drainages-Summaries of Liaison Committee Meeting, Green Bay, Wisconsin, March 28–29, 1995: U.S. Geological Survey Open-File Report 95–163, 57 p. - Corsi, S.R., Walker, J.F., Graczyk, D.J., Greb, S.R., Owens, D.W., and Rappold, K.F., 1995, Evaluation of nonpoint-source contamination, Wisconsin: Selected streamwater-quality data, land-use and best-management practices inventory, and quality assurance and quality control, water year 1993: U.S. Geological Survey Open-File Report 94–707, 57 p. - Krohelski, J.T., and Batten, W.G., 1995, Simulation of stage and the hydrologic budget of Devils Lake, Sauk County, Wisconsin: U.S. Geological Survey Open-File Report 94–348, 22 p. - Maertz, D.E., 1994, Water-resources investigations in Wisconsin, 1994: U.S. Geological Survey Open-File Report 94–321. - Graczyk, D.J., Walker, J.F., Greb, S.R., Corsi, S.R., and Owens, D.W., 1993, Evaluation of nonpoint-source contamination, Wisconsin: Selected data for 1992 water year: U.S. Geological Survey Open-File Report 93–630, 48 p. - House, L.B., Waschbusch, R.J., and Hughes, P.E., 1993, Water quality of an urban wet detention pond in Madison, Wisconsin, 1987–88: U.S. Geological Survey Open-File Report 93–172, 57 p. - House, L.B., Hughes, P.E., and Waschbusch, R.J., 1993, Concentrations and loads of polychlorinated biphenyls in major tributaries entering Green Bay, Lake Michigan, 1989–90: U.S. Geological Survey Open-File Report 93–132, 41 p. - Walker, J.F., 1993, Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota, and Illinois: U.S. Geological Survey Open-File Report 93–130, 16 p. - Maertz, D.E., 1993, Water-resources investigations in Wisconsin, 1993: U.S. Geological Survey Open-File Report 93–129, 91 p. - Ellefson, B.R., Sabin, T.J., and Krohelski, J.T., 1993, Water use in Wisconsin, 1990: U.S. Geological Survey Open-File Report 93–118, 1 sheet. - House, L.B., 1995, Distribution and transport of polychlorinated biphenyls in Little Lake Butte des Morts, Fox River, Wisconsin, April 1987–October 1988: U.S. Geological Survey Open-File Report 93–31, 43 p., 1 pl. - Maertz, D.E., 1992, Water-resources investigations in Wisconsin: Programs and activities of the U.S. Geological Survey, 1991– 1992: U.S. Geological Survey Open-File Report 92–125, 93 p. - Elder, J.F., Krabbenhoft, D.P, and Walker, J.F., 1992, Water, energy, and biogeochemical budgets (WEBB) program: Data availability and research at the northern temperate lakes site, Wisconsin: U.S. Geological Survey Open-File Report 92–48, 15 p. - Krabbenhoft, D.P., and Krohelski, J.T., 1992, Data on water quality, lake sediment, and lake-level fluctuation, St. Croix Indian Reservation, Wisconsin, 1981–87: U.S. Geological Survey Open-File Report 92–26, 53 p. - Hughes, P.E., 1993, Hydrologic and water-quality data for the East River Basin of northeastern Wisconsin: U.S. Geological Survey Open-File Report 89–245, 91 p. - Setmire, J.G., 1991, National Water-Quality Assessment Program Western Lake Michigan Drainage Basin: U.S. Geological Survey Open-File Report 91–161, Water Fact Sheet, 2 p. - Melcher, N.B. and Walker, J.F., 1990, Evaluation of selected methods for determining streamflow during periods of ice effect: U.S. Geological Survey Open-File Report 90–554, 51 p. - U.S. Geological Survey, 1990, The effects of the 1988 drought on the water resources of Wisconsin: U.S. Geological Survey Open-File Report 90–149, Water Fact Sheet, 2 p. - House, L.B., 1990, Data on polychlorinated biphenyls, dieldrin, lead, and cadmium in Wisconsin and upper Michigan tributaries to Green Bay, July 1987 through April 1988: U.S. Geological Survey Open-File Report 89–52, 11 p. - Gebert, Warren A., Graczyk, David J., and Krug, William R., 1988, Runoff for selected sites in Shenandoah National Park, Virginia, July 18, 1981 through July 17, 1982: U.S. Geological Survey Open-File Report 88–98, 13 p. - Ellefson, B.R., Rury, K.S., and Krohelski, J.T., 1988, Water use in Wisconsin, 1985: U.S. Geological Survey Open-File Report 87–699. - Krug, W.R., Gebert, W.A., and Graczyk, D.J., 1989, Preparation of average annual runoff map of the United States, 1951–80: U.S. Geological Survey Open-File Report 87–535, 414 p. - Krug, W.R., Ostenso, N.A., and Krohelski, J.T., 1988, Prediction of the effects of mine dewatering on four lakes near Crandon, Wisconsin, by use of a water-budget model: U.S. Geological Survey Open-File Report 87–471, 63 p. - Graczyk, David J., Gebert, Warren A., Krug, William R., and Allord, G.J., 1987, Maps of runoff in the Northeastern Region and southern Blue Ridge Province of the United States during selected time periods in 1983–85: U.S. Geological Survey Open-File Report 87–106, 8 p., 3 pl. - Graczyk, David J., Krug, William R., and Gebert, Warren A., 1986, A history of annual streamflows from the 21 water-resource regions in the United States and Puerto Rico, 1951–83: U.S. Geological Survey Open-File Report 86–128, 30 p. - Henrich, E.W., 1984, Drainage area data for Wisconsin Streams: U.S. Geological Survey Open-File Report 83–933, 322 p. - Lawrence, C.L., Ellefson, B.R., and Cotter, R.D., 1984, Public-supply pumpage in Wisconsin in 1979: U.S. Geological Survey Open-File Report 83–931, 40 p. - Lawrence, C.L., and Ellefson, B.R., Water use in Wisconsin, 1979, U.S. Geological Survey Open-File Report 82–444, 98 p. - Novitzki, R.P., 1979, Streamflow estimates in selected Wisconsin streams: U.S. Geological Survey Open-File Report 79–1282, 11 p. - Harr, C.A., and Novitzki, R.P., 1979, Availability of supplemental water supplies at salmonid fish-propagation stations in Wisconsin: U.S. Geological Survey Open-File Report 79–1170, 13 p. - Krug, W.R., 1979, Simulation of streamflow of Rock River at Lake Koshkonong, Wisconsin, to determine effects of withdrawal of powerplant-cooling water: U.S. Geological Survey Open-File Report 79–253, 21 p. - McLeod, R.S., 1978, Water-level declines in the Madison area, Dane County, Wisconsin: U.S. Geological Survey Open-File Report 78–936, 15 p. - Field, S.J., 1978, Low-flow characteristics of small streams in proposed Public Law 566 basins: U.S. Geological Survey Open-File Report 78–664, 32 p. - Hindall, S.M., 1978, Suspended-sediment transport in the Big Eau Pleine River basin, central Wisconsin: U.S. Geological Survey Open-File Report 78–313, 12 p. - Lawrence, C.L., 1976, Regional flood limits of lower Yahara River, Lake Waubesa and south, in Dane County, Wisconsin: U.S. Geological Survey Open-File Report 76–805, 20 p. - Krug, W.R., 1976, Probable maximum flood at Lake Chippewa near Winter, Wisconsin: U.S. Geological Survey Open-File Report 76–800, 14 p. - Grant, R.S., 1976, Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin: U.S. Geological Survey Open-File Report 76–655, 44 p. - Lawrence, C.L., 1976, Regional flood limits of upper Yahara River in Dane County, Wisconsin: U.S. Geological Survey Open-File Report 76–448, 15 p. - Holmstrom, B.K., 1976, Low-flow characteristics and mean annual discharge of North Branch Manitowoc River at Potter, Wisconsin: U.S. Geological Survey Open-File Report 76–204, 20 p. - Krug, W.R., 1976, Flood-plain delineation for regional flood in Dane County, Wisconsin: U.S. Geological Survey Open-File Report 76–164, 168 p. - Field, S.J., 1975, Low-flow study of the Pike River basin, Racine and Kenosha Counties, Wisconsin: U.S. Geological Survey Open-File Report 75–653, 10 p. - Green, J.H., 1975, Flow characteristics of the lower Wisconsin River: U.S. Geological Survey Open-File Report 75–582, 9 p. - Holmstrom, B.K., 1975, Streamflow characteristics of Klawitter Creek basin
near Westfield, Wisconsin: U.S. Geological Survey Open-File Report 75–527, 14 p. - Krug, W.R., 1975, Analysis of operational plan for Lake Chippewa near Winter, Wisconsin: U.S. Geological Survey Open-File Report 75–487, 17 p. - Holmstrom, B.K., 1975, Low-flow characteristics of the Eau Claire River basin near Antigo, Wisconsin: U.S. Geological Survey Open-File Report 75–336, 19 p. - Lawrence, C.L., and Holmstrom, B.K., 1971, Floods on Yahara River, Lake Kegonsa dam to countyline, Dane County, Wisconsin: U.S. Geological Survey Open-File Report 72–0222, 10 p. - Lawrence, C.L., and Holmstrom, B.K., 1972, Flood in Starkweather Creek basin, Madison, Wisconsin: U.S. Geological Survey Open-File Report 72–0221, 15 p. - Holmstrom, B.K., and Lawrence, C.L., 1971, Floods on Yahara River, Lake Mendota to Lake Kegonsa, Dane County, Wisconsin: U.S. Geological Survey Open-File Report 72–0168, 12 p. - Conger, D.H., 1971, Estimating magnitude and frequency of floods in Wisconsin: U.S. Geological Survey Open-File Report 71–0076, 200 p. - Campbell, R.E., and Dreher, F.C., 1970, A proposed streamflow data program for Wisconsin: U.S. Geological Survey Open-File Report 70–0052, 55 p. - Hamilton, L.J., 1970, Availability of ground water in the lower Wisconsin River Valley, Wisconsin: U.S. Geological Survey Open-File Report 69–0117, 45 p. - Young, K.B., 1965, Effect of treated effluent diversion on Yahara River flow: U.S. Geological Survey Open-File Report 66–0157, 81 p. - Young, K.B., 1963, Flow characteristics of Wisconsin streams: U.S. Geological Survey Open-File Report 64–0167, 151 p. - U.S. Geological Survey, 1961, Wisconsin River near Dekorra, Wisconsin, flood-flow characteristics at proposed bridge site on the Wisconsin Freeway in Columbia County: U.S. Geological Survey Open-File Report 61–0045, 13 p. - Erickson, D.W., 1961, Floods in Wisconsin, magnitude and frequency: U.S. Geological Survey Open-File Report 61–0044, 109 p. - Spicer, H.C., and Edwards, G.J., 1955, Electrical resistivity measurements in the Neillsville area, Wisconsin: U.S. Geological Survey Open-File Report 55–0173, 34 p. - ____1954, A resistivity survey to locate an aquifer in the glacial deposits near Marshfield, Wisconsin: U.S. Geological Survey Open-File Report 54–0291, 76 p. - Gebert, W.A., 1974, Streamflow characteristics of Little Wolf River— Holt Creek basin near Galloway, Wisconsin: U.S. Geological Survey Open-File Report, 10 p. - Grant, R.S., Krug, W.R., and Duerk, M.D., 1973, Floodplain and floodway delineation for regional flood in central Marathon County, Wisconsin: U.S. Geological Survey Open-File Report, 33 p. - Holmstrom, B.K., Gebert, W.A., and Borman, R.G., 1973, Alder Creek hydrology, Wisconsin: U.S. Geological Survey Open-File Report, 28 p. - Lawrence, C.L., and Holmstrom, B.K., 1972, Floods on Yahara River tributaries, Dane County, Wisconsin: U.S. Geological Survey Open-File Report, 19 p. - Holmstrom, B.K., 1972, Drainage-area data for Wisconsin streams: U.S. Geological Survey Open-File Report, 74 p. (Updated 1973, 1974, 1978, and 1979.) - Hindall, S.M., 1972, Sediment yields of Wisconsin streams: U.S. Geological Survey Open-File Report, 2 p. - Weeks, E.P., and Stangland, H.G., 1971, Effects of irrigation on streamflow in the central sand plains of Wisconsin: U.S. Geological Survey Open-File Report, 113 p. - Shearman, J.O., and Lawrence, C.L., 1971, Floods on Yahara River upstream from Lake Mendota, Dane County, Wisconsin: U.S. Geological Survey Open-File Report, 7 p. - Gebert, W.A., 1971, Hydrology of Pine Creek: U.S. Geological Survey Open-File Report, 6 p. - _____1971, Hulbert Creek hydrology, southwestern Wisconsin: U.S. Geological Survey Open-File Report, 11 p. - Devaul, R.W., 1970, Base-flow study of East River Basin—Brown and Calumet Counties, Wisconsin: U.S. Geological Survey Open-File Report, 6 p. - _____1970, Base-flow study of Suamico River Basin—Oconto, Brown, Shawano and Outagamie Counties, Wisconsin: U.S. Geological Survey Open-File Report, 6 p. - _____1970, Base-flow study of Little Suamico River Basin—Oconto, Brown and Shawano Counties, Wisconsin: U.S. Geological Survey Open-File Report, 6 p. - _____1970, Base-flow study of Duck Creek Basin—Brown and Outagamie Counties, Wisconsin: U.S. Geological Survey Open-File Report, 8 p. - Gonthier, J.B., 1970, Water resources of southeastern Wisconsin—Milwaukee River basin: U.S. Geological Survey Open-File Report, 138 p. (Extensively used in preparation of "A comprehensive plan for the Milwaukee River watershed", v. 1 and 2, 1970 and 1971, Southeastern Wisconsin Regional Planning Commission Report No. 13, v. 1, 514 p. and v. 2, 623 p.) - Shearman, J.O., 1969, Evaluation of flood potential, part 2 of Floodplain management—Lake Koshkonong: U.S. Geological Survey Open-File Report, 6 p. - Young, K.B., 1965, Supplement to report on flow characteristics of Wisconsin streams: U.S. Geological Survey Open-File Report, 81 p. - U.S. Geological Survey, 1964, Water-quality records in Michigan and Wisconsin: U.S. Geological Survey Open-File Report, 61 p. - Drescher, W.J., 1948, Results of pumping tests on artesian wells in the Milwaukee-Waukesha area, Wisconsin: U.S. Geological Survey Open-File Report, 22 p. # **FACT SHEETS** - Garn, H.S., Elder, J.F., and Robertson, D.M., Lake Studies Team, 2003, Why study lakes? An overview of USGS lake studies in Wisconsin: U.S. Geological Survey Fact Sheet 063–03 - Hunt, R.J., Bradbury, K.R., and Krohelski, J.T., 2001, The effects of large-scale pumping and diversion on the water resources of Dane County, Wisconsin: U.S. Geological Survey Fact Sheet 127–01, 4 p. - Hunt, R.J. and Steuer, J.J., 2001, Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models: U.S. Geological Survey Fact Sheet 102–01, 4 p. - Elder, J.F., and Robertson, D.M., 2000, Chemical composition of surficial sediment in Geneva Lake, Wisconsin: U.S. Geological Survey Fact Sheet 121–00, 4 p. - Owens, D.W., Jopke, P., Hall, D.W., Balousek, J., and Roa, A., 2000, Soil erosion from two small construction sites, Dane County, Wisconsin: U.S. Geological Survey Fact Sheet 109–00, 4 p. - Hunt, R.J., Graczyk, D.J., and Rose, W.J., 2000, Water flows in the Necedah National Wildlife Refuge: U.S. Geological Survey Fact Sheet 068–00, 4 p. - Graczyk, D.J., Robertson, D.M., Rose, W.J., and Steuer, J.J., 2000, Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin: U.S. Geological Survey Fact Sheet 067–00, 4 p. - Graczyk, D.J., Vanden Brook, J.P., and Rheineck, B.D., 1999, Herbicides in the Pecatonica, Trempealeau, and Yahara Rivers in Wisconsin, May 1997-July 1998: U.S. Geological Survey Fact Sheet 167-99, 9 p. - Wierl, J.A., Giddings, E.M.P., and Bannerman, R.T., 1998, Evaluation of a method for comparing phosphorus loads from barnyards and croplands in Otter Creek watershed, Wisconsin: U.S. Geological Survey Fact Sheet 168–98, 4 p. - Rose, W.J., and Robertson, D.M., 1998, Hydrology, water quality, and phosphorus loading of Kirby Lake, Barron County, Wisconsin: U.S. Geological Survey Fact Sheet 066–98, 4 p. - Stuntebeck, T.D., and Bannerman, R.T., 1998, Effectiveness of barnyard best management practices in Wisconsin: U.S. Geological Survey Fact Sheet 051–98, 4 p. - Team for evaluating the Wisconsin Water-Monitoring Network, 1998, Plan for an integrated long-term water-monitoring network for Wisconsin: U.S. Geological Survey Fact Sheet 048–98, 4 p. - Corsi, S.R., Graczyk, D.J., Owens, D.W., and Bannerman, R.T., 1997, Unit-area loads of suspended sediment, suspended solids, and total phosphorus from small watersheds in Wisconsin: U.S. Geological Survey Fact Sheet 195–97, 4 p. - Graczyk, David J., and Vanden Brook, James P., 1997, Herbicides in the Pecatonica and Yahara Rivers in southwestern Wisconsin, May 1996–July 1996: U.S. Geological Survey Fact Sheet 175–97, 4 p. - Lenz, B.N., 1997, Feasibility of combining two aquatic benthic macroinvertebrate community databases for water-quality assessment: U.S. Geological Survey Fact Sheet 132–97, 4 p. - Hunt, R.J., 1996, Do created wetlands replace the wetlands that are destroyed: U.S. Geological Survey Fact Sheet 246–96, 4 p. - Elder, J.F., and Goddard, G.L., 1996, Sediment and nutrient trapping efficiency of a constructed wetland near Delavan Lake, Wisconsin, 1993–1995: U.S. Geological Survey Fact Sheet 232–96, 4 p. - Kammerer, P.A., Jr., 1996, Hydrology and water quality of Park Lake, south-central Wisconsin: U.S. Geological Survey Fact Sheet 197–96, 4 p. - Matzen, A.M., and Saad, D.A., 1996, Pesticides in ground water in the Western Lake Michigan drainages, Wisconsin and Michigan, 1983–1995: U.S. Geological Survey Fact Sheet 192–96, 4 p. - U.S. Geological Survey, 1996, Real-time streamflow conditions: U.S. Geological Survey Fact Sheet 190–96, 2 p. - Krabbenhoft, D.P., 1996, Mercury studies in the Florida Everglades: U.S. Geological Survey Fact Sheet 166–96, 4 p. - Fitzgerald, S.A., and Steuer, J.J., 1996, The Fox River PCB transport study—stepping stone to a healthy Great Lakes ecosystem: U.S. Geological Survey Fact Sheet 116–96, 4 p. - Sullivan, D.J., and Richards, K.D., 1996, Pesticides in streams in the Western Lake Michigan drainages, Wisconsin and Michigan, 1993–95: U.S. Geological Survey Fact Sheet 107–96, 4 p. - Stuntebeck, T.D., 1995, Evaluating barnyard best management practices in Wisconsin using upstream-downstream monitoring: U.S. Geological Survey Fact Sheet 221–95, 4 p. - Robertson, Dale M., and Saad, David A., 1995, Environmental factors used to subdivide the Western Lake Michigan Drainages into relatively homogeneous units for water-quality site selection: U.S. Geological Survey Fact Sheet 220–95, 4 p. - Krabbenhoft, D.P., and Rickert, D.A., 1995, Mercury contamination of aquatic ecosystems: U.S. Geological Survey Fact Sheet 216–95, 4 p. - Saad, D.A., 1995, Nitrate in ground water in the Western Lake Michigan Drainage Basin, Wisconsin and Michigan:
U.S. Geological Survey Fact Sheet 070–94, 2 p. - Drescher, W.J., 1948, Results of pumping tests on artesian wells in the Milwaukee-Waukesha area, Wisconsin: U.S. Geological Survey Open-File Report, 22 p. #### **WATER-SUPPLY PAPERS** - Kammerer, P.A., Jr., and Krug, W.R., 1993, Wisconsin stream water quality, in U.S. Geological Survey, National water summary 1990–91—Hydrologic events and stream water quality: U.S. Geological Survey Water-Supply Paper 2400, p. 561–568. - Melcher, N.B., and Walker, J.F., 1992, Evaluation of selected methods for determining streamflow during periods of ice effect: U.S. Geological Survey Water-Supply Paper 2378, 47 p. - U.S. Geological Survey, 1991, National water summary 1988–89— Hydrologic Events and Floods and Droughts: U.S. Geological Survey Water-Supply Paper 2375, 591 p. - U.S. Geological Survey, 1990, National water summary 1987— Hydrologic events and water supply and use: U.S. Geological Survey Water-Supply Paper 2350, 553 p. - _____1988, National water summary 1986—Hydrologic events, selected water-quality trends, and ground-water quality: U.S. Geological Survey Water-Supply Paper 2325, 569 p. - _____1986, National water summary 1985—Hydrologic events and surface-water resources: U.S. Geological Survey Water-Supply Paper 2300, 506 p. - _____1985, National water summary 1984—Hydrologic events, selected water-quality trends, and ground-water resources: U.S. Geological Survey Water-Supply Paper 2275, 467 p. - _____1984, National water summary 1983—Hydrologic events and issues: U.S. Geological Survey Water-Supply Paper 2250, 243 p. - Batten, W.G., and Hindall, S.M., 1980, Sediment deposition in the White River Reservoir, northwestern Wisconsin: U.S. Geological Survey Water-Supply Paper 2069, 30 p. - Sherrill, M.G., 1978, Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite: U.S. Geological Survey Water-Supply Paper 2047, 38 p. - Hurtgen, D.C., 1975, Summary of floods, June 29-30 in southwestern Wisconsin, in Summary of floods in the United States during 1969: U.S. Geological Survey Water-Supply Paper 2030, p. 116–119. - Bell, E.A., and Sherrill, M.G., 1974, Water availability in central Wisconsin—an area of near-surface crystalline rock: U.S. Geological Survey Water-Supply Paper 2022, 32 p. - Novitzki, R.P., 1973, Improvement of trout streams in Wisconsin by augmenting low flows with ground water: U.S. Geological Survey Water-Supply Paper 2017, 52 p. - Oakes, Edward, Field, S.J., and Seeger, L.P., 1973, The Pine-Popple River basins—hydrology of a wild river area, northeastern Wisconsin: U.S. Geological Survey Water-Supply Paper 2006, 57 p. - Hamilton, L.J., 1971, Water for cranberry culture in the Cranmoor area of central Wisconsin: U.S. Geological Survey Water-Supply Paper 1999–I, 20 p. - Hurtgen, D.C., 1972, Floods of March 27–April 4, 1967, in northwestern and west-central Wisconsin, in summary of floods in the United States during 1967: U.S. Geological Survey Water-Supply Paper 1880–C, p. 7-10. - Hutchinson, R.D., 1970, Ground-water resources of Racine and Kenosha Counties, Wisconsin: U.S. Geological Survey Water-Supply Paper 1878, 63 p. - Olcott, P.G., 1966, Geology and water resources of Winnebago County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1814, 61 p. - Weeks, E.P., Erickson, D.W., and Holt, C.L.R., Jr., 1965, Hydrology of the Little Plover River basin, Portage County, Wisconsin, and the effects of water-resources development: U.S. Geological Survey Water-Supply Paper 1811, 78 p. - Green, J.H., and Hutchinson, R.D., 1965, Ground-water pumpage and water-level changes in the Milwaukee-Waukesha area, Wisconsin, 1950–61: U.S. Geological Survey Water-Supply Paper 1809–I, 19 p. - Summers, W.K., 1965, Geology and ground-water resources of Waushara County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1809-B, 32 p. - Holt, C.L.R., Jr., and Knowles, D.B., 1963, The water situation in Wisconsin in the role of ground water in the national water situation: U.S. Geological Survey Water-Supply Paper 1800, p. 943–960. - Cline, D.R., 1965, Geology and ground-water resources of Dane County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1779–U, 64 p. - Holt, C.L.R., Jr., 1965, Geology and water resources of Portage County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1796, 77 p. - Berkstresser, C.F., Jr., 1964, Ground-water resources of Waupaca County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1669–U, 38 p. - Knowles, D.B., 1964, Ground-water conditions in the Green Bay area, Wisconsin, 1950–60: U.S. Geological Survey Water-Supply Paper 1669–J, 37 p. - Cline, D.R., 1963, Hydrology of upper Black Earth Creek basin, Wisconsin, with a section on surface water by M.W. Busby: U.S. Geological Survey Water-Supply Paper 1669–C, 27 p. - Collier, C.R., 1963, Sediment characteristics of small streams in southern Wisconsin, 1954–59: U.S. Geological Survey Water-Supply Paper 1669–B, 34 p. - LeRoux, E.F., 1963, Geology and ground-water resources of Rock County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1619–X, 50 p. - Newport, T.G., 1962, Geology and ground-water resources of Fond du Lac County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1604, 52 p. - Knowles, D.B., Dreher, F.C., and Whetstone, G.W., 1964, Water resources of the Green Bay area, Wisconsin: U.S. Geological Survey Water-Supply Paper 1499–G, 66 p. - LeRoux, E.F., 1957, Geology and ground-water resources of Outagamie County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1421, 57 p. - Harger, A.H., and Drescher, W.J., 1954, Ground-water conditions in southwestern Langlade County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1294, 39 p. - Foley, F.C., Walton, W.D., and Drescher, W.J., 1953, Ground-water conditions in the Milwaukee-Waukesha area, Wisconsin: U.S. Geological Survey Water-Supply Paper 1229, 96 p. ## HYDROLOGIC INVESTIGATIONS ATLASES - Kammerer, Phil A., Jr., Trotta, Lee C., Krabbenhoft, David P., and Lidwin, R.A., 1998, Geology, ground-water flow, and dissolvedsolids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers, U.S. Geological Survey Hydrologic Investigations Atlas, HA–731, 4 sheets. - Gebert, W.A., Graczyk, D.J., and Krug, W.R., 1987, Average annual runoff in the United States, 1951–80: U. S. Geological Survey Hydrologic Investigations Atlas HA–710, 1 sheet. - Hughes, P.E., Hannuksela, J. S., and Danchuk, W.J., 1981, Flood of July 1–5, 1978, on the Kickapoo River, Southwestern Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA–653, 7 sheets. - Oakes, E.L., and Cotter, R.D., 1975, Water resources of Wisconsin—upper Wisconsin River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–536, 3 sheets. - Young, H.L., and Skinner, E.L., 1974, Water resources of Wisconsin— Lake Superior basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–524, 3 sheets. - Hindall, S.M., and Borman, R.G., 1974, Water resources of Wisconsin—lower Wisconsin River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–479, 3 sheets. - Young, H.L., and Borman, R.D., 1973, Water resources of Wisconsin—Trempealeau-Black River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–474, 4 sheets. - Oakes, E.L., and Hamilton, L.J., 1973, Water resources of Wisconsin— Menominee-Oconto-Peshtigo River basin, U.S. Geological Survey Hydrologic Investigations Atlas HA–470, 4 sheets. - Hindall, S.M., and Skinner, E.L., 1973, Water resources of Wisconsin—Pecatonica-Sugar River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–453, 3 sheets. - Young, H.L., and Hindall, S.M., 1973, Water resources of Wisconsin— St. Croix River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–451, 4 sheets. - Skinner, E.L., and Borman, R.G., 1973, Water resources of Wisconsin—Lake Michigan basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–432, 4 sheets. - Shearman, J.O., and Holmstrom, B.K., 1971, Floods on Rock River in southwestern Jefferson County, Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA–413, 1 sheet. - ____1971, Floods on Rock River in northeastern Jefferson County, Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA–394, 1 sheet. - Sherman, J.O., 1970, Floods on Rock River in northern Rock County, Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA–393, 1 sheet. - Gebert, W.A., 1971, Low-flow frequency of Wisconsin streams: U.S. Geological Survey Hydrologic Investigations Atlas HA–390, 1 sheet. - Young, H.L., and Hindall, S.M., 1972, Water resources of Wisconsin— Chippewa River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–386, 4 sheets. - Hindall, S.M., and Flint, R.F., 1971, Sediment yields of Wisconsin streams: U.S. Geological Survey Hydrologic Investigations Atlas HA–376, 1 sheet. - Devaul, R.W., and Green, J.H., 1971, Water resources of Wisconsin—central Wisconsin River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–367, 4 sheets. - Cotter, R.D., Hutchinson, R.D., Skinner, E.L., and Wentz, D.A., 1969, Water resources of Wisconsin—Rock-Fox River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–360, 4 sheets. - Olcott, P.G., 1968, Water resources of Wisconsin—Fox-Wolf River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–321, 4 sheets. - U.S. Geological Survey, 1965, Preliminary map of the conterminous United States showing depth to and quality of shallowest ground water containing more than 1,000 parts per million dissolved solids: U.S. Geological Survey Hydrologic Investigations Atlas HA–199, 31 p., 2 sheets. #### **PROFESSIONAL PAPERS** - Young, H.L., 1992, Summary of ground-water hydrology of the Cambrian-Ordovician aquifer system in the northern midwest, United States: U.S. Geological Survey Professional Paper 1405–A, 55 p. - _____1992,
Hydrogeology of the Cambrian-Ordovician aquifer system in the northern midwest, United States: U.S. Geological Survey Professional Paper 1405–B, 99 p., 1 pl. - Mandle, R.J., and Kontis, A.L., 1992, Simulation of regional groundwater flow in the Cambrian-Ordovician aquifer system in the northern midwest, United States: U.S. Geological Survey Professional Paper 1405–C, 97 p. - Siegel, D.I., 1989, Geochemistry of the Cambrian-Ordovician aquifer system in the northern midwest, United States: U.S. Geological Survey Professional Paper 1405–D, 76 p. - Green, J.H., 1968, The Troy Valley of southeastern Wisconsin: U.S. Geological Survey Professional Paper 600–C, p. 135–139. - Carey, K.L., 1967, The underside of river ice, St. Croix River, Wisconsin: U.S. Geological Survey Professional Paper 575–C, p. 195–199. - _____1966, Observed configuration and computed roughness of the underside of river ice, St. Croix River, Wisconsin: U.S. Geological Survey Professional Paper 550–B, p. 192–198. - Weeks, E.P., 1964, Field methods for determining vertical permeability and aquifer anisotropy: U.S. Geological Survey Professional Paper 501–D, p. 193–198. - _____1964, Use of water-level recession curves to determine the hydraulic properties of glacial outwash in Portage County, Wisconsin: U.S. Geological Survey Professional Paper 501–B, p. 181–184. #### **OPEN-FILE MAPS** - Gonthier, J.B., 1979, Water-table map of Waukesha County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–43, 1 pl. - Sherrill, M.G., and Erickson, J.R., 1979, Water-table map of Walworth County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–42, 1 pl. - Sherrill, M.G., and Schiller, J.J., 1979, Water-table map of Racine County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–41, 1 pl. - Sherrill, M.G., Schiller, J.J., and Erickson, J.R., 1979, Water-table map of Milwaukee County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–40, 1 pl. - Sherrill, M.G., and Schiller, J.J., 1979, Water-table map of Kenosha County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–39, 1 pl. - Borman, R.G., 1976, Thickness of unconsolidated materials of Walworth County, Wisconsin: U.S. Geological Survey Open-File Report 76–465, scale 1:62,500. - _____1976, Water-table map of Walworth County, Wisconsin: U.S. Geological Survey Open-File Report 76–464, scale 1:62,500. - _____1976, Bedrock topography of Walworth County, Wisconsin: U.S. Geological Survey Open-File Report 76–463, scale 1:62,500. - ____1976, Bedrock geology of Walworth County, Wisconsin: U.S. Geological Survey Open-File Report 75–462, scale 1:62,500. - Gonthier, J.B., 1975, Bedrock topography of Waukesha County, Wisconsin: U.S. Geological Survey Open-File Report 75–572, scale 1:62,500. - _____1975, Water-table map of Waukesha County, Wisconsin: U.S. Geological Survey Open-File Report 75–571, scale 1:62,500. - _____1975, Bedrock geology of Waukesha County, Wisconsin: U.S. Geological Survey Open-File Report 75–570, scale 1:62,500. - Borman, R.G., 1971, Preliminary map showing thickness of glacial deposits in Wisconsin: U.S. Geological Survey Open-File Report, scale 1:2,500,000. - ____1971, Preliminary map of probable well yields from bedrock in Wisconsin: U.S. Geological Survey Open-File Report, scale 1:2,500,000. - _____1971, Preliminary map of probable well yields from glacial deposits in Wisconsin: U.S. Geological Survey Open-File Report, scale 1:2,500,000. # WISCONSIN GEOLOGICAL AND NATURAL HISTORY SURVEY INFORMATION CIRCULARS - Batten, W.G., 1989, Hydrogeology of Wood County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 60, 27 p., 2 pls. - Patterson, G.L., and Zaporozec, Alexander, 1988, Analysis of waterlevel fluctuations in Wisconsin wells: Wisconsin Geological and Natural History Survey Information Circular 63, 38 p. - Batten, W.G., 1987, Water resources of Langlade County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 58, 28 p., 1 pl. - Krohelski, J.T., 1986, Hydrogeology and ground-water use and quality, Brown County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 57, 42 p. - House, L.B., 1986, Stage fluctuations of Wisconsin Lakes: Wisconsin Geological and Natural History Survey Information Circular No. 49, 84 p. - Devaul, R.W., Harr, C.A., and Schiller, J.J., 1983, Ground-water resources and geology of Dodge County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 44, 34 p. - Erickson, R.M., and Cotter, R.D., 1983, Trends in ground-water levels in Wisconsin through 1981: Wisconsin Geological and Natural History Survey Information Circular 43, 139 p. - Novitzki, R.P., 1982, Hydrology of Wisconsin Wetlands: Wisconsin Geological and Natural History Survey Information Circular 40, 22 p. - Kammerer, Phil A., Jr., Ground-water quality atlas of Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 39, 39 p. - Young, H.L., and Batten, W.G., 1980, Ground-water resources and geology of Washington and Ozaukee Counties, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 38, 37 p. - Harr, C.A., Trotta, L.C., and Borman, R.G., 1978, Ground-water resources and geology of Columbia County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 37, 30 p. - Hindall, S.M., 1978, Effects of irrigation on water quality in the sand plain of central Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 36, 50 p. - Borman, R.G., 1976, Ground-water resources and geology of Walworth County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 34, 45 p. - Borman, R.G., and Trotta, L.C., 1976, Ground-water resources and geology of Jefferson County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 33, 31 p. - Borman, R.G., 1976, Ground-water resources and geology of St. Croix County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 32, 30 p. - Bell, E.A., and Hindall, S.M., 1975, The availability of ground water for irrigation in the Rice Lake-Eau Claire area, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 31, 65 p. - McLeod, R.S., 1975, A digital-computer model for estimating hydrologic changes in the aquifer system in Dane County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 30, 40 p. - Gonthier, J.B., 1975, Ground-water resources of Waukesha County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 29, 47 p. - McLeod, R.S., 1975, A digital-computer model for estimating drawdown in the sandstone aquifer in Dane County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 28, 91 p. - Holt, C.L.R., Jr., and Skinner, E.L., 1973, Ground-water quality in Wisconsin through 1972: Wisconsin Geological and Natural History Survey Information Circular 22, 148 p. - Erickson, R.M., 1972, Trends in ground-water levels in Wisconsin, 1967–71: Wisconsin Geological and Natural History Survey Information Circular 21, 40 p. (Supplement to Information Circular 9). - Holt, C.L.R., Jr., Cotter, R.D., Green, J.H., and Olcott, P.G., 1970, Hydrogeology of the Rock-Fox River basin of southeastern Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 17, 47 p. (Prepared for the Annual Meeting of the Geological Society of America-Field Trip Guidebook). - Devaul, R.W., 1967, Trends in ground-water levels in Wisconsin through 1966: Wisconsin Geological and Natural History Survey Information Circular 9, 109 p. - Ryling, R.W., 1961, A preliminary study of the distribution of saline water in the bedrock aquifers of eastern Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 5, 23 p. - Drescher, W.J., 1956, Ground water in Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 3, 37 p. - _____1955, Some effects of precipitation on ground water in Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 1, 17 p. # WISCONSIN GEOLOGICAL AND NATURAL HISTORY SURVEY MISCELLANEOUS PAPERS Patterson, G.L., 1989, Water resources of Vilas County, Wisconsin: Wisconsin Geological and Natural History Survey Miscellaneous Paper 89–1, 46 p. #### OTHER PUBLICATIONS - Cancilla, D.A., Baird, J.C., Geis, S.W., and Corsi, S.R., 2003, Studies of the environmental fate and effect of aircraft deicing fluids detection of 5-Methyl-1H-Benzotriazole in the fathead minnow (*Pimephales Promelas*): Environmental Toxicology and Chemistry, v. 22, no. 1, p. 134–140. - Corsi, S.R., Walker, J.F., Waschbusch, R.J., and Standridge, J., 2003, Sources and variability of *Cryptosporidium* in the Milwaukee River watershed: Water Environmental Research Foundation, 99–HHE–2, ES-1–G-6, - Corsi, S.R., Zitomer, D.H., Field, J.A., and Cancilla, D.A., 2003, Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff: Environmental Science and Technology, v. 37, no. 18, p. 4031–4037. - Robertson, D.M., 2003, Influence of different temporal sampling strategies on estimating total phosphorus and suspended sediment concentration and transport in small streams: Journal of the American Water Resources Association, v. 39, no. 5, p. 1281– 1308. - Robertson, D.M., and Saad, D.A., October 2003, Environmental water-quality zones for streams: Environmental Management, v. 31, no. 5, p. 581–602. - Hunt, R.J., Haitjema, H.M., Krohelski, J.T., and Feinstein, D.T., March–April 2003, Simulating ground water-lake interactions approaches and insights: Ground Water, v. 41, no. 2, p. 227–237. - Krabbenhoft, D.P., Olson, M.L., Dewild, J.F., Clow, D.W., Striegl, R.G., Dornblaser,
M.M., and Vanmetre, P., 2002, Mercury loading and methylmercury production and cycling in highaltitude lakes from the Western United States: Water, Air, and Soil Pollution—Focus, v. 2, p. 233–249. - Bravo, H.R., Jiang, F., and Hunt, R.J., 2002, Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system: Water Resources Research, v. 38, no. 8, p. 28/1–28/9. - Anderson, M.P., Hunt, R.J., Krohelski, J.T., and Chung, K., March—April 2002, Using high hydraulic conductivity nodes to simulate seepage lakes: Ground Water, v. 40, no. 2, p. 117–122. - Kelson, V.A., Hunt, R.J., Haitjema, H.M., March–April 2002, Improving a regional model using reduced complexity and parameter estimation: Ground Water, v. 40, no. 2, p. 132–143. - Fitzpatrick, F.A., Scudder, B.C., Lenz, B.N., and Sullivan, D.J., December 2001, Effects of multi-scale environmental characteristics on agricultural stream biota in eastern Wisconsin: Journal of the American Water Resources Association, v. 37, no. 6, p. 1,489–1,507. - Lott, R.B., and Hunt, R.J., December 2001, Estimating evapotranspiration in natural and constructed wetlands: Wetlands, v. 21, no. 4, p. 614–628. - Fitzpatrick, F.A., 2001, A comparison of multi-disciplinary methods for measuring physical conditions of streams: Chapter in the American Geophysical Union, Geomorphic Processes and Riverine Habitat, v. 4, p. 7–18. - Corsi, S.R., Booth, N.L., and Hall, D.W., 2001, Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams: Environmental Toxicology and Chemistry, v. 20, no. 7, p. 1,474–1,482. - Corsi, S.R., Booth, Hall, D.W., and Geis, S.W., 2001, Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicers: Published in Environmental Toxicology and Chemistry, v. 20, no. 7, p. 1,483–1,490. - Hunt, R.J., Steuer, J.J., Mansor, M.T.C., and Bullen, T.D., September– October 2001, Delineating a recharge area for a spring using numerical modeling, Monte Carlo Techniques, and Geochemical Investigation: Ground Water, v. 39, no. 5, p. 702–712. - Robertson, D.M., Goddard, G.L., Helsel, D.R., and MacKinnon, K.L., 2000, Rehabilitation of Delavan Lake, Wisconsin: Lake and Reservoir Management, v. 16, no. 3, p. 155–176. - Fitzpatrick, F.A., and Knox, J.C., 2000, Spatial and temporal sensitivity of hydrogeomorphic response and recovery to deforestation, agriculture, and floods: Physical Geography, v. 21, no. 2, p. 89–108. - Robertson, D.M., Wynne, R.H., and Chang, W.Y.B., December 2000, Influence of El Nino on lake and river ice cover in the northern hemisphere from 1900 to 1995: Verh. Internat. Verein. Limnology, v. 27, p. 2,784–2,788. - Elder, J.F., Rybicki, N.B., Carter, V., and Weintraub, V., March 2000, Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland: Wetlands, v. 20, no. 1, p. 113–125. - Robertson, D.M. and Richards, K.D., 2000, Influence of Different Temporal sampling strategies on estimating loads and maximum concentrations in small streams *in* the National Water Quality Monitoring Council Conference—proceedings, April 25–27, 2000, p. 209–223. - Hunt, R. and Zheng, C., 1999, Newsletter: Debating complexity in modeling; Eos, Transactions, American Geophysical Union, v. 80, no. 3, p. 29. - Hunt, R.J., Walker, J.F., and Krabbenhoft, D.P., 1999, Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands: Wetlands, v. 2, no. 19, p. 458– 472. - Lathrop, R.C., Carpenter, S.R., and Robertson, D.M., 1999, Summer water clarity responses to phosphorus, Daphnia grazing, and internal mixing in Lake Mendota: Limnology and Oceanography, v. 44, no. 1, p. 137–146. - Panuska, J.C., and Robertson, D.M., 1999, Estimating phosphorus concentrations following alum treatment using apparent settling velocities: Lakes and Reservoir Management, v. 15, no. 1, p. 28– 38. - Cleckner, L.B., Garrison, P.J., Hurley, J.P., Olson, M.L., and Krabbenhoft, D.P., 1998, Trophic transfer of methyl mercury in the northern Florida Everglades: Biogeochemistry, v. 40, p. 347– 361. - Hunt, R.J., Anderson, M.P., and Kelson, V.A., 1998, Improving a complex finite difference groundwater-flow model through the use of an analytic element screening model: Ground Water, v. 36, no. 6, p. 1,011–1,017. - Hunt, R.J., Bullen, T.D., Krabbenhoft, D.P., and Kendall, C., 1998, Using stable isotopes of water and strontium to investigate the hydrology of a natural and constructed wetland: Ground Water, v. 36, no. 3, p. 434–443. - Hurley, J.P., Krabbenhoft, D.P., Cleckner, L.B., Olson, M.L., Aiken, G.R., and Rawlik Jr., P.S., 1998, System controls on the aqueous distribution of mercury in the northern Florida Everglades: Biogeochemistry, v. 40, p. 293–311. - Krabbenhoft, David P., Gilmour, Cynthia C., Benoit, Janina M., Babiarz, Christopher L., Andren, Anders W., and Hurley, James P., 1998, Methyl mercury dynamics in littoral sediments of a temperate seepage lake: Canadian Journal of Fisheries and Aquatic Sciences, v. 55, no. 4, p. 835–844. - Krabbenhoft, David P., Hurley, James P., Olson, Mark L., and Cleckner, Lisa B., 1998, Diel variability of mercury phase and species distributions in the Florida Everglades: Biogeochemistry, v. 40, p. 311–325. - Peters, C.A., and others, 1998, Water-quality in the western Lake Michigan drainages, Wisconsin and Michigan, 1992–95: U.S. Geological Survey Circular 1156, 40 p. - Robertson, D.M., Elder, J.F., Goddard, G.L., and James, W.F., 1998, Dynamics in phosphorus retention in wetlands upstream of Delavan Lake, Wisconsin: Lakes and Reservoir Management, v. 14, no. 4, p. 466–477. - Schindler, John E., and Krabbenhoft, David P., 1998, The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream: Biogeochemistry, v. 43, p. 157–174. - Team for Evaluating the Wisconsin Water-Monitoring Network, 1998, An integrated water-monitoring network for Wisconsin: University of Wisconsin Water Resources Center Special Report WRC SR 98–01, 62 p. - Thorstenson, Donald C., Weeks, Edwin P., Haas, Herbert, Busenberg, Eurybiades, Plummer, L. Niel., and Peters, Charles A., 1998, Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: Data and basic concepts of chemical and physical processes in the mountain: Water Resources Research, v. 34, no. 6, p. 1,507–1,529. - Walker, J.F., and Krabbenhoft, D.P., 1998, Groundwater and surfacewater interactions in riparian and lake-dominated systems in McDonnell, J.J., and Kendall, C., eds., Isotopic tracers in catchment hydrology: Elsevier, Amsterdam, The Netherlands, p. 467–486. - Fitzgerald, S.A., and Steuer, J.J., 1997, Polychlorinated biphenyls (PCBs) as probes of biogeochemical processes in rivers, in Molecular Markers in Environmental Geochemistry, Eganhouse, R.P., ed.: American Chemical Society Symposium Series, p. 382–397. - Fitzgerald, S.A., and Steuer, J.J., 1997, Polychlorinated biphenyls (PCBs) as probes of biogeochemical processes in rivers, American Chemical Society Annual Meeting, Orlando, Florida, August 1996. - Hornewer, N.J., Johnson, G.P., Robertson, D.M., and Hondzo, M., 1997, Field-scale tests for determining mixing patterns associated with coarse-bubble air diffuser configurations, Egan Quarry, Illinois, in Environmental and Coastal Hydraulics: Protecting the Aquatic Habitat, proceedings of the International Association of Hydraulic Research, San Francisco, CA, USA, p. 57–63. - Hunt, R.J., Krabbenhoft, D.P., and Anderson, M.P., 1997, Assessing hydrogeochemical heterogeneity in natural and constructed wetlands: Biochemistry, v. 39, p. 271–293. - Olson, M.L., Cleckner, LB., Hurley, J.P., Krabbenhoft, D.P., and Heelan, T.W., 1997, Resolution of matrix effects on analysis of total and methyl mercury in aqueous samples from the Florida Everglades: Fresenius Journal of Analytical Chemistry, v. 358, p. 392–396. - Robertson, D.M., 1997, Regionalized loads of sediment and phosphorus to Lakes Michigan and Superior—High flow and long-term average: Journal of Great Lakes Research, v. 23, p. 416–439. - Walker, J.F., and Wang, D., 1997, Measurement of flow under ice covers in North America: Journal of Hydraulic Engineering, v. 123, no. 11, p. 1,037–1,040. - Anderson, W.L., Robertson, D.M., and Magnuson, J.J., 1996, Evidence of recent warming and El Nino-related variation in ice breakup of Wisconsin lakes: Limnology and Oceanography, v. 41, p. 815–821. - Bullen, T.D., Krabbenhoft, D.P., and Kendall, C., 1996, Kinetic and mineralogic controls on the evolution of groundwater chemistry and ⁸⁷Sr/⁸⁶Sr in a sandy silicate aquifer, northern Wisconsin: Geochemica Cosomchemica Acta, v. 60, p. 1,807–1,821. - Elder, J.F., James, R.V., and Steuer, J.J., 1996, Mobility of 2,2',5,5'-tetrachlorobiphenyl in model systems containing bottom sediments and water from an industrialized river basin in northeastern Wisconsin: Journal of Great Lakes Research, v. 22, no. 3, p. 697–706. - Gebert, Warren A. and Krug, William R., 1996, Streamflow trends in Wisconsin's driftless area: Journal of the American Water Resources Association, v. 32, no. 4, p. 733–744. - Hunt, R.J., Krabbenhoft, D.P., and Anderson, M.P., 1996, Groundwater inflow measurements in wetland systems: Water Resources Research, v. 32, no. 3, p. 495–507. - Hunt, R.J., and Krohelski, J.T., 1996, The application of an analytic element model to investigate ground-water lake interactions at Pretty Lake, Wisconsin: Journal of Lakes and Reservoir Management, v. 12, no. 4, p. 487–495. - Imberger, J., Robertson, D.M., and Boland, K., 1996, Lake Number— A quantitative indicator of mixing to be used in water quality management: ScientificImpeller, Solna, Sweden, no. 4, p. 9–15. - Klump, J.V., Edgington, D.N., Sager, P.E.,
and Robertson, D.M., 1996, The biogeochemistry of Green Bay—1. Sedimentary phosphorus cycling in a phosphorus mass balance for the Green Bay ecosystem: Canadian Journal of Fisheries and Aquatic Sciences, v. 54, no. 1, p. 10–26. - Krug, W.R., 1996, Simulation of temporal changes in rainfall-runoff characteristics, Coon Creek Basin, Wisconsin: Journal of the American Water Resources Association, v. 32, no. 4, p. 745–752. - Assel, R.A., and Robertson, D.M., 1995, Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records: limnology and Oceanography, v. 40, no. 1, January 1995, p. 165–176. - Assel, R.A., Robertson, D.M., Hoff, M.H., and Selgeby, J.H., 1995, Climatic-change implications from long-term (1823–1994) ice records near the Laurention Great Lakes: Annals of Glaciology, v. 21, p. 383–386. - Greb, S.R., and Graczyk, D.J., 1995, Frequency duration analysis of dissolved-oxygen concentrations in two southwestern Wisconsin streams: Water Resources Bulletin, American Water Resources Association, v. 31, no. 3, June 1995, p. 431–438. - Kendall, C., and Krabbenhoft, D.P., 1995, Applications of isotopes to tracing sources of solutes and water *in* shallow systems in Charbeneau, R.J., ed., Groundwater Management, proceedings of the international symposium, August 1995, San Antonio, Tx, American Association of Civil Engineers, p. 390–395. - Krabbenhoft, D.P., Benoit, J.M., Babiarz, C.L., Hurley, J.P., and Andren, A.W., 1995, Mercury cycling in the Allequash Creek watershed, northern Wisconsin: Water, Air, and Soil Pollution, v. 80, nos. 1/4, February 1995, p. 425–433. - Krabbenhoft, D.P., and Webster, K.E., 1995, Transient hydrogeological controls on the chemistry of a seepage lake: Water Resources Research, v. 31, no. 9, September 1995, p. 2,295–2,305. - Velleux, M., Endicott, D., Steuer, J., Jaeger, S., and Patterson, D., 1995, Long-term simulation of PCB export from the Fox River to Green Bay: Journal of Great Lakes Research, International Association for Great Lakes Research, v. 21, no. 3, 1995, p. 359–372. - Wentz, D.A., Rose, W.J., and Webster, K.E., 1995, Long-term hydrologic and biogeochemical responses of a soft water seepage lake in north central Wisconsin: Water Resources Research, v. 31, no. 1, January 1995, p. 199–212. - Elder, J.F., 1994, Distribution and grain-size partitioning of metals in bottom sediments of an experimentally acidified Wisconsin lake: Water Resources Bulletin, v. 30, no. 2, p. 251–259. - Hurley, J.P., Krabbenhoft, D.P., Babiarz, C.L., and Andren, A.W., 1994, Cycling processes of mercury across sediment/water interfaces in seepage lakes in Baker, L.A., ed., Environmental Chemistry of Lakes and Reservoirs: Advances in Chemistry Series, American Chemical Society, Washington, D.C., p. 426– 440 - Krabbenhoft, D.P., Bowser, C.J., Kendall, C., and Gat, J.R., 1994, Use of oxygen-18 and deuterium to assess the hydrology of groundwater/lake systems in Baker, L.A., ed., Environmental Chemistry of Lakes and Reservoirs: Advances in Chemistry Series, American Chemical Society, Washington, D.C., p. 67–90. - Robertson, D.M., Anderson, W., and Magnuson, J.J., 1994, Relations between El Nino/Southern Oscillation events and the climate and ice cover of lakes in Wisconsin, p. 48–57. *in* Greenland, D. ed., El Nino and Long-Term Ecological Research (LTER) Sites, Publication no. 18, LTER Network Office: University of Washington, Seattle, WA, 57 p. - Robertson, D.M. and Imberger, J., 1994, Lake Number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen. Internationale Revue der gesamten: Hydrobiologie, v. 79, p. 159–176. - Teal, M.J., Ettema, R., and Walker, J.F., 1994, Estimation of mean flow velocity in ice-covered channels: Journal of Hydraulic Engineering, v. 120, no. 12, p. 1,385–1,400. - Walker, J.F., 1994, Methods for measuring discharge under ice cover: Journal of Hydraulic Engineering, v. 120, no. 11, p. 1,327–1,336. - Walker, J.F., 1994, Statistical techniques for assessing water-quality effects of BMPs: Journal of Irrigation and Drainage Engineering, v. 120, no. 2, p. 334–347. - Bannerman, R.T., Owens, D.W., Dodds, R.B., and Hornewer, N.J., 1993, Sources of pollutants in Wisconsin stormwater: Water Science Technology, v. 28, no. 3–5, p. 241–259. - Fitzgerald, S.A., and Gardner, W.S., 1993, An algal carbon budget for pelagic/benthic coupling in Lake Michigan: Limnology and Oceanography, v. 28, no. 3, p. 547–560. - Walker, J.F., and Graczyk, D.J., 1993, Preliminary evaluation of effects of best management practices in the Black Earth Creek, Wisconsin, priority watershed: Water Science Technology, v. 28, no. 3–5, p. 539–548. - Assel, R.A. and Robertson, D.M., 1992, Climatic changes near the Great Lakes inferred from 141-year ice records *in* proceedings of the 5th International Meeting on Statistical Climatology, Toronto, Canada, June, p. 81–85. - Krabbenhoft, D.P., Anderson, M.P., and Bowser, C.J., 1992, Reply to comment by Stauffer on "Estimating groundwater exchange with lakes using stable isotopes:" Water Resources Research, v. 28, no. 6, p. 1,751–1,753. - Krabbenhoft, D.P., and Babiarz, C.L., 1992, Role of groundwater transport in aquatic mercury cycling: Water Resources Research, v. 28, no. 12, p. 3,119–3,128. - Luecke, C., Lunte, C.C., Wright, R.A., Robertson, D.M., and McLain, A.S., 1992, Impacts of variation in planktivorous fish on abundance of Daphnids: A simulation model of the Lake Mendota Food Web, in Kitchell, J.F. ed., Food Web Management—A Case Study of Lake Mendota: Springer-Verlag, New York, NY, 553 p. - Robertson, D.M., Ragotzkie, R.A., and Magnuson, J.J., 1992, Lake ice records used to detect historical and future climatic changes: Climatic Change, v. 21, p. 407–427. - Elder, J.F., and Collins, J.J., 1991, Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems: Reviews of Environmental Contamination and Toxicology, v. 122, no. 4, p. 37–79. - Walker, J.F., 1991, Accuracy of selected techniques for estimating iceaffected streamflow: Journal of Hydraulic Engineering, v. 117, no. 6, p. 697–712. - Krabbenhoft, D.P., Anderson, M.P., and Boswer, C.J., 1990, Estimating groundwater exchange with lakes, 2—Calibration of a three-dimensional, solute transport model to a stable isotope plume: Water Resources Research, v. 26, no. 10, p. 2,445–2,462. - Krabbenhoft, D.P., Bowser, C.J., Anderson, M.P., and Valley, J.W., 1990, Estimating groundwater exchange with lakes, 1—Use of the stable isotope method: Water Resources Research, v. 26, no. 10, p. 2,445–2,453. - Lodge, D.M., Krabbenhoft, D.P., and Striegl, R.G., 1989, Groundwater velocity and abundance of grazing of crayfish as predictors of submersed macrophyte biomass in Sparkling Lake, Wisconsin: Limnology and Oceanography, v. 34, no. 1, p. 235–239. - Walker, J.F., Pickard, S.A., and Sonzogni, W.C., 1989, Spreadsheet watershed modeling for nonpoint-source pollution management in a Wisconsin basin: Water Resources Bulletin, v. 25, no. 1, p. 139–147. - Wentz, D.A., Garrison, P.J., and Bockheim, J.G., 1989, Section 7—Chemical input-output budgets, in Knauer, D., and Brouwer, S.A., eds., The Wisconsin Regional Integrated Lake-Watershed Acidification Study (RILWAS): 1981–1983: Palo Alto, California, Electric Power Research Institute Report EA–6214, p. 7–1 to 7–30. - Wentz, D.A., and Rose, W.J., 1989, Interrelationships among hydrologic-budget components of a northern Wisconsin seepage lake and implications for acid-deposition modeling: Archives of Environmental Contamination and Toxicology, v. 18, p. 147– 155. - Wentz, D.A., Rose, W.J., and Krohelski, J.T., 1989, Section 5— Hydrologic component, in Knauer, D., and Brouwer, S.A., eds., The Wisconsin Regional Integrated Lake-Watershed Acidification Study (RILWAS): 1981–1983: Palo Alto, California, Electric Power Research Institute Report EA–6214, p. 5–1 to 5–77. - Rochelle, B.P., Church, M.R., Gebert, W.A., Graczyk, D.J., and Krug, W.R., 1988, Relationship between annual runoff and watershed area for the eastern United States: Water Resources Bulletin, v. 24, no. 1, February 1988, p. 35–41. - Walker, J.F., 1988, General two-point method for determining velocity in open channel: ASCE Journal of Hydraulic Engineering, v. 114, no. 7, p. 801–805. - Graczyk, D.J., 1980, Flood insurance study of Verona, Dane County, Wisconsin, 3 fig., 3 pls. - Grant, R.S., and Graczyk, D.J., 1979, Flood insurance study of Hayward, Sawyer County, Wisconsin, 42 p. - Graczyk, D.J., 1978, Flood insurance study of Marathon City, Marathon County, Wisconsin, 1 fig., 3 pls. - Graczyk, D.J., 1978, Flood insurance study of Athens, Marathon County, Wisconsin, 3 figs., 3 pls. | | Page | | Page | |--|------|--|------| | Access to U.S. Geological Survey water data | 16 | Bed load, definition of | 16 | | Accuracy of the records | | Bed-load discharge, definition of | | | Acid neutralizing capacity, definition of | | Bed material, definition of | 17 | | Acre-foot, definition of | 16 | Benthic organisms, definition of | 17 | | Adams County, ground-water levels in | 531 | Berlin, Fox River at | 88 | | Adenosine triphosphate, definition of | 16 | Big Eau Pleine River near Stratford | 268 | | Afton, Rock River at | 362 | Big Sandy Creek near Wausau | 428 | | Algae, blue-green, definition of | | Biochemical oxygen demand, definition of | 17 | | Fire, definition of | 20 | Biomass, definition of | | | Green, definition of | | Biomass pigment ratio, definition of | | | Algal growth potential, definition of | | Bird Creek at Wautoma | | | Alkalinity, definition of | | Black Earth Creek, at Black Earth | | | Allen Creek Tributary near Alvin | | Tributary at Cross Plains | | | Allequash Creek at CTH M near Boulder Junction | | Tributary at CTH KP, at Cross Plains | | | Amberg, Pike River at | | Black
River at Neillsville | | | Annual 7-day minimum, definition of | | Black River basin, crest-stage partial-record stations in | | | Annual runoff, definition of | | gaging station records in | | | Apple River near Somerset | | Blanchardville, East Branch Pecatonica River near | | | Appleton, Fox River at | | Blue-green algae, definition of | | | Aquifer, water table, definition of | | Bois Brule River at Brule | | | Arcadia, Joos Valley Creek Rain Gage J3-1003, near | | Bottom material, definition of | | | Trempealeau River at | | Boulder Junction, Allequash Creek at CTH M near | | | Arcticial substrate definition of | | Stevenson Creek, at County Trunk Highway M, near | | | Artificial substrate, definition of | | Trout River, at Ct Higwy H, near Trout River, at Trout Lake, near | | | Ashland, White River near | | Brodhead, Sugar River near | | | Whittlesey Creek near | | Brown County, ground-water levels in | | | Aspect, definition of | | Bruce Valley Creek near Pleasantville | | | . 15 p • • • • • • • • • • • • • • • • • • | | Bruce, Chippewa River near | | | Babcock, Yellow River at | 273 | Flambeau River near | | | Babit Creek at Gilman | | Brule River, near Commonwealth | | | Bacteria, definition of | | near Florence | 47 | | Fecal coliform, definition of | 20 | Brule, Bois Brule River at | | | Fecal streptococcal, definition of | 20 | Buffalo River basin, crest-stage partial-record stations in | 425 | | Enterococcus, definition of | 19 | Buffalo River, near Mondovi | 425 | | Escherichia coli, definition of | 19 | Tributary near Osseo | | | Total coliform, definition of | | Bulk electrical conductivity, definition of | 17 | | Bad Axe River basin, crest-stage partial-record stations | | Bull Brook near Amery | | | Bad Axe River, North Fork, near Genoa | 426 | Burnett County, ground-water levels in | | | Bad River, near Mellen | | Burton, Grant River at | 306 | | Bad River near Odanah | | Butternut Creek, at County Highway B, near | 100 | | Badfish Creek near Cooksville | | Park Falls | | | Badger Mill Creek at Verona | | Butternut Creek, at Cutoff Road, near Butternut | | | Banat, MI, Menominee River at White Rapids Dam nea | | Butternut, Butternut Creek, at Cutoff Road, near | | | Bankfull stage, definition of | | Spiller Creek at County Highway B near | 189 | | Baraboo River, near Baraboo | | Castle Rock, Fennimore Fork near | 200 | | South Branch, at Hillsboro | | Cawley Creek near Neillsville | | | Devils Lake near | | Cedar Creek near Cedarburg | | | Bark River, at Delafield | | Cedarburg, Cedar Creek near | | | at Nagawick Road at | | Milwaukee River near | | | near Rome | | Cells volume, definition of | | | Bark River, at Delafield | | Cells/volume, definition of | | | Barron, Yellow River at | | Cfs-day, definition of | | | Base discharge, definition of | | Channel bars, definition of | | | Base flow, definition of | | Chemical oxygen demand, definition of | | | Bear River near Manitowish Waters | | Chippewa Falls, Chippewa River at | | | near Powell | | Chippewa River, at Bishops Bridge near Winter | | | Bearskin Creek near Harshaw | 427 | at Chippewa Falls | | | Beaverdam River at Beaver Dam | 316 | at Durand | | | | | near Bruce | 190 | 602 <u>INDEX</u> | | Page | | Page | |--|------|---|------| | Chippewa River basin, crest-stage partial-record stations in | 423 | Drainage basin, definition of | 19 | | gaging-station records in | | Dry mass, definition of | | | location map of | | Dry weight, definition of | | | miscellaneous measuremnets in | 436 | Duck Creek near Howard | | | Cisco Branch Ontonagon River at Cisco Lake Outlet | 45 | Duncan Creek at Bloomer | 424 | | Cisco Lake Outlet, Cisco Branch Ontonagon River at | 45 | Durand, Chippewa River at | 205 | | Clinton, Turtle Creek, at Carvers Rock Road, near | 391 | Eagle Creek, at County Highway G, near Fountain City | 221 | | Clostridium perfringens, definition of | 18 | Rain Gage E3-1006 near Fountain City | | | Coliphages, definition of | 18 | Rain Gage E2-1005 near Fountain City | 212 | | Color unit, definition of | 18 | Eau Claire River (Chippewa River basin) near Fall Creek | 424 | | Commonwealth, Brule River near | 48 | Eau Claire River at Kelly | | | Confined aquifer, definition of | | North Fork, near Thorp | 199 | | Contents, definition of | | Eau Galle River, at Low-Water Bridge at Spring Valley | | | Continuous-record station, definition of | | at Spring Valley | | | Control structure, definition of | | near Woodville | 206 | | Control, definition of | | Elkhorn, Jackson Creek Tributary near | | | Cooksville, Badfish Creek near | | Jackson Creek, at Mound Road, near | | | Cooperation | | Embarrass River, near Embarrass | | | Crawfish River at Milford | | Middle Branch, near Wittenberg | | | Cross Plains, Black Earth Creek Tributary at KTH KP at | | Embarrass, Embarrass River near | | | Black Earth Creek Tributary at | | Embeddedness, definition of | | | Cubic foot per second per square mile, definition of | | Enterococcus bacteria, definition of | | | Cubic foot per second, definition of | | EPT Index, definition of | | | Cubic foot per second-day, definition of | 18 | Escherichia coli (E. coli), definition of | | | | 4.0 | Estimated (E) concentration value, definition of | | | Daily mean suspended-sediment concentration, definition of | | Euglenoids, definition of | | | Daily-record station, definition of | | Evergreen Creek near Langlade | | | Danbury, St. Croix River near | | Evergreen River below Evergreen Falls near Langlade | | | Dane County, ground-water levels in | | Explanation of the records | | | Darlington, Pecatonica River at | | records of ground-water levels | | | Data collection platform, definition of | | records of stage and water discharge | | | Data logger, definition of | | records of surface-water quality | | | Datum, definition of | | Extractable organic halides, definition of | 19 | | at Nagawicka Road at | | Fecal coliform bacteria, definition of | 20 | | Nagawicka Lake at | | Fecal streptococcal bacteria, definition of | | | Delavan, Delavan Lake near | | Fence, Popple River near | | | Delavan Lake Outlet, at Borg Road, near | | Fennimore Fork near Castle Rock | | | Turtle Creek at | | near Fennimore | | | Delavan Lake,near Delavan | | Fire algae, definition of | | | at North End near Lake Lawn | | Fisher Creek Tributary at Janesville | | | at SW End near Delavan Lake | | Flambeau River near Bruce | | | Inlet, at State Highway 50, at Lake Lawn | | Florence, Brule River near | | | Outlet, at Borg Road, near Delavan | | Pine River below Pine River Powerplant near | | | at Center near Delavan Lake | | Flow-duration percentiles, definition of | | | Dell Creek near Lake Delton | | Fort Atkinson, Rock River at | | | Des Plaines River at Russell, Il | 404 | Fountain City, Eagle Creek, at County Highway G near | | | Devil Creek near Merrill | | Eagle Creek Rain Gage E2-1005, near | | | Devils Lake near Baraboo | 277 | Eagle Creek Rain Gage E3-1006, near | | | Diatom, definition of | 18 | Joos Valley Creek near | | | Diel, definition of | 18 | Joos Valley Creek Rain Gage J2-1002, near | | | Discharge, definition of | | Fox River Lake Michigan basin) at Appleton | | | Dissolved oxygen, definition of | | at Berlin | | | Dissolved, definition of | | at Oil Tank Depot, at Green Bay | 104 | | Dissolved-solids concentration, definition of | 18 | at Oshkosh | 99 | | Diversity index, definition of | 19 | at Princeton | 78 | | Dodge County, ground-water levels in | | at Rapide Croche Dam, near Wrightstown | 103 | | Dodge, Trempealeau River at | 246 | Fox River (Illinois River b asin) at Waukesha | 405 | | Door County, ground-water levels in | | near New Munster | 416 | | Douglas County, ground-water levels in | 533 | Franklin, Root River near | 160 | | Douglas Creek near Prentice | 423 | Root River Canal near | | | Drainage area, definition of | 19 | French Creek near Ettrick | 426 | <u>INDEX</u> 603 | | Page | | Page | |---|------|--|------| | Fulton, Yahara River near | 361 | Iowa County, ground-water levels in | 535 | | | | Iron Mountain, MI, Menominee River at Twin Falls near | 49 | | Gage datum, definition of | 20 | Island, definition of | 21 | | Gage height, definition of | | | | | Gage values, definition of | | Jackson County, ground-water levels in | | | Gaging station, definition of | | Jackson Creek, at Mound Road, near Elkhorn | | | Galena River basin, crest-stage partial-record stations in | | Tributary near Elkhorn | | | Galena River basin, gaging station records in | | Jewel Creek at Muskego | | | Galena River near Platteville | | Johnson Creek near Knowlton | | | Gas chromatography/flame ionization detector, definition Geneva Lake at Lake Geneva | | Joos Valley Creek, near Fountain City | | | Geneva Lake at Lake GenevaGenorphic channel units, definition of | | Rain Gage J2-1002 near Fountain City
Rain Gage J3-1003 near Arcadia | | | Geomorphic chamier units, definition ofGill Creek near Brooklyn | | Jump River at Sheldon | | | Gillett, Oconto River near | | Tributary near Jump River | | | Goose Creek at Beldenville | | Trioutary near sump River | 123 | | Grant County, ground-water levels in | | Kelly, Eau Claire River at | 266 | | Grant River at Burton | | Kenosha County, ground-water levels in | | | Grant River basin, crest-stage partial-record stations in | | Kewaunee River near Kewaunee | | | gaging station records in | | Kickapoo River at La Farge | | | Grant-Platte River basin location map | | at Ontario | | | Green algae, definition of | | at Steuben | 302 | | Green Bay, Fox River, at Oil Tank Depot, at | | Killsnake River near Chilton | 421 | | Green County, ground-water levels in | | Kinnickinnic River (Lake Michigan basin) at South | |
| Green Lake Inlet at County Trunk Highway A | | 11th Street at Milwaukee | | | near Green Lake | 83 | Kinnickinnic River (St. Croix River basin), near River Falls | 176 | | Green Lake, Green Lake Inlet at County Trunk | | Tributary at River Falls | 422 | | Highway A near | | Knox Lane Storm Sewer at Madison | | | Puchyan River near | | Koss, MI, Menominee River at | | | White Creek at Spring Grove Road near | | Kroncke Drive Storm Sewer at Madison | 354 | | Greenbush, Mullet River at | 110 | | | | Grindstone Creek at County Trunk Highway E | 170 | | 2.1 | | near Reserve | | Laboratory reporting level, definition of | | | Gudegast Creek near Starks | 420 | La Crosse River, at Sparta | | | | | La Crosse, La Crosse River near | | | Habitat quality index, definition of | 20 | La Grosse, La Crosse River near La Farge, Kickapoo River at | | | Habitat, definition of | 20 | Lafayette County, ground-water levels in | | | Hardness, definition of | | Lakes: | 331 | | Hay Creek near Prentice | | Delavan near Delavan | 386 | | Hay River at Wheeler | | at Center, near Delavan Lake | | | Hayton, South Branch Manitowoc River at | | at North End near Lake Lawn | | | High tide, definition of | | at SW End near Delavan | | | Hillsboro, South Branch Baraboo River at | | Devils near Baraboo | | | Hilsenhoff's Biotic Index, definition of | | Geneva at Lake Geneva | 412 | | Holmes Avenue Creek Tributary at GMIA Outfall #1 | | Koshkonong near Newville | 329 | | at Milwaukee | 145 | Mendota at Madison | 352 | | Honey Creek at Milwaukee | 421 | Monona at Madison | 353 | | Horicon, Rock River at | 314 | Nagawicka at Delafield | 325 | | Horizontal datum, definition of | | Winnebago, at Oshkosh | | | Howard, Duck Creek near | | near Stockbridge | | | Hydrologic Benchmark Network | | Lake Geneva, Geneva Lake at | | | Hydrologic index stations, definition of | | White River, at Center Street, at | | | Hydrologic unit, definition of | 21 | Lake Koshkonong near Newville | | | | 400 | Lake Lawn, Delavan Lake at North End near | | | Illinois River basin, crest-stage partial-record stations in | | Delavan Lake Inlet, at State Highway 50, at | | | gaging station records in | | Lake Mendota at Madison | | | Inch, definition of | | Lake Michigan, basin location map | 105 | | Independence, Traverse Valley Creek, North Tributary. ne | | streams tributary to, crest-stage partial-record | 410 | | South Tributary. nearIndianford, Rock River at | | station records ingaging-station records in | | | Instantaneous discharge, definition of | | miscellaneous measurements in | | | Introduction | | Lake Monona at Madison | | | | | | | 604 <u>INDEX</u> | | Page | | Page | |---|------|--|------| | Lake Superior, basin location map | 36 | at Niagara | 58 | | gaging station records in | | at Twin Falls near Iron Mountain, MI | | | streams tributary to, crest-stage partial-record | | at White Rapids near Banat, MI | | | stations in | 418 | below Pemene Creek near Pembine | | | miscellaneous measurements in | | near McAllister | | | Lake Tomahawk, Wisconsin River at Rainbow Lake near | 259 | near Vulcan | 59 | | Lake Winnebago at Oshkosh | | Menomonee Falls, Menomonee River at | | | near Stockbridge | | Menomonee River, at Menomonee Falls | | | Lake Wisconsin, Tributary #1 near Prairie du Sac | | at Wauwatosa | | | Tributary #2 near Prairie du Sac | | Menominee-Oconto-Peshtigo River basin location map | | | Tributary #3 near Prairie du Sac | | Menomonie, Red Cedar River at | | | Land-surface datum, definition of | | Merrill, Prairie River near | | | Langlade, Evergreen River below Evergreen Falls near | | Wisconsin River at | | | | | Metamorphic stage, definition of | | | Wolf River at | | | | | Latent heat flux, definition of | | Method detection limit, definition of | | | Light-attenuation coefficient, definition of | | Methylene blue active substances, definition of | | | Lightning Creek at Almena | | Micrograms per gram, definition of | | | Lily River near Lily | | Micrograms per kilogram, definition of | | | Lincoln Creek at Sherman Boulevard at Milwaukee | | Micrograms per liter, definition of | | | Lipid, definition of | | Microsiemens per centimeter, definition of | | | Little Pine Creek near Irma | | Middleton, Pheasant Branch at | | | Little Platte River near Platteville | 429 | Pheasant Branch Tributary at | | | Little River, North Branch, near Coleman | | Milford, Crawfish River at | | | Little Turtle Creek at Allens Grove | 430 | Milligrams per liter, definition of | | | Livingston Branch near Livingston | 430 | Milwaukee County, ground-water levels in | 541 | | Lloyd Creek near Doering | 427 | Milwaukee River, at Milwaukee | 122 | | Long-term method detection level, definition of | 21 | at mouth, at Milwaukee | 157 | | Lost Creek near Waverly | 423 | near Cedarburg | 118 | | Low tide, definition of | | Milwaukee, Holmes Avenue Creek Tributary at GMIA | | | Lowery Creek near Spring Green | | Outfall #1 at | 145 | | , , , , , | | Kinnickinnic River at South 11th Street at | 156 | | Macrophytes, definition of | 21 | Lincoln Creek at Sherman Boulevard at | | | Madison, Knox Lane Storm Sewer at | | Milwaukee River at | | | Kroncke Drive Storm Sewer at | | Milwaukee River at mouth, at | | | Lake Mendota at | | Wilson Park Creek at GMIA Infall at | | | Lake Monona at | | Wilson Park Creek at GMIA Outfall #7 at | | | Piping Rock Road Storm Sewer at | | Wilson Park Creek at St. Lukes Hospital at | | | Spring Harbor Storm Sewer at | | Minimum reporting level, definition of | | | Yahara River at State Hwy 113 at | | Mink Creek near Beechwood | | | | | Miscellaneous site, definition of | | | Manitowish Waters, Bear River near | | * | | | Manitowoc County, ground-water levels in | | Mishonagon Creek near Woodruff | | | Manitowoc River at Manitowoc | | Mississippi River at McGregor, IA | | | South Branch, at Hayton | | at Winona, MN | | | Manitowoc, Manitowoc River at | | Mole Lake, Swamp Creek above Rice Lake at | | | Maple Creek near Sugar Bush | | Swamp Creek below Rice Lake at | | | Marathon County, ground-water levels in | | Monroe County, ground-water levels in | | | Marinette County, ground-water levels in | | Montreal River at Saxon Falls near Saxon | | | Marquette County, ground-water levels in | | Moquah, North Fish Creek near | | | Martintown, Pecatonica River at | | Morgan, Red River at Morgan Road near | | | McAllister, Menominee River near | 65 | Most probable number (MPN), definition of | 22 | | McFarland, Yahara River at | 359 | Mud Creek near Danville | | | McGregor, Mississippi River at | 251 | near Valders | 421 | | Mean concentration of suspended sediment, definition of | 21 | Mukwonago River at Mukwonago | 406 | | Mean discharge, definition of | | Mullet River at Greenbush | | | Mean high tide, definition of | | Multiple-plate samplers, definition of | | | Mean low tide, definition of | | Muscoda, Wisconsin River at | | | Mean sea level, definition of | | Muskego (Big Muskego) Lake Outlet near Wind Lake | | | Measuring point, definition of | | Muskego, Jewel Creek at | | | Megahertz, definition of | | | | | Membrane filter, definition of | | Nagawicka Lake at Delafield | 325 | | Manominea Diver at Koss MI | | Namekagan Diver near Trago | | | | Page | | Page | |---|------|--|------| | Nanograms per liter, definition of | 22 | near Cavour | 419 | | National Atmospheric Deposition Program/National | | near Wabeno | 67 | | Trends Network | 7 | Peshtigo, Peshtigo River at | 69 | | National Geodetic Vertical Datum of 1929, definition of | 22 | Pesticides, definition of | 24 | | National Stream-Quality Accounting Network | 7 | pH, definition of | 24 | | National Water-Quality Assessment Program | 7 | Pheasant Branch, at Middleton | 342 | | Natural substrate, definition of | 22 | Tributary at Middleton | 347 | | Nephelometric turbidity unit, definition of | 22 | Phytoplankton, definition of | 24 | | Neillsville, Black River at | 247 | Picocurie, definition of | 24 | | Nekoosa, Tenmile Creek near | 272 | Pigeon Creek near Lancaster | 429 | | Nekton, definition of | 22 | Pike Creek near Kenosha | 422 | | Nemadji River near South Superior | 37 | Pike River, at Amberg | 62 | | New London, Wolf River at | 98 | near Racine | 164 | | New Munster, Fox River near | 416 | Pine Creek near Taylor | 425 | | Newville, Lake Koshkonong near | 329 | Pine River, below Pine River Powerplant near Florence | 57 | | Niagara, Menominee River at | 58 | North Branch, at Windsor Dam near Alvin | 419 | | Nippersink Creek, North Branch, near Genoa City | 431 | Piping Rock Road Storm Sewer at Madison | 357 | | North American Datum of 1927 | 22 | Piscasaw Creek near Walworth | 403 | | North American Datum of 1983 | 22 | Plankton, definition of | 23 | | North American Vertical Datum of 1988 | 23 | Platte River basin, crest-stage partial-record stations in | | | North Fish Creek near Moquah | 40 | gaging station records in | 310 | | • | | Platte River near Rockville | | | Oak Creek, at South Milwaukee | 159 | Platteville, Galena River near | 311 | | near South Milwaukee | 422 | Polk County, ground-water levels in | 543 | | Oconto County, ground-water levels in | 542 | Polychlorinated biphenyls (PCB s), definition of | 24 | | Oconto River, near Gillett | 70 | Polychlorinated naphthalenes, definition of | 24 | | near Oconto | 71 | Pool, definition of | | | North Branch, near Wabeno | 419 | Poplar River near Owen | 426 | | Odanah, Bad River near | 41 | Popple River near Fence | 50 | | Ontario, Kickapoo River at | 300 | Portage County, ground-water levels in | 544 | | Open or screened interval, definition of | 23 | Porterfield, Peshtigo River at | | | Organic carbon, definition of | 23 | Prairie du Sac, Lake Wisconsin Tributary #1 near | 286 | | Organic mass, definition of |
23 | Lake Wisconsin Tributary #2 near | 283 | | Organism count, area, definition of | 23 | Lake Wisconsin Tributary #3 near | 280 | | Total, definition | 27 | Prairie River near Merrill | 262 | | Volume, definition of | 23 | Price County, ground-water levels in | 544 | | Organochlorine compounds, definition of | 23 | Price Creek near Phillips | 423 | | Oshkosh, Fox River at | 99 | Primary productivity, definition of | 24 | | Lake Winnebago at | 100 | Carbon method, definition of | 24 | | Otter Creek near Prairie du Sac | 428 | Oxygen method, definition of | | | | | Princeton, Fox River at | 78 | | Parameter Code, definition of | 23 | Puchyan River near Green Lake | 87 | | Park Falls, Butternut Creek, at County Highway B, near | 192 | | | | Partial-record station, definition of | 23 | Quality of ground water data at miscellaneous sites | 551 | | Particle size, definition of | 23 | | | | Particle-size classification, definition of | 23 | Racine County, ground-water levels in | 545 | | Pats Creek near Elk Grove | 429 | Racine, Pike River near | | | Peak flow, definition of | 23 | Root River at | 163 | | Pearl Creek near Grandview | 419 | Radioisotopes, definition of | 24 | | Pearson Creek near Maple | 418 | Reach, definition of | | | Pecatonica River, at Darlington | | Recoverable, bottom material, definition of | | | at Martiintown | | Recurrence interval, definition of | | | East Branch, near Blanchardville | 393 | Red Cedar River at Menomonie | 204 | | Livingston Branch, at Darlington | 430 | Red River (tributary to Lake Michigan) near Dykesville | 421 | | Pembine, Menominee River below Pemene Creek near | | Red River at Morgan Road near Morgan | | | Pensaukee River near Pulaski | | Replicate samples, definition of | | | Percent composition, definition of | | Reserve, Grindstone Creek at County Trunk Highway E ne | | | Percent shading, definition of | | Return period, definition of | | | Periodic station, definition of | | Richland County, ground-water levels in | | | Periphyton, definition of | | River Falls, Kinnickinnick River near | | | Peshtigo River, at Peshtigo | | Riffle, definition of | | | at Porterfield | | River mileage, definition of | | | | Page | | Page | |--|------|---|------| | Rock Branch near Mineral Point | 430 | Stage-discharge relation, definition of | 26 | | Rock Creek Tributary near Canton | | Streamflow, definition of | | | Rock River, at Afton | | Steuben, Kickapoo River at | | | at Fort Atkinson | 328 | Stevenson Creek, at County Trunk Highway M, near | | | at Horicon | 314 | Boulder Junction | 182 | | at Indianford | 330 | Stockbridge, Lake Winnebago near | | | at Watertown | 315 | Stony Brook near Superior 4 | 18 | | South Branch, at Waupun | 313 | Stratford, Big Eau Pleine River near | 268 | | Rock River basin, crest-stage partial-record stations in | 429 | Substrate embeddedness class, definition of | 26 | | gaging station records in | 313 | Substrate, definition of | 26 | | miscellaneous sites in | | artificial, definition of | 16 | | Rock and Illinois River basins location map | 312 | natural, definition of | | | Rockville, Platte River near | | Sugar Creek at Elkhorn | | | Rome, Bark River near | 327 | Sugar River near Brodhead | 400 | | Root River, near Franklin | | Summary of hydrologic conditions | | | at Racine | | Surface area, definition of | 26 | | Canal near Franklin | | Surficial bed material, definition of | | | Rothschild, Wisconsin River at | | Surrogate, definition of | | | Rowan Creek at Poynette | | Suspended sediment, definition of | 26 | | Run, definition of | | Suspended solids, total residue at 105 °C concentration, | | | Runoff, definition of | | definition of | | | Russell, II., Des Plaines River at | 404 | Suspended, definition of | | | | | Recoverable, definition of | | | St. Croix Falls, St. Croix River at | | Total, definition of | | | St. Croix River, at St. Croix Falls | | Suspended-sediment concentration, definition of | | | near Danbury | 168 | Suspended-sediment discharge, definition of | | | St. Croix River basin, crest-stage partial-record | | Suspended-sediment load, definition of | | | stations in | | Swamp Creek, above Rice Lake at Mole Lake | | | gaging station records in | | below Rice Lake at Mole Lake | | | location map | | Synoptic studies, definition of | 26 | | Sand River Tributary near Red Cliff | | | | | Sauk County, ground-water levels in | | Tagatz Creek near Westfield | | | Sawyer County, ground-water levels in | | Taxa (Species) richness, definition of | | | Sawyer Creek at Oshkosh | | Taxonomy, definition of | | | Saxon, Montreal River at Saxon Falls near | | Taylor County, ground-water levels in | | | Sea level, definition of | | Tenmile Creek near Nekoosa | | | Sediment, definition of | | Thalweg, definition of | | | Sensible heat flux, definition of | | Thermograph, definition of | | | Seth Creek near Cadott | | Thorp, North Fork Eau Claire River near | | | Sheboygan River at Sheboygan | | Time-weighted average, definition of | | | Sheldon, Jump River at | | Tons per day definition of | | | Shelves, definition of | | Tons per day, definition of | | | | | Total discharge definition of | | | Sodium adsorption ratio, definition of | | Total discharge, definition of | | | Soil-water content, definition of | | Total load, definition of | | | | | Total organism count, definition of | | | Somerset, Apple River near | | Total recoverable, definition of | | | South Superior, Nemadji River near | | Total sediment discharge, definition of | | | Sparta, La Crosse River at | | Total sediment load, definition of | | | Spaulding Creek near Big Falls | | Total, bottom material, definition of | | | Special networks and programs | | Total, definition of | | | Specific conductance, definition of | | Trade River near Frederic | | | Spiller Creek at County Highway B near Butternut | | Transect, definition of | | | Spirit River at Spirit Falls | | Trappe River Tributary near Merrill | | | Spring Creek (Chippewa River basin) near Durand | | Traverse Valley Creek, North Tributary, near Independence | | | Spring Harbor Storm Sewer at Madison | | South Tributary, near Independence | | | Spring Valley, Eau Galle River at | | Trego, Namekagon River near | | | Squaw Creek near Harrison | | Trempealeau County, ground-water levels in | | | Stable isotope ratio, definition of | | Trempealeau River, at Arcadia | | | Stage (see gage height) | | at Dodge | | | | | | | | | Page | | Page | |---|------|--|------| | Trempealeau River basin, crest-stage partial-record | | Tributary near Burlington | 431 | | stations in | 425 | Whittlesey Creek near Ashland | 39 | | gaging station records in | 211 | Willow Creek near Eau Claire | 424 | | Trempealeau-Black River basin location map | 210 | Wilson Park Creek, at GMIA Infall at Milwaukee | 136 | | Trout River, at County Highway, near Boulder Junction | 184 | at GMIA Outfall #7 at Milwaukee | 140 | | at Trout Lake, near Boulder Junction | 183 | at St. Lukes Hospital at Milwaukee | 149 | | Turbidity, definition of | 28 | Wind Lake, Muskego (Big Muskego) Lake Outlet near | 411 | | Turtle Creek at Delavan | 390 | Windsor, Yahara River at | | | at Carvers Rock Road, near Clinton | 391 | Winnebago County, ground-water levels in | 550 | | | | Winona, MN, Mississippi River at | | | Ultraviolet (UV) absorbance (absorption), definition of | 28 | Winter, Chippewa River at Bishops Bridge near | | | Unconfined aquifer, definition of | 28 | Wisconsin Dells, Wisconsin River near | 274 | | Underwood Creek at Wauwatosa | | Wisconsin Rapids, Wisconsin River at | | | | | Wisconsin River at Merrill | 265 | | Verona, Badger Mill Creek at | 395 | at Muscoda | 298 | | Vertical datum, definition of | 28 | at Rainbow Lake near Lake Tomahawk | 259 | | Vilas County, ground-water levels in | 548 | at Rothschild | 267 | | Volatile organic compounds, definition of | 28 | at Wisconsin Rapids | 270 | | Vulcan, MI, Menominee River near | 59 | near Wisconsin Dells | 274 | | | | Tributary at Wausau | 428 | | Wabeno, Peshtigo River near | 67 | Wisconsin River basin, crest-stage partial-record | | | Walworth County, ground-water levels in | | stations in | 426 | | Walworth, Piscasaw Creek near | 403 | gaging-station records in | 259 | | Water-quality analyses at miscellaneous sites | | location maps: | | | Water table, definition of | | Central Wisconsin River basin | 261 | | Water year, definition of | 28 | Lower Wisconsin River basin | | | Water-table aquifer, definition of | 28 | Upper Wisconsin River basin | 258 | | Watertown, Rock River at | | Wittenberg, Middle Branch Embarrass River near | | | Waukesha County, ground-water levels in | 549 | Wolf River at Langlade | 91 | | Waukesha, Fox River at | 405 | Wolf River at New London | | | Waupaca County, ground-water levels in | 549 | Woodville, Eau Galle River at | 206 | | Waupun, South Branch Rock River at | 313 | Wrightstown, Fox River, at Rapide Croche Dam, near | 103 | | Waushara County, ground-water levels in | 550 | WSP, definition of | 28 | | Wauwatosa, Menomonee River at | 135 | | | | Underwood Creek at | 133 | Yahara River, at McFarland | 359 | | WDR, definition of | 28 | at State Hwy 113 at Madison | 336 | | Weighted average, definition of | 28 | at Windsor | | | Wet mass, definition of | 28 | near Fulton | 361 | | Wet weight, definition of | 28 | Yellow River (Chippewa River basin) at Barron | 200 | | Wheeler, Hay River at | 203 | at Cadott | 424 | | White Creek at Spring Grove Road near Green Lake | | Yellow River, at Babcock | 273 | | White River (Lake Superior basin) near Ashland | | Tributary near Pittsville | | | White River (Rock-Fox River basin), at Center Street, | | Yellowstone River near Blanchardville | | | at Lake Geneva | 413 | | | | | | Zoonlankton definition of |
28 |